
www.allitebooks.com

http://www.allitebooks.org

The Rails 4 Way

Obie Fernandez, Kevin Faustino and Vitaly Kushner

This book is for sale at http://leanpub.com/tr4w

This version was published on 2014-06-03

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

©2013 - 2014 Obie Fernandez, Kevin Faustino and Vitaly Kushner

www.allitebooks.com

http://leanpub.com/tr4w
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://www.allitebooks.org

Tweet This Book!
Please help Obie Fernandez, Kevin Faustino and Vitaly Kushner by spreading the word about this book on
Twitter!

The suggested tweet for this book is:

I just bought the beta release of The Rails 4 Way

The suggested hashtag for this book is #tr4w.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#tr4w

www.allitebooks.com

http://twitter.com
https://twitter.com/search?q=%23tr4w
https://twitter.com/search?q=%23tr4w
http://www.allitebooks.org

Taylor, your hard work and dedication to your craft is an inspiration to me every day. I love you…

www.allitebooks.com

http://www.allitebooks.org

Contents

Foreword . ii

Foreword (to The Rails 3 Way) . iii

Foreword (to The Rails Way) . v

Acknowledgments . vi

About the Authors . vii
Obie Fernandez . vii
Kevin Faustino . vii

Introduction . viii
About This Book . viii
Recommended Reading and Resources . ix
Goals . x
Prerequisites . xi
Required Technology . xi

1 Rails Environments and Configuration . 1
1.1 Bundler . 1
1.2 Startup and Application Settings . 8
1.3 Development Mode . 16
1.4 Test Mode . 20
1.5 Production Mode . 21
1.6 Configuring a Database . 24
1.7 Configuring Application Secrets . 26
1.8 Logging . 27

2 Routing . 34
2.1 The Two Purposes of Routing . 34
2.2 The routes.rb File . 35
2.3 Route Globbing . 47
2.4 Named Routes . 48
2.5 Scoping Routing Rules . 53
2.6 Listing Routes . 55
2.7 Conclusion . 56

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

3 REST, Resources, and Rails . 57
3.1 REST in a Rather Small Nutshell . 57
3.2 Resources and Representations . 58
3.3 REST in Rails . 58
3.4 Routing and CRUD . 59
3.5 The Standard RESTful Controller Actions . 62
3.6 Singular Resource Routes . 65
3.7 Nested Resources . 66
3.8 Routing Concerns . 70
3.9 RESTful Route Customizations . 71
3.10 Controller-Only Resources . 75
3.11 Different Representations of Resources . 77
3.12 The RESTful Rails Action Set . 79
3.13 Conclusion . 83

4 Working with Controllers . 85
4.1 Rack . 85
4.2 Action Dispatch: Where It All Begins . 88
4.3 Render unto View… . 91
4.4 Additional Layout Options . 99
4.5 Redirecting . 100
4.6 Controller/View Communication . 103
4.7 Action Callbacks . 104
4.8 Streaming . 109
4.9 Variants . 114
4.10 Conclusion . 115

5 Working with Active Record . 117
5.1 The Basics . 117
5.2 Macro-Style Methods . 118
5.3 Defining Attributes . 121
5.4 CRUD: Creating, Reading, Updating, Deleting . 125
5.5 Database Locking . 138
5.6 Where Clauses . 141
5.7 Connections to Multiple Databases in Different Models . 152
5.8 Using the Database Connection Directly . 153
5.9 Other Configuration Options . 157
5.10 Conclusion . 157

6 Active Record Migrations . 159
6.1 Creating Migrations . 159
6.2 Data Migration . 172
6.3 schema.rb . 174
6.4 Database Seeding . 174
6.5 Database-Related Rake Tasks . 175
6.6 Conclusion . 179

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

7 Active Record Associations . 180
7.1 The Association Hierarchy . 180
7.2 One-to-Many Relationships . 181
7.3 The belongs_to Association . 189
7.4 The has_many Association . 197
7.5 Many-to-Many Relationships . 205
7.6 One-to-One Relationships . 215
7.7 Working with Unsaved Objects and Associations . 219
7.8 Association Extensions . 220
7.9 The CollectionProxy Class . 221
7.10 Conclusion . 222

8 Validations . 224
8.1 Finding Errors . 224
8.2 The Simple Declarative Validations . 224
8.3 Common Validation Options . 234
8.4 Conditional Validation . 236
8.5 Short-form Validation . 238
8.6 Custom Validation Techniques . 239
8.7 Skipping Validations . 242
8.8 Working with the Errors Hash . 242
8.9 Testing Validations with Shoulda . 243
8.10 Conclusion . 244

9 Advanced Active Record . 245
9.1 Scopes . 245
9.2 Callbacks . 250
9.3 Calculation Methods . 259
9.4 Single-Table Inheritance (STI) . 261
9.5 Abstract Base Model Classes . 267
9.6 Polymorphic has_many Relationships . 268
9.7 Enums . 272
9.8 Foreign-key Constraints . 274
9.9 Modules for Reusing Common Behavior . 274
9.10 Modifying Active Record Classes at Runtime . 278
9.11 Using Value Objects . 280
9.12 Non-Persisted Models . 283
9.13 PostgreSQL enhancements . 285
9.14 Conclusion . 292

10 Action View . 293
10.1 Layouts and Templates . 293
10.2 Partials . 302
10.3 Conclusion . 308

11 All About Helpers . 309

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

11.1 ActiveModelHelper . 309
11.2 AssetTagHelper . 315
11.3 AtomFeedHelper . 323
11.4 CacheHelper . 325
11.5 CaptureHelper . 325
11.6 CsrfHelper . 326
11.7 DateHelper . 327
11.8 DebugHelper . 333
11.9 FormHelper . 333
11.10 FormOptionsHelper . 347
11.11 FormTagHelper . 355
11.12 JavaScriptHelper . 360
11.13 NumberHelper . 361
11.14 OutputSafetyHelper . 366
11.15 RecordTagHelper . 366
11.16 RenderingHelper . 367
11.17 SanitizeHelper . 367
11.18 TagHelper . 369
11.19 TextHelper . 371
11.20 TranslationHelper and the I18n API . 375
11.21 UrlHelper . 393
11.22 Writing Your Own View Helpers . 397
11.23 Wrapping and Generalizing Partials . 399
11.24 Conclusion . 404

12 Haml . 406
12.1 Getting Started . 406
12.2 The Basics . 407
12.3 Doctype . 412
12.4 Comments . 412
12.5 Evaluating Ruby Code . 413
12.6 Helpers . 415
12.7 Filters . 416
12.8 Haml and Content . 417
12.9 Configuration Options . 418
12.10 Conclusion . 420

13 Session Management . 421
13.1 What to Store in the Session . 421
13.2 Session Options . 422
13.3 Storage Mechanisms . 422
13.4 Cookies . 426
13.5 Conclusion . 427

14 Authentication and Authorization . 428
14.1 Devise . 428

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

14.2 has_secure_password . 434
14.3 Pundit . 439
14.4 Conclusion . 445

15 Security . 447
15.1 Password Management . 447
15.2 Log Masking . 449
15.3 SSL (Secure Sockets Layer) . 449
15.4 Model mass-assignment attributes protection . 450
15.5 SQL Injection . 452
15.6 Cross-Site Scripting (XSS) . 453
15.7 XSRF (Cross-Site Request Forgery) . 456
15.8 Session Fixation Attacks . 458
15.9 Keeping Secrets . 459
15.10 Conclusion . 460

16 Action Mailer . 461
16.1 Setup . 461
16.2 Mailer Models . 461
16.3 Receiving Emails . 467
16.4 Server Configuration . 469
16.5 Testing Email Content . 470
16.6 Previews . 471
16.7 Conclusion . 472

17 Caching and Performance . 473
17.1 View Caching . 473
17.2 Data Caching . 488
17.3 Control of Web Caching . 490
17.4 ETags . 491
17.5 Conclusion . 492

18 Background Processing . 494
18.1 Delayed Job . 494
18.2 Sidekiq . 497
18.3 Resque . 503
18.4 Rails Runner . 508
18.5 Conclusion . 510

19 Ajax on Rails . 511
19.1 Unobtrusive JavaScript . 512
19.2 Turbolinks . 516
19.3 Ajax and JSON . 518
19.4 Ajax and HTML . 520
19.5 Ajax and JavaScript . 522
19.6 Conclusion . 523

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

20 Asset Pipeline . 524
20.1 Asset Pipeline . 524
20.2 Wish List . 525
20.3 The Big Picture . 525
20.4 Organization. Where does everything go? . 525
20.5 Manifest files . 526
20.6 Custom format handlers . 531
20.7 Post-Processing . 532
20.8 Helpers . 533
20.9 Fingerprinting . 535
20.10 Serving the files . 535
20.11 Rake Tasks . 537
20.12 Conclusion . 537

21 RSpec . 538
21.1 Introduction . 538
21.2 Basic Syntax and API . 541
21.3 Matchers . 551
21.4 Custom Expectation Matchers . 552
21.5 Shared Behaviors . 555
21.6 Shared Context . 555
21.7 RSpec’s Mocks and Stubs . 556
21.8 Running Specs . 558
21.9 RSpec Rails Gem . 559
21.10 RSpec Tools . 573
21.11 Conclusion . 574

22 XML . 575
22.1 The to_xml Method . 575
22.2 The XML Builder . 585
22.3 Parsing XML . 587
22.4 Conclusion . 589

Active Model API Reference . 590
AttributeMethods . 590
Callbacks . 592
Conversion . 594
Dirty . 594
Errors . 596
ForbiddenAttributesError . 600
Lint::Tests . 600
Model . 601
Name . 602
Naming . 603
SecurePassword . 604
Serialization . 604

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Serializers::JSON . 604
Serializers::Xml . 605
Translation . 606
Validations . 607
Validator . 615

Active Support API Reference . 617
Array . 617
ActiveSupport::BacktraceCleaner . 623
Benchmark . 624
ActiveSupport::Benchmarkable . 624
BigDecimal . 625
ActiveSupport::Cache::Store . 626
ActiveSupport::CachingKeyGenerator . 630
ActiveSupport::Callbacks . 631
Class . 634
ActiveSupport::Concern . 637
ActiveSupport::Concurrency . 638
ActiveSupport::Configurable . 638
Date . 639
DateTime . 648
ActiveSupport::Dependencies . 653
ActiveSupport::Deprecation . 659
ActiveSupport::DescendantsTracker . 660
ActiveSupport::Duration . 660
Enumerable . 662
ERB::Util . 663
FalseClass . 664
File . 664
Hash . 665
ActiveSupport::Gzip . 671
ActiveSupport::HashWithIndifferentAccess . 672
ActiveSupport::Inflector::Inflections . 672
Integer . 678
ActiveSupport::JSON . 679
Kernel . 680
ActiveSupport::KeyGenerator . 681
ActiveSupport::Logger . 682
ActiveSupport::MessageEncryptor . 682
ActiveSupport::MessageVerifier . 683
Module . 684
ActiveSupport::Multibyte::Chars . 693
NilClass . 697
ActiveSupport::Notifications . 697
Object . 708

CONTENTS

ActiveSupport::OrderedHash . 712
ActiveSupport::OrderedOptions . 713
ActiveSupport::PerThreadRegistry . 713
ActiveSupport::ProxyObject . 714
ActiveSupport::Railtie . 715
Range . 716
Regexp . 717
ActiveSupport::Rescuable . 718
String . 718
ActiveSupport::StringInquirer . 728
Struct . 728
ActiveSupport::Subscriber . 729
Symbol . 729
ActiveSupport::TaggedLogging . 729
ActiveSupport::TestCase . 730
ActiveSupport::Testing::Assertions . 731
Thread . 733
Time . 734
ActiveSupport::TimeWithZone . 744
ActiveSupport::TimeZone . 745
TrueClass . 749
ActiveSupport::XmlMini . 749

Rails Essentials . 752
Environmental Concerns . 752
Essential Gems . 753
Ruby Toolbox . 760
Screencasts . 760

CONTENTS i

“I can positively say that it’s the single best Rails book ever published to date. By a long shot.”

—Antonio Cangiano, Software Engineer and Technical Evangelist at IBM

“This book is a great crash course in Ruby on Rails! It doesn’t just document the features of Rails,
it filters everything through the lens of an experienced Rails developer—so you come out a Pro
on the other side.”

—Dirk Elmendorf, co-founder of Rackspace & Rails developer since 2005

“The key to The Rails Way is in the title. It literally covers the “way” to do almost everything
with Rails. Writing a truly exhaustive reference to the most popular Web application framework
used by thousands of developers is no mean feat. A thankful community of developers that has
struggled to rely on scant documentation will embrace The Rails Way with open arms. A tour
de force!”

—Peter Cooper, Editor, Ruby Inside

“In the past year, dozens of Rails books have been rushed to publication. A handful are good. Most
regurgitate rudimentary information easily found on the Web. Only this book provides both the
broad and deep technicalities of Rails. Nascent and expert developers, I recommend you follow
The Rails Way.”

—Martin Streicher, Chief Technology Officer, McClatchy Interactive, former Editor-in-Chief of
Linux Magazine

“Hal Fulton’s The Ruby Way has always been by my side as a reference while programming
Ruby. Many times I had wished there was a book that had the same depth and attention to detail,
only focused on the Rails framework. That book is now here and hasn’t left my desk for the past
month.”

—Nate Klaiber, Ruby Programmer

“As noted in my contribution to the Afterword: “What Is the Rails Way (To You)?,” I knew soon
after becoming involved with Rails that I had found something great. Now, with Obie’s book, I
have been able to step into Ruby on Rails development coming from .NET and be productive right
away. The applications I have created I believe to be a much better quality due to the techniques
I learned using Obie’s knowledge.”

—Robert Bazinet, InfoQ.com, .NET and Ruby community Editor, and founding member of the
Hartford, CT Ruby Brigade

“Extremely well written; it’s a resource that every Rails programmer should have. Yes, it’s that
good.”

—Reuven Lerner, Linux Journal columnist

Foreword
Coming soon

—Steve Klabnik

Foreword (to The Rails 3 Way)
From the beginning, the Rails framework turned web development on its head with the insight that the vast
majority of time spent on projects amounted to meaningless sit-ups. Instead of having the time to think
through your domain-specific code, you’d spend the first few weeks of a project deciding meaningless details.
By making decisions for you, Rails frees you to kick off your project with a bang, getting a working prototype
out the door quickly. This makes it possible to build an application with some meat on its bones in a few
weekends, making Rails the web framework of choice for people with a great idea and a full-time job.

Rails makes some simple decisions for you, like what to name your controller actions and how to organize
your directories. It also gets pretty aggressive, and sets development-friendly defaults for the database and
caching layer you’ll use, making it easy to change to more production-friendly options once you’re ready to
deploy.

By getting so aggressive, Rails makes it easy to put at least a few real users in front of your application within
days, enabling you to start gathering the requirements from your users immediately, rather than spending
months architecting a perfect solution, only to learn that your users use the application differently than you
expected.

The Rails team built the Rails project itself according to very similar goals. Don’t try to overthink the needs
of your users. Get something out there that works, and improve it based on actual usage patterns. By all
accounts, this strategy has been a smashing success, and with the blessing of the Rails core team, the Rails
community leveraged the dynamism of Ruby to fill in the gaps in plugins. Without taking a close look at Rails,
you might think that Rails’ rapid prototyping powers are limited to the 15-minute blog demo, but that you’d
fall off a cliff when writing a real app. This has never been true. In fact, in Rails 2.1, 2.2 and 2.3, the Rails
team looked closely at common usage patterns reflected in very popular plugins, adding features that would
further reduce the number of sit-ups needed to start real-life applications.

By the release of Rails 2.3, the Rails ecosystem had thousands of plugins, and applications like Twitter started
to push the boundaries of the Rails defaults. Increasingly, you might build your next Rails application using
a non-relational database or deploy it inside a Java infrastructure using JRuby. It was time to take the tight
integration of the Rails stack to the next level.

Over the course of 20 months, starting in January 2008, we looked at a wide range of plugins, spoke with the
architects of some of the most popular Rails applications, and changed the way the Rails internals thought
about its defaults.

Rather than start from scratch, trying to build a generic data layer for Rails, we took on the challenge of
making it easy to give any ORM the same tight level of integration with the rest of the framework as Active
Record. We accepted no compromises, taking the time to write the tight Active Record integration using the
same APIs that we now expose for other ORMs. This covers the obvious, such as making it possible to generate
a scaffold using DataMapper or Mongoid. It also covers the less obvious, such as giving alternative ORMs the
same ability to include the amount of time spent in the model layer in the controller’s log output.

We brought this philosophy to every area of Rails 3: flexibility without compromise. By looking at the ways
that an estimated million developers use Rails, we could hone in on the needs of real developers and plugin
authors, significantly improving the overall architecture of Rails based on real user feedback.

Foreword (to The Rails 3 Way) iv

Because the Rails 3 internals are such a departure from what’s come before, developers building long-lived
applications and plugin developers need a resource that comprehensively covers the philosophy of the new
version of the framework. The RailsTM 3 Way is a comprehensive resource that digs into the new features in
Rails 3 and perhaps more importantly, the rationale behind them.

—Yehuda Katz

Foreword (to The Rails Way)
Rails is more than programming framework for creating web applications. It’s also a framework for thinking
about web applications. It ships not as a blank slate equally tolerant of every kind of expression. On the
contrary, it trades that flexibility for the convenience of “what most people need most of the time to do most
things.” It’s a designer straightjacket that sets you free from focusing on the things that just don’t matter and
focuses your attention on the stuff that does.

To be able to accept that trade, you need to understand not just how to do something in Rails, but also why
it’s done like that. Only by understanding the why will you be able to consistently work with the framework
instead of against it. It doesn’t mean that you’ll always have to agree with a certain choice, but you will need
to agree to the overachieving principle of conventions. You have to learn to relax and let go of your attachment
to personal idiosyncrasies when the productivity rewards are right.

This book can help you do just that. Not only does it serve as a guide in your exploration of the features in
Rails, it also gives you a window into the mind and soul of Rails. Why we’ve chosen to do things the way we
do them, why we frown on certain widespread approaches. It even goes so far as to include the discussions
and stories of how we got there—straight from the community participants that helped shape them.

Learning how to do Hello World in Rails has always been easy to do on your own, but getting to know and
appreciate the gestalt of Rails, less so. I applaud Obie for trying to help you on this journey. Enjoy it.

—David Heinemeier Hansson, Creator of Ruby on Rails

Acknowledgments
The Rails 4 Way was very much a team effort. On behalf of myself and Kevin, I would like to thank Vitaly
Kushner and Ari Lerner for their contributions and support throughout the life of the project. We’d also like
to thank Mike Perham, Juanito Fatas, Phillip Campbell, Brian Cardarella, Carlos Souza, and Michael Mazyar
for technical review and edits. I must thank my understanding business partner Trevor Owens and staff at
Lean Startup Machine for their ongoing support. Of course, both I and Kevin also thank our families for their
patience as writing tasks quite often ate into our personal time with them.

As always, I’d also like to express a huge debt of gratitude to our executive editor at Pearson: Debra Williams-
Cauley. Without her constant support and encouragement throughout the years, the Professional Ruby Series
would not exist.

—Obie Fernandez (December 2013)

About the Authors

Obie Fernandez

Obie has been hacking computers since he got his first Commodore VIC-20 in the eighties, and found himself
in the right place and time as a programmer on some of the first Java enterprise projects of the mid-nineties.
He moved to Atlanta, Georgia, in 1998 and founded the Extreme Programming (later Agile Atlanta) User
Group and was that group’s president and organizer for several years. In 2004, he joined world-renowned
consultancy ThoughtWorks and made a a name for himself tackling high-risk, progressive projects in the
enterprise, including some of the first enterprise projects in the world utilizing Ruby on Rails.

As founder and CEO of Hashrocket, one of the world’s best web design and development consultancies, Obie
specialized in orchestrating the creation of large-scale, web-based applications, both for startups and mission-
critical enterprise projects. In 2010, Obie sold his stake in Hashrocket and has been working with technology
startups ever since. He’s currently Co-founder and CTO of Lean Startup Machine, where he leads an awesome
technology team and is building recognition as a thoughtleader on lean startup topics.

Obie’s evangelization of Ruby on Rails online via blog posts and publications dates back to early 2005, and it
earned him quite a bit of notoriety (and trash talking) from his old friends in the Java open-source community.
Since then, he has traveled around the world relentlessly promoting Rails at large industry conferences. The
previous two editions of this book are considered the “bibles” of Ruby on Rails development and are bestsellers.

Obie still gets his hands dirty with code on a daily basis and posts regularly on various topics to his popular
weblog at http://blog.obiefernandez.com. His next book, The Lean Enterprise, is scheduled to be published in
Spring 2014.

Kevin Faustino

Kevin is Founder and Chief Craftsman of Remarkable Labs, based in Toronto, Canada. He believes that
software should not just work, but be well-crafted. He founded Remarkable Labs because he wanted to build
a company that he would be proud to work for and that other companies would love to work with.

Following his passion for sharing knowledge, Kevin also founded the Toronto Ruby Brigade which hosts tech
talks, hack nights, and book clubs. Kevin has been specializing in Ruby since 2008, and been professionally
developing since 2005.

http://blog.obiefernandez.com

Introduction
It’s an exciting time for the Rails community. We have matured tremendously and our mainstream adoption
continues to pick up steam. Nearly 10 years after DHH first started playing with Ruby, it’s safe to say that
Rails remains a relevant and vital tool in the greater web technology ecosystem.

Rails 4 represents a big step forward for the community. We shed a variety of vestigial features that had
been deprecated in Rails 3. Security was beefed up and raw performance improved. Most everything in the
framework feels, well, tighter than before. Rails 4 is leaner and meaner than its previous incarnations, and so
is this edition of The Rails Way.

In addition to normal revisions to bring the text up to date with the evolution of Rails’ numerous APIs, this
edition adds a significant amount of new and updated material about Security, Performance and Caching,
Haml, RSpec, Ajax and the new Asset Pipeline.

About This Book

As with previous editions, this book is not a tutorial or basic introduction to Ruby or Rails. It is meant as a
day-to-day reference for the full-time Rails developer. The more confident reader might be able to get started
in Rails using just this book, extensive online resources, and his wits, but there are other publications that are
more introductory in nature and might be a wee bit more appropriate for beginners.

Every contributor to this book works with Rails on a full time basis. We do not spend our days writing books
or training other people, although that is certainly something that we enjoy doing on the side.

This book was originally conceived for myself, because I hate having to use online documentation, especially
API docs, which need to be consulted over and over again. Since the API documentation is liberally licensed
(just like the rest of Rails), there are a few sections of the book that reproduce parts of the API documentation.
In practically all cases, the API documentation has been expanded and/or corrected, supplemented with
additional examples and commentary drawn from practical experience.

Hopefully you are like me—I really like books that I can keep next to my keyboard, scribble notes in, and fill
with bookmarks and dog-ears. When I’m coding, I want to be able to quickly refer to both API documentation,
in-depth explanations, and relevant examples.

Book Structure

I attempted to give the material a natural structure while meeting the goal of being the best-possible Rails
reference book. To that end, careful attention has been given to presenting holistic explanations of each
subsystem of Rails, including detailed API information where appropriate. Every chapter is slightly different
in scope, and I suspect that Rails is now too big a topic to cover the whole thing in depth in just one book.

Believeme, it has not been easy coming upwith a structure that makes perfect sense for everyone. Particularly,
I have noted surprise in some readers when they notice that Active Record is not covered first. Rails is foremost
a web framework and at least to me, the controller and routing implementation is the most unique, powerful,
and effective feature, with Active Record following a close second.

www.allitebooks.com

http://www.allitebooks.org

Introduction ix

Sample Code and Listings

The domains chosen for the code samples should be familiar to almost all professional developers. They
include time and expense tracking, auctions, regional data management, and blogging applications. I don’t
spend pages explaining the subtler nuances of the business logic for the samples or justify design decisions
that don’t have a direct relationship to the topic at hand. Following in the footsteps of my series colleague Hal
Fulton and The Ruby Way, most of the snippets are not full code listings—only the relevant code is shown.
Ellipses (…) often denote parts of the code that have been eliminated for clarity.

Whenever a code listing is large and significant, and I suspect that youmight want to use parts of it verbatim in
your own code, I supply a listing heading. There are not too many of those. The whole set of code listings will
not add up to a completeworking system, nor are there 30 pages of sample application code in an appendix. The
code listings should serve as inspiration for your production-ready work, but keep in mind that it often lacks
touches necessary in real-world work. For example, examples of controller code are often missing pagination
and access control logic, because it would detract from the point being expressed.

Some of the source code for my examples can be found at https://github.com/obie/tr3w_time_and_expenses.
Note that it is not a working nor complete application. It just made sense at times to keep the code in the
context of an application and hopefully you might draw some inspiration from browsing it.

Concerning 3rd-Party RubyGems and Plugins

Whenever you find yourself writing code that feels like plumbing, by which I mean completely unrelated to
the business domain of your application, you’re probably doing too much work. I hope that you have this
book at your side when you encounter that feeling. There is almost always some new part of the Rails API or
a third-party RubyGem for doing exactly what you are trying to do.

As a matter of fact, part of what sets this book apart is that I never hesitate in calling out the availability of
third-party code, and I even document the RubyGems and plugins that I feel are most crucial for effective
Rails work. In cases where 3rd-party code is better than the built-in Rails functionality, we don’t cover the
built-in Rails functionality (pagination is a good example).

An average developer might see his productivity double with Rails, but I’ve seen serious Rails developers
achieve gains that are much, much higher. That’s because we follow the Don’t Repeat Yourself (DRY) principle
religiously, of which Don’t Reinvent The Wheel (DRTW) is a close corollary. Reimplementing something
when an existing implementation is good enough is an unnecessary waste of time that nevertheless can be
very tempting, since it’s such a joy to program in Ruby.

Ruby on Rails is actually a vast ecosystem of core code, official plugins, and third-party plugins. That
ecosystem has been exploding rapidly and provides all the raw technology you need to build even the most
complicated enterprise-class web applications. My goal is to equip you with enough knowledge that you’ll be
able to avoid continuously reinventing the wheel.

Recommended Reading and Resources

Readers may find it useful to read this book while referring to some of the excellent reference titles listed in
this section.

https://github.com/obie/tr3w_time_and_expenses

Introduction x

Most Ruby programmers always have their copy of the “Pickaxe” book nearby, Programming Ruby (ISBN:
0-9745140-5-5), because it is a good language reference. Readers interested in really understanding all of the
nuances of Ruby programming should acquire The Ruby Way, Second Edition (ISBN: 0-6723288-4-4).

I highly recommend Peepcode Screencasts, in-depth video presentations on a variety of Rails subjects by the
inimitable Geoffrey Grosenbach, available at http://peepcode.com

Ryan Bates does an excellent job explaining nuances of Rails development in his long-running series of free
webcasts available at http://railscasts.com/

Regarding David Heinemeier Hansson a.k.a. DHH. I had the pleasure of establishing a friendship with David,
creator of Rails, in early 2005, before Rails hit the mainstream and he became an International Web 2.0
Superstar. My friendship with David is a big factor in why I’m writing this book today. David’s opinions
and public statements shape the Rails world, which means he gets quoted a lot when we discuss the nature
of Rails and how to use it effectively.

As of 2013, I don’t know if this is true anymore, but back when I wrote the original edition of this book, David
had told me on a couple of occasions that he hates the “DHH” moniker that people tend to use instead of
his long and difficult-to-spell full name. For that reason, in this book I try to always refer to him as “David”
instead of the ever-tempting “DHH.”When you encounter references to “David” without further qualification,
I’m referring to the one-and-only David Heinemeier Hansson.

There are a number of notable people from the Rails world that are also referred to on a first-name basis in
this book. Those include:

• Yehuda Katz
• Jamis Buck
• Xavier Noria
• Tim Pope

Goals

As already stated, I hope to make this your primary working reference for Ruby on Rails. I don’t really
expect too many people to read it through end to end unless they’re expanding their basic knowledge of
the Rails framework. Whatever the case may be, over time I hope this book gives you as an application
developer/programmer greater confidence in making design and implementation decisions while working on
your day-to-day tasks. After spending time with this book, your understanding of the fundamental concepts
of Rails coupled with hands-on experience should leave you feeling comfortable working on real-world Rails
projects, with real-world demands.

If you are in an architectural or development lead role, this book is not targeted to you, but should make you
feel more comfortable discussing the pros and cons of Ruby on Rails adoption and ways to extend Rails to
meet the particular needs of the project under your direction.

Finally, if you are a development manager, you should find the practical perspective of the book and our
coverage of testing and tools especially interesting, and hopefully get some insight into why your developers
are so excited about Ruby and Rails.

http://peepcode.com
http://railscasts.com/

Introduction xi

Prerequisites

The reader is assumed to have the following knowledge:

• Basic Ruby syntax and language constructs such as blocks
• Solid grasp of object-oriented principles and design patterns
• Basic understanding of relational databases and SQL
• Familiarity with how Rails applications are laid out and function
• Basic understanding of network protocols such as HTTP and SMTP
• Basic understanding of XML documents and web services
• Familiarity with transactional concepts such as ACID properties

As noted in the section “Book Structure,” this book does not progress from easy material in the front to harder
material in the back. Some chapters do start out with fundamental, almost introductory material, and push
on to more advanced coverage. There are definitely sections of the text that experienced Rails developer will
gloss over. However, I believe that there is new knowledge and inspiration in every chapter, for all skill levels.

Required Technology

A late-model Apple MacBookPro running Mac OS X. Just kidding, of course. Linux is pretty good for Rails
development also. Microsoft Windows—well, let me just put it this way—your mileage may vary. I’m being
nice and diplomatic in saying that. We specifically do not discuss Rails development on Microsoft platforms
in this book. It’s common knowledge that the vast majority of working Rails professionals develop and deploy
on non-Microsoft platforms.

1 Rails Environments and Configuration
[Rails] gained a lot of its focus and appeal because I didn’t try to please people who didn’t share
my problems. Differentiating between production and development was a very real problem for
me, so I solved it the best way I knew how.

—David Heinemeier Hansson

Rails applications are preconfigured with three standard modes of operation: development, test, and pro-
duction. These modes are basically execution environments and have a collection of associated settings that
determine things such as which database to connect to, and whether the classes of your application should be
reloaded with each request. It is also simple to create your own custom environments if necessary.

The current environment can be specified via the environment variable RAILS_ENV, which names the desired
mode of operation and corresponds to an environment definition file in the config/environments folder.
You can also set the environment variable RACK_ENV or as a last resort you may rely on the default being
development. Since this environment setting governs some of the most fundamental aspects of Rails, such as
class loading, in order to really understand the Rails way you should understand its environment settings.

In this chapter, we start by covering Bundler, a tool that manages gem dependencies for your Ruby application.
It takes a gem manifest file and is able to fetch, download, and install the gems in the manifest, and all child
dependencies. Then we move on to how Rails starts up and handles requests, by examining scripts such as
boot.rb and application.rb and the settings that make up the three standard environment settings (modes).
We also cover some of the basics of defining your own environments, and why you might choose to do so.

Note that this book is not written with absolute newcomers to Rails in mind. To make the most out of this
book, you should already be at least somewhat familiar with how to bootstrap a Rails application and the
meaning of MVC. If you are not, I recommend that you first take advantage of the excellent Ruby on Rails
Tutorial website¹ by Michael Hartl, another Professional Ruby Series author.

1.1 Bundler

Bundler² is not a technology that is specific to Rails 4, but it is the preferred way to manage your application’s
gem dependencies. Applications generated with Rails 4 use Bundler automatically, and you should not need
to install the bundler gem separately since it’s a dependency of Rails itself.

Since we believe that you should use Bundler, figuring out how to not use Bundler is left as an exercise for
adventurous and/or nonconformist readers.

One of the most important things that Bundler does is dependency resolution on the full list of gems specified
in your configuration, all at once. This differs from the one-at-a-time dependency resolution approach
employed by Rubygems and previous versions of Rails, which can (and often did) result in the following
hard-to-fix problem:

Assume that your system had the following Rubygem versions installed.

¹http://ruby.railstutorial.org
²http://bundler.io

http://ruby.railstutorial.org
http://ruby.railstutorial.org
http://bundler.io
http://ruby.railstutorial.org
http://bundler.io

Rails Environments and Configuration 2

activesupport 4.0.2

activesupport 3.2.11

activemerchant 1.29.3

rails 3.2.11

It turns out that activemerchant 1.29.3 depends on activesupport >= 2.3.14 therefore when you load it
using the gem command (from the RubyGems library) like this

gem 'activemerchant', '1.29.3'

it results in the loading of activemerchant, as well as the latest compatible versions of its dependencies,
including the activesupport 4.0.2 gem, since it is greater than or equal to version 2.3.14. Subsequently,
trying to load rails itself with

gem 'rails', '3.2.11'

results in the following exception at runtime.

can't activate activesupport (= 3.2.11, runtime)

for ["rails-3.2.11"], already activated

activesupport-4.0.2 for ["activemerchant-1.29.3"]

The exception happens because activemerchant has a broader dependency that results in the activation of a
version of Active Support that does not satisfy the more narrow dependency of the older version of Rails.
Bundler solves this problem by evaluating all dependencies at once and figuring out exactly the right versions
of gems to load.

For an interesting perspective concerning the way that Bundler was conceived, make sure to read Yehuda’s
blog post on the subject³.

1.1.1 Gemfile

Located in the root of your Rails project directory, is a Ruby-based gem manifest file named Gemfile. The
Gemfile specifies all dependencies of your Rails app, including the version of Rails being used. The basic
syntax for the Gemfile is super simple:

gem 'kaminari'

gem 'nokogiri'

To load a dependency only in a specific environment, place it in a group block specifying one or more
environment names as symbols:

³http://yehudakatz.com/2010/04/21/named-gem-environments-and-bundler/

http://yehudakatz.com/2010/04/21/named-gem-environments-and-bundler/
http://yehudakatz.com/2010/04/21/named-gem-environments-and-bundler/

Rails Environments and Configuration 3

group :development do

gem 'pry-rails'

end

group :test do

gem 'capybara'

gem 'database_cleaner'

end

group :development, :test do

gem 'rspec-rails'

gem 'factory_girl_rails'

end

Upgrading from Rails 3
If you’re upgrading from Rails 3, note that Rails 4 no longer uses the assets group for asset pipeline
related gems. You will need to move all assets grouped gems inline.

The gem directive takes an optional second argument describing the version of the Rubygem desired. Leaving
the version argument off will simply get the latest available stable version, which may not be the latest version
available. To include a release candidate or a pre-release gem you’ll need to specify the version explicitly.

The format of the version argument matches the RubyGem versioning scheme to which you should already
be accustomed.

gem 'nokogiri', '1.5.6'

gem 'pry-rails', '> 0.2.2'

gem 'decent_exposure', '~> 2.0.1'

gem 'draper', '1.0.0.beta6'

You can find full instructions on how to craft a version string in the RubyGems documentation⁴.

Occasionally, the name of the gem that should be used in a require statement is different than the name of
that gem in the repository. In those cases, the :require option solves this simply and declaratively right in
the Gemfile.

gem 'webmock', require: 'webmock/rspec'

1.1.1.1 Loading Gems Directly From a Git Repository

Until now we have been loading our gems from https://rubygems.org. It is possible to specify a gem by its
source repository as long as it has a .gemspec file in the root directory. Just add a :git option to the call to
gem.

⁴http://docs.rubygems.org/read/chapter/16

http://docs.rubygems.org/read/chapter/16
https://rubygems.org
http://docs.rubygems.org/read/chapter/16

Rails Environments and Configuration 4

gem 'carrierwave', git: 'git@github.com:carrierwaveuploader/carrierwave.git'

If the gem source repository is hosted on GitHub and is public, you can use the :github shorthand.

gem 'carrierwave', github: 'carrierwaveuploader/carrierwave'

Gemspecs with binaries or C extensions are also supported.

gem 'nokogiri', git: 'git://github.com/tenderlove/nokogiri.git'

If there is no .gemspec file at the root of a gem’s git repository, you must tell Bundler which version to use
when resolving its dependencies.

gem 'deep_merge', '1.0', git: 'git://github.com/peritor/deep_merge.git'

It’s also possible to specify that a git repository contains multiple .gemspec files and should be treated as a
gem source. The following example does just that for the most common git repository that fits the criteria,
the Rails codebase itself. (Note: You should never actually need to put the following code in a Gemfile for one
of your Rails applications!)

git 'git://github.com/rails/rails.git'

gem 'railties'

gem 'action_pack'

gem 'active_model'

Additionally, you can specify that a git repository should use a particular ref, branch, or tag as options to the
git directive:

git 'git://github.com/rails/rails.git',

ref: '4aded'

git 'git://github.com/rails/rails.git',

branch: '3-2-stable'

git 'git://github.com/rails/rails.git',

tag: 'v3.2.11'

Specifying a ref, branch, or tag for a git repository specified inline uses the same option syntax.

gem 'nokogiri', git: 'git://github.com/tenderlove/nokogiri.git', ref: '0eec4'

1.1.1.2 Loading Gems From the File System

You can use a gem that you are actively developing on your local workstation using the :path option.

Rails Environments and Configuration 5

gem 'nokogiri', path: '~/code/nokogiri'

1.1.2 Installing Gems

Every time you modify the Gemfile, or more specifically, if you introduce dependencies not yet installed,
invoke the install command to ensure that all the dependencies in your Gemfile are available to your Rails
application.⁵

$ bundle install

Fetching gem metadata from https://rubygems.org/.........

Fetching gem metadata from https://rubygems.org/..

Installing rake (10.1.0)

Installing i18n (0.6.9)

Installing minitest (4.7.5)

Installing multi_json (1.8.2)

Installing atomic (1.1.14)

Installing thread_safe (0.1.3)

Installing tzinfo (0.3.38)

Installing activesupport (4.0.2)

Installing builder (3.1.4)

Installing erubis (2.7.0)

Installing rack (1.5.2)

Installing rack-test (0.6.2)

Installing actionpack (4.0.2)

Installing mime-types (1.25.1)

Installing polyglot (0.3.3)

Installing treetop (1.4.15)

Installing mail (2.5.4)

Installing actionmailer (4.0.2)

Installing activemodel (4.0.2)

Installing activerecord-deprecated_finders (1.0.3)

Installing arel (4.0.1)

Installing activerecord (4.0.2)

Installing coffee-script-source (1.6.3)

Installing execjs (2.0.2)

Installing coffee-script (2.2.0)

Installing thor (0.18.1)

Installing railties (4.0.2)

Installing coffee-rails (4.0.1)

Installing hike (1.2.3)

Installing jbuilder (1.5.2)

Installing jquery-rails (3.0.4)

Installing json (1.8.1)

⁵rbenv allows you to easily install, manage and work with multiple Ruby versions and it’s a must-have tool for modern Rails developers.
https://github.com/sstephenson/rbenv

https://github.com/sstephenson/rbenv

Rails Environments and Configuration 6

Installing bundler (1.3.5)

Installing tilt (1.4.1)

Installing sprockets (2.10.1)

Installing sprockets-rails (2.0.1)

Installing rails (4.0.2)

Installing rdoc (3.12.2)

Installing sass (3.2.12)

Installing sass-rails (4.0.1)

Installing sdoc (0.3.20)

Installing sqlite3 (1.3.8)

Installing turbolinks (1.3.1)

Installing uglifier (2.3.2)

Your bundle is complete!

Use `bundle show [gemname]` to see where a bundled gem is installed.

The install command updates all dependencies named in your Gemfile to the latest versions that do not
conflict with other dependencies.

You can opt to install dependencies, except those in specified groups using the --without option.

$ bundle install --without development test

$ bundle install --without test

1.1.3 Gem Locking

Every time you run bundle install or bundle update, Bundler calculates the dependency tree for your
application and stores the results in a file named Gemfile.lock. From that point on Bundler will only load
specific versions of gems that you are using at the moment that the Gemfile was locked, versions that you
know will work well with your application.

Note
The Gemfile.lock file should always be checked into version control, to ensure every machine
running the application uses the exact same versions of gems.⁶

To illustrate the importance of this, imagine the Gemfile.lock is missing and the application is
being deployed to production. Since the dependency tree is non-existent, Bundler has to resolve all
of the gems from the Gemfile on that machine. This in result may install newer gem versions than
you tested against, causing unforeseen issues.

1.1.4 Packaging Gems

You can package up all your gems in the vendor/cache directory inside of your Rails application.

⁶http://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/

http://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/

Rails Environments and Configuration 7

$ bundle package

Running bundle install --local in an application with packaged gems will use the gems in the package and
skip connecting to rubygems.org or any other gem sources. You can use this to avoid external dependencies
at deploy time, or if you depend on private gems that are not available in any public repository.

Making gem dependencies available to non-Rails scripts
Non-Rails scripts must be executed with bundle exec in order to get a properly initialized
RubyGems environment.

$ bundle exec guard

As of Rails 4, generating a new application will result in the creation of binstubs for Rails executables, located
in the bin folder. A binstub is a script containing an executable that runs in the context of the bundle. This
means one does not have to prefix bundle exec each time a Rails specific executable is invoked. Binstubs are
also first class citizens in Rails 4, and should be added into your version control system like any other source
code file.

By default, the following stubs are available on every new Rails 4 project:

• bin/bundle

• bin/rails

• bin/rake

• bin/spring

Upgrading from Rails 3
If you are upgrading from Rails 3 and have generated binstubs using Bundler in the past, you must
upgrade your binstubs by running the following commands:

1 bundle config --delete bin # Turn off Bundler's stub generator

2 rake rails:update:bin # Use the new Rails 4 executables

3 git add bin # Add bin/ to source control

To add a binstub of a commonly used executable in your bundle, invoke bundle binstubs some-gem-name.
To illustrate, consider the following example:

$ bundle binstubs guard

which creates a binstub for guard in the bin folder.

www.allitebooks.com

http://www.allitebooks.org

Rails Environments and Configuration 8

1 #!/usr/bin/env ruby

2 #

3 # This file was generated by Bundler.

4 #

5 # The application 'guard' is installed as part of a gem, and

6 # this file is here to facilitate running it.

7 #

8

9 require 'pathname'

10 ENV['BUNDLE_GEMFILE'] ||= File.expand_path("../../Gemfile",

11 Pathname.new(__FILE__).realpath)

12

13 require 'rubygems'

14 require 'bundler/setup'

15

16 load Gem.bin_path('guard', 'guard')

Using binstubs, scripts can be executed directly from the bin directory.

1 $ bin/guard

1.2 Startup and Application Settings

Whenever you start a process to handle requests with Rails (such as with rails server), one of the first
things that happens is that config/boot.rb is loaded.

There are three files involved in setting up the entire Rails stack:

config/boot.rb

sets up Bundler and load paths.

config/application.rb

loads rails gems, gems for the specified Rails.env, and configures the application.

config/environment.rb

runs all initializers.

All three are run when you need the whole Rails environment loaded. That’s what’s done by runner, console,
server, etc.

1.2.1 config/application.rb

The file config/application.rb is the home to your Rails application settings, and it’s the only file required
at the top of config/environment.rb.

Rails Environments and Configuration 9

Let’s go step by step through the settings provided in the default config/application.rb file that you’ll find
in a newly created Rails application. By the way, as you’re reading through the following sections, make a
mental note to yourself that changes to these files require a server restart to take effect.

The next lines of config/application.rb are where the wheels really start turning, once config/boot.rb is
loaded:

require File.expand_path('../boot', __FILE__)

Note that the boot script is generated as part of your Rails application, but you won’t usually need to edit it.

Getting back to config/application.rb we find the following line:

require 'rails/all'

You also have the ability to easily cherry-pick only the components needed by your application.

1 # To pick the frameworks you want, remove 'require "rails/all"'

2 # and list the framework railties that you want:

3 #

4 # require "active_model/railtie"

5 # require "active_record/railtie"

6 # require "action_controller/railtie"

7 # require "action_mailer/railtie"

8 # require "action_view/railtie"

9 # require "sprockets/railtie"

10 # require "rails/test_unit/railtie"

The main configuration of our application follows, which in Rails 4 gets its own module and class:

1 module TimeAndExpenses

2 class Application < Rails::Application

3 # Settings in config/environments/* take precedence over those

4 # specified here. Application configuration should go into files

5 # in config/initializers

6 # -- all .rb files in that directory are automatically loaded.

The creation of a module specifically for your application is part of the groundwork for supporting running
multiple Rails applications in the same process.

1.2.1.1 Time Zones

The default time zone for Rails 4 applications is UTC. If the business domain of your application is sensitive
to knowing exactly what time zone the server is in, then you can use the following setting to override the
default:

Rails Environments and Configuration 10

Set Time.zone default to the specified zone and make Active Record

auto-convert to this zone.

Run "rake -D time" for a list of tasks for finding time zone names.

config.time_zone = 'Central Time (US & Canada)'

Juanito says…
rake time:zones:all will list all the timezones Rails knows about.

1.2.1.2 Localization

Rails features localization support via locale files and is covered in great detail in Chapter 11, “All About
Helpers” in the TranslationHelper and I18n API sections.

The default locale is :en and can be overridden in your configuration.

The default locale is :en and all translations from

config/locales/*.rb,yml are auto loaded.

config.i18n.load_path += Dir[Rails.root.join('my', 'locales',

'*.{rb,yml}')]

config.i18n.default_locale = :de

1.2.1.3 Generator Default Settings

Rails generator scripts make certain assumptions about your tool chain. Setting the correct values here means
having to type less parameters on the command line. For instance, to use RSpec without fixtures and Haml
as the template engine, our settings would look like:

Configure generators values. Many other options are available,

be sure to check the documentation.

config.generators do |g|

g.template_engine :haml

g.test_framework :rspec, fixture: false

end

Note that Rubygems such as rspec-rails and factory_girl_rails handle this for you automatically.

1.2.2 Initializers

Rails 2 introduced the concept of breaking out configuration settings into their own small ruby files under the
config/initializers directory, where they are automatically loaded at startup. You can add configuration
settings for your own application by adding ruby files to the initializers directory. The following seven
initializers are included by default in all Rails applications.

Rails Environments and Configuration 11

1.2.2.1 Backtrace Silencers

Nobody likes really long exception backtraces, except maybe Java programmers. Rails has a mechanism for
reducing the size of backtraces by eliminating lines that don’t really add anything to your debugging.

The backtrace_silencers.rb initializer lets you modify the way that backtraces are shortened. I’ve found
it useful to remove backtrace entries for noisy libraries, but removing all silencers is usually never needed
during normal application development.

1 # You can add backtrace silencers for libraries that you're using but

2 # don't wish to see in your backtraces.

3 Rails.backtrace_cleaner.add_silencer { |line| line =~ /my_noisy_library/ }

4

5 # You can also remove all the silencers if you're trying to debug a

6 # problem that might stem from framework code.

7 Rails.backtrace_cleaner.remove_silencers!

1.2.2.2 Filter Parameter Logging

When a request is made to your application, by default Rails logs details such as the request path, HTTP
method, IP Address, and parameters. If an attacker somehow gained access to your logs, they may be able to
view sensitive information, like passwords and credit card numbers.

The filter_parameter_logging.rb initializer let’s you specify what request parameters should be filtered
from your log files. If Rails receives a request parameter included in the filter_parameters collection, it will
mark it as [FILTERED] in your logs.

Configure sensitive parameters which will be filtered from the log file.

Rails.application.config.filter_parameters += [:password]

1.2.2.3 Inflections

Rails has a class named Inflectorwhose responsibility is to transform strings (words) from singular to plural,
class names to table names, modularized class names to ones without, and class names to foreign keys, etc.
(Some of its operations have funny names, such as dasherize.)

The default inflections for pluralization and singularization of uncountable words are kept in an interesting
file inside the ActiveSupport gem, named inflections.rb.

Most of the time the Inflector class does a decent job of figuring out the pluralized table name for a given
class, but occasionally it won’t. This is one of the first stumbling blocks for many new Rails users, but it is not
necessary to panic. With a little ad hoc testing beforehand, it’s easy to find out how Inflector will react to
certain words. We just need to use the Rails console, which by the way is one of the best things about working
in Rails.

You fire up the console from your terminal with the rails console command.

Rails Environments and Configuration 12

$ rails console

>> ActiveSupport::Inflector.pluralize "project"

=> "projects"

>> ActiveSupport::Inflector.pluralize "virus"

=> "viri"

>> "pensum".pluralize # Inflector features are mixed into String

by default

=> "pensums"

As you can see in the example, Inflector tries to be smart, pluralizing virus as viri; but if you know your
Latin, you have already noticed that the plural pensum should actually be pensa. Needless to say, the inflector
does not know Latin.⁷

However, you can teach the inflector new tricks by adding new pattern rules, by pointing out an exception, or
by declaring certainwords unpluralizable. The preferred place to do that is inside the config/initializers/inflections.rb
file, where a commented example is already provided:

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.plural /^(ox)$/i, '\1en'

3 inflect.singular /^(ox)en/i, '\1'

4 inflect.irregular 'person', 'people'

5 inflect.uncountable %w(fish sheep)

6 end

The file activesupport/test/inflector_test_cases.rb⁸ has a long list of pluralizations correctly handled
by Inflector. I found some of them pretty interesting, such as:

1 "datum" => "data",

2 "medium" => "media",

3 "analysis" => "analyses"

1.2.2.4 Custom MIME Types

Rails supports a standard set of MIME types (*/*, text/html, text/plain, text/javascript, text/css, text/calendar,
text/csv, application/xml, application/rss+xml, application/atom+xml, application/x-yaml, multipart/form-
data, application/x-www-form-urlencoded, application/json)

⁷Comically, the Rails inflection of virus is also wrong. See http://en.wikipedia.org/wiki/Plural_form_of_words_ending_in_-us#Virus
⁸https://github.com/rails/rails/blob/master/activesupport/test/inflector_test_cases.rb

https://github.com/rails/rails/blob/master/activesupport/test/inflector_test_cases.rb
http://en.wikipedia.org/wiki/Plural_form_of_words_ending_in_-us#Virus
https://github.com/rails/rails/blob/master/activesupport/test/inflector_test_cases.rb

Rails Environments and Configuration 13

Short name respond_to symbol Aliases and Explanations

text/html :html, :xhtml application/xhtml+xml

text/plain :text, :txt

text/javascript :js application/javascript,
application/x-javascript

text/css :css Cascading style sheets

text/calendar :ics iCalendar format for sharing
meeting requests and tasks

text/csv :csv Comma-separated values

application/xml :xml text/xml, application/x-xml

application/rss+xml :rss Really Simple Syndication format
for web feeds

application/atom+xml :atom Atom Syndication Format for web
feeds

application/x-yaml :yaml text/yaml - The human-readable
data serialization format

application/x-www-form- :url_encoded_form The default content type of HTML
urlencoded forms

multipart/form-data :multipart_form Used for HTML forms that contain
files, non-ASCII data, and
binary data

application/json :json text/x-json,
application/jsonrequest -
JavaScript Object Notation

If your application needs to respond to other MIME types, you can register them in the mime_types.rb

initializer

Add new mime types for use in respond_to blocks:

Mime::Type.register "text/richtext", :rtf

Mime::Type.register_alias "text/html", :iphone

1.2.2.5 Session Store

As of Rails 4, session cookies are encrypted by default using the new encrypted cookie store. The session_-
store.rb initializer configures the session store of the application, by setting its session store type and key.

Rails.application.config.session_store :cookie_store,

key: '_example_session'

The session cookies are signed using the secret_key_base set in the config/secrets.yml configuration file.
If you are really paranoid, you can change the secret key in config/secrets.yml or run rake secret to
generate a new one automatically.

Rails Environments and Configuration 14

1.2.2.6 Wrap Parameters

Introduced in Rails 3.1, the wrap_parameters.rb initializer configures your application to work with
JavaScript MVC frameworks, such as Backbone.js out of the box.

Be sure to restart your server when you modify this file.

This file contains settings for ActionController::ParamsWrapper which

is enabled by default.

Enable parameter wrapping for JSON. You can disable this by setting

:format to an empty array.

ActiveSupport.on_load(:action_controller) do

wrap_parameters format: [:json] if respond_to?(:wrap_parameters)

end

To enable root element in JSON for ActiveRecord objects.

ActiveSupport.on_load(:active_record) do

self.include_root_in_json = true

end

When submitting JSON parameters to a controller, Rails will wrap the parameters into a nested hash, with
the controller’s name being set as the key. To illustrate, consider the following JSON:

{"title": "The Rails 4 Way"}

If a client submitted the above JSON to a controller named ArticlesController, Rails would nest the params
hash under the key “article”. This ensures the setting of model attributes from request parameters is consistent
with the convention used when submitting from Rails form helpers.

{"title": "The Rails 4 Way", "article" => {"title": "The Rails 4 Way"}}

1.2.3 Additional Configuration

That does it for the configuration options for which we get examples in the default config/application.rb
and the standard initializers. There are additional options, which you can add in additional initializer files.

1.2.3.1 Load Path Modifications

By default, Rails looks for code in a number of standard directories, including all nested directories under app,
such as app/models. This is referred to collectively as the load path. You can add other directories to the load
path using the following code:

Rails Environments and Configuration 15

Custom directories with classes and modules you want to be autoloadable

config.autoload_paths += %W(#{config.root}/extras)

In case you didn’t know, the %W functions as a whitespace-delimited array literal and is used quite often in
the Rails codebase for convenience.

1.2.3.2 Log-Level Override

The default log level is :debug and you can override it if necessary.

Force all environments to use the same logger level

(by default production uses :info, the others :debug)

config.log_level = :debug

This book covers use of the Rails logger in-depth later on in this chapter.

1.2.3.3 Schema Dumper

Every time you run tests, Rails dumps the schema of your development database and copies it to the test
database using an auto generated schema.rb script. It looks very similar to an Active Record migration script;
in fact, it uses the same API.

You might find it necessary to revert to the older style of dumping the schema using SQL, if you’re doing
things that are incompatible with the schema dumper code (see the comment).

Use SQL instead of Active Record's schema dumper when creating the

test database. This is necessary if your schema can't be completely

dumped by the schema dumper, for example, if you have constraints

or db-specific column types

config.active_record.schema_format = :sql

Remember we said that the value of the RAILS_ENV environment variable dictates which additional environ-
ment settings are loaded next? So now let’s review the default settings for each of Rails’ standard modes.

1.2.3.4 Console

New to Rails 4 is the ability to supply a block to console, a method that is only evaluated when the Rails
environment is loaded through the console. This allows you to set console-specific configurations, such as
using Pry over IRB. Put this in your config/application.rb:

Rails Environments and Configuration 16

1 console do

2 # this block is called only when running console,

3 # so we can safely require pry here

4 require "pry"

5 config.console = Pry

6 end

Note that the pry gem must be included in your Gemfile.

1.2.4 Spring Application Preloader

As of version 4.1, Rails ships with an application preloader named Spring⁹. In doing so, during development,
your application will be remain running in the background. This speeds up development by eliminating the
need to boot up Rails every time you execute tests, or run a rake task.

While running, Springmonitors folders config and initializers for changes. If a file within those folders are
changed, Spring will automatically restart your application. Spring will also restart if any gem dependencies
are changed during development.

To demonstrate the speed increase Spring provides, let’s run the same rake task in both Rails 4.0 and and a
preloaded 4.1 application:

1 # Rails 4.0

2 $ time bin/rake about

3 ...

4 bin/rake about 1.20s user 0.36s system 22% cpu 6.845 total

5

6 # Rails 4.1

7 $ time bin/rake about

8 ...

9 bin/rake about 0.08s user 0.04s system 32% cpu 0.370 total

The preloaded Rails environment using Spring provided a savings of over 6 seconds.

1.3 Development Mode

Development is Rails’ default mode and the one in which you will spend most of your time as a developer.
This section contains an in-depth explanation of each setting.

⁹https://github.com/rails/spring

https://github.com/rails/spring

Rails Environments and Configuration 17

File: config/environments/development.rb

Rails.application.configure do

Settings specified here will take precedence over those in

config/application.rb.

1.3.1 Automatic Class Reloading

One of the signature benefits of using Rails is the quick feedback cycle whenever you’re working in
developmentmode. Make changes to your code, hit Reload in the browser, and Shazam!Magically, the changes
are reflected in your application. This behavior is governed by the config.cache_classes setting:

In the development environment your application's code is reloaded on

every request. This slows down response time but is perfect for

development since you don't have to restart the web server when you

make code changes.

config.cache_classes = false

Without getting into too much nitty-gritty detail, when the config.cache_classes setting is true, Rails will
use Ruby’s require statement to do its class loading, and when it is false, it will use load instead.

When you require a Ruby file, the interpreter executes and caches it. If the file is required again (as in
subsequent requests), the interpreter ignores the require statement and moves on. When you load a Ruby
file, the interpreter executes the file again, no matter how many times it has been loaded before.

Now it’s time to examine the Rails class-loading behavior a bit more in depth, because sometimes you won’t
be able to get certain things to reload automatically and it will drive you crazy unless you understand how
class loading works!

1.3.1.1 The Rails Class Loader

In plain old Ruby, a script file doesn’t need to be named in any particular way that matches its contents. In
Rails, however, you’ll notice that there’s almost always a direct correlation between the name of a Ruby file
and the class or module contained within. Rails takes advantage of the fact that Ruby provides a callback
mechanism for missing constants. When Rails encounters an undefined constant in the code, it uses a class
loader routine based on file-naming conventions to find and require the needed Ruby script.

How does the class loader know where to search? We already covered it earlier in the chapter where we
discussed the role of initializer.rb in the Rails startup process. Rails has the concept of load paths, and
the default load paths include the base directories of just about anywhere you would think of adding code to
your Rails application.

Want to see the contents of your project’s load path? Just fire up the console and type $LOAD_PATH

www.allitebooks.com

http://www.allitebooks.org

Rails Environments and Configuration 18

$ rails console

Loading development environment.

>> $LOAD_PATH

=> ["/usr/local/lib/ruby/... # about 20 lines of output

I snipped the console output to save space. A typical Rails project load path will usually have 60 or more items
in its load path. Try it and see.

1.3.1.2 Rails, Modules, and Auto-Loading Code

Normally in Ruby, when you want to include code from another file in your application, you have to include
a require statement. However, Rails enhances Ruby’s default behavior by establishing a simple convention
that enables Rails to automatically load your code in most cases. If you’ve used the Rails console at all, you’ve
already seen this behavior in action: You never have to explicitly require anything!

This is how it works: If Rails encounters a class or module in your code that is not already defined, Rails uses
the following convention to guess which files it should require to load that module or class:

If the class or module is not nested, insert an underscore between the constant’s names and require a file of
this name. For example:

• EstimationCalculator becomes require "estimation_calculator"

• KittTurboBoost becomes require "kitt_turbo_boost"

If the class or module is nested, Rails inserts an underscore between each of the containing modules and
requires a file in the corresponding set of subdirectories. For example:

• MacGyver::SwissArmyKnife becomes require "mac_gyver/swiss_army_knife"

• Example::ReallyRatherDeeply::NestedClass becomes require "example/really_rather_deeply/nested_-

class" and if not already loaded, Rails would expect to find it in a file called nested_class.rb,
in a directory called really_rather_deeply, itself in the directory example of which can be found
somewhere in Ruby’s load path (e.g., one of the app subdirectories, lib, or a plugin’s lib directory).

The bottom line is that you should rarely need to explicitly load Ruby code in your Rails applications (using
require) if you follow the naming conventions.

1.3.2 Eager Load

To speed up the boot time of starting a Rails server during development, code is no longer eager loaded. This
behavior is governed by the config.eager_load setting:

Do not eager load code on boot.

config.eager_load = false

In your production environment, you will want this set to true, as it copies most of your application in
memory. This provides a performance increase to web servers that copy on write, such as Unicorn.

Rails Environments and Configuration 19

1.3.3 Error Reports

Requests from localhost, like when you’re developing, generate useful error messages that include debugging
information such as a line number where the error occurred and a backtrace. Setting consider_all_-

requests_local to true causes Rails to display those developer-friendly error screens even when the machine
making the request is remote.

config.consider_all_requests_local = true

1.3.4 Caching

You normally do not want caching behavior when you’re in development mode. The only time you do want
it is if you’re actually testing caching.

config.action_controller.perform_caching = true # for testing in development mode

Remember to set it back to false when you’re done testing. Unexpected caching behavior can be very tricky
to figure out.

1.3.5 Raise Delivery Errors

Rails assumes that you don’t want Action Mailer to raise delivery exceptions in development mode, so based
on the config.action_mailer.raise_delivery_errors settings, it will swallow them. Mailing capabilities
don’t necessarily work in an average development workstation, particularly onWindows and other platforms
that lack sendmail.

Don't care if the mailer can't send.

config.action_mailer.raise_delivery_errors = false

If you actually want to send mail while in development mode as part of debugging or ad-hoc testing, then
you probably want to toggle this setting.

Xavier says…
I find it handy to set config.action_mailer.perform_deliveries = false in development. No
delivery attempt is performed, but you can still see the mail in the log file to check it looks good,
copy account activation URLs, etc.

1.3.6 Deprecation Notices

Deprecations warnings are very useful to let you know when you should stop using a particular piece of
functionality. The configuration setting config.active_support.deprecation allows you to set how you
would like to receive deprecation warnings. In development mode, by default all deprecation warnings will
appear in the development log.

Rails Environments and Configuration 20

Print deprecation notices to the Rails logger.

config.active_support.deprecation = :log

1.3.7 Pending Migrations Error Page

In previous versions of Rails, if pending migrations needed to be run, the web server would fail to start. As of
Rails 4, a new error page is displayed instead, indicating to developers that they should run rake db:migrate

RAILS_ENV=development to resolve the issue.

Raise an error on page load if there are pending migrations

config.active_record.migration_error = :page_load

1.3.8 Assets Debug Mode

Rails 3.1 introduced us to the Asset Pipeline, a framework to concatenate and minify JavaScript and CSS
assets. By default in development mode, JavaScript and CSS files are served separately in the order they were
specified in their respective manifest files. Setting config.assets.debug to false, would result in Sprockets
concatenating and running preprocessors on all assets.

Debug mode disables concatenation and preprocessing of assets.

config.assets.debug = true

The Asset Pipeline is covered in detailed in Chapter 20, Asset Pipeline.

1.4 Test Mode

Whenever you run Rails in test mode, that is, the value of the RAILS_ENV environment value is test, then the
following settings are in effect (reproduced here for reference purposes):

1 # File: config/environments/test.rb

2 Rails.application.configure do

3 # Settings specified here will take precedence over those in

4 # config/application.rb.

5

6 # The test environment is used exclusively to run your application's

7 # test suite. You never need to work with it otherwise. Remember that

8 # your test database is "scratch space" for the test suite and is wiped

9 # and recreated between test runs. Don't rely on the data there!

10 config.cache_classes = true

11

12 # Do not eager load code on boot. This avoids loading your whole

13 # application just for the purpose of running a single test. If you are

14 # using a tool that preloads Rails for running tests, you may have to set

Rails Environments and Configuration 21

15 # it to true.

16 config.eager_load = false

17

18 # Configure static asset server for tests with Cache-Control for

19 # performance.

20 config.serve_static_assets = true

21 config.static_cache_control = "public, max-age=3600"

22

23 # Show full error reports and disable caching.

24 config.consider_all_requests_local = true

25 config.action_controller.perform_caching = false

26

27 # Raise exceptions instead of rendering exception templates.

28 config.action_dispatch.show_exceptions = false

29

30 # Disable request forgery protection in test environment.

31 config.action_controller.allow_forgery_protection = false

32

33 # Tell Action Mailer not to deliver emails to the real world.

34 # The :test delivery method accumulates sent emails in the

35 # ActionMailer::Base.deliveries array.

36 config.action_mailer.delivery_method = :test

37

38 # Print deprecation notices to the stderr.

39 config.active_support.deprecation = :stderr

40 end

Most people get by without ever needing to modify their test environment settings.

Custom Environments
If necessary, you can create additional environments for your Rails app to run by cloning one of
the existing environment files in the config/environments directory of your application. The most
common use case for custom environments is in setting up additional production configurations,
such as for staging and QA deployments. Do you have access to the production database from
your development workstation? Then a triage environment might make sense. Use the normal
environment settings for development mode, but point its database connection to a production
database server. It’s a potentially life-saving combination when you need to quickly diagnose issues
in production.

1.5 Production Mode

Finally, production mode is what you want your Rails application running in whenever it is deployed to its
hosting environment and serving public requests. There are a number of significant ways that production
mode differs from the other modes, not least of which is the speed boost you get from not reloading all of
your application classes for every request.

Rails Environments and Configuration 22

1 # File: config/environments/production.rb

2 Rails.application.configure do

3 # Settings specified here will take precedence over those in

4 # config/application.rb.

5

6 # Code is not reloaded between requests.

7 config.cache_classes = true

8

9 # Eager load code on boot. This eager loads most of Rails and

10 # your application in memory, allowing both thread web servers

11 # and those relying on copy on write to perform better.

12 # Rake tasks automatically ignore this option for performance.

13 config.eager_load = true

14

15 # Full error reports are disabled and caching is turned on.

16 config.consider_all_requests_local = false

17 config.action_controller.perform_caching = true

18

19 # Enable Rack::Cache to put a simple HTTP cache in front of your

20 # application

21 # Add `rack-cache` to your Gemfile before enabling this.

22 # For large-scale production use, consider using a caching reverse proxy

23 # like nginx, varnish or squid.

24 # config.action_dispatch.rack_cache = true

25

26 # Disable Rails's static asset server (Apache or nginx will

27 # already do this).

28 config.serve_static_assets = false

29

30 # Compress JavaScripts and CSS.

31 config.assets.js_compressor = :uglifier

32 # config.assets.css_compressor = :sass

33

34 # Whether to fallback to assets pipeline if a precompiled

35 # asset is missed.

36 config.assets.compile = false

37

38 # Generate digests for assets URLs.

39 config.assets.digest = true

40

41 # Version of your assets, change this if you want to expire

42 # all your assets.

43 config.assets.version = '1.0'

44

45 # Specifies the header that your server uses for sending files.

Rails Environments and Configuration 23

46 # config.action_dispatch.x_sendfile_header = "X-Sendfile" # for apache

47 # config.action_dispatch.x_sendfile_header = 'X-Accel-Redirect'

48 # for nginx

49

50 # Force all access to the app over SSL, use Strict-Transport-Security,

51 # and use secure cookies.

52 # config.force_ssl = true

53

54 # Set to :debug to see everything in the log.

55 config.log_level = :info

56

57 # Prepend all log lines with the following tags.

58 # config.log_tags = [:subdomain, :uuid]

59

60 # Use a different logger for distributed setups.

61 # config.logger = ActiveSupport::TaggedLogging.new(SyslogLogger.new)

62

63 # Use a different cache store in production.

64 # config.cache_store = :mem_cache_store

65

66 # Enable serving of images, stylesheets, and JavaScripts from an

67 # asset server.

68 # config.action_controller.asset_host = "http://assets.example.com"

69

70 # Precompile additional assets.

71 # application.js, application.css, and all non-JS/CSS in app/assets

72 # folder are already added.

73 # config.assets.precompile += %w(search.js)

74

75 # Ignore bad email addresses and do not raise email delivery errors.

76 # Set this to true and configure the email server for immediate delivery

77 # to raise delivery errors.

78 # config.action_mailer.raise_delivery_errors = false

79

80 # Enable locale fallbacks for I18n (makes lookups for any locale fall

81 # back to the I18n.default_locale when a translation can not be found).

82 config.i18n.fallbacks = true

83

84 # Send deprecation notices to registered listeners.

85 config.active_support.deprecation = :notify

86

87 # Disable automatic flushing of the log to improve performance.

88 # config.autoflush_log = false

89

90 # Use default logging formatter so that PID and timestamp

Rails Environments and Configuration 24

91 # are not suppressed.

92 config.log_formatter = ::Logger::Formatter.new

93 end

1.5.1 Assets

In productionmode, assets are by default precompiled by theAsset Pipeline. All files included in application.js
and application.css asset manifests are compressed and concatenated into their respective files of the same
name, located in the public/assets folder.

If an asset is requested that does not exist in the public/assets folder, Rails will throw an exception. To
enable live asset compilation fallback on production, set config.assets.compile to true.

The application.js and application.cssmanifest files are the only JavaScript/Stylesheets included during
the asset pipeline precompile step. To include additional assets, specify themusing the config.assets.precompile
configuration setting.

config.assets.precompile += %w(administration.css)

Like most features in Rails, the usage of the Asset Pipeline is completely optional. To include assets in your
project as it was done in Rails 3.0, set config.assets.enabled to false.

1.5.2 Asset Hosts

By default, Rails links to assets on the current host in the public folder, but you can direct Rails to link to
assets from a dedicated asset server. The config.action_controller.asset_host setting is covered in detail
in Chapter 11, “All About Helpers” in the “Using Asset Hosts” section.

1.6 Configuring a Database

The file database.yml found in the config folder specifies all the configuration settings required by Active
Record to connect to a database. When a new application is generated, automatically generates sections for
each environment.

The following is an example of a generated database.yml file configured to work with PostgreSQL.

1 # config/database.yml

2 default: &default

3 adapter: postgresql

4 encoding: unicode

5 # For details on connection pooling, see rails configuration guide

6 # http://guides.rubyonrails.org/configuring.html#database-pooling

7 pool: 5

8 username: example

9 password:

Rails Environments and Configuration 25

10

11 development:

12 <<: *default

13 database: example_development

14

15 # Connect on a TCP socket. Omitted by default since the client uses a

16 # domain socket that doesn't need configuration. Windows does not have

17 # domain sockets, so uncomment these lines.

18 #host: localhost

19

20 # The TCP port the server listens on. Defaults to 5432.

21 # If your server runs on a different port number, change accordingly.

22 #port: 5432

23

24 # Schema search path. The server defaults to $user,public

25 #schema_search_path: myapp,sharedapp,public

26

27 # Minimum log levels, in increasing order:

28 # debug5, debug4, debug3, debug2, debug1,

29 # log, notice, warning, error, fatal, and panic

30 # Defaults to warning.

31 #min_messages: notice

32

33 # Warning: The database defined as "test" will be erased and

34 # re-generated from your development database when you run "rake".

35 # Do not set this db to the same as development or production.

36 test:

37 <<: *default

38 database: example_test

39

40 production:

41 <<: *default

42 database: example_production

A common best practice within the Rails community has been not to store config/database.yml in version
control. First and foremost, if a hacker gained access to the application repository, they would have all the
connection settings to your production database. Secondly, developers on the team could potentially have
different development and test database settings. New to Rails 4.1 is the ability to configure Active Record
with an environment variable DATABASE_URL. This allows each developer working on the project to have their
own copy of config/database.yml that is not stored in version control. The production environment of the
Rails application would just need to have DATABASE_URL set with a valid connection string to be configured
correctly.

Rails Environments and Configuration 26

1.7 Configuring Application Secrets

Being introduced in Rails 4.1 is the secrets.yml file found within the config folder. This file is meant to store
your application’s sensitive data, such as access keys and passwords that are required for external APIs. At a
minimum, Rails requires that secret_key_base is set for each environment of your application. In Rails 4.0,
secret_key_base was set in the secret_token.rb initializer.

1 # config/secrets.yml

2

3 # Be sure to restart your server when you modify this file.

4

5 # Your secret key is used for verifying the integrity of signed cookies.

6 # If you change this key, all old signed cookies will become invalid!

7

8 # Make sure the secret is at least 30 characters and all random,

9 # no regular words or you'll be exposed to dictionary attacks.

10 # You can use `rake secret` to generate a secure secret key.

11

12 # Make sure the secrets in this file are kept private

13 # if you're sharing your code publicly.

14

15 development:

16 secret_key_base: 7aed4bcb28...

17

18 test:

19 secret_key_base: a4b717a2a8...

20

21 production:

22 secret_key_base: 39a63892bd...

Kevin says….
I would strongly advice to not store any production secret values in version control. Like
database.yml, if a hacker gained access to the application repository, they could use these values
to exploit your application. Instead, set all production secret values to environment variables. The
environment variables will only be set on your production machine.

config/secrets.yml

...

production:

secret_key_base: <%= ENV['SECRET_KEY_BASE'] %>

A hash of all the secrets defined in config/secrets.yml can be accessed via Rails.application.secrets.

Rails Environments and Configuration 27

>> Rails.application.secrets

=> {:secret_key_base=>"7aed4bcb28..."}

To access a specific secrets, pass X to

An accessor for each secret key is also provided. For example, to access the secret for secret_key_base,
invoke Rails.application.secrets.secret_key_base. This will return the value of secret_key_base for
the current environment.

>> Rails.env

=> "development"

>> Rails.application.secrets.secret_key_base

=> "7aed4bcb28..."

..

Secret Token
Certain types of hacking involve modifying the contents of cookies without the server knowing about it.
By digitally signing all cookies sent to the browser, Rails can detect whether they were tampered with.
Rails signs cookies using the value of secret_key_base, found in config/secrets.yml, which is randomly
generated along with your app.

1.8 Logging

Most programming contexts in Rails (models, controllers, view templates) have a logger attribute, which
holds a reference to a logger conforming to the interface of Log4r or the default Ruby 1.8+ Logger class. Can’t
get a reference to logger somewhere in your code? The Rails.logger method references a logger that you
can use anywhere.

It’s really easy to create a new Logger in Ruby, as shown in the following example:

1 $ pry

2 > require 'logger'

3 => true

4

5 > logger = Logger.new STDOUT

6 => #<Logger:0x00000106c795f0 @progname=nil, @level=0, ...>

7

8 > logger.warn "do not want!!!"

9 W, [2013-11-02T18:34:30.281003 #54844] WARN -- : do not want!!!

10 => true

11

12 > logger.info "in your logger, giving info"

13 I, [2013-11-02T18:34:57.186636 #54844] INFO -- : in your logger, giving info

14 => true

www.allitebooks.com

http://www.allitebooks.org

Rails Environments and Configuration 28

Typically, you add a message to the log using the logger whenever the need arises, using a method
corresponding to the severity of the log message. The standard logger’s severities are (in increasingly severe
order):

debug
Use the debug level to capture data and application state useful for debugging problems later on. This
level is not usually captured in production logs.

info Use info level to capture informational messages. I like to use this log level for time-stamping non-
ordinary events that are still within the bounds of good application behavior.

warn
Use the warn level to capture things that are out of the ordinary and might be worth investigating.
Sometimes I’ll throw in a logged warning when guard clauses in my code keep a client from doing
something they weren’t supposed to do. My goal is to alert whoever’s maintaining the application
about a malicious user or bug in the user interface, as in the following example:

1 def create

2 begin

3 group.add_member(current_user)

4 flash[:notice] = "Successfully joined #{scene.display_name}"

5 rescue ActiveRecord::RecordInvalid

6 flash[:error] = "You are already a member of #{group.name}"

7 logger.warn "A user tried to join a group twice. UI should

8 not have allowed it."

9 end

10

11 redirect_to :back

12 end

error
Use the error log level to capture information about error conditions that don’t require a server restart.

fatal The worst-case imaginable has happened—your application is now dead and manual intervention is
necessary to restart it.

1.8.1 Rails Log Files

The log folder of your Rails application holds three log files corresponding to each of the standard
environments. Log files can grow very large over time. A rake task is provided for easily clearing the log
files:

$ rake log:clear # Truncates all *.log files in log/ to zero bytes

The contents of log/development.log are very useful while you’re working. Many Rails coders leave a
terminal window open with a continuous tail of the development log open while they’re coding:

Rails Environments and Configuration 29

$ tail -f log/development.log

Article Load (0.2ms) SELECT "articles".* FROM "articles" WHERE

"articles"."id" = $1 LIMIT 1 [["id", "1"]]

All sorts of valuable information are available in the development log. For instance, every time you make a
request, a bunch of useful information about it shows up in the log. Here’s a sample from one of my projects.

1 Started GET "/user_photos/1" for 127.0.0.1 at 2007-06-06 17:43:13

2 Processing by UserPhotosController#show as HTML

3 Parameters: {"/users/8-Obie-Fernandez/photos/406"=>nil,

4 "action"=>"show", "id"=>"406", "controller"=>"user_photos",

5 "user_id"=>"8-Obie-Fernandez"}

6 User Load (0.4ms) SELECT * FROM users WHERE (users.'id' = 8)

7 Photo Load (0.9ms) SELECT * FROM photos WHERE (photos.'id' = 406

8 AND (photos.resource_id = 8 AND photos.resource_type = 'User'))

9 CACHE (0.0ms) SELECT * FROM users WHERE (users.'id' = 8)

10 Rendered adsense/_medium_rectangle (1.5ms)

11 User Load (0.5ms) SELECT * FROM users WHERE (users.'id' = 8)

12 LIMIT 1

13 SQL (0.4ms) SELECT count(*) AS count_all FROM messages WHERE

14 (messages.receiver_id = 8 AND (messages.'read' = 0))

15 Rendered layouts/_header (25.3ms)

16 Rendered adsense/_leaderboard (0.4ms)

17 Rendered layouts/_footer (0.8ms)

18 Rendered photos/show.html.erb within layouts/application.html.erb (38.9ms)

19 Completed in 99ms (Views: 37.4ms | ActiveRecord: 12.3ms) with 200

This is a list of all the data items contained in that chunk of log output:

• The controller and action that were invoked
• The remote IP address of the computer making the request
• A timestamp indicating when the request happened
• The session ID associated with the request
• The hash of parameters associated with the request
• Database request information including the time and the SQL statement executed
• Query cache hit info including time and the SQL statement triggering results from the cache instead of
a roundtrip to the database

• Rendering information for each template involved in rendering the view output and time consumed by
each

• Total time used in completing the request with corresponding request-per-second figures
• Analysis of the time spent in database operations versus rendering
• The HTTP status code and URL of the response sent back to the client

Rails Environments and Configuration 30

1.8.2 Tagged Logging

Log files can contain an extensive amounts of information, making tracking down issues or particular requests
difficult. To alleviate this issue, Rails 3.2 introduced the ability to prepend information to each of your log
messages.

To add “tagged” information to your logs, pass an array of one or many method names which respond to the
request object to the config.log_tags configuration setting.

To illustrate, assuming we want to track the subdomain that each request is made from, we can achieve
this by setting config.log_tags to [:subdomain]. When Rails writes to the log, it will prefix the output of
request.subdomain, resulting in a log message like the following:

[some_subdomain] Started GET "/articles" for 127.0.0.1 at 2013-02-01 11:49:09 -0500

1.8.3 Log File Analysis

A number of informal analyses can be easily performed using just the development log output and some
common sense.

Performance
One of the more obvious analyses would be a study of the performance of your application. The
faster your requests execute, the more requests you can serve with a given Rails process. That’s why
performance figures are often expressed in terms of requests per second. Find the queries and rendering
sections that are taking a long time and figure out why.

It’s important to realize that the times reported by the logger are not super-accurate. In fact, they’re wrong
more often than not, if simply for the reason that it’s very difficult to measure the timing of something from
within itself. Add up the percentage of rendering and database times for any given request and it will not
always be close to 100%.

However, despite not being accurate in a purely objective sense, the reported times are perfect for making
subjective comparisons within the same application. They give you a way of gauging whether an action is
taking longer than it used to, or whether it is relatively faster or slower than another action, and so on.

SQL queries
Active Record not behaving as expected? The fact that SQL generated by Active Record is logged can
often help you debug problems caused by complicated queries.

Identification of N+1 select problems
Whenever you are displaying a record along with an associated collection of records, there’s a chance
that you will have a so-called N+1 select problem. You’ll recognize the problem by a series of many
SELECT statements, with the only difference being the value of the primary key.

For example, here’s a snippet of some log output from a real Rails application showing an N+1 select issue in
the way that FlickrPhoto instances are being loaded:

Rails Environments and Configuration 31

1 FlickrPhoto Load (1.3ms) SELECT * FROM flickr_photos WHERE

2 (flickr_photos.resource_id = 15749 AND flickr_photos.resource_type =

3 'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc

4 LIMIT 1

5 FlickrPhoto Load (1.7ms) SELECT * FROM flickr_photos WHERE

6 (flickr_photos.resource_id = 15785 AND flickr_photos.resource_type =

7 'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc

8 LIMIT 1

9 FlickrPhoto Load (1.4ms) SELECT * FROM flickr_photos WHERE

10 (flickr_photos.resource_id = 15831 AND flickr_photos.resource_type =

11 'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc

12 LIMIT 1

and so on and so forth, for pages and pages of log output. Look familiar?

Luckily, each of those database queries is executing very quickly, around 0.0015 seconds each. That’s because
1) MySQL is extraordinarily fast for small SELECT statements and 2) my Rails process is on the same physical
machine as the database.

Still, accumulate enough of those N queries and they add up quickly to eat away at performance. Absent the
mitigating factors I mentioned, I would have a serious performance problem to address. The problem would
be especially severe if the database was on a separate machine, giving me network latency to deal with on
each of those queries.

N+1 select issues are not the end of the world. A lot of times all it takes is proper use of the includesmethod
on a particular query to alleviate the problem.

Separation of Concerns
A well-designed model-view-controller application follows certain protocols related to which
logical tier does database operations (that would be the model) versus rendering tasks (the view).
Generally speaking, you want your controller to cause the loading of all of the data that is going
to be needed for rendering from the database. In Rails, it is accomplished by controller code that
queries the model for needed data and makes that data available to the view.

Database access during rendering is usually considered a bad practice. Calling database methods directly from
template code violates proper separation of concerns and is a maintainability nightmare.¹⁰

However, there are plenty of opportunities for implicit database access during view rendering to creep into
your codebase, encapsulated by the model, and perhaps triggered by lazy loading of associations. Can we
conclusively call it a bad practice? It’s hard to say so definitively. There are cases (such as usage of fragment
caching) where it makes sense to have database operations happening during view rendering.

¹⁰Practically every PHP application ever written has this problem.

Rails Environments and Configuration 32

Using Alternate Logging Schemes
It’s easy! Just assign a class compatible with Ruby’s Logger to one of the various logger class
variables, such as ActiveRecord::Base.logger. A quick hack based on the ability to swap loggers
is one demonstrated by David at various events, including his keynote at Railsconf 2007. During a
console session, assign a new Logger instance pointing to STDOUT to ActiveRecord::Base.logger

in order to see the SQL being generated right in your console. Jamis has a complete write-up of the
technique and more at http://weblog.jamisbuck.org/2007/1/31/more-on-watching-activerecord.

1.8.3.1 Rails::Subscriber.colorize_logging

Tells Rails whether to use ANSI codes to colorize the logging statements. The colors make it much easier to
read the logs (except on Windows) and may complicate matters if you use software like syslog. Defaults to
true. Change to false if you view your logs with software that doesn’t understand the ANSI color codes.

Here’s a snippet of log output with the ANSI codes visible:

1 ^[[4;36;1mSQL (0.0ms)^[[0m ^[[0;1mMysql::Error: Unknown table

2 'expense_reports': DROP TABLE expense_reports^[[0m

3 ^[[4;35;1mSQL (3.2ms)^[[0m ^[[0mCREATE TABLE expense_reports ('id'

4 int(11) DEFAULT NULL auto_increment PRIMARY KEY, 'user_id' int(11))

Wilson says…
Almost nobody I meet seems to know how to display colorized logs in a pager. The -R option tells
less to output “raw” control characters to the screen.

Syslog
UNIX-like systems have a system service called syslog. For various reasons, it might be a better
choice for production logging of your Rails applications.

• Finer-grained control over logging levels and content.
• Consolidation of logger output for multiple Rails applications.
• If you’re using remote syslog capabilities of many systems, consolidation of logger output
for multiple Rails application servers is possible. Contrast with having to handle individual
log files on each application server box separately.

You can use Eric Hodel’s SyslogLogger¹¹ to interface your Rails application to syslog.

¹¹http://docs.seattlerb.org/SyslogLogger

http://weblog.jamisbuck.org/2007/1/31/more-on-watching-activerecord
http://docs.seattlerb.org/SyslogLogger
http://docs.seattlerb.org/SyslogLogger

Rails Environments and Configuration 33

1.8.4 Conclusion

We’ve kicked off our Rails journey by covering Bundler in fairly good detail and then reviewing the different
environments in which Rails executes and how it loads its dependencies, including your application code.
An in-depth look at config/application.rb and its per-mode variants revealed how we can customize Rails
behavior to our taste.

2 Routing
I dreamed a thousand new paths. . . I woke and walked my old one.

—Chinese proverb

The routing system in Rails is the system that examines the URL of an incoming request and determines what
action should be taken by the application. And it does a good bit more than that. Rails routing can be a bit of
a tough nut to crack. But it turns out that most of the toughness resides in a small number of concepts. After
you’ve got a handle on those, the rest falls into place nicely.

This chapter will introduce you to the principal techniques for defining and manipulating routes. The next
chapter will build on this knowledge to explore the facilities Rails offers in support of writing applications
that comply with the principles of Representational State Transfer (REST). As you’ll see, those facilities can be
of tremendous use to you even if you’re not planning to scale the heights of REST theorization. Both chapters
assume at least a basic knowledge of the Model-View-Controller (MVC) pattern and Rails controllers.

Some of the examples in these two chapters are based on a small auction application. The examples are kept
simple enough that they should be comprehensible on their own. The basic idea is that there are auctions and
each auction involves auctioning off an item. There are users and they submit bids. That’s it.

The triggering of a controller action is the main event in the life cycle of a connection to a Rails application.
So it makes sense that the process by which Rails determines which controller and which action to execute
must be very important. That process is embodied in the routing system.

The routing systemmaps URLs to actions. It does this by applying rules that you specify using a special syntax
in the config/routes.rb file. Actually it’s just plain Ruby code, but it uses special methods and parameters,
a technique sometimes referred to as an internal Domain Specific Language (DSL). If you’re using Rails
generators, code gets added to the routes file automatically, and you’ll get some reasonable behavior. But
it doesn’t take much work to write custom rules and reap the benefits of the flexibility of the routing system.

2.1 The Two Purposes of Routing

The routing system does two things: It maps requests to controller action methods, and it enables the dynamic
generation of URLs for you for use as arguments to methods like link_to and redirect_to.

Each rule—or to use the more common term, route—specifies a pattern, which will be used both as a template
for matching URLs and as a blueprint for creating them. The pattern can be generated automatically based on
conventions, such as in the case of REST resources. Patterns can also contain a mixture of static substrings,
forward slashes (mimicking URL syntax), and positional segment key parameters that serve as “receptors” for
corresponding values in URLs.

A route can also include one or more hardcoded segment keys, in form of key/value pairs accessible to
controller actions in a hash via the params method. A couple of keys (:controller and :action) determine

Routing 35

which controller and action gets invoked. Other keys present in the route definition simply get stashed for
reference purposes.

Putting some flesh on the bones of this description, here’s a sample route:

get 'recipes/:ingredient' => "recipes#index"

In this example, you find:

• static string (recipes)
• slash (/)
• segment key (:ingredient)
• controller action mapping ("recipes#index")
• HTTP verb constraining method (get)

Routes have a pretty rich syntax—this one isn’t by anymeans themost complex (nor themost simple)—because
they have to do so much. A single route, like the one in this example, has to provide enough information both
to match an existing URL and to manufacture a new one. The route syntax is engineered to address both of
these processes.

2.2 The routes.rb File

Routes are defined in the file config/routes.rb, as shown (with some explanatory comments) in Listing 2.1.
This file is created when you first create your Rails application and contains instructions about how to use it.

Listing 2.1: The default routes.rb file

1 Rails.application.routes.draw do

2 # The priority is based upon order of creation:

3 # first created -> highest priority.

4 # See how all your routes lay out with "rake routes".

5

6 # You can have the root of your site routed with "root"

7 # root 'welcome#index'

8

9 # Example of regular route:

10 # get 'products/:id' => 'catalog#view'

11

12 # Example of named route that can be invoked with

13 # purchase_url(id: product.id)

14 # get 'products/:id/purchase' => 'catalog#purchase', as: :purchase

15

16 # Example resource route (maps HTTP verbs to controller

17 # actions automatically):

Routing 36

18 # resources :products

19

20 # Example resource route with options:

21 # resources :products do

22 # member do

23 # get 'short'

24 # post 'toggle'

25 # end

26 #

27 # collection do

28 # get 'sold'

29 # end

30 # end

31

32 # Example resource route with sub-resources:

33 # resources :products do

34 # resources :comments, :sales

35 # resource :seller

36 # end

37

38 # Example resource route with more complex sub-resources:

39 # resources :products do

40 # resources :comments

41 # resources :sales do

42 # get 'recent', on: :collection

43 # end

44 # end

45

46 # Example resource route with concerns:

47 # concern :toggleable do

48 # post 'toggle'

49 # end

50 # resources :posts, concerns: :toggleable

51 # resources :photos, concerns: :toggleable

52

53 # Example resource route within a namespace:

54 # namespace :admin do

55 # # Directs /admin/products/* to Admin::ProductsController

56 # # (app/controllers/admin/products_controller.rb)

57 # resources :products

58 # end

59 end

The whole file consists of a single call to the method draw of Rails.application.routes. That method takes
a block, and everything from the second line of the file to the second-to-last line is the body of that block.

Routing 37

At runtime, the block is evaluated inside of an instance of the class ActionDispatch::Routing::Mapper.
Through it you configure the Rails routing system.

The routing system has to find a pattern match for a URL it’s trying to recognize or a parameters match for
a URL it’s trying to generate. It does this by going through the routes in the order in which they’re defined;
that is, the order in which they appear in routes.rb. If a given route fails to match, the matching routine falls
through to the next one. As soon as any route succeeds in providing the necessary match, the search ends.

2.2.1 Regular Routes

The basic way to define a route is to supply a URL pattern plus a controller class/action method mapping
string with the special :to parameter.

get 'products/:id', to: 'products#show'

Since this is so common, a shorthand form is provided:

get 'products/:id' => 'products#show'

David has publicly commented on the design decision behind the shorthand form, when he said that it drew
inspiration from two sources: ¹

1) the patternwe’ve been using in Rails since the beginning of referencing controllers as lowercase
without the “Controller” part in controller: "main" declarations and 2) the Ruby pattern of
signaling that you’re talking about an instance method by using #. The influences are even part
mixed. Main #index would be more confusing in my mind because it would hint that an object
called Main actually existed, which it doesn’t. MainController#index would just be a hassle to
type out every time. Exactly the same reason we went with controller: "main" vs controller:
"MainController". Given these constraints, I think "main#index" is by far the best alternative…

2.2.2 Constraining Request Methods

As of Rails 4, it’s recommended to limit the HTTP method used to access a route. If you are using the match
directive to define a route, you accomplish this by using the :via option:

match 'products/:id' => 'products#show', via: :get

Rails provides a shorthand way of expressing this particular constraint, by replacing match with the desired
HTTP method (get, post, patch, etc.)

¹Full comments at http://yehudakatz.com/2009/12/26/the-rails-3-router-rack-it-up

www.allitebooks.com

http://yehudakatz.com/2009/12/26/the-rails-3-router-rack-it-up
http://www.allitebooks.org

Routing 38

get 'products/:id' => 'products#show'

post 'products' => 'products#create'

If, for some reason, you want to constrain a route to more than one HTTP method, you can pass :via an array
of verb names.

match 'products/:id' => 'products#show', via: [:get, :post]

Defining a route without specifying an HTTP method will result in Rails raising a RuntimeError exception.
While strongly not recommended, a route can still match any HTTP method by passing :any to the :via

option.

match 'products' => 'products#index', via: :any

2.2.3 URL Patterns

Keep in mind that there’s no necessary correspondence between the number of fields in the pattern string, the
number of segment keys, and the fact that every connection needs a controller and an action. For example,
you could write a route like

get ":id" => "products#show"

which would recognize a URL like

http://localhost:3000/8

The routing system would set params[:id] to 8 (based on the position of the :id segment key, which matches
the position of 8 in the URL), and it would execute the show action of the products controller. Of course,
this is a bit of a stingy route, in terms of visual information. On the other hand, the following example route
contains a static string, products/, inside the URL pattern:

match 'products/:id' => 'products#show'

This string anchors the recognition process. Any URL that does not contain the static string products/ in its
leftmost slot will not match this route.

As for URL generation, static strings in the route simply get placed within the URL that the routing system
generates. The URL generator uses the route’s pattern string as the blueprint for the URL it generated. The
pattern string stipulates the substring products.

As we go, you should keep the dual purpose of recognition/generation inmind, which is why it was mentioned
several times so far. There are two principles that are particularly useful to remember:

Routing 39

• The same rule governs both recognition and generation. The whole system is set up so that you don’t
have to write rules twice. You write each rule once, and the logic flows through it in both directions.

• The URLs that are generated by the routing system (via link_to and friends) only make sense to the
routing system. The resulting URL http://example.com/products/19201, contains not a shred of a clue
as to what’s supposed to happen when a user follows it—except insofar as it maps to a routing rule. The
routing rule then provides the necessary information to trigger a controller action. Someone looking at
the URL without knowing the routing rules won’t know which controller and action the URL maps to.

2.2.4 Segment Keys

The URL pattern string can contain parameters (denoted with a colon) and referred to as segment keys. In the
following route declaration, :id is a segment key.

get 'products/:id' => 'products#show'

When this route matches a request URL, the :id portion of the pattern acts as a type of matcher, and picks up
the value of that segment. For instance, using the same example, the value of id for the following URL would
be 4: http://example.com/products/4

This route, when matched, will always take the visitor to the product controller’s show action. You’ll see
techniques for matching controller and action based on segments of the URL shortly. The symbol :id inside
the quoted pattern in the route is a segment key (that you can think of as a type of variable). Its job is to be
latched onto by a value.

What that means in the example is that the value of params[:id] will be set to the string "4". You can access
that value inside your products/show action.

When you generate a URL, you have to supply values that will attach to the segment keys inside the URL
pattern string. The simplest to understand (and original) way to do that is using a hash, like this:

link_to "Products",

controller: "products",

action: "show",

id: 1

As you probably know, it’s actually more common nowadays to generate URLs using what are called named
routes, versus supplying the controller and action parameters explicitly in a hash. However, right now we’re
reviewing the basics of routing.

In the call to link_to, we’ve provided values for all three parameters of the route. Two of them are going
to match the hard-coded, segment keys in the route; the third, :id, will be assigned to the corresponding
segment key in the URL pattern.

It’s vital to understand that the call to link_to doesn’t know whether it’s supplying hard-coded or segment
values. It just knows (or hopes!) that these three values, tied to these three keys, will suffice to pinpoint a route
and therefore a pattern string, and therefore a blueprint for generating a URL dynamically.

Routing 40

Hardcoded Parameters
It’s always possible to insert additional hardcoded parameters into route definitions that don’t have
an effect on URL matching, but are passed along with the normal expected params.

get 'products/special' => 'products#show', special: 'true'

Mind you, I’m not suggesting that this example is a good practice. It would make more sense to me
(as a matter of style) to point at a different action rather than inserting a clause. Your mileage may
vary.

get 'products/special' => 'products#special'

2.2.5 Spotlight on the :id Field

Note that the treatment of the :id field in the URL is not magic; it’s just treated as a value with a name. If
you wanted to, you could change the rule so that :id was :blah but then you’d have to do the following in
your controller action:

@product = Product.find(params[:blah])

The name :id is simply a convention. It reflects the commonness of the case in which a given action needs
access to a particular database record. The main business of the router is to determine the controller and
action that will be executed.

The id field ends up in the params hash, already mentioned. In the common, classic case, you’d use the value
provided to dig a record out of the database:

1 class ProductsController < ApplicationController

2 def show

3 @product = Product.find(params[:id])

4 end

5 end

2.2.6 Optional Segment Keys

Rails 3 introduced a syntax for defining optional parts of the URL pattern. The easiest way to illustrate this
syntax is by taking a look at the legacy default controller route, found in the previous versions of Rails at the
bottom of a default config/routes.rb file:

match ':controller(/:action(/:id(.:format)))', via: :any

Note that parentheses are used to define optional segment keys, kind of like what you would expect to see
when defining optional groups in a regular expression.

Routing 41

2.2.7 Redirect Routes

It’s possible to code a redirect directly into a route definition, using the redirect method:

get "/foo", to: redirect('/bar')

The argument to redirect can contain either a relative URL or a full URI.

get "/google", to: redirect('https://google.com/')

The redirect method can also take a block, which receives the request params as its argument. This allows
you to, for instance, do quick versioning of web service API endpoints.²

actions in Rails 3 routes at http://yehudakatz.com/2009/12/20/generic-actions-in-rails-3/

match "/api/v1/:api",

to: redirect { |params| "/api/v2/#{params[:api].pluralize}" },

via: :any

The redirect method also accepts an optional :status parameter.

match "/api/v1/:api", to:

redirect(status: 302) { |params| "/api/v2/#{params[:api].pluralize}" },

via: :any

The redirect method returns an instance of ActionDispatch::Routing::Redirect, which is a simple Rack
endpoint, as we can see by examining its source code.

1 module ActionDispatch

2 module Routing

3 class Redirect # :nodoc:

4 ...

5 def call(env)

6 req = Request.new(env)

7

8 # If any of the path parameters has a invalid encoding then

9 # raise since it's likely to trigger errors further on.

10 req.symbolized_path_parameters.each do |key, value|

11 unless value.valid_encoding?

12 raise ActionController::BadRequest,

13 "Invalid parameter: #{key} => #{value}"

14 end

²Examples drawn from Yehuda Katz’ excellent blog post about generic

http://yehudakatz.com/2009/12/20/generic-actions-in-rails-3/

Routing 42

15 end

16

17 uri = URI.parse(path(req.symbolized_path_parameters, req))

18 uri.scheme ||= req.scheme

19 uri.host ||= req.host

20 uri.port ||= req.port unless req.standard_port?

21

22 if relative_path?(uri.path)

23 uri.path = "#{req.script_name}/#{uri.path}"

24 end

25

26 body = %(<html><body>You are being

27 redirected.</body></html>)

28

29 headers = {

30 'Location' => uri.to_s,

31 'Content-Type' => 'text/html',

32 'Content-Length' => body.length.to_s

33 }

34

35 [status, headers, [body]]

36 end

37 ...

38 end

39 end

40 end

2.2.8 The Format Segment

Let’s revisit the legacy default route again:

match ':controller(/:action(/:id(.:format)))', via: :any

The .:format at the end matches a literal dot and a “format” segment key after the id field. That means it will
match, for example, a URL like:

http://localhost:3000/products/show/3.json

Here, params[:format] will be set to json. The :format field is special; it has an effect inside the controller
action. That effect is related to a method called respond_to.

The respond_to method allows you to write your action so that it will return different results, depending on
the requested format. Here’s a show action for the products controller that offers either HTML or JSON:

Routing 43

1 def show

2 @product = Product.find(params[:id])

3 respond_to do |format|

4 format.html

5 format.json { render json: @product.to_json }

6 end

7 end

The respond_to block in this example has two clauses. The HTML clause just consists of format.html. A
request for HTML will be handled by the usual rendering of a view template. The JSON clause includes a
code block; if JSON is requested, the block will be executed and the result of its execution will be returned to
the client.

Here’s a command-line illustration, using curl (slightly edited to reduce line noise):

$ curl http://localhost:3000/products/show/1.json -i

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Content-Length: 81

Connection: Keep-Alive

{"created_at":"2013-02-09T18:25:03.513Z",

"description":"Keyboard",

"id":"1",

"maker":"Apple",

"updated_at":"2013-02-09T18:25:03.513Z"}

The .json on the end of the URL results in respond_to choosing the json branch, and the returned document
is an JSON representation of the product.

Requesting a format that is not included as an option in the respond_to block will not generate an exception.
Rails will return a 406 Not Acceptable status, to indicate that it can’t handle the request.

If you want to setup an else condition for your respond_to block, you can use the any method, which tells
Rails to catch any other formats not explicitly defined.

1 def show

2 @product = Product.find(params[:id])

3 respond_to do |format|

4 format.html

5 format.json { render json: @product.to_json }

6 format.any

7 end

8 end

Just make sure that you explicitly tell any what to do with the request or have view templates corresponding
to the formats you expect. Otherwise, you’ll get a MissingTemplate exception.

Routing 44

ActionView::MissingTemplate (Missing template products/show,

application/show with {:locale=>[:en], :formats=>[:xml],

:handlers=>[:erb, :builder, :raw, :ruby, :jbuilder, :coffee]}.)

2.2.9 Routes as Rack Endpoints

You’ll see usage of the :to option in routes throughout this chapter. What’s most interesting about :to is that
its value is what’s referred to as a Rack Endpoint. To illustrate, consider the following simple example:

get "/hello", to: proc { |env| [200, {}, ["Hello world"]] }

The router is very loosely coupled to controllers! The shorthand syntax (like "items#show") relies on the
action method of controller classes to return a Rack endpoint that executes the action requested.

>> ItemsController.action(:show)

=> #<Proc:0x01e96cd0@...>

The ability to dispatch to a Rack-based application, such as one createdwith Sinatra³, can be achieved using the
mountmethod. The mountmethod accepts an :at option, which specifies the route the Rack-based application
will map to.

1 class HelloApp < Sinatra::Base

2 get "/" do

3 "Hello World!"

4 end

5 end

6

7 Rails.application.routes.draw do

8 mount HelloApp, at: '/hello'

9 end

Alternatively, a shorthand form is also available:

mount HelloApp => '/hello'

2.2.10 Accept Header

You can also trigger a branching on respond_to by setting the Accept header in the request. When you do this,
there’s no need to add the .:format part of the URL. (However, note that out in the real world, it’s difficult
to get this technique to work reliably due to HTTP client/browser inconsistencies.)

Here’s a curl example that does not specify an .json format, but does set the Accept header to application/json:

³http://www.sinatrarb.com

http://www.sinatrarb.com
http://www.sinatrarb.com

Routing 45

$ curl -i -H "Accept: application/json"

http://localhost:3000/products/show/1

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Content-Length: 81

Connection: Keep-Alive

{"created_at":"2013-02-09T18:25:03.513Z",

"description":"Keyboard",

"id":"1",

"maker":"Apple",

"updated_at":"2013-02-09T18:25:03.513Z"}

The result is exactly the same as in the previous example.

2.2.11 Segment Key Constraints

Sometimes you want not only to recognize a route, but to recognize it at a finer-grained level than just what
components or fields it has. You can do this through the use of the :constraint option (and possibly regular
expressions).

For example, you could route all show requests so that they went to an error action if their id fields were
non-numerical. You’d do this by creating two routes, one that handled numerical ids, and a fall-through route
that handled the rest:

get ':controller/show/:id' => :show, constraints: {:id => /\d+/}

get ':controller/show/:id' => :show_error

Implicit Anchoring
The example constraint we’ve been using

constraints: {:id => /\d+/}

seems like it would match "foo32bar". It doesn’t because Rails implicitly anchors it at both ends.
In fact, as of this writing, adding explicit anchors \A and \z causes exceptions to be raised.

Apparently, it’s so common to set constraints on the :id param, that Rails lets you shorten our previous
example to simply

get ':controller/show/:id' => :show, id: /\d+/

get ':controller/show/:id' => :show_error

Routing 46

Regular expressions in routes can be useful, especially when you have routes that differ from each other only
with respect to the patterns of their components. But they’re not a full-blown substitute for data-integrity
checking. You probably still want to make sure that the values you’re dealing with are usable and appropriate
for your application’s domain.

From the example, you might conclude that :constraints checking applies to elements of the params hash.
However, you can also check a grab-bag of other request attributes that return a string, such as :subdomain
and :referrer. Matching methods of request that return numeric or boolean values are unsupported and
will raise a somewhat cryptic exception during route matching.

only allow users admin subdomain to do old-school routing

get ':controller/:action/:id' => :show, constraints: {subdomain: 'admin'}

If for some reason you need more powerful constraints checking, you have full access to the request object,
by passing a block or any other object that responds to call as the value of :constraints like:

protect records with id under 100

get 'records/:id' => "records#protected",

constraints: proc { |req| req.params[:id].to_i < 100 }

2.2.12 The Root Route

At around line 8 of the default config/routes.rb (refer to Listing 2.1) you’ll see

You can have the root of your site routed with "root"

root 'welcome#index'

What you’re seeing here is the root route, that is, a rule specifying what should happen when someone
connects to

http://example.com # Note the lack of "/anything" at the end!

The root route says, “I don’t want any values; I want nothing, and I already know what controller and action
I’m going to trigger!”

In a newly generated routes.rb file, the root route is commented out, because there’s no universal or
reasonable default for it. You need to decide what this nothing URL should do for each application you write.

Here are some examples of fairly common empty route rules:

Routing 47

1 root to: "welcome#index"

2 root to: "pages#home"

3

4 # Shorthand syntax

5 root "user_sessions#new"

Defining the empty route gives people something to look at when they connect to your site with nothing but
the domain name. You might be wondering why you see something when you view a newly-generated Rails
application, that still has its root route commented out.

The answer is that if a root route is not defined, by default Rails will route to an internal controller
Rails::WelcomeController and render a welcome page instead.

In previous versions of Rails, this was accomplished by including the file index.html in the public directory of
newly generated applications. Any static content in the public directory hierarchy, matching the URL scheme
that you come up with for your app, results in the static content being served up instead of triggering the
routing rules. Actually, the web server will serve up the content without involving Rails at all.

A Note on Route Order
Routes are consulted, both for recognition and for generation, in the order they are defined in
routes.rb. The search for a match ends when the first match is found, meaning that you have to
watch out for false positives.

2.3 Route Globbing

In some situations, you might want to grab one or more components of a route without having to match them
one by one to specific positional parameters. For example, your URLs might reflect a directory structure. If
someone connects to

/items/list/base/books/fiction/dickens

you want the items/list action to have access to all four remaining fields. But sometimes there might be
only three fields:

/items/list/base/books/fiction

or five:

/items/list/base/books/fiction/dickens/little_dorrit

So you need a route that will match (in this particular case) everything after the second URI component. You
define it by globbing the route with an asterisk.

www.allitebooks.com

http://www.allitebooks.org

Routing 48

get 'items/list/*specs', controller: 'items', action: 'list'

Now, the products/list action will have access to a variable number of slash-delimited URL fields, accessible
via params[:specs]:

def list

specs = params[:specs] # e.g, "base/books/fiction/dickens"

end

Globbing Key-Value Pairs
Route globbing might provide the basis for a general mechanism for fielding ad hoc queries. Let’s
say you devise a URI scheme that takes the following form:

http://localhost:3000/items/q/field1/value1/field2/value2/...

Making requests in this way will return a list of all products whose fields match the values, based
on an unlimited set of pairs in the URL.

In other words, http://localhost:3000/items/q/year/1939/material/wood could generate a list
of all wood items made in 1939. The route that would accomplish this would be:

get 'items/q/*specs', controller: "items", action: "query"

Of course, you’ll have to write a query action like this one to support the route:

1 def query

2 @items = Item.where(Hash[*params[:specs].split("/")])

3 if @items.empty?

4 flash[:error] = "Can't find items with those properties"

5 end

6 render :index

7 end

How about that square brackets class method on Hash, eh? It converts a one-dimensional array of
key/value pairs into a hash! Further proof that in-depth knowledge of Ruby is a prerequisite for
becoming an expert Rails developer.

2.4 Named Routes

The topic of named routes almost deserves a chapter of its own. In fact, what you learn here will feed directly
into our examination of REST-related routing in Chapter 3.

The idea of naming a route is basically to make life easier on you, the programmer. There are no outwardly
visible effects as far as the application is concerned. When you name a route, a new method gets defined for

Routing 49

use in your controllers and views; the method is called name_url (with name being the name you gave the
route), and calling the method, with appropriate arguments, results in a URL being generated for the route.
In addition, a method called name_path also gets created; this method generates just the path part of the URL,
without the protocol and host components.

2.4.1 Creating a Named Route

The way you name a route is by using the optional :as parameter in a rule:

get 'help' => 'help#index', as: 'help'

In this example, you’ll get methods called help_url and help_path, which you can use wherever Rails expects
a URL or URL components:

link_to "Help", help_path

And, of course, the usual recognition and generation rules are in effect. The pattern string consists of just the
static string component "help". Therefore, the path you’ll see in the hyperlink will be

/help

When someone clicks on the link, the index action of the help controller will be invoked.

Xavier says…
You can test named routes in the console directly using the special app object.

>> app.clients_path

=> "/clients"

>> app.clients_url

=> "http://www.example.com/clients"

Named routes save you some effort when you need a URL generated. A named route zeros in directly on the
route you need, bypassing the matching process that would be needed other. That means you don’t have to
provide as much detail as you otherwise would, but you still have to provide values for any segment keys in
the route’s pattern string that cannot be inferred.

Routing 50

2.4.2 name_path vs. name_url

When you create a named route, you’re actually creating at least two route helper methods. In the preceding
example, those twomethods are help_url and help_path. The difference is that the _urlmethod generates an
entire URL, including protocol and domain, whereas the _pathmethod generates just the path part (sometimes
referred to as an absolute path or a relative URL).

According to the HTTP spec, redirects should specify a URI, which can be interpreted (by some people) to
mean a fully-qualified URL⁴. Therefore, if you want to be pedantic about it, you probably should always use
the _url version when you use a named route as an argument to redirect_to in your controller code.

The redirect_to method works perfectly with the relative URLs generated by _path helpers, making
arguments about the matter kind of pointless. In fact, other than redirects, permalinks, and a handful of
other edge cases, it’s the Rails way to use _path instead of _url. It produces a shorter string and the user
agent (browser or otherwise) should be able to infer the fully qualified URL whenever it needs to do so, based
on the HTTP headers of the request, a base element in the document, or the URL of the request.

As you read this book and as you examine other code and other examples, the main thing to remember is that
help_url and help_path are basically doing the same thing. I tend to use the _url style in general discussions
about named route techniques, but to use _path in examples that occur inside view templates (for example,
with link_to and form_for). It’s mostly a writing-style thing, based on the theory that the URL version is
more general and the path version more specialized. In any case, it’s good to get used to seeing both and
getting your brain to view them as very closely connected.

Using Literal URLs
You can, if you wish, hard-code your paths and URLs as string arguments to link_to, redirect_to,
and friends. For example, instead of

link_to "Help", controller: "main", action: "help"

you can write

link_to "Help", "/main/help"

However, using a literal path or URL bypasses the routing system. If you write literal URLs, you’re
on your own to maintain them. (You can of course use Ruby’s string interpolation techniques to
insert values, if that’s appropriate for what you’re doing, but really stop and think about whether
you are reinventing Rails functionality if you go down that path.)

2.4.3 What to Name Your Routes

As we’ll learn in Chapter 3, the best way to figure out what names you should use for your routes is to follow
REST conventions, which are baked into Rails and simplify things greatly. Otherwise, you’ll need to think
top-down; that is, think about what you want to write in your application code, and then create the routes
that will make it possible.

⁴http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Routing 51

Take, for example, this call to link_to

link_to "Auction of #{item.name}",

controller: "items",

action: "show",

id: item.id

The routing rule to match that path is (a generic route):

get "item/:id" => "items#show"

It sure would be nice to shorten that link_to code. After all, the routing rule already specifies the controller
and action. This is a good candidate for a named route for items:

get "item/:id" => "items#show", as: "item"

Lets improve the situation by introducing item_path in the call to link_to:

link_to "Auction of #{item.name}", item_path(id: item.id)

Giving the route a name is a shortcut; it takes us straight to that route, without a long search and without
having to provide a thick description of the route’s hard-coded parameters.

2.4.4 Argument Sugar

In fact, we can make the argument to item_path even shorter. If you need to supply an id number as an
argument to a named route, you can just supply the number, without spelling out the :id key:

link_to "Auction of #{item.name}", item_path(item.id)

And the syntactic sugar goes even further: You can and should provide objects and Rails will grab the id
automatically.

link_to "Auction of #{item.name}", item_path(item)

This principle extends to other segment keys in the pattern string of the named route. For example, if you’ve
got a route like

get "auction/:auction_id/item/:id" => "items#show", as: "item"

you’d be able to call it like

Routing 52

link_to "Auction of #{item.name}", item_path(auction, item)

and you’d get something like this as your path (depending on the exact id numbers):

/auction/5/item/11

Here, we’re letting Rails infer the ids of both an auction object and an item object, which it does by calling
to_param on whatever non-hash arguments you pass into named route helpers. As long as you provide the
arguments in the order in which their ids occur in the route’s pattern string, the correct values will be dropped
into place in the generated path.

2.4.5 A Little More Sugar with Your Sugar?

Furthermore, it doesn’t have to be the id value that the route generator inserts into the URL. As alluded to a
moment ago, you can override that value by defining a to_param method in your model.

Let’s say you want the description of an item to appear in the URL for the auction on that item. In the item.rb
model file, you would override to_params; here, we’ll override it so that it provides a “munged” (stripped of
punctuation and joined with hyphens) version of the description, courtesy of the parameterizemethod added
to strings in Active Support.

1 def to_param

2 description.parameterize

3 end

Subsequently, the method call item_path(auction, item) will produce something like

/auction/3/item/cello-bow

Of course, if you’re putting things like “cello-bow” in a path field called :id, you will need to make provisions
to dig the object out again. Blog applications that use this technique to create slugs for use in permanent links
often have a separate database column to store the munged version of the title that serves as part of the path.
That way, it’s possible to do something like

Item.where(munged_description: params[:id]).first!

to unearth the right item. (And yes, you can call it something other than :id in the route to make it clearer!)

Courtenay says….
Why shouldn’t you use numeric IDs in your URLs? First, your competitors can see just how many
auctions you create. Numeric consecutive IDs also allow people to write automated spiders to steal
your content. It’s a window into your database. And finally, words in URLs just look better.

Routing 53

2.5 Scoping Routing Rules

Rails gives you a variety of ways to bundle together related routing rules concisely. They’re all based on usage
of the scope method and its various shortcuts. For instance, let’s say that you want to define the following
routes for auctions:

1 get 'auctions/new' => 'auctions#new'

2 get 'auctions/edit/:id' => 'auctions#edit'

3 post 'auctions/pause/:id' => 'auctions#pause'

You could DRY up your routes.rb file by using the scope method instead:

1 scope controller: :auctions do

2 get 'auctions/new' => :new

3 get 'auctions/edit/:id' => :edit

4 post 'auctions/pause/:id' => :pause

5 end

Then you would DRY it up again by adding the :path argument to scope:

1 scope path: '/auctions', controller: :auctions do

2 get 'new' => :new

3 get 'edit/:id' => :edit

4 post 'pause/:id' => :pause

5 end

2.5.1 Controller

The scope method accepts a :controller option (or it can interpret a symbol as its first argument to assume
a controller). Therefore, the following two scope definitions are identical:

scope controller: :auctions do

scope :auctions do

To make it more obvious what’s going on, you can use the controller method instead of scope, in what’s
essentially syntactic sugar:

controller :auctions do

2.5.2 Path Prefix

The scope method accepts a :path option (or it can interpret a string as its first parameter to mean a path
prefix). Therefore, the following two scope definitions are identical:

Routing 54

scope path: '/auctions' do

scope '/auctions' do

New to Rails 4, is the ability to pass the :path option symbols instead of strings. The following scope definition:

scope :auctions, :archived do

will scope all routes nested under it to the “/auctions/archived” path.

2.5.3 Name Prefix

The scope method also accepts a :as option that affects the way that named route URL helper methods are
generated. The route

1 scope :auctions, as: 'admin' do

2 get 'new' => :new, as: 'new_auction'

3 end

will generate a named route URL helper method called admin_new_auction_url.

2.5.4 Namespaces

URLs can be grouped by using the namespace method, which is syntactic sugar that rolls up module, name
prefix and path prefix settings into one declaration. The implementation of the namespace method converts
its first argument into a string, which is why in some example code you’ll see it take a symbol.

1 namespace :auctions, :controller => :auctions do

2 get 'new' => :new

3 get 'edit/:id' => :edit

4 post 'pause/:id' => :pause

5 end

2.5.5 Bundling Constraints

If you find yourself repeating similar segment key constraints in related routes, you can bundle them together
using the :constraints option of the scope method:

1 scope controller: :auctions, constraints: {:id => /\d+/} do

2 get 'edit/:id' => :edit

3 post 'pause/:id' => :pause

4 end

It’s likely that only a subset of rules in a given scope need constraints applied to them. In fact, routing will
break if you apply a constraint to a rule that doesn’t take the segment keys specified. Since you’re nesting,
you probably want to use the constraints method, which is just more syntactic sugar to tighten up the rule
definitions.

Routing 55

1 scope path: '/auctions', controller: :auctions do

2 get 'new' => :new

3 constraints id: /\d+/ do

4 get 'edit/:id' => :edit

5 post 'pause/:id' => :pause

6 end

7 end

To enablemodular reuse, youmay supply the constraintsmethodwith an object that has a matches?method.

1 class DateFormatConstraint

2 def self.matches?(request)

3 request.params[:date] =~ /\A\d{4}-\d\d-\d\d\z/ # YYYY-MM-DD

4 end

5 end

6

7 # in routes.rb

8 constraints(DateFormatConstraint) do

9 get 'since/:date' => :since

10 end

In this particular example (DateFormatConstraint) if an errant or malicious user input a badly formatted date
parameter via the URL, Rails will respond with a 404 status instead of causing an exception to be raised.

2.6 Listing Routes

A handy route listing utility is included in all Rails projects as a standard rake task. Invoke it by typing rake
routes in your application directory. For example, here is the output for a routes file containing just a single
resources :products rule:

$ rake routes

products GET /products(.:format) products#index

POST /products(.:format) products#create

new_product GET /products/new(.:format) products#new

edit_product GET /products/:id/edit(.:format) products#edit

product GET /products/:id(.:format) products#show

PATCH /products/:id(.:format) products#update

PUT /products/:id(.:format) products#update

DELETE /products/:id(.:format) products#destroy

The output is a table with four columns. The first two columns are optional and contain the name of the
route and HTTP method constraint, if they are provided. The third column contains the URL mapping string.
Finally, the fourth column indicates the controller and action method that the route maps to, plus constraints
that have been defined on that routes segment keys (if any).

Note that the routes task checks for an optional CONTROLLER environment variable

Routing 56

$ rake routes CONTROLLER=products

would only lists the routes related to ProductsController.

Juanito says…
While you have a server up and running on development environment, You could visit
/rails/info/routes to get a complete list of routes of your Rails application.

2.7 Conclusion

The first half of the chapter helped you to fully understand the generic routing rules of Rails and how the
routing system has two purposes:

• Recognizing incoming requests and mapping them to a corresponding controller action, along with any
additional variable receptors.

• Recognizing URL parameters in methods such as link_to and matching them up to a corresponding
route so that proper HTML links can be generated.

We built on our knowledge of generic routing by covering some advanced techniques such as using regular
expressions and globbing in our route definitions, plus the bundling of related routes under shared scope
options.

Finally, before moving on, you should make sure that you understand how named routes work and why they
make your life easier as a developer by allowing you to write more concise view code. As you’ll see in the
next chapter, when once we start defining batches of related named routes, we’re on the cusp of delving into
REST.

3 REST, Resources, and Rails
Before REST came I (and pretty much everyone else) never really knew where to put stuff.

—Jonas Nicklas on the Ruby on Rails mailing list

With version 1.2, Rails introduced support for designing APIs consistent with the REST style. Representational
State Transfer (REST) is a complex topic in information theory, and a full exploration of it is well beyond the
scope of this chapter.¹ We’ll touch on some of the keystone concepts, however. And in any case, the REST
facilities in Rails can prove useful to you even if you’re not a REST expert or devotee.

The main reason is that one of the inherent problems that all web developers face is deciding how to name
and organize the resources and actions of their application. The most common actions of all database-backed
applications happen to fit well into the REST paradigm.

3.1 REST in a Rather Small Nutshell

REST is described by its creator, Roy T. Fielding, as a network architectural style, specifically the style
manifested in the architecture of the World Wide Web. Indeed, Fielding is not only the creator of REST
but also one of the authors of the HTTP protocol itself. REST and the web have a very close relationship.

Fielding defines REST as a series of constraints imposed upon the interaction between system components.
Basically, you start with the general proposition of machines that can talk to each other, and you start ruling
some practices in and others out by imposing constraints that include (among others):

• Use of a client-server architecture
• Stateless communication
• Explicit signaling of response cacheability
• Use of HTTP request methods such as GET, POST, PUT and DELETE

The World Wide Web allows for REST-compliant communication. It also allows for violations of REST
principles; the constraints aren’t always all there unless you put them there. As for this chapter, the most
important thing you have to understand is that REST is designed to help you provide services using the
native idioms and constructs of HTTP. You’ll find, if you look for it, lots of discussion comparing REST to,
for example, SOAP—the thrust of the pro-REST argument being that HTTP already enables you to provide
services, so you don’t need a semantic layer on top of it. Just use what HTTP already gives you.

One of the allures of REST is that it scales relatively well for big systems, like the web. Another is
that it encourages—mandates, even—the use of stable, long-lived identifiers (URIs). Machines talk to each
other by sending requests and responses labeled with these identifiers. Messages consist of representations

¹For those interested in REST, the canonical text is Roy Fielding’s dissertation, which you can find at http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm. In particular, you’ll probably want to focus on Chapters 5 and 6 of the dissertation, which cover REST and its relation to HTTP.
You’ll also find an enormous amount of information, and links to more, on the REST wiki at http://rest.blueoxen.net/cgi-bin/wiki.pl.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://rest.blueoxen.net/cgi-bin/wiki.pl

REST, Resources, and Rails 58

(manifestations in text, XML, graphic format, and so on) of resources (high-level, conceptual descriptions of
content) or simply HTTP headers.

Ideally at least, when you ask a machine for a JSON representation of a resource—say, Romeo and Juliet—
you’ll use the same identifier every time and the same request metadata indicating that you want JSON, and
you’ll get the same response. And if it’s not the same response, there’s a reason—like, the resource you’re
retrieving is a changeable one (“The current transcript for Student #3994,” for example).

3.2 Resources and Representations

The REST style characterizes communication between system components (where a component is, say, a web
browser or a server) as a series of requests to which the responses are representations of resources.

A resource, in this context, is a “conceptual mapping” (Fielding). Resources themselves are not tied to a
database, a model, or a controller. Examples of resources include

• The current time of day
• A library book’s borrowing history
• The entire text of The Little Prince
• A map of Jacksonville Beach
• The inventory of a store

A resource may be singular or plural, changeable (like the time of day) or fixed (like the text of The Little
Prince). It’s basically a high-level description of the thing you’re trying to get hold of when you submit a
request.

What you actually do get hold of is never the resource itself, but a representation of it. This is where REST
unfolds onto the myriad content types and actual deliverables that are the stuff of the web. A resource may,
at any given point, be available in any number of representations (including zero). Thus your site might offer
a text version of The Little Prince, but also an audio version. Those two versions would be understood as
the same resource, and would be retrieved via the same identifier (URI). The difference in content type—one
representation vs. another—would be negotiated separately in the request.

3.3 REST in Rails

The REST support in Rails consists of methods to define resources in the routing system, designed to impose
a particular style and order and logic on your controllers and, consequently, on the way the world sees your
application. There’s more to it than just a set of naming conventions (though there’s that too). In the large
scheme of things, the benefits that accrue to you when you use Rails’ REST support fall into two categories:

• Convenience and automatic best practices for you
• A RESTful interface to your application’s services for everyone else

REST, Resources, and Rails 59

You can reap the first benefit even if you’re not concerned with the second. In fact, that’s going to be our
focus here: what the REST support in Rails can do for you in the realm of making your code nicer and your
life as a Rails developer easier.

I don’t mean to minimize the importance of REST itself, nor the seriousness of the endeavor of providing
REST-based services. Rather, it’s an expedient; we can’t talk about everything, and this section of the book
is primarily about routing and how to do it, so we’re going to favor looking at REST in Rails from that
perspective.

Getting back to practical matters, the focus of the rest of this chapter will be showing you how REST support
works in Rails opening the door to further study and practice including the study of Fielding’s dissertation
and the theoretical tenets of REST. We won’t cover everything here, but what we do cover will be onward
compatible with the wider topic.

The story of REST and Rails starts with CRUD…

3.4 Routing and CRUD

The acronym CRUD (Create Read Update Delete) is the classic summary of the spectrum of database
operations. It’s also a kind of rallying cry for Rails practitioners. Because we address our databases through
abstractions, we’re prone to forget how simple it all is. This manifests itself mainly in excessively creative
names for controller actions. There’s a temptation to call your actions add_item and replace_email_address

and things like that. But we needn’t, and usually shouldn’t, do this. True, the controller does not map to the
database, the way the model does. But things get simpler when you name your actions after CRUD operations,
or as close to the names of those operations as you can get.

The routing system does not force you to implement your app’s CRUD functionality in any consistent manner.
You can create a route that maps to any action, whatever the action’s name. Choosing CRUD names is a matter
of discipline. Except… when you use the REST facilities offered by Rails, it happens automatically.

REST in Rails involves standardization of action names. In fact, the heart of the Rails’ REST support is a
technique for creating bundles of named routes automatically—named routes that are bundled together to
point to a specific, predetermined set of actions.

Here’s the logic. It’s good to give CRUD-based names to your actions. It’s convenient and elegant to use
named routes. The REST support in Rails gives you named routes that point to CRUD-based action names.
Therefore, using the REST facilities gives you a shortcut to some best practices.

Shortcut hardly describes how little work you have to do to get a big payoff. If you put

resources :auctions

into your config/routes.rb file, you will have created four named routes, which, in a manner to be described
in this chapter, connect to seven controller actions. And those actions have nice CRUD-like names, as you
will see.

REST, Resources, and Rails 60

3.4.1 REST Resources and Rails

Like most of Rails, support for RESTful applications is “opinionated”; that is, it offers a particular way of
designing a REST interface, and the more you play along, the more convenience you reap from it. Most Rails
applications are database-backed, and the Rails take on REST tends to associate a resource very closely with
an Active Record model, or a model/controller stack.

In fact, you’ll hear people using the terminology fairly loosely. For instance, they’ll say that they have created
a Book resource. What they mean, in most cases, is that they have created a Bookmodel, a book controller with
a set of CRUD actions, and some named routes pertaining to that controller (courtesy of resources :books).
You can have a Book model and controller, but what you actually present to the world as your resources, in
the REST sense, exists at a higher level of abstraction: The Little Prince, borrowing history, and so on.

The best way to get a handle on the REST support in Rails is by going from the known to the unknown. In
this case, from the topic of named routes to the more specialized topic of REST.

3.4.2 From Named Routes to REST Support

When we first looked at named routes, we saw examples where we consolidated things into a route name. By
creating a route like

get 'auctions/:id' => "auction#show", as: 'auction'

you gain the ability to use nice helper methods in situations like

link_to item.description, auction_path(item.auction)

The route ensures that a path will be generated that will trigger the show action of the auctions controller. The
attraction of this kind of named route is that it’s concise and readable.

Now, think in terms of CRUD. The named route auction_path is a nice fit for a show (the R in CRUD) action.
What if we wanted similarly nicely named routes for the create, update, and delete actions?

Well, we’ve used up the route name auction_path on the show action.We couldmake up names like auction_-
delete_path and auction_create_path but those are cumbersome. We really want to be able to make a call
to auction_path and have it mean different things, depending on which action we want the URL to point to.

We could differentiate between the singular (auction_path) and the plural (auctions_path). A singular URL
makes sense, semantically, when you’re doing something with a single, existing auction object. If you’re doing
something with auctions in general, the plural makes more sense.

The kinds of things you do with auctions in general include creating. The create action will normally occur
in a form:

form_tag auctions_path

REST, Resources, and Rails 61

It’s plural because we’re not saying “perform an action with respect to a particular auction”, but rather “with
respect to the collection of auctions, perform the action of creation.” Yes, we’re creating one auction, not many.
But at the time we make the call to our named route, auctions_path, we’re addressing auctions in general.

Another case where you might want a plural named route is when you want an overview of all of the objects
of a particular kind, or at least, some kind of general view, rather than a display of a particular object. This
kind of general view is usually handled with an index action. These index actions typically load a lot of data
into one or more variables, and the corresponding view displays it as a list or table (possibly more than one).

Here again, we’d like to be able to say:

link_to "Click here to view all auctions", auctions_path

Already, though, the strategy of breaking auction_path out into singular and plural has hit the wall: We’ve
got two places where we want to use the plural named route. One is create; the other is index. But they’re
both going to look like

/auctions

How is the routing system going to know that when we use auctions_path as a link versus using it in a form
that we mean the create action and not index? We need another qualifier, another flag, another variable on
which to branch.

Luckily, we’ve got one.

3.4.3 Reenter the HTTP Verb

Form submissions are POSTs by default. Index actions are GETs. That means that we need to get the routing
system to realize that

/auctions submitted in a GET request!

versus

/auctions submitted in a POST request!

are two different things. We also have to get the routing system to generate the same URL—/auctions—but
with a different HTTP request method, depending on the circumstances.

This is what the REST facility of Rails routing does for you. It allows you to stipulate that you want /auctions
routed differently, depending on the HTTP request method. It lets you define named routes with the same
name, but with intelligence about their HTTP verbs. In short, it uses HTTP verbs to provide that extra data
slot necessary to achieve everything you want to achieve in a concise way.

The way you do this is by using a special routing method: resources. Here’s what it would look like for
auctions:

REST, Resources, and Rails 62

resources :auctions

That’s it. Making this one call inside routes.rb is the equivalent of defining four named routes. And if you
mix and match those four named routes with a variety of HTTP request methods, you end up with seven
useful—very useful—permutations.

3.5 The Standard RESTful Controller Actions

Calling resources :auctions involves striking a kind of deal with the routing system. The system hands you
four named routes. Between them, these four routes point to seven controller actions, depending on HTTP
request method. In return, you agree to use very specific names for your controller actions: index, create,
show, update, destroy, new, edit.

It’s not a bad bargain, since a lot of work is done for you and the action names you have to use are nicely
CRUD-like.

Table 3.1 summarizes what happens. It’s a kind of “multiplication table” showing you what you get when you
cross a given RESTful named route with a given HTTP request method. Each box (the nonempty ones, that
is) shows you, first, the URL that the route generates and, second, the action that gets called when the route
is recognized. (The table lists _path methods rather than _url ones, but you get both.)

Table 3.1: RESTful Routes Table Showing Helpers, Paths, and the Resulting Controller Action

Helper Method GET POST PATCH DELETE

client_-

path(client)

/clients/1 show /clients/1
update

/clients/1
destroy

clients_path /clients index /clients create
edit_client_-

path(client)

/clients/1/edit
edit

new_client_-

path

/clients/new
new

(The edit and new actions have unique named routes, and their URLs have a special syntax.)

Since named routes are now being crossed with HTTP request methods, you’ll need to know how to specify
the request methodwhen you generate a URL, so that your GET’d clients_url and your POST’d clients_url
don’t trigger the same controller action. Most of what you have to do in this regard can be summed up in a
few rules:

1. The default request method is GET.
2. In a form_tag or form_for call, the POST method will be used automatically.
3. When you need to (which is going to be mostly with PATCH and DELETE operations), you can specify

a request method along with the URL generated by the named route.

An example of needing to specify a DELETE operation is a situation when you want to trigger a destroy

action with a link:

REST, Resources, and Rails 63

link_to "Delete", auction_path(auction), method: :delete

Depending on the helper method you’re using (as in the case of form_for), you might have to put the method
inside a nested hash:

form_for "auction", url: auction_path(auction),

html: { method: :patch } do |f|

That last example, which combined the singular named route with the PATCH method, will result in a call to
the update action when submitting the form (as per row 2, column 4 of Table 3.1). You don’t normally have
to program this functionality specifically, because as we’ll see later in the book, Rails automatically figures
out whether you need a POST or PATCH if you pass an object to form helpers.

3.5.1 PATCH vs. PUT

If you are coming from a previous version of Rails, you may be wondering why the update action of a RESTful
route is mapped to the HTTP verb PATCH instead of PUT. In the HTTP standards document RFC 5789², it
outlines that a PUT request to a given resource is meant to completely replace it on the origin server. However,
when updating a resource in Rails, rarely, if ever, do you replace an entire resourcewhen performing an update.
For example, when updating an Active Record model, Rails sets the attribute updated_at timestamp, not the
requesting client.

To follow better HTTP semantics, Rails will be using the HTTP verb PATCH for updates. PATCH allows for
both full and partial updates of a resource, and is more suited to how Rails updates resources.

If you are upgrading an existing Rails application, the HTTP verb PUT will still map to the update action in
RESTful routes, but it’s recommended to use PATCH moving forward.

3.5.2 Singular and Plural RESTful Routes

As you may have noticed, some of the RESTful routes are singular; some are plural. The logic is as follows:

1. The routes for show, new, edit, and destroy are singular, because they’re working on a particular
resource.

2. The rest of the routes are plural. They deal with collections of related resources.

The singular RESTful routes require an argument, because they need to be able to figure out the id of the
member of the collection referenced.

item_url(item) # show, update, or destroy, depending on HTTP verb

You don’t have to call the idmethod on item. Rails will figure it out (by calling to_param on the object passed
to it.)

²http://tools.ietf.org/html/rfc5789

http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc5789

REST, Resources, and Rails 64

3.5.3 The Special Pairs: new/create and edit/update

As Table 3.1 shows, new and edit obey somewhat special RESTful naming conventions. The reason for this
has to do with create and update, and how new and edit relate to them.

Typically, create and update operations involve submitting a form. That means that they really involve two
actions—two requests—each:

1. The action that results in the display of the form
2. The action that processes the form input when the form is submitted

The way this plays out with RESTful routing is that the create action is closely associated with a preliminary
new action, and update is associated with edit. These two actions, new and edit, are really assistant actions:
All they’re supposed to do is show the user a form, as part of the process of creating or updating a resource.

Fitting these special two-part scenarios into the landscape of resources is a little tricky. A form for editing a
resource is not, itself, really a resource. It’s more like a pre-resource. A form for creating a new resource is
sort of a resource, if you assume that being new—that is, nonexistent—is something that a resource can do,
and still be a resource!

That line of reasoning might be a little too philosophical to be useful. The bottom line, as implemented in
RESTful Rails, is the following: The new action is understood to be giving you a new, single (as opposed to
plural) resource. However, since the logical verb for this transaction is GET, and GETting a single resource is
already spoken for by the show action, new needs a named route of its own.

That’s why you have to use

link_to "Create a new item", new_item_path

to get a link to the items/new action.

The edit action is understood not to be giving you a full-fledged resource, exactly, but rather a kind of edit
flavor of the show resource. So it uses the same URL as show, but with a kind of modifier, in the form of /edit,
hanging off the end, which is consistent with the URL form for new:

/items/5/edit

The corresponding named route is edit_item_url(@item). As with new, the named route for edit involves
an extra bit of name information, to differentiate it from the implied show of the existing RESTful route for
GETting a single resource.

3.5.4 The PATCH and DELETE Cheat

We have just seen how Rails routes PATCH and DELETE requests. Some HTTP clients are able to use said
verbs, but forms in web browsers can’t be submitted using anything other than a POST. Rails provides a hack
that is nothing to worry about, other than being aware of what’s going on.

REST, Resources, and Rails 65

A PATCH or DELETE request originating in a browser, in the context of REST in Rails, is actually a POST
request with a hidden field called _method set to either "patch" or "delete". The Rails application processing
the request will pick up on this, and route the request appropriately to the update or destroy action.

You might say, then, that the REST support in Rails is ahead of its time. REST components using HTTP should
understand all of the request methods. They don’t, so Rails forces the issue. As a developer trying to get the
hang of how the named routes map to action names, you don’t have to worry about this little cheat. And
hopefully some day it won’t be necessary any more.

3.5.5 Limiting Routes Generated

It’s possible to add :except and :only options to the call to resources in order to limit the routes generated.

resources :clients, except: [:index]

resources :clients, only: [:new, :create]

3.6 Singular Resource Routes

In addition to resources, there’s also a singular (or singleton) form of resource routing: resource. It’s used
to represent a resource that only exists once in its given context.

A singleton resource route at the top level of your routes can be appropriate when there’s only one resource
of its type for the whole application, perhaps something like a per-user profile.

resource :profile

You get almost the full complement of resource routes, all except the collection route (index). Note that the
method name resource, the argument to that method, and all the named routes generated are in the singular.

$ rake routes

profile POST /profile(.:format) profiles#create

new_profile GET /profile/new(.:format) profiles#new

edit_profile GET /profile/edit(.:format) profiles#edit

GET /profile(.:format) profiles#show

PATCH /profile(.:format) profiles#update

PUT /profile(.:format) profiles#update

DELETE /profile(.:format) profiles#destroy

It’s assumed that you’re in a context where it’s meaningful to speak of the profile—the one and only—because
there’s a user to which the profile is scoped. The scoping itself is not automatic; you have to authenticate
the user and retrieve the profile from (and/or save it to) the database explicitly. There’s no real magic or
mind-reading here; it’s just an additional routing technique at your disposal if you need it.

REST, Resources, and Rails 66

3.7 Nested Resources

Let’s say you want to perform operations on bids: create, edit, and so forth. You know that every bid is
associated with a particular auction. That means that whenever you do anything to a bid, you’re really doing
something to an auction/bid pair—or, to look at it another way, an auction/bid nest. Bids are at the bottom of
a drill-down hierarchical structure that always passes through an auction.

What you’re aiming for here is a URL that looks like

/auctions/3/bids/5

What it does depends on the HTTP verb it comes with, of course. But the semantics of the URL itself are: the
resource that can be identified as bid 5, belonging to auction 3.

Why not just go for bids/5 and skip the auction? For a couple of reasons. First, the URL is more informative—
longer, it’s true, but longer in the service of telling you something about the resource. Second, thanks to the
way RESTful routes are engineered in Rails, this kind of URL gives you immediate access to the auction id,
via params[:auction_id].

To created nested resource routes, put this in routes.rb:

1 resources :auctions do

2 resources :bids

3 end

What that tells the routing mapper is that you want RESTful routes for auction resources; that is, you want
auctions_url, edit_auction_url, and all the rest of it. You also want RESTful routes for bids: auction_-
bids_url, new_auction_bid_url, and so forth.

However, the nested resource command also involves you in making a promise. You’re promising that
whenever you use the bid named route helpers, you will provide a auction resource in which they can be
nested. In your application code, that translates into an argument to the named route method:

link_to "See all bids", auction_bids_path(auction)

When you make that call, you enable the routing system to add the /auctions/3 part before the /bids part.
And, on the receiving end—in this case, in the action bids/index, which is where that URL points—you’ll
find the id of auction in params[:auction_id]. (It’s a plural RESTful route, using GET. See Table 3.1 again
if you forgot.)

You can nest to any depth. Each level of nesting adds one to the number of arguments you have to supply
to the nested routes. This means that for the singular routes (show, edit, destroy), you need at least two
arguments:

link_to "Delete this bid", auction_bid_path(auction, bid), method: :delete

REST, Resources, and Rails 67

This will enable the routing system to get the information it needs (essentially auction.id and bid.id) in
order to generate the route.

Alternatively, instead of specifying the route to be used in a view helper, such as link_to, you can simply
pass an object.

link_to "Delete this bid", [auction, bid], method: :delete

Since the object in the above example is an Array, Rails infers that the route is nested. And, based on the order
and class names of the objects in the Array, Rails will use the auction_bid_path helper behind the scenes.

3.7.1 RESTful Controller Mappings

Something we haven’t yet explicitly discussed is how RESTful routes are mapped to a given controller. It
was just presented as something that happens automatically, which in fact it does, based on the name of the
resource.

Going back to our recurring example, given the following nested route:

1 resources :auctions do

2 resources :bids

3 end

there are two controllers that come into play, the AuctionsController and the BidsController.

3.7.2 Considerations

Is nesting worth it? For single routes, a nested route usually doesn’t tell you anything you wouldn’t be able
to figure out anyway. After all, a bid belongs to an auction.

That means you can access bid.auction_id just as easily as you can params[:auction_id], assuming you
have a bid object already.

Furthermore, the bid object doesn’t depend on the nesting. You’ll get params[:id] set to 5, and you can dig
that record out of the database directly. You don’t need to know what auction it belongs to.

Bid.find(params[:id])

A common rationale for judicious use of nested resources, and the one most often issued by David, is the ease
with which you can enforce permissions and context-based constraints. Typically, a nested resource should
only be accessible in the context of its parent resource, and it’s really easy to enforce that in your code based
on the way that you load the nested resource using the parent’s Active Record association.

REST, Resources, and Rails 68

auction = Auction.find(params[:auction_id])

bid = auction.bids.find(params[:id]) # prevents auction/bid mismatch

If you want to add a bid to an auction, your nested resource URL would be

http://localhost:3000/auctions/5/bids/new

The auction is identified in the URL rather than having to clutter your new bid form data with hidden fields
or resorting to non-RESTful practices.

3.7.3 Deep Nesting?

Jamis Buck is a very influential figure in the Rails community, almost as much as David himself. In February
2007, via his blog³, he basically told us that deep nesting was a bad thing, and proposed the following rule of
thumb: Resources should never be nested more than one level deep.

That advice is based on experience and concerns about practicality. The helper methods for routes nested
more than two levels deep become long and unwieldy. It’s easy to make mistakes with them and hard to
figure out what’s wrong when they don’t work as expected.

Assume that in our application example, bids have multiple comments. We could nest comments under bids
in the routing like this:

1 resources :auctions do

2 resources :bids do

3 resources :comments

4 end

5 end

Instead, Jamis would have us do the following:

1 resources :auctions do

2 resources :bids

3 end

4

5 resources :bids do

6 resources :comments

7 end

8

9 resources :comments

Notice that each resource (except auctions) is defined twice, once in the top-level namespace, and one in its
context. The rationale? When it comes to parent-child scope, you really only need two levels to work with.
The resulting URLs are shorter and the helper methods are easier to work with.

³http://weblog.jamisbuck.org/2007/2/5/nesting-resources

http://weblog.jamisbuck.org/2007/2/5/nesting-resources
http://weblog.jamisbuck.org/2007/2/5/nesting-resources

REST, Resources, and Rails 69

auctions_path # /auctions

auctions_path(1) # /auctions/1

auction_bids_path(1) # /auctions/1/bids

bid_path(2) # /bids/2

bid_comments_path(3) # /bids/3/comments

comment_path(4) # /comments/4

I personally don’t follow Jamis’ guideline all the time in my projects, but I have noticed something about
limiting the depth of your nested resources, it helps with the maintainability of your codebase in the long
run.

Courtenay says…
Many of us disagree with the venerable Jamis. Want to get into fisticuffs at a Rails conference? Ask
people whether they believe routes should be nested more than one layer deep.

3.7.4 Shallow Routes

As of Rails 2.3, resource routes accept a :shallow option that helps to shorten URLs where possible. The goal
is to leave off parent collection URL segments where they are not needed. The end result is that the only
nested routes generated are for the :index, :create, and :new actions. The rest are kept in their own shallow
URL context.

It’s easier to illustrate than to explain, so let’s define a nested set of resources and set :shallow to true:

1 resources :auctions, shallow: true do

2 resources :bids do

3 resources :comments

4 end

5 end

alternatively coded as follows (if you’re block-happy)

1 resources :auctions do

2 shallow do

3 resources :bids do

4 resources :comments

5 end

6 end

7 end

The resulting routes are:

REST, Resources, and Rails 70

bid_comments GET /bids/:bid_id/comments(.:format)

POST /bids/:bid_id/comments(.:format)

new_bid_comment GET /bids/:bid_id/comments/new(.:format)

edit_comment GET /comments/:id/edit(.:format)

comment GET /comments/:id(.:format)

PATCH /comments/:id(.:format)

PUT /comments/:id(.:format)

DELETE /comments/:id(.:format)

auction_bids GET /auctions/:auction_id/bids(.:format)

POST /auctions/:auction_id/bids(.:format)

new_auction_bid GET /auctions/:auction_id/bids/new(.:format)

edit_bid GET /bids/:id/edit(.:format)

bid GET /bids/:id(.:format)

PATCH /bids/:id(.:format)

PUT /bids/:id(.:format)

DELETE /bids/:id(.:format)

auctions GET /auctions(.:format)

POST /auctions(.:format)

new_auction GET /auctions/new(.:format)

edit_auction GET /auctions/:id/edit(.:format)

auction GET /auctions/:id(.:format)

PATCH /auctions/:id(.:format)

PUT /auctions/:id(.:format)

DELETE /auctions/:id(.:format)

If you analyze the routes generated carefully, you’ll notice that the nested parts of the URL are only included
when they are needed to determine what data to display.

3.8 Routing Concerns

One of the fundamental principles Rails developers follow is Don’t Repeat Yourself (DRY). Even though this
is the case, the config/routes.rb file can be prone to having repetition in the form of nested routes that are
shared across multiple resources. For example, let’s assume in our recurring example, that both auctions and
bids can have comments associated with them.

1 resources :auctions do

2 resources :bids

3 resources :comments

4 resources :image_attachments, only: :index

5 end

6

7 resources :bids do

8 resources :comments

9 end

REST, Resources, and Rails 71

To eliminate some code duplication and to encapsulate shared behavior across routes, Rails 4 introduces the
routing method concern.

1 concern :commentable do

2 resources :comments

3 end

4

5 concern :image_attachable do

6 resources :image_attachments, only: :index

7 end

To add a routing concern to a RESTful route, pass the concern to the :concerns option.

1 resources :auctions, concerns: [:commentable, :image_attachable] do

2 resources :bids

3 end

4

5 resources :bids, concerns: :commentable

The :concerns option can accept one or more routing concerns.

3.9 RESTful Route Customizations

Rails’ RESTful routes give you a pretty nice package of named routes, mapped to useful, common, controller
actions—the CRUD superset you’ve already learned about. Sometimes, however, youwant to customize things
a little more, while still taking advantage of the RESTful route naming conventions and the multiplication
table approach to mixing named routes and HTTP request methods.

The techniques for doing this are useful when, for example, you’ve got more than one way of viewing a
resource that might be described as showing. You can’t (or shouldn’t) use the show action itself for more than
one such view. Instead, you need to think in terms of different perspectives on a resource, and create URLs
for each one.

3.9.1 Extra Member Routes

For example, let’s say we want to make it possible to retract a bid. The basic nested route for bids looks like
this:

1 resources :auctions do

2 resources :bids

3 end

We’d like to have a retract action that shows a form (and perhaps does some screening for retractability).
The retract isn’t the same as destroy; it’s more like a portal to destroy. It’s similar to edit, which serves as
a form portal to update. Following the parallel with edit/update, we want a URL that looks like

REST, Resources, and Rails 72

/auctions/3/bids/5/retract

and a helper method called retract_auction_bid_url. The way you achieve this is by specifying an extra
member route for the bids, as in Listing 3.1

Listing 3.1: Adding an extra member route

1 resources :auctions do

2 resources :bids do

3 member do

4 get :retract

5 end

6 end

7 end

Then you can add a retraction link to your view using

link_to "Retract", retract_bid_path(auction, bid)

and the URL generated will include the /retract modifier. That said, you should probably let that link pull
up a retraction form (and not trigger the retraction process itself!). The reason I say that is because, according
to the tenets of HTTP, GET requests should not modify the state of the server; that’s what POST requests are
for.

So how do you trigger an actual retraction? Is it enough to add a :method option to link_to?

link_to "Retract", retract_bid_path(auction,bid), method: :post

Not quite. Remember that in Listing 3.1 we defined the retract route as a get, so a POST will not be recognized
by the routing system. The solution is to define an extra member route with post, like this:

1 resources :auctions do

2 resources :bids do

3 member do

4 get :retract

5 post :retract

6 end

7 end

8 end

If you’re handling more than one HTTP verb with a single action, you should switch to using a single match
declaration and a :via option, like this:

REST, Resources, and Rails 73

1 resources :auctions do

2 resources :bids do

3 member do

4 match :retract, via: [:get, :post]

5 end

6 end

7 end

Thanks to the flexibility of the routing system, we can tighten it up further using match with an :on option,
like

1 resources :auctions do

2 resources :bids do

3 match :retract, via: [:get, :post], on: :member

4 end

5 end

which would result in a route like this (output from rake routes):

retract_auction_bid GET|POST

/auctions/:auction_id/bids/:id/retract(.:format) bids#retract

3.9.2 Extra Collection Routes

You can use the same routing technique to add routes that conceptually apply to an entire collection of
resources:

1 resources :auctions do

2 collection do

3 match :terminate, via: [:get, :post]

4 end

5 end

In its shorter form:

1 resources :auctions do

2 match :terminate, via: [:get, :post], on: :collection

3 end

This example will give you a terminate_auctions_path method, which will produce a URL mapping to the
terminate action of the auctions controller. (A slightly bizarre example, perhaps, but the idea is that it would
enable you to end all auctions at once.)

Thus you can fine-tune the routing behavior—even the RESTful routing behavior—of your application, so that
you can arrange for special and specialized cases while still thinking in terms of resources.

REST, Resources, and Rails 74

3.9.3 Custom Action Names

Occasionally, you might want to deviate from the default naming convention for Rails RESTful routes. The
:path_names option allows you to specify alternate name mappings. The example code shown changes the
new and edit actions to Spanish-language equivalents.

resources :projects, path_names: { new: 'nuevo', edit: 'cambiar' }

The URLs change (but the names of the generated helper methods do not).

GET /projects/nuevo(.:format) projects#new

GET /projects/:id/cambiar(.:format) projects#edit

3.9.4 Mapping to a Different Controller

You may use the :controller option to map a resource to a different controller than the one it would do so
by default. This feature is occasionally useful for aliasing resources to a more natural controller name.

resources :photos, controller: "images"

3.9.5 Routes for New Resources

The routing system has a neat syntax for specifying routes that only apply to new resources, ones that haven’t
been saved yet. You declare extra routes inside of a nested new block, like this:

1 resources :reports do

2 new do

3 post :preview

4 end

5 end

The declaration above would result in the following route being defined.

preview_new_report POST /reports/new/preview(.:format) reports#preview

Refer to your new route within a view form by altering the default :url.

1 = form_for(report, url: preview_new_report_path) do |f|

2 ...

3 = f.submit "Preview"

REST, Resources, and Rails 75

3.9.6 Considerations for Extra Routes

Referring to extra member and collection actions, David has been quoted as saying, “If you’re writing so
many additional methods that the repetition is beginning to bug you, you should revisit your intentions.
You’re probably not being as RESTful as you could be.”

The last sentence is key. Adding extra actions corrupts the elegance of your overall RESTful application design,
because it leads you away from finding all of the resources lurking in your domain.

Keeping in mind that real applications are more complicated than code examples in a reference book, let’s
see what would happen if we had to model retractions strictly using resources. Rather than tacking a retract
action onto the BidsController, we might feel compelled to introduce a retraction resource, associated with
bids, and write a RetractionController to handle it.

1 resources :bids do

2 resource :retraction

3 end

RetractionController could now be in charge of everything having to do with retraction activities, rather
than having that functionality mixed into BidsController. And if you think about it, something as weighty
as bid retraction would eventually accumulate quite a bit of logic. Some would call breaking it out into its
own controller proper separation of concerns or even just good object-orientation.

3.10 Controller-Only Resources

The word resource has a substantive, noun-like flavor that puts one in mind of database tables and records.
However, a REST resource does not have to map directly to an Active Record model. Resources are high-level
abstractions of what’s available through your web application. Database operations just happen to be one of
the ways that you store and retrieve the data you need to generate representations of resources.

A REST resource doesn’t necessarily have to map directly to a controller, either, at least not in theory. You
could, if you wanted to, provide REST services whose public identifiers (URIs) did not match the names of
your controllers at all.

What all of this adds up to is that you might have occasion to create a set of resource routes, and a matching
controller, that don’t correspond to any model in your application at all. There’s nothing wrong with a
full resource/controller/model stack where everything matches by name. But you may find cases where the
resources you’re representing can be encapsulated in a controller but not a model.

An example in the auction application is the sessions controller. Assume a routes.rb file containing this line:

resource :session

It maps the URL /session to a SessionController as a singleton resource, yet there’s no Session model. (By
the way, it’s properly defined as a singleton resource because from the user’s perspective there is only one
session.)

REST, Resources, and Rails 76

Why go the RESTful style for authentication? If you think about it, user sessions can be created and destroyed.
The creation of a session takes place when a user logs in; when the user logs out, the session is destroyed. The
RESTful Rails practice of pairing a new action and view with a create action can be followed! The user login
form can be the session-creating form, housed in the template file such as session/new.html.haml

1 %h1 Log in

2 = form_for :user, url: session_path do |f|

3 %p

4 = f.label :login

5 = f.text_field :login

6 %p

7 = f.label :password

8 = f.password_field :password

9 %p

10 = f.submit "Log in"

When the form is submitted, the input is handled by the create method of the sessions controller:

1 def create

2 if user.try(:authorize, params[:user][:password])

3 flash[:notice] = "Welcome, #{user.first_name}!"

4 redirect_to home_url

5 else

6 flash[:error] = "Login invalid."

7 redirect_to action: "new"

8 end

9 end

10

11 protected

12 def user

13 @user ||= User.find_by(login: params[:user][:login])

14 end

Nothing is written to any database table in this action, but it’s worthy of the name create by virtue of the
fact that it creates a session. Furthermore, if you did at some point decide that sessions should be stored in
the database, you’d already have a nicely abstracted handling layer.

It pays to remain open-minded, then, about the possibility that CRUD as an action-naming philosophy and
CRUD as actual database operations may sometimes occur independently of each other; and the possibility
that the resource-handling facilities in Rails might usefully be associated with a controller that has no
corresponding model. Creating a session on the server isn’t a REST-compliant practice, since REST mandates
stateless transfers of representations of resources. But it’s a good illustration of why, and how, you might
make design decisions involving routes and resources that don’t implicate the whole application stack.

REST, Resources, and Rails 77

Xavier says…
Whether sessions are REST-compliant or not depends on the session storage. What REST disallows
is not the idea of application state in general, but rather the idea of client state stored in the server.
REST demands that your requests are complete. For example, putting an auction_id in a hidden
field of a form or in its action path is fine. There is state in that request the edit action wants to pass
to the update action, and you dumped it into the page, so the next request to update a bid carries
all what’s needed. That’s RESTful.

Now, using hidden fields and such is not the only way to do this. For example, there is no problem
using a user_id cookie for authentication. Why? Because a cookie is part of a request. Therefore, I
am pretty sure that cookie-based sessions are considered to be RESTful by the same principle. That
kind of storage makes your requests self-contained and complete.

Sticking to CRUD-like action names is, in general, a good idea. As long as you’re doing lots of creating and
destroying anyway, it’s easier to think of a user logging in as the creation of a session, than to come up with
a whole new semantic category for it. Rather than the new concept of user logs in, just think of it as a new
occurrence of the old concept, session gets created.

3.11 Different Representations of Resources

One of the precepts of REST is that the components in a REST-based system exchange representations of
resources. The distinction between resources and their representations is vital.

As a client or consumer of REST services, you don’t actually retrieve a resource from a server; you retrieve
representations of that resource. You also provide representations: A form submission, for example, sends the
server a representation of a resource, together with a request—for example, PATCH—that this representation
be used as the basis for updating the resource. Representations are the exchange currency of resource
management.

3.11.1 The respond_to Method

The ability to return different representations in RESTful Rails practice is based on the respond_to method
in the controller, which, as you’ve seen in the previous chapter, allows you to return different responses
depending on what the client wants. Moreover, when you create resource routes you automatically get URL
recognition for URLs ending with a dot and a :format parameter.

For example, assume that you have resources :auctions in your routes file and some respond_to logic in
the AuctionsController like

REST, Resources, and Rails 78

1 def index

2 @auctions = Auction.all

3 respond_to do |format|

4 format.html

5 format.xml { render xml: @auctions }

6 end

7 end

which will let you to connect to this URL: /auctions.xml

The resource routing will ensure that the index action gets executed. It will also recognize the .xml at the end
of the route and interact with respond_to accordingly, returning the XML representation.

There is also a more concise way of handling this now using the respond_with method.

1 class AuctionsController < ApplicationController

2 respond_to :html, :xml, :json

3 def index

4 @auctions = Auction.all

5 respond_with(@auctions)

6 end

7 end

Here we’ve told our controller to respond to html, xml, and json so that each action will automatically return
the appropriate content. When the request comes in, the responder would attempt to do the following given
a .json extension on the URL:

• Attempt to render the associated view with a .json extension.
• If no view exists, call to_json on the object passed to responds_with.
• If the object does not respond to to_json, call to_format on it.

For nested and namespaced resources, simply pass all the objects to the respond_to method similar to the
way you would generate a route.

respond_with(@user, :managed, @client)

Of course, all of this is URL recognition. What if you want to generate a URL ending in .xml?

3.11.2 Formatted Named Routes

Let’s say you want a link to the XML representation of a resource. You can achieve it by passing an extra
argument to the RESTful named route:

REST, Resources, and Rails 79

link_to "XML version of this auction", auction_path(@auction, :xml)

This will generate the following HTML:

XML version of this auction

When followed, this link will trigger the XML clause of the respond_to block in the show action of the auctions
controller. The resulting XML may not look like much in a browser, but the named route is there if you want
it.

The circuit is now complete: You can generate URLs that point to a specific response type, and you can
honor requests for different types by using respond_to. All told, the routing system and the resource-routing
facilities built on top of it give you quite a set of powerful, concise tools for differentiating among requests
and, therefore, being able to serve up different representations.

3.12 The RESTful Rails Action Set

Rails REST facilities, ultimately, are about named routes and the controller actions to which they point. The
more you use RESTful Rails, the more you get to know each of the seven RESTful actions. How they work
across different controllers (and different applications) is of course somewhat different. Still, perhaps because
there’s a finite number of them and their roles are fairly well-delineated, each of the seven tends to have fairly
consistent properties and a characteristic feel to it.

We’re going to take a look at each of the seven actions, with examples and comments. You’ll encounter all
of them again, particularly in Chapter 4, “Working with Controllers”, but here you’ll get some backstory and
start to get a sense of the characteristic usage of them and issues and choices associated with them.

3.12.1 Index

Typically, an index action provides a representation of a plural (or collection) resource. However, to be clear,
not all resource collections are mapped to the index action. Your default index representations will usually
be generic, although admittedly that has a lot to do with your application-specific needs. But in general, the
index action shows the world the most neutral representation possible. A very basic index action looks like

1 class AuctionsController < ApplicationController

2 def index

3 @auctions = Auction.all

4 end

5 end

The associated view template will display information about each auction, with links to specific information
about each one, and to profiles of the sellers.

You’ll certainly encounter situations where you want to display a representation of a collection in a restricted
way. In our recurring example, users should be able to see a listing of all their bids, but maybe you don’t want
users seeing other people’s bids.

REST, Resources, and Rails 80

There are a couple of ways to do this. One way is to test for the presence of a logged-in user and decide what
to show based on that. But that’s not going to work here. For one thing, the logged-in user might want to see
the more public view. For another, the more dependence on server-side state we can eliminate or consolidate,
the better.

So let’s try looking at the two bid lists, not as public and private versions of the same resource, but as different
index resources. The difference can be reflected in the routing like:

1 resources :auctions do

2 resources :bids do

3 get :manage, on: :collection

4 end

5 end

6 resources :bids

We can now organize the bids controller in such a way that access is nicely layered, using action callbacks
only where necessary and eliminating conditional branching in the actions themselves:

1 class BidsController < ApplicationController

2 before_action :check_authorization, only: :manage

3

4 def index

5 @bids = Bid.all

6 end

7

8 def manage

9 @bids = auction.bids

10 end

11

12 protected

13

14 def auction

15 @auction ||= Auction.find(params[:auction_id])

16 end

17

18 def check_authorization

19 auction.authorized?(current_user)

20 end

21 end

There’s now a clear distinction between /bids and /auctions/1/bids/manage and the role that they play in
your application.

On the named route side, we’ve now got bids_url and manage_auction_bids_url. We’ve thus preserved
the public, stateless face of the /bids resource, and quarantined as much stateful behavior as possible into

REST, Resources, and Rails 81

a discrete member resource, /auctions/1/bids/manage. Don’t fret if this mentality doesn’t come to you
naturally. It’s part of the REST learning curve.

Lar says…
If they are truly different resources, why not give them each their own controllers? Surely there
will be other actions that need to be authorized and scoped to the current user.

3.12.2 Show

The RESTful show action is the singular flavor of a resource. That generally translates to a representation of
information about one object, one member of a collection. Like index, show is triggered by a GET request.

A typical—one might say classic—show action looks like

1 class AuctionController < ApplicationController

2 def show

3 @auction = Auction.find(params[:id])

4 end

5 end

You might want to differentiate between publicly available profiles, perhaps based on a different route, and
the profile of the current user, which might include modification rights and perhaps different information.

As with index actions, it’s good to make your show actions as public as possible and offload the administrative
and privileged views onto either a different controller or a different action.

3.12.3 Destroy

Destroy actions are good candidates for administrative safeguarding, though of course it depends on what
you’re destroying. You might want something like this to protect the destroy action.

1 class ProductsController < ApplicationController

2 before_action :admin_required, only: :destroy

A typical destroy action might look like

1 def destroy

2 product.destroy

3 redirect_to products_url, notice: "Product deleted!"

4 end

This approach might be reflected in a simple administrative interface like

REST, Resources, and Rails 82

1 %h1 Products

2 - products.each do |product|

3 %p= link_to product.name, product

4 - if current_user.admin?

5 %p= link_to "delete", product, method: :delete

That delete link appears depending on whether current user is an admin.

The Rails UJS (Unobtrusive JavaScript) API greatly simplifies the HTML emitted for a destroy action, using
CSS selectors to bind JavaScript to (in this case) the “delete” link. See Chapter 19, “Ajax on Rails” for much
more information about how it works.

DELETE submissions are dangerous. Rails wants to make them as hard as possible to trigger accidentally—for
instance, by a crawler or bot sending requests to your site. So when you specify the DELETEmethod, JavaScript
that submits a form is bound to your “delete” link, along with a rel="nofollow" attribute on the link. Since
bots don’t submit forms (and shouldn’t follow links marked “nofollow”), this gives a layer of protection to
your code.

3.12.4 New and Create

As you’ve already seen, the new and create actions go together in RESTful Rails. A “new resource” is really
just an entity waiting to be created. Accordingly, the new action customarily presents a form, and create

creates a new record, based on the form input.

Let’s say you want a user to be able to create (that is, start) an auction. You’re going to need

1. A new action, which will display a form
2. A create action, which will create a new Auction object based on the form input, and proceed to a

view (show action) of that auction.

The new action doesn’t have to do much. In fact, it has to do nothing. Like any empty action, it can even be
left out. Rails will still figure out which view to render. However, your controller will need an auction helper
method, like

1 protected

2

3 def auction

4 @auction ||= current_user.auctions.build(params[:auction])

5 end

6 helper_method :auction

If this technique is alien to you, don’t worry. We’ll describe it in detail in Section “Decent Exposure”.

A simplistic new.html.haml template might look like Listing 3.2.

REST, Resources, and Rails 83

Listing 3.2: A New Auction Form

1 %h1 Create a new auction

2 = form_for auction do |f|

3 = f.label :subject

4 = f.text_field :subject

5 %br

6 = f.label :description

7 = f.text_field :description

8 %br

9 = f.label :reserve

10 = f.text_field :reserve

11 %br

12 = f.label :starting_bid

13 = f.text_field :starting_bid

14 %br

15 = f.label :end_time

16 = f.datetime_select :end_time

17 %br

18 = f.submit "Create"

Once the information is filled out by a user, it’s time for the main event: the create action. Unlike new, this
action has something to do.

1 def create

2 if auction.save

3 redirect_to auction_url(auction), notice: "Auction created!"

4 else

5 render :new

6 end

7 end

3.12.5 Edit and Update

Like new and create, the edit and update actions go together: edit provides a form, and update processes
the form input.

The form for editing a record appears similar to the form for creating one. (In fact, you can put much of it in
a partial template and use it for both; that’s left as an exercise for the reader.)

The form_formethod is smart enough to check whether the object you pass to it has been persisted or not. If
it has, then it recognizes that you are doing an edit and specifies a PATCH method on the form.

3.13 Conclusion

In this chapter, we tackled the tough subject of using REST principles to guide the design of our Rails
applications, mainly as they apply to the routing system and controller actions.We learned how the foundation

REST, Resources, and Rails 84

of RESTful Rails is the resources method in your routes file and how to use the numerous options available
to make sure that you can structure your application exactly how it needs to be structured.

By necessity, we’ve already introduced many controller-related topics and code examples in our tour of the
routing and REST features. In the next chapter, we’ll cover controller concepts and the Action Controller API
in depth.

4 Working with Controllers
Remove all business logic from your controllers and put it in the model. (My) instructions are
precise, but following them requires intuition and subtle reasoning.

—Nick Kallen

Like any computer program, your Rails application involves the flow of control from one part of your code
to another. The flow of program control gets pretty complex with Rails applications. There are many bits and
pieces in the framework, many of which execute each other. And part of the framework’s job is to figure
out, on the fly, what your application files are called and what’s in them, which of course varies from one
application to another.

The heart of it all, though, is pretty easy to identify: It’s the controller. When someone connects to your
application, what they’re basically doing is asking the application to execute a controller action. Sure, there
are many different flavors of how this can happen and edge cases where it doesn’t exactly happen at all. But
if you know how controllers fit into the application life cycle, you can anchor everything else around that
knowledge. That’s why we’re covering controllers before the rest of the Rails APIs.

Controllers are the C in MVC. They’re the first port of call, after the dispatcher, for the incoming request.
They’re in charge of the flow of the program: They gather information and make it available to the views.

Controllers are also very closely linked to views, more closely than they’re linked to models. It’s possible
to write the entire model layer of an application before you create a single controller, or to have different
people working on the controller and model layers who never meet or talk to each other. However, views
and controllers are more tightly coupled to one another. They share a lot of information and the names you
choose for your variables in the controller will have an effect on what you do in the view.

In this chapter, we’re going to look at what happens on the way to a controller action being executed, and
what happens as a result. In the middle, we’ll take a long look at how controller classes themselves are set up,
particularly in regard to the many different ways that we can render views. We’ll wrap up the chapter with
a couple of additional topics related to controllers: action callbacks and streaming.

4.1 Rack

Rack is a modular interface for handling web requests, written in Ruby, with support for many different web
servers. It abstracts away the handling of HTTP requests and responses into a single, simple callmethod that
can be used by anything from a plain Ruby script all the way to Rails itself.

Working with Controllers 86

Listing 2.1: HelloWorld as a Rack application

1 class HelloWorld

2 def call(env)

3 [200, {"Content-Type" => "text/plain"}, ["Hello world!"]]

4 end

5 end

An HTTP request invokes the call method and passes in a hash of environment variables, akin to the way
that CGI works. The call method should return a 3-element array consisting of the status, a hash of response
headers, and finally, the body of the request.

As of Rails 2.3, request handling was moved to Rack and the concept of middleware was introduced. Classes
that satisfy Rack’s call interface can be chained together as filters. Rack itself includes a number of useful
filter classes that do things such as logging and exception handling.

Rails 3 took this one step further and was re-architected from the ground up to fully leverage Rack filters
in a modular and extensible manner. A full explanation of Rails’ Rack underpinnings are outside the scope
of this book, especially since Rack does not really play a part in day-to-day development of applications.
However, it is essential Rails 4 knowledge to understand that much of Action Controller is implemented as
Rack middleware modules. Want to see which Rack filters are enabled for your Rails 4 application? There’s a
rake task for that!

$ rake middleware

use Rack::Runtime

use Rack::MethodOverride

use ActionDispatch::RequestId

use Rails::Rack::Logger

use ActionDispatch::ShowExceptions

use ActionDispatch::DebugExceptions

use ActionDispatch::RemoteIp

use ActionDispatch::Reloader

use ActionDispatch::Callbacks

use ActiveRecord::Migration::CheckPending

use ActiveRecord::ConnectionAdapters::ConnectionManagement

use ActiveRecord::QueryCache

use ActionDispatch::Cookies

use ActionDispatch::Session::CookieStore

use ActionDispatch::Flash

use ActionDispatch::ParamsParser

use Rack::Head

use Rack::ConditionalGet

use Rack::ETag

run Example::Application.routes

What’s checking for pending Active Record migrations have to do with serving requests anyway?

Working with Controllers 87

1 module ActiveRecord

2 class Migration

3 class CheckPending

4 ...

5

6 def call(env)

7 ActiveRecord::Base.logger.silence do

8 ActiveRecord::Migration.check_pending!

9 end

10 @app.call(env)

11 end

12 end

13 end

14 end

Ahh, it’s not that pending Active Record migrations has anything specifically to do with serving requests. It’s
that Rails 4 is designed in such a way that different aspects of its behavior are introduced into the request call
chain as individual Rack middleware components or filters.

4.1.1 Configuring Your Middleware Stack

Your application object allows you to access and manipulate the Rack middleware stack during initialization,
via config.middleware like

1 # config/application.rb

2

3 module Example

4 class Application < Rails::Application

5 ...

6 # Rack::ShowStatus catches all empty responses the app it wraps and

7 # replaces them with a site explaining the error.

8 config.middleware.use Rack::ShowStatus

9 end

10 end

..

Rack Lobster
As I found out trying to experiment with the hilariously-named Rack::Lobster, your custom Rack
middleware classes need to have an explicit initializer method, even if they don’t require runtime
arguments.

The methods of config.middleware give you very fine-grained control over the order in which your
middleware stack is configured. The args parameter is an optional hash of attributes to pass to the
initializer method of your Rack filter.

Working with Controllers 88

4.1.1.1 config.middleware.insert_after(existing_middleware, new_middleware, args)

Adds the new middleware after the specified existing middleware in the middleware stack.

4.1.1.2 config.middleware.insert_before(existing_middleware, new_middleware, args)

Adds the new middleware before the specified existing middleware in the middleware stack.

4.1.1.3 config.middleware.delete(middleware)

Removes a specified middleware from the stack.

4.1.1.4 config.middleware.swap(existing_middleware, new_middleware, args)

Swaps a specified middleware from the stack with a new class.

4.1.1.5 config.middleware.use(new_middleware, args)

Takes a class reference as its parameter and just adds the desired middleware to the end of the middleware
stack.

4.2 Action Dispatch: Where It All Begins

Controller and view code in Rails has always been part of its Action Pack framework. As of Rails 3, dispatching
of requests was extracted into its own sub-component of Action Pack called Action Dispatch. It contains
classes that interface the rest of the controller system to Rack.

4.2.1 Request Handling

The entry point to a request is an instance of ActionDispatch::Routing::RouteSet, the object on which you
can call draw at the top of config/routes.rb.

The route set chooses the rule that matches, and calls its Rack endpoint. So a route like

get 'foo', to: 'foo#index'

has a dispatcher instance associated to it, whose call method ends up executing

FooController.action(:index).call

As covered in Section “Routes as Rack Endpoints”, the route set can call any other type of Rack endpoint, like
a Sinatra app, a redirect macro or a bare lambda. In those cases no dispatcher is involved.

All of this happens quickly, behind the scenes. It’s unlikely that you would ever need to dig into the source
code of ActionDispatch; it’s the sort of thing that you can take for granted to just work. However, to really
understand the Rails way, it is important to know what’s going on with the dispatcher. In particular, it’s
important to remember that the various parts of your application are just bits (sometimes long bits) of Ruby
code, and that they’re getting loaded into a running Ruby interpreter.

Working with Controllers 89

4.2.2 Getting Intimate with the Dispatcher

Just for the purpose of learning, let’s trigger the Rails dispatching mechanism manually. We’ll do this little
exercise from the ground up, starting with a new Rails application:

$ rails new dispatch_me

Now, create a single controller demo, with an index action (Note that haml is setup as our template language):

$ cd dispatch_me/

$ rails generate controller demo index

create app/controllers/demo_controller.rb

route get "demo/index"

invoke haml

create app/views/demo

create app/views/demo/index.html.haml

invoke test_unit

create test/controllers/demo_controller_test.rb

invoke helper

create app/helpers/demo_helper.rb

invoke test_unit

create test/helpers/demo_helper_test.rb

invoke assets

invoke coffee

create app/assets/javascripts/demo.js.coffee

invoke scss

create app/assets/stylesheets/demo.css.scss

If you take a look at app/controllers/demo_controller.rb, you’ll see that it has an index action:

class DemoController < ApplicationController

def index

end

end

There’s also a view template file, app/views/demo/index.html.haml with some placeholder language. Just
to see things more clearly, let’s replace it with something we will definitely recognize when we see it again.
Replace the contents of index.html.haml with

Hello!

Not much of a design accomplishment, but it will do the trick.

Now that we’ve got a set of dominos lined up, it’s just a matter of pushing over the first one: the dispatcher.
To do that, start by firing up the Rails console from your Rails application directory.

Working with Controllers 90

$ rails console

Loading development environment

>>

There are some variables from the web server that Rack expects to use for request processing. Since we’re
going to be invoking the dispatcher manually, we have to set those variables like this in the console (output
ommited for brevity)

>> env = {}

>> env['REQUEST_METHOD'] = 'GET'

>> env['PATH_INFO'] = '/demo/index'

>> env['rack.input'] = StringIO.new

Now that we’ve replicated an HTTP environment, we’re now ready to fool the dispatcher into thinking it’s
getting a request. Actually, it is getting a request. It’s just that it’s coming from someone sitting at the console,
rather than from a proper web server:

>> rack_body_proxy = DispatchMe::Application.call(env).last

>> rack_body_proxy.last

=> "<!DOCTYPE html>\n<html>\n<head>\n <title>DispatchMe</title>\n

<link data-turbolinks-track=\"true\" href=\"/assets/application.css?body=1\"

media=\"all\" rel=\"stylesheet\" />\n<link data-turbolinks-track=\"true\"

href=\"/assets/demo.css?body=1\" media=\"all\" rel=\"stylesheet\" />\n

<script data-turbolinks-track=\"true\"

src=\"/assets/jquery.js?body=1\"></script>\n

<script data-turbolinks-track=\"true\"

src=\"/assets/jquery_ujs.js?body=1\"></script>\n

<script data-turbolinks-track=\"true\"

src=\"/assets/turbolinks.js?body=1\"></script>\n

<script data-turbolinks-track=\"true\"

src=\"/assets/demo.js?body=1\"></script>\n

<script data-turbolinks-track=\"true\"

src=\"/assets/application.js?body=1\"></script>\n

<meta content=\"authenticity_token\" name=\"csrf-param\" />\n

<meta content=\"cmfwNmZzzqRv94sv75OnO5Mon1C0XeWzuG90PUOeqPc=\"

name=\"csrf-token\" />\n</head>\n<body>\n\nHello\n\n\n</body>\n</html>\n"

If you want to see everything contained in the ActionDispatch::Response object returned from call then
try the following code:

>> y DispatchMe::Application.call(env)

The handy y method formats its argument as a yaml string, making it a lot easier to understand. We won’t
reproduce the output here because it’s huge.

Working with Controllers 91

So, we’ve executed the call method of of our Rails application and as a result, the index action got executed
and the index template (such as it is) got rendered and the results of the rendering got wrapped in some HTTP
headers and returned.

Just think: If you were a web server, rather than a human, and you had just done the same thing, you could
now return that document, headers and “Hello!” and all, to a client.

You can follow the trail of bread crumbs even further by diving into the Rails source code, but for purposes of
understanding the chain of events in a Rails request, and the role of the controller, the peek under the hood
we’ve just done is sufficient.

Tim says…
Note that if you give Rack a path that resolves to a static file, it will be served directly from the
web server without involving the Rails stack. As a result, the object returned by the dispatcher for
a static file is different than what you might expect.

4.3 Render unto View…

The goal of the typical controller action is to render a view template—that is, to fill out the template and hand
the results, usually an HTML document, back to the server for delivery to the client. Oddly—at least it might
strike you as a bit odd, though not illogical—you don’t actually need to define a controller action, as long as
you’ve got a template that matches the action name.

You can try this out in under-the-hood mode. Go into app/controller/demo_controller.rb, and delete the
index action so that the file will look empty, like this:

class DemoController < ApplicationController

end

Don’t delete app/views/demo/index.html.haml, and then try the console exercise (DispatchMe::Application.call(env)
and all that) again. You’ll see the same result.

By the way, make sure you reload the console when you make changes—it doesn’t react to changes in source
code automatically. The easiest way to reload the console is simply to type reload!. But be aware that any
existing instances of Active Record objects that you’re holding on to will also need to be reloaded (using their
individual reload methods). Sometimes it’s simpler to just exit the console and start it up again.

4.3.1 When in Doubt, Render

Rails knows that when it gets a request for the index action of the demo controller, what really matters is
handing something back to the server. So if there’s no index action in the controller file, Rails shrugs and
says, “Well, let’s just assume that if there were an index action, it would be empty anyway, and I’d just
render index.html.haml. So that’s what I’ll do.”

You can learn something from an empty controller action, though. Let’s go back to this version of the demo
controller:

Working with Controllers 92

class DemoController < ApplicationController

def index

end

end

What you learn from seeing the empty action is that, at the end of every controller action, if nothing else is
specified, the default behavior is to render the template whose name matches the name of the controller and
action, which in this case means app/views/demo/index.html.haml.

In other words, every controller action has an implicit render command in it. And render is a real method.
You could write the preceding example like this:

def index

render "demo/index"

end

You don’t have to, though, because it’s assumed that it’s what you want, and that is part of what Rails people
are talking about when they discuss convention over configuration. Don’t force the developer to add code to
accomplish something that can be assumed to be a certain way.

The render command, however, does more than just provide a way of telling Rails to do what it was going
to do anyway.

4.3.2 Explicit Rendering

Rendering a template is like putting on a shirt: If you don’t like the first one you find in your closet—the
default, so to speak—you can reach for another one and put it on instead.

If a controller action doesn’t want to render its default template, it can render a different one by calling the
render method explicitly. Any template file in the app/views directory tree is available. (Actually, that’s not
exactly true. Any template on the whole system is available!) But why would you want your controller action
to render a template other than its default? There are several reasons, and by looking at some of them, we can
cover all of the handy features of the controller’s render method.

4.3.3 Rendering Another Action’s Template

A common reason for rendering an entirely different template is to redisplay a form, when it gets submitted
with invalid data and needs correction. In such circumstances, the usual web strategy is to redisplay the form
with the submitted data, and trigger the simultaneous display of some error information, so that the user can
correct the form and resubmit.

The reason that process involves rendering another template is that the action that processes the form and
the action that displays the form may be—and often are—different from each other. Therefore, the action
that processes the form needs a way to redisplay the original (form) template, instead of treating the form
submission as successful and moving on to whatever the next screen might be.

Wow, that was a mouthful of an explanation. Here’s a practical example:

Working with Controllers 93

1 class EventController < ActionController::Base

2 def new

3 # This (empty) action renders the new.html.haml template, which

4 # contains the form for inputting information about the new

5 # event record and is not actually needed.

6 end

7

8 def create

9 # This method processes the form input. The input is available via

10 # the params hash, in the nested hash keyed to :event

11 @event = Event.new(params[:event])

12 if @event.save

13 # ignore the next line for now

14 redirect_to dashboard_path, notice: "Event created!"

15 else

16 render action: 'new' # doesn't execute the new method!

17 end

18 end

19 end

On failure, that is, if @event.save does not return true, we render the “new” template. Assuming new.html.haml
has been written correctly, this will automatically include the display of error information embedded in the
new (but unsaved) Event object.

Note that the template itself doesn’t “know” that it has been rendered by the create action rather than the
new action. It just does its job: It fills out and expands and interpolates, based on the instructions it contains
and the data (in this case, @event) that the controller has passed to it.

4.3.4 Rendering a Different Template Altogether

In a similar fashion, if you are rendering a template for a different action, it is possible to render any template
in your application by calling render with a string pointing to the desired template file. The render method
is very robust in its ability to interpret which template you’re trying to refer to.

render template: '/products/index.html.haml'

A couple of notes: It’s not necessary to pass a hash with :template, because it’s the default option. Also, in
our testing, all of the following permutations worked identically when called from ProductsController:

Working with Controllers 94

render '/products/index.html.haml'

render 'products/index.html.haml'

render 'products/index.html'

render 'products/index'

render 'index'

render :index

The :template option only works with a path relative to the template root (app/views, unless you changed
it, which would be extremely unusual).

Tim says…
Use only enough to disambiguate. The content type defaults to that of the request and if you have
two templates that differ only by template language, you’re Doing It Wrong.

4.3.5 Rendering a Partial Template

Another option is to render a partial template (usually referred to simply as a partial). Usage of partial
templates allows you to organize your template code into small files. Partials can also help you to avoid
clutter and encourage you to break your template code up into reusable modules.

There are a few ways to trigger partial rendering. The first, and most obvious, is using the :partial option
to explicitly specify a partial template. Rails has a convention of prefixing partial template file names with an
underscore character, but you never include the underscore when referring to partials.

render partial: 'product' # renders app/views/products/_product.html.haml

Leaving the underscore off of the partial name applies, even if you’re referring to a partial in a different
directory than the controller that you’re currently in!

render partial: 'shared/product'

renders app/views/shared/_product.html.haml

The second way to trigger partial rendering depends on convention. If you pass render :partial an object,
Rails will use its class name to find a partial to render. You can even omit the :partial option, like in the
following example code.

render partial: @product

render @product

render 'product'

All three lines render the app/views/products/_product.html.haml template.

Partial rendering from a controller is mostly used in conjunction with Ajax calls that need to dynamically
update segments of an already displayed page. The technique, along with generic use of partials in views, is
covered in greater detail in Chapter 10, “Action View”.

Working with Controllers 95

4.3.6 Rendering Inline Template Code

Occasionally, you need to send the browser the result of translating a snippet of template code, too small
to merit its own partial. I admit that this practice is contentious, because it is a flagrant violation of proper
separation of concerns between the MVC layers.

Rails treats the inline code exactly as if it were a view template. The default type of view template processing
is ERb, but passing an additional :type option allows you to choose Haml.

render inline: "%span.foo #{@foo.name}", type: "haml"

Courtenay says…
If you were one of my employees, I’d reprimand you for using view code in the controller, even if
it is only one line. Keep your view-related code in the views!

4.3.7 Rendering Text

What if you simply need to send plain text back to the browser, particularly when responding to Ajax and
certain types of web service requests?

render text: 'Submission accepted'

Unfortunately, if you don’t pass an additional :content_type option, Rails will default the response MIME
type to text/html, rather than text/plain. The solution is to be explicit about what you want.

render text: 'Submission accepted', content_type: 'text/plain'

4.3.8 Rendering Other Types of Structured Data

The render command also accepts a series of (convenience) options for returning structured data such as
JSON or XML. The content-type of the response will be set appropriately and additional options apply.¹

4.3.8.1 :json

JSON² is a small subset of JavaScript selected for its usability as a lightweight data-interchange format. It is
mostly used as a way of sending data down to JavaScript code running in a rich web application via Ajax
calls. Active Record has built-in support for conversion to JSON, which makes Rails an ideal platform for
serving up JSON data, as in the following example:

¹Yehuda has written an excellent description of how to register additional rendering options at https://blog.engineyard.com/2010/render-options-
in-rails-3/

²For more information on JSON go to http://www.json.org/.

https://blog.engineyard.com/2010/render-options-in-rails-3/
https://blog.engineyard.com/2010/render-options-in-rails-3/
http://www.json.org/

Working with Controllers 96

render json: @record

As long as the parameter responds to to_json, Rails will call it for you, which means you don’t have to call
it yourself with ActiveRecord objects.

Any additional options passed to render :json are also included in the invocation of to_json.

render json: @projects, include: :tasks

Additionally, if you’re doing JSONP, you can supply the name of a callback function to be invoked in the
browser when it gets your response. Just add a :callback option with the name of a valid JavaScript method.

render json: @record, callback: 'updateRecordsDisplay'

4.3.8.2 :xml

Active Record also has built-in support for conversion to XML, as in the following example:

render xml: @record

As long as the parameter responds to to_xml, Rails will call it for you, which means you don’t have to call it
yourself with ActiveRecord objects.

Any additional options passed to render :xml are also included in the invocation of to_xml.

render xml: @projects, include: :tasks

4.3.9 Rendering Nothing

On rare occasions, you don’t want to render anything at all. (To avoid a bug in Safari, rendering nothing
actually means sending a single space character back to the browser.)

head :unauthorized

The head method allows you to return a response with no content, and a specific status code. You could
achieve the same result as the above code snippet, by calling render nothing: true and explicitly providing
a status.

render nothing: true, status: 401

The head method also accepts an options hash, that is interpreted as header names and values to be included
with the response. To illustrate, consider the following example which returns an empty response with a status
of 201, and also sets the Location header:

Working with Controllers 97

head :created, location: auction_path(@auction)

4.3.10 Rendering Options

Most calls to the render method accept additional options. Here they are in alphabetical order.

:content_type

All content flying around the web is associated with a MIME type.³ For instance, HTML content is labeled
with a content-type of text/html. However, there are occasions where you want to send the client something
other than HTML. Rails doesn’t validate the format of the MIME identifier you pass to the :content_type
option, so make sure it is valid.

:layout

By default, Rails has conventions regarding the layout template it chooses to wrap your response in, and
those conventions are covered in detail in Chapter 10, “Action View”. The :layout option allows you to
specify whether you want a layout template to be rendered if you pass it a boolean value, or the name of a
layout template, if you want to deviate from the default.

render layout: false # disable layout template

render layout: 'login' # a template app/views/layouts is assumed

:status

The HTTP protocol includes many standard status codes⁴ indicating a variety of conditions in response to a
client’s request. Rails will automatically use the appropriate status for most common cases, such as 200 OK

for a successful request.

The theory and techniques involved in properly using the full range of HTTP status codes would require a
dedicated chapter, perhaps an entire book. For your convenience, Table 4.1 demonstrates some codes that I’ve
occasionally found useful in my day-to-day Rails programming.

Status Code Description

200 OK Everything is fine and here is your content.

201 Created A new resource has been created and its location
can be found in the Location HTTP response
header.

307 Temporary Redirect The requested resource resides temporarily under
a different URI.

Occasionally, you need to temporarily redirect
the user to a different action, perhaps while
some long-running process is happening or while
the account of a particular resource’s owner is
suspended.

³MIME is specified in five RFC documents, so it is much more convenient to point you to a rather good description of MIME provided by
Wikipedia at http://en.wikipedia.org/wiki/MIME.

⁴For a full list of HTTP status codes, consult the spec at http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

http://en.wikipedia.org/wiki/MIME
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Working with Controllers 98

Status Code Description

This particular status code dictates that an
HTTP response header named Location contain
the URI of the resource that the client
redirects to. Since the render method doesn’t
take a hash of response header fields, you have
to set them manually prior to invoking render.
Luckily, the response hash is in scope within
controller methods, as in the following example:

def paid_resource

if current_user.account_expired?

response.headers['Location'] =

account_url(current_user)

render text: "Account expired",

status: 307

end

end

401 Unauthorized Sometimes a user will not provide credentials to
view a restricted resource or authentication
and/or authorization will fail. Assuming using a
Basic or Digest HTTP Authentication scheme, when
that happens you should probably return a 401.

403 Forbidden I like to use 403 in conjunction with a short
The server understood the render :text message in situations where the
request, but is refusing client has requested a resource that is not
to fulfill it. normally available via the web application’s

interface.

In other words, the request appears to have
happened via artificial means. A human or robot,
for reasons innocent or guilty (it doesn’t
matter) is trying to trick the server into doing
something it isn’t supposed to do.

For example, my current Rails application is
public-facing and is visited by the GoogleBot on
a daily basis. Probably due to a bug existing at
some point, the URL /favorites was indexed.
Unfortunately, /favorites is only supposed to
be available to logged-in users. However, once
Google knows about a URL it will keep coming
back for it in the future. This is how I told it
to stop:

def index

return render nothing: true,

status: 403 unless logged_in?

@favorites = current_user.favorites.all

Working with Controllers 99

Status Code Description

end

404 Not Found You may choose to use 404 when a resource of a
The server cannot find the specific given ID does not exist in your
resource you requested. database (whether due to it being an invalid ID

or due to the resource having been deleted).

For example, “GET /people/2349594934896107”
doesn’t exist in our database at all, so what do
we display? Do we render a show view with a
flash message saying no person with that ID
exists? Not in our RESTful world. A 404 would be
better.

Moreover, if we happen to be using something
like paranoia and we know that the resource
used to exist in the past, we could respond with
410 Gone.

500 Internal Server The server encountered an unexpected condition
Error which prevented it from fulfilling the request.

you probably know by now, this is the status
code that Rails serves up if you have an error
in your code.

503 Service Unavailable The 503 code comes in very handy when taking
The server is temporarily a site down for maintenance, particularly when
unavailable. upgrading RESTful web services.

4.4 Additional Layout Options

You can specify layout options at the controller class level if you want to reuse layouts for multiple actions.

class EventController < ActionController::Base

layout "events", only: [:index, :new]

layout "global", except: [:index, :new]

end

The layout method can accept either a String, Symbol, or boolean, with a hash of arguments after.

String

Determines the template name to use.

Symbol

Call the method with this name, which is expected to return a string with a template name.

true Raises an argument error.

Working with Controllers 100

false

Do not use a layout.

The optional arguments are either :only or :except and expect an array of action names that should or should
not apply to the layout being specified.

4.5 Redirecting

The life cycle of a Rails application is divided into requests. Rendering a template, whether the default one
or an alternate one—or, for that matter, rendering a partial or some text or anything—is the final step in the
handling of a request. Redirecting, however, means terminating the current request and asking the client to
initiate a new one.

Look again at the example of the form-handling create method:

1 def create

2 if @event.save

3 flash[:notice] = "Event created!"

4 redirect_to :index

5 else

6 render :new

7 end

8 end

If the save operation succeeds, we store a message in the flash hash and redirect_to a completely new
action. In this case, it’s the index action. The logic here is that if the new Event record gets saved, the next
order of business is to take the user back to the top-level view.

The main reason to redirect rather than just render a template after creating or editing a resource (really a
POST action) has to do with browser reload behavior. If you didn’t redirect, the user would be prompted to
re-submit the form if they hit the back button or reload.

Working with Controllers 101

Sebastian says…
Which redirect is the right one? When you use Rails’ redirect_to method, you tell the user agent
(i.e., the browser) to perform a new request for a different URL. That response can mean different
things, and it’s why modern HTTP has four different status codes for redirection.The old HTTP 1.0
had two codes: 301 aka Moved Permanently and 302 aka Moved Temporarily.

A permanent redirect meant that the user agent should forget about the old URL and use the new
one from now on, updating any references it might have kept (i.e., a bookmark or in the case of
Google, its search databases). A temporary redirect was a one-time only affair. The original URL
was still valid, but for this particular request the user agent should fetch a new resource from the
redirection URL.

But there was a problem: If the original request had been a POST, what method should be used for
the redirected request? For permanent redirects it was safe to assume the new request should be
a GET, since that was the case in all usage scenarios. But temporary redirects were used both for
redirecting to a view of a resource that had just been modified in the original POST request (which
happens to be the most common usage pattern), and also for redirecting the entire original POST
request to a new URL that would take care of it.

HTTP 1.1 solved this problem with the introduction of two new status codes: 303 meaning See
Other and 307 meaning Temporary Redirect. A 303 redirect would tell the user agent to perform a
GET request, regardless of what the original verb was, whereas a 307 would always use the same
method used for the original request. These days, most browsers handle 302 redirects the same
way as 303, with a GET request, which is the argument used by the Rails Core team to keep using
302 in redirect_to. A 303 status would be the better alternative, because it leaves no room for
interpretation (or confusion), but I guess nobody has found it annoying enough to push for a patch.

If you ever need a 307 redirect, say, to continue processing a POST request in a differ-
ent action, you can always accomplish your own custom redirect by assigning a path to
response.header["Location"] and then rendering with render status: 307.

4.5.1 The redirect_to Method

The redirect_to method takes two parameters:

redirect_to(target, response_status = {})

The target parameter takes one of several forms.

Hash - The URL will be generated by calling url_for with the argument provided.

redirect_to action: "show", id: 5

Active Record object - The URL will be generated by calling url_forwith the object provided, which should
generate a named URL for that record.

redirect_to post

String starting with protocol like http:// - Used directly as the target url for redirection.

Working with Controllers 102

redirect_to "http://www.rubyonrails.org"

redirect_to articles_url

String not containing a protocol - The current protocol and host is prepended to the argument and used for
redirection.

redirect_to "/"

redirect_to articles_path

:back - Back to the page that issued the request. Useful for forms that are triggered from multiple places.
Short-hand for redirect_to(request.env["HTTP_REFERER"]). When using redirect_to :back, if there is
no referrer set, a RedirectBackError will be raised. You may specify some fallback behavior for this case by
rescuing RedirectBackError.

Redirection happens as a “302 Moved” header unless otherwise specified. The response_status parameter
takes a hash of arguments. The code can be specified by name or number, as in the following examples:

redirect_to post_url(@post), status: :found

redirect_to :atom, status: :moved_permanently

redirect_to post_url(@post), status: 301

redirect_to :atom, status: 302

It is also possible to assign a flash message as part of the redirection. There are two special accessors for
commonly used flash names alert and notice, as well as a general purpose flash bucket.

redirect_to post_url(@post), alert: "Watch it, mister!"

redirect_to post_url(@post), status: :found, notice: "Pay attention to the road"

redirect_to post_url(@post), status: 301, flash: { updated_post_id: @post.id }

redirect_to :atom, alert: "Something serious happened"

New to Rails 4, is the ability to register your own flash types by using the new ActionController::Flash.add_-

flash_types macro style method.

class ApplicationController

...

add_flash_types :error

end

When a flash type is registered, a special flash accessor similar to alert and notice, becomes available to be
used with redirect_to.

redirect_to post_url(@post), error: "Something went really wrong!"

Working with Controllers 103

Courtenay says…

Remember that redirect and render statements don’t magically halt execution of your controller
actionmethod. To prevent DoubleRenderError, consider explicitly calling return after redirect_to
or render like this:

1 def show

2 @user = User.find(params[:id])

3 if @user.activated?

4 render :activated and return

5 end

6 ...

7 end

4.6 Controller/View Communication

When a view template is rendered, it generally makes use of data that the controller has pulled from the
database. In other words, the controller gets what it needs from the model layer, and hands it off to the view.

The way Rails implements controller-to-view data handoffs is through instance variables. Typically, a
controller action initializes one or more instance variables. Those instance variables can then be used by
the view.

There’s a bit of irony (and possible confusion for newcomers) in the choice of instance variables to share
data between controllers and views. The main reason that instance variables exist is so that objects (whether
Controller objects, String objects, and so on) can hold on to data that they don’t share with other objects.
When your controller action is executed, everything is happening in the context of a controller object—an
instance of, say, DemoController or EventController. Context includes the fact that every instance variable
in the code belongs to the controller instance.

When the view template is rendered, the context is that of a different object, an instance of ActionView::Base.
That instance has its own instance variables, and does not have access to those of the controller object.

So instance variables, on the face of it, are about the worst choice for a way for two objects to share data.
However, it’s possible to make it happen—or make it appear to happen. What Rails does is to loop through the
controller object’s variables and, for each one, create an instance variable for the view object, with the same
name and containing the same data.

It’s kind of labor-intensive, for the framework: It’s like copying over a grocery list by hand. But the end result
is that things are easier for you, the programmer. If you’re a Ruby purist, you might wince a little bit at the
thought of instance variables serving to connect objects, rather than separate them. On the other hand, being
a Ruby purist should also include understanding the fact that you can do lots of different things in Ruby—
such as copying instance variables in a loop. So there’s nothing really un-Ruby-like about it. And it does
provide a seamless connection, from the programmer’s perspective, between a controller and the template it’s
rendering.

Working with Controllers 104

Stephen says…
I’m a cranky old man, and dammit, Rails is wrong, wrong, wrong. Using instance variables to share
data with the view sucks. If you want to see how my Decent Exposure library helps you avoid this
horrible practice, skip ahead to Section “Decent Exposure”

4.7 Action Callbacks

Action callbacks enable controllers to run shared pre and post processing code for its actions. These callbacks
can be used to do authentication, caching, or auditing before the intended action is performed. Callback
declarations are macro style class methods, that is, they appear at the top of your controller method, inside
the class context, before method definitions. We also leave off the parentheses around the method arguments,
to emphasize their declarative nature, like this:

before_action :require_authentication

As with many other macro-style methods in Rails, you can pass as many symbols as you want to the callback
method:

before_action :security_scan, :audit, :compress

Or you can break them out into separate lines, like this:

before_action :security_scan

before_action :audit

before_action :compress

You should make your action callback methods protected or private; otherwise, they might be callable as
public actions on your controller (via the default route).

Tim says…
In addition to protected and private, one can declare a method should never be dispatched with
the more intention-revealing hide_action.

Importantly, action callbacks have access to request, response, and all the instance variables set by other
callbacks in the chain or by the action (in the case of after callbacks). Action callbacks can set instance
variables to be used by the requested action, and often do so.

4.7.1 Action Callback Inheritance

Controller inheritance hierarchies share action callbacks downward. Your average Rails application has an
ApplicationController from which all other controllers inherit, so if you wanted to add action callbacks
that are always run no matter what, that would be the place to do so.

Working with Controllers 105

class ApplicationController < ActionController::Base

after_action :compress

Subclasses can also add and/or skip already defined action callbacks without affecting the superclass. For
example, consider the two related classes in Listing 4.1, and how they interact.

Listing 4.1: A Pair of Cooperating before callbacks

1 class BankController < ActionController::Base

2 before_action :audit

3

4 protected

5

6 def audit

7 # record this controller's actions and parameters in an audit log

8 end

9

10 end

11

12 class VaultController < BankController

13 before_action :verify_credentials

14

15 protected

16

17 def verify_credentials

18 # make sure the user is allowed into the vault

19 end

20

21 end

Any actions performed on BankController (or any of its subclasses) will cause the auditmethod to be called
before the requested action is executed. On the VaultController, first the auditmethod is called, followed by
verify_credentials, because that’s the order in which the callbacks were specified. (Callbacks are executed
in the class context where they’re declared, and the BankController has to be loaded before VaultController,
since it’s the parent class.)

If the audit method happens to call render or redirect_to for whatever reason, verify_credentials and
the requested action are never called. This is called halting the action callback chain.

4.7.2 Action Callback Types

An action callback can take one of three forms: method reference (symbol), external class, or block. The
first is by far the most common and works by referencing a protected method somewhere in the inheritance
hierarchy of the controller. In the bank example in Listing 4.1, both BankController and VaultController

use this form.

Working with Controllers 106

4.7.2.1 Action Callback Classes

Using an external class makes for more easily reused generic callbacks, such as output compression. External
callback classes are implemented by having a static callback method on any class and then passing this class to
the action callback method, as in Listing 4.2. The name of the class method should match the type of callback
desired (eg: before, after, around).

Listing 4.2: An output compression action callback

1 class OutputCompressionActionCallback

2 def self.after(controller)

3 controller.response.body = compress(controller.response.body)

4 end

5 end

6

7 class NewspaperController < ActionController::Base

8 after_action OutputCompressionActionCallback

9 end

The method of the action callback class is passed the controller instance it is running in. It gets full access to
the controller and can manipulate it as it sees fit. The fact that it gets an instance of the controller to play with
also makes it seem like feature envy, and frankly, I haven’t had much use for this technique.

4.7.2.2 Inline Method

The inline method (using a block parameter to the action method) can be used to quickly do something small
that doesn’t require a lot of explanation or just as a quick test.

1 class WeblogController < ActionController::Base

2 before_action do

3 redirect_to new_user_session_path unless authenticated?

4 end

5 end

The block is executed in the context of the controller instance, using instance_eval. This means that the
block has access to both the request and response objects complete with convenience methods for params,
session, template, and assigns.

4.7.3 Action Callback Chain Ordering

Using before_action and after_action appends the specified callbacks to the existing chain. That’s usually
just fine, but sometimes you care more about the order in which the callbacks are executed. When that’s the
case, you can use prepend_before_action and prepend_after_action. Callbacks added by these methods
will be put at the beginning of their respective chain and executed before the rest, like the example in Listing
4.3.

Working with Controllers 107

Listing 4.3: An example of prepending before action callbacks

1 class ShoppingController < ActionController::Base

2 before_action :verify_open_shop

3

4 class CheckoutController < ShoppingController

5 prepend_before_action :ensure_items_in_cart, :ensure_items_in_stock

The action callback chain for the CheckoutController is now :ensure_items_in_cart, :ensure_items_in_-
stock, :verify_open_shop. So if either of the ensure callbacks halts execution, we’ll never get around to
seeing if the shop is open.

You may pass multiple action callback arguments of each type as well as a block. If a block is given, it is
treated as the last argument.

4.7.4 Around Action Callbacks

Around action callbacks wrap an action, executing code both before and after the action that they wrap. They
may be declared as method references, blocks, or objects with an around class method.

To use a method as an around_action, pass a symbol naming the Ruby method. Use yieldwithin the method
to run the action.

For example, Listing 4.4 has an around callback that logs exceptions (not that you need to do anything like
this in your application; it’s just an example).

Listing 4.4: An around action callback to log exceptions

1 around_action :catch_exceptions

2

3 private

4

5 def catch_exceptions

6 yield

7 rescue => exception

8 logger.debug "Caught exception! #{exception}"

9 raise

10 end

To use a block as an around_action, pass a block taking as args both the controller and the action parameters.
You can’t call yield from blocks in Ruby, so explicitly invoke call on the action parameter:

Working with Controllers 108

1 around_action do |controller, action|

2 logger.debug "before #{controller.action_name}"

3 action.call

4 logger.debug "after #{controller.action_name}"

5 end

To use an action callback object with around_action, pass an object responding to :around. With an action
callback method, yield to the block like this:

1 around_action BenchmarkingActionCallback

2

3 class BenchmarkingActionCallback

4 def self.around(controller)

5 Benchmark.measure { yield }

6 end

7 end

4.7.5 Action Callback Chain Skipping

Declaring an action callback on a base class conveniently applies to its subclasses, but sometimes a subclass
should skip some of the action callbacks it inherits from a superclass:

1 class ApplicationController < ActionController::Base

2 before_action :authenticate

3 around_action :catch_exceptions

4 end

5

6 class SignupController < ApplicationController

7 skip_before_action :authenticate

8 end

9

10 class HackedTogetherController < ApplicationController

11 skip_action_callback :catch_exceptions

12 end

4.7.6 Action Callback Conditions

Action callbacks may be limited to specific actions by declaring the actions to include or exclude, using :only
or :except options. Both options accept single actions (like only: :index) or arrays of actions (except:
[:foo, :bar]).

Working with Controllers 109

1 class Journal < ActionController::Base

2 before_action :authorize, only: [:edit, :delete]

3

4 around_action except: :index do |controller, action_block|

5 results = Profiler.run(&action_block)

6 controller.response.sub! "</body>", "#{results}</body>"

7 end

8

9 private

10

11 def authorize

12 # Redirect to login unless authenticated.

13 end

14 end

4.7.7 Action Callback Chain Halting

The before_action and around_action methods may halt the request before the body of a controller action
method is run. This is useful, for example, to deny access to unauthenticated users. As mentioned earlier, all
you have to do to halt the before action chain is call render or redirect_to. After action callbacks will not
be executed if the before action chain is halted.

Around action callbacks halt the request unless the action block is called. If an around action callback returns
before yielding, it is effectively halting the chain and any after action callbacks will not be run.

4.8 Streaming

Rails has built-in support for streaming binary content back to the requesting client, as opposed to its normal
duties rendering view templates.

4.8.1 ActionController::Live

Being introduced in Rails 4 is the ActionControler::Live module, a controller mixin that enables the
controller actions to stream on-the-fly generated data to the client.

The ActionController::Live mixin adds an I/O like interface object named stream to the response object.
Using stream, one can call write, to immediately stream data to the client, and close to explicitly close the
stream. The response object is equivalent to the what you’d expect in the context of the controller, and can
be used to control various things in the HTTP response, such as the Content-Type header.

The following example demonstrates how one can stream a large amount of on-the-fly generated data to the
browser:

Working with Controllers 110

1 class StreamingController < ApplicationController

2 include ActionController::Live

3

4 # Streams about 180 MB of generated data to the browser.

5 def stream

6 10_000_000.times do |i|

7 response.stream.write "This is line #{i}\n"

8 end

9 ensure

10 response.stream.close

11 end

12 end

When using live streaming, there are a couple of things to take into consideration:

• All actions executed from ActionController::Live enabled controllers are run in a separate thread.
This means the controller action code being executed must be threadsafe.

• A concurrent Ruby web server, such as puma⁵, is required to take advantage of live streaming.
• Headers must be added to the response before anything is written to the client.
• Streams must be closed once finished, otherwise a socket may be left open indefinitely.

For an interesting perspective on why live streaming was added into Rails, and how to utilize it to serve
Server-Sent Events, make sure to read Aaron Patterson’s blog post on the subject⁶.

4.8.2 View streaming via render stream: true

By default, when a view is rendered in Rails, it first renders the template, and then the layout of the view.
When returning a response to a client, all required Active Record queries are run, and the entire rendered
template is returned.

Introduced in version 3.1, Rails added support to stream views to the client. This allows for views to be
rendered as they are processed, including only running Active Record scoped queries when they are needed.
To achieve this, Rails reverses the ordering that views are rendered. The layout is rendered first to the client,
and then each part of the template is processed.

To enable view streaming, pass the option stream to the render method.

⁵Puma Web Server http://puma.io/
⁶http://tenderlovemaking.com/2012/07/30/is-it-live.html

http://tenderlovemaking.com/2012/07/30/is-it-live.html
http://puma.io/
http://tenderlovemaking.com/2012/07/30/is-it-live.html

Working with Controllers 111

1 class EventController < ActionController::Base

2 def index

3 @events = Events.all

4 render stream: true

5 end

6 end

This approach can only be used to render templates. To render other types of data, such as JSON, take a look
at the Section “ActionController::Live”.

Rails also supports sending buffers and files with two methods in the ActionController::Streaming module:
send_data and send_file.

4.8.3 send_data(data, options = {})

The send_data method allows you to send textual or binary data in a buffer to the user as a named file. You
can set options that affect the content type and apparent filename, and alter whether an attempt is made
to display the data inline with other content in the browser or the user is prompted to download it as an
attachment.

4.8.3.1 Options

The send_data method has the following options:

:filename

Suggests a filename for the browser to use.

:type

Specifies an HTTP content type. Defaults to 'application/octet-stream'.

:disposition

Specifies whether the file will be shown inline or downloaded. Valid values are inline and attachment

(default).

:status

Specifies the status code to send with the response. Defaults to '200 OK'.

4.8.3.2 Usage Examples

Creating a download of a dynamically generated tarball:

send_data my_generate_tarball_method('dir'), filename: 'dir.tgz'

Sending a dynamic image to the browser, like for instance a captcha system:

Working with Controllers 112

1 require 'RMagick'

2

3 class CaptchaController < ApplicationController

4

5 def image

6 # create an RMagic canvas and render difficult to read text on it

7 ...

8

9 img = canvas.flatten_images

10 img.format = "JPG"

11

12 # send it to the browser

13 send_data img.to_blob, disposition: 'inline', type: 'image/jpg'

14 end

15 end

4.8.4 send_file(path, options = {})

The send_file method sends an existing file down to the client using Rack::Sendfile middleware, which
intercepts the response and replaces it with a webserver specific X-Sendfile header. The web server then
becomes responsible for writing the file contents to the client instead of Rails. This can dramatically reduce
the amount of work accomplished in Ruby and takes advantage of the web servers optimized file delivery
code.⁷

4.8.4.1 Options

Here are the options available for send_file:

:filename

Suggests a filename for the browser to use. Defaults to File.basename(path)

:type

Specifies an HTTP content type. Defaults to 'application/octet-stream'.

:disposition

Specifies whether the file will be shown inline or downloaded. Valid values are 'inline' and
'attachment' (default).

:status

Specifies the status code to send with the response. Defaults to '200 OK'.

:url_based_filename

Should be set to true if you want the browser to guess the filename from the URL, which is necessary
for i18n filenames on certain browsers (setting :filename overrides this option).

⁷More information, particularly about webserver configuration available at http://rack.rubyforge.org/doc/Rack/Sendfile.html

http://rack.rubyforge.org/doc/Rack/Sendfile.html

Working with Controllers 113

There’s also a lot more to read about Content-*HTTP headers⁸ if you’d like to provide the user with additional
information that Rails doesn’t natively support (such as Content-Description).

4.8.4.2 Security Considerations

Note that the send_file method can be used to read any file accessible to the user running the Rails server
process, so be extremely careful to sanitize⁹ the path parameter if it’s in any way coming from untrusted
users.

If you want a quick example, try the following controller code:

1 class FileController < ActionController::Base

2 def download

3 send_file(params[:path])

4 end

5 end

Give it a route

get 'file/download' => 'file#download'

then fire up your server and request any file on your system:

$ curl http://localhost:3000/file/download?path=/etc/hosts

##

Host Database

#

localhost is used to configure the loopback interface

when the system is booting. Do not change this entry.

##

127.0.0.1 localhost

255.255.255.255 broadcasthost

::1 localhost

fe80::1%lo0 localhost

Courtenay says…
There are few legitimate reasons to serve static files through Rails. Unless you are protecting content,
I strongly recommend you cache the file after sending it. There are a few ways to do this. Since a
correctly configured web server will serve files in public/ and bypass rails, the easiest is to just
copy the newly generated file to the public directory after sending it:

1 public_dir = File.join(Rails.root, 'public', controller_path)

2 FileUtils.mkdir_p(public_dir)

3 FileUtils.cp(filename, File.join(public_dir, filename))

⁸See the official spec at http://www.w3.org/Protocols/rfc2616/rfc2615-sec14.html.
⁹Heiko Webers has an old, yet still useful write-up about sanitizing filenames at http://www.rorsecurity.info/2007/03/27/working-with-files-in-

rails/.

http://www.w3.org/Protocols/rfc2616/rfc2615-sec14.html
http://www.rorsecurity.info/2007/03/27/working-with-files-in-rails/
http://www.rorsecurity.info/2007/03/27/working-with-files-in-rails/

Working with Controllers 114

All subsequent views of this resource will be served by the web server.

4.8.4.3 Usage Examples

Here’s the simplest example, just a simple zip file download:

send_file '/path/to.zip'

Sending a JPG to be displayed inline requires specification of the MIME content-type:

send_file '/path/to.jpg',

type: 'image/jpeg',

disposition: 'inline'

This will show a 404 HTML page in the browser. We append a charset declaration to the MIME type
information:

send_file '/path/to/404.html,

type: 'text/html; charset=utf-8',

status: 404

How about streaming an FLV file to a browser-based Flash video player?

send_file @video_file.path,

filename: video_file.title + '.flv',

type: 'video/x-flv',

disposition: 'inline'

Regardless of how you do it, you may wonder why you would need a mechanism to send files to the browser
anyway, since it already has one built in—requesting files from the public directory. Well, many times a
web application will front files that need to be protected from public access. (It’s a common requirement for
membership-based adult websites.)

4.9 Variants

New to Rails 4.1, Action Pack variants add the ability to render different HTML, JSON, and XML templates
based on some criteria. To illustrate, assuming we have an application that requires specific templates to be
rendered for iPhone devices only, we can set a request variant in a before_action callback.

Working with Controllers 115

1 class ApplicationController < ActionController::Base

2 before_action :set_variant

3

4 protected

5

6 def set_variant

7 request.variant = :mobile if request.user_agent =~ /iPhone/i

8 end

9 end

..

Note
Note that request.variant can be set based on any arbitrary condition, such as the existence of certain
request headers, subdomain, current user, API version, etc.

Next, in a controller action, we can explicitly respond to variants like any other format. This includes the
ability to execute code specific to the format by supplying a block to the declaration.

1 class PostsController < ApplicationController

2 def index

3 ...

4 respond_to do |format|

5 format.html do |html|

6 html.mobile do # renders app/views/posts/index.html+mobile.haml

7 @mobile_only_variable = true

8 end

9 end

10 end

11 end

12 end

By default, if no respond_to block is declared within your action, Action Pack will automatically render the
correct variant template if one exists in your views directory.

Variants are a powerful new feature in Action Pack that can be utilized for more than just rendering views
based on a user agent. Since a variant can be set based on any condition, it can be utilized for a variety of use
cases, such as rolling out features to a certain group of application users, or even A/B testing a template.

4.10 Conclusion

In this chapter, we covered some concepts at the very core of how Rails works: the dispatcher and how
controllers render views. Importantly, we covered the use of controller action callbacks, which you will use

Working with Controllers 116

constantly, for all sorts of purposes. The Action Controller API is fundamental knowledge, which you need
to understand well along your way to becoming an expert Rails programmer.

Moving on, we’ll leave Action Pack and head over to the other major component API of Rails: Active Record.

5 Working with Active Record
An object that wraps a row in a database table or view, encapsulates the database access, and
adds domain logic on that data.

—Martin Fowler, Patterns of Enterprise Architecture

The Active Record pattern, identified by Martin Fowler in his seminal work, Patterns of Enterprise Architec-
ture, maps one domain class to one database table, and one instance of that class to each row of that database.
It is a simple approach that, while not perfectly applicable in all cases, provides a powerful framework for
database access and object persistence in your application.

The Rails Active Record framework includes mechanisms for representing models and their relationships,
CRUD (Create, Read, Update and Delete) operations, complex searches, validation, callbacks, and many more
features. It relies heavily on convention over configuration, so it’s easy to use when you’re creating a new
database schema that can follow those conventions. However, Active Record also provides configuration
settings that let you adapt it to work well with legacy database schemas that don’t necessarily conform to
Rails conventions.

According to Martin Fowler, delivering the keynote address at the inaugural Rails conference in 2006, Ruby
on Rails has successfully taken the Active Record pattern much further than anyone imagined it could go. It
shows you what you can achieve when you have a single-minded focus on a set of ideals, which in the case
of Rails is simplicity.

5.1 The Basics

For the sake of completeness, let’s briefly review the basics of how Active Record works. In order to create
a new model class, the first thing you do is to declare it as a subclass of ActiveRecord::Base, using Ruby’s
class extension syntax:

class Client < ActiveRecord::Base

end

By convention, an Active Record class named Client will be mapped to the clients table. Rails understands
pluralization, as covered in the section “Pluralization” in this chapter. Also by convention, Active Record will
expect an id column to use as primary key. It should be an integer and incrementing of the key should be
managed automatically by the database server when creating new records. Note how the class itself makes
no mention of the table name, columns, or their datatypes.

Each instance of an Active Record class provides access to the data from one row of the backing database
table, in an object-oriented manner. The columns of that row are represented as attributes of the object, using
straightforward type conversions (i.e. Ruby strings for varchars, Ruby dates for dates, and so on), and with
no default data validation. Attributes are inferred from the column definition pertaining to the tables with

Working with Active Record 118

which they’re linked. Adding, removing, and changing attributes and their types are done by changing the
columns of the table in the database.

When you’re running a Rails server in development mode, changes to the database schema are reflected in the
Active Record objects immediately, via the web browser. However, if you make changes to the schema while
you have your Rails console running, the changes will not be reflected automatically, although it is possible
to pick up changes manually by typing reload! at the console.

Courtenay says…
Active Record is a great example of the Rails “Golden Path.” If you keep within its limitations,
you can go far, fast. Stray from the path, and you might get stuck in the mud. This Golden Path
involves many conventions, like naming your tables in the plural form (“users”). It’s common for
new developers to Rails and rival web-framework evangelists to complain about how tables must
be named in a particular manner, how there are no constraints in the database layer, that foreign
keys are handled all wrong, enterprise systems must have composite primary keys, and more. Get
the complaining out of your system now, because all these defaults are simply defaults, and in most
cases can be overridden with a single line of code or a plugin.

5.2 Macro-Style Methods

Most of the important classes you write while coding a Rails application are configured using what I call
macro-style method invocations (also known in some circles as a domain-specific language or DSL). Basically,
the idea is to have a highly readable block of code at the top of your class that makes it immediately clear
how it is configured.

Macro-style invocations are usually placed at the top of the file, and for good reason. Those methods
declaratively tell Rails how to manage instances, perform data validation and callbacks, and relate with
other models. Many of them do some amount of metaprogramming, meaning that they participate in adding
behavior to your class at runtime, in the form of additional instance variables and methods.

5.2.1 Relationship Declarations

For example, look at the Client class with some relationships declared. We’ll talk about associations
extensively in Chapter 7, “Active Record Associations”, but all I want to do right now is to illustrate what I’m
talking about when I say macro-style:

1 class Client < ActiveRecord::Base

2 has_many :billing_codes

3 has_many :billable_weeks

4 has_many :timesheets, through: :billable_weeks

5 end

As a result of those three has_many declarations, the Client class gains at least three new attributes, proxy
objects that let you manipulate the associated collections interactively.

Working with Active Record 119

I still remember the first time I sat with an experienced Java programmer friend of mine to teach him some
Ruby and Rails. After minutes of profound confusion, an almost visible light bulb appeared over his head as
he proclaimed, “Oh! They’re methods!”

Indeed, they’re regular old method calls, in the context of the class object. We leave the parentheses off to
emphasize the declarative intention. That’s a style issue, but it just doesn’t feel right tomewith the parentheses
in place, as in the following code snippet:

1 class Client < ActiveRecord::Base

2 has_many(:billing_codes)

3 has_many(:billable_weeks)

4 has_many(:timesheets, through: :billable_weeks)

5 end

When the Ruby interpreter loads client.rb, it executes those has_many methods, which, again, are defined
as class methods of Active Record’s Base class. They are executed in the context of the Client class, adding
attributes that are subsequently available to Client instances. It’s a programming model that is potentially
strange to newcomers, but quickly becomes second nature to the Rails programmer.

5.2.2 Convention over Configuration

Convention over configuration is one of the guiding principles of Ruby on Rails. If we followRails conventions,
very little explicit configuration is needed, which stands in stark contrast to the reams of configuration that
are required to get even a simple application running in other technologies.

It’s not that a newly bootstrapped Rails application comes with default configuration in place already,
reflecting the conventions that will be used. It’s that the conventions are baked into the framework, actually
hard-coded into its behavior, and you need to override the default behavior with explicit configuration when
applicable.

It’s also worth mentioning that most configuration happens in close proximity to what you’re configuring.
You will see associations, validations, and callback declarations at the top of most Active Record models.

I suspect that the first explicit configuration (over convention) that many of us deal with in Active Record is
the mapping between class name and database table, since by default Rails assumes that our database name
is simply the pluralized form of our class name.

5.2.3 Setting Names Manually

The table_name and primary_key setter methods let you use any table and primary names you’d like, but
you’ll have to specify them explicitly in your model class.

Working with Active Record 120

1 class Client < ActiveRecord::Base

2 self.table_name = "CLIENT"

3 self.primary_key = "CLIENT_ID"

4 end

It’s only a couple of extra lines per model, but on a large application it adds unnecessary complexity, so don’t
do it if you don’t absolutely have to.

When you’re not at liberty to dictate the naming guidelines for your database schema, such as when a separate
DBA group controls all database schemas, then you probably don’t have a choice. But if you have flexibility,
you should really just follow Rails conventions. They might not be what you’re used to, but following them
will save you time and unnecessary headaches.

5.2.4 Legacy Naming Schemes

If you are working with legacy schemas, you may be tempted to automatically set table_name everywhere,
whether you need it or not. Before you get accustomed to doing that, learn the additional options available
that might just be more DRY and make your life easier.

Let’s assume you need to turn off table pluralization altogether; you would set the following attribute to your
config/application.rb:

config.active_record.pluralize_table_names = false

There are various other useful attributes of ActiveRecord::Base, provided for configuring Rails to work with
legacy naming schemes.

5.2.4.1 primary_key_prefix_type

Accessor for the prefix type that will be prepended to every primary key column name. If :table_name is
specified, Active Record will look for tableid instead of id as the primary column. If :table_name_with_-
underscore is specified, Active Record will look for table_id instead of id.

5.2.4.2 table_name_prefix

Some departments prefix table names with the name of the database. Set this attribute accordingly to avoid
having to include the prefix in all of your model class names.

5.2.4.3 table_name_suffix

Similar to prefix, but adds a common ending to all table names.

Working with Active Record 121

5.3 Defining Attributes

The list of attributes associated with an Active Record model class is not coded explicitly. At runtime, the
Active Record model examines the database schema directly from the server. Adding, removing, and changing
attributes and their type is done by manipulating the database itself via Active Record migrations.

The practical implication of the Active Record pattern is that you have to define your database table structure
and make sure it exists in the database prior to working with your persistent models. Some people may have
issues with that design philosophy, especially if they’re coming from a background in top-down design.

The Rails way is undoubtedly to have model classes that map closely to your database schema. On
the other hand, remember you can have models that are simple Ruby classes and do not inherit from
ActiveRecord::Base. Among other things, it is common to use non-Active Record model classes to
encapsulate data and logic for the view layer.

5.3.1 Default Attribute Values

Migrations let you define default attribute values by passing a :default option to the column method, but
most of the time you’ll want to set default attribute values at the model layer, not the database layer. Default
values are part of your domain logic and should be kept together with the rest of the domain logic of your
application, in the model layer.

A common example is the case when your model should return the string “n/a” instead of a nil (or empty)
string for an attribute that has not been populated yet. Seems simple enough and it’s a good way to learn how
attributes exist at runtime.

To begin, let’s whip up a quick spec describing the desired behavior.

1 describe TimesheetEntry do

2 it "has a category of 'n/a' if not available" do

3 entry = TimesheetEntry.new

4 expect(entry.category).to eq('n/a')

5 end

6 end

We run that spec and it fails, as expected. Active Record doesn’t provide us with any class-level methods to
define default values for models declaratively. So it seems we’ll have to create an explicit attribute accessor
that provides a default value.

Normally, attribute accessors are handled magically by Active Record’s internals, but in this case we’re
overriding the magic with an explicit getter. All we need to do is to define a method with the same name
as the attribute and use Ruby’s || operator, which will short-circuit if @category is not nil.

Working with Active Record 122

1 class TimesheetEntry < ActiveRecord::Base

2 def category

3 @category || 'n/a'

4 end

5 end

Now we run the spec and it passes. Great. Are we done? Not quite. We should test a case when the real
category value should be returned. I’ll insert an example with a not-nil category.

1 describe TimesheetEntry do

2 it "returns category when available" do

3 entry = TimesheetEntry.new(category: "TR4W")

4 expect(entry.category).to eq("TR4W")

5 end

6

7 it "has a category of 'n/a' if not available" do

8 entry = TimesheetEntry.new

9 expect(entry.category).to eq('n/a')

10 end

11 end

Uh-oh. The first spec fails. Seems our default ‘n/a’ string is being returned no matter what. That means that
@category must not be getting set. Should we even know that it is getting set or not? It is an implementation
detail of Active Record, is it not?

The fact that Rails does not use instance variables like @category to store the model attributes is in fact an
implementation detail. But model instances have a couple of methods, write_attribute and read_attribute,
conveniently provided byActive Record for the purposes of overriding default accessors, which is exactlywhat
we’re trying to do. Let’s fix our TimesheetEntry class.

1 class TimesheetEntry < ActiveRecord::Base

2 def category

3 read_attribute(:category) || 'n/a'

4 end

5 end

Now the spec passes. How about a simple example of using write_attribute?

1 class SillyFortuneCookie < ActiveRecord::Base

2 def message=(txt)

3 write_attribute(:message, txt + ' in bed')

4 end

5 end

Alternatively, both of these examples could have been written with the shorter forms of reading and writing
attributes, using square brackets.

Working with Active Record 123

1 class Specification < ActiveRecord::Base

2 def tolerance

3 self[:tolerance] || 'n/a'

4 end

5 end

6

7 class SillyFortuneCookie < ActiveRecord::Base

8 def message=(txt)

9 self[:message] = txt + ' in bed'

10 end

11 end

5.3.2 Serialized Attributes

One of Active Record’s coolest features is the ability to mark a column of type text as being serialized.
Whatever object (more accurately, graph of objects) you assign to that attribute will be stored in the database
as YAML, Ruby’s native serialization format.

Sebastian says…
TEXT columns usually have a maximum size of 64K and if your serialized attributes exceeds the
size constraints, you’ll run into a lot of errors. On the other hand, if your serialized attributes are
that big, you might want to rethink what you’re doing. At least move them into a separate table
and use a larger column type if your server allows it.

One of the first things that new Rails developers do when they discover the serialize declaration is to use it
to store a hash of arbitrary objects related to user preferences. Why bother with the complexity of a separate
preferences table if you can denormalize that data into the users table instead?

1 class User < ActiveRecord::Base

2 serialize :preferences, Hash

3 end

The optional second parameter (used in the example) takes a class that limits the type of object that can be
stored. The serialized object must be of that class on retrieval or SerializationTypeMismatch will be raised.

The API does not give us an easy way to set a default value. That’s unfortunate, because it would be nice to
be able to assume that our preferences attribute is already initialized when we want to use it.

1 user = User.new

2 # the following line will raise NoMethodError

3 # unless preferences has a default

4 user.preferences[:inline_help] = false

Unless a value has already been set for the attribute, it’s going to be nil. You might be tempted to set a default
YAML string for the serialized attribute at the database level, so that it’s not nil when you’re using a newly
created object:

Working with Active Record 124

add_column :users, :preferences, :text, default: "--- {}"

However, that approach won’t work with MySQL 5.x, which ignores default values for binary and text
columns. One possible solution is to overload the attribute’s reader method with logic that sets the default
value if it’s nil.

def preferences

read_attribute(:preferences) || write_attribute(:preferences, {})

end

I prefer this method over the alternative, using an after_initialize callback, because it incurs a small
performance hit only when the preferences attribute is actually used and not at instantiation time of every
single User object in your system.

5.3.3 ActiveRecord::Store

With version 3.2, Rails introduced the store declaration, which uses serialize behind the scenes to declare
a single-column key/value store.

class User < ActiveRecord::Base

store :preferences

end

An added benefit of using store is that its assigned serialized attribute is set to an empty Hash by default.
Therefore removing the need to set a default by overriding the attribute’s reader method or setting one at the
database level, as was done in the previous section.

It’s possible to add an :accessors option to the store declaration which declares read/write accessors in your
Active Record model.

store :preferences, accessors: [:inline_help]

Writing to a store accessor method will create a key/value pair within the serialized hash attribute, as shown
in the following example:

>> user = User.new

=> #<User id: nil, preferences: {}, ...>

>> user.inline_help = false

=> false

>> user.preferences

=> {"inline_help"=>false}

Alternatively, you can use the store_accessor declaration to declare read/write accessors for a serialized
attribute.

Working with Active Record 125

store_accessor :inline_help

5.4 CRUD: Creating, Reading, Updating, Deleting

The four standard operations of a database system combine to form a popular acronym: CRUD. It sounds
somewhat negative, because as a synonym for garbage or unwanted accumulation the word crud in English
has a rather bad connotation. However, in Rails circles, use of the word CRUD is benign. In fact, as in earlier
chapters, designing your app to function primarily as RESTful CRUD operations is considered a best practice!

5.4.1 Creating New Active Record Instances

The most straightforward way to create a new instance of an Active Record model is by using a regular Ruby
constructor, the class method new. New objects can be instantiated as either empty (by omitting parameters)
or pre-set with attributes, but not yet saved. Just pass a hash with key names matching the associated table
column names. In both instances, valid attribute keys are determined by the column names of the associated
table—hence you can’t have attributes that aren’t part of the table columns.

You can find out if an Active Record object is saved by looking at the value of its id, or programmatically, by
using the methods new_record? and persisted?:

>> c = Client.new

=> #<Client id: nil, name: nil, code: nil>

>> c.new_record?

=> true

>> c.persisted?

=> false

Active Record constructors take an optional block, which can be used to do additional initialization. The block
is executed after any passed-in attributes are set on the instance:

>> c = Client.new do |client|

?> client.name = "Nile River Co."

>> client.code = "NRC"

>> end

=> #<Client id: 1, name: "Nile River Co.", code: "NRC">

Active Record has a handy-dandy create class method that creates a new instance, persists it to the database,
and returns it in one operation:

>> c = Client.create(name: "Nile River, Co.", code: "NRC")

=> #<Client id: 1, name: "Nile River, Co.", code: "NRC" ...>

The create method takes an optional block, just like new.

Working with Active Record 126

5.4.2 Reading Active Record Objects

Finding an existing object by its primary key is very simple, and is probably one of the first things we all learn
about Rails when we first pick up the framework. Just invoke find with the key of the specific instance you
want to retrieve. Remember that if an instance is not found, a RecordNotFound exception is raised.

>> first_project = Project.find(1)

=> #<Project id: 1 ...>

>> boom_client = Client.find(99)

ActiveRecord::RecordNotFound: Couldn't find Client with ID=99

>> all_clients = Client.all

=> #<ActiveRecord::Relation [#<Client id: 1, name: "Paper Jam Printers",

code: "PJP" ...>, #<Client id: 2, name: "Goodness Steaks",

code: "GOOD_STEAKS" ...>]>

>> first_client = Client.first

=> #<Client id: 1, name: "Paper Jam Printers", code: "PJP" ...>

By the way, it is entirely common for methods in Ruby to return different types depending on the parameters
used, as illustrated in the example. Depending on how find is invoked, you will get either a single Active
Record object or an array of them.

For convenience, first, last and all also exist as syntactic sugar wrappers around the find method.

>> Product.last

=> #<Product id: 1, name: "leaf", sku: nil,

created_at: "2010-01-12 03:34:41", updated_at: "2010-01-12 03:34:41">

Finally, the findmethod also understands arrays of ids, and raises a RecordNotFound exception if it can’t find
all of the ids specified:

>> Product.find([1, 2])

ActiveRecord::RecordNotFound: Couldn't find all Products with IDs (1,

2) (found 1 results, but was looking for 2)

5.4.3 Reading and Writing Attributes

After you have retrieved a model instance from the database, you can access each of its columns in several
ways. The easiest (and clearest to read) is simply with dot notation:

Working with Active Record 127

>> first_client.name

=> "Paper Jam Printers"

>> first_client.code

=> "PJP"

The private read_attributemethod of Active Record, covered briefly in an earlier section, is useful to know
about, and comes in handy when you want to override a default attribute accessor. To illustrate, while still in
the Rails console, I’ll go ahead and reopen the Client class on the fly and override the name accessor to return
the value from the database, but reversed:

>> class Client < ActiveRecord::Base

>> def name

>> read_attribute(:name).reverse

>> end

>> end

=> nil

>> first_client.name

=> "sretnirP maJ repaP"

Hopefully it’s not too painfully obvious for me to demonstrate why you need read_attribute in that scenario.
Recursion is a bitch, if it’s unexpected:

>> class Client < ActiveRecord::Base

>> def name

>> self.name.reverse

>> end

>> end

=> nil

>> first_client.name

SystemStackError: stack level too deep

from (irb):21:in 'name'

from (irb):21:in 'name'

from (irb):24

As can be expected by the existence of a read_attribute method (and as we covered earlier in the chapter),
there is also a write_attribute method that lets you change attribute values. Just as with attribute getter
methods, you can override the setter methods and provide your own behavior:

Working with Active Record 128

1 class Project < ActiveRecord::Base

2 # The description for a project cannot be changed to a blank string

3 def description=(new_value)

4 write_attribute(:description, new_value) unless new_value.blank?

5 end

6 end

The preceding example illustrates a way to do basic validation, since it checks to make sure that a value is not
blank before allowing assignment. However, as we’ll see in Chapter 8, “Validations”, there are better ways to
do this.

5.4.3.1 Hash Notation

Yet another way to access attributes is using the [attribute_name] operator, which lets you access the
attribute as if it were a regular hash.

>> first_client['name']

=> "Paper Jam Printers"

>> first_client[:name]

=> "Paper Jam Printers"

..

String Versus Symbol
Many Rails methods accept symbol and string parameters interchangeably, and that is potentially very
confusing.Which ismore correct? The general rule is to use symbols when the string is a name for something,
and a string when it’s a value. You should probably be using symbols when it comes to keys of options hashes
and the like.

5.4.3.2 The attributes Method

There is also an attributes method that returns a hash with each attribute and its corresponding value as
returned by read_attribute. If you use your own custom attribute reader and writer methods, it’s important
to remember that attributeswill not use custom attribute readers when accessing its values, but attributes=
(which lets you do mass assignment) does invoke custom attribute writers.

>> first_client.attributes

=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}

Being able to grab a hash of all attributes at once is useful when you want to iterate over all of them or
pass them in bulk to another function. Note that the hash returned from attributes is not a reference to an
internal structure of the Active Record object. It is copy, which means that changing its values will have no
effect on the object it came from.

Working with Active Record 129

>> atts = first_client.attributes

=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}

>> atts["name"] = "Def Jam Printers"

=> "Def Jam Printers"

>> first_client.attributes

=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}

To make changes to an Active Record object’s attributes in bulk, it is possible to pass a hash to the attributes
writer.

5.4.4 Accessing and Manipulating Attributes Before They Are Typecast

The Active Record connection adapters, classes that implement behavior specific to databases, fetch results
as strings and Rails takes care of converting them to other datatypes if necessary, based on the type of the
database column. For instance, integer types are cast to instances of Ruby’s Fixnum class, and so on.

Even if you’re working with a new instance of an Active Record object, and have passed in constructor values
as strings, they will be typecast to their proper type when you try to access those values as attributes.

Sometimes you want to be able to read (or manipulate) the raw attribute data without having the column-
determined typecast run its course first, and that can be done by using the attribute_before_type_cast
accessors that are automatically created in your model.

For example, consider the need to deal with currency strings typed in by your end users. Unless you are
encapsulating currency values in a currency class (highly recommended, by the way) you need to deal with
those pesky dollar signs and commas. Assuming that our Timesheet model had a rate attribute defined as a
:decimal type, the following code would strip out the extraneous characters before typecasting for the save
operation:

1 class Timesheet < ActiveRecord::Base

2 before_validation :fix_rate

3

4 def fix_rate

5 self[:rate] = rate_before_type_cast.tr('$,','')

6 end

7 end

5.4.5 Reloading

The reload method does a query to the database and resets the attributes of an Active Record object. The
optional options argument is passed to findwhen reloading so youmay do, for example, record.reload(lock:
true) to reload the same record with an exclusive row lock. (See the section “Database Locking” later in this
chapter.)

Working with Active Record 130

5.4.6 Cloning

Producing a copy of an Active Record object is done simply by calling clone, which produces a shallow copy
of that object. It is important to note that no associations will get copied, even though they are stored internally
as instance variables.

5.4.7 Custom SQL Queries

The find_by_sql class method takes a SQL select query and returns an array of Active Record objects based
on the results. Here’s a barebones example, which you would never actually need to do in a real application:

>> Client.find_by_sql("select * from clients")

=> [#<Client id: 1, name: "Paper Jam Printers",

code: "PJP" ...>, #<Client id: 2, name: "Goodness Steaks",

code: "GOOD_STEAKS" ...>]

I can’t stress this enough: You should take care to use find_by_sql only when you really need it! For one,
it reduces database portability. When you use Active Record’s normal find operations, Rails takes care of
handling differences between the underlying databases for you.

Note that Active Record already has a ton of built-in functionality abstracting SELECT statements. Function-
ality that it would be very unwise to reinvent. There are lots of cases where at first glance it might seem that
you might need to use find_by_sql, but you actually don’t. A common case is when doing a LIKE query:

>> Client.find_by_sql("select * from clients where code like 'A%'")

=> [#<Client id: 1, name: "Amazon, Inc" ...>]

Turns out that you can easily put that LIKE clause into a conditions option:

>> param = "A"

>> Client.where("code like ?", "#{param}%")

=> [#<Client id: 1, name: "Amazon, Inc" ...>]

..

Preventing SQL Injection attacks
Under the covers, Rails sanitizes your SQL code, provided that you parameterize your query. Active Record
executes your SQL using the connection.select_all method, iterating over the resulting array of hashes,
and invoking your Active Record’s initialize method for each row in the result set.

What would this section’s example look like un-parameterized?

>> Client.where("code like '#{params[:code]}%'")

=> [#<Client id: 1, name: "Amazon, Inc" ...>] # NOOOOO!

Notice the missing question mark as a variable placeholder. Always remember that interpolating user-
supplied values into a SQL fragment of any type is very unsafe! Just imagine what would happen to your

Working with Active Record 131

..

project if a malicious user called that unsafe find with params[:code] set to

1 "Amazon'; DELETE FROM users;'

This particular example might fail in your own experiments. The outcome is very specific to the type of
database/driver that you’re using. Some popular databases drivers may even have features that help to
prevent SQL injection. I still think it’s better to be safe than sorry.

Sanitization prevents SQL injection attacks. For more information about SQL injection and Rails see http://guides.rubyonrails.
org/security.html#sql-injection.

The count_by_sql method works in a manner similar to find_by_sql.

>> Client.count_by_sql("select count(*) from clients")

=> 132

Again, you should have a special reason to be using it instead of the more concise alternatives provided by
Active Record.

5.4.8 The Query Cache

By default, Rails attempts to optimize performance by turning on a simple query cache. It is a hash stored on
the current thread, one for every active database connection. (Most Rails processes will have just one.)

Whenever a find (or any other type of select operation) happens and the query cache is active, the
corresponding result set is stored in a hash with the SQL that was used to query for them as the key. If
the same SQL statement is used again in another operation, the cached result set is used to generate a new set
of model objects instead of hitting the database again.

You can enable the query cache manually by wrapping operations in a cache block, as in the following
example:

1 User.cache do

2 puts User.first

3 puts User.first

4 puts User.first

5 end

Check your development.log and you should see the following entries:

http://guides.rubyonrails.org/security.html#sql-injection
http://guides.rubyonrails.org/security.html#sql-injection

Working with Active Record 132

User Load (0.1ms) SELECT "users".* FROM "users" ORDER BY "users"."id"

ASC LIMIT 1

CACHE (0.0ms) SELECT "users".* FROM "users" ORDER BY "users"."id"

ASC LIMIT 1 LIMIT 1

CACHE (0.0ms) SELECT "users".* FROM "users" ORDER BY "users"."id"

ASC LIMIT 1

The database was queried only once. Try a similar experiment in your own console without the cache block,
and you’ll see that three separate User Load events are logged.

Save and delete operations result in the cache being cleared, to prevent propagation of instances with invalid
states. If you find it necessary to do so for whatever reason, call the clear_query_cache class method to clear
out the query cache manually.

5.4.8.1 Logging

The log file indicates when data is being read from the query cache instead of the database. Just look for lines
starting with CACHE instead of a Model Load.

Place Load (0.1ms) SELECT * FROM places WHERE (places.id = 15749)

CACHE (0.0ms) SELECT * FROM places WHERE (places.id = 15749)

CACHE (0.0ms) SELECT * FROM places WHERE (places.id = 15749)

5.4.8.2 Default Query Caching in Controllers

For performance reasons, Active Record’s query cache is turned on by default for the processing of controller
actions.

5.4.8.3 Limitations

The Active Record query cache was purposely kept very simple. Since it literally keys cached model instances
on the SQL that was used to pull them out of the database, it can’t connect multiple find invocations that are
phrased differently but have the same semantic meaning and results.

For example, “select foo from bar where id = 1” and “select foo from bar where id = 1 limit 1”” are considered
different queries and will result in two distinct cache entries.

5.4.9 Updating

The simplest way to manipulate attribute values is simply to treat your Active Record object as a plain old
Ruby object, meaning via direct assignment using myprop=(some_value)

There are a number of other different ways to update Active Record objects, as illustrated in this section. First,
let’s look at how to use the update class method of ActiveRecord::Base

Working with Active Record 133

1 class ProjectController < ApplicationController

2 def update

3 Project.update(params[:id], params[:project])

4 redirect_to projects_path

5 end

6

7 def mass_update

8 Project.update(params[:projects].keys, params[:projects].values])

9 redirect_to projects_path

10 end

11 end

The first form of update takes a single numeric id and a hash of attribute values, while the second form takes
a list of ids and a list of values and is useful in scenarios where a form submission from a web page with
multiple updateable rows is being processed.

The update class method does invoke validation first and will not save a record that fails validation. However,
it returns the object whether or not the validation passes. That means that if you want to know whether or
not the validation passed, you need to follow up the call to update with a call to valid?

1 class ProjectController < ApplicationController

2 def update

3 project = Project.update(params[:id], params[:project])

4 if project.valid? # uh-oh, do we want to run validate again?

5 redirect_to project

6 else

7 render 'edit'

8 end

9 end

10 end

A problem is that now we are calling valid? twice, since the update call also called it. Perhaps a better option
is to use the update instance method once as part of an if statement:

1 class ProjectController < ApplicationController

2 def update

3 project = Project.find(params[:id])

4 if project.update(params[:project])

5 redirect_to project

6 else

7 render 'edit'

8 end

9 end

10 end

Working with Active Record 134

And of course, if you’ve done some basic Rails programming, you’ll recognize that pattern, since it is used in
the generated scaffolding code. The update method takes a hash of attribute values, and returns true or false
depending on whether the save was successful or not, which is dependent on validation passing.

5.4.10 Updating by Condition

Active Record has another class method useful for updating multiple records at once: update_all. It maps
closely to the way that you would think of using a SQL update...where statement. The update_all method
takes two parameters, the set part of the SQL statement and the conditions, expressed as part of a where
clause. The method returns the number of records updated.

I think this is one of those methods that is generally more useful in a scripting context than in a controller
method, but you might feel differently. Here is a quick example of how I might go about reassigning all the
Rails projects in the system to a new project manager.

Project.update_all({manager: 'Ron Campbell'}, technology: 'Rails')

The update_all method also accepts string parameters, which allows you to leverage the power of SQL!

Project.update_all("cost = cost * 3", "lower(technology) LIKE '%microsoft%'")

5.4.11 Updating a Particular Instance

The most basic way to update an Active Record object is to manipulate its attributes directly and then call
save. It’s worth noting that save will insert a record in the database if necessary or update an existing record
with the same primary key.

>> project = Project.find(1)

>> project.manager = 'Brett M.'

>> project.save

=> true

The save method will return true if it was successful or false if it failed for any reason. There is another
method, save!, that will use exceptions instead. Which one to use depends on whether you plan to deal with
errors right away or delegate the problem to another method further up the chain.

It’s mostly a matter of style, although the non-bang save and update methods that return a boolean value are
often used in controller actions, as the clause for an if condition:

Working with Active Record 135

1 class StoryController < ApplicationController

2 def points

3 story = Story.find(params[:id])

4 if story.update_attribute(:points, params[:value])

5 render text: "#{story.name} updated"

6 else

7 render text: "Error updating story points"

8 end

9 end

10 end

5.4.12 Updating Specific Attributes

The instance methods update_attribute and update take one key/value pair or hash of attributes, respec-
tively, to be updated on your model and saved to the database in one operation.

The update_attribute method updates a single attribute and saves the record, but updates made with this
method are not subjected to validation checks! In other words, this method allows you to persist an Active
Recordmodel to the database even if the full object isn’t valid. Model callbacks are executed, but the updated_-
at is still bumped.

Lark says…
I feel dirty whenever I use update_attribute.

On the other hand, update is subject to validation checks and is often used on update actions and passed the
params hash containing updated values.

Active Record also provides an instance method update_column, which accepts a single key/value pair.
Although similar to update_attribute, the update_column method not only skips validations checks, but
also does not run callbacks and skips the bumping of the updated_at timestamp.

Being introduced in Rails 4, the update_columns method works exactly the same as update_column, except
that instead of accepting a single key/value pair as a parameter, it accepts a hash of attributes.

Courtenay says…
If you have associations on a model, Active Record automatically creates convenience methods for
mass assignment. In other words, a Project model that has_many :users will expose a user_ids

attribute writer, which gets used by its update method.This is an advantage if you’re updating
associations with checkboxes, because you just name the checkboxes project[user_ids][] and
Rails will handle the magic. In some cases, allowing the user to set associations this way would be
a security risk.

Working with Active Record 136

5.4.13 Convenience Updaters

Rails provides a number of convenience update methods in the form of increment, decrement, and toggle,
which do exactly what their names suggest with numeric and boolean attributes. Each has a bang variant
(such as toggle!) that additionally invokes update_attribute after modifying the attribute.

5.4.14 Touching Records

There may be certain cases where updating a time field to indicate a record was viewed is all you require,
and Active Record provides a convenience method for doing so in the form of touch. This is especially useful
for cache auto-expiration, which is covered in Chapter 17, “Caching and Performance”.

Using this method on a model with no arguments updates the updated_at timestamp field to the current time
without firing any callbacks or validation. If a timestamp attribute is provided it will update that attribute to
the current time along with updated_at.

>> user = User.first

>> user.touch # => sets updated_at to now.

>> user.touch(:viewed_at) # sets viewed_at and updated_at to now.

If a :touch option is provided to a belongs to relation, it will touch the parent record when the child is touched.

class User < ActiveRecord::Base

belongs_to :client, touch: true

end

>> user.touch # => also calls user.client.touch

5.4.15 Readonly Attributes

Sometimes you want to designate certain attributes as readonly, which prevents them from being updated
after the parent object is created. The feature is primarily for use in conjunction with calculated attributes. In
fact, Active Record uses this method internally for counter_cache attributes, since they are maintained with
their own special SQL update statements.

The only time that readonly attributes may be set are when the object is not saved yet. The following example
code illustrates usage of attr_readonly. Note the potential gotcha when trying to update a readonly attribute.

class Customer < ActiveRecord::Base

attr_readonly :social_security_number

end

Working with Active Record 137

>> customer = Customer.new(social_security_number: "130803020")

=> #<Customer id: 1, social_security_number: "130803020", ...>

>> customer.social_security_number

=> "130803020"

>> customer.save

>> customer.social_security_number = "000000000" # Note, no error raised!

>> customer.social_security_number

=> "000000000"

>> customer.save

>> customer.reload

>> customer.social_security_number

=> "130803020" # the original readonly value is preserved

The fact that trying to set a new value for a readonly attribute doesn’t raise an error bothers my sensibilities,
but I understand how it can make using this feature a little bit less code-intensive.

You can get a list of all readonly attributes via the class method readonly_attributes.

>> Customer.readonly_attributes

=> #<Set: {"social_security_number"}>

5.4.16 Deleting and Destroying

Finally, if you want to remove a record from your database, you have two choices. If you already have a model
instance, you can destroy it:

>> bad_timesheet = Timesheet.find(1)

>> bad_timesheet.destroy

=> #<Timesheet id: 1, user_id: "1", submitted: nil,

created_at: "2006-11-21 05:40:27", updated_at: "2006-11-21 05:40:27">

The destroymethod will both remove the object from the database and prevent you from modifying it again:

>> bad_timesheet.user_id = 2

RuntimeError: can't modify frozen Hash

Note that calling save on an object that has been destroyed will fail silently. If you need to check whether an
object has been destroyed, you can use the destroyed? method.

The destroy method also has a complimentary bang method, destroy!. Calling destroy! on an object that
cannot be destroyed will result in an ActiveRecord::RecordNotDestroyed exception being raised.

You can also call destroy and delete as class methods, passing the id(s) to delete. Both variants accept a
single parameter or array of ids:

Working with Active Record 138

Timesheet.delete(1)

Timesheet.destroy([2, 3])

The naming might seem inconsistent, but it isn’t. The deletemethod uses SQL directly and does not load any
instances (hence it is faster). The destroymethod does load the instance of the Active Record object and then
calls destroy on it as an instance method. The semantic differences are subtle, but come into play when you
have assigned before_destroy callbacks or have dependent associations—child objects that should be deleted
automatically along with their parent object.

5.5 Database Locking

Locking is a term for techniques that prevent concurrent users of an application from overwriting each other’s
work. Active Record doesn’t normally use any type of database locking when loading rows of model data from
the database. If a given Rails application will only ever have one user updating data at the same time, then
you don’t have to worry about it.

However, whenmore than one user may be accessing and updating the exact same data simultaneously, then it
is vitally important for you as the developer to think about concurrency. Ask yourself, what types of collisions
or race conditions could happen if two users were to try to update a given model at the same time?

There are a number of approaches to dealing with concurrency in database-backed applications, two of which
are natively supported by Active Record: optimistic and pessimistic locking. Other approaches exist, such
as locking entire database tables. Every approach has strengths and weaknesses, so it is likely that a given
application will use a combination of approaches for maximum reliability.

5.5.1 Optimistic Locking

Optimistic locking describes the strategy of detecting and resolving collisions if they occur, and is commonly
recommended in multi-user situations where collisions should be infrequent. Database records are never
actually locked in optimistic locking, making it a bit of a misnomer.

Optimistic locking is a fairly common strategy, because so many applications are designed such that a
particular user will mostly be updating with data that conceptually belongs to him and not other users, making
it rare that two users would compete for updating the same record. The idea behind optimistic locking is that
since collisions should occur infrequently, we’ll simply deal with them only if they happen.

5.5.1.1 Implementation

If you control your database schema, optimistic locking is really simple to implement. Just add an integer
column named lock_version to a given table, with a default value of zero.

Working with Active Record 139

1 class AddLockVersionToTimesheets < ActiveRecord::Migration

2

3 def change

4 add_column :timesheets, :lock_version, :integer, default: 0

5 end

6

7 end

Simply adding that lock_version column changes Active Record’s behavior. Now if the same record is loaded
as two different model instances and saved differently, the first instance will win the update, and the second
one will cause an ActiveRecord::StaleObjectError to be raised.

We can illustrate optimistic locking behavior with a simple spec:

1 describe Timesheet do

2 it "locks optimistically" do

3 t1 = Timesheet.create

4 t2 = Timesheet.find(t1.id)

5

6 t1.rate = 250

7 t2.rate = 175

8

9 expect(t1.save).to be_true

10 expect { t2.save }.to raise_error(ActiveRecord::StaleObjectError)

11 end

12 end

The spec passes, because calling save on the second instance raises the expected ActiveRecord::StaleObjectError
exception. Note that the savemethod (without the bang) returns false and does not raise exceptions if the save
fails due to validation, but other problems such as locking in this case, can indeed cause it to raise exceptions.

To use a database column named something other than lock_version change the setting using locking_-

column. To make the change globally, add the following line to your config/application.rb:

config.active_record.locking_column = :alternate_lock_version

Like other Active Record settings, you can also change it on a per-model basis with a declaration in your
model class:

class Timesheet < ActiveRecord::Base

self.locking_column = :alternate_lock_version

end

Working with Active Record 140

5.5.1.2 Handling StaleObjectError

Now of course, after adding optimistic locking, you don’t want to just leave it at that, or the end user who is
on the losing end of the collision would simply see an application error screen. You should try to handle the
StaleObjectError as gracefully as possible.

Depending on the criticality of the data being updated, you might want to invest time into crafting a user-
friendly solution that somehow preserves the changes that the loser was trying to make. At minimum, if the
data for the update is easily re-creatable, let the user know why their update failed with controller code that
looks something like the following:

1 def update

2 timesheet = Timesheet.find(params[:id])

3 timesheet.update(params[:timesheet])

4 # redirect somewhere

5 rescue ActiveRecord::StaleObjectError

6 flash[:error] = "Timesheet was modified while you were editing it."

7 redirect_to [:edit, timesheet]

8 end

There are some advantages to optimistic locking. It doesn’t require any special feature in the database,
and it is fairly easy to implement. As you saw in the example, very little code is required to handle the
StaleObjectError.

The main disadvantages to optimistic locking are that update operations are a bit slower because the lock
version must be checked, and the potential for bad user experience, since they don’t find out about the failure
until after they’ve potentially lost data.

5.5.2 Pessimistic Locking

Pessimistic locking requires special database support (built into the major databases) and locks down specific
database rows during an update operation. It prevents another user from reading data that is about to be
updated, in order to prevent them from working with stale data.

Pessimistic locking works in conjunction with transactions as in the following example:

1 Timesheet.transaction do

2 t = Timesheet.lock.first

3 t.approved = true

4 t.save!

5 end

It’s also possible to call lock! on an existing model instance, which simply calls reload(lock: true) under
the covers. You wouldn’t want to do that on an instance with attribute changes since it would cause them to
be discarded by the reload. If you decide you don’t want the lock anymore, you can pass false to the lock!
method.

Working with Active Record 141

Pessimistic locking takes place at the database level. The SELECT statement generated by Active Record will
have a FOR UPDATE (or similar) clause added to it, causing all other connections to be blocked from access
to the rows returned by the select statement. The lock is released once the transaction is committed. There
are theoretically situations (Rails process goes boom mid-transaction?!) where the lock would not be released
until the connection is terminated or times out.

5.5.3 Considerations

Web applications scale best with optimistic locking, which as we’ve discussed doesn’t really use any database-
level locking at all. However, you have to add application logic to handle failure cases. Pessimistic locking is
a bit easier to implement, but can lead to situations where one Rails process is waiting on another to release
a database lock, that is, waiting and not serving any other incoming requests. Remember that Rails processes
are typically single-threaded.

In my opinion, pessimistic locking should not be super dangerous as it is on other platforms, since in Rails we
don’t ever persist database transactions across more than a single HTTP request. In fact, it would be impossible
to do that in a shared-nothing architecture. (If you’re running Rails with JRuby and doing crazy things like
storing Active Record object instances in a shared session space, all bets are off.)

A situation to be wary of would be one where you have many users competing for access to a particular
record that takes a long time to update. For best results, keep your pessimistic-locking transactions small and
make sure that they execute quickly.

5.6 Where Clauses

In mentioning Active Record’s find method earlier in the chapter, we didn’t look at the wealth of options
available in addition to finding by primary key and the first, last and allmethods. Each method discussed
here returns an ActiveRecord::Relation - a chainable object that is lazy evaluated against the database only
when the actual records are needed.

5.6.1 where(*conditions)

It’s very common to need to filter the result set of a find operation (just a SQL SELECT under the covers) by
adding conditions (to the WHERE clause). Active Record gives you a number of ways to do just that with the
where method.

The conditions parameter can be specified as a string or a hash. Parameters are automatically sanitized to
prevent SQL-injection attacks.

Passing a hash of conditions will construct a where clause containing a union of all the key/value pairs. If all
you need is equality, versus, say LIKE criteria, I advise you to use the hash notation, since it’s arguably the
most readable of the styles.

Product.where(sku: params[:sku])

The hash notation is smart enough to create an IN clause if you associate an array of values with a particular
key.

Working with Active Record 142

Product.where(sku: [9400,9500,9900])

The simple string form can be used for statements that don’t involve data originating outside of your app. It’s
most useful for doing LIKE comparisons, as well as greater-than/less-than and the use of SQL functions not
already built into Active Record. If you do choose to use the string style, additional arguments to the where
method will be treated as query variables to insert into the where clause.

Product.where('description like ? and color = ?', "%#{terms}%", color)

Product.where('sku in (?)', selected_skus)

..

where.not

The Active Record query interface for the most part abstracts SQL from the developer. However, there is a
condition that always requires using pure string conditions in a where clause, specifying a NOT condition
with <> or !=, depending on the database. Starting in Rails 4, query method not has been added to rectify
this.

To use the new query method, it must be chained to a where clause with no arguments:

Article.where.not(title: 'Rails 3')

>> SELECT "articles".* FROM "articles"

WHERE ("articles"."title" != 'Rails 3')

The not query method can also accept an array to ensure multiple values are not in a field:

Article.where.not(title: ['Rails 3', 'Rails 5'])

>> SELECT "articles".* FROM "articles"

WHERE ("articles"."title" NOT IN ('Rails 3', 'Rails 5'))

5.6.1.1 Bind Variables

When using multiple parameters in the conditions, it can easily become hard to read exactly what the fourth
or fifth question mark is supposed to represent. In those cases, you can resort to named bind variables instead.
That’s done by replacing the question marks with symbols and supplying a hash with values for the matching
symbol keys as a second parameter.

Product.where("name = :name AND sku = :sku AND created_at > :date",

name: "Space Toilet", sku: 80800, date: '2009-01-01')

During a quick discussion on IRC about this final form, Robby Russell gave me the following clever snippet:

Working with Active Record 143

Message.where("subject LIKE :foo OR body LIKE :foo", foo: '%woah%')

In other words, when you’re using named placeholders (versus question mark characters) you can use the
same bind variable more than once. Like, whoa!

Simple hash conditions like this are very common and useful, but they will only generate conditions based
on equality with SQL’s AND operator.

User.where(login: login, password: password).first

If you want logic other than AND, you’ll have to use one of the other forms available.

5.6.1.2 Boolean Conditions

It’s particularly important to take care in specifying conditions that include boolean values. Databases have
various different ways of representing boolean values in columns. Some have native boolean datatypes, and
others use a single character, often 1 and 0 or T and F (or even Y and N). Rails will transparently handle the
data conversion issues for you if you pass a Ruby boolean object as your parameter:

Timesheet.where('submitted = ?', true)

5.6.1.3 Nil Conditions

Rails expert Xavier Noria reminds us to take care in specifying conditions that might be nil. Using a question
mark doesn’t let Rails figure out that a nil supplied as the value of a condition should probably be translated
into IS NULL in the resulting SQL query.

Compare the following two find examples and their corresponding SQL queries to understand this common
gotcha. The first example does not work as intended, but the second one does work:

>> User.where('email = ?', nil)

User Load (151.4ms) SELECT * FROM users WHERE (email = NULL)

>> User.where(:email => nil)

User Load (15.2ms) SELECT * FROM users WHERE (users.email IS NULL)

5.6.2 order(*clauses)

The ordermethod takes one or more symbols (representing column names) or a fragment of SQL, specifying
the desired ordering of a result set:

Timesheet.order('created_at desc')

The SQL spec defaults to ascending order if the ascending/descending option is omitted, which is exactly
what happens if you use symbols.

Working with Active Record 144

Timesheet.order(:created_at)

As of Rails 4, order can also accept hash arguments, eliminating the need of writing SQL for descending order
clauses.

Timesheet.order(created_at: :desc)

Wilson says…
The SQL spec doesn’t prescribe any particular ordering if no ‘order by’ clause is specified in the
query. That seems to trip people up, since the common belief is that ‘ORDER BY id ASC’ is the
default.

5.6.2.1 Random Ordering

The value of the :order option is not validated by Rails, whichmeans you can pass any code that is understood
by the underlying database, not just column/direction tuples. An example of why that is useful is when
wanting to fetch a random record:

1 # MySQL

2 Timesheet.order('RAND()')

3

4 # Postgres

5 Timesheet.order('RANDOM()')

6

7 # Microsoft SQL Server

8 Timesheet.order('NEWID()') # uses random uuids to sort

9

10 # Oracle

11 Timesheet.order('dbms_random.value').first

Remember that ordering large datasets randomly is known to perform terribly on most databases, particularly
MySQL.

Tim says…
A clever, performant and portable way to get a random record is to generate a random offset in
Ruby.

Timsheet.limit(1).offset(rand(Timesheet.count)).first

Working with Active Record 145

5.6.3 limit(number) and offset(number)

The limitmethod takes an integer value establishing a limit on the number of rows to return from the query.
The offset method, which must be chained to limit, specifies the number of rows to skip in the result set
and is 0-indexed. (At least it is in MySQL. Other databases may be 1-indexed.) Together these options are used
for paging results.

For example, a call to find for the second page of 10 results in a list of timesheets is:

Timesheet.limit(10).offset(10)

Depending on the particulars of your application’s data model, it may make sense to always put some limit
on the maximum amount of Active Record objects fetched in any one specific query. Letting the user trigger
unbounded queries pulling thousands of Active Record objects into Rails at one time is a recipe for disaster.

5.6.4 select(*clauses)

By default, Active Record generates SELECT * FROM queries, but it can be changed if, for example, you want
to do a join, but not include the joined columns. Or if you want to add calculated columns to your result set,
like this:

>> b = BillableWeek.select("mon_hrs + tues_hrs as two_day_total").first

=> #<BillableWeek ...>

>> b.two_day_total

=> 16

Now, if you actually want to fully use objects with additional attributes that you’ve added via the select

method, don’t forget the * clause:

>> b = BillableWeek.select(:*, "mon_hrs + tues_hrs as two_day_total").first

=> #<BillableWeek id: 1...>

Keep in mind that columns not specified in the query, whether by * or explicitly, will not be populated in
the resulting objects! So, for instance, continuing the first example, trying to access created_at on b has
unexpected results:

ActiveModel::MissingAttributeError: missing attribute: created_at

5.6.5 from(*tables)

The from method allows you to modify the table name(s) portion of the SQL statements generated by Active
Record. You can provide a custom value if you need to include extra tables for joins, or to reference a database
view.

Here’s an example of usage from an application that features tagging:

Working with Active Record 146

1 def self.find_tagged_with(list)

2 select("#{table_name}.*").

3 from("#{table_name}, tags, taggings").

4 where("#{table_name}.#{primary_key} = taggings.taggable_id

5 and taggings.tag_id = tags.id

6 and tags.name IN (?)",

7 Tag.parse(list))

8 end

(If you’re wondering why table_name is used instead of a an explicit value, it’s because this code is mixed
into a target class using Ruby modules. That subject is covered in Chapter 9, “Advanced Active Record”.)

5.6.6 exists?

A convenience method for checking the existence of records in the database is included in ActiveRecord as
the aptly named exists?method. It takes similar arguments to find and instead of returning records returns
a boolean for whether or not the query has results.

>> User.create(login: "mack")

=> #<User id: 1, login: "mack">

>> User.exists?(1)

=> true

>> User.exists?(login: "mack")

=> true

>> User.exists?(id: [1, 3, 5])

=> true

>> User.where(login: "mack").exists?

=> true

5.6.7 extending(*modules, &block)

Specifies one or many modules with methods that will extend the scope with additional methods.

1 module Pagination

2 def page(number)

3 # pagination code

4 end

5 end

6

7 scope = Model.all.extending(Pagination)

8 scope.page(params[:page])

5.6.8 group(*args)

Specifies a GROUP BY SQL-clause to add to the query generated by Active Record. Generally you’ll want
to combine :group with the :select option, since valid SQL requires that all selected columns in a grouped
SELECT be either aggregate functions or columns.

Working with Active Record 147

>> users = Account.select('name, SUM(cash) as money').group('name').to_a

=> [#<User name: "Joe", money: "3500">, #<User name: "Jane", money: "9245">]

Keep in mind that those extra columns you bring back might sometimes be strings if Active Record doesn’t try
to typecast them. In those cases, you’ll have to use to_i and to_f to explicitly convert the string to numeric
types.

>> users.first.money > 1_000_000

ArgumentError: comparison of String with 1000000 failed

from (irb):8:in '>'

5.6.9 having(*clauses)

If you need to perform a group query with a SQL HAVING clause, you use the having method

>> User.group("created_at").having(["created_at > ?", 2.days.ago])

=> [#<User name: "Joe", created_at: "2013-03-05 19:30:11">]

5.6.10 includes(*associations)

Active Record has the ability to eliminate “N+1” queries by letting you specify what associations to eager
load using the includes method or option in your finders. Active Record will load those relationships with
the minimum number of queries possible.

To eager load first degree associations, provide includeswith an array of association names. When accessing
these a database hit to load each one will no longer occur.

>> users = User.where(login: "mack").includes(:billable_weeks)

=> [#<User login: "mack">]

>> users.first.billable_weeks.each { |week| puts week }

=> #<Week start_date: "2008-05-01 00:00:00">

For second degree associations, provide a hash with the array as the value for the hash key.

>> clients = Client.includes(users: [:avatar])

=> [#<Client id: 1, name: "Hashrocket">]

You may add more inclusions following the same pattern.

Working with Active Record 148

>> Client.includes(

users: [:avatar, { timesheets: :billable_weeks }]

)

=> [#<Client id: 1, name: "Hashrocket">]

Similarly to includes, you may use eager_load or preload with the same syntax.

>> Client.eager_load(

users: [:avatar, { timesheets: :billable_weeks }]

)

=> [#<Client id: 1, name: "Hashrocket">]

>> Client.preload(

users: [:avatar, { timesheets: :billable_weeks }]

)

=> [#<Client id: 1, name: "Hashrocket">]

5.6.11 joins

The joinsmethod can be useful when you’re grouping and aggregating data from other tables, but you don’t
want to load the associated objects.

Buyer.select('buyers.id, count(carts.id) as cart_count').

joins('left join carts on carts.buyer_id = buyers.id').

group('buyers.id')

However, the most common usage of the join method is to allow you to eager-fetch additional objects in a
single SELECT statement, a technique that is discussed at length in Chapter 7, “Active Record Associations”.

5.6.12 none

Being introduced in Rails 4 is ActiveRecord::QueryMethods.none, a chainable relation causes a query to
return zero records. The query method returns ActiveRecord::NullRelation which is an implementation of
the Null Object patten. It is to be used in instances where you have a method which returns a relation, but
there is a condition in which you do not want the database to be queried. All subsequent chained conditions
will work without issue, eliminating the need to continuously check if the object your are working with is a
relation.

Working with Active Record 149

1 def visible

2 case role

3 when :reviewer

4 Post.published

5 when :bad_user

6 Post.none

7 end

8 end

9

10 # If chained, the following code will not break for users

11 # with a :bad_user role

12 posts = current_user.visible.where(name: params[:name])

5.6.13 readonly

Chaining the readonlymethod marks returned objects as read-only. You can change their attributes, but you
won’t be able to save them back to the database.

>> c = Comment.readonly.first

=> #<Comment id: 1, body: "Hey beeyotch!">

>> c.body = "Keep it clean!"

=> "Keep it clean!"

>> c.save

ActiveRecord::ReadOnlyRecord: ActiveRecord::ReadOnlyRecord

5.6.14 references

The query method references is used to indicate that an association is referenced by a SQL string and
therefore be joined over being loaded separately. As of Rails 4.1, adding a string condition of an included
reference will result in an exception being raised.

Here is an example that selects all Teams which have a member named Tyrion:

>> Team.includes(:members).where('members.name = ?', 'Tyrion')

SQLite3::SQLException: no such column: members.name: SELECT "teams".*

FROM "teams" WHERE (members.name = 'Tyrion')

ActiveRecord::StatementInvalid: SQLite3::SQLException: no such column:

members.name: SELECT "teams".* FROM "teams" WHERE (members.name =

'Tyrion')

...

To get the above example to work in Rails 4.1, we must include query method references with the name of
the association to join.

Working with Active Record 150

Team.includes(:members).

where("members.name = ?", 'Tyrion').references(:members)

However, if you were using the hash syntax with association conditions, it would still perform a LEFT OUTER
JOIN without any exception being raised:

Team.includes(:members).where(members: { name: 'Tyrion' })

Note that ordering string SQL snippets on included associations will still work the same way without the need
of references:

Team.includes(:members).order('members.name')

5.6.15 reorder

Using reorder, you can replace any existing defined order on a given relation.

>> Member.order('name DESC').reorder(:id)

Member Load (0.6ms) SELECT "members".* FROM "members" ORDER BY

"members"."id" ASC

Any subsequent calls to order will be appended to the query.

>> Member.order('name DESC').reorder(:id).order(:name)

Member Load (0.6ms) SELECT "members".* FROM "members" ORDER BY

"members".name ASC, "members"."id" ASC

5.6.16 reverse_order

A convenience method to reverse an existing order clause on a relation.

>> Member.order(:name).reverse_order

Member Load (0.4ms) SELECT "members".* FROM "members" ORDER BY

"members".name DESC

5.6.17 uniq / distinct

If you need to perform a query with a DISTINCT SQL-clause, you can use the uniq method.

>> User.select(:login).uniq

User Load (0.2ms) SELECT DISTINCT login FROM "users"

5.6.18 unscope(*args)

The unscope query method is useful when you want to remove an unwanted relation without reconstructing
the entire relation chain. For example, to remove an order clause from a relation, add unscope(:order):

Working with Active Record 151

>> Member.order('name DESC').unscope(:order)

SELECT "members".* FROM "members"

Additionally, one can pass a hash as an argument to unscope specific :where values. This will cause only the
value specified to not be included in the where clause.

Member.where(name: "Tyrion", active: true).unscope(where: :name)

is equivalent to

Member.where(active: true)

The following is a listing of the query methods unscope accepts:

• :from

• :group

• :having

• :includes

• :joins

• :limit

• :lock

• :offset

• :order

• :readonly

• :select

• :where

5.6.19 arel_table

For cases in which you want to generate custom SQL yourself through Arel, you may use the arel_table

method to gain access to the Table for the class.

>> users = User.arel_table

>> users.where(users[:login].eq("mack")).to_sql

=> "SELECT `users`.`id`, `users`.`login` FROM `users` WHERE `users`.`login` = 'mack'"

You can consult the Arel documentation directly on how to construct custom queries using its DSL.¹

¹https://github.com/rails/arel/

https://github.com/rails/arel/

Working with Active Record 152

5.7 Connections to Multiple Databases in Different Models

Connections are created via ActiveRecord::Base.establish_connection and retrieved by ActiveRecord::Base.connection.
All classes inheriting from ActiveRecord::Base will use this connection. What if you want some of your
models to use a different connection? You can add class-specific connections.

For example, let’s say need to access data residing in a legacy database apart from the database used by the
rest of your Rails application. We’ll create a new base class that can be used by models that access legacy data.
Begin by adding details for the additional database under its own key in database.yml. Then call establish_-
connection to make LegacyProjectBase and all its subclasses use the alternate connection instead.

1 class LegacyProjectBase < ActiveRecord::Base

2 establish_connection :legacy_database

3 self.abstract_class = true

4 ...

5 end

Incidentally, tomake this exampleworkwith subclasses, youmust specify self.abstract_class = true in the
class context. Otherwise, Rails considers the subclasses of LegacyProject to be using single-table inheritance
(STI), which we discuss at length in Chapter 9, “Advanced Active Record”.

Xavier says…
You can easily point your base class to different databases depending on the Rails environment like
this:

1 class LegacyProjectBase < ActiveRecord::Base

2 establish_connection "legacy_#{Rails.env}"

3 self.abstract_class = true

4 ...

5 end

Then just add multiple entries to database.yml to match the resulting connection names. In the
case of our example, legacy_development, legacy_test, etc.

The establish_connectionmethod takes a string (or symbol) key pointing to a configuration already defined
in database.yml. Alternatively, you can pass it a literal hash of options, although it’s messy to put this sort
of configuration data right into your model file instead of database.yml

class TempProject < ActiveRecord::Base

establish_connection adapter: 'sqlite3', database: ':memory:'

...

end

Rails keeps database connections in a connection pool inside the ActiveRecord::Base class instance. The
connection pool is simply a Hash object indexed by Active Record class. During execution, when a connection

Working with Active Record 153

is needed, the retrieve_connection method walks up the class-hierarchy until a matching connection is
found.

5.8 Using the Database Connection Directly

It is possible to use Active Record’s underlying database connections directly, and sometimes it is useful to do
so from custom scripts and for one-off or ad-hoc testing. Access the connection via the connection attribute
of any Active Record class. If all your models use the same connection, then use the connection attribute of
ActiveRecord::Base.

ActiveRecord::Base.connection.execute("show tables").values

The most basic operation that you can do with a connection is simply to execute a SQL statement from the
DatabaseStatements module. For example, Listing 5.1 shows a method that executes a SQL file statement by
statement.

Listing 5.1: Execute a SQL file line by line using active record’s connection

1 def execute_sql_file(path)

2 File.read(path).split(';').each do |sql|

3 begin

4 ActiveRecord::Base.connection.execute(#{sql}\n") unless sql.blank?

5 rescue ActiveRecord::StatementInvalid

6 $stderr.puts "warning: #{$!}"

7 end

8 end

9 end

5.8.1 The DatabaseStatements Module

The ActiveRecord::ConnectionAdapters::DatabaseStatementsmodule mixes a number of useful methods
into the connection object that make it possible to work with the database directly instead of using Active
Record models. I’ve purposely left out some of the methods of this module because they are used internally by
Rails to construct SQL statements dynamically and I don’t think they’re of much use to application developers.

For the sake of readability in the select_ examples below, assume that the connection object has been assigned
to conn, like this:

conn = ActiveRecord::Base.connection

5.8.1.1 begin_db_transaction()

Begins a database transaction manually (and turns off Active Record’s default autocommitting behavior).

Working with Active Record 154

5.8.1.2 commit_db_transaction()

Commits the transaction (and turns on Active Record’s default autocommitting behavior again).

5.8.1.3 delete(sql_statement)

Executes a SQL DELETE statement provided and returns the number of rows affected.

5.8.1.4 execute(sql_statement)

Executes the SQL statement provided in the context of this connection. This method is abstract in the
DatabaseStatements module and is overridden by specific database adapter implementations. As such, the
return type is a result set object corresponding to the adapter in use.

5.8.1.5 insert(sql_statement)

Executes an SQL INSERT statement and returns the last autogenerated ID from the affected table.

5.8.1.6 reset_sequence!(table, column, sequence = nil)

Used in Oracle and Postgres; updates the named sequence to the maximum value of the specified table’s
column.

5.8.1.7 rollback_db_transaction()

Rolls back the currently active transaction (and turns on auto-committing). Called automatically when a
transaction block raises an exception or returns false.

5.8.1.8 select_all(sql_statement)

Returns an array of record hashes with the column names as keys and column values as values.

conn.select_all("select name from businesses limit 5")

=> [{"name"=>"Hopkins Painting"}, {"name"=>"Whelan & Scherr"},

{"name"=>"American Top Security Svc"}, {"name"=>"Life Style Homes"},

{"name"=>"378 Liquor Wine & Beer"}]

5.8.1.9 select_one(sql_statement)

Works similarly to select_all, but returns only the first row of the result set, as a single Hash with the
column names as keys and column values as values. Note that this method does not add a limit clause to your
SQL statement automatically, so consider adding one to queries on large datasets.

Working with Active Record 155

>> conn.select_one("select name from businesses")

=> {"name"=>"New York New York Salon"}

5.8.1.10 select_value(sql_statement)

Works just like select_one, except that it returns a single value: the first column value of the first row of the
result set.

>> conn.select_value("select * from businesses limit 1")

=> "Cimino's Pizza"

5.8.1.11 select_values(sql_statement)

Works just like select_value, except that it returns an array of the values of the first column in all the rows
of the result set.

>> conn.select_values("select * from businesses limit 5")

=> ["Ottersberg Christine E Dds", "Bally Total Fitness", "Behboodikah,

Mahnaz Md", "Preferred Personnel Solutions", "Thoroughbred Carpets"]

5.8.1.12 update(sql_statement)

Executes the update statement provided and returns the number of rows affected. Works exactly like delete.

5.8.2 Other Connection Methods

The full list of methods available on connection, which returns an instance of the underlying database adapter,
is fairly long. Most of the Rails adapter implementations define their own custom versions of these methods.
That makes sense, since all databases have slight variations in how they handle SQL and very large variations
in how they handle extended commands, such as for fetching metadata.

A peek at abstract_adapter.rb shows us the default method implementations:

1 ...

2

3 # Returns the human-readable name of the adapter. Use mixed case - one

4 # can always use downcase if needed.

5 def adapter_name

6 'Abstract'

7 end

8

9 # Does this adapter support migrations? Backend specific, as the

10 # abstract adapter always returns +false+.

11 def supports_migrations?

12 false

Working with Active Record 156

13 end

14

15 # Can this adapter determine the primary key for tables not attached

16 # to an Active Record class, such as join tables? Backend specific, as

17 # the abstract adapter always returns +false+.

18 def supports_primary_key?

19 false

20 end

21

22 ...

In the following list of method descriptions and code samples, I’m accessing the connection of our sample
time_and_expenses application in the Rails console, and again I’ve assigned connection to a local variable
named conn, for convenience.

5.8.2.1 active?

Indicates whether the connection is active and ready to perform queries.

5.8.2.2 adapter_name

Returns the human-readable name of the adapter, as in the following example:

>> conn.adapter_name

=> "SQLite"

5.8.2.3 disconnect! and reconnect!

Closes the active connection or closes and opens a new one in its place, respectively.

5.8.2.4 raw_connection

Provides access to the underlying database connection. Useful for when you need to execute a proprietary
statement or you’re using features of the Ruby database driver that aren’t necessarily exposed in Active
Record. (In trying to come up with a code sample for this method, I was able to crash the Rails console with
ease. There isn’t much in the way of error checking for exceptions that you might raise while mucking around
with raw_connection.)

5.8.2.5 supports_count_distinct?

Indicates whether the adapter supports using DISTINCTwithin COUNT in SQL statements. This is true for all
adapters except SQLite, which therefore requires a workaround when doing operations such as calculations.

5.8.2.6 supports_migrations?

Indicates whether the adapter supports migrations.

Working with Active Record 157

5.8.2.7 tables

Produces a list of tables in the underlying database schema. It includes tables that aren’t usually exposed as
Active Record models, such as schema_info and sessions.

>> conn.tables

=> ["schema_migrations", "users", "timesheets", "expense_reports",

"billable_weeks", "clients", "billing_codes", "sessions"]

5.8.2.8 verify!(timeout)

Lazily verify this connection, calling active? only if it hasn’t been called for timeout seconds.

5.9 Other Configuration Options

In addition to the configuration options used to instruct Active Record on how to handle naming of tables
and primary keys, there are a number of other settings that govern miscellaneous functions. Set them in an
initializer.

5.9.0.9 ActiveRecord::Base.default_timezone

Tells Rails whether to use Time.local (using :local) or Time.utc (using :utc) when pulling dates and times
from the database. Defaults to :local

5.9.0.10 ActiveRecord::Base.schema_format

Specifies the format to use when dumping the database schema with certain default rake tasks. Use the
:sql option to have the schema dumped as potentially database-specific SQL statements. Just beware of
incompatibilities if you’re trying to use the :sql option with different databases for development and testing.
The default option is :ruby, which dumps the schema as an ActiveRecord::Schema file that can be loaded
into any database that supports migrations.

5.9.0.11 ActiveRecord::Base.store_full_sti_class

Specifies whether Active Record should store the full constant name including namespace when using Single-
Table Inheritance (STI), covered in Chapter 9, “Advanced Active Record”.

5.10 Conclusion

This chapter covered the fundamentals of Active Record, the framework included with Ruby on Rails for
creating database-bound model classes. We’ve learned how Active Record expresses the convention over
configuration philosophy that is such an important part of the Rails way, and how to make settings manually,
which override the conventions in place.

Working with Active Record 158

We’ve also looked at the methods provided by ActiveRecord::Base, the parent class of all persistent models
in Rails, which include everything you need to do basic CRUD operations: Create, Read, Update, and Delete.
Finally, we reviewed how to drill through Active Record to use the database connection whenever you need
to do so.

In the following chapter, we continue our coverage of Active Record by learning how migrations help evolve
an application’s database schema.

6 Active Record Migrations
Baby step to four o’clock. Baby step to four o’clock.

—Bob Wiley

It’s a fact of life that the database schema of your application will evolve over the course of development.
Tables are added, names of columns are changed, things are dropped—you get the picture. Without strict
conventions and process discipline for the application developers to follow, keeping the database schema in
proper lock-step with application code is traditionally a very troublesome job.

Migrations are Rails’ way of helping you to evolve the database schema of your application (also known as
its DDL) without having to drop and re-create the database each time you make a change. And not having
to drop and recreate the database each time a change happens means that you don’t lose your development
data. That may or may not be that important, but is usually very convenient. The only changes made when
you execute a migration are those necessary to move the schema from one version to another, whether that
move is forward or backward in time.

Of course, being able to evolve your schemawithout having to recreate your databases and the loading/reload-
ing of data is an order of magnitude more important once you’re in production.

6.1 Creating Migrations

Rails provides a generator for creating migrations.

$ rails generate migration

Usage:

rails generate migration NAME [field[:type][:index] field[:type][:index]] [options]

At minimum, you need to supply descriptive name for the migration in CamelCase (or underscored_text, both
work,) and the generator does the rest. Other generators, such as the model and scaffolding generators, also
create migration scripts for you, unless you specify the --skip-migration option.

The descriptive part of the migration name is up to you, but most Rails developers that I know try to make it
match the schema operation (in simple cases) or at least allude to what’s going on inside (in more complex
cases).

Note that if you change the classname of your migration to something that doesn’t match its filename, you
will get an uninitialized constant error when that migration gets executed.

Active Record Migrations 160

6.1.1 Sequencing Migrations

Prior to Rails 2.1, the migrations were sequenced via a simple numbering scheme baked into the name of the
migration file, and automatically handled by the migration generator. Each migration received a sequential
number. There were many inconveniences inherent in that approach, especially in team environments where
two developers could check in a migration with the same sequence number. Thankfully those issues have
been eliminated by using timestamps to sequence migrations.

Migrations that have already been run are listed in a special database table that Rails maintains. It is named
schema_migrations and only has one column:

mysql> desc schema_migrations;

+---------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+--------------+------+-----+---------+-------+

| version | varchar(255) | NO | PRI | NULL | |

+---------+--------------+------+-----+---------+-------+

1 row in set (0.00 sec)

When you pull down new migrations from source control, rake db:migrate will check the schema_-

migrations table and execute all migrations that have not yet run (even if they have earlier timestamps
than migrations that you’ve added yourself in the interim).

6.1.2 change

Introduced in version 3.1, Rails added the ability to define reversible migrations. In previous versions of Rails,
one would have to define two migration instance methods up and down. The upmethod included the the logic
of what to change in the database, while the down method included the logic on how to revert that change.
Using the change method, one only needs to specify the up logic for the majority of use cases.

The following migration file 20130313005347_create_clients.rb illustrates creating a new table named
clients:

1 class CreateClients < ActiveRecord::Migration

2 def change

3 create_table :clients do |t|

4 t.string :name

5 t.string :code

6 t.timestamps

7 end

8 end

9 end

As you can see in the example, the migration directive happens within instance method definition, change. If
we go to the command line in our project folder and type rake db:migrate, the clients table will be created.
Rails gives us informative output during the migration process so that we see what is going on:

Active Record Migrations 161

$ rake db:migrate

== CreateClients: migrating ==

-- create_table(:clients)

-> 0.0448s

== CreateClients: migrated (0.0450s) =================================

If you ever need to rollback to an earlier version of the schema, run use the migrate task, but pass it a version
number to rollback to, as in rake db:migrate VERSION=20130313005347.

6.1.3 reversible

If amigration is very complex, Active Recordmay not be able to reverse it without a little help. The reversible
method acts very similarly to to the up and down migration methods, that were common in previous versions
of Rails. Using reversible, one can specify operations to perform when running a migration, and others
when reverting it.

In the following example, the reversible method passes logic in a block to methods, up and down, to enable
and disable hstore support in a PostgreSQL database respectively.

1 def change

2 reversible do |dir|

3 dir.up do

4 execute("CREATE EXTENSION hstore")

5 end

6

7 dir.down do

8 execute("DROP EXTENSION hstore")

9 end

10 end

11

12 add_column :users, :preferences, :hstore

13 end

6.1.4 Irreversible Migrations

Some transformations are destructive in a manner that cannot be reversed. Migrations of that kind should
raise an ActiveRecord::IrreversibleMigration exception in their reversible down block. For example, what
if someone on your team made a silly mistake and defined the telephone column of your clients table as an
integer? You can change the column to a string and the data will migrate cleanly, but going from a string to
an integer? Not so much.

Active Record Migrations 162

1 def change

2 reversible do |dir|

3 dir.up do

4 # Phone number fields are not integers, duh!

5 change_column :clients, :phone, :string

6 end

7

8 dir.down { raise ActiveRecord::IrreversibleMigration }

9 end

10 end

6.1.5 create_table(name, options, &block)

The create_tablemethod needs at minimum a name for the table and a block containing column definitions.
Why do we specify identifiers with symbols instead of strings? Both will work, but symbols require one less
keystroke.

The create_table method makes a huge, but usually true assumption that we want an auto-incrementing,
integer-typed, primary key. That is why you don’t see it declared in the list of columns. If that assumption
happens to be wrong, it’s time to pass create_table some options in a hash.

For example, howwould you define a simple join table consisting of two foreign key columns and not needing
its own primary key? Just pass the create_tablemethod an :id option set to false, as a boolean, not a symbol!
It will stop the migration from auto-generating a primary key altogether:

1 create_table :ingredients_recipes, id: false do |t|

2 t.column :ingredient_id, :integer

3 t.column :recipe_id, :integer

4 end

Alternatively, the same functionality can be achieved using the create_join_table method, covered later in
the chapter.

If all you want to do is change the name of the primary key column from its default of ‘id’, pass the :id option
a symbol instead. For example, let’s say your corporation mandates that primary keys follow the pattern
tablename_id. Then the earlier example would look as follows:

1 create_table :clients, id: :clients_id do |t|

2 t.column :name, :string

3 t.column :code, :string

4 t.column :created_at, :datetime

5 t.column :updated_at, :datetime

6 end

The force: true option tells the migration to go ahead and drop the table being defined if it exists. Be careful
with this one, since it will produce (possibly unwanted) data loss when run in production. As far as I know,

Active Record Migrations 163

the :force option is mostly useful for making sure that the migration puts the database in a known state, but
isn’t all that useful on a daily basis.

The :options option allows you to append custom instructions to the SQLCREATE statement and is useful for
adding database-specific commands to your migration. Depending on the database you’re using, you might
be able to specify things such as character set, collation, comments, min/max sizes, and many other properties
using this option.

The temporary: true option specifies creation of a temporary table that will only exist during the current
connection to the database. In other words, it only exists during the migration. In advanced scenarios, this
option might be useful for migrating big sets of data from one table to another, but is not commonly used.

Sebastian says…
A little known fact is that you can remove oldmigration files (while still keeping newer ones) to keep
the db/migrate folder to a manageable size. You can move the older migrations to a db/archived_-
migrations folder or something like that. Once you do trim the size of your migrations folder, use
the rake db:reset task to (re)create your database from db/schema.rb and load the seeds into your
current environment.

6.1.6 change_table(table_name, &block)

Basically works just like create_table and accepts the same kinds of column definitions.

6.1.7 create_join_table

In Rails 4, a new migration method create_join_table has been added to easily create HABTM join tables.
The create_join_table accepts at minimum the names of two tables.

create_join_table :ingredients, :recipes

The preceding code example will create a table named ‘ingredients_recipes’ with no primary key.

The create_join_table also accepts an options hash where you can specify the following:

:table_name

If you do not agree with the Rails convention of concatenating both tables names with an underscore,
the :table_name option allows setting an override.

:column_options

Add any extra options to append to the foreign key column definitions.

:options, :temporary, and :force

Accept the same interface as the equivalent options found in create_table.

Active Record Migrations 164

6.1.8 API Reference

The following table details the methods that are available in the context of create_table and change_table

methods within a migration class.

6.1.8.1 change(column_name, type, options = {})

Changes the column’s definition according to the new options. The options hash optionally contains a hash
with arguments that correspond to the options used when adding columns.

t.change(:name, :string, limit: 80)

t.change(:description, :text)

6.1.8.2 change_default(column_name, default)

Sets a new default value for a column.

t.change_default(:qualification, 'new')

t.change_default(:authorized, 1)

6.1.8.3 column(column_name, type, options = {})

Adds a new column to the named table. Uses the same kind of options detailed in Section “Defining Columns”.

t.column(:name, :string)

Note that you can also use the short-hand version by calling it by type. This adds a column (or columns) of
the specified type (string, text, integer, float, decimal, datetime, timestamp, time, date, binary, boolean).

t.string(:goat)

t.string(:goat, :sheep)

t.integer(:age, :quantity)

6.1.8.4 index(column_name, options = {})

Adds a new index to the table. The column_name parameter can be one symbol or an array of symbols referring
to columns to be indexed. The name parameter lets you override the default name that would otherwise be
generated.

Active Record Migrations 165

a simple index

t.index(:name)

a unique index

t.index([:branch_id, :party_id], unique: true)

a named index

t.index([:branch_id, :party_id], unique: true, name: 'by_branch_party')

..

Partial Indices
As of Rails 4, the indexmethod added support for partial indices via the :where option. The main benefit of
using a partial index is to reduce the size of an index for commonly used queries within an application.

For example, let’s assume a Rails application queries constantly for clients that have a status of “active”
within the system. Instead of creating an index on the status column for every client record, we can include
only those records that meet the specified criteria:

add_index(:clients, :status, where: 'active')

Partial indices can only can only be used with an application using a PostgreSQL database.

6.1.8.5 belongs_to(args) and references(args)

These two methods are aliases to each other. They add a foreign key column to another model, using Active
Record naming conventions. Optionally adds a _type column if the :polymorphic option is set to true.

1 create_table :accounts do

2 t.belongs_to(:person)

3 end

4

5 create_table :comments do

6 t.references(:commentable, polymorphic: true)

7 end

A common best practice is to create an index for each foreign key in your database tables. It’s so common, that
Rails 4 has introduced an :index option to the references and belongs_tomethods, that creates an index for
the column immediately after creation. The index option accepts a boolean value or the same hash options
as the index method, covered in the preceding section.

Active Record Migrations 166

create_table :accounts do

t.belongs_to(:person, index: true)

end

6.1.8.6 remove(*column_names)

Removes the column(s) specified from the table definition.

t.remove(:qualification)

t.remove(:qualification, :experience)

6.1.8.7 remove_index(options = {})

Removes the given index from the table.

remove the accounts_branch_id_index from the accounts table

t.remove_index column: :branch_id

remove the accounts_branch_id_party_id_index from the accounts table

t.remove_index column: [:branch_id, :party_id]

remove the index named by_branch_party in the accounts table

t.remove_index name: :by_branch_party

6.1.8.8 remove_references(*args) and remove_belongs_to

Removes a reference. Optionally removes a type column.

t.remove_belongs_to(:person)

t.remove_references(:commentable, polymorphic: true)

6.1.8.9 remove_timestamps

Here’s a method that you will never use, unless you forgot to add timestamps in the create_table block and
do it in a later migration. It removes the timestamp columns. (created_at and updated_at) from the table.

6.1.8.10 rename(column_name, new_column_name)

Renames a column. The old name comes first, a fact that I usually can’t remember.

t.rename(:description, :name)

6.1.8.11 revert

If you have ever wanted to revert a specific migration file explicitly within another migration, now you
can. The revert method can accept the name of a migration class, which when executed, reverts the given
migration.

Active Record Migrations 167

revert CreateProductsMigration

The revert method can also accept a block of directives to reverse on execution.

6.1.8.12 timestamps

Adds Active Record-maintained timestamp (created_at and updated_at) columns to the table.

t.timestamps

6.1.9 Defining Columns

Columns can be added to a table using either the columnmethod, inside the block of a create_table statement,
or with the add_column method. Other than taking the name of the table to add the column to as its first
argument, the methods work identically.

1 create_table :clients do |t|

2 t.column :name, :string

3 end

4

5 add_column :clients, :code, :string

6 add_column :clients, :created_at, :datetime

The first (or second) parameter obviously specifies the name of the column, and the second (or third) obviously
specifies its type. The SQL92 standard defines fundamental data types, but each database implementation has
its own variation on the standards.

If you’re familiar with database column types, when you examine the preceding example it might strike you
as a little weird that there is a database column declared as type string, since databases don’t have string
columns—they have char or varchars types.

6.1.9.1 Column Type Mappings

The reason for declaring a database column as type string is that Rails migrations are meant to be database-
agnostic. That’s why you could (as I’ve done on occasion) develop using Postgres as your database and deploy
in production to Oracle.

A complete discussion of how to go about choosing the right data type for your application needs is outside
the scope of this book. However, it is useful to have a reference of how migration’s generic types map to
database-specific types. The mappings for the databases most commonly used with Rails are in Table 6.1.

Active Record Migrations 168

Migration
Type

MySQL Postgres SQLite Oracle Ruby Class

:binary blob bytea blob blob String
:boolean tinyint(1) boolean boolean number(1) Boolean
:date date date date date Date
:datetime datetime timestamp datetime date Time
:decimal decimal decimal decimal decimal BigDecimal
:float float float float number Float
:integer int(11) integer integer number(38) Fixnum
:string varchar(255) character

varying(255)
varchar(255) varchar2(255) String

:text text text text clob String
:time time time time date Time
:timestamp datetime timestamp datetime date Time

Each connection adapter class has a native_database_types hash which establishes the mapping described
in Table 6.1. If you need to look up the mappings for a database not listed in Table 6.1, you can pop
open the adapter Ruby code and find the native_database_types hash, like the following one inside the
PostgreSQLAdapter class within postgresql_adapter.rb:

1 NATIVE_DATABASE_TYPES = {

2 primary_key: "serial primary key",

3 string: { name: "character varying", limit: 255 },

4 text: { name: "text" },

5 integer: { name: "integer" },

6 float: { name: "float" },

7 decimal: { name: "decimal" },

8 datetime: { name: "timestamp" },

9 timestamp: { name: "timestamp" },

10 time: { name: "time" },

11 date: { name: "date" },

12 daterange: { name: "daterange" },

13 numrange: { name: "numrange" },

14 tsrange: { name: "tsrange" },

15 tstzrange: { name: "tstzrange" },

16 int4range: { name: "int4range" },

17 int8range: { name: "int8range" },

18 binary: { name: "bytea" },

19 boolean: { name: "boolean" },

20 xml: { name: "xml" },

21 tsvector: { name: "tsvector" },

22 hstore: { name: "hstore" },

23 inet: { name: "inet" },

24 cidr: { name: "cidr" },

25 macaddr: { name: "macaddr" },

26 uuid: { name: "uuid" },

27 json: { name: "json" },

Active Record Migrations 169

28 ltree: { name: "ltree" }

29 }

As you may have noticed in the previous code example, the PostgreSQL adapter includes a large amount of
column type mappings that are not available in other databases. Note that using these unique PostgreSQL
column types will make a Rails application no longer database agnostic. We cover why you may want to use
some of these column types, such as hstore and array in Chapter 9, Advanced Active Record.

6.1.9.2 Column Options

For many column types, just specifying type is not enough information. All column declarations accept the
following options:

default: value

Sets a default to be used as the initial value of the column for new rows. You don’t ever need to explicitly set
the default value to null. Just leave off this option to get a null default value. It’s worth noting that MySQL
5.x ignores default values for binary and text columns.

limit: size

Adds a size parameter to string, text, binary, or integer columns. Its meaning varies depending on the column
type that it is applied to. Generally speaking, limits for string types refers to number of characters, whereas
for other types it specifies the number of bytes used to store the value in the database.

null: false

Makes the column required at the database level by adding a not null constraint.

6.1.9.3 Decimal Precision

Columns declared as type :decimal accept the following options:

precision: number

Precision is the total number of digits in a number.

scale: number

Scale is the number of digits to the right of the decimal point. For example, the number 123.45 has a precision
of 5 and a scale of 2. Logically, the scale cannot be larger than the precision.

Active Record Migrations 170

..

Note
Decimal types pose a serious opportunity for data loss during migrations of production data between
different kinds of databases. For example, the default precisions between Oracle and SQL Server can cause
the migration process to truncate and change the value of your numeric data. It’s always a good idea to
specify precision details for your data.

6.1.9.4 Column Type Gotchas

The choice of column type is not necessarily a simple choice and depends on both the database you’re using
and the requirements of your application.

:binary

Depending on your particular usage scenario, storing binary data in the database can cause large
performance problems. Active Record doesn’t generally exclude any columns when it loads objects
from the database, and putting large binary attributes on commonly used models will increase the load
on your database server significantly. If you must put binary content in a commonly-used class, take
advantage of the :select method to only bring back the columns you need.

:boolean

The way that boolean values are stored varies from database to database. Some use 1 and 0 integer
values to represent true and false, respectively. Others use characters such as T and F. Rails handles the
mapping between Ruby’s true and false very well, so you don’t need to worry about the underlying
scheme yourself. Setting attributes directly to database values such as 1 or F may work correctly, but is
considered an anti-pattern.

:datetime and :timestamp

The Ruby class that Rails maps to datetime and timestamp columns is Time. In 32-bit environments,
Time doesn’t work for dates before 1902. Ruby’s DateTime class does work with year values prior to
1902, and Rails falls back to using it if necessary. It doesn’t use DateTime to begin for performance
reasons. Under the covers, Time is implemented in C and is very fast, whereas DateTime is written in
pure Ruby and is comparatively slow.

:time

It’s very, very rare that you want to use a :time datatype; perhaps if you’re modeling an alarm clock.
Rails will read the contents of the database as hour, minute and second values, into a Time object with
dummy values for the year, month and day.

:decimal

Older versions of Rails (prior to 1.2) did not support the fixed-precision :decimal type and as a
result many old Rails applications incorrectly used :float datatypes. Floating-point numbers are by
nature imprecise, so it is important to choose :decimal instead of :float for most business-related
applications.

Active Record Migrations 171

Tim says.
If you’re using a float to store values which need to be precise, such as money, you’re a jackass.
Floating point calculations are done in binary rather than decimal, so rounding errors abound in
places you wouldn’t expect.

>> 0.1+0.2 == 0.3

=> false

>> BigDecimal('0.1') + BigDecimal('0.2') == BigDecimal('0.3')

=> true

:float

Don’t use floats to store currency values, or more accurately, any type of data that needs fixed precision.
Since floating-point numbers are pretty much approximations, any single representation of a number
as a float is probably okay. However, once you start doing mathematical operations or comparisons
with float values, it is ridiculously easy to introduce difficult to diagnose bugs into your application.

:integer and :string

There aren’t many gotchas that I can think of when it comes to integers and strings. They are the basic
data building blocks of your application, and many Rails developers leave off the size specification,
which results in the default maximum sizes of 11 digits and 255 characters, respectively. You should
keep in mind that you won’t get an error if you try to store values that exceed the maximum size defined
for the database column, which again, is 255 characters by default. Your string will simply get truncated.
Use validations to make sure that user-entered data does not exceed the maximum size allowed.

:text

There have been reports of text fields slowing down query performance on some databases, enough to
be a consideration for applications that need to scale to high loads. If you must use a text column in a
performance-critical application, put it in a separate table.

6.1.9.5 Custom Data Types

If use of database-specific datatypes (such as :double, for higher precision than :float) is critical to your
project, use the config.active_record.schema_format = :sql setting in config/application.rb to make
Rails dump schema information in native SQL DDL format rather than its own cross-platform compatible
Ruby code, via the db/schema.rb file.

6.1.9.6 “Magic” Timestamp Columns

Rails does magic with datetime columns, if they’re named a certain way. Active Record will automatically
timestamp create operations if the table has columns named created_at or created_on. The same applies to
updates when there are columns named updated_at or updated_on.

Note that created_at and updated_at should be defined as datetime, but if you use t.timestamps then you
don’t have to worry about what type of columns they are.

Automatic timestamping can be turned off globally, by setting the following variable in an initializer.

Active Record Migrations 172

ActiveRecord::Base.record_timestamps = false

The preceding code turns off timestamps for all models, but record_timestamps is class-inheritable, so you
can also do it on a case-by-case basis by setting self.record_timestamps to false at the top of specific model
classes.

6.1.10 Command-line Column Declarations

You can supply name/type pairs on the command line when you invoke the migration generator and it will
automatically insert the corresponding add_column and remove_column methods.

$ rails generate migration AddTitleBodyToPosts \

title:string body:text published:boolean

This will create the AddTitleBodyToPosts in db/migrate/20130316164654_add_title_body_to_posts.rb

with this in the change migration:

1 def change

2 add_column :posts, :title, :string

3 add_column :posts, :body, :text

4 add_column :posts, :published, :boolean

5 end

6.2 Data Migration

So far we’ve only discussed using migration files to modify the schema of your database. Inevitably, you will
run into situations where you also need to perform data migrations, whether in conjunction with a schema
change or not.

6.2.1 Using SQL

In most cases, you should craft your data migration in raw SQL using the execute command that is available
inside a migration class.

For example, say you had a phones table, which kept phone numbers in their component parts and later
wanted to simplify your model by just having a number column instead. You’d write a migration similar to
this one:

Active Record Migrations 173

1 class CombineNumberInPhones < ActiveRecord::Migration

2 def change

3 add_column :phones, :number, :string

4 reversible do |dir|

5 dir.up { execute("update phones set number = concat(area_code, prefix, suffix)") }

6 dir.down { ... }

7 end

8

9 remove_column :phones, :area_code

10 remove_column :phones, :prefix

11 remove_column :phones, :suffix

12 end

13 end

The naive alternative to using SQL in the example above would be more lines of code and much, much slower.

1 Phone.find_each do |p|

2 p.number = p.area_code + p.prefix + p.suffix

3 p.save

4 end

In this particular case, you could use Active Record’s update_allmethod to still do the data migration in one
line.

Phone.update_all("set number = concat(area_code, prefix, suffix)")

However you might hit problems down the road as your schema evolves; as described in the next section
you’d want to declare an independent Phone model in the migration file itself. That’s why I advise sticking
to raw SQL whenever possible.

6.2.2 Migration Models

If you declare an Active Record model inside of a migration script, it’ll be namespaced to that migration class.

1 class HashPasswordsOnUsers < ActiveRecord::Migration

2 class User < ActiveRecord::Base

3 end

4

5 def change

6 reversible do |dir|

7 dir.up do

8 add_column :users, :hashed_password, :string

9 User.reset_column_information

10 User.find_each do |user|

Active Record Migrations 174

11 user.hashed_password = Digest::SHA1.hexdigest(user.password)

12 user.save!

13 end

14 remove_column :users, :password

15 end

16

17 dir.down { raise ActiveRecord::IrreversibleMigration }

18 end

19 end

20 end

Why not use just your application model classes in the migration scripts directly? As your schema evolves,
older migrations that use model classes directly can and will break down and become unusable. Properly
namespacing migration models prevent you from having to worry about name clashes with your application’s
model classes or ones that are defined in other migrations.

Durran says…
Note that Active Record caches column information on the first request to the database, so if you
want to perform a data migration immediately after a migration youmay run into a situation where
the new columns have not yet been loaded. This is a case where using reset_column_information
can come in handy. Simply call this class method on your model and everything will be reloaded
on the next request.

6.3 schema.rb

The file db/schema.rb is generated every time you migrate and reflects the latest status of your database
schema. You should never edit db/schema.rb by hand. Since this file is auto-generated from the current state
of the database. Instead of editing this file, please use the migrations feature of Active Record to incrementally
modify your database, and then regenerate this schema definition.

Note that this schema.rb definition is the authoritative source for your database schema. If you need to
create the application database on another system, you should be using db:schema:load, not running all the
migrations from scratch. The latter is a flawed and unsustainable approach (the more migrations you’ll amass,
the slower it’ll run and the greater likelihood for issues).

It’s strongly recommended to check this file into your version control system. First of all, it helps to have one
definitive schema definition around for reference. Secondly, you can run rake db:schema:load to create your
database schema from scratch without having to run all migrations. That’s especially important considering
that as your project evolves, it’s likely that it will become impossible to run migrations all the way through
from the start, due to code incompatibilities, such as renaming of classes named explicitly.

6.4 Database Seeding

The automatically created file db/seeds.rb is a default location for creating seed data for your database. It was
introduced in order to stop the practice of inserting seed data in individual migration files, if you accept the

Active Record Migrations 175

premise that migrations should never be used for seeding example or base data required by your application.
It is executed with the rake db:seed task (or created alongside the database when you run rake db:setup).

At its simplest, the contents of seed.rb is simply a series of create! statements that generate baseline data
for your application, whether it’s default or related to configuration. For example, let’s add an admin user and
some billing codes to our time and expenses app:

1 User.create!(login: 'admin',

2 email: 'admin@example.com',

3 :password: '123', password_confirmation: '123',

4 authorized_approver: true)

5

6 client = Client.create!(name: 'Workbeast', code: 'BEAST')

7 client.billing_codes.create!(name: 'Meetings', code: 'MTG')

8 client.billing_codes.create!(name: 'Development', code: 'DEV')

Why use the bang version of the create methods? Because otherwise you won’t find out if you had errors in
your seed file. An alternative would be to use first_or_create methods to make seeding idempotent.

1 c = Client.where(name: 'Workbeast', code: 'BEAST').first_or_create!

2 c.billing_codes.where(name: 'Meetings', code: 'MTG').first_or_create!

3 c.billing_codes.where(name: 'Development', code: 'DEV').first_or_create!

Another common seeding practice worth mentioning is calling delete_all prior to creating new records,
so that seeding does not generate duplicate records. This practice avoids the need for idempotent seeding
routines and lets you be very secure about exactly what your database will look like after seeding.)

1 User.delete_all

2 User.create!(login: 'admin', ...

3

4 Client.delete_all

5 client = Client.create!(name: 'Workbeast', ...

Carlos says…

I typically use the seed.rb file for data that is essential to all environments, including production.

For dummy data that will be only used on development or staging, I prefer to create custom rake
tasks under the lib/tasks directory, for example lib/tasks/load_dev_data.rake. This helps keep
seed.rb clean and free from unnecessary conditionals, like unless Rails.env.production?

6.5 Database-Related Rake Tasks

The following rake tasks are included by default in boilerplate Rails projects.

Active Record Migrations 176

6.5.0.1 db:create and db:create:all

Create the database defined in config/database.yml for the current Rails.env. If the current environment
is development, Rails will create both the local development and test databases.(Or create all of the local
databases defined in config/database.yml in the case of db:create:all.)

6.5.0.2 db:drop and db:drop:all

Drops the database for the current RAILS_ENV. If the current environment is development, Rails will drop both
the local development and test databases. (Or drops all of the local databases defined in config/database.yml
in the case of db:drop:all.)

6.5.0.3 db:forward and db:rollback

The db:rollback task moves your database schema back one version. Similarly, the db:forward task moves
your database schema forward one version and is typically used after rolling back.

6.5.0.4 db:migrate

Applies all pending migrations. If a VERSION environment variable is provided, then db:migrate will apply
pending migrations through the migration specified, but no further. The VERSION is specified as the timestamp
portion of the migration file name.

example of migrating up with param

$ rake db:migrate VERSION=20130313005347

== CreateUsers: migrating ==

-- create_table(:users)

-> 0.0014s

== CreateUsers: migrated (0.0015s) =================================

If the VERSION provided is older than the current version of the schema, then this task will actually rollback
the newer migrations.

example of migrating down with param

$ rake db:migrate VERSION=20130312152614

== CreateUsers: reverting ==

-- drop_table(:users)

-> 0.0014s

== CreateUsers: reverted (0.0015s) =================================

6.5.0.5 db:migrate:down

This task will invoke the down method of the specified migration only. The VERSION is specified as the
timestamp portion of the migration file name.

Active Record Migrations 177

$ rake db:migrate:down VERSION=20130316172801

== CreateClients: reverting ==

-- drop_table(:clients)

-> 0.0028s

== CreateClients: reverted (0.0054s) ===============================

6.5.0.6 db:migrate:up

This task will invoke the upmethod of the specified migration only. The VERSION is specified as the timestamp
portion of the migration file name.

$ rake db:migrate:down VERSION=20130316172801

== CreateClients: migrating ==

-- create_table(:clients)

-> 0.0260s

== CreateClients: migrated (0.0261s) ===============================

6.5.0.7 db:migrate:redo

Executes the down method of the latest migration file, immediately followed by its up method. This task is
typically used right after correcting a mistake in the upmethod or to test that a migration is working correctly.

$ rake db:migrate:redo

== AddTimesheetsUpdatedAtToUsers: reverting ========================

-- remove_column(:users, :timesheets_updated_at)

-> 0.0853s

== AddTimesheetsUpdatedAtToUsers: reverted (0.0861s) ===============

== AddTimesheetsUpdatedAtToUsers: migrating ========================

-- add_column(:users, :timesheets_updated_at, :datetime)

-> 0.3577s

== AddTimesheetsUpdatedAtToUsers: migrated (0.3579s) ===============

6.5.0.8 db:migrate:reset

Resets your database for the current environment using your migrations (as opposed to using schema.rb).

6.5.1 db:migrate:status

Displays the status of all existing migrations in a nicely formatted table. It will show up for migrations that
have been applied, and down for those that haven’t.

This task is useful in situations where you might want to check for recent changes to the schema before
actually applying them (right after pulling from the remote repository, for example).

Active Record Migrations 178

$ rake db:migrate:status

database: timesheet_development

Status Migration ID Migration Name

--

up 20130219005505 Create users

up 20130219005637 Create timesheets

up 20130220001021 Add user id to timesheets

down 20130220022039 Create events

6.5.1.1 db:reset and db:setup

The db:setup creates the database for the current environment, loads the schema from db/schema.rb, then
loads the seed data. It’s used when you’re setting up an existing project for the first time on a development
workstation. The similar db:reset task does the same thing except that it drops and recreates the database
first.

6.5.1.2 db:schema:dump

Create a db/schema.rb file that can be portably used against any DB supported by Active Record. Note that
creation (or updating) of schema.rb happens automatically any time you migrate.

6.5.1.3 db:schema:load

Loads schema.rb file into the database for the current environment.

6.5.1.4 db:seed

Load the seed data from db/seeds.rb as described in this chapter’s section Database Seeding.

6.5.1.5 db:structure:dump

Dump the database structure to a SQL file containing rawDDL code in a format corresponding to the database
driver specified in database.yml for your current environment.

$ rake db:structure:dump

$ cat db/development_structure.sql

CREATE TABLE `avatars` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`user_id` int(11) DEFAULT NULL,

`url` varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,

PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

...

Active Record Migrations 179

I’ve rarely needed to use this task. It’s possible that some Rails teams working in conjunction with DBAs that
exercise strict control over their application’s database schemas will need this task on a regular basis.

6.5.1.6 db:test:prepare

Check for pendingmigrations and load the test schema by doing a db:schema:dump followed by a db:schema:load.

This task gets used very often during active development whenever you’re running specs or tests without
using Rake. (Standard spec-related Rake tasks run db:test:prepare automatically for you.)

6.5.1.7 db:version

Returns the timestamp of the latest migration file that has been run. Works even if your database has been
created from db/schema.rb, since it contains the latest version timestamp in it:

ActiveRecord::Schema.define(version: 20130316172801)

6.6 Conclusion

This chapter covered the fundamentals of Active Record migrations. In the following chapter, we continue
our coverage of Active Record by learning about how model objects are related to each other and interact via
associations.

7 Active Record Associations
Any time you can reify something, you can create something that embodies a concept, it gives
you leverage to work with it more powerfully. That’s exactly what’s going on with has_many

:through.

—Josh Susser

Active Record associations let you declaratively express relationships between model classes. The power and
readability of the Associations API is an important part of what makes working with Rails so special.

This chapter covers the different kinds of Active Record associations available while highlighting use cases and
available customizations for each of them.We also take a look at the classes that give us access to relationships
themselves.

7.1 The Association Hierarchy

Associations typically appear as methods on Active Record model objects. For example, the method
timesheets might represent the timesheets associated with a given user.

user.timesheets

However, people might get confused about the type of objects that are returned by association with these
methods. This is because they have a way of masquerading as plain old Ruby objects. For instance, in previous
versions of Rails, an association collection would seem to return an array of objects, when in fact the return
type was actually an association proxy. As of Rails 4, asking any association collection what its return type is
will tell you that it is an ActiveRecord::Associations::CollectionProxy:

>> user.timesheets

=> #<ActiveRecord::Associations::CollectionProxy []>

It’s actually lying to you, albeit very innocently. Association methods for has_many associations are actually
instances of HasManyAssociation.

The CollectionProxy acts like a middleman between the object that owns the association, and the actual
associated object. Methods that are unknown to the proxy are sent to the target object via method_missing.

Fortunately, it’s not the Rubyway to care about the actual class of an object.Whatmessages an object responds
to is a lot more significant.

The parent class of all has_many associations is CollectionAssociation and most of the methods that it
defines work similarly regardless of the options declared for the relationship. Before we get much further
into the details of the association proxies, let’s delve into the most fundamental type of association that
is commonly used in Rails applications: the has_many / belongs_to pair, used to define one-to-many
relationships.

Active Record Associations 181

7.2 One-to-Many Relationships

In our recurring sample application, an example of a one-to-many relationship is the association between the
User, Timesheet, and ExpenseReport classes:

1 class User < ActiveRecord::Base

2 has_many :timesheets

3 has_many :expense_reports

4 end

Timesheets and expense reports should be linked in the opposite direction as well, so that it is possible to
reference the user to which a timesheet or expense report belongs.

1 class Timesheet < ActiveRecord::Base

2 belongs_to :user

3 end

4

5 class ExpenseReport < ActiveRecord::Base

6 belongs_to :user

7 end

When these relationship declarations are executed, Rails uses some metaprogramming magic to dynamically
add code to your models. In particular, proxy collection objects are created that let you manipulate the
relationship easily. To demonstrate, let’s play with these relationships in the console. First, I’ll create a user.

>> obie = User.create login: 'obie', password: '1234',

password_confirmation: '1234', email: 'obiefernandez@gmail.com'

=> #<User...>

Now I’ll verify that I have collections for timesheets and expense reports.

>> obie.timesheets

Timesheet Load (0.4ms) SELECT "timesheets".* FROM "timesheets" WHERE

"timesheets"."user_id" = ? [[nil, 1]]

SQLite3::SQLException: no such column: timesheets.user_id: SELECT

"timesheets".* FROM "timesheets" WHERE "timesheets"."user_id" = ?

As David might say, “Whoops!” I forgot to add the foreign key columns to the timesheets and expense_-

reports tables, so in order to go forward I’ll generate a migration for the changes:

Active Record Associations 182

$ rails generate migration add_user_foreign_keys

invoke active_record

create db/migrate/20130330201532_add_user_foreign_keys.rb

Then I’ll open db/migrate/20130330201532_add_user_foreign_keys.rb and add the missing columns.
(Using change_table would mean writing many more lines of code, so we’ll stick with the traditional
add_column syntax, which still works fine.)

1 class AddUserForeignKeys < ActiveRecord::Migration

2 def change

3 add_column :timesheets, :user_id, :integer

4 add_column :expense_reports, :user_id, :integer

5 end

6 end

Running rake db:migrate applies the changes:

$ rake db:migrate

== AddUserForeignKeys: migrating==

-- add_column(:timesheets, :user_id, :integer)

-> 0.0011s

-- add_column(:expense_reports, :user_id, :integer)

-> 0.0005s

== AddUserForeignKeys: migrated (0.0018s) ==============================

..

Index associations for performance boost
Premature optimization is the root of all evil. However, most experienced Rails developers don’t mind adding
indexes for foreign keys at the time that those are created. In the case of our migration example, you’d add
the following statements:

1 add_index :timesheets, :user_id

2 add_index :expense_reports, :user_id

Loading of your associations (which is usually more common than creation of items) will get a big
performance boost.

Now I should be able to add a new blank timesheet to my user and check timesheets again to make sure it’s
there:

Active Record Associations 183

>> obie = User.find(1)

=> #<User id: 1...>

>> obie.timesheets << Timesheet.new

=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 1 ...]>

>> obie.timesheets

=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 1 ...]>

Notice that the Timesheet object gains an id immediately.

7.2.1 Adding Associated Objects to a Collection

As you can deduce from the previous example, appending an object to a has_many collection automatically
saves that object. That is, unless the parent object (the owner of the collection) is not yet stored in the database.
Let’s make sure that’s the case using Active Record’s reload method, which re-fetches the attributes of an
object from the database:

>> obie.timesheets.reload

=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 1, user_id: 1 ...]>

There it is. The foreign key, user_id, was automatically set by the <<method. It takes one or more association
objects to add to the collection, and since it flattens its argument list and inserts each record, push and concat

behave identically.

In the blank timesheet example, I could have used the create method on the association proxy, and it would
have worked essentially the same way:

>> obie.timesheets.create

=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 1, user_id: 1 ...]>

Even though at first glance << and create do the same thing, there are some important differences in how
they’re implemented that are covered in the following section.

7.2.2 Association Collection Methods

Association collections are basically fancy wrappers around a Ruby array, and have all of a normal array’s
methods. Named scopes and all of ActiveRecord::Base’s class methods are also available on association
collections, including find, order, where, etc.

user.timesheets.where(submitted: true).order('updated_at desc')

user.timesheets.late # assuming a scope :late defined on the Timesheet class

The following methods of CollectionProxy are available to association collections:

Active Record Associations 184

7.2.2.1 <<(*records) and create(attributes = {})

Both methods will add either a single associated object or many, depending on whether you pass them an
array or not. They both also trigger the :before_add and :after_add callbacks (covered in this chapter’s
options section for has_many).

Finally, the return value behavior of both methods varies wildly. The createmethod returns the new instance
created, which is what you’d expect given its counterpart in ActiveRecord::Base. The <<method returns the
association proxy, which allows chaining and is also natural behavior for a Ruby array.

However, <<will return false and not itself if any of the records being added causes the operation to fail. You
shouldn’t depend on the return value of << being an array that you can continue operating on in a chained
fashion.

7.2.2.2 any? and many?

The any? method behaves like its Enumerable counterpart if you give it a block, otherwise it’s the opposite
of empty? Its companion method many?, which is an ActiveSupport extension to Enumerable, returns true if
the size of the collection is greater than one, or if a block is given, if two or more elements match the supplied
criteria.

7.2.2.3 average(column_name, options = {})

Convenience wrapper for calculate(:average, ...)

7.2.2.4 build(attributes={}, &block)

Traditionally, the build method has corresponded to the new method of Active Record classes, except that it
presets the owner’s foreign key and appends it to the association collection in one operation. However, as of
Rails 2.2, the new method has the same behavior and probably should be used instead of build.

user.timesheets.build(attributes)

user.timesheets.new(attributes) # same as calling build

One possible reason to still use build is that as a convenience, if the attributes parameter is an array of
hashes (instead of just one) then build executes for each one. However, you would usually accomplish that
kind of behavior using accepts_nested_attributes_for on the owning class, covered in Chapter 11, “All
About Helpers”, in the section about fields_for.

7.2.2.5 calculate(operation, column_name, options = {})

Provides aggregate (:sum, :average, :minimum and :maximum) values within the scope of associated records.
Covered in detail in Chapter 9, “Advanced Active Record”.

7.2.2.6 clear

The clear method is similar to invoking delete_all (covered lated in this section), however instead of
returning an array of deleted objects, it is chainable.

Active Record Associations 185

7.2.2.7 count(column_name=nil, options={})

Counts all associated records in the database. The first parameter, column_name gives you the option of
counting on a column instead of generating COUNT(*) in the resulting SQL. If the :counter_sql option is
set for the association, it will be used for the query, otherwise you can pass a custom value via the options
hash of this method.

Assuming that no :counter_sql or :finder_sql options are set on the association, nor passed to count, the
target class’s count method is used, scoped to only count associated records.

7.2.2.8 create(attributes, &block) and create!(attributes, &block)

Instantiate a new record with its foreign key attribute set to the owner’s id, add it to the association collection,
and save it, all in one method call. The bang variant raises Active::RecordInvalid if saving fails, while the
non-bang variant returns true or false, as you would expect it to based on the behavior of create methods in
other places.

The owning record must be saved in order to use create, otherwise an ActiveRecord::RecordNotSaved

exception is raised.

>> User.new.timesheets.create

ActiveRecord::RecordNotSaved: You cannot call create unless the parent is saved

If a block is passed to create or create!, it will get yielded the newly-created instance after the passed-in
attributes are assigned, but before saving the record to the database.

7.2.2.9 delete(*records) and delete_all

The delete and delete_allmethods are used to sever specified associations, or all of them, respectively. Both
methods operate transactionally.

Invoking delete_all executes a SQL UPDATE that sets foreign keys for all currently associated objects to nil,
effectively disassociating them from their parent.

..

Note
The names of the delete and delete_allmethods can be misleading. By default, they don’t delete anything
from the database—they only sever associations by clearing the foreign key field of the associated record.
This behavior is related to the :dependent option, which defaults to :nullify. If the association is configured
with the :dependent option set to :delete or :destroy, then the associated records will actually be deleted
from the database.

Active Record Associations 186

7.2.2.10 destroy(*records) and destroy_all

The destroy and destroy_allmethods are used to remove specified associations from the database, or all of
them, respectively. Both methods operate transactionally.

The destroy_allmethod takes no parameters; it’s an all or nothing affair. When called, it begins a transaction
and invokes destroy on each object in the association, causing them all to be deleted from the database with
individual DELETE SQL statements. There are load issues to consider if you plan to use this method with large
association collections, since many objects will be loaded into memory at once.

7.2.2.11 empty?

Simply calls size.zero?

7.2.2.12 find(id)

Find an associated record by id, a really common operation when dealing with nested RESTful resources.
Raises ActiveRecord::RecordNotFound exception if either the id or foreign_key of the owner record is not
found.

7.2.2.13 first(*args)

Returns the first associated record. Wondering how Active Record figures out whether to go to the database
instead of loading the entire association collection into memory?

1 def fetch_first_or_last_using_find?(args)

2 if args.first.is_a?(Hash)

3 true

4 else

5 !(loaded? ||

6 owner.new_record? ||

7 options[:finder_sql] ||

8 target.any? { |record| record.new_record? || record.changed? } ||

9 args.first.kind_of?(Integer))

10 end

11 end

Passing first an integer argument mimics the semantics of Ruby’s Array#first, returning that number of
records.

Active Record Associations 187

>> c = Client.first

=> #<Client id: 1, name: "Taigan", code: "TAIGAN", created_at: "2010-01-24

03:18:58", updated_at: "2010-01-24 03:18:58">

>> c.billing_codes.first(2)

=> [#<BillingCode id: 1, client_id: 1, code: "MTG", description: "Meetings">,

#<BillingCode id: 2, client_id: 1, code: "DEV", description: "Development">]

7.2.2.14 ids

Convenience wrapper for pluck(primary_key), covered in detail in Chapter 9, “Advanced Active Record”.

7.2.2.15 include?(record)

Checks to see if the supplied record exists in the association collection and that it still exists in the underlying
database table.

7.2.2.16 last(*args)

Returns the last associated record. Refer to description of first earlier in this section for more details—it
behaves exactly the same except for the obvious.

7.2.2.17 length

Returns the size of the collection by loading it and calling size on the array.

7.2.2.18 maximum(column_name, options = {})

Convenience wrapper for calculate(:maximum, ...), covered in detail in Chapter 9, “Advanced Active
Record”.

7.2.2.19 minimum(column_name, options = {})

Convenience wrapper for calculate(:minimum, ...), covered in detail in Chapter 9, “Advanced Active
Record”.

7.2.2.20 new(attributes, &block)

Instantiate a new record with its foreign key attribute set to the owner’s id, and add it to the association
collection, in one method call.

7.2.2.21 pluck(*column_names)

Returns an array of attribute values, covered in detail in Chapter 9, “Advanced Active Record”.

Active Record Associations 188

7.2.2.22 replace(other_array)

Replaces the collection with other_array. Works by deleting objects that exist in the current collection, but
not in other_array and inserting (using concat) objects that don’t exist in the current collection, but do exist
in other_array.

7.2.2.23 select(select=nil, &block)

The selectmethod allows the specification one or many attributes to be selected for an association result set.

>> user.timesheets.select(:submitted).to_a

=> [#<Timesheet id: nil, submitted: false>,

#<Timesheet id: nil, submitted: true>]

>> user.timesheets.select([:id,:submitted]).to_a

=> [#<Timesheet id: 1, submitted: false>,

#<Timesheet id: 2, submitted: true>]

Keep in mind that only attributes specified will be populated in the resulting objects! For instance,
continuing the first example, trying to access updated_at on any of the returned timesheets, results in an
ActiveModel::MissingAttributeError exception being raised.

>> timesheet = user.timesheets.select(:submitted).first

=> #<Timesheet id: nil, submitted: false>

>> timesheet.updated_at

ActiveModel::MissingAttributeError: missing attribute: updated_at

Alternatively, passing a block to the select method behaves similarly to Array#select. The result set from
the database scope is converted into an array of objects, and iterated through using Array#select, including
only objects where the specified block returns true.

7.2.2.24 size

If the collection has already been loaded, or its owner object has never been saved, the size method simply
returns the size of the current underlying array of associated objects. Otherwise, assuming default options,
a SELECT COUNT(*) query is executed to get the size of the associated collection without having to load any
objects. The query is bounded to the :limit option of the association, if there is any set.

Note that if there is a counter_cache option set on the association, then its value is used instead of hitting the
database.

When you know that you are starting from an unloaded state and it’s likely that there are associated records
in the database that you will need to load no matter what, it’s more efficient to use length instead of size.

Some association options, such as :group and :uniq, come into play when calculating size—basically they
will always force all objects to be loaded from the database so that the resulting size of the association array
can be returned.

Active Record Associations 189

7.2.2.25 sum(column_name, options = {})

Convenience wrapper for calculate(:sum, ...), covered in detail in Chapter 9, “Advanced Active Record”.

7.2.2.26 uniq

Iterates over the target collection and populates an Array with the unique values present. Keep in mind that
equality of Active Record objects is determined by identity, meaning that the value of the id attribute is the
same for both objects being compared.

..

A Warning About Association Names
Don’t create associations that have the same name as instance methods of ActiveRecord::Base. Since the
association adds a method with that name to its model, it will override the inherited method and break
things. For instance, attributes and connection would make really bad choices for association names.

7.3 The belongs_to Association

The belongs_to class method expresses a relationship from one Active Record object to a single associated
object for which it has a foreign key attribute. The trick to remembering whether a class “belongs to” another
one is considering which has the foreign key column in its database table.

Assigning an object to a belongs_to association will set its foreign key attribute to the owner object’s id, but
will not save the record to the database automatically, as in the following example:

>> timesheet = Timesheet.create

=> #<Timesheet id: 1409, user_id: nil...>

>> timesheet.user = obie

=> #<User id: 1, login: "obie"...>

>> timesheet.user.login

=> "obie"

>> timesheet.reload

=> #<Timesheet id: 1409, user_id: nil...>

Defining a belongs_to relationship on a class creates a method with the same name on its instances. As
mentioned earlier, the method is actually a proxy to the related Active Record object and adds capabilities
useful for manipulating the relationship.

7.3.1 Reloading the Association

Just invoking the association method will query the database (if necessary) and return an instance of the
related object. The method takes a force_reload parameter that tells Active Record whether to reload the
related object, if it happens to have been cached already by a previous access.

Active Record Associations 190

In the following capture from my console, I look up a timesheet and take a peek at the object_id of its related
user object. Notice that the second time I invoke the association via user, the object_id remains the same.
The related object has been cached. However, passing true to the accessor reloads the relationship and I get
a new instance.

>> ts = Timesheet.first

=> #<Timesheet id: 3, user_id: 1...>

>> ts.user.object_id

=> 70279541443160

>> ts.user.object_id

=> 70279541443160

>> ts.user(true).object_id

=> 70279549419740

7.3.2 Building and Creating Related Objects via the Association

During the belongs_to method’s metaprogramming it also adds factory methods for creating new instances
of the related class and attaching them via the foreign key automatically.

The build_association method does not save the new object, but the create_association method does.
Both methods take an optional hash of attribute parameters with which to initialize the newly instantiated
objects. Both are essentially one-line convenience methods, which I don’t find particularly useful. It just
doesn’t usually make sense to create instances in that direction!

To illustrate, I’ll simply show the code for building a User from a Timesheet or creating a Client from a
BillingCode, neither of which would ever happen in real code because it just doesn’t make sense to do so:

>> ts = Timesheet.first

=> #<Timesheet id: 3, user_id: 1...>

>> ts.build_user

=> #<User id: nil, email: nil...>

>> bc = BillingCode.first

=> #<BillingCode id: 1, code: "TRAVEL"...>

>> bc.create_client

=> #<Client id: 1, name=>nil, code=>nil...>

You’ll find yourself creating instances of belonging objects from the has_many side of the relationship much
more often.

7.3.3 belongs_to Options

The following options can be passed in a hash to the belongs_to method.

Active Record Associations 191

7.3.3.1 autosave: true

Whether to automatically save the owning record whenever this record is saved. Defaults to false.

7.3.3.2 :class_name

Assume for a moment that we wanted to establish another belongs_to relationship from the Timesheet class
to User, this time modelling the relationship to the approver of the timesheet. You might start by adding an
approver_id column to the timesheets table and an authorized_approver column to the users table via a
migration. Then you would add a second belongs_to declaration to the Timesheet class:

1 class Timesheet < ActiveRecord::Base

2 belongs_to :approver

3 belongs_to :user

4 ...

Active Record won’t be able to figure out what class you’re trying to link with just the information provided,
because you’ve (legitimately) acted against the Rails convention of naming a relationship according to the
related class. It’s time for a :class_name parameter.

1 class Timesheet < ActiveRecord::Base

2 belongs_to :approver, class_name: 'User'

3 belongs_to :user

4 ...

7.3.3.3 :counter_cache

Use this option to make Rails automatically update a counter field on the associated object with the number
of belonging objects. The option value can be true, in which case the pluralized name of the belonging class
plus _count is used, or you can supply your own column name to be used:

counter_cache: true

counter_cache: :number_of_children

If a significant percentage of your association collections will be empty at any givenmoment, you can optimize
performance at the cost of some extra database storage by using counter caches liberally. The reason is that
when the counter cache attribute is at zero, Rails won’t even try to query the database for the associated
records!

..

Note
The value of the counter cache column must be set to zero by default in the database! Otherwise the counter
caching won’t work at all. It’s because the way that Rails implements the counter caching behavior is by
adding a simple callback that goes directly to the database with an UPDATE command and increments the
value of the counter. If you’re not careful, and neglect to set a default value of 0 for the counter cache column
on the database, or misspell the column name, the counter cache will still seem to work! There is a magic

Active Record Associations 192

..

method on all classes with has_many associations called collection_count‘, just like the counter cache. It
will return a correct count value based on the in-memory object, even if you don’t have a counter cache
option set or the counter cache column value is null!

In the case that a counter cache was altered on the database side, you may tell Active Record to reset a
potentially stale value to the correct count via the class method reset_counters. It’s parameters are the id of
the object and a list of association names.

Timesheet.reset_counters(5, :weeks)

7.3.3.4 dependent: :destroy or :delete

Specifies a rule that the associated owner record should be destroyed or just deleted from the database,
depending on the value of the option. When triggered, :destroy will call the dependent’s callbacks, whereas
:delete will not.

Usage of this option might make sense in a has_one / belongs_to pairing. However, it is really unlikely that
you want this behavior on has_many / belongs_to relationship; it just doesn’t seem to make sense to code
things that way. Additionally, if the owner record has its :dependent option set on the corresponding has_many
association, then destroying one associated record will have the ripple effect of destroying all of its siblings.

7.3.3.5 foreign_key: column_name

Specifies the name of the foreign key column that should be used to find the associated object. Rails will
normally infer this setting from the name of the association, by adding _id to it. You can override the inferred
foreign key name with this option if necessary.

without the explicit option, Rails would guess administrator_id

belongs_to :administrator, foreign_key: 'admin_user_id'

7.3.3.6 inverse_of: name_of_has_association

Explicitly declares the name of the inverse association in a bi-directional relationship. Considered an
optimization, use of this option allows Rails to return the same instance of an object no matter which side of
the relationship it is accessed from.

Covered in detail in Section “inverse_of: name_of_belongs_to_association”.

7.3.3.7 polymorphic: true

Use the :polymorphic option to specify that an object is related to its association in a polymorphic way, which
is the Rails way of saying that the type of the related object is stored in the database along with its foreign
key. By making a belongs_to relationship polymorphic, you abstract out the association so that any other
model in the system can fill it.

Active Record Associations 193

Polymorphic associations let you trade some measure of relational integrity for the convenience of imple-
mentation in child relationships that are reused across your application. Common examples are models such
as photo attachments, comments, notes, line items, and so on.

Let’s illustrate by writing a Comment class that attaches to its subjects polymorphically. We’ll associate it to
both expense reports and timesheets. Listing 7.1 has the schema information in migration code, followed
by the code for the classes involved. Notice the :subject_type column, which stores the class name of the
associated class.

Listing 7.1: Comment class using polymorphic belongs to relationship

1 create_table :comments do |t|

2 t.text :body

3 t.references :subject, polymorphic: true

4

5 # references can be used as a shortcut for following two statements

6 # t.integer :subject_id

7 # t.string :subject_type

8

9 t.timestamps

10 end

11

12 class Comment < ActiveRecord::Base

13 belongs_to :subject, polymorphic: true

14 end

15

16 class ExpenseReport < ActiveRecord::Base

17 belongs_to :user

18 has_many :comments, as: :subject

19 end

20

21 class Timesheet < ActiveRecord::Base

22 belongs_to :user

23 has_many :comments, as: :subject

24 end

As you can see in the ExpenseReport and Timesheet classes of Listing 7.1, there is a corresponding syntax
where you give Active Record a clue that the relationship is polymorphic by specifying as: :subject. We
haven’t covered has_many’s options yet in this chapter, and polymorphic relationships have their own section
in Chapter 9, “Advanced Active Record”.

7.3.3.8 primary_key: column_name

You should never need to use this option, except perhaps with strange legacy database schemas. It allows you
to specify a surrogate column on the owning record to use as the target of the foreign key, instead of the usual
primary key.

Active Record Associations 194

7.3.3.9 touch: true or column_name

“Touches” the owning record’s updated_at timestamp, or a specific timestamp column specified by column_-

name, if it is supplied. Useful for caching schemeswhere timestamps are used to invalidate cached view content.
The column_name option is particularly useful here, if you want to do fine-grained fragment caching of the
owning record’s view.

For example, let’s set the foundation for doing just that with the User / Timesheet association:

$ rails generate migration AddTimesheetsUpdatedAtToUsers timesheets_updated_at:datetime

invoke active_record

create db/migrate/20130413175038_add_timesheets_updated_at_to_users.rb

$ rake db:migrate

== AddTimesheetsUpdatedAtToUsers: migrating ==================================

-- add_column(:users, :timesheets_updated_at, :datetime)

-> 0.0005s

== AddTimesheetsUpdatedAtToUsers: migrated (0.0005s) =========================

1 class Timesheet < ActiveRecord::Base

2 belongs_to :user, touch: :timesheets_updated_at

3 ...

7.3.3.10 validate: true

Defaults to false on belongs_to associations, contrary to its counterpart setting on has_many. Tells Active
Record to validate the owner record, but only in circumstances where it would normally save the owning
record, such as when the record is new and a save is required in order to get a foreign key value.

Tim says…
Use validates_associated if you want association validation outside of automatic saving.

7.3.4 belongs_to Scopes

Sometimes the need arises to have a relationship that must satisfy certain conditions in order for it to be valid.
To facilitate this, Rails allows us to supply chain query criteria, or a “scope”, to a relationship definition as an
optional second block argument. Active Record scopes are covered in detail in Chapter 9.

7.3.4.1 where(*conditions)

To illustrate supplying a condition to a belongs_to relationship, let’s assume that the users table has a column
approver:

Active Record Associations 195

1 class Timesheet < ActiveRecord::Base

2 belongs_to :approver,

3 -> { where(approver: true) },

4 class_name: 'User'

5 ...

6 end

Now in order for the assignment of a user to the approver field to work, that user must be authorized. I’ll go
ahead and add a spec that both indicate the intention of my code and show it in action. I turn my attention
to spec/models/timesheet_spec.rb

1 require 'spec_helper'

2

3 describe Timesheet do

4 subject(:timesheet) { Timesheet.create }

5

6 describe '#approver' do

7 it 'may have a user associated as an approver' do

8 timesheet.approver = User.create(approver: true)

9 expect(timesheet.approver).to be

10 end

11 end

12 end

It’s a good start, but I also want to make sure something happens to prevent the system from assigning a
non-authorized user to the approver field, so I add another spec:

1 it 'cannot be associated with a non-authorized user' do

2 timesheet.approver = User.create(approver: false)

3 expect(timesheet.approver).to_not be

4 end

I have my suspicions about the validity of that spec, though, and as I half-expected, it doesn’t really work the
way I want it to work:

1) Timesheet#approver cannot be associated with a non-authorized user

Failure/Error: expect(timesheet.approver).to_not be

expected #<User id: 1, approver: false ...> to evaluate to false

The problem is that Active Record (for better or worse, probably worse) allows me to make the invalid
assignment. The scope option only applies during the query to get the association back from the database.
I’ll have some more work ahead of me to achieve the desired behavior, but I’ll go ahead and prove out Rails’
actual behavior by fixing my specs. I’ll do so by passing true to the approvermethod’s optional force_reload
argument, which tells it to reload its target object:

Active Record Associations 196

1 describe Timesheet do

2 subject(:timesheet) { Timesheet.create }

3

4 describe '#approver' do

5 it 'may have a user associated as an approver' do

6 timesheet.approver = User.create(approver: true)

7 timesheet.save

8 expect(timesheet.approver(true)).to be

9 end

10

11 it 'cannot be associated with a non-authorized user' do

12 timesheet.approver = User.create(approver: false)

13 timesheet.save

14 expect(timesheet.approver(true)).to_not be

15 end

16 end

17 end

Those two specs do pass, but note that I went ahead saved the timesheet, since just assigning a value to it
will not save the record. Then, as mentioned, I took advantage of the force_reload parameter to make Rails
reload approver from the database, and not just simply give me the same instance I originally assigned to it.

The lesson to learn is that providing a scope on relationships never affect the assignment of associated
objects, only how they’re read back from the database. To enforce the rule that a timesheet approver must be
authorized, you’d need to add a before_save callback to the Timesheet class itself. Callbacks are covered in
detail at the beginning of Chapter 9, “Advanced Active Record”.

7.3.4.2 includes

In previous versions of Rails, relationship definitions had an :include option, that would take a list of second-
order association names (on the owning record) that should be eagerly-loaded when the current object was
loaded. As of Rails 4, the way to do this is supplying an includes query method to the scope argument of a
relationship.

belongs_to :post, -> { includes(:author) }

In general, this technique is used to knock N+1 select operations down to N plus the number associations
being included. It is rare to use this technique on a belongs_to, rather than on the has_many side.

If necessary, due to conditions or orders referencing tables other than the main one, a SELECT statement with
the necessary LEFT OUTER JOINSwill be constructed on the fly so that all the data needed to construct a whole
object graph is queried in one big database request.

With judicious use of using a relationship scope to include second-order associations and careful benchmark-
ing, you can sometimes improve the performance of your application dramatically, mostly by eliminating
N+1 queries. On the other hand, pulling lots of data from the database and instantiating large object trees can
be very costly, so using an includes scope is no “silver bullet”. As they say, your mileage may vary.

Active Record Associations 197

7.3.4.3 select

Replaces the SQL select clause that normally generated when loading this association, which usually takes
the form table_name.*. Just additional flexibility that it normally never needed.

7.3.4.4 readonly

Locks down the reference to the owning record so that you can’t modify it. Theoretically this might make
sense in terms of constraining your programming contexts very specifically, but I’ve never had a use for it.
Still, for illustrative purposes, here is an example where I’vemade the user association on Timesheet readonly:

1 class Timesheet < ActiveRecord::Base

2 belongs_to :user, ~> { readonly }

3 ...

4

5 >> t = Timesheet.first

6 => #<Timesheet id: 1, submitted: nil, user_id: 1...>

7

8 >> t.user

9 => #<User id: 1, login: "admin"...>

10

11 >> t.user.save

12 ActiveRecord::ReadOnlyRecord: ActiveRecord::ReadOnlyRecord

7.4 The has_many Association

Just like it sounds, the has_many association allows you to define a relationship in which one model has many
other models that belong to it. The sheer readability of code constructs such as has_many is a major reason
that people fall in love with Rails.

The has_many class method is often used without additional options. If Rails can guess the type of class in
the relationship from the name of the association, no additional configuration is necessary. This bit of code
should look familiar by now:

1 class User < ActiveRecord::Base

2 has_many :timesheets

3 has_many :expense_reports

The names of the associations can be singularized and match the names of models in the application, so
everything works as expected.

7.4.1 has_many Options

Despite the ease of use of has_many, there is a surprising amount of power and customization possible for
those who know and understand the options available.

Active Record Associations 198

7.4.1.1 after_add: callback

Called after a record is added to the collection via the << method. Is not triggered by the collection’s create
method, so careful consideration is needed when relying on association callbacks. A lambda callback will
get called directly, versus a symbol, which correlates to a method on the owning record, which takes the
newly-added child as a parameter. It’s also possible to pass an array of lambda or symbols.

Add callback method options to a has_many by passing one or more symbols corresponding to method names,
or Proc objects. See Listing 7.2 in the :before_add option for an example.

7.4.1.2 after_remove: callback

Called after a record has been removed from the collection with the delete method. A lambda callback will
get called directly, versus a symbol, which correlates to a method on the owning record, which takes the
newly-added child as a parameter. It’s also possible to pass an array of lambda or symbols. See Listing 7.2 in
the :before_add option for an example.

7.4.1.3 as: association_name

Specifies the polymorphic belongs_to association to use on the related class. (See Chapter 9, “AdvancedActive
Record” for more about polymorphic relationships.)

7.4.1.4 autosave: true

Whether to automatically save all modified records in an association collection when the parent is saved.
Defaults to false, but note that normal Active Record behavior is to save new associations records
automatically when the parent is saved.

7.4.1.5 before_add: callback

Triggered when a record is added to the collection via the << method. (Remember that concat and push are
aliases of <<.)

A lambda callback will get called directly, versus a symbol, which correlates to a method on the owning
record, which takes the newly-added child as a parameter. It’s also possible to pass an array of lambda or
symbols.

Raising an exception in the callbackwill stop the object from getting added to the collection. (Basically, because
the callback is triggered right after the type mismatch check, and there is no rescue clause to be found inside
<<.)

Active Record Associations 199

Listing 7.2: A simple example of :before—add callback usage

1 has_many :unchangable_posts,

2 class_name: "Post",

3 before_add: :raise_exception

4

5 private

6

7 def raise_exception(object)

8 raise "You can't add a post"

9 end

Of course, that would have been a lot shorter code using a Proc since it’s a one liner. The owner parameter is
the object with the association. The record parameter is the object being added.

has_many :unchangable_posts,

class_name: "Post",

before_add: ->(owner, record) { raise "Can't do it!" }

One more time, with a lambda, which doesn’t check the arity of block parameters:

has_many :unchangable_posts,

class_name: "Post",

before_add: lambda { raise "You can't add a post" }

7.4.1.6 before_remove: callback

Called before a record is removed from a collection with the delete method. See before_add for more
information. As with :before_add, raising an exception stops the remove operation.

1 class User < ActiveRecord::Base

2 has_many :timesheets,

3 before_remove: :check_timesheet_destruction,

4 dependent: :destroy

5

6 protected

7

8 def check_timesheet_destruction(timesheet)

9 if timesheet.submitted?

10 raise TimesheetError, "Cannot destroy a submitted timesheet."

11 end

12 end

Note that this is a somewhat contrived example, because it violates my sense of good object-oriented
principles. The User class shouldn’t really be responsible for knowing when it’s okay to delete a timesheet or
not. The check_timesheet_destructionmethodwouldmore properly be added as a before_destroy callback
on the Timesheet class.

Active Record Associations 200

7.4.1.7 :class_name

The :class_name option is common to all of the associations. It allows you to specify, as a string, the name
of the class of the association, and is needed when the class name cannot be inferred from the name of the
association itself.

has_many :draft_timesheets, -> { where(submitted: false) },

class_name: 'Timesheet'

7.4.1.8 dependent: :delete_all

All associated objects are deleted in fell swoop using a single SQL command. Note: While this option is much
faster than :destroy, it doesn’t trigger any destroy callbacks on the associated objects—you should use this
option very carefully. It should only be used on associations that depend solely on the parent object.

7.4.1.9 dependent: :destroy

All associated objects are destroyed along with the parent object, by iteratively calling their destroymethods.

7.4.1.10 dependent: :nullify

The default behavior when deleting a record with has_many associations is to leave those associated records
alone. Their foreign key fields will still point at the record that was deleted. The :nullify option tells Active
Record to nullify, or clear, the foreign key that joins them to the parent record.

7.4.1.11 dependent: :restrict_with_exception

If associated objects are presentwhen the parent object is destroyed, Rails raises an ActiveRecord::DeleteRestrictionError
exception.

7.4.1.12 dependent: :restrict_with_error

An error is added to the parent object if any associated objects are present, rolling back the deletion from the
database.

7.4.1.13 foreign_key: column_name

Overrides the convention-based foreign key column name that would normally be used in the SQL statement
that loads the association. Normally it would be the owning record’s class name with _id appended to it.

7.4.1.14 inverse_of: name_of_belongs_to_association

Explicitly declares the name of the inverse association in a bi-directional relationship. Considered an
optimization, use of this option allows Rails to return the same instance of an object no matter which side of
the relationship it is accessed from.

Consider the following, using our recurring example, without usage of inverse_of.

Active Record Associations 201

>> user = User.first

>> timesheet = user.timesheets.first

=> <Timesheet id: 1, user_id: 1...>

>> timesheet.user.equal? user

=> false

If we add :inverse_of to the association objection on User, like

has_many :timesheets, inverse_of: :user

then timesheet.user.equal? user will be true. Try something similar in one of your apps to see it for yourself.

7.4.1.15 primary_key: column_name

Specifies a surrogate key to use instead of the owning record’s primary key, whose value should be used when
querying to fill the association collection.

7.4.1.16 :source and :source_type

Used exclusively as additional options to assist in using has_many :through associations with polymorphic
belongs_to. Covered in detail later in this chapter.

7.4.1.17 through: association_name

Creates an association collection via another association. See the section in this chapter entitled “has_many
:through” for more information.

7.4.1.18 validate: false

In cases where the child records in the association collection would be automatically saved by Active
Record, this option (true by default) dictates whether to ensure that they are valid. If you always want to
check the validity of associated records when saving the owning record, then use validates_associated

:association_name.

7.4.2 has_many scopes

The has_many association provides the ability to customize the query used by the database to retrieve the
association collection. This is achieved by passing a scope block to the has_manymethod definition using any
of the standard Active Record query methods, as covered in Chapter 5, “Working with Active Record”. In this
section, we’ll cover the most common scope methods used with has_many associations.

7.4.2.1 where(*conditions)

Using the query method where, one could add extra conditions to the Active Record-generated SQL query
that brings back the objects in the association.

You can apply extra conditions to an association for a variety of reasons. How about approval of comments?

Active Record Associations 202

has_many :comments,

Plus, there’s no rule that you can’t have more than one has_many association exposing the same two related
tables in different ways. Just remember that you’ll probably have to specify the class name too.

has_many :pending_comments, -> { where(approved: true) },

class_name: 'Comment'

7.4.2.2 extending(*extending_modules)

Specifies one or many modules with methods that will extend the association collection proxy. Used as an
alternative to defining additional methods in a block passed to the has_many method itself. Discussed in the
section “Association Extensions”.

7.4.2.3 group(*args)

Adds a GROUP BY SQL clause to the queries used to load the contents of the association collection.

7.4.2.4 having(*clauses)

Must be used in conjunction with the group query method and adds extra conditions to the resulting SQL
query used to load the contents of the association collection.

7.4.2.5 includes(*associations)

Takes an array of second-order association names (as an array) that should be eager-loaded when this
collection is loaded. With judicious use of the includes query method and careful benchmarking you can
sometimes improve the performance of your application dramatically.

To illustrate, let’s analyze how includes affects the SQL generated while navigating relationships. We’ll use
the following simplified versions of Timesheet, BillableWeek, and BillingCode:

1 class Timesheet < ActiveRecord::Base

2 has_many :billable_weeks

3 end

4

5 class BillableWeek < ActiveRecord::Base

6 belongs_to :timesheet

7 belongs_to :billing_code

8 end

9

10 class BillingCode < ActiveRecord::Base

11 belongs_to :client

12 has_many :billable_weeks

13 end

Active Record Associations 203

First, I need to set up my test data, so I create a timesheet instance and add a couple of billable weeks to it.
Then I assign a billable code to each billable week, which results in an object graph (with four objects linked
together via associations).

Next I do a fancy one-line collect, which gives me an array of the billing codes associated with the timesheet:

>> Timesheet.find(3).billable_weeks.collect(&:code)

=> ["TRAVEL", "DEVELOPMENT"]

Without the includes scope method set on the billable_weeks association of Timesheet, that operation cost
me the following four database hits (copied from log/development.log, and prettied up a little):

Timesheet Load (0.3ms) SELECT timesheets.* FROM timesheets WHERE

(timesheets.id = 3) LIMIT 1

BillableWeek Load (1.3ms) SELECT billable_weeks.* FROM billable_weeks WHERE

(billable_weeks.timesheet_id = 3)

BillingCode Load (1.2ms) SELECT billing_codes.* FROM billing_codes WHERE

(billing_codes.id = 7) LIMIT 1

BillingCode Load (3.2ms) SELECT billing_codes.* FROM billing_codes WHERE

(billing_codes.id = 8) LIMIT 1

This demonstrates the so-called “N+1 select” problem that inadvertently plagues many systems. Anytime
I need one billable week, it will cost me N select statements to retrieve its associated records. Now let’s
provide the billable_weeks association a scope block using includes, after which the Timesheet class looks
as follows:

1 class Timesheet < ActiveRecord::Base

2 has_many :billable_weeks, -> { includes(:billing_code) }

3 end

Simple! Rerunning our test statement yields the same results in the console:

>> Timesheet.find(3).billable_weeks.collect(&:code)

=> ["TRAVEL", "DEVELOPMENT"]

But look at how different the generated SQL is:

Active Record Associations 204

Timesheet Load (0.4ms) SELECT timesheets.* FROM timesheets WHERE (timesheets.id

= 3) LIMIT 1

BillableWeek Load (0.6ms) SELECT billable_weeks.* FROM billable_weeks WHERE

(billable_weeks.timesheet_id = 3)

BillingCode Load (2.1ms) SELECT billing_codes.* FROM billing_codes WHERE

(billing_codes.id IN (7,8))

Active Record smartly figures out exactly which BillingCode records it will need and pulls them in using
one query. For large datasets, the performance improvement can be quite dramatic!

It’s generally easy to find N+1 select issues just by watching the log scroll by while clicking through the
different screens of your application. (Of course, make sure that you’re looking at realistic data or the exercise
will be pointless.) Screens that might benefit from eager loading will cause a flurry of single-row SELECT

statements, one for each record in a given association being used.

If you’re feeling particularly daring (perhaps masochistic is a better term) you can try including a deep
hierarchy of associations, by mixing hashes into your includes query method, like in this fictional example
from a bulletin board:

has_many :posts, -> { includes([:author, {comments: {author: :avatar }}]) }

That example snippet will grab not only all the comments for a Post, but all their authors and avatar pictures
as well. You can mix and match symbols, arrays and hashes in any combination to describe the associations
you want to load.

The biggest potential problem with so-called “deep” includes is pulling too much data out of the database.
You should always start out with the simplest solution that will work, then use benchmarking and analysis
to figure out if optimizations such as eager-loading help improve your performance.

Wilson says…
Let people learn eager loading by crawling across broken glass, like we did. It builds character!

7.4.2.6 limit(integer)

Appends a LIMIT clause to the SQL generated for loading this association. This option is potentially useful
in capping the size of very large association collections. Use in conjunction with the order query method to
make sure your grabbing the most relevant records.

7.4.2.7 offset(integer)

An integer determining the offset from where the rows should be fetched when loading the association
collection. I assume this is here mostly for completeness, since it’s hard to envision a valid use case.

Active Record Associations 205

7.4.2.8 order(*clauses)

Specifies the order in which the associated objects are returned via an “ORDER BY” sql fragment, such as
"last_name, first_name DESC".

7.4.2.9 readonly

Sets all records in the association collection to read-only mode, which prevents saving them.

7.4.2.10 select(expression)

By default, this is * as in SELECT * FROM, but can be changed if you for example want to add additional
calculated columns or “piggyback” additional columns from joins onto the associated object as its loaded.

7.4.2.11 distinct

Strips duplicate objects from the collection. Sometimes useful in conjunction with has_many :through.

7.5 Many-to-Many Relationships

Associating persistent objects via a join table can be one of the trickier aspects of object-relational mapping
to implement correctly in a framework. Rails has a couple of techniques that let you represent many-to-many
relationships in your model. We’ll start with the older and simpler has_and_belongs_to_many and then cover
the newer has_many :through.

7.5.1 has_and_belongs_to_many

Before proceeding with this section, I must clear my conscience by stating that has_and_belongs_to_many is
practically obsolete in the minds of many Rails developers, including the authors of this book. Use has_many
:through instead and your life should be a lot easier. The section is preserved in this edition almost exactly
as it appeared in the previous editions, because it contains good techniques that enlighten the reader about
nuances of Active Record behavior.

The has_and_belongs_to_many method establishes a link between two associated Active Record models via
an intermediate join table. Unless the join table is explicitly specified as an option, Rails guesses its name by
concatenating the table names of the joined classes, in alphabetical order and separated with an underscore.

For example, if I was using has_and_belongs_to_many (or habtm for short) to establish a relationship between
Timesheet and BillingCode, the join table would be named billing_codes_timesheets and the relationship
would be defined in the models. Both the migration class and models are listed:

Active Record Associations 206

1 class CreateBillingCodesTimesheets < ActiveRecord::Migration

2 def change

3 create_table :billing_codes_timesheets, id: false do |t|

4 t.references :billing_code, null: false

5 t.references :timesheet, null: false

6 end

7 end

8 end

9

10 class Timesheet < ActiveRecord::Base

11 has_and_belongs_to_many :billing_codes

12 end

13

14 class BillingCode < ActiveRecord::Base

15 has_and_belongs_to_many :timesheets

16 end

Note that an id primary key is not needed, hence the id: false option was passed to the create_table

method. Also, since the foreign key columns are both needed, we pass them a null: false option. (In real
code, you would also want to make sure both of the foreign key columns were indexed properly.)

Kevin says…

A new migration method create_join_table was added to Rails 4 to create a join table using the
order of the first two arguments. The migration in the preceding code example is equivalent to the
following:

1 class CreateBillingCodesTimesheets < ActiveRecord::Migration

2 def change

3 create_join_table :billing_codes, :timesheets

4 end

5 end

7.5.1.1 Self-Referential Relationship

What about self-referential many-to-many relationships? Linking a model to itself via a habtm relationship is
easy—you just have to provide explicit options. In Listing 7.3, I’ve created a join table and established a link
between related BillingCode objects. Again, both the migration and model class are listed:

Active Record Associations 207

Listing 7.3: Related billing codes

1 class CreateRelatedBillingCodes < ActiveRecord::Migration

2 def change

3 create_table :related_billing_codes, id: false do |t|

4 t.column :first_billing_code_id, :integer, null: false

5 t.column :second_billing_code_id, :integer, null: false

6 end

7 end

8 end

9

10 class BillingCode < ActiveRecord::Base

11 has_and_belongs_to_many :related,

12 join_table: 'related_billing_codes',

13 foreign_key: 'first_billing_code_id',

14 association_foreign_key: 'second_billing_code_id',

15 class_name: 'BillingCode'

16 end

7.5.1.2 Bidirectional Relationships

It’s worth noting that the related relationship of the BillingCode in Listing 7.3 is not bidirectional. Just
because you associate two objects in one direction does not mean they’ll be associated in the other direction.
But what if you need to automatically establish a bidirectional relationship?

First let’s write a spec for the BillingCode class to prove our solution. When we add bidirectional, we don’t
want to break the normal behavior, so at first my spec example establishes that the normal habtm relationship
works:

1 describe BillingCode do

2 let(:travel_code) { BillingCode.create(code: 'TRAVEL') }

3 let(:dev_code) { BillingCode.create(code: 'DEV') }

4

5 it "has a working related habtm association" do

6 travel_code.related << dev_code

7 expect(travel_code.reload.related).to include(dev_code)

8 end

9 end

I run the spec and it passes. Now I can modify the example to prove that the bidirectional behavior that we’re
going to add works. It ends up looking very similar to the first example.

Active Record Associations 208

1 describe BillingCode do

2 let(:travel_code) { BillingCode.create(code: 'TRAVEL') }

3 let(:dev_code) { BillingCode.create(code: 'DEV') }

4

5 it "has a bidirectional habtm association" do

6 travel_code.related << dev_code

7 expect(travel_code.reload.related).to include(dev_code)

8 expect(dev_code.reload.related).to include(travel_code)

9 end

Of course, the new version fails, since we haven’t added the new behavior yet. I’ll omit the output of running
the spec, since it doesn’t tell us anything we don’t know already.

7.5.1.3 Extra Columns on has_and_belongs_to_many Join Tables

Rails won’t have a problem with you adding as many extra columns as you want to habtm’s join table. The
extra attributes will be read in and added onto model objects accessed via the habtm association. However,
speaking from experience, the severe annoyances you will deal with in your application code make it really
unattractive to go that route.

What kind of annoyances? For one, records returned from join tables with additional attributes will be marked
as read-only, because it’s not possible to save changes to those additional attributes.

You should also consider that the way that Rails makes those extra columns of the join table available might
cause problems in other parts of your codebase. Having extra attributes appear magically on an object is kind
of cool, but what happens when you try to access those extra properties on an object that wasn’t fetched via
the habtm association? Kaboom! Get ready for some potentially bewildering debugging exercises.

Methods of the habtm proxy act just as they would for a has_many relationship. Similarly, habtm shares options
with has_many; only its :join_table option is unique. It allows customization of the join table name.

To sum up, habtm is a simple way to establish a many-to-many relationship using a join table. As long as you
don’t need to capture additional data about the relationship, everything is fine. The problemswith habtm begin
once you want to add extra columns to the join table, after which you’ll want to upgrade the relationship to
use has_many :through instead.

7.5.1.4 “Real Join Models” and habtm

The Rails documentation advises readers that: “It’s strongly recommended that you upgrade any [habtm]
associations with attributes to a real join model.” Use of habtm, which was one of the original innovative
features in Rails, fell out of favor once the ability to create real join models was introduced via the has_many
:through association.

Realistically, habtm is not going to be removed from Rails, for a couple of sensible reasons. First of all, plenty of
legacy Rails applications need it. Second, habtm provides a way to join classes without a primary key defined
on the join table, which is occasionally useful. But most of the time you’ll find yourself wanting to model
many-to-many relationships with has_many :through.

Active Record Associations 209

7.5.2 has_many :through

Well-known Rails guy Josh Susser is considered the expert on Active Record associations, even his blog is
called has_many :through. His description of the :through association¹, written back when the feature was
originally introduced in Rails 1.1, is so concise and well-written that I couldn’t hope to do any better. So here
it is:

The has_many :through association allows you to specify a one-to-many relationship indirectly
via an intermediate join table. In fact, you can specify more than one such relationship via the
same table, which effectively makes it a replacement for has_and_belongs_to_many. The biggest
advantage is that the join table contains full-fledged model objects complete with primary keys
and ancillary data. No more push_with_attributes; join models just work the same way all
your other Active Record models do.

7.5.2.1 Join Models

To illustrate the has_many :through association, we’ll set up a Client model so that it has many Timesheet

objects, through a normal has_many association named billable_weeks.

1 class Client < ActiveRecord::Base

2 has_many :billable_weeks

3 has_many :timesheets, through: :billable_weeks

4 end

The BillableWeek class was already in our sample application and is ready to be used as a join model:

1 class BillableWeek < ActiveRecord::Base

2 belongs_to :client

3 belongs_to :timesheet

4 end

We can also set up the inverse relationship, from timesheets to clients, like this.

1 class Timesheet < ActiveRecord::Base

2 has_many :billable_weeks

3 has_many :clients, through: :billable_weeks

4 end

Notice that has_many :through is always used in conjunction with a normal has_many association. Also,
notice that the normal has_many association will often have the same name on both classes that are being
joined together, which means the :through option will read the same on both sides.

¹http://blog.hasmanythrough.com/2006/2/28/association-goodness

http://blog.hasmanythrough.com/2006/2/28/association-goodness
http://blog.hasmanythrough.com/2006/2/28/association-goodness

Active Record Associations 210

through: :billable_weeks

How about the join model; will it always have two belongs_to associations? No.

You can also use has_many :through to easily aggregate has_many or has_one associations on the join model.
Forgive me for switching to completely nonrealistic domain for a moment—it’s only intended to clearly
demonstrate what I’m trying to describe:

1 class Grandparent < ActiveRecord::Base

2 has_many :parents

3 has_many :grand_children, through: :parents, source: :children

4 end

5

6 class Parent < ActiveRecord::Base

7 belongs_to :grandparent

8 has_many :children

9 end

For the sake of clarity in later chapters, I’ll refer to this usage of has_many :through as aggregating.

..

Courtenay says…
Weuse has_many :through somuch! It has prettymuch replaced the old has_and_belongs_to_many, because
it allows your join models to be upgraded to full objects.It’s like when you’re just dating someone and they
start talking about the Relationship (or, eventually, Our Marriage). It’s an example of an association being
promoted to something more important than the individual objects on each side.

7.5.2.2 Usage Considerations and Examples

You can use non-aggregating has_many :through associations in almost the same ways as any other has_many
associations. For instance, appending an object to a has_many :through collection will save the object as
expected:

>> c = Client.create(name: "Trotter's Tomahawks", code "ttom")

=> #<Client id: 5 ...>

>> c.timesheets << Timesheet.new

=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 2 ...>]>

The main benefit of has_many :through is that Active Record takes care of managing the instances of the
join model for you. If we call reload on the billable _weeks association, we’ll see that there was a billable
week object created for us:

Active Record Associations 211

>> c.billable_weeks.reload.to_a

=> [#<BillableWeek id: 2, tuesday_hours: nil, start_date: nil,

timesheet_id: 2, billing_code_id: nil, sunday_hours: nil,

friday_hours: nil, monday_hours: nil, client_id: 2, wednesday_hours: nil,

saturday_hours: nil, thursday_hours: nil>]

The BillableWeek object that was created is properly associated with both the client and the Timesheet.
Unfortunately, there are a lot of other attributes (e.g., start_date, and the hours columns) that were not
populated.

One possible solution is to use create on the billable_weeks association instead, and include the new
Timesheet object as one of the supplied properties.

>> bw = c.billable_weeks.create(start_date: Time.now,

timesheet: Timesheet.new)

7.5.2.3 Aggregating Associations

When you’re using has_many :through to aggregate multiple child associations, there are more significant
limitations—essentially you can query to your hearts content using find and friends, but you can’t append or
create new records through them.

For example, let’s add a billable_weeks association to our sample User class:

1 class User < ActiveRecord::Base

2 has_many :timesheets

3 has_many :billable_weeks, through: :timesheets

4 ...

The billable_weeks association aggregates all the billable week objects belonging to all of the user’s
timesheets.

1 class Timesheet < ActiveRecord::Base

2 belongs_to :user

3 has_many :billable_weeks, -> { include(:billing_code) }

4 ...

Now let’s go into the Rails console and set up some example data so that we can use the new billable_weeks

collection (on User).

Active Record Associations 212

>> quentin = User.first

=> #<User id: 1, login: "quentin" ...>

>> quentin.timesheets.to_a

=> []

>> ts1 = quentin.timesheets.create

=> #<Timesheet id: 1 ...>

>> ts2 = quentin.timesheets.create

=> #<Timesheet id: 2 ...>

>> ts1.billable_weeks.create(start_date: 1.week.ago)

=> #<BillableWeek id: 1, timesheet_id: 1 ...>

>> ts2.billable_weeks.create(start_date: 2.week.ago)

=> #<BillableWeek id: 2, timesheet_id: 2 ...>

>> quentin.billable_weeks.to_a

=> [#<BillableWeek id: 1, timesheet_id: 1 ...>, #<BillableWeek id: 2,

timesheet_id: 2 ...>]

Just for fun, let’s see what happens if we try to create a BillableWeek with a User instance:

>> quentin.billable_weeks.create(start_date: 3.weeks.ago)

ActiveRecord::HasManyThroughCantAssociateThroughHasOneOrManyReflection:

Cannot modify association 'User#billable_weeks' because the source

reflection class 'BillableWeek' is associated to 'Timesheet' via :has_many.

There you go… since BillableWeek only belongs to a timesheet and not a user, Rails raises a HasManyThroughCantAssociateThroughHasOneOrManyReflection
exception.

7.5.2.4 Join Models and Validations

When you append to a non-aggregating has_many :through association with <<, Active Record will always
create a new join model, even if one already exists for the two records being joined. You can add validates_-
uniqueness_of constraints on the join model to keep duplicate joins from happening.

This is what such a constraint might look like on our BillableWeek join model.

validates_uniqueness_of :client_id, scope: :timesheet_id

That says, in effect: “There should only be one of each client per timesheet.”

If your join model has additional attributes with their own validation logic, then there’s another important
consideration to keep in mind. Adding records directly to a has_many :through association causes a new join

Active Record Associations 213

model to be automatically created with a blank set of attributes. Validations on additional columns of the join
model will probably fail. If that happens, you’ll need to add new records by creating join model objects and
associating them appropriately through their own association proxy.

timesheet.billable_weeks.create(start_date: 1.week.ago)

7.5.3 has_many :through Options

The options for has_many :through are the same as the options for has_many—remember that :through is just
an option on has_many! However, the use of some of has_many’s options change or become more significant
when :through is used.

First of all, the :class_name and :foreign_key options are no longer valid, since they are implied from the
target association on the join model. The following are the rest of the options that have special significance
together with has_many :through.

7.5.3.1 source: assocation_name

The :source option specifies which association to use on the associated class. This option is not mandatory
because normally Active Record assumes that the target association is the singular (or plural) version of the
has_many association name. If your association names don’t match up, then you have to set :source explicitly.

For example, the following code will use the BillableWeek’s sheet association to populate timesheets.

has_many :timesheets, through: :billable_weeks, source: :sheet

7.5.3.2 source_type: class_name

The :source_type option is needed when you establish a has_many :through to a polymorphic belongs_to
association on the join model. Consider the following example concerning clients and contacts:

1 class Client < ActiveRecord::Base

2 has_many :client_contacts

3 has_many :contacts, through: :client_contacts

4 end

5

6 class ClientContact < ActiveRecord::Base

7 belongs_to :client

8 belongs_to :contact, polymorphic: true

9 end

In this somewhat contrived example, the most important fact is that a Client has many contacts, through
their polymorphic relationship to the join model, ClientContact. There isn’t a Contact class, we just want
to be able to refer to contacts in a polymorphic sense, meaning either a Person or a Business.

Active Record Associations 214

1 class Person < ActiveRecord::Base

2 has_many :client_contacts, as: :contact

3 end

4

5 class Business < ActiveRecord::Base

6 has_many :client_contacts, as: :contact

7 end

Now take a moment to consider the backflips that Active Record would have to perform in order to figure
out which tables to query for a client’s contacts. Remember that there isn’t a contacts table!

>> Client.first.contacts

Active Record would theoretically need to be aware of every model class that is linked to the other end of
the contacts polymorphic association. In fact, it cannot do those kinds of backflips, which is probably a good
thing as far as performance is concerned:

>> Client.first.contacts

ActiveRecord::HasManyThroughAssociationPolymorphicSourceError: Cannot have a

has_many :through association 'Client#contacts' on the polymorphic object

'Contact#contact' without 'source_type'.

The only way to make this scenario work (somewhat) is to give Active Record some help by specifying which
table it should search when you ask for the contacts collection, and you do that with the source_type option
naming the target class, symbolized, like this:

1 class Client < ActiveRecord::Base

2 has_many :client_contacts

3 has_many :people, through: :client_contacts,

4 source: :contact, source_type: :person

5

6 has_many :businesses, through: :client_contacts,

7 source: :contact, source_type: :business

8 end

After the :source_type is specified, the association will work as expected, but sadly we don’t get a general
purpose contacts collection to work with, as it seemed might be possible at first.

>> Client.first.people.create!

=> [#<Person id: 1>]

If you’re upset that you cannot associate people and business together in a contacts association, you could
try writing your own accessor method for a client’s contacts:

Active Record Associations 215

1 class Client < ActiveRecord::Base

2 def contacts

3 people_contacts + business_contacts

4 end

5 end

Of course, you should be aware that calling that contactsmethod will result in at least two database requests
and will return an Array, without the association proxy methods that you might expect it to have.

7.5.4 Unique Association Objects

The distinct scope method tells the association to include only unique objects. It is especially useful when
using has_many :through, since two different BillableWeeks could reference the same Timesheet.

>> Client.first.timesheets.reload.to_a

[#<Timesheet id: 1...>, #<Timesheet id: 1...>]

It’s not extraordinary for two distinct model instances of the same database record to be in memory at the
same time—it’s just not usually desirable.

1 class Client < ActiveRecord::Base

2 has_many :timesheets, -> { distinct }, through: :billable_weeks

3 end

After adding the distinct scope to the has_many :through association, only one instance per record is
returned.

>> Client.first.timesheets.reload.to_a

=> [#<Timesheet id: 1...>]

7.6 One-to-One Relationships

One of the most basic relationship types is a one-to-one object relationship. In Active Record we declare a
one-to-one relationship using the has_one and belongs_to methods together. As in the case of a has_many

relationship, you call belongs_to on the model whose database table contains the foreign key column linking
the two records together.

7.6.1 has_one

Conceptually, has_one works almost exactly like has_many does, except that when the database query is
executed to retrieve the related object, a LIMIT 1 clause is added to the generated SQL so that only one
row is returned.

The name of a has_one relationship should be singular, whichwill make it read naturally, for example: has_one
:last_timesheet, has_one :primary_account, has_one :profile_photo, and so on. Let’s take a look at
has_one in action by adding avatars for our users.

Active Record Associations 216

1 class Avatar < ActiveRecord::Base

2 belongs_to :user

3 end

4

5 class User < ActiveRecord::Base

6 has_one :avatar

7 # ... the rest of our User code ...

8 end

That’s simple enough. Firing this up in rails console, we can look at some of the new methods that has_one
adds to User.

>> u = User.first

>> u.avatar

=> nil

>> u.build_avatar(url: '/avatars/smiling')

=> #<Avatar id: nil, url: "/avatars/smiling", user_id: 1>

>> u.avatar.save

=> true

As you can see, we can use build_avatar to build a new avatar object and associate it with the user. While
it’s great that has_one will associate an avatar with the user, it isn’t really anything that has_many doesn’t
already do. So let’s take a look at what happens when we assign a new avatar to the user.

>> u = User.first

>> u.avatar

=> #<Avatar id: 1, url: "/avatars/smiling", user_id: 1>

>> u.create_avatar(url: '/avatars/frowning')

=> #<Avatar id: 2, url: "/avatars/4567", user_id: 1>

>> Avatar.all.to_a

=> [#<Avatar id: 1, url: "/avatars/smiling", user_id: nil>, #<Avatar id: 2, url:

"/avatars/4567", user_id: 1>]

The last line from that console session is the most interesting, because it shows that our initial avatar is now
no longer associated with the user. Of course, the previous avatar was not removed from the database, which
is something that we want in this scenario. So, we’ll use the dependent: :destroy option to force avatars to
be destroyed when they are no longer associated with a user.

Active Record Associations 217

1 class User < ActiveRecord::Base

2 has_one :avatar, dependent: :destroy

3 end

With some additional fiddling around in the console, we can verify that it works as intended. In doing so, you
might notice that Rails only destroys the avatar that was just removed from the user, so bad data that was in
your database from before will still remain. Keep this in mind when you decide to add dependent: :destroy

to your code and remember to manually clear orphaned data that might otherwise remain.

7.6.1.1 Using has_one together with has_many

As I alluded to earlier, has_one is sometimes used to single out one record of significance alongside an already
established has_many relationship. For instance, let’s say we want to easily be able to access the last timesheet
a user was working on:

1 class User < ActiveRecord::Base

2 has_many :timesheets

3

4 has_one :latest_sheet,

5 -> { order('created_at desc') },

6 class_name: 'Timesheet'

7 end

I had to specify a :class_name, so that Active Record knows what kind of object we’re associating. (It can’t
figure it out based on the name of the association, :latest_sheet.)

When adding a has_one relationship to amodel that already has a has_many defined to the same relatedmodel,
it is not necessary to add another belongs_tomethod call to the target object, just for the new has_one. That
might seem a little counterintuitive at first, but if you think about it, the same foreign key value is being used
to read the data from the database.

7.6.1.2 has_one Options

The options for has_one associations are similar to the ones for has_many. For your convenience, we briefly
cover the most relevant ones here.

7.6.1.3 :as

Allows you to set up a polymorphic association, covered in Chapter 9, “Advanced Active Record”.

7.6.1.4 :class_name

Allows you to specify the class this association uses. When you’re doing has_one :latest_timesheet,

class_name: 'Timesheet', class_name: 'Timesheet' specifies that latest_timesheet is actually the last
Timesheet object in the database that is associated with this user. Normally, this option is inferred by Rails
from the name of the association.

Active Record Associations 218

7.6.1.5 :dependent

The :dependent option specifies how Active Record should treat associated objects when the parent object
is deleted. (The default is to do nothing with associated objects, which will leave orphaned records in the
database.) There are a few different values that you can pass and they work just like the :dependent option
of has_many. If you pass :destroy to it, you tell Rails to destroy the associated object when it is no longer
associated with the primary object. Setting the :dependent option to :delete will destroy the associated
object without calling any of Rails’ normal hooks. Passing :restrict_with_exception causes Rails to throw
an exception if there is any associated object present, while :restrict_with_error adds an error to the owner
object causing validations to fail before saving. Finally, :nullifywill simply set the foreign key values to nil
so that the relationship is broken.

7.6.2 has_one scopes

The scopes for has_one associations are similar to the ones for has_many. For your convenience, we briefly
cover the most relevant ones here.

7.6.2.1 where(*conditions)

Allows you to specify conditions that the object must meet to be included in the association.

1 class User < ActiveRecord::Base

2 has_one :manager, -> (where(type: 'manager')),

3 class_name: 'Person'

Here manager is specified as a person object that has type = 'manager'. I tend to almost always a where

scope block in conjunction with has_one. When Active Record loads the association, it’s grabbing one of
potentially many rows that have the right foreign key. Absent some explicit conditions (or perhaps an order

scope), you’re leaving it in the hands of the database to pick a row.

7.6.2.2 order(*clauses)

Allows you to specify a SQL fragment that will be used to order the results. This is an especially useful option
with has_one when trying to associate the latest of something or another.

1 class User < ActiveRecord::Base

2 has_one :latest_timesheet,

3 -> { order('created_at desc') },

4 class_name: 'Timesheet'

5 end

7.6.2.3 readonly

Sets the record in the association to read-only mode, which prevents saving it.

Active Record Associations 219

7.7 Working with Unsaved Objects and Associations

You can manipulate objects and associations before they are saved to the database, but there is some special
behavior you should be aware of, mostly involving the saving of associated objects. Whether an object is
considered unsaved is based on the result of calling new_record?

7.7.1 One-to-One Associations

Assigning an object to a belongs_to association does not save the parent or the associated object.

Assigning an object to a has_one association automatically saves that object and the object being replaced (if
there is one), so that their foreign key fields are updated. The exception to this behavior is if the parent object
is unsaved, since that would mean that there is no foreign key value to set. If save fails for either of the objects
being updated (due to one of them being invalid) the assignment operation returns false and the assignment is
cancelled. That behavior makes sense (if you think about it), but it can be the cause of much confusion when
you’re not aware of it. If you have an association that doesn’t seem to work, check the validation rules of the
related objects.

7.7.2 Collections

Adding an object to has_many and has_and_belongs_to_many collections automatically saves it, unless the
parent object (the owner of the collection) is not yet stored in the database.

If objects being added to a collection (via << or similar means) fail to save properly, then the addition operation
will return false. If you want your code to be a little more explicit, or you want to add an object to a collection
without automatically saving it, then you can use the collection’s buildmethod. It’s exactly like create, except
that it doesn’t save.

Members of a collection are automatically saved or updated when their parent is saved or updated, unless
autosave: false is set on the association.

7.7.3 Deletion

Associations that are set with an autosave: true option are also afforded the ability to have their records
deleted when an inverse record is saved. This is to allow the records from both sides of the association to get
persisted within the same transaction, and is handled through the mark_for_destruction method. Consider
our User and Timesheet models again:

1 class User < ActiveRecord::Base

2 has_many :timesheets, autosave: true

3 end

If I would like to have a Timesheet destroyed when the User is saved, mark it for destruction.

Active Record Associations 220

1 user = User.where(name: "Durran")

2 timesheet = user.timesheets.closed

3 timesheet.mark_for_destruction # => Flags timesheet

4 user.save # => The timesheet gets deleted

Since both are persisted in the same transaction, if the operation were to fail the database would not be in
an inconsistent state. Do note that although the child record did not get deleted in that case, it still would be
marked for destruction and any later attempts to save the inverse would once again attempt to delete it.

7.8 Association Extensions

The proxy objects that handle access to associations can be extended with your own application code. You
can add your own custom finders and factory methods to be used specifically with a particular association.

For example, let’s say you wanted a concise way to refer to an account’s people by name. You may create an
extension on the association like the following:

Listing 7.4: An association extension on a people collection

1 class Account < ActiveRecord::Base

2 has_many :people do

3 def named(full_name)

4 first_name, last_name = full_name.split(" ", 2)

5 where(first_name: first_name, last_name: last_name).first_or_create

6 end

7 end

8 end

Now we have a named method available to use on the people collection.

1 account = Account.first

2 person = account.people.named("David Heinemeier Hansson")

3 person.first_name # => "David"

4 person.last_name # => "Heinemeier Hansson"

If you need to share the same set of extensions between many associations, you can specify an extension
module, instead of a block with method definitions. Here is the same feature shown in Listing 7.4, except
broken out into its own Ruby module:

Active Record Associations 221

1 module ByNameExtension

2 def named(full_name)

3 first_name, last_name = full_name.split(" ", 2)

4 where(first_name: first_name, last_name: last_name).first_or_create

5 end

6 end

Now we can use it to extend many different relationships, as long as they’re compatible. (Our contract in the
example consists of a model with columns first_name and last_name.)

1 class Account < ActiveRecord::Base

2 has_many :people, -> { extending(ByNameExtension) }

3 end

4

5 class Company < ActiveRecord::Base

6 has_many :people, -> { extending(ByNameExtension) }

7 end

If you need to use multiple named extension modules, you can pass an array of modules to the extending

query method instead of a single module, like this:

has_many :people, -> { extending(ByNameExtension, ByRecentExtension) }

In the case of name conflicts, methods contained in modules added later in the array supercede those earlier
in the array.

..

Consider a class method instead
Unless you have a valid reason to reuse the extension logic with more than one type of model, you’re prob-
ably better off leveraging the fact that class methods are automatically available on has_many associations.

1 class Person < ActiveRecord::Base

2 belongs_to :account

3

4 def self.named(full_name)

5 first_name, last_name = full_name.split(" ", 2)

6 where(first_name: first_name, last_name: last_name).first_or_create

7 end

8 end

7.9 The CollectionProxy Class

CollectionProxy, the parent of all association proxies, contributes a handful of useful methods that apply to
most kinds of associations and can come into play when you’re writing association extensions.

Active Record Associations 222

7.9.0.1 owner, reflection, and target

The owner method provides a reference to the parent object holding the association.

The reflection object is an instance of ActiveRecord::Reflection::AssociationReflection and contains
all of the configuration options for the association. That includes both default settings and those that were
passed to the association method when it was declared.

Finally, the target is the associated collection of objects (or associated object itself in the case of belongs_to
and has_one).

It might not appear sane to expose these attributes publicly and allow their manipulation. However, without
access to them it would bemuchmore difficult to write advanced association extensions. The loaded?, loaded,
target, and target= methods are public for similar reasons.

The following code sample demonstrates the use of owner within a published_prior_to extension method,
originally contributed by Wilson Bilkovich:

1 class ArticleCategory < ActiveRecord::Base

2 has_ancestry

3

4 has_many :articles do

5 def published_prior_to(date, options = {})

6 if owner.is_root?

7 Article.where('published_at < ? and category_id = ?', date, proxy_owner)

8 else

9 # self is the 'articles' association here so we inherit its scope

10 self.all(options)

11 end

12 end

13 end

14 end

The has_ancestry Active Record extension gem adds the ability to organize Active Record models as a tree
structure. The self-referential association based on a ancestry string column. The owner reference is used to
check if the parent of this association is a “top-level” node in the tree.

7.9.0.2 reload and reset

The reset method puts the association proxy back in its initial state, which is unloaded (cached association
objects are cleared). The reload method invokes reset, and then loads associated objects from the database.

7.10 Conclusion

The ability to model associations is what makes Active Record more than just a data-access layer. The ease
and elegance with which you can declare those associations are what make Active Record more than your
ordinary object-relational mapper.

Active Record Associations 223

In this chapter, we covered the basics of how Active Record associations work. We started by taking a look at
the class hierarchy of associations classes, starting with CollectionProxy. Hopefully, by learning about how
associations work under the hood, you’ve picked up some enhanced understanding about their power and
flexibility.

Finally, the options and methods guide for each type of association should be a good reference guide for your
day-to-day development activities.

8 Validations
I have bought this wonderful machine- a computer. Now I am rather an authority on gods, so
I identified the machine- it seems to me to be an Old Testament god with a lot of rules and no
mercy.

—Joseph Campbell

The Validations API in Active Model, along with its supplementary functionality in Active Record allows you
to declaratively define valid states for your model objects. The validation methods hook into the life cycle of
an Active Record model object and are able to inspect the object to determine whether certain attributes are
set, have values in a given range, or pass any other logical hurdles that you specify.

In this chapter, we’ll describe the validation methods available and how to use them effectively. We’ll also
explore how those validation methods interact with your model’s attributes and how the built-in error-
messaging system messages can be used effectively in your application’s user interface to provide descriptive
feedback.

Finally, we’ll cover how to use ActiveModel’s validation functionality in your own, non-Active Record classes.

8.1 Finding Errors

Validation problems are also known as (drumroll please…) errors! Every Active Record model object contains
a collection of errors, accessible (unsurprisingly) as the errors attribute.

When a model object is valid, the errors collection is empty. In fact, when you call valid? on a model object,
a series of steps to find errors is taken as follows (slightly simplified):

1. Clear the errors collection.
2. Run validations.
3. Return whether the model’s errors collection is now empty or not.

If the errors collection ends up empty, the object is valid. In cases where you have to write actual validation
logic yourself, you mark an object invalid by adding items to the errors collection using its add methods.
Simple as that.

We’ll cover the methods of the Errors class in some more detail later on. It makes more sense to look at the
validation methods themselves first.

8.2 The Simple Declarative Validations

Whenever possible, you should set validations for your models declaratively by using one or more of the
following class methods available to all Active Record classes. Unless otherwise noted, all of the validates
methods accept a variable number of attributes, plus options. There are some options for these validation
methods that are common to all of them, and we’ll cover them at the end of the section.

Validations 225

8.2.1 validates_absence_of

New to Rails 4, the validates_absence_of method ensures specified attributes are blank, It uses the blank?
method, defined on Object, which returns true for values that are nil or a blank string "". It is the polar
opposite of the commonly used validates_presence_of validation method, covered later in this section.

1 class Account < ActiveRecord::Base

2 validates_absence_of :something_unwanted

3 end

When the validates_absence_of validation fails, an error message is stored in the model object reading
“attribute must be blank.”

8.2.2 validates_acceptance_of

Many web applications have screens in which the user is prompted to agree to terms of service or some
similar concept, usually involving a check box. No actual database column matching the attribute declared
in the validation is required. When you call this method, it will create virtual attributes automatically for
each named attribute you specify. I see this validation as a type of syntax sugar since it is so specific to web
application programming.

1 class Account < ActiveRecord::Base

2 validates_acceptance_of :privacy_policy, :terms_of_service

3 end

You can use this validation with or without a boolean columns on the table backing your model. A transient
attribute will be created if necessary. Choose to store the value in the database only if you need to keep track
of whether the user accepted the term, for auditing or other reasons. Mind you, not accepting the term would
prevent creation of the record, but it’s good to know what is supported.

When the validates_acceptance_of validation fails, an error message is stored in the model object reading
“attribute must be accepted.”

The :accept option makes it easy to change the value considered acceptance. The default value is "1", which
matches the value supplied by check boxes generated using Rails helper methods.

1 class Cancellation < ActiveRecord::Base

2 validates_acceptance_of :account_cancellation, accept: 'YES'

3 end

If you use the preceding example in conjunction with a text field connected to the account_cancellation

attribute, the user would have to type the word YES in order for the cancellation object to be valid.

Validations 226

8.2.3 validates_associated

Used to ensure that all associated objects are valid on save. Works with any kind of association and is specific
to Active Record (not Active Model.) We emphasize all because the default behavior of has_many associations
is to ensure the validity of their new child records on save.

..

Suggestion
You probably don’t need to use this particular validation nowadays since has_many associations default to
validate: true. Additionally note that one of the implications of that default is that setting validate:

true carelessly on a belongs_to association can cause infinite loop problems.

A validates_associated on belongs_towill not fail if the association is nil. If youwant tomake sure that the
association is populated and valid, you have to use validates_associated in conjunction with validates_-

presence_of.

Tim says…
It’s possible to get similar behavior by using a combination of the :autosave and :validate options
on a has_many.

8.2.4 validates_confirmation_of

The validates_confirmation_of method is another case of syntactic sugar for web applications, since it is
so common to include dual-entry text fields to make sure that the user entered critical data such as passwords
and e-mail address correctly. This validation will create a virtual attribute for the confirmation value and
compare the two attributes to make sure they match in order for the model to be valid.

Here’s an example, using our fictional Account model again:

1 class Account < ActiveRecord::Base

2 validates_confirmation_of :password

3 end

The user interface used to set values for the Account model would need to include extra text fields named
with a _confirmation suffix, and when submitted, the value of those fields would have to match in order for
this validation to pass. A simplified example of matching view code is provided.

Validations 227

1 = form_for account do |f|

2 = f.label :login

3 = f.text_field :login

4 = f.label :password

5 = f.password_field :password

6 = f.label :password_confirmation

7 = f.password_field :password_confirmation

8 = f.submit

8.2.5 validates_each

The validates_each method is a little more free-form than its companions in the validation family in that it
doesn’t have a predefined validation function. Instead, you give it an array of attribute names to check, and
supply a Ruby block to be used in checking each attribute’s validity. Notice that parameters for the model
instance (record), the name of the attribute as a symbol, and the value to check are passed as block parameters.
The block function designates the model object as valid or not by merit of adding to its errors array or not.
The return value of the block is ignored.

There aren’t too many situations where this method is necessary, but one plausible example is when
interacting with external services for validation. You might wrap the external validation in a fa��ade specific
to your application, and then call it using a validates_each block:

1 class Invoice < ActiveRecord::Base

2 validates_each :supplier_id, :purchase_order do |record, attr, value|

3 record.errors.add(attr) unless PurchasingSystem.validate(attr, value)

4 end

5 end

8.2.6 validates_format_of

To use validates_format_of, you’ll have to know how to use Ruby regular expressions.¹ Pass the method
one or more attributes to check, and a regular expression as the (required) :with option. A good example, as
shown in the Rails docs, is checking for a valid e-mail address format:

1 class Person < ActiveRecord::Base

2 validates_format_of :email,

3 with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/

4 end

By the way, that example is totally not an RFC-compliant email address format checker.²

¹Check out the excellent http://rubular.com if you need help composing Ruby regular expressions.
²If you need to validate email addresses try the plugin at https://github.com/spectator/validates_email

http://rubular.com
https://github.com/spectator/validates_email

Validations 228

Courtenay says…
Regular expressions are awesome but can get very complex, particularly when validating domain
names or email addresses. You can use #{} inside regular expressions, so split up your regex into
chunks like this:

validates_format_of :name, with:

/\A((localhost)|#{DOMAIN}|#{NUMERIC_IP})#{PORT}\z/

That expression is pretty straightforward and easy to understand. The constants themselves are not
so easy to understand but easier than if they were all jumbled in together:

1 PORT = /(([:]\d+)?)/

2 DOMAIN = /([a-z0-9\-]+\.?)*([a-z0-9]{2,})\.[a-z]{2,}/

3 NUMERIC_IP = /(?>(?:1?\d?\d|2[0-4]\d|25[0-5])\.){3}

4 (?:1?\d?\d|2[0-4]\d|25[0-5])(?:\/(?:[12]?\d|3[012])|-(?>(?:1?\d?\d|

5 2[0-4]\d|25[0-5])\.){3}(?:1?\d?\d|2[0-4]\d|25[0-5]))?/

Lark says…
I’ll take your readability Courtenay, and raise you test isolation. Your regular expression should
itself be in a constant so you can test it.

8.2.7 validates_inclusion_of and validates_exclusion_of

These methods take a variable number of attribute names and an :in option. When they run, they check
to make sure that the value of the attribute is included (or excluded, respectively) in the enumerable object
passed as the :in option.

The examples in the Rails docs are probably some of the best illustrations of their use, so I’ll take inspiration
from them:

1 class Person < ActiveRecord::Base

2 validates_inclusion_of :gender, in: %w(m f), message: 'O RLY?'

3 ...

4

5 class Account < ActiveRecord::Base

6 validates_exclusion_of :username, in: %w(admin superuser),

7 message: 'Borat says "Naughty, naughty!"'

8 ...

Notice that in the examples I’ve introduced usage of the :message option, common to all validation methods,
to customize the error message constructed and added to the Errors collection when the validation fails. We’ll
cover the default error messages and how to effectively customize them a little further along in the chapter.

Validations 229

8.2.8 validates_length_of

The validates_length_of method takes a variety of different options to let you concisely specify length
constraints for a given attribute of your model.

1 class Account < ActiveRecord::Base

2 validates_length_of :login, minimum: 5

3 end

8.2.8.1 Constraint Options

The :minimum and :maximum options work as expected, but don’t use them together. To specify a range, use
the :within option and pass it a Ruby range, as in the following example:

1 class Account < ActiveRecord::Base

2 validates_length_of :username, within: 5..20

3 end

To specify an exact length of an attribute, use the :is option:

1 class Account < ActiveRecord::Base

2 validates_length_of :account_number, is: 16

3 end

8.2.8.2 Error Message Options

Rails gives you the ability to generate detailed error messages for validates_length_of via the :too_long,
:too_short, and :wrong_length options. Use %{count} in your custom error message as a placeholder for the
number corresponding to the constraint.

1 class Account < ActiveRecord::Base

2 validates_length_of :account_number, is: 16,

3 wrong_length: "should be %{count} characters long"

4 end

8.2.9 validates_numericality_of

The somewhat clumsily named validates_numericality_of method is used to ensure that an attribute can
only hold a numeric value.

The :only_integer option lets you further specify that the value should only be an integer value and defaults
to false.

Validations 230

1 class Account < ActiveRecord::Base

2 validates_numericality_of :account_number, only_integer: true

3 end

The :even and :odd options do what you would expect and are useful for things like, I don’t know, checking
electron valences. (Actually, I’m not creative enough to think of what you would use this validation for, but
there you go.)

The following comparison options are also available:

• :equal_to

• :greater_than

• :greater_than_or_equal_to

• :less_than

• :less_than_or_equal_to

• :other_than

8.2.9.1 Infinity and Other Special Float Values

Interestingly, Ruby has the concept of infinity built-in. If you haven’t seen infinity before, try the following
in a console:

>> (1.0/0.0)

=> Infinity

Infinity is considered a number by validates_numericality_of. Databases (like PostgreSQL) with support
for the IEEE 754 standard should allow special float values like Infinity to be stored. The other special values
are positive infinity (+INF), negative infinity (-INF), and not-a-number (NaN). IEEE 754 also distinguishes
between positive zero (+0) and negative zero (-0). NaN is used to represent results of operations that are
undefined.

8.2.10 validates_presence_of

One of the more common validation methods, validates_presence_of, is used to denote mandatory
attributes. This method checks whether the attribute is blank using the blank? method, defined on Object,
which returns true for values that are nil or a blank string "".

1 class Account < ActiveRecord::Base

2 validates_presence_of :username, :email, :account_number

3 end

A common mistake is to use validates_presence_of with a boolean attribute, like the backing field for a
checkbox. If you want to make sure that the attribute is true, use validates_acceptance_of instead. The
boolean value false is considered blank, so if you want to make sure that only true or false values are set
on your model, use the following pattern:

Validations 231

validates_inclusion_of :protected, in: [true, false]

8.2.10.1 Validating the Presence and/or Existence of Associated Objects

When you’re trying to ensure that an association is present, pass validates_presence_of its foreign key
attribute, not the association variable itself. Note that the validation will fail in cases when both the parent
and child object are unsaved (since the foreign key will be blank).

Many developers try to use this validation with the intention of ensuring that associated objects actually exist
in the database. Personally, I think that would be a valid use case for an actual foreign-key constraint in the
database, but if you want to do the check in your Rails code then emulate the following example:

1 class Timesheet < ActiveRecord::Base

2 belongs_to :user

3 validates_presence_of :user_id

4 validate :user_exists

5

6 protected

7

8 def user_exists

9 errors.add(:user_id, "doesn't exist") unless User.exists?(user_id)

10 end

11 end

Without a validation, if your application violates a database foreign key constraint, you will get an Active
Record exception.

8.2.11 validates_uniqueness_of

The validates_uniqueness_ofmethod, also exclusive to Active Record, ensures that the value of an attribute
is unique for all models of the same type. This validation does not work by adding a uniqueness constraint at
the database level. It does work by constructing and executing a query looking for a matching record in the
database. If any record is returned when this method does its query, the validation fails.

1 class Account < ActiveRecord::Base

2 validates_uniqueness_of :username

3 end

By specifying a :scope option, additional attributes can be used to determine uniqueness. You may pass
:scope one or more attribute names as symbols (putting multiple symbols in an array).

Validations 232

1 class Address < ActiveRecord::Base

2 validates_uniqueness_of :line_two, scope: [:line_one, :city, :zip]

3 end

It’s also possible to specify whether to make the uniqueness constraint case-sensitive or not, via the :case_-
sensitive option (ignored for nontextual attributes).

With the addition of support for PostgreSQL array columns in Rails 4, the validates_uniqueness_ofmethod
can be used to validate that all items in the array are unique. PostgreSQL array columns are topic was covered
in detail in Chapter 9, “Advanced Active Record”.

Tim says…
This validation is not foolproof due to a potential race condition between the SELECT query that
checks for duplicates and the INSERT or UPDATE which persists the record. An Active Record
exception could be generated as a result, so be prepared to handle that failure in your controller.
I recommend that you use a unique index constraint in the database if you absolutely must make
sure that a column value is unique.

8.2.11.1 Enforcing Uniqueness of Join Models

In the course of using join models (with has_many :through), it seems pretty common to need to make
the relationship unique. Consider an application that models students, courses, and registrations with the
following code:

1 class Student < ActiveRecord::Base

2 has_many :registrations

3 has_many :courses, through: :registrations

4 end

5

6 class Registration < ActiveRecord::Base

7 belongs_to :student

8 belongs_to :course

9 end

10

11 class Course < ActiveRecord::Base

12 has_many :registrations

13 has_many :students, through: :registrations

14 end

How do you make sure that a student is not registered more than once for a particular course? The most
concise way is to use validates_uniqueness_of with a :scope constraint. The important thing to remember
with this technique is to reference the foreign keys, not the names of the associations themselves:

Validations 233

1 class Registration < ActiveRecord::Base

2 belongs_to :student

3 belongs_to :course

4

5 validates_uniqueness_of :student_id, scope: :course_id,

6 message: "can only register once per course"

7 end

Notice that since the default error message generated when this validation fails would not make sense, I’ve
provided a custom error message that will result in the expression: “Student can only register once per course.”

..

Tim says…
Astute readers will notice that the validation was on student_id but the error message references “Student.”
Rails special cases this to do what you mean.

8.2.11.2 Limit Constraint Lookup

As of Rails 4, one can specify criteria that constraints a uniqueness validation against a set of records by
setting the :conditions option.

To illustrate, let’s assume we have an article that requires titles to be unique against all published articles in
the database. We can achieve this using validates_uniqueness_of by doing the following:

1 class Article < ActiveRecord::Base

2 validates_uniqueness_of :title,

3 conditions: -> { where.not(published_at: nil) }

4 ...

5 end

When the model is saved, Active Record will query for title against all articles in the database that are
published. If no results are returned, the model is valid.

8.2.12 validates_with

All of the validation methods we’ve covered so far are essentially local to the class in which they are used.
If you want to develop a suite of custom, reusable validation classes, then you need a way to apply them to
your models, and that is what the validates_with method allows you to do.

To implement a custom validator, extend ActiveRecord::Validator and implement the validate method.
The record being validated is available as record and you manipulate its errors hash to log validation errors.

The following examples, from Ryan Daigle’s excellent post³ on this feature, demonstrate a reusable email field
validator:

³http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independent-model-validators

http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independent-model-validators
http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independent-model-validators

Validations 234

1 class EmailValidator < ActiveRecord::Validator

2 def validate()

3 record.errors[:email] << "is not valid" unless

4 record.email =~ /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/

5 end

6 end

7

8 class Account < ActiveRecord::Base

9 validates_with EmailValidator

10 end

The example assumes the existence of an email attribute on the record. If you need to make your reusable
validator more flexible, you can access validation options at runtime via the options hash, like this:

1 class EmailValidator < ActiveRecord::Validator

2 def validate()

3 email_field = options[:attr]

4 record.errors[email_field] << "is not valid" unless

5 record.send(email_field) =~ /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/

6 end

7 end

8

9 class Account < ActiveRecord::Base

10 validates_with EmailValidator, attr: :email

11 end

8.2.13 RecordInvalid

Whenever you do so-called bang operations (such as save!) and a validation fails, you should be prepared
to rescue ActiveRecord::RecordInvalid. Validation failures will cause RecordInvalid to be raised and its
message will contain a description of the failures.

Here’s a quick example from one of my applications that has pretty restrictive validations on its User model:

>> u = User.new

=> #<User ...>

>> u.save!

ActiveRecord::RecordInvalid: Validation failed: Name can't be blank,

Password confirmation can't be blank, Password is too short (minimum

is 5 characters), Email can't be blank, Email address format is bad

8.3 Common Validation Options

The following options apply to all of the validation methods.

Validations 235

8.3.1 :allow_blank and :allow_nil

In some cases, you only want to trigger a validation if a value is present, in other words the attribute is
optional. There are two options that provide this functionality.

The :allow_blank option skips validation if the value is blank according to the blank?method. Similarly, the
:allow_nil option skips the validation if the value of the attribute is nil; it only checks for nil, and empty
strings "" are not considered nil, but they are considered blank.

8.3.2 :if and :unless

The :if and :unless options is covered in the next section, “Conditional Validation.”

8.3.3 :message

As we’ve discussed earlier in the chapter, the way that the validation process registers failures is by adding
items to the Errors collection of the model object being checked. Part of the error item is a specific message
describing the validation failure. All of the validation methods accept a :message option so that you can
override the default error message format.

1 class Account < ActiveRecord::Base

2 validates_uniqueness_of :username, message: "is already taken"

3 end

The default English locale file in ActiveModel defines most of the standard error message templates.

inclusion: "is not included in the list"

exclusion: "is reserved"

invalid: "is invalid"

confirmation: "doesn't match %{attribute}"

accepted: "must be accepted"

empty: "can't be empty"

blank: "can't be blank"

present: "must be blank"

too_long: "is too long (maximum is %{count} characters)"

too_short: "is too short (minimum is %{count} characters)"

wrong_length: "is the wrong length (should be %{count} characters)"

not_a_number: "is not a number"

not_an_integer: "must be an integer"

greater_than: "must be greater than %{count}"

greater_than_or_equal_to: "must be greater than or equal to %{count}"

equal_to: "must be equal to %{count}"

less_than: "must be less than %{count}"

less_than_or_equal_to: "must be less than or equal to %{count}"

other_than: "must be other than %{count}"

odd: "must be odd"

even: "must be even"

Validations 236

The default messages only use the count variable for interpolation, where appropriate, but model, attribute,
and value are always available.

validates_uniqueness_of username, message: "%{value} is already registered"

8.3.4 :on

By default, validations are run on save (both create and update operations). If you need to do so, you can limit
a given validation to just one of those operations by passing the :on option either :create or :update.

Assuming that your application does not support changing emails, one good use for on: :createmight be in
conjunction with validates_uniqueness_of, since checking uniqueness with a query on large datasets can
be time-consuming.

1 class Account < ActiveRecord::Base

2 validates_uniqueness_of :email, on: :create

3 end

8.3.5 :strict

New to Rails 4 is the :strict validation option. Setting :strict to true causes an exception ActiveModel::StrictValidationFailed
to be raised when an model is invalid.

1 class Account < ActiveRecord::Base

2 validates :email, presence: { strict: true }

3 end

To override the type of exception raised on error, pass the custom exception to the :strict option.

8.4 Conditional Validation

Since all validation methods are implemented via the Active Model Callback API, they also accept :if and
:unless options, to determine at runtime (and not during the class definition) whether the validation needs
to be run or not. The following three types of arguments can be supplied as an :if and :unless options:

Symbol
The name of a method to invoke as a symbol. This is probably the most common option, and offers the
best performance.

String
A snippet of Ruby code to eval might be useful when the condition is really short, but keep in mind
that eval’ing statements is relatively slow.

Proc A block of code to be instance_eval‘d, so that self is the current record. Perhaps the most elegant
choice for one-line conditionals.

Validations 237

validates_presence_of :approver, if: -> { approved? && !legacy? }

8.4.1 Usage and Considerations

When does it make sense to use conditional validations? The answer is: whenever an object can be validly
persisted in more than one state. A very common example involves the User (or Person) model, used for login
and authentication.

1 validates_presence_of :password, if: :password_required?

2 validates_presence_of :password_confirmation, if: :password_required?

3 validates_length_of :password, within: 4..40, if: :password_required?

4 validates_confirmation_of :password, if: :password_required?

This code is not DRY (meaning that it is repetitive). You can refactor it to make it a little dryer using the
with_options method that Rails mixes into Object.

1 with_options if: :password_required? do |user|

2 user.validates_presence_of :password

3 user.validates_presence_of :password_confirmation

4 user.validates_length_of :password, within: 4..40

5 user.validates_confirmation_of :password

6 end

All of the example validations check for the two cases when a (plaintext) password field should be required
in order for the model to be valid.

1 def password_required?

2 encrypted_password.blank? || !password.blank?

3 end

The first case is if the encrypted_password attribute is blank, because that means we are dealing with a new
User instance that has not been given a password yet. The other case is when the password attribute itself
is not blank; perhaps this is happening during an update operation and the user is attempting to reset her
password.

8.4.2 Validation Contexts

Another way to accomplish conditional validation leverages support for validation contexts. Declare a
validation and pass the name of an application-specific validation context as the value of the :on option.
That validation will now only be checked when explicitly invoked using record.valid?(context_name).

Consider the following example involving a report generation app. Saving a report without a name is fine,
but publishing one without a name is not.

Validations 238

1 class Report < ActiveRecord::Base

2 validates_presence_of :name, on: :publish

3 end

4

5 class ReportsController < ApplicationController

6 expose(:report)

7

8 # POST /reports/1/publish

9 def publish

10 if report.valid? :publish

11 redirect_to report, notice: "Report published"

12 else

13 flash.now.alert = "Can't publish unnamed reports!"

14 render :show

15 end

16 end

17 end

8.5 Short-form Validation

Introduced in Rails 3, the validatesmethod identifies an attribute and accepts options that correspond to the
validators we’ve already covered in the chapter. Using validates can tighten up your model code nicely.

1 validates :username, presence: true,

2 format: { with: /[A-Za-z0-9]+/ },

3 length: { minimum: 3 },

4 uniqueness: true

The following options are available for use with the validates method.

absence: true

Alias for validates_absence_of. Supply additional options by replacing true with a hash.

validates :unwanted, absence: { message: "You shouldn't have set that" }

acceptance: true

Alias for validates_acceptance_of, typically used with checkboxes that indicate acceptance of terms.
Supply additional options by replacing true with a hash.

validates :terms, acceptance: { message: 'You must accept terms.' }

confirmation: true

Alias for validates_confirmation_of, typically used to ensure that email and password confirmation
fields match up correctly. Supply additional options by replacing true with a hash.

Validations 239

validates :email, confirmation: { message: 'Try again.' }

exclusion: { in: [1,2,3] }

Alias for validates_exclusion_of. If your only option is the array to exclude against, you can shorten
the syntax further by supplying an array as the value.

validates :username, exclusion: %w(admin superuser)

format: { with: /.*/ }

Alias for validates_format_of. If your only option is the regular expression, you can shorten the
syntax further by making it the value like:

format: /[A-Za-z0-9]+/

inclusion: { in: [1,2,3] }

Alias for validates_inclusion_of. If your only option is the inclusion array, you can shorten the
syntax further by making the array the value.

validates :gender, inclusion: %w(male female)

length: { minimum: 0, maximum: 1000 }

Alias for validates_length_of. If your only options are minimum and maximum lengths, you can
shorten the syntax further by supplying a Ruby range as the value.

validates :username, length: 3..20

numericality: true

Alias for validates_numericality_of. Supply additional options by replacing true with a hash.

validates :quantity, numericality: { message: 'Supply a number.' }

presence: true

Alias for validates_presence_of. Supply additional options by replacing true with a hash.

validates :username, presence: { message: 'How do you expect to login?' }

uniqueness: true

Alias for validates_uniqueness_of. Supply additional options by replacing true with a hash.

validates :quantity, uniqueness: { message: "You're SOL on that login choice, buddy!" }

8.6 Custom Validation Techniques

When the existing declarative validation macros are not enough for your application needs Rails gives you a
few custom techniques.

Validations 240

8.6.1 Add custom validation macros to your application

Rails has the ability to add custom validation macros (available to all your model classes) by extending
ActiveModel::EachValidator.

The following example is silly, but demonstrates the functionality nicely.

1 class ReportLikeValidator < ActiveModel::EachValidator

2 def validate_each(record, attribute, value)

3 unless value["Report"]

4 record.errors.add(attribute, 'does not appear to be a Report')

5 end

6 end

7 end

Now that your custom validator exists, it is available to use with the validates macro in your model.

1 class Report < ActiveRecord::Base

2 validates :name, report_like: true

3 end

The key :report_like is inferred from the name of the validator class, which in this casewas ReportLikeValidator.

You can receive options via the validatesmethod by adding an initializermethod to your custom validator
class. For example, let’s make ReportLikeValidator more generic.

1 class LikeValidator < ActiveModel::EachValidator

2 def initialize(options)

3 @with = options[:with]

4 super

5 end

6

7 def validate_each(record, attribute, value)

8 unless value[@with]

9 record.errors.add(attribute, "does not appear to be like #{@with}")

10 end

11 end

12 end

Our model code would change to

Validations 241

1 class Report < ActiveRecord::Base

2 validates :name, like: { with: "Report" }

3 end

8.6.2 Create a custom validator class

This technique involves inheriting from ActiveModel::Validator and implementing a validatemethod that
takes the record to validate.

I’ll demonstrate with a really wicked example.

1 class RandomlyValidator < ActiveModel::Validator

2 def validate(record)

3 record.errors[:base] << "FAIL #1" unless first_hurdle(record)

4 record.errors[:base] << "FAIL #2" unless second_hurdle(record)

5 record.errors[:base] << "FAIL #3" unless third_hurdle(record)

6 end

7

8 private

9

10 def first_hurdle(record)

11 rand > 0.3

12 end

13

14 def second_hurdle(record)

15 rand > 0.6

16 end

17

18 def third_hurdle(record)

19 rand > 0.9

20 end

21 end

Use your new custom validator in a model with the validates_with macro.

1 class Report < ActiveRecord::Base

2 validates_with RandomlyValidator

3 end

8.6.3 Add a validatemethod to your model

A validate instance method might be the way to go if you want to check the state of your object holistically
and keep the code for doing so inside of the model class itself. (This is an older technique that I can’t fully
endorse; it adds complexity to your model class unnecessarily given how easy it is to create custom validator
classes.)

Validations 242

For example, assume that you are dealing with a model object with a set of three integer attributes (:attr1,
:attr2, and :attr3) and a precalculated total attribute (:total). The total must always equal the sum of the
three attributes:

1 class CompletelyLameTotalExample < ActiveRecord::Base

2 def validate

3 if total != (attr1 + attr2 + attr3)

4 errors[:total] << "The total doesn't add up!"

5 end

6 end

7 end

You can alternatively add an error message to the whole object instead of just a particular attribute, using the
:base key, like this:

errors[:base] << "The total doesn't add up!"

Remember: The way to mark an object as invalid is to add to its Errors object. The return value of a custom
validation method is not used.

8.7 Skipping Validations

The methods update_attribute and update_column don’t invoke validations, yet their companion method
update does. Whoever wrote the API docs believes that this behavior is “especially useful for Boolean flags
on existing records.””

I don’t know if that is entirely true or not, but I do know that it is the source of ongoing contention in the
community. Unfortunately, I don’t have much more to add other than some simple common-sense advice: Be
very careful using the update_attribute or update_columnmethods. It can easily persist your model objects
in invalid states.

8.8 Working with the Errors Hash

Some methods are provided to allow you to add validation errors to the collection manually and alter the
state of the Errors hash.

8.8.0.1 errors[:base] = msg

Adds an error message related to the overall object state itself and not the value of any particular attribute.
Make your error messages complete sentences, because Rails does not do any additional processing of them
to make them readable.

Validations 243

8.8.0.2 errors[:attribute] = msg

Adds an error message related to a particular attribute. The message should be a sentence fragment that reads
naturally when prepended with the capitalized name of the attribute.

8.8.0.3 clear

As you might expect, the clear method clears the Errors collection.

8.8.1 Checking for Errors

It’s also possible to check the Errors object for validation failures on specific attributes with a couple of
methods, just using square brackets notation. An array is always returned; an empty one when there aren’t
any validation errors for the attribute specified.

>> user.errors[:login]

=> ["zed is already registered"]

>> user.errors[:password]

=> []

Alternatively, one could also access full error messages for a specific attribute using the full_messages_-

for method. Just like accessing validation failures for attributes using bracket notation, an array is always
returned.

>> user.errors.full_messages_for(:email)

=> ["Email can't be blank"]

8.9 Testing Validations with Shoulda

Even though validations are declarative code, if you’re doing TDD then you’ll want to specify them before
writing them. Luckily, Thoughtbot’s Shoulda Matchers library⁴ contains a number of matchers designed to
easily test validations.

1 describe Post do

2 it { should validate_uniqueness_of(:title) }

3 it { should validate_presence_of(:body).with_message(/wtf/) }

4 it { should validate_presence_of(:title) }

5 it { should validate_numericality_of(:user_id) }

6 end

7

8 describe User do

9 it { should_not allow_value("blah").for(:email) }

⁴https://github.com/thoughtbot/shoulda-matchers

https://github.com/thoughtbot/shoulda-matchers
https://github.com/thoughtbot/shoulda-matchers

Validations 244

10 it { should_not allow_value("b lah").for(:email) }

11 it { should allow_value("a@b.com").for(:email) }

12 it { should allow_value("asdf@asdf.com").for(:email) }

13 it { should ensure_length_of(:email).is_at_least(1).is_at_most(100) }

14 it { should ensure_inclusion_of(:age).in_range(1..100) }

15 end

8.10 Conclusion

In this (relatively speaking) short chapter, we covered the ActiveRecord Validations API in-depth. One of the
most appealing aspects of Rails is how we can declaratively specify the criteria for determining the validity
of model objects.

9 Advanced Active Record
Respectful debate, honesty, passion, and working systems created an environment that not even
the most die-hard enterprise architect could ignore, no matter how buried in Java design patterns.
Those who placed technical excellence and pragmaticism above religious attachment and vendor
cronyism were easily convinced of the benefits that broadening their definition of acceptable
technologies could bring.¹

—Ryan Tomayko (March 2006)

Active Record is a simple object-relational mapping (ORM) framework compared to other popular ORM
frameworks, such as Hibernate in the Java world. Don’t let that fool you, though: Under its modest
exterior, Active Record has some pretty advanced features. To really get the most effectiveness out of Rails
development, you need to have more than a basic understanding of Active Record—things like knowing when
to break out of the one-table/one-class pattern, or how to leverage Ruby modules to keep your code clean and
free of duplication.

In this chapter, we wrap up this book’s comprehensive coverage of Active Record by reviewing callbacks,
single-table inheritance (STI), and polymorphic models. We also review a little bit of information about
metaprogramming and Ruby domain-specific languages (DSLs) as they relate to Active Record.

9.1 Scopes

Scopes (or “named scopes” if you’re old school) allow you define and chain query criteria in a declarative and
reusable manner.

1 class Timesheet < ActiveRecord::Base

2 scope :submitted, -> { where(submitted: true) }

3 scope :underutilized, -> { where('total_hours < 40') }

To declare a scope, use the scope class method, passing it a name as a symbol and a callable object that
includes a query criteria within. You can simply use Arel criteria methods such as where, order, and limit to
construct the definition as shown in the example. The queries defined in a scope are only evaluated whenever
the scope is invoked.

1 class User < ActiveRecord::Base

2 scope :delinquent, -> { where('timesheets_updated_at < ?', 1.week.ago) }

Invoke scopes as you would class methods.

¹http://lesscode.org/2006/03/12/someone-tell-gosling/

http://lesscode.org/2006/03/12/someone-tell-gosling/

Advanced Active Record 246

>> User.delinquent

=> [#<User id: 2, timesheets_updated_at: "2013-04-20 20:02:13"...>]

Note that instead of using the scope macro style method, you can simply define a class method on an Active
Record model which returns a scoped method, such as where. To illustrate, the following class method is
equivalent to the delinquent scope defined in the above example.

1 def self.delinquent

2 where('timesheets_updated_at < ?', 1.week.ago)

3 end

9.1.1 Scope Parameters

You can pass arguments to scope invocations by adding parameters to the proc you use to define the scope
query.

1 class BillableWeek < ActiveRecord::Base

2 scope :newer_than, ->(date) { where('start_date > ?', date) }

Then pass the argument to the scope as you would normally.

BillableWeek.newer_than(Date.today)

9.1.2 Chaining Scopes

One of the benefits of scopes is that you can chain them together to create complex queries from simple ones:

>> Timesheet.underutilized.submitted.to_a

=> [#<Timesheet id: 3, submitted: true, total_hours: 37 ...

Scopes can be chained together for reuse within scope definitions themselves. For instance, let’s say that we
always want to constrain the result set of underutilized to submitted timesheets:

1 class Timesheet < ActiveRecord::Base

2 scope :submitted, -> { where(submitted: true) }

3 scope :underutilized, -> { submitted.where('total_hours < 40') }

9.1.3 Scopes and has_many

In addition to being available at the class context, scopes are available automatically on has_many association
attributes.

Advanced Active Record 247

>> u = User.find(2)

=> #<User id: 2, username: "obie"...>

>> u.timesheets.size

=> 3

>> u.timesheets.underutilized.size

=> 1

9.1.4 Scopes and Joins

You can use Arel’s join method to create cross-model scopes. For instance, if we gave our recurring example
Timesheet a submitted_at date attribute instead of just a boolean, we could add a scope to User allowing us
to see who is late on their timesheet submission.

1 scope :tardy, -> {

2 joins(:timesheets).

3 where("timesheets.submitted_at <= ?", 7.days.ago).

4 group("users.id")

5 }

Arel’s to_sql method is useful for debugging scope definitions and usage.

>> User.tardy.to_sql

=> "SELECT "users".* FROM "users"

INNER JOIN "timesheets" ON "timesheets"."user_id" = "users"."id"

WHERE (timesheets.submitted_at <= '2013-04-13 18:16:15.203293')

GROUP BY users.id" # query formatted nicely for the book

Note that as demonstrated in the example, it’s a good idea to use unambiguous column references (including
table name) in cross-model scope definitions so that Arel doesn’t get confused.

9.1.5 Scope Combinations

Our example of a cross-model scope violates good object-oriented design principles: it contains the logic for
determining whether or not a Timesheet is submitted, which is code that properly belongs in the Timesheet
class. Luckily we can use Arel’s merge method to fix it. First we put the late logic where it belongs, in
Timesheet:

scope :late, -> { where("timesheet.submitted_at <= ?", 7.days.ago) }

Then we use our new late scope in tardy:

Advanced Active Record 248

scope :tardy, -> {

joins(:timesheets).group("users.id").merge(Timesheet.late)

}

If you have trouble with this technique, make absolutely sure that your scopes’ clauses refer to fully qualified
column names. (In other words, don’t forget to prefix column names with tables.) The console and to_sql

method is your friend for debugging.

9.1.6 Default Scopes

There may arise use cases where you want certain conditions applied to the finders for your model. Consider
our timesheet application has a default view of open timesheets - we can use a default scope to simplify our
general queries.

class Timesheet < ActiveRecord::Base

default_scope { where(status: "open") }

end

Now when we query for our Timesheets, by default the open condition will be applied:

>> Timesheet.pluck(:status)

=> ["open", "open", "open"]

Default scopes also get applied to your models when building or creating them which can be a great
convenience or a nuisance if you are not careful. In our previous example all new Timesheets will be created
with a status of “open.”

>> Timesheet.new

=> #<Timesheet id: nil, status: "open">

>> Timesheet.create

=> #<Timesheet id: 1, status: "open">

You can override this behavior by providing your own conditions or scope to override the default setting of
the attributes.

>> Timesheet.where(status: "new").new

=> #<Timesheet id: nil, status: "new">

>> Timesheet.where(status: "new").create

=> #<Timesheet id: 1, status: "new">

There may be cases where at runtime you want to create a scope and pass it around as a first class object
leveraging your default scope. In this case Active Record provides the all method.

Advanced Active Record 249

>> timesheets = Timesheet.all.order("submitted_at DESC")

=> #<ActiveRecord::Relation [#<Timesheet id: 1, status: "open"]>

>> timesheets.where(name: "Durran Jordan").to_a

=> []

There’s another approach to scopes that provides a sleeker syntax, scoping, which allows the chaining of
scopes via nesting within a block.

>> Timesheet.order("submitted_at DESC").scoping do

>> Timesheet.first

>> end

=> #<Timesheet id: 1, status: "open">

That’s pretty nice, but what if we don’t want our default scope to be included in our queries? In this case
Active Record takes care of us through the unscoped method.

>> Timesheet.unscoped.order("submitted_at DESC").to_a

=> [#<Timesheet id: 2, status: "submitted">]

Similarly to overriding our default scope with a relation when creating new objects, we can supply unscoped

as well to remove the default attributes.

>> Timesheet.unscoped.new

=> #<Timesheet id: nil, status: nil>

9.1.7 Using Scopes for CRUD

You have a wide range of Active Record’s CRUDmethods available on scopes, which gives you some powerful
abilities. For instance, let’s give all our underutilized timesheets some extra hours.

>> u.timesheets.underutilized.pluck(:total_hours)

=> [37, 38]

>> u.timesheets.underutilized.update_all("total_hours = total_hours + 2")

=> 2

>> u.timesheets.underutilized.pluck(:total_hours)

=> [39]

Scopes including a where clause using hashed conditions will populate attributes of objects built off of them
with those attributes as default values. Admittedly it’s a bit difficult to think of a plausible use case for this
feature, but we’ll show it in an example. First, we add the following scope to Timesheet:

Advanced Active Record 250

scope :perfect, -> { submitted.where(total_hours: 40) }

Now, building an object on the perfect scope should give us a submitted timesheet with 40 hours.

> Timesheet.perfect.build

=> #<Timesheet id: nil, submitted: true, user_id: nil, total_hours: 40 ...>

As you’ve probably realized by now, the Arel underpinnings of Active Record are tremendously powerful and
truly elevate the Rails platform.

9.2 Callbacks

This advanced feature of Active Record allows the savvy developer to attach behavior at a variety of different
points along a model’s life cycle, such as after initialization, before database records are inserted, updated or
removed, and so on.

Callbacks can do a variety of tasks, ranging from simple things such as logging and massaging of attribute
values prior to validation, to complex calculations. Callbacks can halt the execution of the life-cycle process
taking place. Some callbacks can even modify the behavior of the model class on the fly. We’ll cover all of
those scenarios in this section, but first let’s get a taste of what a callback looks like. Check out the following
silly example:

1 class Beethoven < ActiveRecord::Base

2 before_destroy :last_words

3

4 protected

5

6 def last_words

7 logger.info "Friends applaud, the comedy is over"

8 end

9 end

So prior to dying (ehrm, being destroy‘d), the last words of the Beethoven class will always be logged for
posterity. As we’ll see soon, there are 14 different opportunities to add behavior to your model in this fashion.
Before we get to that list, let’s cover the mechanics of registering a callback.

9.2.1 One-Liners

Now, if (and only if) your callback routine is really short,² you can add it by passing a block to the callback
macro. We’re talking one-liners!

²If you are browsing old Rails source code, youmight come across callback macros receiving a short string of Ruby code to be eval’d in the binding
of the model object. That way of adding callbacks was deprecated in Rails 1.2, because you’re always better off using a block in those situations.

Advanced Active Record 251

class Napoleon < ActiveRecord::Base

before_destroy { logger.info "Josephine..." }

...

end

Since Rails 3, the block passed to a callback is executed via instance_eval so that its scope is the record itself
(versus needing to act on a passed in record variable). The following example implements “paranoid” model
behavior, covered later in the chapter.

1 class Account < ActiveRecord::Base

2 before_destroy { self.update_attribute(:deleted_at, Time.now); false }

3 ...

9.2.2 Protected or Private

Except when you’re using a block, the access level for callback methods should always be protected or private.
It should never be public, since callbacks should never be called from code outside the model.

Believe it or not, there are even more ways to implement callbacks, but we’ll cover those techniques further
along in the chapter. For now, let’s look at the lists of callback hooks available.

9.2.3 Matched before/after Callbacks

In total, there are 19 types of callbacks you can register on your models! Thirteen of them are matching
before/after callback pairs, such as before_validation and after_validation. Four of them are around
callbacks, such as around_save. (The other two, after_initialize and after_find, are special, and we’ll
discuss them later in this section.)

9.2.3.1 List of Callbacks

This is the list of callback hooks available during a save operation. (The list varies slightly depending on
whether you’re saving a new or existing record.)

• before_validation

• after_validation

• before_save

• around_save

• before_create (for new records) and before_update (for existing records)
• around_create (for new records) and around_update (for existing records)
• after_create (for new records) and after_update (for existing records)
• after_save

Delete operations have their own callbacks:

Advanced Active Record 252

• before_destroy

• around_destroy executes a DELETE database statement on yield

• after_destroy is called after record has been removed from the database and all attributes have been
frozen (read-only)

Callbacks may be limited to specific Active Record life cycles (:create, :update, :destroy), by explicitly
defining which ones can trigger the it, using the :on option. The :on option may accept a single lifecycle (like
on: :create) or an array of life cycles on: [:create, :update].

Run only on create

before_validation :some_callback, on: :create

Additionally transactions have callbacks as well, for when you want actions to occur after the database
is guaranteed to be in a permanent state. Note that only “after” callbacks exist here do to the nature of
transactions - it’s a bad idea to be able to interfere with the actual operation itself.

• after_commit

• after_rollback

• after_touch

Skipping Callback Execution
The following Active Record methods, when executed, do not run any callbacks:

• decrement

• decrement_counter

• delete

• delete_all

• increment

• increment_counter

• toggle

• touch

• update_column

• update_columns

• update_all

• update_counters

9.2.4 Halting Execution

If you return a boolean false (not nil) from a callback method, Active Record halts the execution chain. No
further callbacks are executed. The save method will return false, and save! will raise a RecordNotSaved

error.

Keep in mind that since the last expression of a Ruby method is returned implicitly, it is a pretty common bug
to write a callback that halts execution unintentionally. If you have an object with callbacks that mysteriously
fails to save, make sure you aren’t returning false by mistake.

Advanced Active Record 253

9.2.5 Callback Usages

Of course, the callback you should use for a given situation depends on what you’re trying to accomplish.
The best I can do is to serve up some examples to inspire you with your own code.

9.2.5.1 Cleaning Up Attribute Formatting with before_validation on create

The most common examples of using before_validation callbacks have to do with cleaning up user-entered
attributes. For example, the following CreditCard class cleans up its number attribute so that false negatives
don’t occur on validation:

1 class CreditCard < ActiveRecord::Base

2 before_validation on: :create do

3 # Strip everything in the number except digits

4 self.number = number.gsub(/[^0-9]/, "")

5 end

6 end

9.2.5.2 Geocoding with before_save

Assume that you have an application that tracks addresses and hasmapping features. Addresses should always
be geocoded before saving, so that they can be displayed rapidly on a map later.³

As is often the case, the wording of the requirement itself points you in the direction of the before_save

callback:

1 class Address < ActiveRecord::Base

2

3 before_save :geocode

4 validates_presence_of :street, :city, :state, :country

5 ...

6

7 def to_s

8 [street, city, state, country].compact.join(', ')

9 end

10

11 protected

12

13 def geocode

14 result = Geocoder.coordinates(to_s)

15 self.latitude = result.first

16 self.longitude = result.last

17 end

18 end

³I recommend the excellent Geocoder gem available at http://www.rubygeocoder.com/.

http://www.rubygeocoder.com/

Advanced Active Record 254

Note
For the sake of this example, we will not be using Geocoder’s Active Record extensions.

Before we move on, there are a couple of additional considerations. The preceding code works great if the
geocoding succeeds, but what if it doesn’t? Do we still want to allow the record to be saved? If not, we should
halt the execution chain:

1 def geolocate

2 result = Geocoder.coordinates(to_s)

3 return false if result.empty? # halt execution

4

5 self.latitude = result.first

6 self.longitude = result.last

7 end

The only problem remaining is that we give the rest of our code (and by extension, the end user) no indication
of why the chain was halted. Even though we’re not in a validation routine, I think we can put the errors
collection to good use here:

1 def geolocate

2 result = Geocoder.coordinates(to_s)

3 if result.present?

4 self.latitude = result.first

5 self.longitude = result.last

6 else

7 errors[:base] << "Geocoding failed. Please check address."

8 false

9 end

10 end

If the geocoding fails, we add a base error message (for the whole object) and halt execution, so that the record
is not saved.

9.2.5.3 Exercise Your Paranoia with before_destroy

What if your application has to handle important kinds of data that, once entered, should never be deleted?
Perhaps it would make sense to hook into Active Record’s destroy mechanism and somehow mark the record
as deleted instead?

The following example depends on the accounts table having a deleted_at datetime column.

Advanced Active Record 255

1 class Account < ActiveRecord::Base

2 before_destroy do

3 self.update_attribute(:deleted_at, Time.current)

4 false

5 end

6

7 ...

8 end

After the deleted_at column is populated with the current time, we return false in the callback to halt
execution. This ensures that the underlying record is not actually deleted from the database.⁴

It’s probably worth mentioning that there are ways that Rails allows you to unintentionally circumvent
before_destroy callbacks:

• The delete and delete_all class methods of ActiveRecord::Base are almost identical. They remove
rows directly from the database without instantiating the corresponding model instances, which means
no callbacks will occur.

• Model objects in associations defined with the option dependent: :delete_allwill be deleted directly
from the database when removed from the collection using the association’s clear or deletemethods.

9.2.5.4 Cleaning Up Associated Files with after_destroy

Model objects that have files associated with them, such as attachment records and uploaded images, can clean
up after themselves when deleted using the after_destroy callback. The following method from thoughtbot’s
Paperclip⁵ gem is a good example:

1 # Destroys the file. Called in an after_destroy callback

2 def destroy_attached_files

3 Paperclip.log("Deleting attachments.")

4 each_attachment do |name, attachment|

5 attachment.send(:flush_deletes)

6 end

7 end

9.2.6 Special Callbacks: after_initialize and after_find

The after_initialize callback is invoked whenever a new Active Record model is instantiated (either from
scratch or from the database). Having it available prevents you from having to muck around with overriding
the actual initialize method.

⁴Real-life implementation of the example would also need to modify all finders to include deleted_at is NULL conditions; otherwise, the records
marked deleted would continue to show up in the application. That’s not a trivial undertaking, and luckily you don’t need to do it yourself. There’s a
Rails plugin named destroyed_at created by Dockyard that does exactly that, and you can find it at https://github.com/dockyard/destroyed_at.

⁵Get Paperclip at https://github.com/thoughtbot/paperclip.

https://github.com/dockyard/destroyed_at
https://github.com/thoughtbot/paperclip

Advanced Active Record 256

The after_find callback is invokedwhenever Active Record loads amodel object from the database, and is ac-
tually called before after_initialize, if both are implemented. Because after_find and after_initialize

are called for each object found and instantiated by finders, performance constraints dictate that they can
only be added as methods, and not via the callback macros.

What if you want to run some code only the first time that a model is ever instantiated, and not after each
database load? There is no native callback for that scenario, but you can do it using the after_initialize
callback. Just add a condition that checks to see if it is a new record:

1 after_initialize do

2 if new_record?

3 ...

4 end

5 end

In a number of Rails apps that I’ve written, I’ve found it useful to capture user preferences in a serialized hash
associated with the User object. The serialize feature of Active Record models makes this possible, since it
transparently persists Ruby object graphs to a text column in the database. Unfortunately, you can’t pass it a
default value, so I have to set one myself:

1 class User < ActiveRecord::Base

2 serialize :preferences # defaults to nil

3 ...

4

5 protected

6

7 def after_initialize

8 self.preferences ||= Hash.new

9 end

10 end

Using the after_initialize callback, I can automatically populate the preferences attribute of my user
model with an empty hash, so that I never have to worry about it being nil when I access it with code such
as user.preferences[:show_help_text] = false.

Advanced Active Record 257

Kevin says…
You could change the above example to not use callbacks by using the Active Record store, a
wrapper around serialize that is used exclusively for storing hashes in a database column.

1 class User < ActiveRecord::Base

2 serialize :preferences # defaults to nil

3 store :preferences, accessors: [:show_help_text]

4 ...

5 end

By default, the preferences attribute would be populated with an empty hash. Another added
benefit is the ability to explicitly define accessors, removing the need to interact with the underlying
hash directly. To illustrate, let’s set the show_help_text preference to true:

>> user = User.new

=> #<User id: nil, properties: {}, ...>

>> user.show_help_text = true

=> true

>> user.properties

=> {"show_help_text" => true}

Ruby’s metaprogramming capabilities combined with the ability to run code whenever a model is loaded
using the after_find callback are a powerful mix. Since we’re not done learning about callbacks yet, we’ll
come back to uses of after_find later on in the chapter, in the section “Modifying Active Record Classes at
Runtime.”

9.2.7 Callback Classes

It is common enough to want to reuse callback code for more than one object that Rails gives you a way to
write callback classes. All you have to do is pass a given callback queue an object that responds to the name
of the callback and takes the model object as a parameter.

Here’s our paranoid example from the previous section as a callback class:

1 class MarkDeleted

2 def self.before_destroy(model)

3 model.update_attribute(:deleted_at, Time.current)

4 false

5 end

6 end

The behavior of MarkDeleted is stateless, so I added the callback as a class method. Now you don’t have to
instantiate MarkDeleted objects for no good reason. All you do is pass the class to the callback queue for
whichever models you want to have the mark-deleted behavior:

Advanced Active Record 258

1 class Account < ActiveRecord::Base

2 before_destroy MarkDeleted

3 ...

4 end

5

6 class Invoice < ActiveRecord::Base

7 before_destroy MarkDeleted

8 ...

9 end

9.2.7.1 Multiple Callback Methods in One Class

There’s no rule that says you can’t have more than one callback method in a callback class. For example, you
might have special audit log requirements to implement:

1 class Auditor

2 def initialize(audit_log)

3 @audit_log = audit_log

4 end

5

6 def after_create(model)

7 @audit_log.created(model.inspect)

8 end

9

10 def after_update(model)

11 @audit_log.updated(model.inspect)

12 end

13

14 def after_destroy(model)

15 @audit_log.destroyed(model.inspect)

16 end

17 end

To add audit logging to an Active Record class, you would do the following:

1 class Account < ActiveRecord::Base

2 after_create Auditor.new(DEFAULT_AUDIT_LOG)

3 after_update Auditor.new(DEFAULT_AUDIT_LOG)

4 after_destroy Auditor.new(DEFAULT_AUDIT_LOG)

5 ...

6 end

Wow, that’s ugly, having to add three Auditors on three lines.We could extract a local variable called auditor,
but it would still be repetitive. This might be an opportunity to take advantage of Ruby’s open classes, the
fact that you can modify classes that aren’t part of your application.

Advanced Active Record 259

Wouldn’t it be better to simply say acts_as_audited at the top of the model that needs auditing? We can
quickly add it to the ActiveRecord::Base class, so that it’s available for all our models.

Onmy projects, the file where “quick and dirty” code like the method in Listing 9.1 would reside is lib/core_-
ext/active_record_base.rb, but you can put it anywhere you want. You could even make it a plugin.

Listing 9.1: A quick-and-dirty ‘acts as audited’ method

1 class ActiveRecord::Base

2 def self.acts_as_audited(audit_log=DEFAULT_AUDIT_LOG)

3 auditor = Auditor.new(audit_log)

4 after_create auditor

5 after_update auditor

6 after_destroy auditor

7 end

8 end

Now, the top of Account is a lot less cluttered:

1 class Account < ActiveRecord::Base

2 acts_as_audited

9.2.7.2 Testability

When you add callback methods to a model class, you pretty much have to test that they’re functioning
correctly in conjunction with the model to which they are added. That may or may not be a problem. In
contrast, callback classes are super-easy to test in isolation.

1 describe '#after_create' do

2 let(:auditable) { double() }

3 let(:log) { double() }

4 let(:content) { 'foo' }

5

6 it 'audits a model was created' do

7 expect(auditable).to receive(:inspect).and_return(content)

8 expect(log).to receive(:created).and_return(content)

9 Auditor.new(log).after_create(auditable)

10 end

11 end

9.3 Calculation Methods

All Active Record classes have a calculate method that provides easy access to aggregate function queries
in the database. Methods for count, sum, average, minimum, and maximum have been added as convenient
shortcuts.

Advanced Active Record 260

Calculation methods can be used in combination with Active Record relation methods to customize the query.
Since calculation methods do not return an ActiveRecord::Relation, they must be the last method in a scope
chain.

There are two basic forms of output:

Single aggregate value
The single value is type cast to Fixnum for COUNT, Float for AVG, and the given column’s type for
everything else.

Grouped values
This returns an ordered hash of the values and groups them by the :group option. It takes either a
column name, or the name of a belongs_to association.

The following examples illustrate the usage of various calculation methods.

1 Person.calculate(:count, :all) # The same as Person.count

2

3 # SELECT AVG(age) FROM people

4 Person.average(:age)

5

6 # Selects the minimum age for everyone with a last name other than 'Drake'

7 Person.where.not(last_name: 'Drake').minimum(:age)

8

9 # Selects the minimum age for any family without any minors

10 Person.having('min(age) > 17').group(:last_name).minimum(:age)

9.3.1 average(column_name, *options)

Calculates the average value on a given column. The first parameter should be a symbol identifying the
column to be averaged.

9.3.2 count(column_name, *options)

Count operates using three different approaches. Count without parameters will return a count of all the rows
for the model. Count with a column_name will return a count of all the rows for the model with the supplied
column present.

9.3.3 ids

Return all the ID’s for a relation based on its table’s primary key.

User.ids # SELECT id FROM "users"

Advanced Active Record 261

9.3.4 maximum(column_name, *options)

Calculates the maximum value on a given column. The first parameter should be a symbol identifying the
column to be calculated.

9.3.5 minimum(column_name, *options)

Calculates the minimum value on a given column. The first parameter should be a symbol identifying the
column to be calculated.

9.3.6 pluck(*column_names)

The pluck method queries the database for one or more columns of the underlying table of a model.

>> User.pluck(:id, :name)

=> [[1, 'Obie']]

>> User.pluck(:name)

=> ['Obie']

It returns an array of values of the specified columns with the corresponding data type.

9.3.7 sum(column_name, *options)

Calculates a summed value in the database using SQL. The first parameter should be a symbol identifying
the column to be summed.

9.4 Single-Table Inheritance (STI)

A lot of applications start out with a User model of some sort. Over time, as different kinds of users emerge,
it might make sense to make a greater distinction between them. Admin and Guest classes are introduced, as
subclasses of User. Now, the shared behavior can reside in User, and subtype behavior can be pushed down
to subclasses. However, all user data can still reside in the users table—all you need to do is introduce a type
column that will hold the name of the class to be instantiated for a given row.

To continue explaining single-table inheritance, let’s turn back to our example of a recurring Timesheet

class. We need to know how many billable_hours are outstanding for a given user. The calculation can
be implemented in various ways, but in this case we’ve chosen to write a pair of class and instance methods
on the Timesheet class:

Advanced Active Record 262

1 class Timesheet < ActiveRecord::Base

2 ...

3

4 def billable_hours_outstanding

5 if submitted?

6 billable_weeks.map(&:total_hours).sum

7 else

8 0

9 end

10 end

11

12 def self.billable_hours_outstanding_for(user)

13 user.timesheets.map(&:billable_hours_outstanding).sum

14 end

15

16 end

I’m not suggesting that this is good code. It works, but it’s inefficient and that if/else condition is a little
fishy. Its shortcomings become apparent once requirements emerge about marking a Timesheet as paid. It
forces us to modify Timesheet’s billable_hours_outstanding method again:

1 def billable_hours_outstanding

2 if submitted? && not paid?

3 billable_weeks.map(&:total_hours).sum

4 else

5 0

6 end

7 end

That latest change is a clear violation of the open-closed principle,⁶ which urges you to write code that is open
for extension, but closed for modification. We know that we violated the principle, because we were forced
to change the billable_hours_outstanding method to accommodate the new Timesheet status. Though it
may not seem like a large problem in our simple example, consider the amount of conditional code that
will end up in the Timesheet class once we start having to implement functionality such as paid_hours and
unsubmitted_hours.

So what’s the answer to this messy question of the constantly changing conditional? Given that you’re reading
the section of the book about single-table inheritance, it’s probably no big surprise that we think one good
answer is to use object-oriented inheritance. To do so, let’s break our original Timesheet class into four classes.

⁶http://en.wikipedia.org/wiki/Open/closed_principle has a good summary.

http://en.wikipedia.org/wiki/Open/closed_principle

Advanced Active Record 263

1 class Timesheet < ActiveRecord::Base

2 # non-relevant code ommitted

3

4 def self.billable_hours_outstanding_for(user)

5 user.timesheets.map(&:billable_hours_outstanding).sum

6 end

7 end

8

9 class DraftTimesheet < Timesheet

10 def billable_hours_outstanding

11 0

12 end

13 end

14

15 class SubmittedTimesheet < Timesheet

16 def billable_hours_outstanding

17 billable_weeks.map(&:total_hours).sum

18 end

19 end

Nowwhen the requirements demand the ability to calculate partially paid timesheets, we need only add some
behavior to a PaidTimesheet class. No messy conditional statements in sight!

1 class PaidTimesheet < Timesheet

2 def billable_hours_outstanding

3 billable_weeks.map(&:total_hours).sum - paid_hours

4 end

5 end

9.4.1 Mapping Inheritance to the Database

Mapping object inheritance effectively to a relational database is not one of those problems with a definitive
solution. We’re only going to talk about the one mapping strategy that Rails supports natively, which is single-
table inheritance, called STI for short.

In STI, you establish one table in the database to holds all of the records for any object in a given inheritance
hierarchy. In Active Record STI, that one table is named after the top parent class of the hierarchy. In the
example we’ve been considering, that table would be named timesheets.

Hey, that’s what it was called before, right? Yes, but to enable STI we have to add a type column to contain a
string representing the type of the stored object. The following migration would properly set up the database
for our example:

Advanced Active Record 264

1 class AddTypeToTimesheet < ActiveRecord::Migration

2 def change

3 add_column :timesheets, :type, :string

4 end

5 end

No default value is needed. Once the type column is added to an Active Record model, Rails will automatically
take care of keeping it populated with the right value. Using the console, we can see this behavior in action:

>> d = DraftTimesheet.create

>> d.type

=> 'DraftTimesheet'

When you try to find an object using the querymethods of a base STI class, Rails will automatically instantiate
objects using the appropriate subclass. This is especially useful in polymorphic situations, such as the timesheet
example we’ve been describing, where we retrieve all the records for a particular user and then call methods
that behave differently depending on the object’s class.

>> Timesheet.first

=> #<DraftTimesheet:0x2212354...>

..

Note
Rails won’t complain about the missing column; it will simply ignore it. Recently, the error message was
reworded with a better explanation, but too many developers skim error messages and then spend an hour
trying to figure out what’s wrong with their models. (A lot of people skim sidebar columns too when reading
books, but hey, at least I am doubling their chances of learning about this problem.)

9.4.2 STI Considerations

Although Rails makes it extremely simple to use single-table inheritance, there are a few caveats that you
should keep in mind.

To begin with, you cannot have an attribute on two different subclasses with the same name but a different
type. Since Rails uses one table to store all subclasses, these attributes with the same name occupy the same
column in the table. Frankly, there’s not much of a reason why that should be a problem unless you’ve made
some pretty bad data-modeling decisions.

More importantly, you need to have one column per attribute on any subclass and any attribute that is not
shared by all the subclassesmust accept nil values. In the recurring example, PaidTimesheet has a paid_hours
column that is not used by any of the other subclasses. DraftTimesheet and SubmittedTimesheetwill not use
the paid_hours column and leave it as null in the database. In order to validate data for columns not shared
by all subclasses, you must use Active Record validations and not the database.

Advanced Active Record 265

Third, it is not a good idea to have subclasses with too many unique attributes. If you do, you will have one
database table with many null values in it. Normally, a tree of subclasses with a large number of unique
attributes suggests that something is wrong with your application design and that you should refactor. If you
have an STI table that is getting out of hand, it is time to reconsider your decision to use inheritance to solve
your particular problem. Perhaps your base class is too abstract?

Finally, legacy database constraints may require a different name in the database for the type column. In this
case, you can set the new column name using the class setter method inheritance_column in the base class.
For the Timesheet example, we could do the following:

1 class Timesheet < ActiveRecord::Base

2 self.inheritance_column = 'object_type'

3 end

Now Rails will automatically populate the object_type column with the object’s type.

9.4.3 STI and Associations

It seems pretty common for applications, particularly data-management ones, to have models that are very
similar in terms of their data payload, mostly varying in their behavior and associations to each other. If you
used object-oriented languages prior to Rails, you’re probably already accustomed to breaking down problem
domains into hierarchical structures.

Take for instance, a Rails application that deals with the population of states, counties, cities, and neighbor-
hoods. All of these are places, which might lead you to define an STI class named Place as shown in Listing
9.2. I’ve also included the database schema for clarity:⁷

Listing 9.2: The places database schema and the place class

1 # == Schema Information

2 #

3 # Table name: places

4 #

5 # id :integer(11) not null, primary key

6 # region_id :integer(11)

7 # type :string(255)

8 # name :string(255)

9 # description :string(255)

10 # latitude :decimal(20, 1)

11 # longitude :decimal(20, 1)

12 # population :integer(11)

13 # created_at :datetime

14 # updated_at :datetime

15

16 class Place < ActiveRecord::Base

17 end

⁷For autogenerated schema information added to the top of yourmodel classes, try the annotate gem at https://github.com/ctran/annotate_models

https://github.com/ctran/annotate_models

Advanced Active Record 266

Place is in essence an abstract class. It should not be instantiated, but there is no foolproof way to enforce
that in Ruby. (No big deal, this isn’t Java!) Now let’s go ahead and define concrete subclasses of Place:

1 class State < Place

2 has_many :counties, foreign_key: 'region_id'

3 end

4

5 class County < Place

6 belongs_to :state, foreign_key: 'region_id'

7 has_many :cities, foreign_key: 'region_id'

8 end

9

10 class City < Place

11 belongs_to :county, foreign_key: 'region_id'

12 end

You might be tempted to try adding a cities association to State, knowing that has_many :through works
with both belongs_to and has_many target associations. It would make the State class look something like
this:

1 class State < Place

2 has_many :counties, foreign_key: 'region_id'

3 has_many :cities, through: :counties

4 end

That would certainly be cool, if it worked. Unfortunately, in this particular case, since there’s only one
underlying table that we’re querying, there simply isn’t a way to distinguish among the different kinds of
objects in the query:

Mysql::Error: Not unique table/alias: 'places': SELECT places.* FROM

places INNER JOIN places ON places.region_id = places.id WHERE

((places.region_id = 187912) AND ((places.type = 'County'))) AND

((places.`type` = 'City'))

What would we have to do to make it work? Well, the most realistic would be to use specific foreign keys,
instead of trying to overload the meaning of region_id for all the subclasses. For starters, the places table
would look like the example in Listing 9.3.

Advanced Active Record 267

Listing 9.3: The places database schema revised

== Schema Information

#

Table name: places

#

id :integer(11) not null, primary key

state_id :integer(11)

county_id :integer(11)

type :string(255)

name :string(255)

description :string(255)

latitude :decimal(20, 1)

longitude :decimal(20, 1)

population :integer(11)

created_at :datetime

updated_at :datetime

The subclasses would be simpler without the :foreign_key options on the associations. Plus you could use a
regular has_many relationship from State to City, instead of the more complicated has_many :through.

1 class State < Place

2 has_many :counties

3 has_many :cities

4 end

5

6 class County < Place

7 belongs_to :state

8 has_many :cities

9 end

10

11 class City < Place

12 belongs_to :county

13 end

Of course, all those null columns in the places table won’t win you any friends with relational database
purists. That’s nothing, though. Just a little bit later in this chapter we’ll take a second, more in-depth look at
polymorphic has_many relationships, which will make the purists positively hate you.

9.5 Abstract Base Model Classes

In contrast to single-table inheritance, it is possible for Active Record models to share common code via
inheritance and still be persisted to different database tables. In fact, every Rails developer uses an abstract
model in their code whether they realize it or not: ActiveRecord::Base⁸.

⁸http://m.onkey.org/namespaced-models

http://m.onkey.org/namespaced-models

Advanced Active Record 268

The technique involves creating an abstract basemodel class that persistent subclasses will extend. It’s actually
one of the simpler techniques that we broach in this chapter. Let’s take the Place class from the previous
section (refer to Listing 9.3) and revise it to be an abstract base class in Listing 9.4. It’s simple really—we just
have to add one line of code:

Listing 9.4: The abstract place class

1 class Place < ActiveRecord::Base

2 self.abstract_class = true

3 end

Marking an Active Record model abstract is essentially the opposite of making it an STI class with a type
column. You’re telling Rails: “Hey, I don’t want you to assume that there is a table named places.”

In our running example, it means we would have to establish tables for states, counties, and cities, which
might be exactly what we want. Remember though, that we would no longer be able to query across subtypes
with code like Place.all.

Abstract classes is an area of Rails where there aren’t too many hard-and-fast rules to guide you—experience
and gut feeling will help you out.

In case you haven’t noticed yet, both class and instance methods are shared down the inheritance hierarchy
of Active Record models. So are constants and other class members brought in through module inclusion.
That means we can put all sorts of code inside Place that will be useful to its subclasses.

9.6 Polymorphic has_many Relationships

Rails gives you the ability to make one class belong_to more than one type of another class, as eloquently
stated by blogger Mike Bayer:

The “polymorphic association,” on the other hand, while it bears some resemblance to the
regular polymorphic union of a class hierarchy, is not really the same since you’re only dealing
with a particular association to a single target class from any number of source classes, source
classes which don’t have anything else to do with each other; i.e. they aren’t in any particular
inheritance relationship and probably are all persisted in completely different tables. In this way,
the polymorphic association has a lot less to do with object inheritance and a lot more to do with
aspect-oriented programming (AOP); a particular concept needs to be applied to a divergent set
of entities which otherwise are not directly related. Such a concept is referred to as a cross-cutting
concern, such as, all the entities in your domain need to support a history log of all changes to
a common logging table. In the AR example, an Order and a User object are illustrated to both
require links to an Address object.⁹

In otherwords, this is not polymorphism in the typical object-oriented sense of theword; rather, it is something
unique to Rails.

⁹http://techspot.zzzeek.org/2007/05/29/polymorphic-associations-with-sqlalchemy/

http://techspot.zzzeek.org/2007/05/29/polymorphic-associations-with-sqlalchemy/

Advanced Active Record 269

9.6.1 In the Case of Models with Comments

In our recurring Time and Expenses example, let’s assume that we want both BillableWeek and Timesheet to
havemany comments (a shared Comment class). A naiveway to solve this problemmight be to have the Comment
class belong to both the BillableWeek and Timesheet classes and have billable_week_id and timesheet_id

as columns in its database table.

1 class Comment < ActiveRecord::Base

2 belongs_to :timesheet

3 belongs_to :expense_report

4 end

I call that approach is naive because it would be difficult to work with and hard to extend. Among other
things, you would need to add code to the application to ensure that a Comment never belonged to both a
BillableWeek and a Timesheet at the same time. The code to figure out what a given comment is attached
to would be cumbersome to write. Even worse, every time you want to be able to add comments to another
type of class, you’d have to add another nullable foreign key column to the comments table.

Rails solves this problem in an elegant fashion, by allowing us to define what it terms polymorphic
associations, which we covered when we described the polymorphic: true option of the belongs_to

association in Chapter 7, “Active Record Associations”.

9.6.1.1 The Interface

Using a polymorphic association, we need define only a single belongs_to and add a pair of related columns
to the underlying database table. From that moment on, any class in our system can have comments attached
to it (which would make it commentable), without needing to alter the database schema or the Commentmodel
itself.

1 class Comment < ActiveRecord::Base

2 belongs_to :commentable, polymorphic: true

3 end

There isn’t a Commentable class (or module) in our application. We named the association :commentable

because it accurately describes the interface of objects that will be associated in this way. The name
:commentable will turn up again on the other side of the association:

Advanced Active Record 270

1 class Timesheet < ActiveRecord::Base

2 has_many :comments, as: :commentable

3 end

4

5 class BillableWeek < ActiveRecord::Base

6 has_many :comments, as: :commentable

7 end

Here we have the friendly has_many association using the :as option. The :as marks this association as
polymorphic, and specifies which interface we are using on the other side of the association. While we’re
on the subject, the other end of a polymorphic belongs_to can be either a has_many or a has_one and work
identically.

9.6.1.2 The Database Columns

Here’s a migration that will create the comments table:

1 class CreateComments < ActiveRecord::Migration

2 def change

3 create_table :comments do |t|

4 t.text :body

5 t.integer :commentable

6 t.string :commentable_type

7 end

8 end

9 end

As you can see, there is a column called commentable_type, which stores the class name of associated object.
The Migrations API actually gives you a one-line shortcut with the references method, which takes a
polymorphic option:

1 create_table :comments do |t|

2 t.text :body

3 t.references :commentable, polymorphic: true

4 end

We can see how it comes together using the Rails console (some lines ommitted for brevity):

Advanced Active Record 271

>> c = Comment.create(body: 'I could be commenting anything.')

>> t = TimeSheet.create

>> b = BillableWeek.create

>> c.update_attribute(:commentable, t)

=> true

>> "#{c.commentable_type}: #{c.commentable_id}"

=> "Timesheet: 1"

>> c.update_attribute(:commentable, b)

=> true

>> "#{c.commentable_type}: #{c.commentable_id}"

=> "BillableWeek: 1"

As you can tell, both the Timesheet and the BillableWeek that we played with in the console had the same
id (1). Thanks to the commentable_type attribute, stored as a string, Rails can figure out which is the correct
related object.

9.6.1.3 Has_many :through and Polymorphics

There are some logical limitations that come into play with polymorphic associations. For instance, since it
is impossible for Rails to know the tables necessary to join through a polymorphic association, the following
hypothetical code, which tries to find everything that the user has commented on, will not work.

1 class Comment < ActiveRecord::Base

2 belongs_to :user # author of the comment

3 belongs_to :commentable, polymorphic: true

4 end

5

6 class User < ActiveRecord::Base

7 has_many :comments

8 has_many :commentables, through: :comments

9 end

10

11 >> User.first.commentables

12 ActiveRecord::HasManyThroughAssociationPolymorphicSourceError: Cannot have a

13 has_many :through association 'User#commentables' on the polymorphic object

If you really need it, has_many :through is possible with polymorphic associations, but only by specifying
exactly what type of polymorphic associations you want. To do so, you must use the :source_type option.
In most cases, you will also need to use the :source option, since the association name will not match the
interface name used for the polymorphic association:

Advanced Active Record 272

1 class User < ActiveRecord::Base

2 has_many :comments

3 has_many :commented_timesheets, through: :comments,

4 source: :commentable, source_type: 'Timesheet'

5 has_many :commented_billable_weeks, through: :comments,

6 source: :commentable, source_type: 'BillableWeek'

7 end

It’s verbose, and the whole scheme loses its elegance if you go this route, but it works:

>> User.first.commented_timesheets.to_a

=> [#<Timesheet ...>]

9.7 Enums

One of the newest additions to Active Record introduced in Rails 4.1 is the ability to set an attribute as an
enumerable. Once an attribute has been set as an enumerable, Active Record will restrict the assignment of
the attribute to a collection of predefined values.

To declare an enumerable attribute, use the enum macro style class method, passing it an attribute name and
an array of status values that the attribute can be set to.

1 class Post < ActiveRecord::Base

2 enum status: %i(draft published archived)

3 ...

4 end

Active Record implicitly maps each predefined value of an enum attribute to an integer, therefore the column
type of the enum attribute must be an integer as well. By default, an enum attribute will be set to nil. To set an
initial state, one can set a default value in a migration. It’s recommended to set this value to the first declared
status, which would map to 0.

1 class CreatePosts < ActiveRecord::Migration

2 def change

3 create_table :posts do |t|

4 t.integer :status, default: 0

5 end

6 end

7 end

For instance, given our example, the default status of a Post model would be “draft”:

Advanced Active Record 273

>> Post.new.status

=> "draft"

You should never have to work with the underlying integer data type of an enum attribute, as Active Record
creates both predicate and bang methods for each status value.

1 post.draft!

2 post.draft? # => true

3 post.published? # => false

4 post.status # => "draft"

5

6 post.published!

7 post.published? # => true

8 post.draft? # => false

9 post.status # => "published"

10

11 post.status = nil

12 post.status.nil? # => true

13 post.status # => nil

Active Record also provides scope methods for each status value. Invoking one of these scopes will return all
records with that given status.

Post.draft

Post Load (0.1ms) SELECT "posts".* FROM "posts"

WHERE "posts"."status" = 0

..

Note
Active Record creates a class method with a pluralized name of the defined enum on the model, that returns
a hash with the key and value of each status. In our preceding example, the Post model would have a class
method named statuses.

>> Post.statuses

=> {"draft"=>0, "published"=>1, "archived"=>2}

You should only need to access this class method when you need to know the underlying ordinal value of
an enum.

With the addition of the enum attribute, Active Record finally has a simple state machine out of the box. This
feature alone should simplify models that had previously depended onmultiple boolean fields to manage state.
If you require more advanced functionality, such as status transition callbacks and conditional transitions, it’s
still recommended to use a full-blown state machine like s¹⁰.

¹⁰https://github.com/pluginaweek/state_machine

https://github.com/pluginaweek/state_machine

Advanced Active Record 274

9.8 Foreign-key Constraints

As we work toward the end of this book’s coverage of Active Record, you might have noticed that we haven’t
really touched on a subject of particular importance to many programmers: foreign-key constraints in the
database. That’s mainly because use of foreign-key constraints simply isn’t the Rails way to tackle the problem
of relational integrity. To put it mildly, that opinion is controversial and some developers have written off Rails
(and its authors) for expressing it.

There really isn’t anything stopping you from adding foreign-key constraints to your database tables, although
you’d do well to wait until after the bulk of development is done. The exception, of course, is those
polymorphic associations, which are probably the most extreme manifestation of the Rails opinion against
foreign-key constraints. Unless you’re armed for battle, you might not want to broach that particular subject
with your DBA.

9.9 Modules for Reusing Common Behavior

In this section, we’ll talk about one strategy for breaking out functionality that is shared between disparate
model classes. Instead of using inheritance, we’ll put the shared code into modules.

In the section “Polymorphic has_many Relationships,” we described how to add a commenting feature to our
recurring sample Time and Expenses application. We’ll continue fleshing out that example, since it lends itself
to factoring out into modules.

The requirements we’ll implement are as follows: Both users and approvers should be able to add their
comments to a Timesheet or ExpenseReport. Also, since comments are indicators that a timesheet or expense
report requires extra scrutiny or processing time, administrators of the application should be able to easily
view a list of recent comments. Human nature being what it is, administrators occasionally gloss over the
comments without actually reading them, so the requirements specify that a mechanism should be provided
for marking comments as “OK” first by the approver, then by the administrator.

Again, here is the polymorphic has_many :comments, as: :commentable that we used as the foundation for
this functionality:

1 class Timesheet < ActiveRecord::Base

2 has_many :comments, as: :commentable

3 end

4

5 class ExpenseReport < ActiveRecord::Base

6 has_many :comments, as: :commentable

7 end

8

9 class Comment < ActiveRecord::Base

10 belongs_to :commentable, polymorphic: true

11 end

Next we enable the controller and action for the administrator that list the 10 most recent comments with
links to the item to which they are attached.

Advanced Active Record 275

1 class Comment < ActiveRecord::Base

2 scope :recent, -> { order('created_at desc').limit(10) }

3 end

4

5 class CommentsController < ApplicationController

6 before_action :require_admin, only: :recent

7 expose(:recent_comments) { Comment.recent }

8 end

Here’s some of the simple view template used to display the recent comments.

1 %ul.recent.comments

2 - recent_comments.each do |comment|

3 %li.comment

4 %h4= comment.created_at

5 = comment.text

6 .meta

7 Comment on:

8 = link_to comment.commentable.title, comment.commentable

9 # Yes, this would result in N+1 selects.

So far, so good. The polymorphic association makes it easy to access all types of comments in one listing. In
order to find all of the unreviewed comments for an item, we can use a named scope on the Comment class
together with the comments association.

1 class Comment < ActiveRecord::Base

2 scope :unreviewed, -> { where(reviewed: false) }

3 end

4

5 >> timesheet.comments.unreviewed

Both Timesheet and ExpenseReport currently have identical has_many methods for comments. Essentially,
they both share a common interface. They’re commentable!

To minimize duplication, we could specify common interfaces that share code in Ruby by including a module
in each of those classes, where the module contains the code common to all implementations of the common
interface. So, mostly for the sake of example, let’s go ahead and define a Commentable module to do just that,
and include it in our model classes:

Advanced Active Record 276

1 module Commentable

2 has_many :comments, as: :commentable

3 end

4

5 class Timesheet < ActiveRecord::Base

6 include Commentable

7 end

8

9 class ExpenseReport < ActiveRecord::Base

10 include Commentable

11 end

Whoops, this code doesn’t work! To fix it, we need to understand an essential aspect of the way that Ruby
interprets our code dealing with open classes.

9.9.1 A Review of Class Scope and Contexts

In many other interpreted, OO programming languages, you have two phases of execution—one in which the
interpreter loads the class definitions and says “this is the definition of what I have to work with,” followed
by the phase in which it executes the code. This makes it difficult (though not necessarily impossible) to add
new methods to a class dynamically during execution.

In contrast, Ruby lets you add methods to a class at any time. In Ruby, when you type class MyClass, you’re
doing more than simply telling the interpreter to define a class; you’re telling it to “execute the following code
in the scope of this class.”

Let’s say you have the following Ruby script:

1 class Foo < ActiveRecord::Base

2 has_many :bars

3 end

4 class Foo < ActiveRecord::Base

5 belongs_to :spam

6 end

When the interpreter gets to line 1, you are telling it to execute the following code (up to the matching end)
in the context of the Foo class object. Because the Foo class object doesn’t exist yet, it goes ahead and creates
the class. At line 2, we execute the statement has_many :bars in the context of the Foo class object. Whatever
the has_many method does, it does right now.

When we again say class Foo at line 4, we are once again telling the interpreter to execute the following
code in the context of the Foo class object, but this time, the interpreter already knows about class Foo; it
doesn’t actually create another class. Therefore, on line 5, we are simply telling the interpreter to execute the
belongs_to :spam statement in the context of that same Foo class object.

In order to execute the has_many and belongs_to statements, those methods need to exist in the context in
which they are executed. Because these are defined as class methods in ActiveRecord::Base, and we have
previously defined class Foo as extending ActiveRecord::Base, the code will execute without a problem.

Advanced Active Record 277

However, when we defined our Commentable module like this:

1 module Commentable

2 has_many :comments, as: :commentable

3 end

…we get an error when it tries to execute the has_many statement. That’s because the has_manymethod is not
defined in the context of the Commentable module object.

Given what we now know about how Ruby is interpreting the code, we now realize that what we really want
is for that has_many statement to be executed in the context of the including class.

9.9.2 The included Callback

Luckily, Ruby’s Module class defines a handy callback that we can use to do just that. If a Module object defines
the method included, it gets run whenever that module is included in another module or class. The argument
passed to this method is the module/class object into which this module is being included.

We can define an included method on our Commentable module object so that it executes the has_many

statement in the context of the including class (Timesheet, ExpenseReport, and so on):

1 module Commentable

2 def self.included(base)

3 base.class_eval do

4 has_many :comments, as: :commentable

5 end

6 end

7 end

Now, when we include the Commentable module in our model classes, it will execute the has_many statement
just as if we had typed it into each of those classes’ bodies.

The technique is common enough, within Rails and gems, that it was added as a first-class concept in the
ActiveSupport API as of Rails 3. The above example becomes shorter and easier to read as a result:

1 # app/models/concerns/commentable.rb

2 module Commentable

3 extend ActiveSupport::Concern

4 included do

5 has_many :comments, as: :commentable

6 end

7 end

Whatever is inside of the included block will get executed in the class context of the class where the module
is included.

As of version 4.0, Rails includes the directory app/models/concerns as place to keep all your application’s
model concerns. Any file found within this directory will automatically be part of the application load path.

Advanced Active Record 278

..

Courtenay says…
There’s a fine balance to strike here. Magic like include Commentable certainly saves on typing and makes
your model look less complex, but it can also mean that your association code is doing things you don’t know
about. This can lead to confusion and hours of head-scratching while you track down code in a separate
module. My personal preference is to leave all associations in the model, and extend them with a module.
That way you can quickly get a list of all associations just by looking at the code.

9.10 Modifying Active Record Classes at Runtime

The metaprogramming capabilities of Ruby, combined with the after_find callback, open the door to some
interesting possibilities, especially if you’re willing to blur your perception of the difference between code
and data. I’m talking about modifying the behavior of model classes on the fly, as they’re loaded into your
application.

Listing 9.5 is a drastically simplified example of the technique, which assumes the presence of a config column
on your model. During the after_find callback, we get a handle to the unique singleton class¹¹ of the model
instance being loaded. Then we execute the contents of the config attribute belonging to this particular
Account instance, using Ruby’s class_eval method. Since we’re doing this using the singleton class for this
instance, rather than the global Account class, other account instances in the system are completely unaffected.

Listing 9.5: Runtime metaprogramming with after_find

1 class Account < ActiveRecord::Base

2 ...

3

4 protected

5

6 def after_find

7 singleton = class << self; self; end

8 singleton.class_eval(config)

9 end

10 end

I used powerful techniques like this one in a supply-chain application that I wrote for a large industrial client.
A lot is a generic term in the industry used to describe a shipment of product. Depending on the vendor and
product involved, the attributes and business logic for a given lot vary quite a bit. Since the set of vendors and
products being handled changed on a weekly (sometimes daily) basis, the system needed to be reconfigurable
without requiring a production deployment.

¹¹I don’t expect this to make sense to you, unless you are familiar with Ruby’s singleton classes, and the ability to evaluate arbitrary strings of
Ruby code at runtime. A good place to start is http://yehudakatz.com/2009/11/15/metaprogramming-in-ruby-its-all-about-the-self/.

http://yehudakatz.com/2009/11/15/metaprogramming-in-ruby-its-all-about-the-self/

Advanced Active Record 279

Without getting into too much detail, the application allowed the maintenance programmers to easily
customize the behavior of the system by manipulating Ruby code stored in the database, associated with
whatever product the lot contained.

For example, one of the business rules associated with lots of butter being shipped for Acme Dairy Co. might
dictate a strictly integral product code, exactly 10 digits in length. The code, stored in the database, associated
with the product entry for Acme Dairy’s butter product would therefore contain the following two lines:

1 validates_numericality_of :product_code, only_integer: true

2 validates_length_of :product_code, is: 10

9.10.1 Considerations

A relatively complete description of everything you can do with Ruby metaprogramming, and how to do it
correctly, would fill its own book. For instance, you might realize that doing things like executing arbitrary
Ruby code straight out of the database is inherently dangerous. That’s why I emphasize again that the
examples shown here are very simplified. All I want to do is give you a taste of the possibilities.

If you do decide to begin leveraging these kinds of techniques in real-world applications, you’ll have to
consider security and approval workflow and a host of other important concerns. Instead of allowing arbitrary
Ruby code to be executed, you might feel compelled to limit it to a small subset related to the problem at hand.
You might design a compact API, or even delve into authoring a domain-specific language (DSL), crafted
specifically for expressing the business rules and behaviors that should be loaded dynamically. Proceeding
down the rabbit hole, youmight write custom parsers for your DSL that could execute it in different contexts—
some for error detection and others for reporting. It’s one of those areas where the possibilities are quite
limitless.

9.10.2 Ruby and Domain-Specific Languages

My former colleague Jay Fields and I pioneered the mix of Ruby metaprogramming, Rails, and internal¹²
domain-specific languages while doing Rails application development for clients. I still occasionally speak at
conferences and blog about writing DSLs in Ruby.

Jay has also written and delivered talks about his evolution of Ruby DSL techniques, which he calls Business
Natural Languages (or BNL for short¹³). When developing BNLs, you craft a domain-specific language that
is not necessarily valid Ruby syntax, but is close enough to be transformed easily into Ruby and executed at
runtime, as shown in Listing 9.6.

¹²The qualifier internal is used to differentiate a domain-specific language hosted entirely inside of a general-purpose language, such as Ruby,
from one that is completely custom and requires its own parser implementation.

¹³Googling BNL will give you tons of links to the Toronto-based band Barenaked Ladies, so you’re better off going directly to the source at
http://blog.jayfields.com/2006/07/business-natural-language-material.html.

http://blog.jayfields.com/2006/07/business-natural-language-material.html

Advanced Active Record 280

Listing 9.6: Example of business natural language

employee John Doe

compensate 500 dollars for each deal closed in the past 30 days

compensate 100 dollars for each active deal that closed more than

365 days ago

compensate 5 percent of gross profits if gross profits are greater than

1,000,000 dollars

compensate 3 percent of gross profits if gross profits are greater than

2,000,000 dollars

compensate 1 percent of gross profits if gross profits are greater than

3,000,000 dollars

The ability to leverage advanced techniques such as DSLs is yet another powerful tool in the hands of
experienced Rails developers.

Courtenay says…
DSLs suck! Except the ones written by Obie, of course. The only people who can read and write
most DSLs are their original authors. As a developer taking over a project, it’s often quicker to just
reimplement instead of learning the quirks and exactly which words you’re allowed to use in an
existing DSL.In fact, a lot of Ruby metaprogramming sucks too. It’s common for people gifted with
these new tools to go a bit overboard. I consider metaprogramming, self.included, class_eval,
and friends to be a bit of a code smell on most projects.If you’re making a web application, future
developers and maintainers of the project will appreciate your using simple, direct, granular, and
well-tested methods, rather than monkeypatching into existing classes, or hiding associations in
modules.That said, if you can pull it off… your code will become more powerful than you can
possibly imagine.

9.11 Using Value Objects

In Domain Driven Design¹⁴ (DDD) there is a distinction between Entity Objects and Value Objects. All model
objects that inherit from ActiveRecord::Base could be considered Entity Objects in DDD. An Entity object
cares about identity, since each one is unique. In Active Record, uniqueness is derived from the primary key.
Comparing two different Entity Objects for equality should always return false, even if all of its attributes
(other than the primary key) are equivalent.

Here is an example comparing two Active Record addresses:

¹⁴http://www.domaindrivendesign.org/

http://www.domaindrivendesign.org/

Advanced Active Record 281

>> home = Address.create(city: "Brooklyn", state: "NY")

>> office = Address.create(city: "Brooklyn", state: "NY")

>> home == office

=> false

In this case you are actually creating two new Address records and persisting them to the database, therefore
they have different primary key values.

Value Objects on the other hand only care that all their attributes are equal. When creating Value Objects for
use with Active Record you do not inherit from ActiveRecord::Base, but instead simply define a standard
Ruby object. This is a form of composition, called an Aggregate in DDD. The attributes of the Value Object
are stored in the database together with the parent object and the standard Ruby object provides a means to
interact with those values in a more object oriented way.

A simple example is of a Person with a single Address. To model this using composition, first we need a Person
model with fields for the Address. Create it with the following migration:

1 class CreatePeople < ActiveRecord::Migration

2 def change

3 create_table :people do |t|

4 t.string :name

5 t.string :address_city

6 t.string :address_state

7 end

8 end

9 end

The Person model looks like this:

1 class Person < ActiveRecord::Base

2 def address

3 @address ||= Address.new(address_city, address_state)

4 end

5

6 def address=(address)

7 self[:address_city] = address.city

8 self[:address_state] = address.state

9

10 @address = address

11 end

12 end

We need a corresponding Address object which looks like this:

Advanced Active Record 282

1 class Address

2 attr_reader :city, :state

3

4 def initialize(city, state)

5 @city, @state = city, state

6 end

7

8 def ==(other_address)

9 city == other_address.city && state == other_address.state

10 end

11 end

Note that this is just a standard Ruby object that does not inherit from ActiveRecord::Base. We have defined
reader methods for our attributes and are assigning them upon initialization. We also have to define our own
== method for use in comparisons. Wrapping this all up we get the following usage:

>> gary = Person.create(name: "Gary")

>> gary.address_city = "Brooklyn"

>> gary.address_state = "NY"

>> gary.address

=> #<Address:0x007fcbfcce0188 @city="Brooklyn", @state="NY">

Alternately you can instantiate the address directly and assign it using the address accessor:

>> gary.address = Address.new("Brooklyn", "NY")

>> gary.address

=> #<Address:0x007fcbfa3b2e78 @city="Brooklyn", @state="NY">

9.11.1 Immutability

It’s also important to treat value objects as immutable. Don’t allow them to be changed after creation. Instead,
create a new object instance with the new value instead. Active Record will not persist value objects that have
been changed through means other than the writer method on the parent object.

9.11.1.1 The Money Gem

A common approach to using Value Objects is in conjunction with the money gem ¹⁵.

¹⁵https://github.com/RubyMoney/money

https://github.com/RubyMoney/money

Advanced Active Record 283

1 class Expense < ActiveRecord::Base

2 def cost

3 @cost ||= Money.new(cents || 0, currency || Money.default_currency)

4 end

5

6 def cost=(cost)

7 self[:cents] = cost.cents

8 self[:currency] = cost.currency.to_s

9

10 cost

11 end

12 end

Remember to add a migration with the 2 columns, the integer cents and the string currency that money
needs.

1 class CreateExpenses < ActiveRecord::Migration

2 def change

3 create_table :expenses do |t|

4 t.integer :cents

5 t.string :currency

6 end

7 end

8 end

Now when asking for or setting the cost of an item would use a Money instance.

>> expense = Expense.create(cost: Money.new(1000, "USD"))

>> cost = expense.cost

>> cost.cents

=> 1000

>> expense.currency

=> "USD"

9.12 Non-Persisted Models

In Rails 3, if one wanted to use a standard Ruby object with Action View helpers, such as form_for,
the object had to “act” like an Active Record instance. This involved including/extending various Active
Model module mixins and implementing the method persisted?. At a minimum, ActiveModel::Conversion
should be included and ActiveModel::Naming extended. These two modules alone provide the object
all the methods it needs for Rails to determine partial paths, routes, and naming. Optionally, extending
ActiveModel::Translation adds internationalization support to your object, while including ActiveModel::Validations
allows for validations to be defined. All modules are covered in detail in the Active Model API Reference.

To illustrate, let’s assume we have a Contact class that has attributes for name, email, and message. The
following implementation is Action Pack and Action View compatible in both Rails 3 and 4:

Advanced Active Record 284

1 class Contact

2 extend ActiveModel::Naming

3 extend ActiveModel::Translation

4 include ActiveModel::Conversion

5 include ActiveModel::Validations

6

7 attr_accessor :name, :email, :message

8

9 validates :name, presence: true

10 validates :email,

11 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/ },

12 presence: true

13 validates :message, length: {maximum: 1000}, presence: true

14

15 def initialize(attributes = {})

16 attributes.each do |name, value|

17 send("#{name}=", value)

18 end

19 end

20

21 def persisted?

22 false

23 end

24 end

New to Rails 4 is the ActiveModel::Model, a module mixin that removes the drudgery of manually having
to implement a compatible interface. It takes care of including/extending the modules mentioned above,
defines an initializer to set all attributes on initialization, and sets persisted? to false by default. Using
ActiveModel::Model, the Contact class can be implemented as follows:

1 class Contact

2 include ActiveModel::Model

3

4 attr_accessor :name, :email, :message

5

6 validates :name, presence: true

7 validates :email,

8 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/ },

9 presence: true

10 validates :message, length: {maximum: 1000}, presence: true

11 end

Advanced Active Record 285

9.13 PostgreSQL enhancements

Out of all the supported databases available in Active Record, PostgreSQL received the most amount of
attention during the development of Rails 4. In this section, we are going to look at the various additions
made to the PostgreSQL database adapter.

9.13.1 Schema-less Data with hstore

The hstore data type from PostgreSQL allows for the storing of key/value pairs, or simply a hash, within a
single column. In other words, if you are using PostgreSQL and Rails 4, you can now have schema-less data
within your models.

To get started, first setup your PostgreSQL database to use the hstore extension via the enable_extension

migration method:

1 class AddHstoreExtension < ActiveRecord::Migration

2 def change

3 enable_extension "hstore"

4 end

5 end

Next, add the hstore column type to a model. For the purpose of our examples, we will be using a Photo

model with a hstore attribute properties.

1 class AddPropertiesToPhotos < ActiveRecord::Migration

2 change_table :photos do |t|

3 t.hstore :properties

4 end

5 end

With the hstore column properties setup, we are able to write a hash to the database:

1 photo = Photo.new

2 photo.properties # nil

3 photo.properties = { aperture: 'f/4.5', shutter_speed: '1/100 secs' }

4 photo.save && photo.reload

5 photo.properties # {:aperture=>"f/4.5", :shutter_speed=>"1/100 secs"}

Although this works well enough, Active Record does not keep track of any changes made to the properties
attribute itself.

Advanced Active Record 286

1 photo.properties[:taken] = Time.current

2 photo.properties

3 # {:aperture=>"f/4.5", :shutter_speed=>"1/100 secs",

4 # :taken=>Wed, 23 Oct 2013 16:03:35 UTC +00:00}

5

6 photo.save && photo.reload

7 photo.properties # {:aperture=>"f/4.5", :shutter_speed=>"1/100 secs"}

As with some other PostgreSQL column types, such as array and json, you must tell Active Record that a
change has taken place via the <attribute>_will_change! method. However, a better solution is to use the
Active Record store_accessor macro style method to add read/write accessors to hstore values.

1 class Photo < ActiveRecord::Base

2 store_accessor :properties, :aperture, :shutter_speed

3 end

When we set new values to any of these accessors, Active Record is able to track the changes made to the
underlying hash, eliminating the need to call the <attribute>_will_change!method. Like any accessor, they
can have Active Model validations added to them and also be used in forms.

1 photo = Photo.new

2 photo.aperture = "f/4.5"

3 photo.shutter_speed = "1/100 secs"

4 photo.properties # {"aperture"=>"f/4.5", "shutter_speed"=>"1/100 secs"}

5

6 photo.save && photo.reload

7

8 photo.properties # {"aperture"=>"f/4.5", "shutter_speed"=>"1/100 secs"}

9 photo.aperture = "f/1.4"

10

11 photo.save && photo.reload

12 photo.properties # {"aperture"=>"f/1.4", "shutter_speed"=>"1/100 secs"}

Be aware that when a hstore attribute is returned from PostgreSQL, all key/values will be strings.

9.13.1.1 Querying hstore

To query against a hstore value in Active Record, use SQL string conditions with the where query method. For
the sake of clarity, here are a couple examples of various queries that can be made against an hstore column
type:

Advanced Active Record 287

1 # Non-Indexed query to find all photos that have a key 'aperture' with a

2 # value of f/1.4

3 Photo.where("properties -> :key = :value", key: 'aperture', value: 'f/1.4')

4

5 # Indexed query to find all photos that have a key 'aperture' with a value

6 # of f/1.4

7 Photo.where("properties @> 'aperture=>f/1.4'")

8

9 # All photos that have a key 'aperture' in properties

10 Photo.where("properties ? :key", key: 'aperture')

11

12 # All photos that do not have a key 'aperture' in properties

13 Photo.where("not properties ? :key", key: 'aperture')

14

15 # All photos that contains all keys 'aperture' and 'shutter_speed'

16 Photo.where("properties ?& ARRAY[:keys]", keys: %w(aperture shutter_speed))

17

18 # All photos that contains any of the keys 'aperture' or 'shutter_speed'

19 Photo.where("properties ?| ARRAY[:keys]", keys: %w(aperture shutter_speed))

For more information on how to build hstore queries, you can consult the PostgreSQL documentation
directly.¹⁶

9.13.1.2 GiST and GIN Indexes

If you are doing any queries on an hstore column type, be sure to add the appropriate index. When adding an
index, you will have to decide to use either GIN or GiST index types. The distinguishing factor between the
two index types is that GIN index lookups are three times faster than GiST indexes, however they also take
three times longer to build.

You can define either a GIN or GiST index using Active Record migrations, by by setting the index option
:using to :gin or :gist respectively.

add_index :photos, :properties, using: :gin

or

add_index :photos, :properties, using: :gist

GIN and GiST indexes support queries with @>, ?, ?& and ?| operators.

9.13.2 Array Type

Another NoSQL like column type supported by PostgreSQL and Rails 4 is array. This allows us to store a
collection of a data type, such as strings, within the database record itself. For instance, assuming we had a

¹⁶http://www.postgresql.org/docs/9.3/static/hstore.html

http://www.postgresql.org/docs/9.3/static/hstore.html

Advanced Active Record 288

Article model, we could store all the article’s tags in an array attribute named tags. Since the tags are not
stored in another table, when Active Record retrieves an article from the database, it does so in a single query.

To declare a column as an array, pass true to the :array option for a column type such as string:

1 class AddTagsToArticles < ActiveRecord::Migration

2 def change

3 change_table :articles do |t|

4 t.string :tags, array: true

5 end

6 end

7 end

8 # ALTER TABLE "articles" ADD COLUMN "tags" character varying(255)[]

The array column type will also accept the option :length to limit the amount of items allowed in the array.

t.string :tags, array: true, length: 10

To set a default value for an array column, you must use the PostgreSQL array notation ({value}). Setting
the default option to {} ensures that every row in the database will default to an empty array.

t.string :tags, array: true, default: '{rails,ruby}'

The migration in the above code sample would create an array of strings, that defaults every row in the
database to have an array containing strings “rails” and “ruby”.

>> article = Article.create

(0.1ms) BEGIN

SQL (66.2ms) INSERT INTO "articles" ("created_at", "updated_at") VALUES

($1, $2) RETURNING "id" [["created_at", Wed, 23 Oct 2013 15:03:12

>> article.tags

=> ["rails", "ruby"]

Note that Active Record does not track destructive or in place changes to the Array instance.

1 article.tags.pop

2 article.tags # ["rails"]

3 article.save && article.reload

4 article.tags # ["rails", "ruby"]

To ensure changes are persisted, you must tell Active Record that the attribute has changed by calling
<attribute>_will_change!.

Advanced Active Record 289

1 article.tags.pop

2 article.tags # ["rails"]

3 article.tags_will_change!

4 article.save && article.reload

5 article.tags # ["rails"]

If the pg_array_parser gem is included in the application Gemfile, Rails will use it when parsing PostgreSQL’s
array representation. The gem includes a native C extention and JRuby support.

9.13.2.1 Searching in Arrays

If you wish to query against an array column using Active Record, you must use PSQL’s methods ANY and
ALL. To demonstrate, given our above example, using the ANY method we could query for any articles that
have the tag “rails”:

Article.where("'rails' = ANY(tags)")

Alternatively, the ALL method searches for arrays where all values in the array equal the value specified.

Article.where("'rails' = ALL(tags)")

As with the hstore column type, if you are doing queries against an array column type, the column should
be indexed with either GiST or GIN.

add_index :articles, :tags, using: 'gin'

9.13.3 Network Address Types

PostgreSQL comeswith column types exclusively for IPv4, IPv6, andMAC addresses. IPv4 or IPv6 host address
are represented with Active Record data types inet and cidr, where the former accepts values with nonzero
bits to the right of the netmask. When Active Record retrieves inet/cidr data types from the database, it
converts the values to IPAddr objects. MAC addresses are represented with the macaddr data type, which are
represented as a string in Ruby.

To set a column as a network address in an Active Record migration, set the data type of the column to inet,
cidr, or macaddr:

Advanced Active Record 290

1 class CreateNetworkAddresses < ActiveRecord::Migration

2 def change

3 create_table :network_addresses do |t|

4 t.inet :inet_address

5 t.cidr :cidr_address

6 t.macaddr :mac_address

7 end

8 end

9 end

Setting an inet or cidr type to an invalid network address will result in an IPAddr::InvalidAddressError

exception being raised. If an invalid MAC address is set, an error will occur at the database level resulting in
an ActiveRecord::StatementInvalid: PG::InvalidTextRepresentation exception being raised.

>> address = NetworkAddress.new

=> #<NetworkAddress id: nil, inet_address: nil, ...>

>> address.inet_address = 'abc'

IPAddr::InvalidAddressError: invalid address

>> address.inet_address = "127.0.0.1"

=> "127.0.0.1"

>> address.inet_address

=> #<IPAddr: IPv4:127.0.0.1/255.255.255.255>

>> address.save && address.reload

=> #<NetworkAddress id: 1,

inet_address: #<IPAddr: IPv4:127.0.0.1/255.255.255.255>, ...>

9.13.4 UUID Type

The uuid column type represents a Universally Unique Identifier (UUID), a 128-bit value that is generated by
an algorithm that makes it highly unlikely that the same value can be generated twice.

To set a column as a UUID in an Active Record migration, set the type of the column to uuid:

add_column :table_name, :unique_identifier, :uuid

When reading and writing to a UUID attribute, you will always be dealing with a Ruby string:

record.unique_identifier = 'a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11'

If an invalid UUID is set, an errorwill occur at the database level resulting in an ActiveRecord::StatementInvalid:
PG::InvalidTextRepresentation exception being raised.

Advanced Active Record 291

9.13.5 Range Types

If you have ever needed to store a range of values, Active Record now supports PostgreSQL range types.
These ranges can be created with both inclusive and exclusive bounds. The following range types are natively
supported:

• daterange

• int4range

• int8range

• numrange

• tsrange

• tstzrange

To illustrate, consider a scheduling application that stores a date range representing the availability of a room.

1 class CreateRooms < ActiveRecord::Migration

2 def change

3 create_table :rooms do |t|

4 t.daterange :availability

5 end

6 end

7 end

8

9 room = Room.create(availability: Date.today..Float::INFINITY)

10 room.reload

11 room.availability # Tue, 22 Oct 2013...Infinity

12 room.availability.class # Range

Note that the Range class does not support exclusive lower bound. For more detailed information about the
PostgreSQL range types, consult the official documentation¹⁷.

9.13.6 JSON Type

Introduced in PostgreSQL 9.2, the json column type adds the ability for PostgreSQL to store JSON structured
data directly in the database. When an Active Record object has an attribute with the type of json, the the
encoding/decoding of the JSON itself is handled behind the scenes by ActiveSupport::JSON. This allows you
to set the attribute to a hash or already encoded JSON string. If you attempt to set the JSON attribute to a
string that cannot be decoded, a JSON::ParserError will be raised.

To set a column as JSON in an Active Record migration, set the data type of the column to json:

¹⁷http://www.postgresql.org/docs/9.3/static/rangetypes.html

http://www.postgresql.org/docs/9.3/static/rangetypes.html

Advanced Active Record 292

add_column :users, :preferences, :json

To demonstrate, let’s play with the preferences attribute from the above example in the console. To begin,
I’ll create a user with the color preference of blue.

>> user = User.create(preferences: { color: "blue"})

(0.2ms) BEGIN

SQL (1.1ms) INSERT INTO "users" ("preferences") VALUES ($1) RETURNING

"id" [["preferences", {:color=>"blue"}]]

(0.4ms) COMMIT

=> #<User id: 1, preferences: {:color=>"blue"}>

Next up, let’s verify when we retrieve the user from the database that the preferences attribute doesn’t return
a JSON string, but a hash representation instead.

>> user.reload

User Load (10.7ms) SELECT "users".* FROM "users" WHERE "users"."id" = $1

LIMIT 1 [["id", 1]]

=> #<User id: 1, preferences: {"color"=>"blue"}>

>> user.preferences.class

=> Hash

It’s important to note that like the array data type, Active Record does not track in place changes. This means
that updating the existing hash does not persist the changes to the database. To ensure changes are persisted,
you must call <attribute>_will_change! (preferences_will_change! in our above example) or completely
replace the object instance with a new value instead.

9.14 Conclusion

With this chapter we conclude our coverage of Active Record. Among other things, we examined how
callbacks let us factor our code in a clean and object-oriented fashion. We also expanded our modeling
options by considering single-table inheritance, abstract classes and Active Record’s distinctive polymorphic
relationships.

At this point in the book, we’ve covered two parts of the MVC pattern: the model and the controller. It’s now
time to delve into the third and final part: the view.

10 Action View
The very powerful and the very stupid have one thing in common. Instead of altering their views
to fit the facts, they alter the facts to fit their views…which can be very uncomfortable if you
happen to be one of the facts that needs altering.

—Doctor Who

Controllers are the skeleton and musculature of your Rails application. In which case, models form the heart
and mind, and your view templates (based on Action View, the third major component of Rails) are your
application’s skin—the part that is visible to the outside world.

Action View is the Rails API for putting together the visual component of your application, namely the HTML
and associated content that will be rendered in a web browser whenever someone uses your Rails application.
Actually, in this brave new world of REST resources, Action View is involved in generating almost any sort
of output you generate.

Action View contains a full-featured templating system based on a Ruby library named ERb. It takes data
prepared by the controller layer and interleaves it with view code to create a presentation layer for the end
user. It’s also one of the first things you learn about Rails and part of the standard Ruby library. I much prefer
a templating solution named Haml¹ and have used it all over the book for examples. I think Haml is such a
superior choice over ERb, that this edition does not cover ERb at all.

In this chapter, we cover the fundamentals of the Action View framework, from effective use of partials, to
the significant performance boosts possible via caching. If you need to learn Haml, it’s covered in detail in
Chapter 12.

10.1 Layouts and Templates

Rails has easy conventions for template usage, related to the location of templates with the Rails project
directories.

The app/views directory contains subdirectories corresponding to the name of controllers in your application.
Within each controller’s view subdirectory, you place a template named to match its corresponding action.

The special app/views/layout directory holds layout templates, intended to be reusable containers for your
views. Again, naming conventions are used to determine which templates to render, except that this time it
is the name of the controller that is used for matching.

10.1.1 Template Filename Conventions

The filename of a template in Rails carries a lot of significance. It’s parts, delimited with periods, correspond
to the following information:

¹http://haml-lang.com/

http://haml-lang.com/

Action View 294

• name (usually maps to action)
• locale (optional)
• content type
• templating engine(s)
• variant (optional, new in Rails 4.1)

10.1.2 Layouts

Action View decides which layout to render based on the inheritance hierarchy of controllers being executed.
Most Rails applications have an application.html.haml file in their layout directory. It shares its name
with the ApplicationController, which is typically extended by all the other controllers in an application;
therefore it is picked up as the default layout for all views.

It is picked up, unless of course, a more specific layout template is in place, but quite often it makes sense to
use just one application-wide template, such as the simple one shown in Listing 10.1.

Listing 10.1: A simple general-purpose application.html.haml layout template

1 !!! 5

2 %html

3 %head

4 %meta{ charset: 'utf-8' }

5 %title TR4W Time and Expenses Sample Application

6 = csrf_meta_tag

7 = stylesheet_link_tag 'application', media: 'all'

8 %body

9 = yield

10.1.3 Yielding Content

The Ruby language’s built-in yield keyword is put to good use in making layout and action templates
collaborate. Notice the use of yield at the end of the layout template:

1 %body

2 = yield

In this case, yield by itself is a special message to the rendering system. It marks where to insert the output
of the action’s rendered output, which is usually the template corresponding to that action.

You can add extra places in your layout where you want to be able to yield content, by including additional
yield invocations—just make sure to pass a unique identifier as the argument. A good example is a layout
that has left and right sidebar content (simplified, of course):

Action View 295

1 %body

2 .left.sidebar

3 = yield :left

4 .content

5 = yield

6 .right.sidebar

7 = yield :right

The .content div receives the main template markup generated. But how do you give Rails content for the
left and right sidebars? Easy—just use the content_for method anywhere in your template code. I usually
stick it at the top of the template so that it’s obvious.

1 - content_for :left do

2 %h2 Navigation

3 %ul

4 %li ...

5

6 - content_for :right do

7 %h2 Help

8 %p Lorem ipsum dolor sit amet, consectetur adipisicing elit...

9

10 %h1 Page Heading

11 %p ...

Besides sidebars and other types of visible content blocks, I suggest you yield for additional content to be
added to the HEAD element of your page, as shown in Listing 10.2.

Listing 10.2: Yielding additional head content

1 !!! 5

2 %html

3 %head

4 %meta{ charset: 'utf-8' }

5 %title TR4W Time and Expenses Sample Application

6 = csrf_meta_tag

7 = stylesheet_link_tag 'application', media: 'all'

8 = yield :head

9 %body

10 = yield

Kevin says…
Yielding in the HEAD element is also a great technique to include page specific meta tags, such as
those required for Facebook Open Graph.

Action View 296

10.1.4 Conditional Output

One of the most common idioms you’ll use when coding Rails views is to conditionally output content to the
view. The most elementary way to control conditional output is to use if statements.

1 - if show_subtitle?

2 %h2= article.subtitle

A lot of times you can use inline if conditions and shorten your code, since the = outputter doesn’t care if
you feed it a nil value. Just add a postfix if condition to the statement:

%h2= article.subtitle if show_subtitle?

Of course, there’s a problem with the preceding example. The if statement on a separate line will eliminate
the <h2> tags entirely, but the one-liner second example does not.

There are a couple of ways to deal with the problem and keep it a one-liner. First, there’s the butt-ugly solution
that I’ve occasionally seen in some Rails applications, which is the only reason why I’m mentioning it here!

= "<h2>#{h(article.subtitle)}</h2>".html_safe if show_subtitle?

A more elegant solution involves Rails’ content_tag helper method, but admittedly a one-liner is probably
not superior to its two-line equivalent in this case.

= content_tag('h2', article.subtitle) if show_subtitle?

Helper methods, both the ones included in Rails like content_tag and the ones that you’ll write on your own,
are your main tool for building elegant view templates. Helpers are covered extensively in Chapter 11, “All
About Helpers”.

10.1.5 Decent Exposure

We’ve seen how layouts and yielding content blocks work, but other than that, how should data get from the
controller layer to the view? During preparation of the template, instance variables set during execution of
the controller action will be copied over as instance variables of the template context. Even though it’s the
standard way exposed by Rails documentation, sharing state via instance variables in controllers promotes
close coupling with views.

Stephen Caudill’s Decent Exposure gem² provides a declarative manner of exposing an interface to the state
that controllers contain, thereby decreasing coupling and improving your testability and overall design.

When invoked, expose macro creates a method with the given name, evaluates the provided block and
memoizes the result. This method is then declared as a helper_method so that views may have access to
it and is made unroutable as an action. When no block is given, expose attempts to intuit which resource you
want to acquire:

²http://www.decentexposure.info/

http://www.decentexposure.info/

Action View 297

Timesheet.find(params[:timesheet_id] || params[:id])

expose(:timesheet)

As the example shows, the symbol passed is used to guess the class name of the object you want to find—useful
since almost every controller in a normal Rails uses this kind of code in the show, edit, update and destroy
actions.

In a slightly more complicated scenario, you might need to find an instance of an object which doesn’t map
cleanly to a simple find method.

expose(:timesheet) { client.timesheets.find(params[:id]) }

In the RESTful controller paradigm, you’ll again find yourself using this in show, edit, update and destroy
actions of nested resources.

When the code has become long enough to surpass a single line (but still isn’t appropriate to extract into a
model method), use a do...end style of block, as in the following that uses all three styles:

1 expose(:client)

2

3 expose(:timesheet) { client.timesheets.find(params[:id]) }

4

5 expose(:timesheet_approval_presenter) do

6 TimesheetApprovalPresenter.new(timesheet, current_user)

7 end

The previous example also demonstrates how expose declarations can depend on each other. In fact, proper
use of expose should eliminate most model-lookup code from your actual controller actions.

At Hashrocket, use of Decent Exposure has proven so beneficial that it has completely replaced direct use of
instance variables in controllers and views. The helper methods created by the exposemacro are just referred
to directly in the view.

10.1.6 Standard Instance Variables

More than just instance variables from the controller are copied over to the template. It’s not a good idea to
depend on some of the following objects directly, and especially not to use them to do data operations. Others
are a standard part of most Rails applications.

10.1.6.1 assigns

Want to see everything that comes across the controller-view boundary? Throw = debug(assigns) into your
template and take a look at the output. The assigns attribute is essentially internal to Rails and you should
not use it directly in your production code.

Action View 298

10.1.6.2 base_path

Local filesystem path pointing to the base directory of your application where templates are kept.

10.1.6.3 controller

The current controller instance is made available via controller, before it goes out of scope at the end of
request processing. You can take advantage of the controller’s knowledge of its name (via the controller_name
attribute) and the action that was just performed (via the action_name attribute), in order to structure your
CSS more effectively.

%body{ class: "#{controller.controller_name} #{controller.action_name}" }

That would result in a BODY tag looking something like this, depending on the action executed:

<body class="timesheets index">

..

Note
You could also replicate the functionality in the previous example by using the Haml helper method page_-
class.

%body{ class: page_class }

Hopefully you already know that the C in CSS stands for cascading, which refers to the fact that class names
cascade down the tree of elements in your markup code and are available for creation of rules. The trick is to
automatically include the controller and action name as classnames of your body element, so that you can use
them to customize look and feel of the page very flexibly later on in the development cycle. For example, here’s
how you would use the technique to vary the background of header elements depending on the controller
path in SCSS:

1 body {

2 .timesheets .header {

3 background: image_url(timesheet-bg.png) no-repeat left top;

4 }

5

6 .expense_reports .header {

7 background: image_url(expense-reports-bg.png) no-repeat left top;

8 }

9 }

Action View 299

10.1.6.4 cookies

The cookies variable is a hash containing the user’s cookies. There might be situations where it’d be okay
to pull values out to affect rendering, but most of the time you’ll be using cookies in your controller, not the
view.

10.1.6.5 flash

The flash has popped up in larger code samples throughout the book so far, whenever you want to send the
user a message from the controller layer, but only for the duration of the next request.

1 def create

2 if user.try(:authorize, params[:user][:password])

3 flash[:notice] = "Welcome, #{user.first_name}!"

4 redirect_to home_url

5 else

6 flash[:alert] = "Login invalid."

7 redirect_to :new

8 end

9 end

A common Rails practice is to use flash[:notice] to hold benign notice messages, and flash[:alert] for
communication of a more serious nature.

..

Note
It’s so common to set flash notice and alert messages on redirects that Rails allows you to set them in the
redirect_to method as optional parameters.

1 def create

2 if user.try(:authorize, params[:user][:password])

3 redirect_to home_url, notice: "Welcome, #{user.first_name}!"

4 else

5 redirect_to home_url, alert: "Bad login"

6 end

7 end

Special accessors for notices and alerts are included as helper methods on the flash object itself, since their
use is so common.

Action View 300

1 def create

2 if user.try(:authorize, params[:user][:password])

3 flash.notice = "Welcome, #{user.first_name}!"

4 redirect_to home_url

5 else

6 flash.alert = "Login invalid."

7 redirect_to action: "new"

8 end

9 end

10.1.7 Displaying flash messages

Personally, I like to conditionally output both notice and alert messages in div elements, right at the top of
my layout, and use CSS to style them, as shown in Listing 10.3:

Listing 10.3: Standardized flash notice and error placement in application.html.haml

1 %html

2 ...

3 %body

4 - if flash.notice

5 .notice= flash.notice

6 - if flash.alert

7 .notice.alert= flash.alert

8

9 = yield

The CSS for .notice defines most of the style for the element, and .alert overrides just the aspects that are
different for alerts.

10.1.8 flash.now

Sometimes you want to give the user a flash message, but only for the current request. In fact, a common
newbie Rails programming mistake is to set a flash notice and not redirect, thereby incorrectly showing a
flash message on the following request.

It is possible to make flash cooperate with a render by using the flash.now method.

Action View 301

1 class ReportController < ActionController::Base

2 def create

3 if report.save

4 flash.notice = "#{report.title} has been created."

5 redirect_to report_path(report)

6 else

7 flash.now.alert = "#{@post.title} could not be created."

8 render :new

9 end

10 end

11 end

The flash.now object also has notice and alert accessors, like its traditional counterpart.

10.1.8.1 logger

Have something to record for posterity in the logs while you’re rendering the view? Use the logger method
to get the view’s Logger instance, the same as Rails.logger, unless you’ve changed it.

10.1.8.2 params

This is the same params hash that is available in your controller, containing the key/value pairs of your request.
I’ll occasionally use a value from the params hash directly in the view, particularly when I’m dealing with
pages that are subject to filtering or row sorting.

1 %p

2 Filter by month:

3 = select_tag(:month_filter,

4 options_for_select(@month_options, params[:month_filter]))

It’s very dangerous from a security perspective to put unfiltered parameter data into the output stream of
your template. The following section, “Protecting the Integrity of Your View from User-Submitted Content,”
covers that topic in depth.

10.1.8.3 request and response

The HTTP request and response objects are exposed to the view, but other than for debugging purposes, I
can’t think of any reason why you would want to use them directly from your template.

10.1.8.4 session

The session variable is the user’s session hash. There might be situations where it’d be okay to pull values
out to affect rendering, but I shudder to think that you might try to set values in the session from the view
layer. Use with care, and primarily for debugging, just like request and response.

Action View 302

10.2 Partials

A partial is a fragment of template code. The Rails way is to use partials to factor view code into modular
chunks that can be assembled in layouts with as little repetition as possible. In older versions of Rails, the
syntax for including a partial within a template started with render :partial, but now passing a string to
render within your view will get interpreted to mean you want to render a partial. Partial template names
must begin with an underscore, which serves to set them apart visually within a given view template directory.
However, you leave the underscore out when you refer to them.

1 %h1 Details

2 = render 'details'

10.2.1 Simple Use Cases

The simplest partial use case is simply to extract a portion of template code. Some developers divide their
templates into logical parts by using partial extraction. Sometimes it is easier to understand the structure of
a screen if the significant parts are factored out of it. For instance, Listing 10.4 is a simple user registration
screen that has its parts factored out into partials.

Listing 10.4: Simple user registration form with partials

1 %h1 User Registration

2 = error_messages_for :user

3 = form_for :user, url: users_path do

4 .registration

5 .details.demographics

6 = render 'details'

7 = render 'demographics'

8 .location

9 = render 'location'

10 .opt_in

11 = render 'opt_in'

12 .terms

13 = render 'terms'

14 %p= submit_tag 'Register'

While we’re at it, let me pop open one of those partials. To conserve space, we’ll take a look at one of the
smaller ones, the partial containing the opt-in check boxes of this particular app. The source is in Listing 10.5;
notice that its name begins with an underscore.

Action View 303

Listing 10.5: The opt-in partial in the file app/views/users/_opt_in.html.haml

1 %fieldset#opt_in

2 %legend Spam Opt In

3 %p

4 = check_box :user, :send_event_updates

5 Send me updates about events!

6 %br

7 = check_box :user, :send_site_updates

8 Notify me about new services

Personally, I like partials to be entirely contained inside a semantically significant markup container. In the
case of the opt-in partial in Listing 10.5, both check box controls are contained inside a single fieldset

element, which I’ve given an id attribute. Following that rule, more as a loose guideline than anything else,
helps me to mentally identify how the contents of this partial are going to fit inside the parent template. If we
were dealing with other markup, perhaps outside of a form, I might choose to wrap the partial markup inside
a well-identified div container, instead of a fieldset.

Why not include the td markup inside the partial templates? It’s a matter of style—I like to be able to see the
complete markup skeleton in one piece. In this case, the skeleton is the table structure that you see in Listing
10.4. If portions of that table were inside the partial templates, it would obfuscate the layout of the page. I do
admit that this is one of those areas where personal style and preference should take precedence and I can
only advise you as to what has worked for me, personally.

10.2.2 Reuse of Partials

Since the registration form is neatly factored out into its component parts, it is easy to create a simple edit
form using some of its partials, as in Listing 10.6.

Listing 10.6: Simple user edit form reusing some of the same partials

1 %h1 Edit User

2 = form_for :user, url: user_path(@user), method: :put do

3 .settings

4 .details

5 = render 'details'

6 .demographics

7 = render 'demographics'

8 .opt_in

9 = render 'opt_in'

10 %p= submit_tag 'Save Settings'

If you compare Listings 10.4 and 10.6, you’ll notice that the structure of the table changed a little bit in the
Edit form, and it has less content than the registration form. Perhaps the location is handled in greater detail
on another screen, and certainly you don’t want to require agreement of terms every time the user changes
her settings.

Action View 304

10.2.3 Shared Partials

Until nowwe’ve been considering the use of partials that reside in the same directory as their parent template.
However, you can easily refer to partials that are in other directories, just by prefixing the directory name.
You still leave off the underscore, which has always felt a little weird.

Let’s add a captcha partial to the bottom of the registration form from Listing 10.4, to help prevent spammers
from invading our web application:

1 ...

2 .terms

3 = render 'terms'

4 .captcha

5 = render 'shared/captcha'

6 %p= submit_tag 'Register'

Since the captcha partial is used in various different parts of the application, it makes sense to let it reside in
a shared folder rather than any particular view folder. However, you do have to be a little bit careful when
you move existing template code into a shared partial. It’s quite possible to inadvertently craft a partial that
depends implicitly on where it’s rendered.

For example, take the case of the Rails-talk mailing list member with a troublesome partial defined in login/_-
login.html.haml:

1 = form_tag do

2 %fieldset

3 %label

4 Username:

5 = text_field_tag :username, params[:username]

6 %br

7 %label

8 Password:

9 = password_field_tag :password, params[:password]

10 %br

11 = submit_tag "Login"

The login form submission worked when he rendered this partial as part of the login controller’s login action
(“the login page”), but not when it was included as part of the view for any other section of his website. The
problem is that form_tag (covered in the next chapter) normally takes an optional action parameter telling it
where to post its information. If you leave out the action, the form will post back to its current URL, which
will vary for shared partials, depending on where they’re being used from.

10.2.4 Passing Variables to Partials

Partials inherit the method exposed to their parent templates implicitly. That’s why the form helpers used in
the partials of Listings 10.4 and 10.6 work: They rely implicitly on an user method to be in scope. I feel it’s

Action View 305

fine to use this implicit sharing in some cases, particularly when the partials are tightly bound to their parent
templates. It would be especially true in cases where the only reason you broke out a partial in the first place
was to reduce the size and complexity of a particularly large template.

However, once you get into the practice of breaking out partial templates for reuse, depending on implicit
context gets a lot more dicey. That’s why Rails supports the passing of locally scoped variables to partial
templates, as in the following snippet:

= render 'shared/address', form: form

The values of the optional hash are converted into locally scoped variables (no @ sign) in the partial. Listing
10.7 is a variation on the registration template. This time we’re using the version of form_for that yields a
block parameter representing the form to its form helper methods. We’ll pass that form parameter on, too.

Listing 10.7: Simple user registration template passing form as local variable

1 %h1 User Registration

2 = form_for :user, url: users_path do |form|

3 .registration

4 .details.address.demographics

5 = render 'details', form: form

6 = render 'shared/address', form: form

7 %p= form.submit 'Register'

And finally, in Listing 10.8 we have the shared address form.

Listing 10.8: A simple shared address partial using local variable

1 %fieldset.address

2 %legend Address

3 %p

4 %label Street

5 %br

6 = form.text_area :street, rows: 2, cols: 40

7 %p

8 %label City

9 %br

10 = form.text_field :city

11 %p

12 %label State

13 %br

14 = form.text_field :state, size: 2

15 %p

16 %label Zip

17 %br

18 = form.text_field :zip, size: 15

Action View 306

The form helper methods, which we’ll cover in Chapter 11, “All About Helpers”, have a variation in which
they are called on the form variable yielded by the form_for method. That is exactly what we passed on to
these partials

10.2.4.1 The local_assigns Hash

If you need to check for the presence of a certain local variable in a partial, you need to do it by checking the
local_assigns hash that is part of every template. Using defined? variable won’t work due to limitations
of the rendering system.

1 - if local_assigns.has_key? :special

2 = special

10.2.5 Rendering an Object

The rendermethod also provides a shorthand syntax to render an object into a partial, which strictly depends
on Rails naming conventions.

= render entry

The partial corresponding to the last code snippet is named _entry.html.haml and gets a local variable named
entry. This is equivalent to the following:

= render partial: 'entry', object: entry

To set a different local variable name other than the name of the partial, one could use the locals hash as
seen earlier in the chapter, or specify the desired name through the :as option.

= render partial: 'entry', object: some_entry, as: :item

10.2.6 Rendering Collections

One of the best uses of partials is to render collections. Once you get into the habit of rendering collections
with partials, you won’t want to go back to the relative ugliness of cluttering your templates with for loops
and each. When the render method gets an Enumerable as its first argument, it assumes that you want to
render a collection of partials.

render entries

Simple and precise yet very dependent on a naming conventions. The objects being rendered are exposed to
the partial template as a local variable named the same as the partial template itself. In turn the template
should be named according to the class of the objects being rendered.

The partial corresponding to the last code snippet is named _entry.html.haml and gets a local variable named
entry.

Action View 307

1 = div_for(entry) do

2 = entry.description

3 #{distance_of_time_in_words_to_now entry.created_at} ago

Kevin says…
If the collection passed into the render method is empty, nil is returned. Using this knowledge,
you can write code such as

= render(entries) || "No entires exist"

to provide fallback content.

Since the partial template used is based on the class of each item, you can easily render a heterogeneous
collection of objects. This technique is particularly useful in conjunction with collections of STI subclasses.

If you want to override that behavior, then revert to the older partial syntax and specify the :partial and
:collection options explicitly like

partial: 'entry', collection: @entries

10.2.6.1 The partial_counter Variable

There’s another variable set for collection-rendered partials that doesn’t get much attention. It’s a 0-indexed
counter variable that tracks the number of times a partial has been rendered. It’s useful for rendering numbered
lists of things. The name of the variable is the name of the partial, plus _counter.

1 = div_for(entry) do

2 "#{entry_counter}:#{entry.description}

3 #{distance_of_time_in_words_to_now entry.created_at} ago"

10.2.6.2 Sharing Collection Partials

If you wanted to use the same partial that you use with a collection, except with a single entry object, you’d
have to pass it that single instance via the locals hash described in the preceding section, like this:

render 'entry', entry: some_entry

10.2.7 Logging

If you take a look at your development log, you’ll notice that it shows which partials have been rendered and
how long they took.

Action View 308

Rendering template within layouts/application

Rendering listings/index

Rendered listings/_listing 0.6ms)

Rendered listings/_listing 0.3ms)

Rendered listings/_listing 0.2ms)

Rendered listings/_listing 0.2ms)

Rendered listings/_listing 0.2ms)

Rendered layouts/_login 2.4ms)

Rendered layouts/_header 3.3ms)

Rendered layouts/_footer 0.1ms)

10.3 Conclusion

In this chapter, we’ve covered the Action View framework with a detailed explanation of templating and how
the Rails rendering system works. We’ve also covered the use of partials in-depth, since their use is essential
for effective Rails programming.

Now it’s time to cover the mechanism whereby you can inject a whole bunch of smarts into your view layer
without cluttering up your templates: Helpers.

11 All About Helpers
“Thank you for helping Helpers Helping the Helpless. Your help was very… helpful!”

—Mrs. Duong in the movie The Weekenders

Throughout the book so far, we’ve already covered some of the helper methods provided by Rails to help you
assemble the user interface of your web application. This chapter lists and explains all of the helper modules
and their methods, followed by instructions on effectively creating your own helpers.

..

Note
This chapter is essentially reference material. Although every effort has been made to make it readable
straight through, you will notice that coverage of Action View’s helper modules is arranged alphabetically,
starting with ActiveModelHelper and ending with UrlHelper. Within each module’s section, the methods
are broken up into logical groups whenever appropriate.

This chapter is published under the Creative CommonsAttribution-ShareAlike 4.0 license, http://creativecommons.
org/licenses/by-sa/4.0/

11.1 ActiveModelHelper

The ActiveModelHelpermodule contains helper methods for quickly creating forms from objects that follow
Active Model conventions, starting with Active Record models. The form method is able to create an entire
form for all the basic content types of a given record. However, it does not know how to assemble user-
interface components for manipulating associations. Most Rails developers assemble their own forms from
scratch using methods from FormHelper, instead of using this module. However, this module does contain
some useful helper for reporting validation errors in your forms that you will use on a regular basis.

Note that since Rails 3, you must add the following gem to your Gemfile in order to use this module.

gem 'dynamic_form'

11.1.1 Reporting Validation Errors

The error_message_on and error_messages_for methods help you to add formatted validation error
information to your templates in a consistent fashion.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

All About Helpers 310

11.1.1.1 error_message_on(object, method, *options)

Returns a div tag containing the error message attached to the specified method on the object, if one exists.
It’s useful for showing validation errors inline next to the corresponding form field. The object argument of
the method can be an actual object reference or a symbol corresponding to the name of an instance variable.
The method should be a symbol corresponding to the name of the attribute on the object for which to render
an error message.

The contents can be specialized with options for pre- and post-text and custom CSS class.

prepend_text: string

Fragment to prepend to error messages generated.

append_text: string

Fragment to append to error messages generated.

css_class: class_name

CSS class name for div generated wrapping the error message. Defaults to formError.

Use of this method is common when the user-interface requirements specify individual validation messages
per input field of a form, as in the following real-life example:

1 .form_field

2 .field_label

3 %span.required *

4 %label First Name

5 .textual

6 = form.text_field :first_name

7 = form.error_message_on :first_name

As in the example, the error_message_on helper is most commonly accessed via the form block variable of
form_for and its variants. When used via the form variable, you leave off the first argument (specifying the
object) since it’s implied.

11.1.1.2 error_messages_for(*params)

Returns a div tag containing all of the error messages for all of the objects held in instance variables identified
as parameters.

1 = form_for @person do |form|

2 = form.error_messages

3 .text-field

4 = form.label :name, "Name"

5 = form.text_field :name

All About Helpers 311

As in the example, the error_message_for helper is most commonly accessed via the form block variable of
form_for and its variants. When used via the form variable, it is called error_messages and you leave off the
first argument (specifying the object) since it’s implied.

This method was used by Rails scaffolding before version 3, but rarely in real production applications. The
Rails API documentation advises you to use this method’s implementation as inspiration to meet your own
requirements:

This is a prepackaged presentation of the errors with embedded strings and a certain HTML
structure. If what you need is significantly different from the default presentation, it makes plenty
of sense to access the object.errors instance yourself and set it up. View the source of this method
to see how easy it is.

We’ll go ahead and reproduce the source of the method here with the warning that you should not try to use
it as inspiration unless you have a good grasp of Ruby! On the other hand, if you have time to study the way
that this method is implemented, it will definitely teach you a lot about the way that Rails is implemented,
which is its own distinctive flavor of Ruby.

1 def error_messages_for(*params)

2 options = params.extract_options!.symbolize_keys

3

4 objects = Array.wrap(options.delete(:object) || params).map do |object|

5 object = instance_variable_get("@#{object}") unless object.

6 respond_to?(:to_model)

7 object = convert_to_model(object)

8

9 if object.class.respond_to?(:model_name)

10 options[:object_name] ||= object.class.model_name.human.downcase

11 end

12

13 object

14 end

15

16 objects.compact!

17 count = objects.inject(0) { |sum, object| sum + object.errors.count }

18

19 unless count.zero?

20 html = {}

21 [:id, :class].each do |key|

22 if options.include?(key)

23 value = options[key]

24 html[key] = value unless value.blank?

25 else

26 html[key] = 'error_explanation'

27 end

All About Helpers 312

28 end

29 options[:object_name] ||= params.first

30

31 I18n.with_options locale: options[:locale],

32 scope: [:activerecord, :errors, :template] do |locale|

33 header_message = if options.include?(:header_message)

34 options[:header_message]

35 else

36 locale.t :header, count: count,

37 model: options[:object_name].to_s.gsub('_', ' ')

38 end

39

40 message = options.include?(:message) ? options[:message] : locale.t(:body)

41

42 error_messages = objects.sum do |object|

43 object.errors.full_messages.map do |msg|

44 content_tag(:li, msg)

45 end

46 end.join.html_safe

47

48 contents = ''

49 contents << content_tag(options[:header_tag] ||

50 :h2, header_message) unless header_message.blank?

51 contents << content_tag(:p, message) unless message.blank?

52 contents << content_tag(:ul, error_messages)

53

54 content_tag(:div, contents.html_safe, html)

55 end

56 else

57 ''

58 end

59 end

Later on in the chapter we’ll talk extensively about writing your own helper methods.

11.1.2 Automatic Form Creation

The next couple of methods are used for automatic field creation. You can try using them too, but I suspect
that their usefulness is somewhat limited in real applications.

11.1.2.1 form(name, options)

Returns an entire form with input tags and everything for a named model object. Here are the code examples
given in the dynamic form API documentation, using a hypothetical Post object from a bulletin-board
application as an example:

All About Helpers 313

1 form("post")

2 # => <form action='/posts/create' method='post'>

3 # <p>

4 # <label for="post_title">Title</label>

5 # <input id="post_title" name="post[title]" size="30" type="text"

6 # value="Hello World" />

7 # </p>

8 # <p>

9 # <label for="post_body">Body</label>

10 # <textarea cols="40" id="post_body" name="post[body]"

11 # rows="20"></textarea>

12 # </p>

13 # <input name="commit" type="submit" value="Create" />

14 # </form>

Internally, the method calls record.persisted? to infer whether the action for the form should be create

or update. It is possible to explicitly specify the action of the form (and the value of the submit button along
with it) by using the :action option.

If you need the form to have its enctype set to multipart, useful for file uploads, set the options[:multipart]
to true.

You can also pass in an :input_block option, using Ruby’s Proc.new idiom to create a new anonymous code
block. The block you supply will be invoked for each content column of your model, and its return value will
be inserted into the form.

1 form("entry", action: "sign",

2 input_block: Proc.new { |record, column|

3 "#{column.human_name}: #{input(record, column.name)}
"

4 })

5 # => <form action="/entries/sign" method="post">

6 # Message:

7 # <input id="entry_message" name="entry[message]" size="30"

8 # type="text" />

9 # <input name="commit" type="submit" value="Sign" />

10 # </form>

That example’s builder block, as it is referred to in the dynamic_form API docs, uses the input helper method,
which is also part of this module, and is covered in the next section of this chapter.

Finally, it’s also possible to add additional content to the form by giving the call to form a block, as in the
following snippet:

All About Helpers 314

1 form("entry", action: "sign") do |form|

2 form << content_tag("b", "Department")

3 form << collection_select("department", "id", @departments, "id", "name")

4 end

The block is yielded a string accumulator (named form in the example), to which you append any additional
content that you want to appear between the main input fields and the submit tag.

11.1.2.2 input(name, method, options)

The appropriately named input method takes some identifying information, and automatically generates an
HTML input tag based on an attribute of an Active Record model. Going back to the Post example used in
the explanation of form, here is the code snippet given in the Rails API docs:

1 input("post", "title")

2 # => <input id="post_title" name="post[title]" size="30"

3 # type="text" value="Hello World" />

To quickly show you the types of input fields generated by this method, I’ll simply reproduce a portion of the
code from the module itself:

1 def to_tag(options = {})

2 case column_type

3 when :string

4 field_type = @method_name.include?("password") ? "password" : "text"

5 to_input_field_tag(field_type, options)

6 when :text

7 to_text_area_tag(options)

8 when :integer, :float, :decimal

9 to_input_field_tag("text", options)

10 when :date

11 to_date_select_tag(options)

12 when :datetime, :timestamp

13 to_datetime_select_tag(options)

14 when :time

15 to_time_select_tag(options)

16 when :boolean

17 to_boolean_select_tag(options).html_safe

18 end

19 end

11.1.3 Customizing the Way Validation Errors Are Highlighted

By default, when Rails marks a field in your form that failed a validation check, it does so by wrapping that
field in a div element, with the class name field_with_errors. This behavior is customizable, since it is
accomplished via a Proc object stored as a configuration property of the ActionView::Base class:

All About Helpers 315

1 module ActionView

2 class Base

3 cattr_accessor :field_error_proc

4 @@field_error_proc = Proc.new{ |html_tag, instance|

5 "<div class=\"field_with_errors\">#{html_tag}</div>".html_safe

6 }

7 end

8

9 ...

Armed with this knowledge, changing the validation error behavior is as simple as overriding Action View’s
field_error_proc attribute with your own custom Proc. I would suggest doing so in an initializer file.

In Listing 11.1, I changed the setting so that the input fields with validation errors are prefixed with a red ERR
message.

Listing 11.1: Custom validation error display

1 ActionView::Base.field_error_proc =

2 Proc.new do |html_tag,instance|

3 %(<div style="color:red">ERR</div>) + html_tag

4 end

It has been suggested by many people that it would have been a much better default solution to simply add a
field_with_errors CSS class to the input tag itself, instead of wrapping it with an extra div tag. Indeed, that
would have made many of our lives easier, since an extra div often breaks pixel-perfect layouts. However,
since html_tag is already constructed at the time when the field_error_proc is invoked, it is not trivial to
modify its contents.

11.2 AssetTagHelper

According to the Rails API docs, this module

Provides methods for generating HTML that links views to assets such as images, javascripts,
stylesheets, and feeds. These methods do not verify the assets exist before linking to them:

The AssetTagHelper module includes some methods that you will use on a daily basis during active Rails
development, particularly image_tag.

11.2.1 Head Helpers

Some of the helper methods in this module help you add content to the head element of your HTML document.

All About Helpers 316

11.2.1.1 auto_discovery_link_tag(type = :rss, url_options = {}, tag_options = {})

Returns a link tag that browsers and news readers can use to autodetect an RSS or ATOM feed. The type can
either be :rss (default) or :atom. Control the link options in url_for format using the url_options.

You can modify the link tag itself using the tag_options parameter:

:rel Specify the relation of this link; defaults to "alternate".

:type

Override MIME type (such as "application/atom+xml") that Rails would otherwise generate automat-
ically for you.

:title

Specify the title of the link; defaults to a capitalized type.

Here are examples of usages of auto_discovery_link_tag as shown in the Rails API docs:

1 auto_discovery_link_tag

2 # => <link rel="alternate" type="application/rss+xml" title="RSS"

3 # href="http://www.currenthost.com/controller/action" />

4

5 auto_discovery_link_tag(:atom)

6 # => <link rel="alternate" type="application/atom+xml" title="ATOM"

7 # href="http://www.currenthost.com/controller/action" />

8

9 auto_discovery_link_tag(:rss, {action: "feed"})

10 # => <link rel="alternate" type="application/rss+xml" title="RSS"

11 # href="http://www.currenthost.com/controller/feed" />

12

13 auto_discovery_link_tag(:rss, {action: "feed"}, {title: "My RSS"})

14 # => <link rel="alternate" type="application/rss+xml" title="My RSS"

15 # href="http://www.currenthost.com/controller/feed" />

11.2.1.2 favicon_link_tag(source='favicon.ico', options={})

Returns a link loading a favicon file. By default, Rails will set the icon to favicon.ico. You may specify a
different file in the first argument.

The favicon_link_tag helper accepts an optional options hash that accepts the following:

:rel Specify the relation of this link; defaults to ‘shortcut icon’

:type

Override the auto-generated mime type; defaults to ‘image/vnd.microsoft.icon’

All About Helpers 317

1 favicon_link_tag '/myicon.ico'

2 # => <link href="/assets/favicon.ico" rel="shortcut icon"

3 # type="image/vnd.microsoft.icon" />

11.2.1.3 javascript_include_tag(*sources)

Returns a script tag for each of the sources provided. You can pass in the filename (the .js extension is
optional) of JavaScript files that exist in your app/assets/javascripts directory for inclusion into the current
page, or you can pass their full path, relative to your document root.

1 javascript_include_tag "xmlhr"

2 # => <script src="/assets/xmlhr.js?1284139606"></script>

3

4 javascript_include_tag "common", "/elsewhere/cools"

5 # => <script src="/assets/common.js?1284139606"></script>

6 # <script src="/elsewhere/cools.js?1423139606"></script>

When the Asset Pipeline is enabled, passing the name of themanifest file as a source, will include all JavaScript
or CoffeeScript files that are specified within the manifest.

javascript_include_tag "application"

Note
By default, not including the .js extension to a JavaScript source will result in .js being suffixed to
the filename. However, this does not play well with JavaScript templating languages, as they have
extensions of their own. To rectify this, as of Rails 4.1, setting the option :extname to false will
result in the javascript_include_tag helper to not append .js to the supplied source.

javascript_include_tag 'templates.jst', extname: false

=> <script src="/javascripts/templates.jst"></script>

11.2.1.4 javascript_path(source, options = {})

Computes the path to a javascript asset in the app/assets/javascripts directory. If the source filename has
no extension, .jswill be appended Full paths from the document root will be passed through. Used internally
by javascript_include_tag to build the script path.

11.2.1.5 stylesheet_link_tag(*sources)

Returns a stylesheet link tag for the sources specified as arguments. If you don’t specify an extension, .css
will be appended automatically. Just like other helper methods that take a variable number of arguments plus
options, you can pass a hash of options as the last argument and they will be added as attributes to the tag.

All About Helpers 318

1 stylesheet_link_tag "style"

2 # => <link href="/stylesheets/style.css" media="screen"

3 # rel="Stylesheet" type="text/css" />

4

5 stylesheet_link_tag "style", media: "all"

6 # => <link href="/stylesheets/style.css" media="all"

7 # rel="Stylesheet" type="text/css" />

8

9 stylesheet_link_tag "random.styles", "/css/stylish"

10 # => <link href="/stylesheets/random.styles" media="screen"

11 # rel="Stylesheet" type="text/css" />

12 # <link href="/css/stylish.css" media="screen"

13 # rel="Stylesheet" type="text/css" />

11.2.1.6 stylesheet_path(source)

Computes the path to a stylesheet asset in the app/assets/stylesheets directory. If the source filename
has no extension, .css will be appended. Full paths from the document root will be passed through. Used
internally by stylesheet_link_tag to build the stylesheet path.

11.2.2 Asset Helpers

This module also contains a series of helper methods that generate asset-related markup. It’s important to
generate asset tags dynamically, because often assets are either packaged together or served up from a different
server source than your regular content. Asset helper methods also timestamp your asset source urls to prevent
browser caching problems.

11.2.2.1 audio_path(source)

Computes the path to an audio asset in the public/audios directory, which you would have to add yourself
to your Rails project since it’s not generated by default. Full paths from the document root will be passed
through. Used internally by audio_tag to build the audio path.

11.2.2.2 audio_tag(source, options = {})

Returns an HTML 5 audio tag based on the source argument.

All About Helpers 319

1 audio_tag("sound")

2 # => <audio src="/audios/sound" />

3

4 audio_tag("sound.wav")

5 # => <audio src="/audios/sound.wav" />

6

7 audio_tag("sound.wav", autoplay: true, controls: true)

8 # => <audio autoplay="autoplay" controls="controls" src="/audios/sound.wav" />

11.2.2.3 font_path(source, options = {})

Computes the path to a font asset in the app/assets/fonts directory, which you would have to add yourself
to your Rails project since it’s not generated by default. Full paths from the document root (beginning with a
“/”) will be passed through.

1 font_path("font.ttf") # => /assets/font.ttf

2 font_path("dir/font.ttf") # => /assets/dir/font.ttf

3 font_path("/dir/font.ttf") # => /dir/font.ttf

11.2.2.4 image_path(source)

Computes the path to an image asset in the app/assets/images directory. Full paths from the document root
(beginning with a “/”) will be passed through. This method is used internally by image_tag to build the image
path.

1 image_path("edit.png") # => /assets/edit.png

2 image_path("icons/edit.png") # => /images/icons/edit.png

3 image_path("/icons/edit.png") # => /icons/edit.png

Courtenay says…
The image_tagmethod makes use of the image_pathmethod that we cover later in the chapter. This
helpful method determines the path to use in the tag. You can call a controller “image” and have it
work as a resource, despite the seemingly conflicting name, because for its internal use, ActionView
aliases the method to path_to_image.

11.2.2.5 image_tag(source, options = {})

Returns an img tag for use in a template. The source parameter can be a full path or a file that exists in your
images directory. You can add additional arbitrary attributes to the img tag using the options parameter. The
following two options are treated specially:

:alt If no alternate text is given, the filename part of the source is used, after being capitalized and stripping
off the extension.

All About Helpers 320

:size

Supplied as widthxheight so "30x45" becomes the attributes width="30" and height="45". The :size
option will fail silently if the value is not in the correct format.

1 image_tag("icon.png")

2 # =>

3

4 image_tag("icon.png", size: "16x10", alt: "Edit Entry")

5 # =>

6

7 image_tag("/photos/dog.jpg", class: 'icon')

8 # =>

11.2.2.6 video_path

Computes the path to a video asset in the public/videos directory, which you would have to add yourself
to your Rails project since it’s not generated by default. Full paths from the document root will be passed
through. Used internally by video_tag to build the video src path.

11.2.2.7 video_tag(sources, options = {})

Returns an HTML 5 video tag for the sources. If sources is a string, a single video tag will be returned. If
sources is an array, a video tag with nested source tags for each source will be returned. The sources can
be full paths or files that exists in your public videos directory.

You can add normal HTML video element attributes using the options hash. The options supports two
additional keys for convenience and conformance:

:poster

Set an image (like a screenshot) to be shown before the video loads. The path is calculated using image_-
path

:size

Supplied as widthxheight in the same manner as image_tag. The :size option can also accept a
stringified number, which sets both width and height to the supplied value.

All About Helpers 321

1 video_tag("trailer")

2 # => <video src="/videos/trailer" />

3

4 video_tag("trailer.ogg")

5 # => <video src="/videos/trailer.ogg" />

6

7 video_tag("trail.ogg", controls: true, autobuffer: true)

8 # => <video autobuffer="autobuffer" controls="controls"

9 # src="/videos/trail.ogg" />

10

11 video_tag("trail.m4v", size: "16x10", poster: "screenshot.png")

12 # => <video src="/videos/trailer.m4v" width="16" height="10"

13 # poster="/images/screenshot.png" />

14

15 video_tag(["trailer.ogg", "trailer.flv"])

16 # => <video>

17 # <source src="trailer.ogg"/>

18 # <source src="trailer.flv"/>

19 # </video>

11.2.3 Using Asset Hosts

By default, Rails links to assets on the current host in the public folder, but you can direct Rails to link to
assets from a dedicated asset server by setting ActionController::Base.asset_host in a configuration file,
typically in config/environments/production.rb so that it doesn’t affect your development environment.
For example, you’d define assets.example.com to be your asset host this way:

config.action_controller.asset_host = "assets.example.com"

The helpers we’ve covered take that into account when generating their markup:

1 image_tag("rails.png")

2 # => <img alt="Rails"

3 # src="http://assets.example.com/images/rails.png?1230601161" />

4

5 stylesheet_link_tag("application")

6 # => <link

7 # href="http://assets.example.com/stylesheets/application.css?1232285206"

8 # media="screen" rel="stylesheet" type="text/css" />

Browsers typically open at most two simultaneous connections to a single host, which means your assets
often have to wait for other assets to finish downloading. You can alleviate this by using a %d wildcard in
the asset_host. For example, "assets%d.example.com". If that wildcard is present Rails distributes asset
requests among the corresponding four hosts “assets0.example.com”, …, “assets3.example.com”. With this
trick browsers will open eight simultaneous connections rather than two.

All About Helpers 322

1 image_tag("rails.png")

2 # => <img alt="Rails"

3 # src="http://assets0.example.com/images/rails.png?1230601161" />

4

5 stylesheet_link_tag("application")

6 # => <link

7 # href="http://assets2.example.com/stylesheets/application.css?1232285206"

8 # media="screen" rel="stylesheet" type="text/css" />

To do this, you can either setup four actual hosts, or you can use wildcard DNS to CNAME the wildcard
to a single asset host. You can read more about setting up your DNS CNAME records from your hosting
provider. Note that this technique is purely a browser performance optimization and is not meant for server
load balancing. ¹

Alternatively, you can exert more control over the asset host by setting asset_host to a proc like

config.action_controller.asset_host = Proc.new { |source|

"http://assets#{rand(2) + 1}.example.com"

}

The example generates http://assets1.example.com and http://assets2.example.com randomly. This option is
useful for example if you need fewer/more than four hosts, custom host names, etc. As you see the proc takes
a source parameter. That’s a string with the absolute path of the asset with any extensions and timestamps
in place, for example /images/rails.png?1230601161.

1 config.action_controller.asset_host = Proc.new { |source|

2 if source.starts_with?('/images')

3 "http://images.example.com"

4 else

5 "http://assets.example.com"

6 end

7 }

8

9 image_tag("rails.png")

10 # => <img alt="Rails"

11 src="http://images.example.com/images/rails.png?1230601161" />

12

13 stylesheet_link_tag("application")

14 # => <link href="http://assets.example.com/stylesheets/application.css?1232285206"

15 media="screen" rel="stylesheet" type="text/css" />

Alternatively you may ask for a second parameter request, which is particularly useful for serving assets
from an SSL-protected page. The example below disables asset hosting for HTTPS connections, while still
sending assets for plain HTTP requests from asset hosts. If you don’t have SSL certificates for each of the
asset hosts this technique allows you to avoid warnings in the client about mixed media.

¹See http://www.die.net/musings/page_load_time/ for background information.

http://www.die.net/musings/page_load_time/

All About Helpers 323

1 ActionController::Base.asset_host = Proc.new { |source, request|

2 if request.ssl?

3 "#{request.protocol}#{request.host_with_port}"

4 else

5 "#{request.protocol}assets.example.com"

6 end

7 }

For easier testing and reuse, you can also implement a custom asset host object that responds to call and
takes either one or two parameters just like the proc.

config.action_controller.asset_host = AssetHostingWithMinimumSsl.new(

"http://asset%d.example.com", "https://asset1.example.com"

)

11.2.4 For Plugins Only

A handful of class methods in AssetTagHelper relate to configuration and are intended for use in plugins.

• register_javascript_expansion

• register_stylesheet_expansion

11.3 AtomFeedHelper

Provides an atom_feed helper to aid in generating Atom feeds in Builder templates.

1 atom_feed do |feed|

2 feed.title("My great blog!")

3 feed.updated(@posts.first.created_at)

4

5 @posts.each do |post|

6 feed.entry(post) do |entry|

7 entry.title(post.title)

8 entry.content(post.body, type: 'html')

9

10 entry.author do |author|

11 author.name("DHH")

12 end

13 end

14 end

15 end

The options for atom_feed are:

All About Helpers 324

:language

Defaults to "en-US".

:root_url

The HTML alternative that this feed is doubling for. Defaults to "/" on the current host.

:url The URL for this feed. Defaults to the current URL.

:id The id for this feed. Defaults to tag:#{request.host},#{options}:#{request.fullpath.split(".")}

:schema_date

The date at which the tag scheme for the feed was first used. A good default is the year you created the
feed. See http://feedvalidator.org/docs/error/InvalidTAG.html for more information. If not specified,
2005 is used (as an “I don’t care” value).

:instruct

Hash of XML processing instructions in the form {target => {attribute => value, ...}} or {target

=> [{attribute => value, ...},]}

Other namespaces can be added to the root element:

1 atom_feed(

2 'xmlns:app' => 'http://www.w3.org/2007/app',

3 'xmlns:openSearch' => 'http://a9.com/-/spec/opensearch/1.1/'

4) do |feed|

5 feed.title("My great blog!")

6 feed.updated((@posts.first.created_at))

7 feed.tag!(openSearch:totalResults, 10)

8

9 @posts.each do |post|

10 feed.entry(post) do |entry|

11 entry.title(post.title)

12 entry.content(post.body, type: 'html')

13 entry.tag!('app:edited', Time.now)

14

15 entry.author do |author|

16 author.name("DHH")

17 end

18 end

19 end

20 end

The Atom spec defines five elements that may directly contain xhtml content if type: 'xhtml' is specified
as an attribute:

• content

http://feedvalidator.org/docs/error/InvalidTAG.html

All About Helpers 325

• rights

• title

• subtitle

• summary

If any of these elements contain xhtml content, this helper will take care of the needed enclosing div and an
xhtml namespace declaration.

1 entry.summary type: 'xhtml' do |xhtml|

2 xhtml.p pluralize(order.line_items.count, "line item")

3 xhtml.p "Shipped to #{order.address}"

4 xhtml.p "Paid by #{order.pay_type}"

5 end

The atom_feed method yields an AtomFeedBuilder instance. Nested elements also yield AtomBuilder

instances.

11.4 CacheHelper

This module contains helper methods related to caching fragments of a view. Fragment caching is useful
when certain elements of an action change frequently or depend on complicated state, while other parts
rarely change or can be shared among multiple parties. The boundaries of a fragment to be cached are defined
within a view template using the cache helper method. The topic was covered in detail in the caching section
of Chapter 17, “Caching and Performance”.

11.5 CaptureHelper

One of the great features of Rails views is that you are not limited to rendering a single flow of content. Along
the way, you can define blocks of template code that should be inserted into other parts of the page during
rendering using yield. The technique is accomplished via a pair of methods from the CaptureHelpermodule.

11.5.0.1 capture(&block)

The capture method lets you capture part of a template’s output (inside a block) and assign it to an instance
variable. The value of that variable can subsequently be used anywhere else on the template.

1 - message_html = capture do

2 %div

3 This is a message

I don’t think that the capture method is that useful on its own in a template. It’s a lot more useful when you
use it in your own custom helper methods. It gives you the ability to write your own helpers that grab template
content wrapped using a block. We cover that technique later on in this chapter in the section “Writing Your
Own Helpers.”

All About Helpers 326

11.5.0.2 content_for(name, &block)

We mentioned the content_for method in Chapter 10, “Action View” in the section “Yielding Content.” It
allows you to designate a part of your template as content for another part of the page. It works similarly
to its sister method capture (in fact, it uses capture itself). Instead of returning the contents of the block
provided to it, it stores the content to be retrieved using yield elsewhere in the template (or most commonly,
in the surrounding layout).

A common example is to insert sidebar content into a layout. In the following example, the link will not appear
in the flow of the view template. It will appear elsewhere in the template, wherever yield :navigation_-

sidebar appears.

1 - content_for :navigation_sidebar do

2 = link_to 'Detail Page', item_detail_path(item)

11.5.0.3 content_for?(name)

Using this method, you can check whether the template will ultimately yield any content under a particular
name using the content_for helper method, so that you can make layout decisions earlier in the template.
The following example clearly illustrates usage of this method, by altering the CSS class of the body element
dynamically:

1 %body{class: content_for?(:right_col) ? 'one-column' : 'two-column'}

2 = yield

3 = yield :right_col

11.5.0.4 provide(name, content = nil, &block)

The provide helper method works the same way as content_for, except for when used with streaming.When
streaming, provide flushes the current buffer straight back to the layout and stops looking for more contents.

If you want to concatenate multiple times to the same buffer when rendering a given template, you should
use content_for instead.

11.6 CsrfHelper

The CsrfHelpermodule only contains one method, named csrf_meta_tags. Including it in the <head> section
of your template will output meta tags “csrf-param” and “csrf-token” with the name of the cross-site request
forgery protection parameter and token, respectively.

1 %head

2 = csrf_meta_tags

The meta tags “csrf-param” and “csrf-token” are used by Rails to generate dynamic forms that implement
non-remote links with :method.

All About Helpers 327

11.7 DateHelper

The DateHelpermodule is used primarily to create HTML select tags for different kinds of calendar data. It
also features one of the longest-named helper methods, a beast peculiar to Rails, called distance_of_time_-

in_words_to_now.

..

Lark says…
I guess that helper method name was too much of a mouthful, since at some point it was aliased to time_-

ago_in_words.

11.7.1 The Date and Time Selection Helpers

The following methods help you create form field input tags dealing with date and time data. All of them are
prepared for multi-parameter assignment to an Active Record object. That’s a fancy way of saying that even
though they appear in the HTML form as separate input fields, when they are posted back to the server, it is
understood that they refer to a single attribute of the model. That’s some Rails magic for you!

11.7.1.1 date_select(object_name, method, options = {}, html_options = {})

Returns a matched set of three select tags (one each for year, month, and day) preselected for accessing
a specified date-based attribute (identified by the method parameter) on an object assigned to the template
(identified by object_name).

It’s possible to tailor the selects through the options hash, which accepts all the keys that each of the individual
select builders do (like :use_month_numbers for select_month).

The date_selectmethod also takes :discard_year, :discard_month, and :discard_day options, which drop
the corresponding select tag from the set of three. Common sense dictates that discarding the month select
will also automatically discard the day select. If the day is omitted, but not the month, Rails will assume that
the day should be the first of the month.

It’s also possible to explicitly set the order of the tags using the :order option with an array of symbols :year,
:month, and :day in the desired order. Symbols may be omitted and the respective select tag is not included.

Passing disabled: true as part of the options will make elements inaccessible for change (see Listing 11.2).

All About Helpers 328

Listing 11.2: Examples of date_select

1 date_select("post", "written_on")

2

3 date_select("post", "written_on", start_year: 1995,

4 use_month_numbers: true,

5 discard_day: true,

6 include_blank: true)

7

8 date_select("post", "written_on", order: [:day, :month, :year])

9

10 date_select("user", "birthday", order: [:month, :day])

If anything is passed in the html_options hash it will be applied to every select tag in the set.

11.7.1.2 datetime_select(object_name, method, options = {}, html_options = {})

Works exactly like date_select, except for the addition of hour and minute select tags. Seconds may be
added with the option :include_seconds. Along with the addition of time information come additional
discarding options: :discard_hour, :discard_minute, and :discard_seconds.

Setting the ampm option to true return hours in the AM/PM format.

1 datetime_select("post", "written_on")

2

3 datetime_select("post", "written_on", ampm: true)

11.7.1.3 time_select(object_name, method, options = {}, html_options = {})

Returns a set of select tags (one for hour, minute, and optionally second) pre-selected for accessing a specified
time-based attribute (identified by method) on an object assigned to the template (identified by object_name).
You can include the seconds by setting the :include_seconds option to true.

As with datetime_select, setting ampm: true will result in hours displayed in the AM/PM format.

1 time_select("post", "sunrise")

2

3 time_select("post", "written_on", include_seconds: true)

4

5 time_select("game", "written_on", ampm: true)

11.7.2 The Individual Date and Time Select Helpers

Sometimes you need just a particular element of a date or time, and Rails obliges you with a comprehensive
set of individual date and time select helpers. In contrast to the date and time helpers that we just looked
at, the following helpers are not bound to an instance variable on the page. Instead, they all take a date or
time Ruby object as their first parameter. (All of these methods have a set of common options, covered in the
following subsection.)

All About Helpers 329

11.7.2.1 select_date(date = Date.current, options = {}, html_options = {})

Returns a set of select tags (one each for year, month, and day) pre-selected with the date provided (or the
current date). It’s possible to explicitly set the order of the tags using the :order option with an array of
symbols :year, :month, and :day in the desired order.

select_date(started_at, order: [:year, :month, :day])

11.7.2.2 select_datetime(datetime = Time.current, options = {}, html_options = {})

Returns a set of select tags (one each for year, month, day, hour, and minute) pre-selected with the datetime.
Optionally, setting the include_seconds: true option adds a seconds field. It’s also possible to explicitly
set the order of the tags using the :order option with an array of symbols :year, :month, and :day, :hour,
:minute, and :seconds in the desired order. You can also add character values for the :date_separator and
:time_separator options to control visual display of the elements (they default to "/" and ":").

11.7.2.3 select_day(date, options = {}, html_options = {})

Returns a select tag with options for each of the days 1 through 31 with the current day selected. The date
can also be substituted for a day value ranging from 1 to 31. If displaying days with a leading zero is your
preference, setting the option use_two_digit_numbers to true will accomplish this.

1 select_day(started_at)

2

3 select_day(10)

4

5 select_day(5, use_two_digit_numbers: true)

By default, the field name defaults to day, but can be overridden using the :field_name option.

11.7.2.4 select_hour(datetime, options = {}, html_options = {})

Returns a select tag with options for each of the hours 0 through 23 with the current hour selected. The
datetime parameter can be substituted with an hour number from 0 to 23. Setting the ampm option to true
will result in hours displayed in the AM/PM format. By default, the field name defaults to hour, but can be
overridden using the :field_name option.

11.7.2.5 select_minute(datetime, options = {}, html_options = {})

Returns a select tag with options for each of the minutes 0 through 59 with the current minute selected. Also
can return a select tag with options by minute_step from 0 through 59 with the 00 minute selected. The
datetime parameter can be substituted by a seconds value of 0 to 59. By default, the field name defaults to
minute, but can be overridden using the :field_name option.

All About Helpers 330

11.7.2.6 select_month(date, options = {}, html_options = {})

Returns a select tag with options for each of the months January through December with the current month
selected. By default, the month names are presented as user options in the drop-down selection and the month
numbers (1 through 12) are used as values submitted to the server.

It’s also possible to use month numbers for the presentation instead of names, by setting use_month_numbers:
true. To display month numbers with a leading zero, set option :use_two_digit_numbers to true. If you
happen to want both numbers and names, set add_month_numbers: true. If you would prefer to show month
names as abbreviations, set the :use_short_month option to true. Finally, if you want to use your own month
names, set the value of the :use_month_names key in your options to an array of 12 month names.

1 # Will use keys like "January", "March"

2 select_month(Date.today)

3

4 # Will use keys like "1", "3"

5 select_month(Date.today, use_month_numbers: true)

6

7 # Will use keys like "1 - January", "3 - March"

8 select_month(Date.today, add_month_numbers: true)

9

10 # Will use keys like "Jan", "Mar"

11 select_month(Date.today, use_short_month: true)

12

13 # Will use keys like "Januar", "Marts"

14 select_month(Date.today, use_month_names: %w(Januar Februar

15 Marts ...))

By default, the field name defaults to month, but can be overridden using the :field_name option.

11.7.2.7 select_second(datetime, options = {}, html_options = {})

Returns a select tag with options for each of the seconds 0 through 59 with the current second selected. The
datetime parameter can either be a DateTime object or a second given as a number. By default, the field name
defaults to second, but can be overridden using the :field_name option.

11.7.2.8 select_time(datetime = Time.current, options = {}, html_options = {})

Returns a set of HTML select tags (one for hour and minute). You can set the :time_separator option to
format the output. It’s possible to take an input for sections by setting option :include_seconds to true.

select_time(some_time, time_separator: ':', include_seconds: true)

All About Helpers 331

11.7.2.9 select_year(date, options = {}, html_options = {})

Returns a select tag with options for each of the 5 years on each side of the current year, which is selected.
The five-year radius can be changed using the :start_year and :end_year options. Both ascending and
descending year lists are supported by making :start_year less than or greater than :end_year. The date
parameter can either be a Date object or a year given as a number.

1 # ascending year values

2 select_year(Date.today, start_year: 1992, end_year: 2007)

3

4 # descending year values

5 select_year(Date.today, start_year: 2005, end_year: 1900)

By default, the field name defaults to year, but can be overridden using the :field_name option.

11.7.3 Common Options for Date Selection Helpers

All of the select-type methods share a number of common options that are as follows:

:discard_type

Set to true if you want to discard the type part of the select name. If set to true, the select_month

method would use simply date (which can be overwritten using :prefix) instead of date[month].

:field_name: Allows you to override the natural name of a select tag (from day, minute, and so on).

:include_blank

Set to true if it should be possible to set an empty date.

:prefix

Overwrites the default prefix of date used for the names of the select tags. Specifying birthdaywould
result in a name of birthday[month] instead of date[month]when passed to the select_monthmethod.

:use_hidden

Set to true to embed the value of the datetime into the page as an HTML hidden input, instead of a
select tag.

:disabled

Set to true if you want show the select fields as disabled.

:prompt

Set to true (for a generic prompt), a prompt string or a hash of prompt strings for :year, :month, :day,
:hour, :minute and :second.

All About Helpers 332

11.7.4 distance_in_timeMethods with Complex Descriptive Names

Some distance_in_time methods have really long, complex descriptive names that nobody can ever
remember without looking them up. Well, at least for the first dozen times or so you might not remember.

I find the following methods to be a perfect example of the Rails way when it comes to API design. Instead of
going with a shorter and necessarily more cryptic alternative, the framework author decided to keep the name
long and descriptive. It’s one of those cases where a nonprogrammer can look at your code and understand
what it’s doing. Well, probably.

I also find these methods remarkable in that they are part of why people sometimes consider Rails part
of the Web 2.0 phenomenon. What other web framework would include ways to humanize the display of
timestamps?

11.7.4.1 distance_of_time_in_words(from_time, to_time = 0, include_seconds_or_options = {},

options = {}))

Reports the approximate distance in time between two Time, DateTime, or Date objects or integers as seconds.
Set the include_seconds parameter to true if you want more detailed approximations when the distance is
less than 1 minute. The easiest way to show what this method does is via examples:

>> from_time = Time.current

>> helper.distance_of_time_in_words(from_time, from_time + 50.minutes)

=> about 1 hour

>> helper.distance_of_time_in_words(from_time, from_time + 15.seconds)

=> less than a minute

>> helper.distance_of_time_in_words(from_time, from_time + 15.seconds,

include_seconds: true)

=> less than 20 seconds

>> helper.distance_of_time_in_words(from_time, 3.years.from_now)

=> about 3 years

The Rails API docs ask you to note that Rails calculates 1 year as 365.25 days.

11.7.4.2 distance_of_time_in_words_to_now(from_time, include_seconds_or_options = {})

Works exactly like distance_of_time_in_words except that the to_time is hard-coded to the current time.
Usually invoked on created_at or updated_at attributes of your model, followed by the string ago in your
template, as in the following example:

All About Helpers 333

1 %strong= comment.user.name

2 %br

3 %small= "#{distance_of_time_in_words_to_now(review.created_at)} ago"

Note, this method is aliased to time_ago_in_words for those who prefer shorter method names.

11.7.5 time_tag(date_or_time, *args, &block)

Introduced in Rails 3.1, the time_tag returns an HTML5 time element for a given date or time. Using the
semantic time_tag helper ensures that your date or times within your markup are in a machine-readable
format. Setting the option pubdate to true will add the attribute to the tag, indicating that the date or time is
a publishing date. The following examples show the output one can expect when using it:

1 time_tag(Date.current)

2 # => <time datetime="2013-08-13">August 13, 2013</time>

3

4 time_tag(Time.current)

5 # => <time datetime="2013-08-13T14:58:29Z">August 13, 2013 14:58</time>

6

7 time_tag(Time.current, pubdate: true)

8 # => <time datetime="2013-08-13T15:02:56Z" pubdate="pubdate">August 13, 2013 15:02</time>

9

10 = time_tag(Date.current) do

11 %strong Once upon a time

12 # => <time datetime="2013-08-13">Once upon a time</time>

11.8 DebugHelper

The DebugHelper module only contains one method, named debug. Output it in your template, passing it an
object that you want dumped to YAML and displayed in the browser inside PRE tags. Useful for debugging
during development, but not much else.

11.9 FormHelper

The FormHelper module provides a set of methods for working with HTML forms, especially as they relate
to Active Record model objects assigned to the template. Its methods correspond to each type of HTML input
fields (such as text, password, select, and so on) available. When the form is submitted, the value of the input
fields are bundled into the params that is passed to the controller.

There are two types of form helper methods. The types found in this module are meant to work specifically
with Active Record model attributes, and the similarly named versions in the FormTagHelpermodule are not.

Note
The form helper methods in this section can also be used with non Active Record models, as long
as the model passes the Active Model Lint tests found in module ActiveModel::Lint::Tests. The
easiest way to do this is to include the module mixin ActiveModel::Model to your class.

All About Helpers 334

11.9.1 Creating Forms for Models

The core method of this helper is called form_for, and we covered it to some extent in Chapter 3, “REST,
Resources, and Rails”. The helper method yields a form object, on which you can invoke input helper methods,
omitting their first argument. Usage of form_for leads to succinct form code:

1 = form_for offer do |f|

2 = f.label :version, 'Version'

3 = f.text_field :version

4 %br

5 = f.label :author, 'Author'

6 = f.text_field :author

The form_for block argument is a form builder object that carries the model. Thus, the idea is that:

= f.text_field :first_name

gets expanded to

= text_field :person, :first_name

If you want the resulting params hash posted to your controller to be named based on something other than
the class name of the object you pass to form_for, you can pass an arbitrary symbol to the :as option:

= form_for person, as: :client do |f|

In that case, the following call to text_field

= f.text_field :first_name

would get expanded to

= text_field :client, :first_name, object: person

11.9.1.1 form_for Options

In any of its variants, the rightmost argument to form_for is an optional hash of options:

:url The URL the form is submitted to. It takes the same fields you pass to url_for or link_to. In particular
you may pass here a named route directly as well. Defaults to the current action.

:namespace

A namespace that will be prefixed with an underscore on the generated HTML id of the form.

:html

Optional HTML attributes for the form tag.

:builder

Optional form builder class (instead of ActionView::Helpers::FormBuilder)

All About Helpers 335

11.9.1.2 Resource-oriented Style

The preferred way to use form_for is to rely on automated resource identification, which will use the
conventions and named routes of that approach, instead of manually configuring the :url option.

For example, if post is an existing record to be edited, then the resource-oriented style:

= form_for post do |f|

is equivalent to

= form_for post, as: :post, url: post_path(post),

method: :patch, html: { class: "edit_post",

id: "edit_post_45" } do |f|

The form_for method also recognizes new records, by calling new? on the object you pass to it.

= form_for(Post.new) do |f|

expands to

= form_for post, as: :post, url: posts_path, html: { class: "new_post",

id: "new_post" } do |f|

The individual conventions can be overridden by supplying an object argument plus :url, :method, and/or
:html options.

= form_for(post, url: super_post_path(post)) do |f|

You can create forms with namespaced routes by passing an array as the first argument, as in the following
example, which would map to a admin_post_url:

= form_for([:admin, post]) do |f|

The example below is the equivalent (old-school) version of form_tag, which doesn’t use a yielded form object
and explicitly names the object being used in the input fields:

All About Helpers 336

1 = form_tag people_path do

2 .field

3 = label :person, :first_name

4 = text_field :person, :first_name

5 .field

6 = label :person, :last_name

7 = text_field :person, :last_name

8 .buttons

9 = submit_tag 'Create'

The first version has slightly less repetition (remember your DRY principle) and is almost always going to be
more convenient as long as you’re rendering Active Record objects.

11.9.1.3 Variables Are Optional

If you explicitly specify the object name parameter for input fields rather than letting them be supplied by the
form, keep in mind that it doesn’t have to match a live object instance in scope for the template. Rails won’t
complain if the object is not there. It will simply put blank values in the resulting form.

11.9.1.4 Rails-Generated Form Conventions

The HTML generated by the form_for invocations in the preceding example is characteristic of Rails forms,
and follows specific naming conventions.

In case you’re wondering, the authenticity_token hidden field with gibberish up near the top of the form
has to do with protection against malicious Cross-Site Request Forgery (CSRF) attacks.

1 <form accept-charset="UTF-8" action="/people" method="post">

2 <div style="margin:0;padding:0;display:inline">

3 <input name="utf8" type="hidden" value="✓" />

4 <input name="authenticity_token" type="hidden"

5 value="afl+6u3J/2meoHtve69q+tD9gPc3/QUsHCqPh85Z4WU=" /></div>

6 <div class='field'>

7 <label for="person_first_name">First name</label>

8 <input id="person_first_name" name="person[first_name]" type="text" />

9 </div>

10 <div class='field'>

11 <label for="person_last_name">Last name</label>

12 <input id="person_last_name" name="person[last_name]" type="text" />

13 </div>

14 <div class='buttons'>

15 <input name="commit" type="submit" value="Create" />

16 </div>

17 </form>

When this form is submitted, the params hash will look like the following example (using the format reflected
in your development log for every request):

All About Helpers 337

Parameters: {"utf8"=>"✓",

"authenticity_token"=>"afl+6u3J/2meoHtve69q+tD9gPc3/QUsHCqPh85Z4WU=",

"person"=>{"first_name"=>"William", "last_name"=>"Smith"},

"commit"=>"Create"}

As you can see, the params hash has a nested "person" value, which is accessed using params[:person] in
the controller. That’s pretty fundamental Rails knowledge, and I’d be surprised if you didn’t know it already.
I promise we won’t rehash much more basic knowledge after the following section.

11.9.1.5 Displaying Existing Values

If you were editing an existing instance of Person, that object’s attribute values would have been filled into
the form. That’s also pretty fundamental Rails knowledge. What about if you want to edit a new model object
instance, pre-populated with certain values? Do you have to pass the values as options to the input helper
methods? No. Since the form helpers display the values of the model’s attributes, it would simply be a matter
of initializing the object with the desired values in the controller, as follows:

1 # Using the gem decent exposure

2 expose(:person) do

3 if person_id = (params[:person_id] || params[:id])

4 Person.find(person_id)

5 else

6 # Set default values that you want to appear in the form

7 Person.new(first_name: 'First', last_name: 'Last')

8 end

9 end

Since you’re only using new, no record is persisted to the database, and your default values magically appear
in the input fields.

11.9.2 How Form Helpers Get Their Values

A rather important lesson to learn about Rails form helper methods is that the value they display comes
directly from the database prior tomeddling by the developer. Unless you know what you’re doing, you may
get some unexpected results if you try to override the values to be displayed in a form.

Let’s illustrate with a simple LineItemmodel, which has a decimal rate attribute (by merits of a rate column
in its database table). We’ll override its implicit rate accessor with one of our own:

All About Helpers 338

1 class LineItem < ActiveRecord::Base

2 def rate

3 "A RATE"

4 end

5 end

In normal situations, the overridden accessor is hiding access to the real rate attribute, as we can illustrate
using the console.

>> li = LineItem.new

=> #<LineItem ...>

>> li.rate

=> "A RATE"

However, suppose you were to compose a form to edit line items using form helpers:

1 = form_for line_item do |f|

2 = f.text_field :rate

You would find that it works normally, as if that overridden rate accessor doesn’t exist. The fact is that
Rails form helpers use special methods named attribute_before_type_cast (which are covered in Chapter
5, “Working With Active Record”, “Working with Active Record”). The preceding example would use the
method rate_before_type_cast, and bypass the overriding method we defined.

11.9.3 Integrating Additional Objects in One Form

The fields_for helper method creates a scope around a specific model object like form_for, but doesn’t
create the form tags themselves. Neither does it have an actual HTML representation as a div or fieldset.
The fields_for method is suitable for specifying additional model objects in the same form, particularly
associations of the main object being represented in the form.

11.9.3.1 Generic Examples

The following simple example represents a person and its associated permissions.

All About Helpers 339

1 = form_for person do |f| %>

2 First name:

3 = f.text_field :first_name

4 Last name:

5 = f.text_field :last_name

6 .permissions

7 = fields_for person.permission do |permission_fields|

8 Admin?:

9 = permission_fields.check_box :admin

11.9.3.2 Nested Attributes Examples

When the object belonging to the current scope has a nested attribute writer for a certain attribute, fields_for
will yield a new scope for that attribute. This allows you to create forms that set or change the attributes of a
parent object and its associations in one go.

Nested attribute writers are normal setter methods named after an association. The most common way of
defining these writers is either by declaring accepts_nested_attributes_for in a model definition or by
defining a method with the proper name. For example: the attribute writer for the association :address is
called address_attributes=.

Whether a one-to-one or one-to-many style form builder will be yielded depends on whether the normal
reader method returns a single object or an array of objects. Consider a simple Ruby Person class which
returns a single Address from its address reader method and responds to the address_attributes= writer
method:

1 class Person

2 def address

3 @address

4 end

5

6 def address_attributes=(attributes)

7 # Process the attributes hash

8 end

9 end

This model can now be used with a nested fields_for, like:

1 = form_for person do |f|

2 = f.fields_for :address do |address_fields|

3 Street:

4 = address_fields.text_field :street

5 Zip code:

6 = address_fields.text_field :zip_code

When address is already an association on a Person you can use accepts_nested_attributes_for to define
the writer method for you, like:

All About Helpers 340

1 class Person < ActiveRecord::Base

2 has_one :address

3 accepts_nested_attributes_for :address

4 end

If you want to destroy the associated model through the form, you have to enable it first using the :allow_-
destroy option for accepts_nested_attributes_for like:

1 class Person < ActiveRecord::Base

2 has_one :address

3 accepts_nested_attributes_for :address, allow_destroy: true

4 end

Now, when you use a checkbox form element specially named _destroy, with a value that evaluates to true,
the logic generated by accepts_nested_attribute_for will destroy the associated model. (This is a super
useful technique for list screens that allow deletion of multiple records at once using checkboxes.)

1 = form_for person do |f|

2 = f.fields_for :address do |address_fields|

3 Delete this address:

4 = address_fields.check_box :_destroy

11.9.3.3 fields_for with One-to-Many Associations

Consider a Person class which returns an array of Project instances from the projects reader method and
responds to the projects_attributes= writer method:

1 class Person < ActiveRecord::Base

2 def projects

3 [@project1, @project2]

4 end

5

6 def projects_attributes=(attributes)

7 # Process the attributes hash

8 end

9 end

This model can now be used with a nested fields_for helper method in a form. The block given to the nested
fields_for call will be repeated for each instance in the collection automatically:

All About Helpers 341

1 = form_for person do |f|

2 = f.fields_for :projects do |project_fields|

3 .project

4 Name:

5 = project_fields.text_field :name

It’s also possible to specify the instance to be used by doing the iteration yourself. The symbol passed to
fields_for refers to the reader method of the parent object of the form, but the second argument contains
the actual object to be used for fields:

1 = form_for person do |f|

2 - person.projects.select(&:active?).each do |project|

3 = f.fields_for :projects, project do |project_fields|

4 .project

5 Name:

6 = project_fields.text_field :name

Since fields_for also understands a collection as its second argument in that situation, you can shrink that
last example to the following code. Just inline the projects collection:

1 = form_for person do |f|

2 = f.fields_for :projects, projects.select(&:active?) do |project_fields|

3 .project

4 Name:

5 = project_fields.text_field :name

If in our example Person was an Active Record model and projects was one of its has_many associations, then
you could use accepts_nested_attributes_for to define the writer method for you:

1 class Person < ActiveRecord::Base

2 has_many :projects

3 accepts_nested_attributes_for :projects

4 end

As with using accepts_nested_attributes_for with a belongs_to association, if you want to destroy any
of the associated models through the form, you have to enable it first using the :allow_destroy option:

1 class Person < ActiveRecord::Base

2 has_many :projects

3 accepts_nested_attributes_for :projects, allow_destroy: true

4 end

This will allow you to specify whichmodels to destroy in the attributes hash by adding a boolean form element
named _destroy

All About Helpers 342

1 = form_for person do |form|

2 = form.fields_for :projects do |project_fields|

3 Delete this project

4 = project_fields.check_box :_destroy

11.9.3.4 Saving Nested Attributes

Nested records are updated on save, even when the intermediate parent record is unchanged. For example,
consider the following model code.

1 class Project < ActiveRecord::Base

2 has_many :tasks

3 accepts_nested_attributes_for :tasks

4 end

5

6 class Task < ActiveRecord::Base

7 belongs_to :project

8 has_many :assignments

9 accepts_nested_attributes_for :assignments

10 end

11

12 class Assignment < ActiveRecord::Base

13 belongs_to :task

14 end

The following spec snippet illustrates nested saving:

1 # setup project, task and assignment objects...

2 project.update(name: project.name,

3 tasks_attributes: [{

4 id: task.id,

5 name: task.name,

6 assignments_attributes: [

7 {

8 id: assignment.id,

9 name: 'Paul'

10 }]

11 }]

12

13 assignment.reload

14 expect(assignment.name).to eq('Paul')

11.9.4 Customized Form Builders

Under the covers, the form_formethod uses a class named ActionView::Helpers::FormBuilder. An instance
of it is yielded to the form block. Conveniently, you can subclass it in your application to override existing or
define additional form helpers.

All About Helpers 343

For example, let’s say you made a builder class to automatically add labels to form inputs when text_field

is called. You’d enable it with the :builder option like:

= form_for person, builder: LabelingFormBuilder do |f|

Instructions on making custom form builder classes would fill its own chapter, but one could view the source
of some popular Rails form builders such as SimpleForm² and formtasic³ to learn more.

11.9.5 Form Inputs

For each if these methods, there is a similarly named form builder method that omits the object_name

parameter.

11.9.5.1 check_box(object_name, method, options = {}, checked_value = "1", unchecked_value =

"0")

This helper gives you an extra hidden input field to ensure that a false value is passed even if the check box
is unchecked.

check_box('timesheet', 'approved')

=> <input name="timesheet[approved]" type="hidden" value="0"/>

<input checked="checked" type="checkbox" id="timesheet_approved"

name="timesheet[approved]" value="1" />

11.9.5.2 color_field(object_name, method, options = {})

Creates a color input field, that allows setting of a color via hex values. The default value of a color_field is
set to #000000

color_field(:car, :paint_color)

=> <input id="car_paint_color" name="car[paint_color]" type="color"

value="#000000" />"

This method is otherwise identical to text_field.

11.9.5.3 date_field(object_name, method, options = {})

Creates a date input field. If an object is provided to the helper, it calls to_date on it to attempt setting the
default value.

²https://github.com/plataformatec/simple_form
³https://github.com/justinfrench/formtastic

https://github.com/plataformatec/simple_form
https://github.com/justinfrench/formtastic

All About Helpers 344

date_field(:person, :birthday)

=> <input id="person_birthday" name="person[birthday]" type="date" />

To override the default value, pass a string in the format YYYY-MM-DD to the option :value. This method
is otherwise identical to text_field.

11.9.5.4 datetime_field(object_name, method, options = {})

Creates an input field of type “datetype”, which accepts time in UTC. If a DateTime or ActiveSupport::TimeWithZone
instance is provided to the helper, it calls strftime with “%Y-%m-%dT%T.%L%z” on the object’s value to
attempt setting a default value.

datetime_field(:post, :publish_at)

=> <input id="post_publish_at" name="post[publish_at]" type="datetime" />

The datetime_field accepts options :min, :max, which allow setting the minimum and maximum acceptable
values respectively.

datetime_field(:invoice, :invoiced_on,

min: Time.current.beginning_of_year,

max: Time.current.end_of_year)

=> <input id="invoice_invoiced_on" max="2013-12-31T23:59:59.999+0000"

min="2013-01-01T00:00:00.000+0000" name="invoice[invoiced_on]"

type="datetime" />

To override the default value, pass a string in the format “%Y-%m-%dT%T.%L%z” to the option :value. This
method is otherwise identical to text_field.

11.9.5.5 datetime_local_field(object_name, method, options = {})

Creates an input field of type “datetime-local”. This method is otherwise identical to datetime_field, except
that the value used is local over UTC. If a DateTime or ActiveSupport::TimeWithZone instance is provided
to the helper, it calls strftime with “%Y-%m-%dT%T” on the object’s value to attempt setting a default value.

11.9.5.6 email_field(object_name, method, options = {})

Creates an email input field. This method is otherwise identical to text_field.

11.9.5.7 file_field(object_name, method, options = {})

Creates a file upload field and automatically adds multipart: true to the enclosing form. See file_field_tag
for details.

All About Helpers 345

11.9.5.8 hidden_field(object_name, method, options = {})

Creates a hidden field, with parameters similar to text_field.

11.9.5.9 label(object_name, method, content_or_options = nil, options = nil, &block)

Creates a label tag with the for attribute pointed at the specified input field.

label('timesheet', 'approved')

=> <label for="timesheet_approved">Approved</label>

label('timesheet', 'approved', 'Approved?')

=> <label for="timesheet_approved">Approved?</label>

Many of us like to link labels to input fields by nesting. (Many would say that’s the correct usage of labels.)
As of Rails 3 the label helper accepts a block so that nesting is possible and works as would be expected. As
a result, instead of having to do this:

= f.label :terms, "Accept #{link_to 'Terms', terms_path}"

you can do the much more elegant and maintainable

= f.label :terms do

%span Accept #{link_to "Terms", terms_path}

11.9.5.10 month_field(object_name, method, options = {})

Creates an input field of type “month”, without any timezone information. A month is represented by four
digits for the year, followed by a dash, and ending with two digits representing the month (ex.2013-08).

If a DateTime or ActiveSupport::TimeWithZone instance is provided to the helper, it calls strftime with
“%Y-%m” on the object’s value to attempt setting a default value.

month_field(:user, :born_on)

=> <input id="user_born_on" name="user[born_on]" type="month" />

To override the default value, pass a string in the format “%Y-%m” to the option :value. This method is
otherwise identical to datetime_field.

11.9.5.11 number_field(object_name, method, options = {})

Creates a number input field. This method is otherwise identical to text_fieldwith the following additional
options:

:min The minimum acceptable value.

All About Helpers 346

:max The maximum acceptable value.

:in A range specifying the :min and :max values.

:step

The acceptable value granularity.

11.9.5.12 password_field(object_name, method, options = {})

Creates a password input field. This method is otherwise identical to text_field, but renders with a nil value
by default for security reasons. If you want to pre-populate the user’s password you can do something like

password_field(:user, :password, value: user.password)

11.9.5.13 radio_button(object_name, method, tag_value, options = {})

Creates a radio button input field. Make sure to give all of your radio button options user the same name so
that the browser will consider them linked.

= radio_button(:post, :category, :rails)

= radio_button(:post, :category, :ruby)

11.9.5.14 range_field(object_name, method, options = {})

Creates a range input field. This method is otherwise identical to number_field.

11.9.5.15 search_field(object_name, method, options = {})

Creates a search input field. This method is otherwise identical to text_field.

11.9.5.16 telephone_field(object_name, method, options = {})

Creates a telephone input field. This method is otherwise identical to text_field and is aliased as phone_-
field.

11.9.5.17 submit(value = nil, options = {})

Creates a submit button with the text value as the caption. The option :disable_with can be used to provide
a name for disabled versions of the submit button.

11.9.5.18 text_area(object_name, method, options = {})

Creates a multiline text input field (the textarea tag). The :size option lets you easily specify the dimensions
of the text area, instead of having to resort to explicit :rows and :cols options.

All About Helpers 347

text_area(:comment, :body, size: "25x10")

=> <textarea name="comment[body]" id="comment_body" cols="25" rows="10">

</textarea>

11.9.5.19 text_field(object_name, method, options = {})

Creates a standard text input field.

11.9.5.20 time_field(object_name, method, options = {})

Creates an input field of type “time”. If a DateTime or ActiveSupport::TimeWithZone instance is provided to
the helper, it calls strftime with “%T.%L” on the object’s value to attempt setting a default value.

time_field(:task, :started_at)

=> <input id="task_started_at" name="task[started_at]" type="time" />

To override the default value, pass a string in the format “%T.%L” to the option :value. This method is
otherwise identical to datetime_field.

11.9.5.21 url_field(object_name, method, options = {})

Creates an input field of type “url”. This method is otherwise identical to text_field.

11.9.5.22 week_field(object_name, method, options = {})

Creates an input field of type “week”. If a DateTime or ActiveSupport::TimeWithZone instance is provided
to the helper, it calls strftime with “%Y-W%W” on the object’s value to attempt setting a default value.

week_field(:task, :started_at)

=> <input id="task_started_at" name="task[started_at]" type="week" />

To override the default value, pass a string in the format “%Y-W%W” to the option :value. This method is
otherwise identical to datetime_field.

11.10 FormOptionsHelper

The methods in the FormOptionsHelper module are all about helping you to work with HTML select

elements, by giving you ways to turn collections of objects into option tags.

11.10.1 Select Helpers

The following methods help you to create select tags based on a pair of object and attribute identifiers.

All About Helpers 348

11.10.1.1 collection_select(object, method, collection, value_method, text_method, options =

{}, html_options = {})

Return both select and option tags for the given object and method using options_from_collection_for_-
select (also in this module) to generate the list of option tags from the collection parameter.

11.10.1.2 grouped_collection_select(object, method, collection, group_method,

group_label_method, option_key_method, option_value_method, options = {},

html_options = {})

Returns select, optgroup, and option tags for the given object and method using option_groups_from_-

collection_for_select (covered later in this chapter).

11.10.1.3 select(object, method, collection, value_method, text_method, options = {},

html_options = {})

Create a select tag and a series of contained option tags for the provided object and attribute. The value
of the attribute currently held by the object (if any) will be selected, provided that the object is available (not
nil). See options_for_select section for the required format of the choices parameter.

Here’s a small example where the value of @post.person_id is 1:

1 = select(:post, :person_id,

2 Person.all.collect { |p| [p.name, p.id] },

3 { include_blank: true })

Executing that helper code would generate the following HTML output:

1 <select id="post_person_id" name="post[person_id]">

2 <option value=""></option>

3 <option value="1" selected="selected">David</option>

4 <option value="2">Sam</option>

5 <option value="3">Tobias</option>

6 </select>

If necessary, specify selected: value to explicitly set the selection or selected: nil to leave all options
unselected. The include_blank: true option inserts a blank option tag at the beginning of the list, so that
there is no preselected value. Also, one can disable specific values by setting a single value or an array of
values to the :disabled option.

11.10.1.4 time_zone_select(object, method, priority_zones = nil, options = {}, html_options =

{})

Return select and option tags for the given object and method, using time_zone_options_for_select to
generate the list of option tags.

All About Helpers 349

In addition to the :include_blank option documented in the preceding section, this method also supports a
:model option, which defaults to ActiveSupport::TimeZone. This may be used by users to specify a different
timezone model object.

Additionally, setting the priority_zones parameter with an array of ActiveSupport::TimeZone objects, will
list any specified priority time zones above any other.

1 time_zone_select(:user, :time_zone, [

2 ActiveSupport::TimeZone['Eastern Time (US & Canada)'],

3 ActiveSupport::TimeZone['Pacific Time (US & Canada)']

4])

5 # => <select id="user_time_zone" name="user[time_zone]">

6 # <option value="Eastern Time (US & Canada)">

7 # (GMT-05:00) Eastern Time (US & Canada)

8 # </option>

9 # <option value="Pacific Time (US & Canada)">

10 # (GMT-08:00) Pacific Time (US & Canada)

11 # </option>

12 # <option disabled="disabled" value="">-------------</option>

13 # <option value="American Samoa">(GMT-11:00) American Samoa</option>

14 # ...

Finally, setting the option :default to an instance of ActiveSupport::TimeZone, sets the default selected
value if none was set.

11.10.2 Checkbox/Radio Helpers

The following methods create input tags of type “checkbox” or “radio” based on a collection.

11.10.2.1 collection_check_boxes(object, method, collection, value_method, text_method,

options = {}, html_options = {}, &block)

The form helper collection_check_boxes creates a collection of check boxes and associated labels based on
a collection.

To illustrate, assuming we have a Postmodel that has multiple categories, using the collection_check_boxes
helper, we can add the ability to set the category_ids of the post:

All About Helpers 350

1 collection_check_boxes(:post, :category_ids, Category.all, :id, :name)

2 # => <input id="post_category_ids_1" name="post[category_ids][]"

3 # type="checkbox" value="1" />

4 # <label for="post_category_ids_1">Ruby on Rails</label>

5 # <input id="post_category_ids_2" name="post[category_ids][]"

6 # type="checkbox" value="2" />

7 # <label for="post_category_ids_2">Ruby</label>

8 # ...

If one wanted to change the way the labels and check boxes are rendered, passing a block will yield a builder:

1 collection_check_boxes(:post, :category_ids, Category.all,

2 :id, :name) do |item|

3 item.label(class: 'check-box') { item.check_box(class: 'check-box') }

4 end

The builder also has access to methods object, text and value of the current item being rendered.

11.10.2.2 collection_radio_buttons(object, method, collection, value_method, text_method,

options = {}, html_options = {}, &block)

The form helper collection_radio_buttons creates a collection of radio buttons and associated labels based
on a collection. It is predominately used to set an individual value, such as a belongs_to relationship on a
model.

Kevin says….
Use collection_radio_buttonswith a collection that only has a handful of items unless you want
your page to be polluted with radio buttons. Fallback to a collection_select for a large collection.

1 collection_radio_buttons(:post, :author_id, Author.all, :id, :name)

2 # => <input id="post_author_1" name="post[author_id][]"

3 # type="radio" value="1" />

4 # <label for="post_author_1">Obie</label>

5 # <input id="post_author_2" name="post[author_id][]"

6 # type="radio" value="2" />

7 # <label for="post_author_2">Kevin</label>

8 # ...

Similar to the collection_check_boxes helper, if one wanted to change the way the labels and radio buttons
are rendered, passing a block will yield a builder:

All About Helpers 351

1 collection_radio_buttons(:post, :author_id,

2 Author.all, :id, :name) do |item|

3 item.label(class: 'radio-button') {

4 item.radio_button(class: 'radio-button')

5 }

6 end

The builder also has access to methods object, text and value of the current item being rendered.

11.10.3 Option Helpers

For all of the following methods, only option tags are returned, so you have to invoke them from within a
select helper or otherwise wrap them in a select tag.

11.10.3.1 grouped_options_for_select(grouped_options, selected_key = nil, options = {})

Returns a string of option tags, like options_for_select, but surrounds them with optgroup tags.

11.10.3.2 option_groups_from_collection_for_select(collection, group_method,

group_label_method, option_key_method, option_value_method, selected_key = nil)

Returns a string of option tags, like options_from_collection_for_select, but surrounds them with
optgroup tags. The collection should return a subarray of itemswhen calling group_method on it. Each group
in the collection should return its own name when calling group_label_method. The option_key_method
and option_value_method parameters are used to calculate option tag attributes.

It’s probably much easier to show in an example than to explain in words.

option_groups_from_collection_for_select(@continents, :countries,

:continent_name, :country_id, :country_name, @selected_country.id)

This example could output the following HTML:

1 <optgroup label="Africa">

2 <option value="1">Egypt</option>

3 <option value="4">Rwanda</option>

4 ...

5 </optgroup>

6 <optgroup label="Asia">

7 <option value="3" selected="selected">China</option>

8 <option value="12">India</option>

9 <option value="5">Japan</option>

10 ...

11 </optgroup>

For the sake of clarity, here are the model classes reflected in the example:

All About Helpers 352

1 class Continent

2 def initialize(name, countries)

3 @continent_name = name; @countries = countries

4 end

5

6 def continent_name

7 @continent_name

8 end

9

10 def countries

11 @countries

12 end

13 end

14

15 class Country

16 def initialize(id, name)

17 @id, @name = id, name

18 end

19

20 def country_id

21 @id

22 end

23

24 def country_name

25 @name

26 end

27 end

11.10.3.3 options_for_select(container, selected = nil)

Accepts a container (hash, array, or anything else enumerable) and returns a string of option tags. Given
a container where the elements respond to first and last (such as a two-element array), the “lasts” serve as
option values and the “firsts” as option text. It’s not too hard to put together an expression that constructs a
two-element array using the map and collect iterators.

For example, assume you have a collection of businesses to display, and you’re using a select field to allow
the user to filter based on the category of the businesses. The category is not a simple string; in this example,
it’s a proper model related to the business via a belongs_to association:

All About Helpers 353

1 class Business < ActiveRecord::Base

2 belongs_to :category

3 end

4

5 class Category < ActiveRecord::Base

6 has_many :businesses

7

8 def <=>(other)

9 ...

10 end

11 end

A simplified version of the template code for displaying that collection of businesses might look like:

- opts = businesses.map(&:category).collect { |c| [c.name, c.id] }

= select_tag(:filter, options_for_select(opts, params[:filter]))

The first line puts together the container expected by options_for_select by first aggregating the category
attributes of the businesses collection using map and the nifty &:method syntax. The second line generates the
select tag using those options (covered later in the chapter). Realistically you want to massage that category
list a little more, so that it is ordered correctly and does not contain duplicates:

... businesses.map(&:category).uniq.sort.collect {...

Particularly with smaller sets of data, it’s perfectly acceptable to do this level of data manipulation in Ruby
code. And of course, you probably don’t want to ever shove hundreds or especially thousands of rows in a
select tag, making this technique quite useful. Remember to implement the spaceship method in your model
if you need it to be sortable by the sort method.

Also, it’s worthwhile to experiment with eager loading in these cases, so you don’t end up with an individual
database query for each of the objects represented in the select tag. In the case of our example, the controller
would populate the businesses collection using code like:

expose(:businesses) do

Business.where(...).includes(:category)

end

Hashes are turned into a form acceptable to options_for_select automatically—the keys become firsts and
values become lasts.

If selected parameter is specified (with either a value or array of values for multiple selections), the matching
last or element will get the selected attribute:

All About Helpers 354

1 options_for_select([["Dollar", "$"], ["Kroner", "DKK"]])

2 # => <option value="$">Dollar</option>

3 # <option value="DKK">Kroner</option>

4

5 options_for_select(["VISA", "MasterCard"], "MasterCard")

6 # => <option>VISA</option>

7 # <option selected="selected">MasterCard</option>

8

9 options_for_select({ "Basic" => "$20", "Plus" => "$40" }, "$40")

10 # => <option value="$20">Basic</option>

11 # <option value="$40" selected="selected">Plus</option>

12

13 >> options_for_select(["VISA", "MasterCard", "Discover"],

14 ["VISA", "Discover"])

15 # => <option selected="selected">VISA</option>

16 # <option>MasterCard</option>

17 # <option selected="selected">Discover</option>

A lot of people have trouble getting this method to correctly display their selected item. Make sure that the
value you pass to selected matches the type contained in the object collection of the select; otherwise, it
won’t work. In the following example, assuming price is a numeric value, without the to_s, selection would
be broken, since the values passed as options are all strings:

1 options_for_select({ "Basic" => "20", "Plus" => "40" }, price.to_s)

2 # => <option value="20">Basic</option>

3 # <option value="40" selected="selected">Plus</option>

11.10.3.4 options_from_collection_for_select(collection, value_method, text_method,

selected=nil)

Returns a string of option tags that have been compiled by iterating over the collection and assigning the
result of a call to the value_method as the option value and the text_method as the option text. If selected is
specified, the element returning a match on value_method will get preselected.

1 options_from_collection_for_select(Person.all, :id, :name)

2 # => <option value="1">David</option>

3 <option value="2">Sam</option>

4 ...

11.10.3.5 time_zone_options_for_select(selected = nil, priority_zones = nil, model =

::ActiveSupport::TimeZone)

Returns a string of option tags for prettymuch any timezone in theworld. Supply a ActiveSupport::TimeZone
name as selected to have it preselected. You can also supply an array of ActiveSupport::TimeZone objects

All About Helpers 355

as priority_zones, so that they will be listed above the rest of the (long) list. TimeZone.us_zones is a
convenience method that gives you a list of the U.S. timezones only.

The selected parameter must be either nil, or a string that names a ActiveSupport::TimeZone (covered in
the Appendix A, “ActiveSupport API Reference”).

11.11 FormTagHelper

The following helper methods generate HTML form and input tags based on explicit naming and values,
contrary to the similar methods present in FormHelper, which require association to an Active Record model
instance. All of these helper methods take an options hash, which may contain special options or simply
additional attribute values that should be added to the HTML tag being generated.

11.11.0.6 button_tag(content_or_options = nil, options = nil, &block)

Creates a button element that can be used to define a submit, reset, or generic button to be usedwith JavaScript.

1 button_tag('Submit')

2 # => <button name="button" type="submit">Submit</button>

3

4 button_tag('Some call to action',type: 'button')

5 # => <button name="button" type="button">Some call to action</button>

11.11.0.7 check_box_tag(name, value = "1", checked = false, options = {})

Creates a check box input field. Unlike its fancier cousin, check_box in FormHelper, this helper does not give
you an extra hidden input field to ensure that a false value is passed even if the check box is unchecked.

1 check_box_tag('remember_me')

2 # => <input id="remember_me" name="remember_me" type="checkbox" value="1"/>

3

4 check_box_tag('remember_me', 1, true)

5 # => <input checked="checked" id="remember_me" name="remember_me"

6 # type="checkbox" value="1" />

11.11.0.8 color_field_tag(name, value = nil, options = {})

Creates a color input field, that allows setting of a color via hex values. This method is otherwise identical to
text_field_tag.

11.11.0.9 date_field_tag(name, value = nil, options = {})

Creates a date input field. This method is otherwise identical to text_field_tag.

All About Helpers 356

11.11.0.10 datetime_field_tag(name, value = nil, options = {})

Creates a datetime input field, which accepts time in UTC. This method is otherwise identical to text_field_-
tag with the following additional options:

:min The minimum acceptable value.

:max The maximum acceptable value.

:step

The acceptable value granularity.

11.11.0.11 datetime_local_field_tag(name, value = nil, options = {})

Creates an input field of type “datetime-local”. This method is otherwise identical to datetime_field_tag,
except that the value is not in UTC.

11.11.0.12 email_field_tag(name, value = nil, options = {})

Creates an email input field. This method is otherwise identical to text_field_tag.

11.11.0.13 field_set_tag(legend = nil, options = nil, &block)

Wrap the contents of the given block in a fieldset tag and optionally give it a legend tag.

11.11.0.14 file_field_tag(name, options = {})

Creates a file upload field. Remember to set your HTML form to multipart or file uploads will mysteriously
not work:

1 = form_tag '/upload', multipart: true do

2 = label_tag :file, 'File to Upload'

3 = file_field_tag :file

4 = submit_tag

The controller action will receive a File object pointing to the uploaded file as it exists in a tempfile on your
system. Processing of an uploaded file is beyond the scope of this book. If you’re smart, you’ll use Jonas
Nicklas’ excellent CarrierWave gem instead of reinventing the wheel.⁴

⁴https://github.com/carrierwaveuploader/carrierwave

https://github.com/carrierwaveuploader/carrierwave

All About Helpers 357

11.11.0.15 form_tag(url_for_options = {}, options = {}, &block)

Starts a form tag, with its action attribute set to the URL passed as the url_for_options parameter.

The :method option defaults to POST. Browsers handle HTTP GET and POST natively; if you specify “patch,”
“delete,” or any other HTTP verb is used, a hidden input field will be inserted with the name _method and a
value corresponding to the method supplied. The Rails request dispatcher understands the _method parameter,
which is the basis for the RESTful techniques you learned in Chapter 3, “REST, Resources, and Rails”.

The :multipart option allows you to specify that you will be including file-upload fields in the form
submission and the server should be ready to handle those files accordingly.

The :authenticity_token option is used only if you need to pass a custom authenticity token string, or
indicating not to include one at all by setting the option to false.

Setting the option :remote to true, will allow the Unobtrusive JavaScript drivers to take control of the submit
behavior (Covered in chapter Ajax on Rails).

1 form_tag('/posts')

2 # => <form action="/posts" method="post">

3

4 >> form_tag('/posts/1', method: :patch)

5 # => <form action="/posts/1" method="post">

6 # <input name="_method" type="hidden" value="patch" />

7 # ...

8

9 form_tag('/upload', multipart: true)

10 # => <form action="/upload" method="post" enctype="multipart/form-data">

You might note that all parameters to form_tag are optional. If you leave them off, you’ll get a form that
posts back to the URL that it came from—a quick and dirty solution that I use quite often when prototyping or
experimenting. To quickly set up a controller action that handles post-backs, just include an if/else condition
that checks the request method, something like:

1 def add

2 if request.post?

3 # handle the posted params

4 redirect_to :back

5 end

6 end

Notice that if the request is a post, I handle the form params and then redirect back to the original URL
(using redirect_to :back). Otherwise, execution simply falls through and would render whatever template
is associated with the action.

11.11.0.16 hidden_field_tag(name, value = nil, options = {})

Creates a hidden field, with parameters similar to text_field_tag.

All About Helpers 358

11.11.0.17 image_submit_tag(source, options = {})

Displays an image that, when clicked, will submit the form. The interface for this method is the same as its
cousin image_tag in the AssetTagHelper module.

Image input tags are popular replacements for standard submit tags, because they make an application look
fancier. They are also used to detect the location of the mouse cursor on click—the params hash will include
x and y data.

11.11.0.18 label_tag(name = nil, content_or_options = nil, options = nil, &block)

Creates a label tag with the for attribute set to name.

11.11.0.19 month_field_tag(name, value = nil, options = {})

Creates an input field of type “month”. This method is otherwise identical to text_field_tag with the
following additional options:

:min The minimum acceptable value.

:max The maximum acceptable value.

:step

The acceptable value granularity.

11.11.0.20 number_field_tag(name, value = nil, options = {})

Creates a number input field. This method is otherwise identical to text_field_tag with the following
additional options:

:min The minimum acceptable value.

:max The maximum acceptable value.

:in A range specifying the :min and :max values

:step

The acceptable value granularity.

11.11.0.21 password_field_tag(name = "password", value = nil, options = {})

Creates a password input field. This method is otherwise identical to text_field_tag.

11.11.0.22 radio_button_tag(name, value, checked = false, options = {})

Creates a radio button input field. Make sure to give all of your radio button options the same name so that
the browser will consider them linked.

All About Helpers 359

11.11.0.23 range_field_tag(name, value = nil, options = {})

Creates a range input field. This method is otherwise identical to number_field_tag.

11.11.0.24 search_field_tag(name, value = nil, options = {})

Creates a search input field. This method is otherwise identical to text_field_tag.

11.11.0.25 select_tag(name, option_tags = nil, options = {})

Creates a drop-down selection box, or if the :multiple option is set to true, a multiple-choice selection box.
The option_tags parameter is an actual string of option tags to put inside the select tag. You should not have
to generate that string explicitly yourself. Instead, use the helpers in FormOptions (covered in the previous
section of this chapter), which can be used to create common select boxes such as countries, time zones, or
associated records.

11.11.0.26 submit_tag(value = "Save changes", options = {})

Creates a submit button with the text value as the caption. In conjunction with the unobtrusive JavaScript
driver, one can set a :data attribute named :disable_with that can be used to provide a name for disabled
versions of the submit button.

submit_tag('Save article', data: { disable_with: 'Please wait...' })

=> <input data-disable-with="Please wait..."

name="commit" type="submit" value="Save article" />

11.11.0.27 telephone_field_tag(name, value = nil, options = {})

Creates a telephone input field. Thismethod is otherwise identical to text_field_tag and is aliased as phone_-
field_tag.

11.11.0.28 text_area_tag(name, content = nil, options = {})

Creates a multiline text input field (the textarea tag). The :size option lets you easily specify the dimensions
of the text area, instead of having to resort to explicit :rows and :cols options.

text_area_tag(:body, nil, size: "25x10")

=> <textarea name="body" id="body" cols="25" rows="10"></textarea>

11.11.0.29 text_field_tag(name, value = nil, options = {})

Creates a standard text input field.

All About Helpers 360

11.11.0.30 time_field_tag(name, value = nil, options = {})

Creates an input field of type “time”. This method is otherwise identical to text_field_tagwith the following
additional options:

:min The minimum acceptable value.

:max The maximum acceptable value.

:step

The acceptable value granularity.

11.11.0.31 url_field_tag(name, value = nil, options = {})

Creates an input field of type “url”. This method is otherwise identical to text_field_tag.

11.11.0.32 utf8_enforcer_tag()

Creates the hidden UTF8 enforcer tag.

utf8_enforcer_tag

=> <input name="utf8" type="hidden" value="✓" />

11.11.0.33 week_field_tag(name, value = nil, options = {})

Creates an input field of type “week”. Thismethod is otherwise identical to text_field_tagwith the following
additional options:

:min The minimum acceptable value.

:max The maximum acceptable value.

:step

The acceptable value granularity.

11.12 JavaScriptHelper

Provides helper methods to facilitate inclusion of JavaScript code in your templates.

11.12.0.34 escape_javascript(javascript)

Escapes line breaks, single and double quotes for JavaScript segments. It’s also aliased as j.

11.12.0.35 javascript_tag(content_or_options_with_block = nil, html_options = {}, &block)

Outputs a script tag with the content inside. The html_options are added as tag attributes.

All About Helpers 361

11.13 NumberHelper

This module provides assistance in converting numeric data to formatted strings suitable for displaying in
your view. Methods are provided for phone numbers, currency, percentage, precision, positional notation,
and file size.

11.13.0.36 number_to_currency(number, options = {})

Formats a number into a currency string. You can customize the format in the options hash.

:locale

Sets the locale to be used for formatting, defaults to current locale.

:precision

Sets the level of precision, defaults to 2.

:unit

Sets the denomination of the currency, defaults to "$".

:separator

Sets the separator between the units, defaults to ".".

:delimiter

Sets the thousands delimiter, defaults to ",".

:format

Sets the format for non-negative numbers, defaults to "%u%n".

:negative_format

Sets the format for negative numbers, defaults to prepending an hyphen to the formatted number.

:raise

Setting to true raises InvalidNumberError when the number is invalid.

1 number_to_currency(1234567890.50)

2 # => $1,234,567,890.50

3

4 number_to_currency(1234567890.506)

5 # => $1,234,567,890.51

6

7 number_to_currency(1234567890.506, precision: 3)

8 # => $1,234,567,890.506

9

10 number_to_currency(1234567890.50, unit: "£", separator: ",",

11 delimiter: "")

12 # => £1234567890,50

All About Helpers 362

11.13.0.37 number_to_human_size(number, options = {})

Formats a number that is more readable to humans. Useful for numbers that are extremely large. You can
customize the format in the options hash.

:locale

Sets the locale to be used for formatting, defaults to current locale.

:precision

Sets the level of precision, defaults to 3.

:significant

If true, precision will be the number of significant_digits, otherwise the number of fractional digits are
used. Defaults to true.

:separator

Sets the separator between fractional and integer digits, defaults to ".".

:delimiter

Sets the thousands delimiter, defaults to "".

:strip_insignificant_zeros

Setting to true removes insignificant zeros after the decimal separator, defaults to true.

:units

A hash of unit quantifier names, or a string containing an i18n scope where to find this hash. It might
have the following keys:

• integers: :unit, :ten, *:hundred, :thousand, :million, *:billion, :trillion, *:quadrillion
• fractionals: :deci, :centi, *:mili, :micro, :nano, *:pico, :femto

:format

Sets the format for non-negative numbers, defaults to "%n %u". The field types are:

• %u: The quantifier
• %n: The number

1 number_to_human(123) # => "123"

2 number_to_human(1234) # => "1.23 Thousand"

3 number_to_human(1234567) # => "1.23 Million"

4 number_to_human(489939, precision: 4) # => "489.9 Thousand"

Kevin says…
Rails provides the ability to set your own custom unit qualifier by setting the :units option.

1 number_to_human(10000, units: {unit: "m", thousand: "km"}) # => "10 km"

All About Helpers 363

11.13.0.38 number_to_human_size(number, options = {})

Formats the bytes in size into a more understandable representation. Useful for reporting file sizes to users.
You can customize the format in the options hash.

:locale

Sets the locale to be used for formatting, defaults to current locale.

:precision

Sets the level of precision, defaults to 3.

:significant

If true, precision will be the number of significant_digits, otherwise the number of fractional digits are
used. Defaults to true.

:separator

Sets the separator between fractional and integer digits, defaults to ".".

:delimiter

Sets the thousands delimiter, defaults to "".

:strip_insignificant_zeros

Setting to true removes insignificant zeros after the decimal separator, defaults to true.

:format

Sets the format for non-negative numbers, defaults to "%u%n".

:prefix

Setting to :si formats the number using the SI prefix, defaults to :binary.

:raise

Setting to true raises InvalidNumberError when the number is invalid.

1 number_to_human_size(123) => 123 Bytes

2 number_to_human_size(1234) => 1.21 KB

3 number_to_human_size(12345) => 12.1 KB

4 number_to_human_size(1234567) => 1.18 MB

5 number_to_human_size(1234567890) => 1.15 GB

6 number_to_human_size(1234567890123) => 1.12 TB

7 number_to_human_size(1234567, precision: 2) => 1.2 MB

11.13.0.39 number_to_percentage(number, options = {})

Formats a number as a percentage string. You can customize the format in the options hash.

:locale

Sets the locale to be used for formatting, defaults to current locale.

All About Helpers 364

:precision

Sets the level of precision, defaults to 3

:significant

If true, precision will be the number of significant_digits, otherwise the number of fractional digits are
used. Defaults to false.

:separator

Sets the separator between the units, defaults to "."

:delimiter

Sets the thousands delimiter, defaults to "".

:strip_insignificant_zeros

Setting to true removes insignificant zeros after the decimal separator, defaults to false.

:format

Sets the format of the percentage string, defaults to "%n%".

:raise

Setting to true raises InvalidNumberError when the number is invalid.

1 number_to_percentage(100) => 100.000%

2 number_to_percentage(100, precision: 0) => 100%

3 number_to_percentage(302.0574, precision: 2) => 302.06%

11.13.0.40 number_to_phone(number, options = {})

Formats a number as a U.S. phone number. You can customize the format in the options hash.

:area_code

Adds parentheses around the area code.

:delimiter

Specifies the delimiter to use, defaults to "-".

:extension

Specifies an extension to add to the end of the generated number.

:country_code

Sets the country code for the phone number.

:raise

Setting to true raises InvalidNumberError when the number is invalid.

All About Helpers 365

1 number_to_phone(1235551234) # => "123-555-1234"

2 number_to_phone(1235551234, area_code: true) # => "(123) 555-1234"

3 number_to_phone(1235551234, delimiter: " ") # => "123 555 1234"

11.13.0.41 number_with_delimiter(number, options = {})

Formats a number with grouped thousands using a delimiter. You can customize the format in the options
hash.

:locale

Sets the locale to be used for formatting, defaults to current locale.

:delimiter

Sets the thousands delimiter, defaults to ",".

:separator

Sets the separator between the units, defaults to ".".

:raise

Setting to true raises InvalidNumberError when the number is invalid.

1 number_with_delimiter(12345678) # => "12,345,678"

2 number_with_delimiter(12345678.05) # => "12,345,678.05"

3 number_with_delimiter(12345678, delimiter: ".") # => "12.345.678"

11.13.0.42 number_with_precision(number, options = {})

Formats a number with the specified level of precision. You can customize the format in the options hash.

:locale

Sets the locale to be used for formatting, defaults to current locale.

:precision

Sets the level of precision, defaults to 3

:significant

If true, precision will be the number of significant_digits, otherwise the number of fractional digits are
used. Defaults to false.

:separator

Sets the separator between the units, defaults to "."

:delimiter

Sets the thousands delimiter, defaults to "".

:strip_insignificant_zeros

Setting to true removes insignificant zeros after the decimal separator, defaults to false.

:raise

Setting to true raises InvalidNumberError when the number is invalid.

All About Helpers 366

1 number_with_precision(111.2345) # => "111.235"

2 number_with_precision(111.2345, precision: 2) # => "111.23"

11.14 OutputSafetyHelper

This is an extremely simple helper module, barely worth mentioning.

11.14.0.43 raw(stringish)

Bypasses HTML sanitization, by calling to_s, then html_safe on the argument passed to it.

11.14.0.44 safe_join(array, sep=$,)

Returns a HTML safe string by first escaping all array items and joining them by calling Array#join using
the supplied separator. The returned string is also called with html_safe for good measure.

safe_join(["<p>foo</p>".html_safe, "<p>bar</p>"], "
")

=> "<p>foo</p>
<p>bar</p>"

11.15 RecordTagHelper

This module assists in creation of HTML markup code that follows good, clean naming conventions.

11.15.0.45 content_tag_for(tag_name, single_or_multiple_records, prefix = nil, options =

nil, &block)

This helper method creates an HTML element with id and class parameters that relate to the specified Active
Record object. For instance, assuming @person is an instance of a Person class, with an id value of 123 then
the following template code

= content_tag_for(:tr, @person) do

%td= @person.first_name

%td= @person.last_name

will produce the following HTML

<tr id="person_123" class="person">

...

</tr>

If you require the HTML id attribute to have a prefix, you can specify it as a third argument:

All About Helpers 367

content_tag_for(:tr, @person, :foo) do ...

=> "<tr id="foo_person_123" class="person">..."

The content_tag_for helper also accepts a hash of options, which will be converted to additional HTML
attributes on the tag. If you specify a :class value, it will be combined with the default class name for your
object instead of replacing it (since replacing it would defeat the purpose of the method!).

content_tag_for(:tr, @person, :foo, class: 'highlight') do ...

=> "<tr id="foo_person_123" class="person highlight">..."

11.15.0.46 div_for(record, *args, &block)

Produces a wrapper div element with id and class parameters that relate to the specified Active Record
object. This method is exactly like content_tag_for except that it’s hard-coded to output div elements.

11.16 RenderingHelper

This module contains helper methods related to rendering from a view context, to be used with an
ActionView::Renderer object. Development of an Action View renderer is outside the scope of this book,
but for those who are interested, investigating the source code for ActionView::TemplateRenderer and
ActionView::PartialRenderer would be a good starting point.⁵

11.17 SanitizeHelper

The SanitizeHelpermodule provides a set of methods for scrubbing text of undesired HTML elements. Rails
sanitizes and escapes html content by default, so this helper is really intended to assist with the inclusion of
dynamic content into your views.

11.17.0.47 sanitize(html, options = {})

Encodes all tags and strip all attributes (not specifically allowed) from the html string passed to it. Also strips
href and src tags with invalid protocols, particularly in an effort to to prevent abuse of javascript attribute
values.

= sanitize @article.body

With its default settings, the sanitize method does its best to counter known hacker tricks such as using
unicode/ascii/hex values to get past the JavaScript filters.

You can customize the behavior of sanitize by adding or removing allowable tags and attributes using the
:attributes or :tags options.

⁵https://github.com/rails/rails/tree/4-0-stable/actionpack/lib/action_view/renderer

https://github.com/rails/rails/tree/4-0-stable/actionpack/lib/action_view/renderer

All About Helpers 368

= sanitize @article.body, tags: %w(table tr td),

attributes: %w(id class style)

It’s possible to add tags to the default allowed tags in your application by altering the value of config.action_-
view.sanitized_allowed_tags in an initializer. For instance, the following code adds support for basic HTML
tables.

1 class Application < Rails::Application

2 config.action_view.sanitized_allowed_tags = 'table', 'tr', 'td'

3 end

You can also remove some of the tags that are allowed by default.

1 class Application < Rails::Application

2 config.after_initialize do

3 ActionView::Base.sanitized_allowed_tags.delete 'div'

4 end

5 end

Or change them altogether.

1 class Application < Rails::Application

2 config.action_view.sanitized_allowed_attributes = 'id', 'class', 'style'

3 end

Sanitizing user-provided text does not guarantee that the resulting markup will be valid (conforming to a
document type) or even well-formed. The output may still contain unescaped <, >, & characters that confuse
browsers and adversely affect rendering.

11.17.0.48 sanitize_css(style)

Sanitizes a block of CSS code. Used by sanitize when it comes across a style attribute in HTML being
sanitized.

11.17.0.49 strip_links(html)

Strips all link tags from text leaving just the link text.

All About Helpers 369

1 strip_links('Ruby on Rails')

2 # => Ruby on Rails

3

4 strip_links('Please email me at me@email.com.')

5 # => Please email me at me@email.com.

6

7 strip_links('Blog: Visit.')

8 # => Blog: Visit

11.17.0.50 strip_tags(html)

Strips all tags from the supplied HTML string, including comments. Its HTML parsing ability is limited by
that of the html-scanner tokenizer built into Rails. ⁶

1 strip_tags("Strip <i>these</i> tags!")

2 # => Strip these tags!

3

4 strip_tags("Bold no more! See more here...")

5 # => Bold no more! See more here...

6

7 strip_tags("<div id='top-bar'>Welcome to my website!</div>")

8 # => Welcome to my website!

11.18 TagHelper

This module provides helper methods for generating HTML tags programmatically.

11.18.0.51 cdata_section(content)

Returns a CDATA section wrapping the given content. CDATA sections are used to escape blocks of text
containing characters that would otherwise be recognized as markup. CDATA sections begin with the string
<![CDATA[and end with (and may not contain) the string]]>.

11.18.0.52 content_tag(name, content_or_options_with_block = nil, options = nil, escape =

true, &block)

Returns an HTML block tag of type name surrounding the content. Add HTML attributes by passing an
attributes hash as options. Instead of passing the content as an argument, you can also use a block to hold
additional markup (and/or additional calls to content_tag) in which case, you pass your options as the
second parameter. Set escape to false to disable attribute value escaping.

Here are some simple examples of using content_tag without a block:

⁶You can examine the source code of the html-scanner yourself by opening up https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/
action_view/vendor/html-scanner/html/sanitizer.rb

https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/vendor/html-scanner/html/sanitizer.rb
https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/vendor/html-scanner/html/sanitizer.rb

All About Helpers 370

1 content_tag(:p, "Hello world!")

2 # => <p>Hello world!</p>

3

4 content_tag(:div, content_tag(:p, "Hello!"), class: "message")

5 # => <div class="message"><p>Hello!</p></div>

6

7 content_tag("select", options, multiple: true)

8 # => <select multiple="multiple">...options...</select>

Here it is with content in a block (shown as template code rather than in the console):

= content_tag :div, class: "strong" do

Hello world!

The preceding code produces the following HTML:

<div class="strong">Hello world!</div>

11.18.0.53 escape_once(html)

Returns an escaped version of HTML without affecting existing escaped entities.

1 escape_once("1 > 2 & 3")

2 # => "1 < 2 & 3"

3

4 escape_once("<< Accept & Checkout")

5 # => "<< Accept & Checkout"

11.18.0.54 tag(name, options = nil, open = false, escape = true)

Returns an empty HTML tag of type name, which by default is XHTML compliant. Setting open to true will
create an open tag compatible with HTML 4.0 and below. Add HTML attributes by passing an attributes hash
to options. Set escape to false to disable attribute value escaping.

The options hash is used with attributes with no value like (disabled and readonly), which you can give a
value of true in the options hash. You can use symbols or strings for the attribute names.

All About Helpers 371

1 tag("br")

2 # =>

3

4 tag("br", nil, true)

5 # =>

6

7 tag("input", type: 'text', disabled: true)

8 # => <input type="text" disabled="disabled" />

9

10 tag("img", src: "open.png")

11 # =>

11.19 TextHelper

The methods in this module provide filtering, formatting, and string transformation capabilities.

11.19.0.55 concat(string)

The preferred method of outputting text in your views is to use the = expression in Haml syntax, or the
<%= expression %> in eRuby syntax. The regular puts and print methods do not operate as expected in an
eRuby code block; that is, if you expected them to output to the browser. If you absolutely must output text
within a non-output code block like - expression in Haml, or <% expression %> in eRuby, you can use the
concat method. I’ve found that this method can be especially useful when combined with capture in your
own custom helper method implementations.

The following example code defines a helper method that wraps its block content in a div with a particular
CSS class.

1 def wrap(&block)

2 concat(content_tag(:div, capture(&block), class: "wrapped_content"))

3 end

You would use it in your template as follows:

1 - wrap do

2 My wrapped content

11.19.0.56 current_cycle(name = "default")

Returns the current cycle string after a cycle has been started. Useful for complex table highlighting or any
other design need which requires the current cycle string in more than one place.

All About Helpers 372

1 - # Alternate background colors with coordinating text color

2 - [1,2,3,4].each do |item|

3 %div(style="background-color:#{cycle('red', 'green', 'blue')}")

4 %span(style="color:dark#{current_cycle}")= item

11.19.0.57 cycle(first_value, *values)

Creates a Cycle object whose to_s method cycles through elements of the array of values passed to it, every
time it is called. This can be used, for example, to alternate classes for table rows. Here’s an example that
alternates CSS classes for even and odd numbers, assuming that the @items variable holds an array with 1
through 4:

1 %table

2 - @items.each do |item|

3 %tr{ class: cycle('even', 'odd') }

4 %td= item

As you can tell from the example, you don’t have to store the reference to the cycle in a local variable or
anything like that; you just call the cycle method repeatedly. That’s convenient, but it means that nested
cycles need an identifier. The solution is to pass cycle a name: cycle_name option as its last parameter. Also,
you can manually reset a cycle by calling reset_cycle and passing it the name of the cycle to reset. For
example, here is some data to iterate over:

1 # Cycle CSS classes for rows, and text colors for values within each row

2 @items = [{first: 'Robert', middle: 'Daniel', last: 'James'},

3 {first: 'Emily', last: 'Hicks'},

4 {first: 'June', middle: 'Dae', last: 'Jones'}]

And here is the template code. Since the number of cells rendered varies, we want to make sure to reset the
colors cycle before looping:

1 - @items.each do |item|

2 %tr{ class: cycle('even', 'odd', name: 'row_class') }

3 - item.values.each do |value|

4 %td{ class: cycle('red', 'green', name: 'colors') }

5 = value

6 - reset_cycle 'colors'

11.19.0.58 excerpt(text, phrase, options = {})

Extracts an excerpt from text that matches the first instance of phrase. The :radius option expands the
excerpt on each side of the first occurrence of phrase by the number of characters defined in :radius (which
defaults to 100). If the excerpt radius overflows the beginning or end of the text, the :omission option will be
prepended/appended accordingly. Use the :separator option to set the delimitation. If the phrase isn’t found,
nil is returned.

All About Helpers 373

1 excerpt('This is an example', 'an', radius: 5)

2 # => "...s is an examp..."

3

4 excerpt('This is an example', 'is', radius: 5)

5 # => "This is an..."

6

7 excerpt('This is an example', 'is')

8 # => "This is an example"

9

10 excerpt('This next thing is an example', 'ex', radius: 2)

11 # => "...next..."

12

13 excerpt('This is also an example', 'an', radius: 8, omission: '<chop> ')

14 # => "<chop> is also an example"

11.19.0.59 highlight(text, phrases, options = {})

Highlights one or more phrases everywhere in text by inserting into a highlighter template. The highlighter
can be specialized by passing the option :highlighter as a single-quoted string with \1 where the phrase is
to be inserted.

1 highlight('You searched for: rails', 'rails')

2 # => You searched for: <mark>rails</mark>

3

4 highlight('You searched for: ruby, rails, dhh', 'actionpack')

5 # => You searched for: ruby, rails, dhh

6

7 highlight('You searched for: rails', ['for', 'rails'],

8 highlighter: '\1')

9 # => You searched for: rails

10

11 highlight('You searched for: rails', 'rails',

12 highlighter: '\1')

13 # => You searched for: rails

..

Note that as of Rails 4, the highlight helper now uses the HTML5 mark tag by default.

11.19.0.60 pluralize(count, singular, plural = nil)

Attempts to pluralize the singular word unless count is 1. If the plural is supplied, it will use that when count
is > 1. If the ActiveSupport Inflector is loaded, it will use the Inflector to determine the plural form;
otherwise, it will just add an “s” to the singular word.

All About Helpers 374

1 pluralize(1, 'person')

2 # => 1 person

3

4 pluralize(2, 'person')

5 # => 2 people

6

7 pluralize(3, 'person', 'users')

8 # => 3 users

9

10 pluralize(0, 'person')

11 # => 0 people

11.19.0.61 reset_cycle(name = "default")

Resets a cycle (see the cycle method in this section) so that it starts cycling from its first element the next
time it is called. Pass in a name to reset a named cycle.

11.19.0.62 simple_format(text, html_options = {}, options = {})

Returns text transformed into HTML using simple formatting rules. Two or more consecutive newlines (\n\n)
are considered to denote a paragraph and thus are wrapped in p tags. One newline (\n) is considered to be a
line break and a br tag is appended. This method does not remove the newlines from the text.

Any attributes set in html_options will be added to all outputted paragraphs. The following options are also
available:

:sanitize

Setting this option to false will not sanitize any text.

:wrapper_tag

A string representing the wrapper tag, defaults to "p".

11.19.0.63 truncate(text, options = {}, &block)

If text is longer than the :length option (defaults to 30), text will be truncated to the length specified and
the last three characters will be replaced with the the :omission (defaults to "..."). The :separator option
allows defining the delimitation. Finally, to not escape the output, set :escape to false.

All About Helpers 375

1 truncate("Once upon a time in a world far far away", length: 7)

2 => "Once..."

3

4 truncate("Once upon a time in a world far far away")

5 # => "Once upon a time in a world..."

6

7 truncate("And they found that many people were sleeping better.",

8 length: 25, omission: '... (continued)')

9 # => "And they f... (continued)"

11.19.0.64 word_wrap(text, options = {})

Wraps the text into lines no longer than the :line_width option. This method breaks on the first whitespace
character that does not exceed :line_width (which is 80 by default).

1 word_wrap('Once upon a time')

2 # => Once upon a time

3

4 word_wrap('Once upon a time', line_width: 8)

5 # => Once\nupon a\ntime

6

7 word_wrap('Once upon a time', line_width: 1)

8 # => Once\nupon\na\ntime

11.20 TranslationHelper and the I18n API

I18n stands for internationalization and the I18n gem that ships with Rails makes it easy to support multiple
languages other than English in your Rails applications. When you internationalize your app, you do a sweep
of all the textual content in your models and views that needs to be translated, as well as demarking data like
currency and dates, which should be subject to localization.⁷

using I18n in Rails, by Sven Fuchs and Karel Minarik, available at http://guides.rubyonrails.org/i18n.html.

Rails provides an easy-to-use and extensible framework for translating your application to a single custom
language other than English or for providing multi-language support in your application.

The process of internationalization in Rails involves the abstraction of strings and other locale-specific parts
of your application (such as dates and currency formats) out of the codebase and into a locale file.

The process of localization means to provide translations and localized formats for the abstractions created
during internationalization. In the process of localizing your application you’ll probably want to do following
three things:

• Replace or add to Rails’ default locale.

⁷This section is an authorized remix of the complete guide to

http://guides.rubyonrails.org/i18n.html

All About Helpers 376

• Abstract strings used in your application into keyed dictionaries—e.g. flash messages, static text in your
views, etc.

• Store the resulting dictionaries somewhere.

Internationalization is a complex problem. Natural languages differ in so many ways (e.g. in pluralization
rules) that it is hard to provide tools for solving all problems at once. For that reason the Rails I18n API
focuses on:

• Providing support for English and similar languages by default.
• Making it easy to customize and extend everything for other languages.

As part of this solution, every static string in the Rails framework—e.g. Active Record validation messages,
time and date formats—has been internationalized, so localization of a Rails application means overriding
Rails defaults.

11.20.1 Localized Views

Before diving into the more complicated localization techniques, lets briefly cover a simple way to translate
views that is useful for content-heavy pages. Assume you have a BooksController in your application. Your
index action renders content in app/views/books/index.html.haml template. When you put a localized
variant of that template such as index.es.html.haml in the same directory, Rails will recognize it as the
appropriate template to use when the locale is set to :es. If the locale is set to the default, the generic
index.html.haml view will be used normally.

You can make use of this feature when working with a large amount of static content that would be clumsy
to maintain inside locale dictionaries. Just bear in mind that any changes to a template must be kept in sync
with all of its translations.

11.20.2 TranslationHelper Methods

The following two methods are provided for use in your views and assume that I18n support is setup in your
application.

11.20.2.1 localize(*args) aliased to l

Delegates to ActiveSupport’s I18n#translate method with no additional functionality. Normally you want
to use translate instead.

11.20.2.2 translate(key, options = {}) aliased to t

Delegates to ActiveSupport’s I18n#translatemethod, while performing three additional functions. First, it’ll
catch MissingTranslationData exceptions and turn them into inline spans that contain the missing key, such
that you can see within your views when keys are missing.

Second, it’ll automatically scope the key provided by the current partial if the key starts with a pe-
riod. So if you call translate(".foo") from the people/index.html.haml template, you’ll be calling

All About Helpers 377

I18n.translate("people.index.foo"). This makes it less repetitive to translate many keys within the same
partials and gives you a simple framework for scoping them consistently. If you don’t prepend the key with
a period, nothing is converted.

Third, it’ll mark the translation as safe HTML if the key has the suffix “_html” or the last element of the key
is the word “html”. For example, calling translate(“header.html”) will return a safe HTML string which won’t
be escaped.

11.20.3 I18n Setup

There are just a few simple steps to get up and running with I18n support for your application.

Following the convention over configuration philosophy, Rails will set up your application with reasonable
defaults. If you need different settings, you can overwrite them easily.

Rails adds all .rb and .yml files from the config/locales directory to your translations load path,
automatically.⁸ The default en.yml locale in this directory contains a sample pair of translation strings:

1 en:

2 hello: "Hello world"

This means, that in the :en locale, the key hello will map to the “Hello world” string.⁹

You can use YAML or standard Ruby hashes to store translations in the default (Simple) backend.

Unless you change it, the I18n library will use English (:en) as its default locale for looking up translations.
Change the default in using code similar to:

config.i18n.default_locale = :de

..

Note
The i18n library takes a pragmatic approach to locale keys (after some discussion), including only the
locale (“language”) part, like :en, :pl, not the region part, like :en-US or :en-UK, which are traditionally
used for separating “languages” and “regional setting” or “dialects”. Many international applications use
only the “language” element of a locale such as :cz, :th or :es (for Czech, Thai and Spanish). However,
there are also regional differences within different language groups that may be important. For instance, in
the :en-US locale you would have $ as a currency symbol, while in :en-UK, you would have . Nothing stops
you from separating regional and other settings in this way: you just have to provide full “English – United
Kingdom” locale in a :en-UK dictionary. Rails I18n plugins such as Globalize3 may help you implement it.

https://groups.google.com/forum/?hl=en#!topic/rails-i18n/FN7eLH2-lHA
https://github.com/svenfuchs/globalize3

⁸The translations load path is just an array of paths to your translation files that will be loaded automatically and available in your application.
You can pick whatever directory and translation file naming scheme makes sense for you.

⁹Every string inside Rails is internationalized in this way, see for instance Active Record validation messages in the file or time and date formats
in the file.

https://groups.google.com/forum/?hl=en#!topic/rails-i18n/FN7eLH2-lHA
https://github.com/svenfuchs/globalize3

All About Helpers 378

..

11.20.4 Setting and Passing the Locale

If you want to translate your Rails application to a single language other than English, you can just set
default_locale to your locale in application.rb as shown above and it will persist through the requests.
However, you probably want to provide support for more locales in your application, depending on the user’s
preference. In such case, you need to set and pass the locale between requests.

Warning
You may be tempted to store the chosen locale in a session or a cookie. Do not do so. The locale
should be transparent and a part of the URL. This way you don’t break people’s basic assumptions
about the web itself: if you send a URL of some page to a friend, she should see the same page, same
content.

You can set the locale in a before_action in your ApplicationController like:

1 before_action :set_locale

2

3 def set_locale

4 # if params[:locale] is nil then I18n.default_locale will be used

5 I18n.locale = params[:locale]

6 end

This approach requires you to pass the locale as a URL query parameter as in http://example.com/books?locale=pt.
(This is, for example, Google’s approach.)

Getting the locale from params and setting it accordingly is not the hard part of this technique. Including the
locale parameter in every URL generated by your application is the hard part. To include an explicit option
in every URL

= link_to books_url(locale: I18n.locale)

would be tedious at best and impossible to maintain at worst.

A default_url_options method in ApplicationController is useful precisely in this scenario. It enables us
to set defaults for url_for and helper methods dependent on it.

All About Helpers 379

1 def default_url_options(options={})

2 logger.debug "default_url_options is passed options: #{options.inspect}\n"

3 { locale: I18n.locale }

4 end

Every helper method dependent on url_for (e.g. helpers for named routes like root_path or root_url,
resource routes like books_path or books_url, etc.) will now automatically include the locale in the query
string, like

http://localhost:3000/?locale=ja

Having the locale hang at the end of every path in your application can negatively impact readability of your
URLs. Moreover, from an architectural standpoint, locales are a concept that live above other parts of your
application domain and your URLs should probably reflect that.

Youmight want your URLs to look more like www.example.com/en/books (which loads the English locale) and
www.example.com/nl/books (which loads the Netherlands locale). This is achievable with the same default_-
url_options strategy we just reviewed. You just have to set up your routes with a scope option in this way:

1 # config/routes.rb

2 scope "/:locale" do

3 resources :books

4 end

Even with this approach, you still need to take special care of the root URL of your application. An URL
like http://localhost:3000/nl will not work automatically, because the root "books#index" declaration
in your routes.rb doesn’t take locale into account. After all, there should only be one “root” of your website.

A possible solution is to map a URL like:

config/routes.rb

get '/:locale' => "dashboard#index"

Do take special care about the order of your routes, so this route declaration does not break other ones. It
would be most wise to add it directly before the root declaration at the end of your routes file.

Warning
This solution has currently one rather big downside. Due to the default_url_options implemen-
tation, you have to pass the :id option explicitly, like link_to 'Show', book_url(id: book) and
not depend on Rails’ magic in code like link_to 'Show', book. If this should be a problem, have
a look at Sven Fuchs’s routing_filter¹⁰ plugin which simplify work with routes in this way.

¹⁰https://github.com/svenfuchs/routing-filter

https://github.com/svenfuchs/routing-filter

All About Helpers 380

11.20.4.1 Setting the Locale from the Domain Name

Another option you have is to set the locale from the domain name where your application runs. For example,
we want www.example.com to load the English (or default) locale, and www.example.es to load the Spanish
locale. Thus the top-level domain name is used for locale setting. This has several advantages:

• The locale is a very obvious part of the URL.
• People intuitively grasp in which language the content will be displayed.
• It is very trivial to implement in Rails.
• Search engines seem to like that content in different languages lives at different, inter-linked domains

You can implement it like this in your ApplicationController:

1 before_action :set_locale

2

3 def set_locale

4 I18n.locale = extract_locale_from_uri

5 end

6

7 # Get locale from top-level domain or return nil

8 def extract_locale_from_tld

9 parsed_locale = request.host.split('.').last

10 (available_locales.include? parsed_locale) ? parsed_locale : nil

11 end

Try adding localhost aliases to your file to test this technique.

127.0.0.1 application.com

127.0.0.1 application.it

127.0.0.1 application.pl

11.20.4.2 Setting the Locale from the Host Name

We can also set the locale from the subdomain in a very similar way inside of ApplicationController.

All About Helpers 381

1 before_action :set_locale

2

3 def set_locale

4 I18n.locale = extract_locale_from_uri

5 end

6

7 def extract_locale_from_subdomain

8 parsed_locale = request.subdomains.first

9 (available_locales.include? parsed_locale) ? parsed_locale : nil

10 end

11.20.5 Setting Locale from Client Supplied Information

In specific cases, it would make sense to set the locale from client-supplied information, i.e. not from the URL.
This information may come for example from the users’ preferred language (set in their browser), can be
based on the users’ geographical location inferred from their IP, or users can provide it simply by choosing the
locale in your application interface and saving it to their profile. This approach is more suitable for web-based
applications or services, not for websites. See the sidebar about sessions, cookies and RESTful architecture.

11.20.5.1 Using Accept-Language

One source of client supplied information would be an Accept-Language HTTP header. People may set this
in their browser¹¹ or other clients (such as curl).

A trivial implementation of setting locale based on the Accept-Language header in ApplicationController

might be:

1 before_action :set_locale

2

3 def set_locale

4 I18n.locale = extract_locale_from_accept_language_header

5 logger.debug "* Locale set to '#{I18n.locale}'"

6 end

7

8 private

9

10 def extract_locale_from_accept_language_header

11 request.env['HTTP_ACCEPT_LANGUAGE'].scan(/^[a-z]{2}/).first

12 end

In real production environments you should use much more robust code that the example above. Try plugins
such as Iain Hecker’s http_accept_language¹² or even Rack middleware such as locale¹³.

¹¹http://www.w3.org/International/questions/qa-lang-priorities
¹²https://github.com/iain/http_accept_language
¹³https://github.com/rack/rack-contrib/blob/master/lib/rack/contrib/locale.rb

http://www.w3.org/International/questions/qa-lang-priorities
https://github.com/iain/http_accept_language
https://github.com/rack/rack-contrib/blob/master/lib/rack/contrib/locale.rb

All About Helpers 382

11.20.5.2 Using GeoIP (or Similar) Database

Yet another way of choosing the locale from client information would be to use a database for mapping the
client IP to the region, such as GeoIP Lite Country¹⁴. The mechanics of the code would be very similar to the
code above—you would need to query the database for the user’s IP, and look up your preferred locale for the
country/region/city returned.

11.20.5.3 User Profile

You can also provide users of your application with means to set (and possibly override) the locale in your
application interface, as well. Again, mechanics for this approach would be very similar to the code above—
you’d probably let users choose a locale from a dropdown list and save it to their profile in the database. Then
you’d set the locale to this value using a before_action in ApplicationController.

11.20.6 Internationalizing Your Application

After you’ve setup I18n support for your Ruby on Rails application and told it which locale to use and
how to preserve it between requests, you’re ready for the really interesting part of the process: actually
internationalizing your application.

11.20.6.1 The Public I18n API

First of all, you should be acquainted with the I18n API. The two most important methods of the I18n API are

translate # Lookup text translations

localize # Localize Date and Time objects to local formats

These have the aliases #t and #l so you can use them like

I18n.t 'store.title'

I18n.l Time.now

11.20.6.2 The Process

Take the following basic pieces of a simple Rails application as an example for describing the process.

¹⁴http://dev.maxmind.com/geoip/legacy/geolite/

http://dev.maxmind.com/geoip/legacy/geolite/

All About Helpers 383

1 # config/routes.rb

2 Rails.application.routes.draw do

3 root "home#index"

4 end

5

6 # app/controllers/home_controller.rb

7 class HomeController < ApplicationController

8 def index

9 flash[:notice] = "Welcome"

10 end

11 end

12

13 # app/views/home/index.html.haml

14 %h1 Hello world!

15 %p.notice= flash[:notice]

The example has two strings that are currently hardcoded in English. To internationalize this code, we must
replace those strings with calls to Rails’ #t helper with a key that makes sense for the translation.

1 # app/controllers/home_controller.rb

2 class HomeController < ApplicationController

3 def index

4 flash[:notice] = t(:welcome_flash)

5 end

6 end

7

8 # app/views/home/index.html.haml

9 %h1= t(:hello_world)

10 %p.notice= flash[:notice]

Now when you render this view, it will show an error message which tells you that the translations for the
keys :hello_world and :welcome_flash are missing.

Rails adds a t (translate) helper method to your views so that you do not need to spell out I18n.t all the
time. Additionally this helper will catch missing translations and wrap the resulting error message into a
.

To make the example work you would add the missing translations into the dictionary files (thereby doing
the localization part of the work):

All About Helpers 384

1 # config/locale/en.yml

2 en:

3 hello_world: Hello World

4 welcome_flash: Welcome

5

6 # config/locale/pirate.yml

7 pirate:

8 hello_world: Ahoy World

9 welcome_flash: All aboard!

..

Note
You need to restart the server when you add or edit locale files.

You may use YAML (.yml) or plain Ruby (.rb) files for storing your translations. YAML is the preferred
option among Rails developers. However, it has one big disadvantage. YAML is very sensitive to whitespace
and special characters, so the application may not load your dictionary properly. Ruby files will crash your
application on first request, so you may easily find what’s wrong. (If you encounter any “weird issues” with
YAML dictionaries, try putting the relevant portion of your dictionary into a Ruby file.)

11.20.6.3 Adding Date/Time Formats

Okay! Now let’s add a timestamp to the view, so we can demo the date/time localization feature as well. To
localize the time format you pass the Time object to I18n.l or use Rails’ #l helper method in your views.

1 # app/views/home/index.html.haml

2 %h1= t(:hello_world)

3 %p.notice= flash[:notice]

4 %p= l(Time.now, format: :short)

And in our pirate translations file let’s add a time format (it’s already there in Rails’ defaults for English):

1 # config/locale/pirate.yml

2 pirate:

3 time:

4 formats:

5 short: "arrrround %H'ish"

..

The rails-i18n repository
There’s a great chance that somebody has already done much of the hard work of translating Rails’ defaults
for your locale. See the rails-i18n repository at GitHub for an archive of various locale files. When you put

All About Helpers 385

..

such file(s) in config/locale/ directory, they will automatically be ready for use.

https://github.com/svenfuchs/rails-i18n

11.20.7 Organization of Locale Files

Putting translations for all parts of your application in one file per locale could be hard to manage. You can
store these files in a hierarchy which makes sense to you.

For example, your config/locale directory could look like:

|-defaults

|---es.rb

|---en.rb

|-models

|---book

|-----es.rb

|-----en.rb

|-views

|---defaults

|-----es.rb

|-----en.rb

|---books

|-----es.rb

|-----en.rb

|---users

|-----es.rb

|-----en.rb

|---navigation

|-----es.rb

|-----en.rb

This way, you can separate model and model attribute names from text inside views, and all of this from the
“defaults” (e.g. date and time formats). Other stores for the i18n library could provide different means of such
separation.

..

Note
The default locale loading mechanism in Rails does not load locale files in nested dictionaries, like we have
here. So, for this to work, we must explicitly tell Rails to look further through settings in :

1 # config/application.rb

2 config.i18n.load_path += Dir[File.join(Rails.root, 'config',

https://github.com/svenfuchs/rails-i18n

All About Helpers 386

..

3 'locales', '**', '*.{rb,yml}')]

11.20.8 Looking up Translations

11.20.8.1 Basic Lookup, Scopes and Nested Keys

Translations are looked up by keys which can be both Symbols or Strings, so these calls are equivalent:

I18n.t :message

I18n.t 'message'

The translate method also takes a :scope option which can contain one or more additional keys that will
be used to specify a “namespace” or scope for a translation key:

I18n.t :invalid, scope: [:activerecord, :errors, :messages]

This looks up the :invalid message in the Active Record error messages.

Additionally, both the key and scopes can be specified as dot-separated keys as in:

I18n.translate :"activerecord.errors.messages.invalid"

Thus the following four calls are equivalent:

I18n.t 'activerecord.errors.messages.invalid'

I18n.t 'errors.messages.invalid', scope: :activerecord

I18n.t :invalid, scope: 'activerecord.errors.messages'

I18n.t :invalid, scope: [:activerecord, :errors, :messages]

11.20.8.2 Default Values

When a :default option is given, its value will be returned if the translation is missing:

I18n.t :missing, default: 'Not here'

=> 'Not here'

If the :default value is a Symbol, it will be used as a key and translated. One can provide multiple values as
default. The first one that results in a value will be returned.

E.g., the following first tries to translate the key :missing and then the key :also_missing. As both do not
yield a result, the string “Not here” will be returned:

All About Helpers 387

I18n.t :missing, default: [:also_missing, 'Not here']

=> 'Not here'

11.20.8.3 Bulk and Namespace Lookup

To look up multiple translations at once, an array of keys can be passed:

I18n.t [:odd, :even], scope: 'activerecord.errors.messages'

=> ["must be odd", "must be even"]

Also, a key can translate to a (potentially nested) hash of grouped translations. For instance, one can receive
all Active Record error messages as a Hash with:

I18n.t 'activerecord.errors.messages'

=> { inclusion: "is not included in the list", exclusion: ... }

11.20.8.4 View Scoped Keys

Rails implements a convenient way to reference keys inside of views. Assume you have the following local
file:

1 es:

2 books:

3 index:

4 title: "Título"

You can reference the value of books.index.title inside of the app/views/books/index.html.haml template
by prefixing the key name with a dot. Rails will automatically fill in the scope based on the identity of the
view.

= t '.title'

11.20.8.5 Interpolation

In many cases you want to abstract your translations in such a way that variables can be interpolated into
the translation. For this reason the I18n API provides an interpolation feature.

All options besides :default and :scope that are passed to translate will be interpolated to the translation:

I18n.backend.store_translations :en, thanks: 'Thanks %{name}!

I18n.translate :thanks, name: 'Jeremy'

=> 'Thanks Jeremy!'

If a translation uses :default or :scope as an interpolation variable, an I18n::ReservedInterpolationKey

exception is raised. If a translation expects an interpolation variable, but this has not been passed to translate,
an I18n::MissingInterpolationArgument exception is raised.

All About Helpers 388

11.20.8.6 Pluralization

In English there are only one singular and one plural form for a given string, e.g. “1 message” and “2 messages”
but other languages have different grammars with additional or fewer plural forms¹⁵. Thus, the I18n API
provides a flexible pluralization feature.

The :count interpolation variable has a special role in that it both is interpolated to the translation and used
to pick a pluralization from the translations according to the pluralization rules defined by Unicode:

1 I18n.backend.store_translations :en, inbox: {

2 one: '1 message',

3 other: '%{count} messages'

4 }

5

6 I18n.translate :inbox, count: 2

7 # => '2 messages'

8

9 I18n.translate :inbox, count: 1

10 # => 'one message'

The algorithm for pluralizations in :en is as simple as:

1 entry[count == 1 ? 0 : 1]

The translation denoted as :one is regarded as singular, versus any other value regarded as plural (including
the count being zero).

If the lookup for the key does not return aHash suitable for pluralization, an I18n::InvalidPluralizationData
exception is raised.

11.20.9 How to Store Your Custom Translations

The Simple backend shipped with Active Support allows you to store translations in both plain Ruby and
YAML format. A Ruby hash locale file would look like:

1 {

2 pt: {

3 foo: {

4 bar: "baz"

5 }

6 }

7 }

The equivalent YAML file would look like:

¹⁵http://www.unicode.org/cldr/charts/supplemental/language_plural_rules.html

http://www.unicode.org/cldr/charts/supplemental/language_plural_rules.html

All About Helpers 389

1 pt:

2 foo:

3 bar: baz

In both cases the top level key is the locale. :foo is a namespace key and :bar is the key for the translation
“baz”.

Here is a real example from the Active Support en.yml translations YAML file:

1 en:

2 date:

3 formats:

4 default: "%Y-%m-%d"

5 short: "%b %d"

6 long: "%B %d, %Y"

So, all of the following equivalent lookups will return the :short date format "%B %d":

1 I18n.t 'date.formats.short'

2 I18n.t 'formats.short', scope: :date

3 I18n.t :short, scope: 'date.formats'

4 I18n.t :short, scope: [:date, :formats]

Generally we recommend using YAML as a format for storing translations.

11.20.9.1 Translations for Active Record Models

You can use the methods Model.human_name and Model.human_attribute_name(attribute) to transparently
look up translations for your model and attribute names.

For example when you add the following translations:

1 en:

2 activerecord:

3 models:

4 user: Dude

5 attributes:

6 user:

7 login: "Handle"

8 # will translate User attribute "login" as "Handle"

User.human_name will return “Dude” and User.human_attribute_name(:login) will return “Handle”.

All About Helpers 390

11.20.9.2 Error Message Scopes

Active Record validation error messages can also be translated easily. Active Record gives you a couple
of namespaces where you can place your message translations in order to provide different messages and
translation for certainmodels, attributes, and/or validations. It also transparently takes single table inheritance
into account.

This gives you quite powerful means to flexibly adjust your messages to your application’s needs.

Consider a User model with a validates_presence_of validation for the name attribute like:

1 class User < ActiveRecord::Base

2 validates_presence_of :name

3 end

The key for the error message in this case is :blank. Active Record will look up this key in the namespaces:

1 activerecord.errors.models.[model_name].attributes.[attribute_name]

2 activerecord.errors.models.[model_name]

3 activerecord.errors.messages

Thus, in our example it will try the following keys in this order and return the first result:

1 activerecord.errors.models.user.attributes.name.blank

2 activerecord.errors.models.user.blank

3 activerecord.errors.messages.blank

When your models are additionally using inheritance then the messages are looked up in the inheritance
chain.

For example, you might have an Admin model inheriting from User:

1 class Admin < User

2 validates_presence_of :name

3 end

Then Active Record will look for messages in this order:

1 activerecord.errors.models.admin.attributes.title.blank

2 activerecord.errors.models.admin.blank

3 activerecord.errors.models.user.attributes.title.blank

4 activerecord.errors.models.user.blank

5 activerecord.errors.messages.blank

This way you can provide special translations for various error messages at different points in your models
inheritance chain and in the attributes, models, or default scopes.

All About Helpers 391

11.20.9.3 Error Message Interpolation

The translated model name, translated attribute name, and value are always available for interpolation.

So, for example, instead of the default error message "can not be blank" you could use the attribute name
like "Please fill in your %{attribute}".

Validation
interpolation

with option Message Interpolation

validates_-

confirmation_of

- :confirmation -

validates_-

acceptance_of

- :accepted -

validates_-

presence_of

- :blank -

validates_length_of :within, :in :too_short count

validates_length_of :within, :in :too_long count

validates_length_of :is :wrong_length count

validates_length_of :minimum :too_short count

validates_length_of :maximum :too_long count

validates_format_of - :taken -

validates_-

uniqueness_of

- :invalid -

validates_-

inclusion_of

- :inclusion -

validates_-

exclusion_of

- :exclusion -

validates_-

associated

- :invalid -

validates_-

numericality_of

- :not_a_number -

validates_-

numericality_of

:greater_than :greater_than count

validates_-

numericality_of

:greater_than_or_-

equal_to

:greater_than_or_-

equal_to

count

validates_-

numericality_of

:equal_to :equal_to count

validates_-

numericality_of

:less_than_or_-

equal_to

::less_than_or_-

equal_to

count

validates_-

numericality_of

:odd :odd -

validates_-

numericality_of

:even :even -

All About Helpers 392

11.20.10 Overview of Other Built-In Methods that Provide I18n Support

Rails uses fixed strings and other localizations, such as format strings and other format information in a couple
of helpers. Here’s a brief overview.

11.20.10.1 Action View Helper Methods

• distance_of_time_in_words translates and pluralizes its result and interpolates the number of seconds,
minutes, hours, and so on. See datetime.distance_in_words¹⁶ translations.

• datetime_select and select_month use translated month names for populating the resulting se-
lect tag. See date.month_names¹⁷ for translations. datetime_select also looks up the order option
from date.order¹⁸ (unless you pass the option explicitely). All date selection helpers translate the
prompt using the translations in the datetime.prompts¹⁹ scope if applicable. *The number_to_currency,
number_with_precision, number_to_percentage, number_with_delimiter, and number_to_human_-

size helpers use the number format settings located in the number²⁰ scope.

11.20.10.2 Active Record Methods

• human_name and human_attribute_name use translations for model names and attribute names if
available in the activerecord.models²¹ scope. They also support translations for inherited class names
(e.g. for use with STI) as explained in “Error message scopes”.

• ActiveRecord::Errors#generate_message (which is used by Active Record validations but may also
be used manually) uses human_name and human_attribute_name. It also translates the error message
and supports translations for inherited class names as explained in “Error message scopes”.

• ActiveRecord::Errors#full_messages prepends the attribute name to the error message using a
separator that will be looked up from activerecord.errors.format (and which defaults to "%{attribute}
%{message}").

11.20.10.3 Active Support Methods

• Array#to_sentence uses format settings as given in the support.array scope.

11.20.11 Exception Handling

In some contexts you might want to I18n’s default exception handling behavior. For instance, the default
exception handling does not allow to catchmissing translations during automated tests easily. For this purpose
a different exception handler can be specified. The specified exception handler must be a method on the I18n
module. You would add code similar to the following to your file or other kind of initializer.

¹⁶https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/locale/en.yml#L4
¹⁷https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L155
¹⁸https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L18
¹⁹https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/locale/en.yml#L39
²⁰https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L37
²¹https://github.com/rails/rails/blob/4-0-stable/activerecord/lib/active_record/locale/en.yml#L37

https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/locale/en.yml#L4
https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L155
https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L18
https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/locale/en.yml#L39
https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L37
https://github.com/rails/rails/blob/4-0-stable/activerecord/lib/active_record/locale/en.yml#L37

All About Helpers 393

1 module I18n

2 def just_raise_that_exception(*args)

3 raise args.first

4 end

5 end

6

7 I18n.exception_handler = :just_raise_that_exception

This would re-raise all caught exceptions including MissingTranslationData.

11.21 UrlHelper

This module provides a set of methods for making links and getting URLs that depend on the routing
subsystem, covered extensively in Chapter 2, “Routing” and Chapter 3, “REST, Resources, and Rails” of this
book.

11.21.0.1 button_to(name = nil, options = nil, html_options = nil, &block)

Generates a form containing a single button that submits to the URL created by the set of options. This is
the safest method to ensure that links that cause changes to your data are not triggered by search bots or
accelerators. If the HTML button does not work with your layout, you can also consider using the link_to
method (also in this module) with the :method modifier.

The options hash accepts the same options as the url_for method.

The generated form element has a class name of button-to to allow styling of the form itself and its children.
This class name can be overridden by setting :form_class in :html_options. The :method option work just
like the link_to helper. If no :method modifier is given, it defaults to performing a POST operation.

1 button_to("New", action: "new")

2 # => "<form method="post" action="/controller/new" class="button-to">

3 # <div><input value="New" type="submit" /></div>

4 # </form>"

5

6 button_to "Delete Image", { action: "delete", id: @image.id },

7 method: :delete, data: { confirm: "Are you sure?" }

8 # => "<form method="post" action="/images/delete/1" class="button_to">

9 # <div>

10 # <input type="hidden" name="_method" value="delete" />

11 # <input data-confirm='Are you sure?'

12 # value="Delete Image" type="submit" />

13 # <input name="authenticity_token" type="hidden"

14 # value="10f2163b45388899..."/>

15 # </div>

16 # </form>"

All About Helpers 394

11.21.0.2 current_page?(options)

Returns true if the current request URI was generated by the given options. For example, let’s assume that
we’re currently rendering the /shop/checkout action:

1 current_page?(action: 'process')

2 # => false

3

4 current_page?(action: 'checkout') # controller is implied

5 # => true

6

7 current_page?(controller: 'shop', action: 'checkout')

8 # => true

11.21.0.3 link_to(name = nil, options = nil, html_options = nil, &block)

One of the fundamental helper methods. Creates a link tag of the given name using a URL created by the set
of options. The valid options are covered in the description of this module’s url_formethod. It’s also possible
to pass a string instead of an options hash to get a link tag that uses the value of the string as the href for the
link. If nil is passed as a name, the link itself will become the name.

:data

Adds custom data attributes.

method: symbol

Specify an alternative HTTP verb for this request (other than GET). This modifier will dynamically
create an HTML form and immediately submit the form for processing using the HTTP verb specified
(:post, :patch, or :delete).

remote: true

Allows the unobtrusive JavaScript driver to make an Ajax request to the URL instead of the following
the link.

The following data attributes work alongside the unobtrusive JavaScript driver:

confirm: 'question?'

The unobtrusive JavaScript driver will display a JavaScript confirmation prompt with the question
specified. If the user accepts, the link is processed normally; otherwise, no action is taken.

:disable_with

Used by the unobtrusive JavaScript driver to provide a name for disabled versions.

Generally speaking, GET requests should be idempotent, that is, they do not modify the state of any resource
on the server, and can be called one or many times without a problem. Requests that modify server-side
resources or trigger dangerous actions like deleting a record should not usually be linked with a normal

All About Helpers 395

hyperlink, since search bots and so-called browser accelerators can follow those links while spidering your
site, leaving a trail of chaos.

If the user has JavaScript disabled, the request will always fall back to using GET, no matter what :method
you have specified. This is accomplished by including a valid href attribute. If you are relying on the POST
behavior, your controller code should check for it using the post?, delete?, or patch? methods of request.

As usual, the html_options will accept a hash of HTML attributes for the link tag.

1 = link_to "Help", help_widgets_path

2

3 = link_to "Rails", "http://rubyonrails.org/",

4 data: { confirm: "Are you sure?" }

5

6 = link_to "Delete", widget_path(@widget), method: :delete,

7 data: { confirm: "Are you sure?" }

8

9 [Renders in the browser as...]

10

11 Help

12

13 Rails

14

15 <a href="/widgets/42" rel="nofollow" data-method="delete"

16 data-confirm="Are you sure?">View

11.21.0.4 link_to_if(condition, name, options = {}, html_options = {}, &block)

Creates a link tag using the same options as link_to if the condition is true; otherwise, only the name is
output (or block is evaluated for an alternative value, if one is supplied).

11.21.0.5 link_to_unless(condition, name, options = {}, html_options = {}, &block)

Creates a link tag using the same options as link_to unless the condition is true, in which case only the name
is output (or block is evaluated for an alternative value, if one is supplied).

11.21.0.6 link_to_unless_current(name, options = {}, html_options = {}, &block)

Creates a link tag using the same options as link_to unless the condition is true, in which case only the name
is output (or block is evaluated for an alternative value, if one is supplied).

This method is pretty useful sometimes. Remember that the block given to link_to_unless_current is
evaluated if the current action is the action given. So, if we had a comments page and wanted to render
a “Go Back” link instead of a link to the comments page, we could do something like

All About Helpers 396

1 link_to_unless_current("Comment", { controller: 'comments', action: 'new}) do

2 link_to("Go back", posts_path)

3 end

11.21.0.7 mail_to(email_address, name = nil, html_options = {}, &block)

Creates a mailto link tag to the specified email_address, which is also used as the name of the link unless
name is specified. Additional HTML attributes for the link can be passed in html_options.

The mail_to helper has several methods for customizing the email address itself by passing special keys to
html_options:

:subject

The subject line of the email.

:body

The body of the email.

:cc Add cc recipients to the email.

:bcc Add bcc recipients to the email.

Here are some examples of usages:

1 mail_to "me@domain.com"

2 # => me@domain.com

3

4 mail_to "me@domain.com", "My email"

5 # => My email

6

7 mail_to "me@domain.com", "My email", cc: "ccaddress@domain.com",

8 subject: "This is an email"

9 # => <a href="mailto:me@domain.com?cc=ccaddress@domain.com&

10 subject=This%20is%20an%20email">My email

..

Note
In previous versions of Rails, the mail_to helper provided options for encoding the email address to hinder
email harvesters. If your application is still dependent on these options, add the actionview-encoded_-

mail_to gem to your Gemfile

11.21.0.8 Redirecting Back

If you pass the magic symbol :back to any method that uses url_for under the covers (redirect_to, etc.) the
contents of the HTTP_REFERER request header will be returned. (If a referer is not set for the current request,
it will return javascript:history.back() to try to make the browser go back one page.)

All About Helpers 397

url_for(:back)

=> "javascript:history.back()"

11.22 Writing Your Own View Helpers

As you develop an application in Rails, you should be on the lookout for opportunities to refactor duplicated
view code into your own helper methods. As you think of these helpers, you add them to one of the helper
modules defined in the app/helpers folder of your application.

There is an art to effectively writing helper methods, similar in nature to what it takes to write effective
APIs. Helper methods are basically a custom, application-level API for your view code. It is difficult to teach
API design in a book form. It’s the sort of knowledge that you gain by apprenticing with more experienced
programmers and lots of trial and error. Nevertheless, in this section, we’ll review some varied use cases and
implementation styles that we hope will inspire you in your own application design.

11.22.1 Small Optimizations: The Title Helper

Here is a simple helper method that has been of use to me on many projects now. It’s called page_title and
it combines two simple functions essential to a good HTML document:

• Setting the title of the page in the document’s head.
• Setting the content of the page’s h1 element.

This helper assumes that you want the title and h1 elements of the page to be the same, and has a
dependency on your application template. The code for the helper is in Listing 11.3 and would be added
to app/helpers/application_helper.rb, since it is applicable to all views.

Listing 11.3: The page_title Helper

1 def page_title(name)

2 content_for(:title) { name }

3 content_tag("h1", name)

4 end

First it sets content to be yielded in the layout as :title and then it outputs an h1 element containing the
same text. I could have used string interpolation on the second line, such as "<h1>#{name}</h1>", but it would
have been sloppier than using the built-in Rails helper method content_tag.

My application template is now written to yield :title so that it gets the page title.

1 %html

2 %head

3 %title= yield :title

As should be obvious, you call the page_title method in your view template where you want to have an h1

element:

All About Helpers 398

1 - page_title "New User"

2 = form_for(user) do |f|

3 ...

11.22.2 Encapsulating View Logic: The photo_for Helper

Here’s another relatively simple helper. This time, instead of simply outputting data, we are encapsulating
some view logic that decides whether to display a user’s profile photo or a placeholder image. It’s logic that
you would otherwise have to repeat over and over again throughout your application.

The dependency (or contract) for this particular helper is that the user object being passed in has a profile_-
photo associated to it, which is an attachment model based on Rick Olson’s old attachment_fu Rails plugin.
The code in Listing 11.4 should be easy enough to understandwithout delving into the details of attachment_-
fu. Since this is an example, I broke out the logic for setting src into an if/else structure; otherwise, this
would be a perfect place to use Ruby’s ternary operator.

Listing 11.4: The photo—for helper encapsulating common view logic

1 def photo_for(user, size=:thumb)

2 if user.profile_photo

3 src = user.profile_photo.public_filename(size)

4 else

5 src = 'user_placeholder.png'

6 end

7 link_to(image_tag(src), user_path(user))

8 end

..

Tim says…
Luckily, the latest generation of attachment plugins such as Paperclip and CarrierWave use a NullObject
pattern to alleviate the need for you to do this sort of thing.

11.22.3 Smart View: The breadcrumbs Helper

Lots of web applications feature user-interface concepts called breadcrumbs. They are made by creating a list
of links, positioned near the top of the page, displaying how far the user has navigated into a hierarchically
organized application. I think it makes sense to extract breadcrumb logic into its own helper method instead
of leaving it in a layout template.

The trick to our example implementation (shown in Listing 11.5) is to use the presence of helper methods
exposed by the controller, on a convention specific to your application, to determine whether to add elements
to an array of breadcrumb links.

All About Helpers 399

Listing 11.5: breadcrumbs Helper Method for a Corporate Directory Application

1 def breadcrumbs

2 return if controller.controller_name == 'home'

3

4 html = [link_to('Home', root_path)]

5

6 # first level

7 html << link_to(company.name, company) if respond_to? :company

8

9 # second level

10 html << link_to(department.name, department) if respond_to? :department

11

12 # third and final level

13 html << link_to(employee.name, employee) if respond_to? :employee

14

15 html.join(' > ').html_safe

16 end

Here’s the line-by-line explanation of the code, notingwhere certain application-design assumptions aremade:

On line 2, we abort execution if we’re in the context of the application’s homepage controller, since its pages
don’t ever need breadcrumbs. A simple return with no value implicitly returns nil, which is fine for our
purposes. Nothing will be output to the layout template.

On line 4 we are starting to build an array of HTML links, held in the html local variable, which will ultimately
hold the contents of our breadcrumb trail. The first link of the breadcrumb trail always points to the home
page of the application, which of course will vary, but since it’s always there we use it to initialize the array.
In this example, it uses a named route called root_path.

After the html array is initialized, all we have to do is check for the presence of the methods returning objects
that make up the hierarchy (lines 7 to 13). It is assumed that if a department is being displayed, its parent
company will also be in scope. If an employee is being displayed, both department and company will be in
scope as well. This is not just an arbitrary design choice. It is a common pattern in Rails applications that are
modelled on REST principles and using nested resource routes.

Finally, on line 15, the array of HTML links is joined with the > character, to give the entire string the
traditional breadcrumb appearance. The call to html_safe tells the rendering system that this is HTML code
and we’re cool with that—don’t sanitize it!

11.23 Wrapping and Generalizing Partials

I don’t think that partials (by themselves) lead to particularly elegant or concise template code. Whenever
there’s a shared partial template that gets used over and over again in my application, I will take the time to
wrap it up in a custom helper method that conveys its purpose and formalizes its parameters. If appropriate,
I might even generalize its implementation to make it more of a lightweight, reusable component. (Gasp!)

All About Helpers 400

11.23.1 A tiles Helper

Let’s trace the steps to writing a helper method that wraps what I consider to be a general-purpose partial.
Listing 11.6 contains code for a partial for a piece of a user interface that is common to many applications,
and generally referred to as a tile. It pairs a small thumbnail photo of something on the left side of the widget
with a linked name and description on the right.

Tiles can also represent other models in your application, such as users and files. As I mentioned, tiles are a
very common construct in modern user interfaces and operating systems. So let’s take the cities tiles partial
and transform it into something that can be used to display other types of data.

..

Note
I realize that it has become passé to use HTML tables and I happen to agree that div-based layouts plus CSS
are a lot more fun and flexible to work with. However, for the sake of simplicity in this example, and since
the UI structure we’re describing is tabular, I’ve decided to structure it using a table.

Listing 11.6: A tiles partial prior to wrapping and generalization

1 %table.cities.tiles

2 - cities.in_groups_of(columns) do |row|

3 %tr

4 - row.each do |city|

5 %td[city]

6 .left

7 = image_tag(city.photo.url(:thumb))

8 .right

9 .title

10 = city.name

11 .description

12 = city.description

11.23.1.1 Explanation of the Tiles Partial Code

Since we’re going to transform this city-specific partial into a generalized UI component, I want to make
sure that the code we start with makes absolute sense to you first. Before proceeding, I’m going through the
implementation line by line and explaining what everything in Listing 11.6 does.

Line 1 opens up the partial with a table element and gives it semantically significant CSS classes so that the
table and its contents can be properly styled.

Line 2 leverages a useful Array extension method provided by ActiveSupport, called in_groups_of. It uses
both of the local variables: cities and columns. Both will need to be passed into this partial using the :locals
option of the render :partial method. The cities variable will hold the list of cities to be displayed, and
columns is an integer representing how many city tiles each row should contain. A loop iterates over the
number of rows that will be displayed in this table.

All About Helpers 401

Line 3 begins a table row using the tr element.

Line 4 begins a loop over the tiles for each row to be displayed, yielding a city for each.

Line 5 opens a td element and uses Haml’s object reference notation to auto-generate an dom_id attribute for
the table cell in the style of city_98, city_99, and so on.

Line 6 opens a div element for the left side of the tile and has the CSS class name needed so that it can be
styled properly.

Line 7 calls the image_tag helper to insert a thumbnail photo of the city.

Skipping along, lines 9 – 10 insert the content for the .title div element, in this case, the name and state of
the city.

Line 12 directly invokes the description method.

11.23.1.2 Calling the Tiles Partial Code

In order to use this partial, we have to call render :partial with the two required parameters specified in
the :locals hash:

1 = render "cities/tiles", cities: @user.cities, columns: 3

I’m guessing that most experienced Rails developers have written some partial code similar to this and tried
to figure out a way to include default values for some of the parameters. In this case, it would be really nice
to not have to specify :columns all the time, since in most cases we want there to be three.

The problem is that since the parameters are passed via the :locals hash and become local variables, there
isn’t an easy way to insert a default value in the partial itself. If you left off the columns: n part of your
partial call, Rails would bomb with an exception about columns not being a local variable or method. It’s not
the same as an instance variable, which defaults to nil and can be used willy-nilly.

Experienced Rubyists probably know that you can use the defined? method to figure out whether a local
variable is in scope or not, but the resulting code would be very ugly. The following code might be considered
elegant, but it doesn’t work!²²

columns = 3 unless defined? columns

Instead of teaching you how to jump through annoying Ruby idiom hoops, I’ll show you how to tackle this
challenge the Rails way, and that is where we can start discussing the helper wrapping technique.

..

Tim says…
Obie might not want to make you jump through Ruby idiom hoops, but I don’t mind…

²²If you want to know why it doesn’t work, you’ll have to buy the first book in this series: The Ruby Way ISBN: 0672328844

All About Helpers 402

11.23.1.3 Write the Helper Method

First, I’ll add a new helper method to the CitiesHelper module of my application, like in Listing 11.7. It’s
going to be fairly simple at first. In thinking about the name of the method, it occurs to me that I like the way
that tiled(cities) will read instead of tiles(cities), so I name it that way.

Listing 11.7: The CitiesHelper tiled method

1 module CitiesHelper

2 def tiled(cities, columns=3)

3 render "cities/tiles", cities: cities, columns: columns

4 end

5 end

Right from the start I can take care of that default columns parameter by giving the helper method parameter
for columns a default value. That’s just a normal feature of Ruby. Now instead of specifying the render

:partial call in my view template, I can simply write = tiled(cities) which is considerably more elegant
and terse. It also serves to decouple the implementation of the tiled city table from the view. If I need to change
the way that the tiled table is rendered in the future, I just have to do it in one place: the helper method.

11.23.2 Generalizing Partials

Now that we’ve set the stage, the fun can begin. The first thing we’ll do is move the helper method to the
ApplicationHelper module so that it’s available to all view templates. We’ll also move the partial template
file to app/views/shared/_tiled_table.html.haml to denote that it isn’t associated with a particular kind
of view and to more accurately convey its use. As a matter of good code style, I also do a sweep through
the implementation and generalize the identifiers appropriately. The reference to cities on line 2 becomes
collection. The block variable city on line 4 becomes item. Listing 11.8 has the new partial code.

Listing 11.8: Tiles partial code with revised naming

1 %table.tiles

2 - collection.in_groups_of(columns) do |row|

3 %tr

4 - row.each do |item|

5 %td[item]

6 .left

7 = image_tag(item.photo.public_filename(:thumb))

8 .right

9 .title

10 = item.name

11 .description

12 = item.description

There’s still the matter of a contract between this partial code and the objects that it is rendering. Namely,
they must respond to the following messages: photo, name, and description. A survey of other models in my

All About Helpers 403

application reveals that I need more flexibility. Some things have names, but others have titles. Sometimes I
want the description to appear under the name of the object represented, but other times I want to be able to
insert additional data about the object plus some links.

11.23.2.1 Lambda: the Ultimate Flexibility

Ruby allows you to store references to anonymous methods (also known as procs or lambdas) and call them
at will whenever you want.²³ Knowing this capability is there, what becomes possible? For starters, we can
use lambdas to pass in blocks of code that will fill in parts of our partial dynamically.

For example, the current code for showing the thumbnail is a big problem. Since the code varies greatly
depending on the object being handled, I want to be able to pass in instructions for how to get a thumbnail
image without having to resort to big if/else statements or putting view logic in my model classes. Please
take a moment to understand the problem I’m describing, and then take a look at how we solve it in Listing
11.9. Hint: The thumbnail, link, title, and description variables hold lambdas!

Listing 11.9: Tiles partial code refactored to use lambdas

1 .left

2 = link_to thumbnail.call(item), link.call(item)

3 .right

4 .title

5 = link_to title.call(item), link.call(item)

6 .description

7 = description.call(item)

Notice that in Listing 11.9, the contents of the left and right div elements come from variables containing
lambdas. On line 2 we make a call to link_to and both of its arguments are dynamic. A similar construct on
line 5 takes care of generating the title link. In both cases, the first lambda should return the output of a call
to image_tag and the second should return a URL. In all of these lambda usages, the item currently being
rendered is passed to the lambdas as a block variable.

..

Wilson says…
Things like link.call(item) could potentially look even sassier as link[item], except that you’ll shoot
your eye out doing it. (Proc#[] is an alias for Proc#call.)

11.23.2.2 The New Tiled Helper Method

If you now direct your attention to Listing 11.10, you’ll notice that the tiledmethod is changed considerably.
In order to keep my positional argument list down to a manageable size, I’ve switched over to taking a hash of

²³If you’re familiar with Ruby already, you might know that Proc.new is an alternate way to create anonymous blocks of code. I prefer lambda,
at least in Ruby 1.9, because of subtle behavior differences. Lambda blocks check the arity of the argument list passed to them when call is invoked,
and explicitly calling return in a lambda block works correctly.

All About Helpers 404

options as the last parameter to the tiledmethod. This approach is useful and it mimics the way that almost
all helper methods take options in Rails.

Default values are provided for all parameters, and they are all passed along to the partial via the :locals
hash given to render.

Listing 11.10: The tiled collection helper method with lambda parameters

1 module ApplicationHelper

2

3 def tiled(collection, opts={})

4 opts[:columns] ||= 3

5

6 opts[:thumbnail] ||= lambda do |item|

7 image_tag(item.photo.url(:thumb))

8 end

9

10 opts[:title] ||= lambda { |item| item.to_s }

11

12 opts[:description] ||= lambda { |item| item.description }

13

14 opts[:link] ||= lambda { |item| item }

15

16 render "shared/tiled_table",

17 collection: collection,

18 columns: opts[:columns],

19 link: opts[:link],

20 thumbnail: opts[:thumbnail],

21 title: opts[:title],

22 description: opts[:description]

23 end

24 end

Finally, to wrap up this example, here’s a snippet showing how to invoke our new tiled helper method from
a template, overriding the default behavior for links:

1 tiled(cities, link: lambda { |city| showcase_city_path(city) })

The showcase_city_pathmethod is available to the lambda block, since it is a closure, meaning that it inherits
the execution context in which it is created.

11.24 Conclusion

This very long chapter served as a thorough reference of helper methods, both those provided by Rails
and ideas for ones that you will write yourself. Effective use of helper methods lead to more elegant and

All About Helpers 405

maintainable view templates. At this point you should also have a good overview about how I18n support in
Ruby on Rails works and are ready to start translating your project.

Before we fully conclude our coverage of Action View, we’ll jump into the world of Ajax and JavaScript.
Arguably, one of the main reasons for Rails’s continued popularity is its support for those two crucial
technologies of Web 2.0.

This chapter is published under the Creative CommonsAttribution-ShareAlike 4.0 license, http://creativecommons.
org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12 Haml
HAML gave us a great take on how views can also be done. It looks a little cryptic at first, but
don’t let that shake you off. Once you internalize the meaning of %, #, and . it should be all good
(and you already know most just from CSS). […] Additionally, I can’t help but have respect for a
Canadian who manages to swear more than I did during my vendoritis rant and drink beer at the
same time. A perfect example of the diversity in the Rails community. Very much part of what
makes us special.¹

—David (talking about Haml and Hampton Catlin in September 2006)

Haml² is a “whitespace-sensitive” HTML templating engine that uses indentation to determine the hierarchy
of an HTML document. Haml was created because its creator, Hampton Catlin, was tired of having to type
markup, andwanted all of his output code to be beautifully formatted.What he inventedwas a new templating
engine that removed a lot of noisy boilerplate, such as angle brackets (from ERb), and did away with the need
to close blocks and HTML tags.

We love Haml because it’s truly minimal, allowing a developer to focus simply on the structure of the page,
and not on the content. Today it’s a common to keep view logic out of your templates, but that directive has
been a guiding principle of Haml since its beginning. According to the 2012 Ruby Survey³, 36.96% of Rubyists
prefer Haml over ERb, and 15.84% demand it in their projects. Haml is also the standard templating engine at
various professional Ruby agencies, such as Hashrocket, Envy Labs, Remarkable Labs, and Astrails.

In this chapter, we’ll cover the fundamentals of Haml, from creating HTML elements, to using filters to create
other kinds of textual content embedded in your document.

12.1 Getting Started

To start using the Haml template language over ERb in your project, first add the haml-rails gem to your
Gemfile and run bundle install.

Gemfile

gem 'haml-rails'

The benefit of using haml-rails over simply the haml gem is it adds support for Rails specific features. For
instance, when you use a controller or scaffold generator, haml-rails will generate Haml views instead of
using the Rails default of ERb. The haml-rails gem also configures Haml templates to work with Rails 4
cache digests out of the box.

¹http://david.heinemeierhansson.com/arc/2006_09.html
²http://haml.info
³http://survey.hamptoncatlin.com/survey/stats

http://david.heinemeierhansson.com/arc/2006_09.html

Haml 407

12.2 The Basics

In this section, we’ll cover how to create HTML elements and attributes using Haml.

12.2.1 Creating an Element

To create an HTML element in Haml, one simply needs to prefix the percent character % to an element name.
The element name can be any string, allowing you to use newly added HTML5 elements, such as header.

Haml

%header content

HTML

<header>content</header>

Haml will automatically handle generating opening and closing tags for the element on compilation. Not only
does this make templates more concise and clean, it also eliminates common errors such forgetting to not close
an HTML tags.

12.2.2 Attributes

Attributes in Haml are defined using two styles. The first style involves defining attributes between curly
braces ({}). These attribute “brackets” are really just Ruby hashes, and are evaluated as such. Because of this,
local variables and ruby logic can be used when defining attributes.

%a{ title: @article.title, href: article_path(@article) } Title

The second style follows the more traditional way of defining HTML attributes using brackets. Note that
attributes are separated by white space, not commas.

%a(title=@article.title href=article_path(@article)) Title

Multiline Attributes
Attribute hashes can be separated on multiple lines for readability. All newlines must be placed
right after the comma:

1 %a{ title: @article.title,

2 href: article_path(@article) } Title

Haml 408

12.2.2.1 Data Attributes

Introduced with HTML 5, data attributes allow custom data to be embedded in any HTML element by
prefixing an attribute with data-. Instead of littering the attribute hash with multiple attribute keys prefixed
with data-, one can define all their data attributes in a nested hash associated with the key :data, like this:

Haml

%article{ data: { author_id: 1 } } Lorem Ipsum...

HTML

<article data-author-id='123'>Lorem Ipsum...</article>

Note that underscores are automatically replaced with a hyphen. Not that you’d want to, but you can change
this behavior by setting the Haml configuration option hyphenate_data_attrs to false. (Haml configuration
options are covered in detail later in this chapter.)

It’s also possible to nest data hashes more than one level, to reduce verbosity when attributes share common
roots.

Haml

%article{ data: { author: {id: 1, name: "Kevin Wu" } } Lorem Ipsum...

HTML

<article data-author-id='123' data-author-name='Kevin Wu'>Lorem Ipsum...</article>

12.2.2.2 Boolean Attributes

In HTML, there exists certain attributes that do not have a value associated with them, such as required.

<input type="text" required>

These are referred to as boolean attributes in Haml, since their value does not matter, only that they’re present.
To represent these attributes in using the hash-style attribute syntax, set the value of the attribute to true.

%input{ type: 'text', required: true }

Otherwise, if you’re using the HTML attribute style syntax, a boolean value doesn’t have to be set at all.

Haml 409

%input(type="text" required)

..

XHTML
If the format of Haml is set to :xhtml, boolean attributes will be set to their name. To illustrate, given the
above example, Haml would render the following HTML:

<input type="text" required="required" />

12.2.3 Classes and IDs

Haml was designed to promote the DRY principle (not repeating code unnecessarily.) As such, it provides a
shorthand syntax for adding id and class attributes to an element. The syntax is borrowed from CSS, where
ids are represented by a pound (#) and classes by a period (.). Both of these signs must be placed immediately
after the element and before an attributes hash.

Haml

1 #content

2 .entry.featured

3 %h3.title Haml

4 %p.body Lorem Ipsum...

HTML

1 <div id='content'>

2 <div class='entry featured'>

3 <h3 class='title'>Haml</h3>

4 <p class='body'>Lorem Ipsum...</p>

5 </div>

6 </div>

As the above example shows, multiple class names can be specified in similarly to CSS, by chaining the class
names together with periods. In a slightly more complicated scenario, the shortcut CSS style class and id
syntax can be combined with long-hand attributes. Both values are merged together when compiled down to
HTML.

Haml

%article.featured{ class: @article.visibility }

HTML

Haml 410

<article class='feature visible'>...</article>

Haml has some serious tricks up its sleeves for dealing with complex id and class attributes. For instance, an
array of class names will automatically be joined with a space.

Haml

%article{ class: [@article.visibility, @article.category] }

HTML

<article class='visible breakingnews'>...</article>

Arrays of id values will be joined with an underscore.

Haml

%article{ id: [@article.category, :article, @article.id] }

HTML

<article id='sports_article_1234'>...</article>

Note that the array is flattened and any elements that evaluate to false or nil will be dropped automatically.
This lets you do some pretty clever tricks at the possible expense of readability and maintainability.

1 %article{ class: [@article.visibility,

2 @article.published_at < 4.hours.ago && 'breakingnews'] }

In the example, if the article was published less than 4 hours ago, then breakingnews will be added a one
of the CSS classes of the element. While we’re on the subject, remember that it is advisable to migrate this
kind of logic into your Ruby classes. In this particular example, we might give the Article class (or one of its
presenters or decorator classes) a breakingnews? method, and use it instead of inlining the business logic.

1 def breaking?

2 published_at < 4.hours.ago

3 end

%article{ class: [@article.visibility, @article.breaking? && 'breakingnews'] }

If breaking? returns false, then the Ruby expression short circuits to false, and Haml ignores that particular
class name.

12.2.4 Implicit Divs

The default elements of Haml are divs. Since they are used so often in markup, one can simply define a div
with a class or id using . or # respectively.

Haml

Haml 411

1 #container

2 .content Lorem Ipsum...

HTML

1 <div id="container">

2 <div class="content">

3 Lorem Ipsum...

4 </div>

5 </div>

..

Implicit Div Creation
Not having to specify div tags explicitly helps your markup to be more semantic from the start, placing
focus on the intention of the div instead of treating it as just another markup container. It’s also one of the
main reasons that we recommend Haml over ERB. We believe that Haml templates lessen mental burden
by communicating the structure of your DOM in way that maps cleanly to the CSS that will be applied to
the document.

12.2.5 Empty Tags

In HTML, there are certain elements that don’t require a closing tag, such as br. By default, Haml will not
add a closing tag for the following tags:

• area

• base

• br

• col

• hr

• img

• input

• link

• meta

• param

To illustrate, consider the following example:

%hr

would render HTML

Haml 412

<hr>

or XHTML

<hr />

Adding a forward slash character (/) at the end of a tag definition causes Haml to to treat it as being an empty
element. The list of empty tags Haml uses can be overridden using the autoclose configuration setting. Haml
configuration options are covered in detail later in this chapter.

12.3 Doctype

A doctype must be the first item in any HTML document. By including the characters !!! at the beginning
of a template, Haml will automatically generate a doctype based on the configuration option :format, set to
:html5 by default. Adding !!! to a template would result in the following HTML:

<!DOCTYPE html>

Haml also allows the specifying of a specific doctype after !!!. A complete listing of supported doctypes can
be found on Haml’s reference website⁴.

12.4 Comments

There are two types of comments in Haml, those that appear in rendered HTML, and those that don’t.

12.4.1 HTML Comments

To leave a comment that will be rendered by Haml, place a forward slash (/) at the beginning of the line you
want commented. Anything nested under that line will also be commented out.

Haml

/ Some comment

HTML

<!-- Some comment -->

You can use this feature to produce Internet Explorer conditional comments by suffixing the condition in
square brackets like this:

⁴http://haml.info/docs/yardoc/file.REFERENCE.html#doctype_

Haml 413

/[if lt IE 9]

12.4.2 Haml comments

Besides conditional comments for targeting Internet Explorer, comments left in your markup are meant
to communicate a message to other developers working with the template. These messages should not be
rendered to the browser as they are specific to your team. In Haml, starting a line with -# ensures any text
following the pound sign isn’t rendered at all.

Haml

-# Some important comment...

%h1 The Rails 4 Way

HTML

<h1>The Rails 4 Way</h1>

If any text is nested beneath this kind of silent comment, it will also be ommitted from the resulting output.

12.5 Evaluating Ruby Code

Somewhat similar to ERb, using = results in Haml evaluating Ruby code following the equals character and
outputting the result into the document.

Haml

%p= %w(foo bar).join(' ')

HTML

<p>foo bar</p>

Alternatively, using the hyphen character - evaluates Ruby code, but doesn’t insert its output into the resulting
document. This is commonly used in combination with if\else statements and loops.

- if flash.notice

.notice= flash.notice

Note that Ruby blocks don’t need to be explicitly closed in Haml. As seen in the previous example, any
indentation beneath a Ruby evaluation command indicates a block.

Kevin says…
Do not use - to set variables. If you find yourself doing so, this is an indication that you need to
create some form of view object, such as a presenter or decorator.

Lines of Ruby code can be broken up over multiple lines as long as each line but the last ends with a comma.

Haml 414

= image_tag post.mage_url,

class: 'featured-image'

12.5.1 Interpolation

Ruby code can can be interpolated in two ways in Haml, inline with plain text using #{}, or using string
interpolation in combinationwith =. To illustrate, the following two lines of Haml code samples are equivalent:

%p By: #{post.author_name}

%p= "By: #{post.author_name}"

12.5.2 Escaping/Unescaping HTML

To match the default Rails XSS protection scheme, Haml will sanitize any HTML sensitive characters from
the output of =. This results in any = call to behave like &=.

Haml

&= "Cookies & Cream"

HTML

Cookies & Cream

Alternatively, to unescape HTML with Haml, simply use != instead of =. If the Haml configuration option
escape_html is set to false, then any call to = will behave like !=. (You probably will never want to do that.)

Haml

!= "Remember the awful <blink> tag?"

HTML

Remember the awful <blink> tag?

12.5.3 Escaping the First Character of a Line

On rare occasion, you might want to start a line of your template with a character such as = that would
normally be interpreted. You may escape the first character of a line using a backslash.

Haml

Haml 415

%p

\= equality for all =

HTML

<p>

= equality for all =

</p>

12.5.4 Multiline Declarations

Haml is meant to be used for layout and design. Although one can technically write multiline declarations
within a template, the creators of Haml made this intentionally awkward to discourage people from doing so.

If you do for some reason do need to declarations that spans multiple lines in a Haml template, you can do so
by adding multiline operator | to the end of each line.

1 #content

2 %p= h(|

3 "While possible to write" + |

4 "multiline Ruby code, " + |

5 "it is not the Haml way" + |

6 "as you should eliminate as much Ruby" + |

7 "in your views as possible") |

We highly recommend extracting multi-line Ruby code into helpers, decorators, or presenters.

12.6 Helpers

Haml provides a variety of helpers that are useful for day-to-day development, such as creating list items for
each item in a collection, and setting CSS ids and classes based on a model or controller.

12.6.1 Object Reference []

Given an object, such as an Active Record instance, Haml can output an HTML element with the id and class
attributes set by that object via the [] operator. For instance, assuming @post is an instance of a Post class,
with an id value of 1 then the following template code

1 %li[@post]

2 %h4= @post.title

3 = @post.excerpt

renders

Haml 416

<li class='post' id='post_1'>...

This is similar to using Rails helpers div_for and content_tag_for, covered in Chapter 11, All About Helpers.

12.6.2 page_class

Returns the name of the current controller and action to be used with the class attribute of an HTML element.
This is commonly used with the body element, to allow for easy style targeting based on a particular controller
or action. To illustrate, assuming the current controller is PostsController and action index

%body{ class: page_class }

renders

<body class='posts index'>

12.6.3 list_of(enum, opts = {}) { |item| ... }

Given an Enumerable object and a block, the list_of method will iterate and yield the results of the block
into sequential elements.

Haml

1 %ul

2 = list_of [1, 2, 3] do |item|

3 Number #{item}

HTML

1

2 Number 1

3 Number 2

4 Number 3

5

12.7 Filters

Haml ships with a collection of filters that allow you to pass arbitrary blocks of text content as input to
another processor, with the resulting output inserted into the document. The syntax for using a filter is a
colon followed by the name of the filter. For example, to use the markdown filter

Haml 417

1 :markdown

2 # The Rails 4 Way

3

4 Some awesome **Rails** related content.

renders

1 <h1>The Rails 4 Way</h1>

2

3 <p>Some awesome Rails related content.</p>

Here is a table of all the filters that Haml supports by default:

:cdata Surrounds the filtered text with CDATA tags.
:coffee Compiles filtered text into JavaScript using CoffeeScript.
:css Surrounds the filtered text with style tags.
:ERb Parses the filtered text with ERb. All Embedded Ruby code is evaluated in

the same context as the Haml template.
:escaped HTML-escapes filtered text.
:javascript Surrounds the filtered text with script tag.
:less Compiles filtered text into CSS using Less.
:markdown Parses the filtered text with Markdown.
:plain Does not parse filtered text. Can be used to insert chunks of HTML that will

be inserted as is without going through Haml.
:preserve Inserts filtered text with whitespace preserved.
:ruby Parses the filtered text with the Ruby interpreter. Ruby code is evaluated in

the same context as the Haml template.
:sass Compiles filtered text into CSS using Sass.
:scss Same as the :sass filter, except it uses the SCSS syntax to produce the CSS

output.

Some filters require external gems to be added to your Gemfile in order to work. For instance, the :markdown
filter requires a markdown gem, such as redcarpet.

12.8 Haml and Content

In Chris Eppstein’s blog post “Haml Sucks for Content” ⁵, he stated his opinions on why one shouldn’t use
Haml to build content:

Haml’s use of CSS syntax for IDs and class names should make it very clear: The markup you
write in Haml is intended to be styled by your stylesheets. Conversely, content does not usually
have specific styling - it is styled by tags.

Essentially what Chris was trying to convey is to not use native Haml syntax for creating anything other than
skeletal (or structural) HTML markup. Use filters to inline reader content, such as in this example using the
:markdown filter.

⁵http://chriseppstein.github.io/blog/2010/02/08/haml-sucks-for-content

Haml 418

1 %p

2 Do

3 %strong not

4 use

5 %a{ href: "http://haml.info" } Haml

6 for content

is equivalent to the following markdown within a filter

1 :markdown

2 Do **not* use [Haml](http://haml.info) for content

We like the idea, but admit that your mileage may vary. It really depends on the type of project you’re working
on and the capabilities of the person that will be maintaining the Haml template source files.

12.9 Configuration Options

Haml provides various configuration options to control exactly how markup is rendered. Options can be set
by setting the Haml::Template.options hash in a Rails initializer.

config/initializers/haml.rb

Haml::Template.options[:format] = :html5

12.9.1 autoclose

The autoclose option accepts an array of all tags that Haml should self-close if no content is present. Defaults
to [‘meta’, ‘img’, ‘link’, ‘br’, ‘hr’, ‘input’, ‘area’, ‘param’, ‘col’, ‘base’].

12.9.2 cdata

Determines if Haml will include CDATA sections around JavaScript and CSS blocks when using the
:javascript and :css filters respectively.

When format is set to html, defaults to false. If the format is xhtml, cdata will always be set to true and
cannot be overridden.

This option also affects the filters: * :sass * :scss * :less * :coffeescript

12.9.3 compiler_class

The compiler class to use when compiling Haml to HTML. Defaults to Haml::Compiler.

Haml 419

12.9.4 encoding

The default encoding for HTML output is Encoding.default_internal. If that is not set, the dfault is the
encoding of the Haml template.

The encoding option can be set to either a string or an Encoding object.

12.9.5 escape_attrs

If set to true (default), will escape all HTML-sensitive characters in attributes.

12.9.6 escape_html

When Haml is used with a Rails project, the escape_html option is automatically set to true to match Rails’
XSS protection scheme. This causes = to behave like &= in Haml templates.

12.9.7 format

Specifies the output format of a Haml template. By default, it’s set to :html5.

Other options include:

• :html4

• :xhtml: Will cause Haml to automatically generate self closing tags and wrap the output of JavaScript
and CSS filters inside CDATA.

12.9.8 hyphenate_data_attrs

Haml converts all underscores in all data attributes to use hyphens by default. To disable this functionality,
set hyphenate_data_attrs to false.

12.9.9 mime_type

The mime type that rendered Haml templates are servered with. If this is set to text/xml then the format will
be overridden to :xhtml even if it has set to :html4 or :html5.

12.9.10 parser_class

The parser class to use. Defaults to Haml::Parser.

12.9.11 preserve

The preserve option accepts an array of all tags should have their newlines preserved using the preserve

helper. Defaults to [‘textarea’, ‘pre’].

Haml 420

12.9.12 remove_whitespace

Setting to true, causes all tags to be treated as if whitespace removal Haml operators are present. Defaults to
false.

12.9.13 ugly

Haml does not attempt to format or indent the output HTML of a rendered template. By default, ugly is set
to false in every Rails environment except production. This enables you to view the rendered HTML is a
pleasing format when you’re in development, but yields higher performance in production.

12.10 Conclusion

In this chapter, we learned how Haml helps developers create clear, well-indented markup in your Rails
applications. In the following chapter we will cover how to manage sessions with Active Record, memcached,
and cookies.

13 Session Management
I’d hate to wake up some morning and find out that you weren’t you!

—Dr. Miles J. Binnell (Kevin McCarthy) in Invasion of the Body Snatchers (Allied Artists, 1956)

HTTP is a stateless protocol. Without the concept of a session (a concept not unique to Rails), there’d be no
way to know that any HTTP request was related to another one. You’d never have an easy way to know
who is accessing your application! Identification of your user (and presumably, authentication) would have
to happen on each and every request handled by the server¹.

Luckily, whenever a new user accesses our Rails application, a new session is automatically created. Using the
session, we can maintain just enough server-side state to make our lives as web programmers significantly
easier.

We use the word session to refer both to the time that a user is actively using the application, as well as to refer
to the persistent hash data structure that we keep around for that user. That data structure takes the form of
a hash, identified by a unique session id, a 32-character string of random hex numbers. When a new session
is created, Rails automatically sends a cookie to the browser containing the session id, for future reference.
From that point on, each request from the browser sends the session id back to the server, and continuity can
be maintained.

The Rails way to design web applications dictates minimal use of the session for storage of stateful data. In
keeping with the share nothing philosophy embraced by Rails, the proper place for persistent storage of data
is the database, period. The bottom line is that the longer you keep objects in the user’s session hash, the more
problems you create for yourself in trying to keep those objects from becoming stale (in other words, out of
date in relation to the database).

This chapter deals with matters related to session use, starting with the question of what to put in the session.

13.1 What to Store in the Session

Deciding what to store in the session hash does not have to be super-difficult, if you simply commit to storing
as little as possible in it. Generally speaking, integers (for key values) and short string messages are okay.
Objects are not.

13.1.1 The Current User

There is one important integer that most Rails applications store in the session, and that is the current_user_-
id. Not the current user object, but its id. Even if you roll your own login and authentication code (which you
shouldn’t do), don’t store the entire User (or Person) in the session while the user is logged in. (See Chapter

¹If you are really new to web programming and want a very thorough explanation of how web-based session management works, you may want
to read the information available at http://www.technicalinfo.net/papers/WebBasedSessionManagement.html.

Session Management 422

14, “Authentication and Authorization” for more information about keeping track of the current user.) The
authentication system should take care of loading the user instance from the database prior to each request
and making it available in a consistent fashion, via a method on your ApplicationController. In particular,
following this advice will ensure that you are able to disable access to given users without having to wait for
their session to expire.

13.1.2 Session Use Guidelines

Here are some more general guidelines on storing objects in the session:

• They must be serializable by Ruby’s Marshal API, which excludes certain types of objects such as a
database connection and other types of I/O objects.

• Large object graphs may exceed the size available for session storage.Whether this limitation is in effect
for you depends on the session store chosen and is covered later in the chapter.

• Critical data should not be stored in the session, since it can be suddenly lost by the user ending his
session (by closing the browser or clearing his cookies).

• Objects with attributes that change often should not be kept in the session.
• Modifying the structure of an object and keeping old versions of it stored in the session is a recipe for
disaster. Deployment scripts should clear old sessions to prevent this sort of problem from occurring,
but with certain types of session stores, such as the cookie store, this problem is hard to mitigate. The
simple answer (again) is to just not keep anything except for the occasional id in the session.

13.2 Session Options

You used to be able to turn off the session, but since Rails 2.3, applications that don’t need sessions don’t have
to worry about them. Sessions are lazy-loaded, which means unless you access the session in a controller
action, there is no performance implication.

13.3 Storage Mechanisms

The mechanism via which sessions are persisted can vary. Rails’ default behavior is to store session data as
cookies in the browser, which is fine for almost all applications. If you need to exceed the 4KB storage limit
inherent in using cookies, then you can opt for an alternative session store. But of course, you shouldn’t be
exceeding that limit, because you shouldn’t be keeping much other than an id or two in the session.

There are also some potential security concerns around session-replay attacks involving cookies, which might
push you in the direction of using an alternative session storage.

13.3.1 Active Record Session Store

In previous version of Rails, the ability to switch over to storing sessions in the database was built into
framework itself. However as of version 4.0, the Active Record session store has been extracted into its own
gem.

To get started using the Active Record session store, add the activerecord-session_store gem to your
Gemfile and run bundle:

Session Management 423

Gemfile

gem 'activerecord-session_store'

The next step is to create the necessarymigration, using a generator provided by the gem for that very purpose,
and run the migration to create the new table:

$ rails generate active_record:session_migration

create db/migrate/20130821195235_add_sessions_table.rb

$ rake db:migrate

== AddSessionsTable: migrating ==

-- create_table(:sessions)

-> 0.0095s

-- add_index(:sessions, :session_id)

-> 0.0004s

-- add_index(:sessions, :updated_at)

-> 0.0004s

== AddSessionsTable: migrated (0.0104s)====================================

The final step is to tell Rails to use the new sessions table to store sessions, via a setting in config/initializers/session_-
store.rb:

Rails.application.config.session_store :active_record_store

That’s all there is to it.

Kevin says…
The biggest problem with using the Active Record session store is that it adds an unnecessary load
on your database. Each time a user reads or writes from the session, the database will be hit.

13.3.2 Memcached Session Storage

If you are running an extremely high-traffic Rails deployment, you’re probably already leveraging Mem-
cached in some way or another. The memcached server daemon is a remote-process memory cache that helps
power some of the most highly trafficked sites on the Internet.

The memcached session storage option lets you use your memcached server as the repository for session data
and is blazing fast. It’s also nice because it has built-in expiration, meaning you don’t have to expire old
sessions yourself.

To use memcached, the first step is to add the dalli gem to your Gemfile and run bundle:

Session Management 424

Gemfile

gem 'dalli'

Next, setup your Rails environment to use memcached as its cache store. At a minimum, one can set the
configuration setting cache_store to :mem_cache_store:

config/environments/production.rb

config.cache_store = :mem_cache_store

Note
In Rails 4, when defining a cache_store using option :mem_cache_store, the dalli² gem is used
behind the scenes instead of the memcache-client gem. Besides being threadsafe, which is Rails 4
is by default, here are some of the reasons why Dalli is the new default memcached client:

• It is approximately 20% faster than the memcache-client gem.
• Dalli has the ability to handle failover with recovery and adjustable timeouts.
• Dalli uses the newer memcached binary protocol.

For more details, see the Cache Storage section in the Caching and Performance chapter.

Next, modify Rails’ default session store setting in config/initializers/session_store.rb. At minimum,
replace the contents of the file with the following:

Rails.application.config.

session_store ActionDispatch::Session::CacheStore

This will tell Rails to use the cache_store of the application as the underlying session store as well.
Additionally, one could explicitly set the amount of seconds a session is available for by setting the
:expire_after option.

Rails.application.config.

session_store ActionDispatch::Session::CacheStore,

expires_after: 20.minutes

13.3.3 The Controversial CookieStore

In February 2007, core-team member Jeremy Kemper made a pretty bold commit to Rails. He changed the
default session storage mechanism from the venerable PStore to a new system based on a CookieStore. His
commit message summed it up well:

²https://github.com/mperham/dalli

https://github.com/mperham/dalli

Session Management 425

Introduce a cookie-based session store as the Rails default. Sessions typically contain at most a
user_id and flash message; both fit within the 4K cookie size limit. A secure hash is included with
the cookie to ensure data integrity (a user cannot alter his user_id without knowing the secret
key included in the hash). If you have more than 4K of session data or don’t want your data to be
visible to the user, pick another session store. Cookie-based sessions are dramatically faster than
the alternatives.

I describe the CookieStore as controversial because of the fallout over making it the default session storage
mechanism. For one, it imposes a very strict size limit, only 4KB. A significant size constraint like that is fine
if you’re following the Rails way, and not storing anything other than integers and short strings in the session.
If you’re bucking the guidelines, well, you might have an issue with it.

13.3.3.1 Encrypted Cookies

Lots of people have complained about the inherent insecurity of storing session information, including the
current user information on the user’s browser. In Rails 3, cookies were only digitally signed, which verified
that they were generated by your application and were difficult to alter. However, the contents of the cookie
could still be easily read by the user. As of Rails 4, all cookies are encrypted by default, making them not only
hard to alter, but hard to read too.

13.3.3.2 Replay Attacks

Another problem with cookie-based session storage is its vulnerability to replay attacks, which generated an
enormous message thread on the rails-core mailing list. S. Robert James kicked off the thread³ by describing
a replay attack:

Example:

1. User receives credits, stored in his session.
2. User buys something.
3. User gets his new, lower credits stored in his session.
4. Evil hacker takes his saved cookie from step 1 and pastes it back in his browser’s cookie jar. Now he’s

gotten his credits back.

• This is normally solved using something called nonce. Each signing includes a once-only code, and the
signer keeps track of all of the codes, and rejects any message with the code repeated. But that’s very
hard to do here, since there may be several app servers serving up the same application.

• Of course, we could store the nonce in the DB, but that defeats the entire purpose!

The short answer is: Do not store sensitive data in the session. Ever. The longer answer is that coordination of
nonces across multiple servers would require remote process interaction on a per-request basis, which negates
the benefits of using the cookie session storage to begin with.

³If you want to read the whole thread (all 83 messages of it), simply search Google for “Replay attacks with cookie session.” The results should
include a link to the topic on the Ruby on Rails: Core Google Group.

Session Management 426

The cookie session storage also has potential issues with replay attacks that let malicious users on shared
computers use stolen cookies to log in to an application that the user thought he had logged out of. The
bottom line is that if you decide to use the cookie session storage on an application with security concerns,
please consider the implications of doing so carefully.

13.3.4 Cleaning Up Old Sessions

If you’re using the activerecord-session_store gem, you can write your own little utilities for keeping the
size of your session store under control. Listing 13.1 is a class that you can add to your /lib folder and invoke
from the production console or a script whenever you need to do so.

Listing 13.1: SessionMaintenance class for cleaning up old sessions

1 class SessionMaintenance

2 def self.cleanup(period = 24.hours.ago)

3 session_store = ActiveRecord::SessionStore::Session

4 session_store.where('updated_at < ?', period).delete_all

5 end

6 end

13.4 Cookies

This section is about using cookies, not the cookie session store. The cookie container, as it’s known, looks
like a hash, and is available via the cookies method in the scope of controllers. Lots of Rails developers use
cookies to store user preferences and other small nonsensitive bits of data. Be careful not to store sensitive
data in cookies, since they can be read by users. The cookies container is also available by default in view
templates and helpers.

13.4.1 Reading and Writing Cookies

The cookie container is filled with cookies received along with the request, and sends out any cookies that
you write to it with the response. Note that cookies are read by value, so you won’t get the cookie object itself
back, just the value it holds as a string (or as an array of strings if it holds multiple values).

To create or update cookies, you simply assign values using the brackets operator. You may assign either a
single string value or a hash containing options, such as :expires, which takes a number of seconds before
which the cookie should be deleted by the browser. Remember that Rails convenience methods for time are
useful here:

1 # writing a simple session cookie

2 cookies[:list_mode] = "false"

3

4 # specifying options, curly brackets are needed to avoid syntax error

5 cookies[:recheck] = { value: "false", expires: 5.minutes.from_now }

Session Management 427

I find the :path options useful in allowing you to set options specific to particular sections or even particular
records of your application. The :path option is set to '1', the root of your application, by default.

The :domain option allows you to specify a domain, which is most often used when you are serving up your
application from a particular host, but want to set cookies for the whole domain.

1 cookies[:login] = {

2 value: @user.security_token,

3 domain: '.domain.com',

4 expires: Time.now.next_year

5 }

Cookies can also be written using the :secure option, and Rails will only ever transmit them over a secure
HTTPS connection:

writing a simple session cookie

cookies[:account_number] = { value: @account.number, secure: true }

The :httponly option tells Rails whether cookies can be accessible via scripting or only HTTP. It defaults to
false.

Finally, you can delete cookies using the delete method:

cookies.delete :list_mode

13.4.1.1 Permanent Cookies

Writing cookies to the response via the cookies.permanent hash automatically gives them an expiration date
20 years in the future.

1 cookies.permanent[:remember_me] = current_user.id

13.4.1.2 Signed Cookies

Writing cookies to the response via the cookies.signed hash generates signed representations of cookies,
to prevent tampering of that cookie’s value by the end user. If a signed cookie was tampered with a
ActiveSupport::MessageVerifier::InvalidSignature exception will be raised when that cookie is read
in a subsequent request.

cookies.signed[:remember_me] = current_user.id

13.5 Conclusion

Deciding how to use the session is one of the more challenging tasks that faces a web application developer.
That’s why we put a couple of sections about it right in the beginning of this chapter. We also covered the
various options available for configuring sessions, including storage mechanisms and methods for timing out
sessions and the session lifecycle. We also covered use of a closely-related topic, browser cookies.

14 Authentication and Authorization
“Thanks goodness [sic], there’s only about a billion of these because DHHdoesn’t think auth/auth
[sic] belongs in the core.”

—George Hotelling at http://del.icio.us/revgeorge/authentication

If you’re building a web application, more often than not you will likely need some form of user security.
User security can be broken up into two categories, authentication which verifies the identity of a user, and
authorization which verifies what they can do.

In version 3.1, Rails introduced has_secure_password, which adds methods to set and authenticate against a
BCrypt password. Although this functionality now exists in the framework, it is only a small part of a robust
authentication solution. We still need to write our own authentication code or have to look outside of Rails
core for a suitable solution.

In this chapter, we’ll cover authentication library Devise, writing your own authentication code with has_-

secure_password, and cover the authorization library pundit.

14.1 Devise

Devise¹ is a highly modular Rack-based authentication framework that sits on top of Warden. It has a robust
feature set and leverages the use of Rails generators, and you only need to use what is suitable for your
application.

14.1.1 Getting Started

Add the devise gem to your project’s Gemfile and bundle install. Then you can generate the Devise
configuration by running:

1 $ rails generate devise:install

This will create the initializer for devise, and an English version i18n YAML for Devise’s messages. Devise
will also alert you at this step to remember to do some mandatory Rails configuration if you have not done
so already. This includes setting your default host for Action Mailer, setting up your root route, and making
sure your flash messages will render in the application’s default layout.

¹https://github.com/plataformatec/devise

https://github.com/plataformatec/devise

Authentication and Authorization 429

14.1.2 Modules

Adding authentication functionality to your models using Devise is based on the concept of adding different
modules to your class, based on only what you need. The available modules for you to use are:

database-authenticatable

Handles authentication of a user, as well as password encryption.

confirmable

Adds the ability to require email confirmation of user accounts.

lockable

Can lock an account after n number of failed login attempts.

recoverable

Provides password reset functionality.

registerable

Alters user sign up to be handled in a registration process, along with account management.

rememberable

Provides remember me functionality.

timeoutable

Allows sessions to be expired in a configurable time frame.

trackable:

Stores login counts, timestamps, and IP addresses.

validatable

Adds customizable validations to email and password.

omniauthable

Adds Omniauth² support

Knowing which modules you wish to include in your model is important for setting up your models,
migrations, and configuration options later on.

14.1.3 Models

To set up authentication in a model, run the Devise generator for that model and then edit it. For the purpose
of our examples, we will use the ever-so-exciting User model.

$ rails generate devise User

This will create your model, a database migration, and route for your shiny new model. Devise will have
given some default modules to use, which you will need to alter in your migration and model if you want to
use different modules. In our example we only use a subset of what is offered.

Our resulting database migration looks like

²https://github.com/intridea/omniauth

https://github.com/intridea/omniauth
https://github.com/intridea/omniauth

Authentication and Authorization 430

1 class DeviseCreateUsers < ActiveRecord::Migration

2 def change

3 create_table(:users) do |t|

4 ## Database authenticatable

5 t.string :email, null: false, default: ""

6 t.string :encrypted_password, null: false, default: ""

7

8 ## Recoverable

9 t.string :reset_password_token

10 t.datetime :reset_password_sent_at

11

12 ## Rememberable

13 t.datetime :remember_created_at

14

15 ## Trackable

16 t.integer :sign_in_count, default: 0

17 t.datetime :current_sign_in_at

18 t.datetime :last_sign_in_at

19 t.string :current_sign_in_ip

20 t.string :last_sign_in_ip

21

22 ## Confirmable

23 # t.string :confirmation_token

24 # t.datetime :confirmed_at

25 # t.datetime :confirmation_sent_at

26 # t.string :unconfirmed_email # Only if using reconfirmable

27

28 ## Lockable

29 # t.integer :failed_attempts, default: 0 # Only if lock strategy

30 # is :failed_attempts

31 # t.string :unlock_token # Only if unlock strategy is :email or :both

32 # t.datetime :locked_at

33

34 t.timestamps

35 end

36

37 add_index :users, :email, unique: true

38 add_index :users, :reset_password_token, unique: true

39 # add_index :users, :confirmation_token, unique: true

40 # add_index :users, :unlock_token, unique: true

41 end

42 end

We then modify our User model to mirror the modules we included in our migration.

Authentication and Authorization 431

1 class User < ActiveRecord::Base

2 # Include default devise modules. Others available are:

3 # :confirmable, :lockable, :timeoutable and :omniauthable

4 devise :database_authenticatable, :registerable,

5 :recoverable, :rememberable, :trackable, :validatable

6 end

Now we’re ready to rake db:migrate and let the magic happen.

14.1.4 Controllers

Devise provides some handy helper methods that can be used in your controllers to authenticate your model
or get access to the currently signed in person. For example, if you want to restrict access in a controller you
may use one of the helpers as a before_action.

1 class MeatProcessorController < ApplicationController

2 before_action :authenticate_user!

3 end

You can also access the currently signed in user via the current_user helper method, or the current session
via the user_session method. Use user_signed_in? if you want to check if the user had logged in without
using the before_action.

Thais says…
The helper methods are generated dynamically, so in the case where your authenticated models
are named differently use the model name instead of user in the examples. An instance of this
could be with an Admin model - your helpers would be current_admin, admin_signed_in?, and
admin_session.

14.1.5 Views

Devise is built as a Rails Engine, and comes with views for all of your included modules. All you need to
do is write some CSS and you’re off to the races. However there may be some situations where you want to
customize them, and Devise provides a nifty script to copy all of the internal views into your application.

rails generate devise_views

If you are authenticating more than one model and don’t want to use the same views for both, just set the
following option in your config/initializers/devise.rb:

Authentication and Authorization 432

config.scoped_views = true

ERB to Haml
The views extracted from the Devise Rails Engine are ERB templates. If your preference is to use
Haml for templates, one can convert the Devise ERB templates via the html2haml gem.

After the gem is installed, run the following command from the root of your Rails project:

$ for file in app/views/devise/**/*.erb; do html2haml -e $file

${file%erb}haml && rm $file; done

14.1.6 Configuration

When you first set up Devise using rails generate devise:install, a devise.rb was tossed into your
config/initializers directory. This initializer is where all the configuration for Devise is set, and it is already
packed full of commented-out goodies for all configuration options with excellent descriptions for each option.

Durran says…
Using MongoDB as your main database? Under the general configuration section in the initializer
switch the require of active---record to mongoid for pure awesomeness

Devise comes with internationalization support out of the box and ships with English message defini-
tions located in config/locales/devise.en.yml. (You’ll see this was created after you ran the install
generator at setup.) This file can be used as the template for Devise’s messages in any other language
by staying with the same naming convention for each file. Create a Chilean Spanish translation in
config/locales/devise.cl.yml weon!

14.1.7 Strong Parameters

With the addition of Strong Parameters to Rails 4, Devise has followed suit and moved the concern of mass-
assignment to the controller. In Devise, mass-assignment parameter sanitation occurs in the following three
actions:

sign_in

Corresponding to controller action Devise::SessionsController#new, only authentication keys, such
as email are permitted.

sign_up

Corresponding to controller action Devise::RegistrationsController#create, permits authentica-
tion keys, password, and password_confirmation.

Authentication and Authorization 433

account_update

Corresponding to controller action Devise::RegistrationsController#update, permits authentica-
tion keys, password, password_confirmation, and current_password.

If you require additional parameters to be permitted byDevise, the simplest way to do so is through a before_-
action callback in ApplicationController.

1 class ApplicationController < ActionController::Base

2 before_action :devise_permitted_parameters, if: :devise_controller?

3

4 protected

5

6 def devise_permitted_parameters

7 devise_parameter_sanitizer.for(:sign_up) << :phone_number

8 end

9 end

Additionally, passing a block to devise_parameter_sanitizer, one can completely change the Devise
defaults.

1 class ApplicationController < ActionController::Base

2 before_action :devise_permitted_parameters, if: :devise_controller?

3

4 protected

5

6 def devise_permitted_parameters

7 devise_parameter_sanitizer.

8 for(:sign_in) { |user| user.permit(:email, :password, :remember_me,

9 :username) }

10 end

11 end

For more details on Strong Parameters, see Chapter 15, “Security”.

14.1.8 Extensions

There are plenty of 3rd party extensions out there for Devise that come in handy if you are authenticating
using different methods.

cas_authenticatable

Allows for single sign on using CAS.

ldap_authenticatable

Authenticate users using LDAP.

Authentication and Authorization 434

rpx_connectable

Adds support for using RPX authentication.

A complete list of extensions can be found at: https://github.com/plataformatec/devise/wiki/Extensions

14.1.9 Testing with Devise

To enable Devise test helpers in controller specs, create the spec support file devise.rb in the spec/support
folder.

1 # spec/support/devise.rb

2 RSpec.configure do |config|

3 config.include Devise::TestHelpers, type: :controller

4 end

This will add helper methods sign_in and sign_out, that allow creating and destroying a session for a
controller spec respectively. Both methods accept an instance of a Devise model.

1 require 'spec_helper'

2

3 describe AuthenticatedController do

4 let(:user) { FactoryGirl.create(:user) }

5

6 before do

7 sign_in user

8 end

9

10 ...

11 end

14.1.10 Summary

Devise is an excellent solution if you want a large number of standard features out of the box while writing
almost no code at all. It has a clean and easy to understand API and can be used with little to no ramp up
time on any application.

14.2 has_secure_password

Prior to version 3.1, Rails did not include any sort of standard authentication mechanism. That changed
with the introduction of has_secure_password, an ActiveModel mechanism that adds methods to set and
authenticate against a BCrypt password³. However, has_secure_password is only a small piece to a complete
authentication solution. Unlike other solutions like Devise, one still needs to implement a few extra items in
order to get has_secure_password running properly.

³A BCrypt password is based on the Blowfish cipher, incorporating a salt and is resistant to brute-force attacks. For more information, see the
Wikipedia article on the subject.

https://github.com/plataformatec/devise/wiki/Extensions
http://en.wikipedia.org/wiki/Bcrypt

Authentication and Authorization 435

14.2.1 Getting Started

To use ActiveModel’s has_secure_password, add the required gem dependency bcrypt-ruby to your Gemfile
and run bundle install.

gem 'bcrypt-ruby', '~> 3.0.0'

14.2.2 Creating the Models

To add authentication to a model, it must have an attribute named password_digest. For the purpose of our
example, let’s generate a new User model that will authenticate with an email and password.

$ rails generate model User email:string password_digest:string

Then edit the CreateUsers migration to add the columns your application needs to satisfy its authentication
requirements.

1 class CreateUsers < ActiveRecord::Migration

2 def change

3 create_table :users do |t|

4 t.string :email

5 t.string :password_digest

6 t.timestamps

7

8 t.index(:email, unique: true)

9 end

10 end

11 end

Next, setup your User model, by adding the macro style method has_secure_password. We’ve added a
uniqueness validation for email to ensure we can only have one email per user.

1 class User < ActiveRecord::Base

2 has_secure_password

3

4 validates :email, presence: true, uniqueness: { case_sensitive: false }

5 end

A virtual attribute password is added to the model, which when set, automatically copies its encrypted value
to password_digest. Validations on create for the presence and confirmation of password are also added.

To illustrate, let’s create and authenticate a user in the console:

Authentication and Authorization 436

>> user = User.create(email: 'user@example.com')

=> #<User id: nil, email: "user@example.com", password_digest: nil,

created_at: nil, updated_at: nil>

>> user.valid?

=> false

>> user.errors.full_messages

=> ["Password can't be blank"]

>> user = User.create(email: 'user@example.com', password: 'therails4way',

password_confirmation: 'therails4way')

=> #<User id: 1, email: "user@example.com", password_digest:

"$2a$10$RZfWUZiGze9Bk13PFOYB5eWKZuJUMAnqU/90rpcywGja...",

created_at: "2013-10-01 15:26:55", updated_at: "2013-10-01 15:26:55">

>> user.authenticate('abcdefgh')

=> false

>> user.authenticate('therails4way')

=> #<User id: 1, email: "user@example.com", password_digest:

"$2a$10$RZfWUZiGze9Bk13PFOYB5eWKZuJUMAnqU/90rpcywGja...",

created_at: "2013-10-01 15:26:55", updated_at: "2013-10-01 15:26:55">

14.2.3 Setting Up the Controllers

Once the User model has been setup, we need to create a sessions controller to manage the session for your
authenticated model. A resourceful controller for “users” is also required, but its implementation will depend
on your own application’s requirements.

To create the controllers, run the following in the terminal:

$ rails generate controller sessions

$ rails generate controller users

In your ApplicationController you will need to provide access to the current user, so that all of your
controllers can access this information easily.

Authentication and Authorization 437

1 class ApplicationController < ActionController::Base

2 protect_from_forgery with: :exception

3

4 helper_method :current_user

5

6 protected

7

8 def current_user

9 @current_user ||= User.find(session[:user_id]) if session[:user_id]

10 end

11 end

The SessionsController should respond to new, create, and destroy in order to leverage all basic sign-in/out
functionality.

1 class SessionsController < ApplicationController

2 def new

3 end

4

5 def create

6 user = User.where(email: params[:email]).first

7

8 if user && user.authenticate(params[:password])

9 session[:user_id] = user.id

10 redirect_to root_url, notice: 'Signed in successfully.'

11 else

12 flash.now.alert = 'Invalid email or password.'

13 render :new

14 end

15 end

16

17 def destroy

18 session[:user_id] = nil

19 redirect_to root_url, notice: 'Signed out successfully.'

20 end

21 end

Make sure you’ve added the routes for the new controllers.

Authentication and Authorization 438

1 Rails.application.routes.draw do

2 resource :session, only: [:new, :create, :destroy]

3 resources :users

4 ...

5 end

Finally, create a view app/views/sessions/new.html.haml containing a sign-in form to allow users to create
a session within your application:

1 %h1 Sign in

2

3 - if flash.alert

4 .alert= flash.alert

5

6 = form_tag session_path do

7 .field

8 = label_tag :email

9 = email_field_tag :email, params[:email],

10 placeholder: 'Enter your email address', required: true

11

12 .field

13 = label_tag :password

14 = password_field_tag :password, params[:password],

15 placeholder: 'Enter your password', required: true

16

17 = submit_tag 'Sign in'

14.2.4 Controller, Limiting Access to Actions

Now that you are authenticating, you will want to control access to specific controller actions. A common
pattern for handling this is through the use of action callbacks in your controllers, where the authentication
checks reside in your ApplicationController

1 class ApplicationController < ActionController::Base

2 ...

3

4 protected

5

6 def authenticate

7 unless current_user

8 redirect_to new_session_url,

9 alert: 'You need to sign in or sign up before continuing.'

10 end

11 end

Authentication and Authorization 439

12 end

13

14 class DashboardController < ApplicationController

15 before_action :authenticate

16 end

14.2.5 Summary

We’ve only scratched the surface of implementing a full blown authentication solution using has_secure_-

password. Although the implementation is simple, it leaves a bit to be desired. Some things to consider when
creating your own authentication framework from scratch include “remember me” functionality, the ability
for a user to reset a password, token authentication, and so on.

14.3 Pundit

Authorization is the function of specifying access rights to resources⁴, such as models. Once a user has been
authenticated within an application, using authorization, one can limit a user from performing certain actions,
for instance updating a record. Besides actions, one could even limit what is visible to a user based on their
role. For example, if we created a blog application, a normal user should only be able to view published posts,
while an administrator should be able to view all posts within the application.

Pundit⁵ is a minimal authorization library created by the folks at Elabs, that is focused around a notion of
policy classes. A policy is a class that has the same name as a model class, suffixed with the word “Policy”.
It accepts both a user and model instance, that are used to determine if the provided user has permissions to
perform certain actions.

Kevin Says…
The second argument to a Pundit policy can by any object, not necessarily just an Active Record
instance.

14.3.1 Getting started

Add the pundit gem to your project’s Gemfile and bundle install. Then you can install Pundit by running
the pundit:install generator:

$ rails generate pundit:install

This will create an application policy in app/policies for Pundit. Although optional, inheriting from
ApplicationPolicy for each of your policy files is recommended, as it ensures by default no resourceful
action is authorized.

⁴http://en.wikipedia.org/wiki/Authorization
⁵https://github.com/elabs/pundit

http://en.wikipedia.org/wiki/Authorization
https://github.com/elabs/pundit

Authentication and Authorization 440

1 # app/policies/application_policy.rb

2 class ApplicationPolicy

3 attr_reader :user, :record

4

5 def initialize(user, record)

6 @user = user

7 @record = record

8 end

9

10 def index?

11 false

12 end

13

14 def show?

15 scope.where(id: record.id).exists?

16 end

17

18 def create?

19 false

20 end

21

22 def new?

23 create?

24 end

25

26 def update?

27 false

28 end

29

30 def edit?

31 update?

32 end

33

34 def destroy?

35 false

36 end

37

38 def scope

39 Pundit.policy_scope!(user, record.class)

40 end

41 end

Next, to include the Pundit methods within a controller, include Pundit in your ApplicationController:

Authentication and Authorization 441

1 class ApplicationController < ActionController::Base

2 include Pundit

3 end

14.3.2 Creating a Policy

To create a policy for a model, run the Pundit generator for that model and then edit it. To illustrate, we will
use the Post model from the preceding example of a blog application.

$ rails generate pundit:policy post

The generator creates the following PostPolicy in the app/policies folder:

1 class PostPolicy < ApplicationPolicy

2 class Scope < Struct.new(:user, :scope)

3 def resolve

4 scope

5 end

6 end

7 end

In the case of our example, let’s guard against non-administrator users from creating a blog post by
implementing the create? predicate method.

1 class PostPolicy < ApplicationPolicy

2 def create?

3 user.admin?

4 end

5 ...

6 end

Besides checking against a role, one can add permission conditions based on the record itself. For example, in
this blogging application, an administrator can only delete a post if it hasn’t been published.

1 class PostPolicy < ApplicationPolicy

2 def destroy?

3 user.admin? && !record.published?

4 end

5 ...

6 end

14.3.3 Controller Integration

Pundit provides various helper methods to be used in controllers to authorize a user to perform an action
against a record. For example, the authorize method will automatically infer the policy file based on
the passed in record instance. To illustrate, let’s check if the current user can create a post within the
PostsController:

Authentication and Authorization 442

1 class PostsController < ApplicationController

2 expose(:post)

3

4 def create

5 authorize post

6 post.save

7 respond_with(post)

8 end

9

10 ...

11 end

The above call to authorize is equivalent to PostPolicy.new(current_user, @post).create?. If the user is
not authorized, Pundit will raise a NotAuthorizedError exception.

..

Note
The authorizemethod will gain access to the currently logged in user by calling the current_usermethod.
This can be overridden by implementing a method called pundit_user in your controller.

If you want to ensure authorization is always executed within your controllers, Pundit also provides a method
verify_authorized that raises an exception if authorize hasn’t been called. This method should be run
within an after_action callback.

1 class ApplicationController < ActionController::Base

2 after_filter :verify_authorized, except: :index

3 end

14.3.4 Policy Scopes

Using Pundit, we can define a scope within a policy to limit what records are returned based on a user role.
For example, in our recurring blogging application example, an administrator should be able to view all posts,
whereas a user should only be able to view posts that have been published. This is achieved by implementing
a nested class named Scope under the policy class. The instances of the scope must respond to the method
resolve, which should return an ActiveRecord::Relation.

Authentication and Authorization 443

1 class PostPolicy < ApplicationPolicy

2 class Scope < Struct.new(:user, :scope)

3 def resolve

4 if user.admin?

5 scope

6 else

7 scope.where(published: true)

8 end

9 end

10 end

11 ...

12 end

Pundit provides a helper method policy_scope that infers the policy file based on the class passed into it, and
return the scope specific to the current user’s permissions.

1 def index

2 @posts = policy_scope(Post)

3 end

which is equivalent to

1 def index

2 @posts = PostPolicy::Scope.new(current_user, Post).resolve

3 end

To ensure policy scopes are always called for specific controller actions, run verify_policy_scoped in an
after_action callback. If policy_scope is not called, an exception will be raised.

1 class ApplicationController < ActionController::Base

2 after_filter :verify_policy_scoped, only: :index

3 end

14.3.5 Strong Parameters

Pundit also makes it possible to explicitly set what attributes are allowed to be mass-assigned with strong
parameters based on a user role.

Authentication and Authorization 444

1 # app/policies/assignment_policy

2 class AssignmentPolicy < ApplicationPolicy

3 def permitted_attributes

4 if user.admin?

5 [:title, :question, :answer, :status]

6 else

7 [:answer]

8 end

9 end

10 end

11

12 # app/controllers/assignments_controller.rb

13 class AssignmentsController < ApplicationController

14 expose(:assignment, attributes: :assignment_params)

15

16 def update

17 assignment.save

18 respond_with(assignment)

19 end

20

21 private

22

23 def assignment_params

24 params.require(:assignment).

25 permit(policy(assignment).permitted_attributes)

26 end

27 end

14.3.6 Testing Policies

Although Pundit comes with its own RSpec matchers for testing, our preference is to use an RSpec matcher
created by the team at Thunderbolt Labs⁶ as it provides better readability.

To get started, add the following into a file under spec/support:

1 # spec/support/matchers/permit_matcher.rb

2 RSpec::Matchers.define :permit do |action|

3 match do |policy|

4 policy.public_send("#{action}?")

5 end

6

7 failure_message do |policy|

8 "#{policy.class} does not permit #{action} on #{policy.record} for

9 #{policy.user.inspect}."

⁶http://thunderboltlabs.com/blog/2013/03/27/testing-pundit-policies-with-rspec

http://thunderboltlabs.com/blog/2013/03/27/testing-pundit-policies-with-rspec

Authentication and Authorization 445

10 end

11

12 failure_message_when_negated do |policy|

13 "#{policy.class} does not forbid #{action} on #{policy.record} for

14 #{policy.user.inspect}."

15 end

16 end

Using the above RSpec matcher, one can test policies that look like

1 # spec/policies/post_policy.rb

2 require 'spec_helper'

3

4 describe PostPolicy do

5 subject(:policy) { PostPolicy.new(user, post) }

6

7 let(:post) { FactoryGirl.build_stubbed(:post) }

8

9 context "for a visitor" do

10 let(:user) { nil }

11

12 it { is_expected.to permit(:show) }

13 it { is_expected.to_not permit(:create) }

14 it { is_expected.to_not permit(:new) }

15 it { is_expected.to_not permit(:update) }

16 it { is_expected.to_not permit(:edit) }

17 it { is_expected.to_not permit(:destroy) }

18 end

19

20 context "for an administrator" do

21 let(:user) { FactoryGirl.create(:administrator) }

22

23 it { is_expected.to permit(:show) }

24 it { is_expected.to permit(:create) }

25 it { is_expected.to permit(:new) }

26 it { is_expected.to permit(:update) }

27 it { is_expected.to permit(:edit) }

28 it { is_expected.to permit(:destroy) }

29 end

30 end

14.4 Conclusion

We’ve covered the most popular authentication and authorization frameworks for Rails at the moment, but
there are plenty more out there to examine if these are not suited for your application. Also, you were able to

Authentication and Authorization 446

see how easy it is to roll your own simple authentication solution using has_secure_password.

15 Security
Ruby on Rails security sucks lolz amirite? No. Well, no to the nuance. Software security does,
in general, suck. Virtually every production system has security bugs in it. When you bring
pen testers in to audit your app, to a first approximation, your app will lose. While Ruby
on Rails cherishes its Cool-Kid-Not-Lame-Enterprise-Consultingware image, software which is
absolutely Big Freaking Enterprise consultingware, like say the J2EE framework or Spring, have
seen similar vulnerabilities in the past.¹

—Patrick McKenzie

Security is a very wide topic, one that we can’t possibly cover in a single book chapter. Still there are things
that every competent web developer using Rails should know.

Unlike many other software engineering topics, security is not something that you can solve by investing
more hours to fix bugs or inefficient algorithms. Nor it is something you can do by trial and error. You have
to know most common attack vectors and how to avoid vulnerabilities.

We will look into common web application security problems and the ways that Rails deals with them, as
well as general security guidelines and practices. Along the way we will discuss management of passwords
and other private information, log masking, mass-assignment attributes protection, SQL Injection, Cross-Site
Scripting (XSS), Cross-Site Request Forgery (XSRF) and more.

15.1 Password Management

One can say leaking your customer’s plain text passwords is probably one of the most embarrassing security
problems to have. Especially as the “do not store plain text passwords” mantra is widely known and doing the
right thing is really not that hard. Quite easy actually. It usually boils down to using one of the many libraries
available. Its also not something that you need to pay constant attention to. You do it once, and you are done.

The biggest problem with storing plain text passwords is that many people use the same password on multiple
sites, and so in an event of a leak, you do not only expose user’s accounts in your application, but potentially
also put a lot of people other accounts at risk.

The solution is simple and well known: securely hash all passwords. Secure hashing is not the same as
encryption, as encryption assumes ability to decrypt and secure hash is a one way function. Once you pass
the password through it there is no way to get it back in the original form.

Popular hash functions includeMD5 and SHA1.MD5 is considered insecure and is no longer used for password
security,² but you’ll occasionally see it used it to hash values that are not under attack.

“How do you check a hashed password?” you might ask. It’s simple, actually, when we need to test a password
given to a login form, we just pass it through the same one way hash function and compare the results.

¹http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-your-startup/
²CarnegieMellon’s Software Engineering Institute says that MD5 “should be considered cryptographically broken and unsuitable for further use”

http://www.kb.cert.org/vuls/id/836068

http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-your-startup/
http://www.kb.cert.org/vuls/id/836068

Security 448

The actual low level details are a bit more complicated, as we also want to protect against what is known
as dictionary rainbow table attack. An attacker might get access to a database of hashed user passwords,
and compare the hashes to a table of hashes of dictionary words. Statistically, if you have enough users, a
significant amount of them will use dictionary words for their passwords. This will will allow an attacker to
find out their password from the rainbow table, and using other information you have stored (like user email)
try to gain access to those user’s accounts on other services.

The solution for this problem is using a salt, a random string that is generated for every user during account
creation, and which is used together with user’s password when calculating hashed password that we store
in the database.

Since the salt is random for every user there is no way to prepare a dictionary table of every dictionary word
with every possible salt. So the attacker is left with the brute force attack, actually trying to pick passwords
one by one, by trying every possible password combination with user’s salt.

To make it even harder on the attacker, most ‘serious’ password storage libraries use a secure hashing
algorithms which was intentionally made very “expensive” to compute, usually by doing a lot of rounds
of hash function computation in a sequence.

We’ve delved into the gory details, and you might wonder if it involves a lot of work to implement this stuff in
Rails. Actully, all the popular authentication libraries like Authlogic and Devise implement this functionality
out of the box. If you don’t want to use a 3rd-party gem, Rails itself has straightforward support for secure
password storage with the help of the popular BCrypt library.

To add secure hashed passwords to an ActiveModel class you just need to call the has_secure_password class
method.

The usage is very simple:

1 class User

2 has_secure_password

3 end

From the Rails documentation:

This mechanism requires you to have a password_digest attribute.

Validations for presence of password on create, confirmation of password (using a password_-

confirmation attribute) are automatically added. If you wish to turn off validations, pass
validations: false as an argument. You can add more validations by hand if need be.

If you don’t need the confirmation validation, just don’t set any value to the password_-

confirmation attribute and the validation will not be triggered.

You need to add bcrypt-ruby (∼> 3.0.0) to Gemfile to use #has_secure_password:
gem 'bcrypt-ruby', '∼> 3.0.0'

To actually validate the password during authentication you can use the authenticatemethod which will be
made available on your objects:

Security 449

User.find_by(email: "john@doe.com").try(:authenticate, params[:password])

The method will return the object itself if the password matches or nil otherwise.

15.2 Log Masking

Great, we are no longer storing the passwords in the database. We are not done though. We might still be
leaking the passwords and other sensitive information into the application logs. For every request Rails logs
the request parameters into the log file unless parameter name includes one of the “filtered” strings. For a
“filtered” parameter Rails will replace the value by [FILTERED] before the logging:

Started POST

"/users?name=john&password=[FILTERED]&password_confirmation=[FILTERED]"

for 127.0.0.1 at 2013-02-24 22:29:59 +0000

Processing by UsersController#create as */*

Parameters: {"name"=>"john", "password"=>"[FILTERED]",

"password_confirmation"=>"[FILTERED]"}

Rails protects any parameter that includes password in its name by default, so both password and password_-

confirmation are already covered. If your password is using a differently named parameter, or if you want
to protect other information (for example credit card numbers), you should add those parameter names to the
special Rails configuration variable filter_parameters.

A Rails 4 project generated with the standard Rails generator will generate config/initializers/filter_-
parameter_logging.rb with the following line:

Rails.application.config.filter_parameters += [:password]

To protect another parameter, simply add it to the array, e.g.:

Rails.application.config.filter_parameters += [:password, :cc, :ccv]

15.3 SSL (Secure Sockets Layer)

So now our apps are secure, right? We properly encrypted our passwords in the database and we filtered
sensitive data from being recorded in our logs. Well, we’re not quite finished with security yet. The password
and other sensitive information is still vulnerable to eavesdropping while in-transit from the user’s browser
to your web server.

To completely secure the information you need to use SSL (Secure Sockets Layer). Configuring and managing
SSL for your web server is out of the scope of this book, but there are things to be done on the Rails side,
which we will cover now.

Security 450

First, set config.force_ssl = true in your configuration file to force all access to the application over SSL.
Then specify use of Strict-Transport-Security HTTP header³ and secure cookies.

The force_ssl setting works by redirecting to an HTTPS URL with same parameters if you try to access the
application via plain HTTP.

Trying to access a non-GET HTTP action with HTTP it might not actually work as you can not
redirect to a POST request. The way to go is to use force_ssl on the GET request that renders the
form. In which case standard form helpers will keep the HTTPS format for the form submit action.

If you want a fine grained control over the forcing of SSL connections, you can supply parameters to a
controller’s force_ssl class method. It accepts the same kind of options as a before_action, as well as :host
and :port options in case you need to specify a domain.

class UsersController < ApplicationController

force_ssl only: [:new, :edit], host: "www.foobar.com"

If class-level options are not suitable for your application, you can always roll your own logic inside an
action method. The ssl? method of a request option returns true if the request was received over an HTTPS
connection.

15.4 Model mass-assignment attributes protection

Since its origins, Rails has featured a convenient mass-assignment feature allowing assignment of multiple
model attributes by passing a hash of values. As such, it’s common to create amodel using User.create(params[:user])
and to update it later using User.update(params[:user]).

Without protection direct mass-assignment access to all model attributes would be easy to exploit. For
example, if you happen to define an is_admin boolean field in the “users” table, an attacker could give
themselves admin privileges by sneaking along is_admin=true on an otherwise innocent registration form.

In the previous Rails versions, mass-assignment protection was implemented on the model level using attr_-
accessible and attr_protected class level methods.

In a nutshell, you could call attr_accessible with a list of model attributes to indicate that those attributes
are safe to mass-update. attr_protected would do the opposite, disabling access to passed attributes. This is
referred to as whitelisting and blacklisting, respectively.

There were several practical problems with the former approach:

• It was too cumbersome to use, as it restricted mass-assignment globally, including tests and access from
other models. In those cases you usually know very well what attributes you are assigning and having
to jump through hoops to do so. The result wasn’t very pleasant.

• Simple whitelisting and blacklisting didn’t allow for special cases where access to attributes depend on
other attributes or other records, for example, user roles and permissions.

³<http://tools.ietf.org/html/draft-hodges-strict-transport-sec-02?

Security 451

• Models don’t feel like the right place to do define these kinds of restrictions, since most of the time
we only need restrictions on mass-assignment when passing unfiltered parameters to models inside a
controller action method.

Rails 4 introduces a new and improved way of controlling mass-assignment attributes. The functionality was
made available and proven in earlier Rails versions with the strong_parameters gem. The new approach
forbids mass-assignment of a model attribute from a controller unless that attribute was white-listed.

The big difference is that whitelisting is configured using two simple methods (permit and require) that
are exposed on a controller’s params hash. Calls to those methods can be chained to validate nested params

hashes.

Calling requirewill validate that the parameter is actually present and throw an ActionController::ParameterMissing
exception if it is not. It will also return the “extracted” value of the parameter.

params.require(:user)

An ActionController::ParameterMissing exception, unless unhandled, will bubble up to the Rails dis-
patcher and result in HTTP 400 Bad Request response.

Calling permitwith a list of attributes will allow those attributes to “pass through” to the model during mass-
assignment, but only if the value is one of the supported “scalar” types: String, Symbol, NilClass, Numeric,
TrueClass, FalseClass, Date, Time, DateTime, StringIO, IO, ActionDispatch::Http::UploadedFile or
Rack::Test::UploadedFile This restriction disables evil injection of arrays, hashes or any other objects.

params.require(:user).permit(

:name, :email, :password, :password_confirmation)

Another option is to pass a hash. This will allow you to declare that one of the attributes can contain an array
of scalar values:

params.permit(ids: [])

To whitelist all the attributes in a given hash call permit! method on it:

params.require(:log_entry).permit!

Using a combination of permit and require, it’s relatively easy to implement different parameter filtering
options for creating new records and updating existing records, or any other “complicated” logic required:

Security 452

Listing 15.1 A typical UsersController with param filtering

1 class UsersController < ApplicationController

2

3 def create

4 user = User.create!(create_params)

5 redirect_to user

6 end

7

8 def update

9 user = User.find(params[:id])

10 user.update!(update_params)

11 redirect_to user

12 end

13

14 private

15

16 def create_params

17 params.require(:user).permit(:name, :email, :password,

18 :password_confirmation)

19 end

20

21 def update_params

22 params.require(:user).permit(name: true, email: true, tags: [])

23 end

24 end

15.5 SQL Injection

SQL injection attacks were very popular when people wrote SQL code for their applications by hand. Even
today, if you’re not careful, you can introduce code that is susceptible to this kind of attack.

15.5.1 What is a SQL Injection?

SQL injection is a catch-all description for attacks on SQL database-driven application. The attacker includes
malicious fragments of SQL code in otherwise legitimate input provided to the application, in the hopes that
the application “messes up” and sends those fragments along to the database to be executed.

Let’s see how this can happen. Suppose that we implemented product search functionality in our application
using the following piece of code:

Security 453

1 class ProductsController < ApplicationController

2 def search

3 @products = Product.where("name LIKE '%#{params[:search_terms]}%'")

4 end

5 end

For a search string “test”, this code will execute the following SQL query:

SELECT * FROM products WHERE name LIKE '%test%';

Okay so far. But what if the user submits search_terms with a value of ';DELETE FROM users;

In this case, the resulting SQL code sent to the database is:

SELECT * FROM products WHERE name LIKE '%';DELETE FROM users;%';

That second statement will wipe out the entire ‘users’ table in the database.

Using variations on the same theme, an attacker could modify the users table to reset an administrator’s
password, or retrieve data that he shouldn’t have access to.

To protect from this attack we could start escaping all the user input ourselves, but fortunately we don’t have
to do that, as ActiveRecord already does it for us, we just need to know how to use it correctly.

The first rule to remember is to never directly inject user’s input into any string that will be used as a part
of an SQL query, instead we should use variable substitution facility provided by ActiveRecord (and other
object-mapping software, they all have it):

@products = Product.where('name LIKE ?', "%#{params[:query]}%")

The ‘?’ character in the query fragment serves as a variable placeholder. You can have more then one in any
given query, just make sure to pass the right number of variables to interpolate.

You can read more about it this behavior in Chapter 5, “Working with Active Record”.

15.6 Cross-Site Scripting (XSS)

Cross-Site Scripting is one of the most common security vulnerabilities, but that doesn’t make it any less
severe. When successfully exploited it can give an attacker a bypass around application authorization and
authentication mechanisms and leak personal information.

The attack works by injecting a client-side executable code into the application pages. An example of such
a code can be a JavaScript that “leaks” cookies to a remote server, which would allow the attacker to ‘clone’
any affected session. So if the attacker is able to lay his hands on the administrator session he would be able
to impersonate administrator without actually passing the required authentication procedures, just by using
already authenticated session.

Security 454

There are several ways an attack code can “leak” the information. One of the simplest ones is to insert an image
tag into the DOM with image reference to attacker’s server and image path including the leaked information.
The attacher’s server access logs will capture the information where it can be retrieved later.

All recent versions of Rails make it relatively easy to avoid this kind of attack. In this section we will discuss
the key elements provided by Rails to defend against XSS attacks and point out things to watch out for.

The most common mistake leading to an XSS vulnerability is failing to escape user input when rendering
html. There are several possible vectors of attack for exploiting this mistake.

Attack code can be first saved into the database (like, for example, injecting it into a post title, or comment
body, etc.), in which case such a database record becomes infected. Anyone visiting a page with infected data
will run the malicious JavaScript code embedded in the record, allowing the attacker to access the visiting
user’s session, and do whatever they’re allowed to do.

Another vector involves passing attack code as a URL parameter that is directly rendered into the page, causing
the victim to visit an ‘infected’ URL.

In both cases the victim’s browser is exposed to the attack code which will execute in the browser’s context.
The solution is to always “escape” or “sanitize” unsafe HTML content.

In this context, “escaping” means replacing some of the string characters by an HTML escape sequences that
will remove the special meaning from the text and cause it to render as a regular text. Sanitizing on the other
hand means validating the HTML content to ensure only “good” HTML tags and attributes are used.

Note that sanitizing is inherently less secure than escaping, and should only be used where rendered content
must contain HTMLmarkup. An example would be aWYSIWYG html editor on a textarea that manages code
that is later rendered on a page.

15.6.1 HTML Escaping

In previous versions of Rails you had to think hard about escaping, and utilize the h view helper method to
escape potentially unsafe content. Rails core fielded a lot of criticism for making our code “unsafe by default.”
Having to think about escaping turns out to be very error-prone, and many developers forgot to do it properly.
Recent versions of Rails (starting with 3.0) do a much better job. Every string is tagged as either safe or unsafe.
All unsafe strings are automatically escaped by default. You only need to think about explicitly managing the
“safeness” of strings when you’re writing helpers that output HTML into your template.

For obvious reasons, all Rails HTML helpers will output “safe” strings that can be directly rendered on a page.
Otherwise you would have to call html_safe on the output of a helper.

For example lets look at the following view fragment:

%li= link_to @user.name, user_path(@user), class: user_class(@user)

The user’s namewill be escaped and so will the return value of the user_class view helper method, (assuming
it wasn’t tagged as safe.) The result of user_path(@user) is an unsafe string, so it will be escaped as well.

The net result of those changes in later versions of Rails is that it becomes easy to ensure proper HTML
escaping. The “right thing” will be done in most cases, and Rails will play it safe by default. Occasionally

Security 455

Rails feels like it escapes “too much” when you forget to use html_safe on the return value of a custom view
helper method. But the error is usually easy to spot.

Even though Rails is safe by default, you should still be very careful when you call html_safe though. Calling
it on a unsafe input without validation will absolutely create an XSS vulnerability in your application.

The most common source of confusion about needing html_safe in view helper methods happens
when manipulating literal strings.

1 def paragraphize(text)

2 text.split("\r\n\r\n").map do |paragraph|

3 content_tag(:p, paragraph)

4 end.join.html_safe

5 end

The call to content_tag on line 3 will properly escape its input, so we don’t have to manually escape
paragraph. It is itself a view helper method, so it will tag its return value as html_safe. However
joinwill join the safe strings from content_tagwith an unsafe ""which is used as the default join
string. You’ll scratch your head and wonder what’s going on, before adding the final html_safe in
a state of confusion.

15.6.2 HTML Sanitization

In contrast to escaping, sanitization leaves some HTML intact. The idea is to only leave “safe” html tags that
we want, and to remove all the rest. As usual with filtering problems, there are 2 approaches: blacklisting and
whitelisting.

Blacklisting involves trying to detect and remove “bad” HTML fragments, like JavaScript tags or script content
in links.

Whitelisting only allows HTML elements that are explicitly allowed, and escapes anything else.

Blacklisting is not a secure solution, since new hacks are being devised all the time and there’s no way we’d
be able to be 100% sure that our blacklist is complete at all times. Therefore, we must use the whitelisting
approach.

Rails has a SanitizeHelper module for “for scrubbing text of undesired HTML elements”. It includes several
methods for our disposal that we already covered in Chapter 11, “All About Helpers”, so we won’t repeat
them here.

15.6.3 Input vs Output Escaping

One more thing to discuss about HTML escaping is timing. When should we do it? On input of user data, or
during rendering (output)?

The rule of thumb is to escape on output. The rationale being that we might want to render the content in
different formats, and each has its own escaping requirements. For example, escaping HTML on input will
not help us if the output format is JSON, which requires escaping of quote characters and not HTML tags.

Security 456

Sanitization also mostly makes sense on output, as it will allow us to change the rules without re-applying
them on all the data already stored.

Especially cautious application developers might decide to escape and sanitize on both input and
output, but we find that it usually isn’t necessary.

15.7 XSRF (Cross-Site Request Forgery)

Cross-Site Request Forgery (usually abbreviated as CSRF or XSRF) is a type of web application vulnerability
that allows an attacker to modify application state on behalf of a user that is logged into the application by
luring the user to click on a carefully crafted link, visit a page, or even just open an email with malicious
embedded images.

Assume that an intern named Frank at a banking institution implemented account fund transfer functionality
as an HTTP GET method, like so:

1 GET /transfers?from_account_id=123&to_account_id=456&amount=1000

Note: You would NEVER do something like this in real life, this example is for illustrative purposes only. In
fact, if you’re following proper RESTful practices, a GET would not make any modifications to server state.
We’re about to see why…

Of course everyone, even interns, know you should authenticate banking transfers. So Frank does some
research on Rails security and properly authenticates and authorizes the request.

You see the problem yet? No? Assume an end-user logs into his online banking, leaves it logged in and flips
over to check his email in another browser tab. Even a relatively unsophisticated attacker could send him an
HTML email with the following image:

<img src="http://banking-domain/transfers?from_account_id=<users_account_id>

&to_account_id=<attacker_account_id>&amount=1000">

It’s a long shot, but if this image is opened by victim’s browser while it is authenticated and authorized, the
transfer will get executed because the session cookie from the bank is still valid.

Fortunately for the bank, Frank’s code was reviewed, and the reviewer pointed out the problem. So Frank
fixed the problem by modifying his transfer action to use a POST instead of GET.

Are the bank’s customers safe yet? Not quite. An attacker can still “lure” victims to an innocent-looking site,
which hosts JavaScript that will post to the fund transfer URL from within victim’s browser.

So how do we protect ourselves against this chicanery?

15.7.1 Restricting HTTP method for actions with side-effects

First we must only allow side effects on non-GET requests (e.g. POST, DELETE, PATCH). This is actually
specified by HTTP protocol guidelines and there are several ways to do accomplish the restriction in Rails.

First, we can restrict the request methods at the routing level:

Security 457

1 post 'transfers' => 'transfers#create'

2

3 resources :users do

4 post :activate, on: :member

5 end

Rails’ standard resources routing helper exhibits the correct behavior by default. It will require POST to
access create, PATCH to access update, and DELETE to access destroy. You need to be careful when you
define your own non-resource routes, especially if you use :action segment routes.

The truly paranoid among us can use a controller class method called verify to make sure that propermethods
are used for controller actions with side-effects:

1 class UsersController < ApplicationController

2 verify method: [:post, :put, :delete], only: [:activate, :create,

3 :update], redirect_to: '/'

15.7.2 Require security token for protected requests

Using proper HTTP request method is not enough. We need to ensure that the requests originate form our
application. You could check the referrer of HTTP requests, but the proper way to do it is to include a security
token as a parameter or header on protected requests and validate the token on the server side.

Rails has built-in facilities to handle exactly this kind of security check. The boilerplate implementation of
ApplicationController generated for new apps includes the following code:

1 class ApplicationController

2 # Prevent CSRF attacks by raising an exception.

3 # For APIs, you may want to use :null_session instead.

4 protect_from_forgery with: :exception

5 end

This code adds a verify_authenticity_token before action callback to all requests in your application. The
protect_from_forgerymethod takes :if/:except parameters just like a normal before_action declaration.

Additionally, the with parameter accepts one of the supported protection strategies: :exception, :null_-
session, or :reset_session.

:exception

raises ActionController::InvalidAuthenticityToken exception

:reset_session

Resets the user’s session

:null_session (default)
Executes the request as if no session exists. Used by default if no with parameter is supplied.

The difference between :reset_session and :null_session is that :null_session doesn’t actually changes
the session, only substitutes an empty one for the current requests, while :reset_session will leave it empty
for subsequent requests as well.

Security 458

15.7.3 Client-side security token handling

Now that we are requiring a security token on the server side we need to pass it from the client side. Standard
Rails form helpers (e.g. form_for) will include the token as a hidden parameter.

The same goes for the rails link helpers that generate non-GET Ajax requests (e.g. link_to with method:

:post). Note that the actual handling of security tokens is done in the UJS JavaScript library, e.g.’jquery-rails’.
You can check out the implementation of the handleMethod function in jquery_ujs.js if you’re curious about
it.

To function properly the browser needs access to the security token from the server. It is provided with a call
to csrf_meta_tags in your application layout header section:

%head

....

= csrf_meta_tags

This will render two meta tags:

<meta content="authenticity_token" name="csrf-param" />

<meta content="...." name="csrf-token" />

The actual token is stored in the session. It is generated for the first time when it is needed, and preserved for
the duration of the session. The call to csrf_meta_tags is included in the boilerplate application template of
a fresh Rails app.

15.8 Session Fixation Attacks

A session fixation attack is something to be aware of if you implement your own session management. The
Rails cookies session store is immune from these types of attacks.

Many session security implementations depend on the session id being a secret. If the attacker is successfully
able to force a user to use their session id and login into the system, the attacker can get access to the
authenticated session by using that id.

..

Session fixation attacks are only possible when hackers are able to force the setting of a third session id in the
user’s browser through a URL or other means. For example, in some configurations of PHP, you can allow a
session id to be passed as a URL parameter called _my_app_session_id. The attacker can send victims to the
malicious link, which then redirects back to the target system including a session id that they generated.

Defending against this hack is pretty simple. Whenever you elevate a user’s privileges, call the reset_session
helper, which ensures that their session id is changed. Attackers are left with an old unauthenticated session.

Security 459

Any decent Rails authentication system, like Devise, already protects you from session fixation
attacks. So you don’t usually need to worry about it unless you are doing something unusual.

15.9 Keeping Secrets

As a general rule, you should not store secret things in your source code. This includes passwords, security
tokens, API keys etc. Assume that a determined attacker will gain access to your source code and use it to
their advantage, if they can.

So where do you store secret parts of your application’s configuration, including API keys and tokens for
external services? The recommended way is to get those from your shell environment.

For example, let’s say you need to configure a Pubnub service. The following code will allow you to configure
Pubnub using 5 environment variables. (Put it in config/initializers/pubnub.rb)

1 PUBNUB = Pubnub.new(

2 ENV["PUBNUB_PUBLISH_KEY"],

3 ENV["PUBNUB_SUBSCRIBE_KEY"],

4 ENV["PUBNUB_SECRET_KEY"],

5 ENV["PUBNUB_CYPHER"] || "",

6 ENV["PUBNUB_SSL"] == "true")

If you deploy to Heroku you can easily configure environment variables using heroku command line tool:

$ heroku config:add PUBNUB_PUBLISH_KEY=.... PUBNUB_SUBSCRIBE_KEY=... ...

Other deployment options should allow you to define environment variables easily since it’s a common need.

Even if you have no easy way to control environment directly, you almost always have a way to add extra
files to the deployment directory. You can load such a file into your environment like this (add this code to
the top of your config/application.rb):

1 # change this path according to your needs

2 ENV_PATH = File.expand_path('../env.rb', __FILE__)

3 require ENV_PATH if File.exists?(ENV_PATH)

The env.rb file can assign environment variables as needed:

ENV["PUBNUB_PUBLISH_KEY"] = "..."

IMPORTANT:Rails by default stores a very important secret in the source code. Take a look at config/secrets.yml:

Security 460

Rails.application.secrets.secret_key_base = '...'

Change this to the following:

1 # config/secrets.yml

2

3 ...

4

5 production:

6 secret_key_base: <%= ENV["SECRET_KEY_BASE"] %>

This token is used to sign the session cookie, and it allows anyone that has it to modify session to their liking,
bypassing most security measures.

15.10 Conclusion

Security is a topic that should never be taken lightly, especially when developing business-critical applications.
Since exploits are always being discovered, it’s very important to keep up-to-date on new developments. We
recommend that you check out http://guides.rubyonrails.org/security.html⁴ and http://railssecurity.com/⁵ for
the latest information available.

Finally, you should consider using Code Climate⁶ to automatically analyze and audit your Rails code after
every git push. Tell Bryan and Noah that The Rails 4 Way crew sent you.

⁴http://guides.rubyonrails.org/security.html
⁵http://railssecurity.com
⁶http://codeclimate.com

http://guides.rubyonrails.org/security.html
http://railssecurity.com
http://codeclimate.com
http://guides.rubyonrails.org/security.html
http://railssecurity.com
http://codeclimate.com

16 Action Mailer
It’s a cool way to send emails without tons of code.

—Jake Scruggs

Integration with email is a crucial part of most modern web application projects. Whether it’s sign-up
confirmations, password recovery, or letting users control their accounts via email, you’ll be happy to hear
that Rails offers great support for both sending and receiving email, thanks to its Action Mailer framework.

In this chapter, we’ll cover what’s needed to set up your deployment to be able to send and receive mail with
the Action Mailer framework and by writing mailer models, the entities in Rails that encapsulate code having
to do with email handling.

16.1 Setup

By default, Rails will try to send email via SMTP (port 25) of localhost. If you are running Rails on a host that
has an SMTP daemon running and it accepts SMTP email locally, you don’t have to do anything else in order
to send mail. If you don’t have SMTP available on localhost, you have to decide how your system will send
email.

When not using SMTP directly, the main options are to use sendmail or to give Rails information on how
to connect to an external mail server. Most organizations have SMTP servers available for this type of use,
although it’s worth noting that due to abuse many hosting providers have stopped offering shared SMTP
service.

Most serious production deployments use 3rd-party SMTP services that specialize in delivering automated
email, avoiding user spam filters and blacklists.

16.2 Mailer Models

Assuming the mail system is configured, let’s go ahead and create a mailer model that will contain code
pertaining to sending and receiving a class of email. Rails provides a generator to get us started rapidly. Our
mailer will send out a notices to any user of our sample application who is late entering their time.

$ rails generate mailer LateNotice

create app/mailers/late_notice.rb

invoke haml

create app/views/late_notice

invoke rspec

create spec/mailers/late_notice_spec.rb

A view folder for the mailer is created at app/views/late_notice and the mailer itself is stubbed out at
app/mailers/late_notice.rb:

Action Mailer 462

1 class LateNotice < ActionMailer::Base

2 default from: "from@example.com"

3 end

Kind of like a default Active Record subclass, there’s not much there at the start.

16.2.1 Preparing Outbound Email Messages

You work with Action Mailer classes by defining public mailer methods that correspond to types of emails
that you want to send. Inside the public method, you assign any variables that will be needed by the email
message template and then call the mail method, which is conceptually similar to the render method used in
controllers.

Continuing with our example, let’s write a late_timesheet mailer method that takes user and week_of

parameters. Notice that it sets the basic information needed to send our notice email (see Listing 16.1).

Listing 16.1: Adding a mailer method

1 class LateNotice < ActionMailer::Base

2 default from: "system@timeandexpenses.com"

3

4 def late_timesheet(user, week_of)

5 @recipient = user.name

6 @week = week_of

7 attachments["image.png"] = File.read("/images/image.png")

8 mail(

9 to: user.email,

10 subject: "[Time and Expenses] Timesheet notice"

11)

12 end

13 end

Inside the method we’ve created we have access to a fewmethods to set up the message for delivery, including
the mail method shown above:

attachments

Allows you to add normal and inline file attachments to your message

1 attachments["myfile.zip"] = File.read("/myfile.zip")

2 attachments.inline["logo.png"] = File.read("/logo.png")

headers

Allows you to supply a hash of custom email headers

Action Mailer 463

1 headers("X-Author" => "Obie Fernandez")

mail Sets up the email that will get sent. It accepts a hash of headers that a Mail::Message will accept and
allows an optional block. If no block is specified, views will be used to construct the email with the
same name as the method in the mailer. If a block is specified these can be customized.

Note also the change of the default from address to one set up for our application. Here is a sample
list of the headers that you can include in the hash passed to the mail method or in the default macro.
In addition to these, you may pass any email header that is needed when sending, ie { "X-Spam" =>

value }.

subject

The subject line for the message.

to The recipient addresses for the message, either as a string (for a single address) or an array (for
multiple addresses). Remember that this method expects actual address strings not your application’s
user objects.

users.map(&:email)

from Specifies the from address for the message as a string (required).

cc Specifies carbon-copy recipient (Cc:) addresses for the message, either as a string (for a single address)
or an array for multiple addresses.

bcc Specifies blind recipient (Bcc:) addresses for the message, either as a string (for a single address) or an
array for multiple addresses.

reply_to

Sets the email for the reply-to header.

date An optional explicit sent on date for the message, usually passed Time.now. Will be automatically set
by the delivery mechanism if you don’t supply a value, and cannot be set using the default macro.

The mail method can either take a block or not if you want to do custom formats similar to Rails routes.

1 mail(to: "user@example.com") do |format|

2 format.text

3 format.html

4 end

The body of the email is created by using an Action View template (regular Haml or ERb) that has the instance
variables in the mailer available as instance variables in the template. So the corresponding body template for
the mailer method in Listing 16.1 could look like:

Action Mailer 464

1 Dear #{@recipient},

2

3 Your timesheet for the week of #{@week} is late.

And if the recipient was Aslak, the email generated would look like this:

Date: Sun, 12 Dec 2004 00:00:00 +0100

From: system@timeandexpenses.com

To: aslak.hellesoy@gmail.com

Subject: [Time and Expenses] Late timesheet notice

Dear Aslak Hellesoy,

Your timesheet for the week of Aug 15th is late.

16.2.2 HTML Email Messages

To send mail as HTML, make sure your view template generates HTML and that the corresponding template
name corresponds to the email method name. For our method this would be in (or .) You can also override
this template name in the block.

1 mail(to: "user@example.com") do |format|

2 format.text

3 format.html { render "another_template" }

4 end

16.2.3 Multipart Messages

If a plain text and HTML template are present for a specific mailer action, the text template and the HTML
template will both get sent by default as a multipart message. The HTML part will be flagged as alternative
content for those email clients that support it.

16.2.3.1 Implicit Multipart Messages

Asmentioned earlier in the chapter, multipart messages can also be used implicitly, without invoking the part
method, because Action Mailer will automatically detect and use multipart templates, where each template is
named after the name of the action, followed by the content type. Each such detected template will be added
as separate part to the message.

For example, if the following templates existed, each would be rendered and added as a separate part to the
message, with the corresponding content type. The same body hash is passed to each template.

• signup_notification.text.haml

• signup_notification.text.html.haml

• signup_notification.text.xml.builder

• signup_notification.text.yaml.erb

Action Mailer 465

16.2.4 Attachments

Including attachments in emails is relatively simple, just use the method in your class.

1 class LateNotice < ActionMailer::Base

2 def late_timesheet(user, week_of)

3 @recipient = user.name

4 attachments["image.png"] = File.read("/images/image.png")

5 mail(

6 to: user.email,

7 from: "test@myapp.com",

8 subject: "[Time and Expenses] Timesheet notice"

9)

10 end

11 end

If you wanted to attach the image inline, use attachments.inline.

attachments.inline["image.png"] = File.read("/images/image.png")

You can access this attachment in the template if need be via attachments hash, then calling url on that
object for the image’s relative content id (cid:) path.

1 Dear #{@recipient},

2

3 Your timesheet is late, here's a photo depicting our sadness:

4

5 = image_tag attachments['image.png'].url, alt: "Invoicing"

16.2.5 Generating URLs

Generating application URLs is handled through named routes or using the url_for helper. Since mail does
not have request context like controllers do, the host configuration option needs to be set. The best practice
for this is to define them in the corresponding environment configuration although it can be defined on a per
mailer basis.

config/environments/production.rb

config.action_mailer.default_url_options = { host: 'accounting.com' }

In your mailer you can now generate your url. It is important to note that you cannot use the _path variation
for your named routes since the must be rendered as absolute URLs.

Action Mailer 466

1 class LateNotice < ActionMailer::Base

2 def late_timesheet(user, week_of)

3 @recipient = user.name

4 @link = user_url(user)

5 mail(

6 to: user.email,

7 from: "test@myapp.com",

8 subject: "[Time and Expenses] Timesheet notice"

9)

10 end

11 end

When generating URLs through url_for, the controller and action also need to be specified. If you have
provided a default host then the :only_path option must be provided to tell the helper to generate an absolute
path.

= url_for(controller: "users", action: "update", only_path: false)

16.2.6 Mailer Layouts

Mailer layouts behave just like controller layouts. To be automatically recognized they need to have the same
name as the mailer itself. In our previous case would automatically be used for our HTML emails. You can
also add custom layouts if your heart desires, either at the class level or as a render option.

1 class LateNotice < ActionMailer::Base

2 layout "alternative"

3

4 def late_timesheet(user, week_of)

5 mail(to: user.email) do |format|

6 format.html { render layout: "another" }

7 end

8 end

9 end

We’ve now talked extensively about preparing email messages for sending, but what about actually sending
them to the recipients?

16.2.7 Sending an Email

Sending emails only involves getting a object from your mailer and delivering it.

Action Mailer 467

1 aslak = User.find_by(name: "Aslak Hellesoy")

2 message = LateNotice.late_timesheet(aslak, 1.week.ago)

3 message.deliver

16.2.8 Callbacks

As of Rails 4, the ability to define action callbacks for a mailer was added. Like their Action Controller
counterparts, one could specify before_action, after_action and around_action callbacks to run shared
pre and post processing code within a mailer.

Callbacks can accept one or more symbols, representing a matching method in the mailer class:

before_action :set_headers

Or you can pass the callback a block to execute, like this:

before_action { logger.info "Sending out an email!" }

A common example of why you would use a callback in a mailer is to set inline attachments, such as images,
that are used within the email template.

1 class LateNotice < ActionMailer::Base

2 before_action :set_inline_attachments

3

4 def late_timesheet(user, week_of)

5 @recipient = user.name

6 mail(

7 to: user.email,

8 from: "test@myapp.com",

9 subject: "[Time and Expenses] Timesheet notice"

10)

11 end

12

13 protected

14

15 def set_inline_attachments

16 attachments["logo.png"] = File.read("/images/logo.png")

17 end

18 end

Action callbacks are covered in detail in Chapter 4 in the “Action Callbacks” section.

16.3 Receiving Emails

To receive emails, you need to write a public method named receive on one of your application’s
ActionMailer::Base subclasses. It will take a Mail::Message¹ object instance as its single parameter. When

¹https://github.com/mikel/mail

https://github.com/mikel/mail

Action Mailer 468

there is incoming email to handle, you call an instance method named receive on your Mailer class. The raw
email string is converted into a Mail::Message object automatically and your receive method is invoked
for further processing. You don’t have to implement the receive class method yourself, it is inherited from
ActionMailer::Base.²

That’s all pretty confusing to explain, but simple in practice. Listing 16.2 shows an example.

16.2: The simple MessageArchiver mailer class with a receive method

1 class MessageArchiver < ActionMailer::Base

2

3 def receive(email)

4 person = Person.where(email: email.to.first).first!

5 person.emails.create(

6 subject: email.subject,

7 body: email.body

8)

9 end

10 end

The receive class method can be the target for a Postfix recipe or any other mail-handler process that can pipe
the contents of the email to another process. The rails runner command makes it easy to handle incoming
mail:

$ rails runner 'MessageArchiver.receive(STDIN.read)'

That way, when a message is received, the receive class method would be fed the raw string content of the
incoming email via STDIN.

16.3.1 Handling Incoming Attachments

Processing files attached to incoming email messages is just a matter of using the attachments attribute
of Mail::Message, as in Listing 16.3. This example assumes that you have a Person class, with a has_many

association photos, that contains a Carrierwave attachment.³

²If you are using a third-party email service, such as SendGrid, be sure to checkout the Griddler gem by thoughtbot. It’s a Rails engine that hands
off preprocessed email objects to a class solely responsible for processing the incoming email.

³Carrierwave, created by Jonas Nicklas, can be found at https://github.com/jnicklas/carrierwave

https://github.com/thoughtbot/griddler
https://github.com/jnicklas/carrierwave

Action Mailer 469

1 class PhotoByEmail < ActionMailer::Base

2

3 def receive(email)

4 from = email.from.first

5 person = Person.where(email: from).first

6 logger.warn("Person not found [#{from}]") and return unless person

7

8 if email.has_attachments?

9 email.attachments.each do |file|

10 person.photos.create(asset: file)

11 end

12 end

13 end

14 end

There’s notmuchmore to it than that, except of course towrestle with the configuration of yourmail-processor
(outside of Rails) since they are notoriously difficult to configure.⁴ After you have your mail-processor calling
the rails runner command correctly, add a crontab so that incoming mail is handled about every five
minutes or so, depending on the needs of your application.

16.4 Server Configuration

Most of the time, you don’t have to configure anything specifically to get mail sending to work, because your
production server will have sendmail installed and Action Mailer will happily use it to send emails.

If you don’t have sendmail installed on your server, you can try setting up Rails to send email directly via
SMTP. The ActionMailer::Base class has a hash named smtp_settings that holds configuration information.
The settings here will vary depending on the SMTP server that you use.

The sample (as shown in Listing 16.3) demonstrates the SMTP server settings that are available (and their
default values). You’ll want to add similar code to your config/environment.rb file:

16.3: SMTP settings for ActionMailer

1 ActionMailer::Base.smtp_settings = {

2 address: 'smtp.yourserver.com', # default: localhost

3 port: 25, # default: 25

4 domain: 'yourserver.com', # default: localhost.localdomain

5 user_name: 'user', # no default

6 password: 'password', # no default

7 authentication: :plain # :plain, :login or :cram_md5

8 }

⁴Rob Orsini, author of O’reilly’s Rails Cookbook recommends getmail, which you can get from http://pyropus.ca/software/getmail.

http://pyropus.ca/software/getmail

Action Mailer 470

16.5 Testing Email Content

Ben Mabey’s email_spec⁵ gem provides a nice way to test your mailers using RSpec. Add it to your Gemfile
and first make the following additions to your spec/spec_helper.rb.

1 RSpec.configure do |config|

2 config.include(EmailSpec::Helpers)

3 config.include(EmailSpec::Matchers)

4 end

Mailer specs reside in spec/mailers, and email_spec provides convenience matchers for asserting that the
mailer contains the right attributes.

reply_to

Checks the reply-to value.

deliver_to

Verifies the recipient.

deliver_from

Assertion for the sender.

bcc_to

Verifies the Bcc.

cc_to

Verifies the Cc.

have_subject

Performs matching of the subject text.

include_email_with_subject

Performs matching of the subject text in multiple emails.

have_body_text

Match for text in the body.

have_header

Check for a matching email header.

These matchers can then be used to assert that the generated email has the correct content included in it.

⁵https://github.com/bmabey/email-spec

https://github.com/bmabey/email-spec

Action Mailer 471

1 require "spec_helper"

2

3 describe InvoiceMailer do

4 let(:invoice) { Invoice.new(name: "Acme", email: "joe@example.com") }

5

6 describe "#create_late" do

7 subject(:email) { InvoiceMailer.create_late(invoice) }

8

9 it "delivers to the invoice email" do

10 expect(email).to deliver_to("joe@example.com")

11 end

12

13 it "contains the invoice name" do

14 expect(email).to have_body_text(/Acme/)

15 end

16

17 it "has a late invoice subject" do

18 expect(email).to have_subject(/Late Invoice/)

19 end

20 end

21 end

If you’re attempting to test whether or not the mailer gets called and sends the email, it is recommended to
simply check via a mock that the deliver method got executed.

16.6 Previews

By default in Rails, all email messages sent in development via Action Mailer are delivered in test mode.
This means if you send an email from your application, the output of that message would display in your
development log. While this can show you if the output is correct, it does not indicate if the email message
is rendered correctly. A way around this would be to connect your development environment to an actual
SMTP server. Even though this would allow you to view the email in your mail client of choice, it’s also a
very bad idea, as you could potentially email real people.

New to Action Mailer as of Rails 4.1 is previews, which provides a means of rendering plain text and HTML
mail templates in your browser without having to deliver them.

To create a preview, define a class that inherits from ActionMailer::Preview. Methods defined within the
class must return a Mail::Message object, which can be created by calling a mailer method.

Action Mailer 472

1 class LateNoticePreview < ActionMailer::Preview

2 def late_timesheet

3 user = FactoryGirl.create(:user)

4 LateNotice.late_timesheet(user, 1.week.ago)

5 end

6 end

By default, all previews are located in the test/mailers/previews directory, however this directory path can
be overridden using the preview_path configuration option.

1 # For those using RSpec

2 config.action_mailer.preview_path = "#{Rails.root}/spec/mailers/previews"

To obtain a listing of all ActionMailer previews availablewithin your application, navigate to http://localhost:3000/rails/mailers/
while running a local development server instance.

16.7 Conclusion

In this chapter, we learned how Rails makes sending and receiving email easy. With relatively little code, you
can set up your application to send out email, even HTML email with inline graphics attachments. Receiving
email is even easier, except perhaps for setting up mail-processing scripts and cron jobs. We also briefly
covered the configuration settings that go in your application’s environment specific configuration related to
mail.

17 Caching and Performance
Watch me lean then watch me rock.

—Soulja Boy

Historically Rails has suffered from an unfair barrage of criticisms over perceived weaknesses in scalability.
Luckily, the continued success of Rails in ultra high traffic usage at companies such as Groupon has made
liars of the critics. Nowadays, you can make your Rails application very responsive and scalable with ease.
The mechanisms used to squeeze maximum performance out of your Rails apps are the subject of this chapter.

View caching lets you specify that anything from entire pages down to fragments of the page should
be captured to disk as HTML files and sent along by your web server on future requests with minimal
involvement from Rails itself. ETag support means that in best-case scenarios, it’s not even necessary to send
any content at all back to the browser, beyond a couple of HTTP headers.

17.1 View Caching

ActiveView’s templating system is both flexible and powerful. However, it is decidedly not very fast, even
in the best case scenarios. Therefore, once you get the basic functionality of your app coded, it’s worth
doing a pass over your views and figuring out how to cache their content to achieve maximum performance.
Sometimes, just rendering a page can consume 80% of the average request processing time.¹

Historically, there have been three types of view caching in Rails. As of Rails 4, two of those types, action
and page caching, were extracted into officially-supported, but separate gems. Even though a consensus is
emerging that “Russian Doll” caching using fragment caching is enough, we briefly cover the other two
methods here for the sake of completeness:

Page caching
The output of an entire controller action is cached to disk, with no further involvement by the Rails
dispatcher.

Action caching
The output of an entire controller action is cached, but the Rails dispatcher is still involved in subsequent
requests, and controller filters are executed.

Fragment caching
Arbitrary reusable bits and pieces of your page’s output are cached to prevent having to render them
again in the future.

¹http://www.appneta.com/blog/russian-doll-caching/

http://www.appneta.com/blog/russian-doll-caching/

Caching and Performance 474

Knowing that your application will eventually require caching should influence your design decisions.
Projects with optional authentication often have controller actions that are impossible to page or action-cache,
because they handle both login states internally.

Most of the time, you won’t have too many pages with completely static content that can be cached using
caches_page or caches_action, and that’s where fragment caching comes into play. It’s also the main reason
that these two pieces of functionality were extracted out of core Rails.

For scalability reasons, you might be tempted to page cache skeleton markup, or content that is
common to all users, then use Ajax to subsequently modify the page. It works, but I can tell you
from experience that it’s difficult to develop and maintain, and probably not worth the effort for
most applications.

17.1.1 Page Caching

The simplest form of caching is page caching, triggered by use of the caches_page macro-style method in a
controller. It tells Rails to capture the entire output of the request to disk so that it is served up directly by
the web server on subsequent requests without the involvement of the dispatcher. On subsequent requests,
nothing will be logged to the Rails log, nor will controller filters be triggered—absolutely nothing to do
with Rails will happen, just like the static HTML what happens with files served from your project’s public
directory.

1 class HomepageController < ApplicationController

2 caches_page :index

3

4 def index

5 ...

In Rails 4, if you want to use page caching you need to add a gem to your Gemfile:

gem 'actionpack-page_caching'

Next, include the module and specify the folder in which to store cached pages in ApplicationController:

1 class ApplicationController < ActionController::Base

2 include ActionController::Caching::Pages

3 self.page_cache_directory = "#{Rails.root.to_s}/public/cache/pages"

4 end

For classic Rails behavior, you may set the page_cache_directory to the public root, but if you don’t, then
ensure that your webserver knows where to find cached versions.²

²http://www.rubytutorial.io/page-caching-with-rails-4

http://www.rubytutorial.io/page-caching-with-rails-4

Caching and Performance 475

Sample Nginx/Puma configuration file with page caching enabled

1 upstream puma_server_domain_tld {

2 server unix:/path/to/the/puma/socket;

3 }

4 server {

5 listen 80;

6 server_name domain.tld;

7 root /path/to/the/app;

8 location / {

9 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

10 proxy_set_header Host $http_host;

11 proxy_redirect off;

12 # try the $uri, than the uri inside the cache folder, than the puma socket

13 try_files $uri /page_cache/$uri /page_cache/$uri.html @puma;

14 }

15 location @puma{

16 proxy_pass http://puma_server_domain_tld;

17 break;

18 }

19 }

17.1.2 Action Caching

By definition, if there’s anything that has to change on every request or specific to an end user’s view of that
page, page caching is not an option. On the other hand, if all we need to do is run some filters that check
conditions before displaying the page requested, the caches_action method will work. It’s almost like page
caching, except that controller filters are executed prior to serving the cached HTML file. That gives you the
option to do some extra processing, redirect, or even blow away the existing action cache and re-render if
necessary.

As with page caching, this functionality has been extracted from Rails 4, so you need to add the official action
caching gem to your Gemfile in order to use it:

gem 'actionpack-action_caching'

Action caching is implemented with fragment caching (covered later in this chapter) and an around_action

controller callback. The output of the cached action is keyed based on the current host and the path, which
means that it will still work even with Rails applications serving multiple subdomains using a DNS wildcard.
Also, different representations of the same resource, such as HTML and XML, are treated like separate requests
and cached separately.

Listing 17.1 (like most of the listings in this chapter) is taken from a dead-simple blog application with public
and private entries. On default requests, we run a filter that figures out whether the visitor is logged in and
redirects them to the public action if not.

Caching and Performance 476

Listing 17.1: A controller that uses page and action caching

1 class EntriesController < ApplicationController

2 before_action :check_logged_in, only: [:index]

3

4 caches_page :public

5 caches_action :index

6

7 def public

8 @entries = Entry.where(private: false).limit(10)

9 render :index

10 end

11

12 def index

13 @entries = Entry.limit(10)

14 end

15

16 private

17

18 def check_logged_in

19 redirect_to action: 'public' unless logged_in?

20 end

21

22 end

The public action displays only the public entries and is visible to anyone, which is what makes it a candidate
for page caching. However, since it doesn’t require its own template, we just call render :index explicitly at
the end of the public action.

Caching in Development Mode?
I wanted to mention up front that caching is disabled in development mode. If you want
to play with caching during development, you’ll need to edit the following setting in the
config/environments/development.rb file:

config.action_controller.perform_caching = false

Of course, remember to change it back before checking it back into your project reposi-
tory, or you might face some very confusing errors down the road. In his great screen-
cast on the subject, Geoffrey Grosenbach suggests adding another environment mode to your
project named development_with_caching, with caching turned on just for experimentation
http://peepcode.com/products/page-action-and-fragment-caching³

³http://peepcode.com/products/page-action-and-fragment-caching

http://peepcode.com/products/page-action-and-fragment-caching
http://peepcode.com/products/page-action-and-fragment-caching

Caching and Performance 477

17.1.3 Fragment Caching

Users are accustomed to all sorts of dynamic content on the page, and your application layout will be filled
with things like welcomemessages and notification counts. Fragment caching allows us to capture parts of the
rendered page and serve them up on subsequent requests without needing to render their content again. The
performance improvement is not quite as dramatic as with page or action caching, since the Rails dispatcher
is still involved in serving the request, and often the database is still hit with requests. However, automatic
key expiration means that “sweeping” old cached content is significantly easier than with page or action
caching. And actually, the best way to use fragment caching is on top of a cache store like Memcached that’ll
automatically kick out old entries, meaning there’s little to no sweeping required.⁴

17.1.3.1 The cache Method

Fragment caching is by its very nature something that you specify in your view template rather than at the
controller level. You do so using the cache view helper method of the ActionView::Helpers::CacheHelper
module. In addition to its optional parameters, the method takes a block, which allows you to easily wrap
content that should be cached.

Once we log in to the sample application reflected in Listing 17.1, the header section should probably display
information about the user, so action-caching the index page is out of the question. We’ll remove the caches_-
action directive from the EntriesController, but leave cache_page in place for the public action. Then we’ll
go into the entries/index.html.haml template and add fragment caching, as shown in Listing 17.2:

Listing 17.2 The index template with cache directive

1 %h1 #{@user.name}'s Journal

2 %ul.entries

3 - cache do

4 = render partial: 'entry', collection: @entries

Just like that, the HTML that renders the collection of entries is stored as a cached fragment associated with
the entries page. Future requests will not need to re-render the entries. Here’s what it looks like when Rails
checks to see whether the content is already in the cache:

"get" "views/localhost:3000/entries/d57823a936b2ee781687c74c44e056a0"

The cache was not warm on the first request, so Rails renders the content and sets it into the cache for future
use:

"setex" "views/localhost:3000/entries/d57823a936b2ee781687c74c44e056a0"

"5400" "\x04\bo: ActiveSupport::Cache::Entry\b:\x0b@valueI\"\x02\xbbf

<li class="entry">...

⁴It’s also possible to do the same with Redis. See http://antirez.com/post/redis-as-LRU-cache.html

http://antirez.com/post/redis-as-LRU-cache.html

Caching and Performance 478

If you analyze the structure of the keys being sent to the cache (in this case Redis) you’ll notice that they are
composed of several distinct parts.

views/
Indicates that we are doing some view caching

hostname/
The host and port serving up the content. Note that this doesn’t break with virtual hostnames since the
name of the server itself is used.

type/
In the case of our example it’s entries, but that spot in the key would contain some indicator of the
type of data being rendered. If you do not provide a specific key name, it will be set to the name of the
controller serving up the content.

digest/
the remaining hexadecimal string is an MD5 hash of the template content, so that changing the content
of the template busts the cache. This is new functionality in Rails 4 that eliminates the need for
homebrewed template versioning schemes. Most template dependencies can be derived from calls to
render in the template itself.⁵

Despite the nifty cache-busting behavior of adding template digests to your cache keys automati-
cally, there are some situations where changes to the way you’re generating markup will not bust
the cache correctly. The primary case is when you have markup generated in a helper method, and
you change the body of that helper method. The digest hash generated for templates that use that
helper method will not change, they have no way of knowing to do so. There is no super elegant
solution to this problem. Rails core suggests adding a comment to the template where they helper
is used and modifying it whenever the behavior of the helper changes.⁶

17.1.3.2 Fragment cache keys

The cache method takes an optional name parameter that we left blank in Listing 17.2. That’s an acceptable
solution when there is only one cached fragment on a page. Usually there’ll be more than one. Therefore, it’s a
good practice to identify the fragment in a way that will prevent collisions with other fragments whether they
are on the same page or not. Listing 17.3 is an enhanced version of the entries page. Since this blog handles
content for multiple users, we’re keying the list of entries off the user object itself.

⁵https://github.com/rails/cache_digests#implicit-dependencies
⁶https://github.com/rails/cache_digests#explicit-dependencies

https://github.com/rails/cache_digests#implicit-dependencies
https://github.com/rails/cache_digests#explicit-dependencies

Caching and Performance 479

Listing 17.3 Enhanced version of the entries page

1 %h1 #{@user.name}'s Journal

2

3 - cache @user do

4 %ul.entries

5 = render partial: 'entry', collection: @entries

6

7 - content_for :sidebar do

8 - cache [@user, :recent_comments] do

9 = render partial: 'comment', collection: @recent_comments

Notice that we’ve also added recent comments in the sidebar and named those fragment cache accordingly
to show how to namespace cache keys. Also note the use of an array in place of a name or single object for
those declarations, to create a compound key.

After the code in Listing 17.3 is rendered, there will be at least two fragments in the cache, keyed as follows:

views/users/1-20131126171127/1e4adb3067d5a7598ea1d0fd0f7b7ff1

views/users/1-20131126171127/recent_comments/1f440155af81f1358d8f97a099395802

Note that the recent comments are correctly identified with a suffix. We’ll also add a suffix to the cache of
entries, to make sure that we don’t have future conflicts.

1 - cache [@user, :entries] do

2 %ul.entries

3 = render partial: 'entry', collection: @entries

4 ...

17.1.3.3 Accounting for URL parameters

Earlier versions of Rails transparently used elements of the page’s URL to key fragments in the cache. It was an
elegant solution to a somewhat difficult problem of caching pages that take parameters. Consider for instance,
what would happen if you added pagination, filtering or sorting to your list of blog entries in our sample app:
the cache directive would ignore the parameters, because it’s keying strictly on the identity of the user object.
Therefore, we need to add any other relevant parameters to a compound key for that page content.

For example, let’s expand our compound key for user entries by adding the page number requested:

1 - cache [@user, :entries, page: params[:page]] do

2 %ul.entries

3 = render partial: 'entry', collection: @entries

The key mechanism understands hashes as part of the compound key and adds their content using a slash
delimiter.

Caching and Performance 480

views/users/1-20131126171127/entries/page/1/1e4adb3067d5a7598ea1d0fd0f7b7ff1

views/users/1-20131126171127/entries/page/2/1e4adb3067d5a7598ea1d0fd0f7b7ff1

views/users/1-20131126171127/entries/page/3/1e4adb3067d5a7598ea1d0fd0f7b7ff1

etc...

If your site is localized, you probably want to include the user’s locale in the compound key so that you don’t
serve up the wrong languages to visitors from different places.

1 - cache [@user, :entries, locale: @user.locale, page: params[:page]] do

2 %ul.entries

3 = render partial: 'entry', collection: @entries

As you can tell, construction of cache keys can get complicated, and that’s a lot of logic to be carrying around
in our view templates. DRY up your code if necessary by extracting into a view helper, and/or overriding the
key object’s cache_key method.

1 class User

2 def cache_key

3 [super, locale].join '-'

4 end

Object keys

As you’ve seen in our examples so far, the cachemethod accepts objects, whether by themselves or
in an array as its name parameter. When you do that, it’ll call cache_key or to_param on the object
provided to get a name for the fragment. By default, ActiveRecord and Mongoid objects respond to
cache_key with a dashed combination of their id and updated_at timestamp (if available).

17.1.3.4 Global Fragments

Sometimes, you’ll want to fragment-cache content that is not specific to single part of your application. To
add globally keyed fragments to the cache, simply use the name parameter of the cache helper method, but
give it a string identifier instead of an object or array.

In Listing 17.4, we cache the site stats partial for every user, using simply :site_stats as the key.

Caching and Performance 481

Listing 17.4 Caching the stats partial across the site

1 %h1 #{@user.name}'s Journal

2

3 - cache [@user, :entries, page: params[:page]] do

4 %ul.entries

5 = render partial: 'entry', collection: @entries

6

7 - content_for :sidebar do

8 - cache(:site_stats) do

9 = render partial: 'site_stats'

10 ...

Now, requesting the page results in the following key being added to the cache:

views/site_stats/1e4adb3067d5a7598ea1d0fd0f7b7ff1

17.1.4 Russian-Doll Caching

If you nest calls to the cache method and provide objects as key names, you get a strategy referred to as
“russian-doll” caching by David⁷ and others⁸.

To take advantage of this strategy, let’s update our example code, assuming that a user has many entries (and
remembering that this is a simple blog application).

Listing 17.5 Russian-doll nesting

1 %h1 #{@user.name}'s Journal

2

3 - cache [@user, :entries, page: params[:page]] do

4 %ul.entries

5 = render partial: 'entry', collection: @entries

6

7 - content_for :sidebar do

8 - cache(:site_stats) do

9 = render partial: 'site_stats'

10

11 # entries/_entry.html.haml

12

13 - cache entry do

14 %li[entry]

15 %p.content= entry.content

16 ...

⁷http://signalvnoise.com/posts/3113-how-key-based-cache-expiration-works
⁸http://blog.remarkablelabs.com/2012/12/russian-doll-caching-cache-digests-rails-4-countdown-to-2013

http://signalvnoise.com/posts/3113-how-key-based-cache-expiration-works
http://blog.remarkablelabs.com/2012/12/russian-doll-caching-cache-digests-rails-4-countdown-to-2013

Caching and Performance 482

Now we retain fast performance even if the top-level cache is busted. For instance, adding a new entry would
update the timestamp of the @user, but only the new entry has to be rendered. The rest of the content already
exists as smaller fragments that are not invalid and can get reused.

Listing 17.6 Example of using touch to invalidate a parent record’s cache key

1 class User < ActiveRecord::Base

2 has_many :entries

3 end

4

5 class Entry < ActiveRecord::Base

6 belongs_to: user, touch: true

7 end

For this to work correctly, there has to be a way for the parent object (@user in the case of the example) to
be updated automatically when one of its dependent objects changes. That’s where the touch functionality
of ActiveRecord and other object mapper libraries comes in, as demonstrated in Listing 17.6.

Outside of the Rails world, the russian doll strategy is also known as generational caching.

I have found that using this strategy can dramatically improve application performance and
lessen database load considerably. It can save tons of expensive table scans from happening in
the database. By sparing the database of these requests, other queries that do hit the database can
be completed more quickly.

In order to maintain cache consistency this strategy is conservative in nature, this results in keys
being expired that don’t necessarily need to be expired. For example if you update a post in a
particular category, this strategy will expire all the keys for all the categories. While this may
seem somewhat inefficient and ripe for optimization, I’ve often found that most applications
are so read-heavy that these types of optimization don’t make a noticeable overall performance
difference. Plus, the code to implement those optimizations then become application or model
specific, and more difficult to maintain.

…in this strategy nothing is ever explicitly deleted from the cache. This has some implications
with respect to the caching tool and eviction policy that you use. This strategy was designed to be
used with caches that employ a Least Recently Used (LRU) eviction policy (like Memcached). An
LRU policy will result in keys the with old generations being evicted first, which is precisely what
you want. Other eviction policies can be used (e.g. FIFO) although they may not be as effective.

Jonathan Kupferman discussing web application caching strategies⁹

Later in the chapter, we discuss how to configure Memcached as your application’s cache.

⁹http://www.regexprn.com/2011/06/web-application-caching-strategies_05.html

http://www.regexprn.com/2011/06/web-application-caching-strategies_05.html

Caching and Performance 483

..

David details an extreme form of Russian-Doll caching in his seminal blog post How Basecamp Next got to
be so damn fast without using much client-side UI. The level of detail he goes into is too much for this book,
but we recommend his strategy of aggressively cached reuse of identical bits of markup in many different
contexts of his app. CSS modifies the display of the underlying markup to fit its context properly.

http://signalvnoise.com/posts/3112-how-basecamp-next-got-to-be-so-damn-fast-without-using-much-client-side-ui

17.1.5 Conditional caching

Rails provides cache_if and cache_unless convenience helpers that wrap the cache method and add a
boolean parameter.

- cache_unless current_user.admin?, @expensive_stats_to_calculate do

...

17.1.6 Expiration of Cached Content

Whenever you use caching, you need to consider any and all situations that will cause the cache to become
stale, out of date. As we’ve seen, so-called generational caching attempts to solve cache expiry by tying the
keys to information about the versions of the underlying objects. But if you don’t use generational caching,
then you need to write code that manually sweeps away old cached content, or makes it time-out, so that
new content to be cached in its place.

17.1.6.1 Time-based expiry

The simplest strategy for cache invalidation is simply time-based, that is, tell the cache to automatically
invalidate content after a set time period. All of the Rails cache providers (Memcached, Redis, etc) accept an
option for time-based expiry. Just add :expires_in to your fragment cache directive:

- cache @entry, expire_in: 2.hours do

= render @post

We can tell you from experience that this kind of cache invalidation is only good for a narrow set of
circumstances. Most of the time, you only want to invalidate when underlying data changes state.

17.1.6.2 Expiring Pages and Actions

The expire_page and expire_action controller methods let you explicitly delete content from the cache in
your action, so that it is regenerated on the next request. There are various ways to identify the content to
expire, but one of them is by passing a hash with url_for conventions used elsewhere in Rails. Since this
topic is now=now esoteric in Rails 4, we leave it as a research exercise for the motivated reader.

http://signalvnoise.com/posts/3112-how-basecamp-next-got-to-be-so-damn-fast-without-using-much-client-side-ui
http://signalvnoise.com/posts/3112-how-basecamp-next-got-to-be-so-damn-fast-without-using-much-client-side-ui
http://signalvnoise.com/posts/3112-how-basecamp-next-got-to-be-so-damn-fast-without-using-much-client-side-ui

Caching and Performance 484

17.1.6.3 Expiring Fragments

The sample blogging app we’ve been playing with has globally cached content to clear out, for which we’ll
be using the expire_fragment method.

1 def create

2 @entry = @user.entries.build(params[:entry])

3 if @entry.save

4 expire_fragment(:site_stats)

5 redirect_to entries_path(@entry)

6 else

7 render action: 'new'

8 end

9 end

This isn’t the greatest or most current Rails code in the world. All it’s doing is showing you basic use of
expire_fragment. Remember that the key you provide to expire_fragment needs tomatch the key you used to
set the cache in the first place. The difficulty inmaintaining this kind of code is the reason that key invalidation
is considered one of the hardest problems in computer science!

Occasionally, youmight want to blow away any cached content that references a particular bit of data. Luckily,
the expire_fragment method also understands regular expressions. In the following example, we invalidate
anything related to a particular user:

expire_fragment(%r{@user.cache_key})

The big gotcha with regular expressions and expire_fragment is that it is not supported with the
most common caching service used on Rails production systems: Memcached.

17.1.7 Automatic Cache Expiry with Sweepers

Since caching is a unique concern, it tends to feel like something that should be applied in an aspect-oriented
fashion instead of procedurally.

A Sweeper class is kind of like an ActiveRecord Observer object, except that it’s specialized for use in expiring
cached content. When you write a sweeper, you tell it which of your models to observe for changes, just as
you would with callback classes and observers.

Remember that observers are no longer included in Rails 4 by default, so if you need sweepers,
you’ll have to add the official observers gem to your Gemfile.

gem 'rails-observers'

Caching and Performance 485

Listing 17.7 Moving expiry logic out of controller into a Sweeper class

1 class EntrySweeper < ActionController::Caching::Sweeper

2 observe Entry

3

4 def expire_cached_content(entry)

5 expire_page controller: 'entries', action: 'public'

6 expire_fragment(:site_stats)

7 end

8

9 alias_method :after_commit, :expire_cached_content

10 alias_method :after_destroy, :expire_cached_content

11

12 end

Once you have a Sweeper class written, you still have to tell your controller to use that sweeper in conjunction
with its actions. Here’s the top of the revised entries controller:

1 class EntriesController < ApplicationController

2 caches_page :public

3 cache_sweeper :entry_sweeper, only: [:create, :update, :destroy]

4 ...

Like many other controller macros, the cache_sweeper method takes :only and :except options. There’s no
need to bother the sweeper for actions that can’t modify the state of the application, so we do indeed include
the :only option in our example.

17.1.8 Avoiding Extra Database Activity

Once you have fragments of your view cached, you might think to yourself that it no longer makes sense to
do the database queries that supply those fragments with their data. After all, the results of those database
queries will not be used again until the cached fragments are expired. The fragment_exist?method lets you
check for the existence of cached content, and takes the same parameters that you used with the associated
cache method.

Here’s how we would modify the index action accordingly:

1 def index

2 unless fragment_exist? [@user, :entries, page: params[:page]]

3 @entries = Entry.all.limit(10)

4 end

5 end

Caching and Performance 486

Now the finder method will only get executed if the cache needs to be refreshed. However, as Tim pointed out
in previous editions of this book, the whole issue is moot if you use Decent Exposure¹⁰ to make data available
to your views via methods, not instance variables. Because decent exposure method invocations are inside
the templates instead of your controllers, inside the blocks passed to the cache method, the problem solves
itself.

..

We actually disputed whether to even include this section in the current edition. Since view rendering is so
much slower than database access, avoidance of database calls represents a minor additional optimization
on top of the usual fragment caching. Meaning you should only have to worry about this if you’re trying to
squeeze every last bit of performance out of your application, and even then, we advise you to really think
about it.

17.1.9 Cache Logging

If you’ve turned on caching during development, you can actually monitor the Rails console or development
log for messages about caching and expiration.

Write fragment views/pages/52781671756e6bd2fa060000-20131110153647/

stats/1f440155af81f1358d8f97a099395802 (1.4ms)

Cache digest for pages/_page.html: 1f440155af81f1358d8f97a099395802

Read fragment views/pages/52781604756e6bd2fa050000-20131104214748/

stats/1f440155af81f1358d8f97a099395802 (0.3ms)

17.1.10 Cache Storage

You can set up your application’s default cache store by calling config.cache_store= in the Application

definition inside your config/application.rb file or in an environment specific configuration file. The
first argument will be the cache store to use and the rest of the argument will be passed as arguments to the
cache store constructor.

By default, Rails gives you three different options for storage of action and fragment cache data. Other options
require installation of third-party gems¹¹.

ActiveSupport::Cache::FileStore
Keeps the fragments on disk in the cache_path, which works well for all types of environments (except
Heroku) and shares the fragments for all the web server processes running off the same application
directory.

ActiveSupport::Cache::MemoryStore
Keeps fragments in process memory, in a threadsafe fashion. This store can potentially consume an

¹⁰https://github.com/voxdolo/decent_exposure
¹¹See http://edgeguides.rubyonrails.org/caching_with_rails.html#cache-stores for a full list of support cache providers, including Terracotta’s

Ehcache.

http://edgeguides.rubyonrails.org/caching_with_rails.html#cache-stores

Caching and Performance 487

unacceptable amount of memory if you do not limit it and implement a good expiration strategy. The
cache store has a bounded size specified by the :size options to the initializer (default is 32.megabytes).
When the cache exceeds the allotted size, a cleanup will occur and the least recently used entries will be
removed. Note that only small Rails applications that are deployed on a single process will ever benefit
from this configuration.

ActiveSupport::Cache::MemCacheStore
Keeps the fragments in a separate process using a proven cache server named memcached.

17.1.10.1 Configuration Examples

The :memory_store option is enabled by default. Unlike session data, which is limited in size, fragment-cached
data can grow to be quite large, which means you almost certainly don’t want to use this default option in
production.

config.cache_store = :memory_store, expire_in: 1.minute, compress: true

config.cache_store = :file_store, "/path/to/cache/directory"

All cache stores take the following hash options as their last parameter:

expires_in

Supply a time for items to be expired from the cache.

compress

Specify to use compression or not.

compress_threshold

Specify the threshold at which to compress, with the default being 16k.

namespace

if your application shares a cache with others, this option can be used to create a namespace for it.

race_condition_ttl

This option is used in conjunction with the :expires_in option on content that is accessed and updated
heavily. It prevents multiple processes from trying to simultaneously repopulate the same key. The value
of the option sets the number of seconds that an expired entry can be reused (be stale) while a new
value is being regenerated.

17.1.10.2 Limitations of File-Based Storage

As long as you’re hosting your Rails application on a single server, setting up caching is fairly straightforward
and easy to implement (of course, coding it is a different story).

If you think about the implications of running a cached application on a cluster of distinct physical servers,
you might realize that cache invalidation is going to be painful. Unless you set up the file storage to point at
a shared filesystem such as NFS or GFS, it won’t work.

Caching and Performance 488

17.2 Data Caching

Each of the caching mechanisms described in the previous section is actually using an implementation of an
ActiveSupport::Cache::Store, covered in detail inside Appendix B, Active Support API Reference.

Rails actually always exposes its default cache store via the Rails.cachemethod, and you can use it anywhere
in your application, or from the console:

1 >> Rails.cache.write(:color, :red)

2 => true

3 >> Rails.cache.read :color

4 => :red

17.2.1 Eliminating Extra Database Lookups

One of the most common patterns of simple cache usage is to eliminate database lookups for commonly
accessed data, using the cache’s fetchmethod. For the following example, assume that your application’s user
objects are queried very often by id. The fetch method takes a block that is executed and used to populate
the cache when the lookup misses, that is, a value is not already present.

Listing 17.8

1 class User < ActiveRecord::Base

2 def self.fetch(id)

3 Rails.cache.fetch("user_#{id}") { User.find(id) }

4 end

5

6 def after_commit

7 Rails.cache.write("user_#{id}", self)

8 end

9

10 def after_destroy

11 Rails.cache.delete("city_#{id}")

12 end

13 end

..

With relatively little effort, you could convert the code in Listing 17.8 into a Concern, and include it wherever
needed.

17.2.2 Initializing New Caches

We can also initialize a new cache directly, or through ActiveSupport::Cache.lookup_store if we want to
use different caches for different reasons. (Not that we recommend doing that.) Either one of these methods

Caching and Performance 489

of creating a new cache takes the same expiration and compression options as mentioned previously, and the
same three stores exist as for fragment caching: FileStore, MemoryStore, and MemCacheStore.

1 ActiveSupport::Cache::MemCacheStore.new(

2 expire_in: 5.seconds

3)

4 ActiveSupport::Cache.lookup_store(

5 :mem_cache_store, compress: true

6)

Once you have your cache object, you can read and write to it via its very simple API and any Ruby object
that can be serialized can be cached, including nils.

1 cache = ActiveSupport::Cache::MemoryStore.new

2 cache.write(:name, "John Doe")

3 cache.fetch(:name) # => "John Doe"

17.2.3 fetch Options

There are several now-familiar options that can be passed to fetch in order to provide different types of
behavior for each of the different stores. Additional options than those listed here are available based on the
individual cache implementations.

:compress

Use compression for this request.

:expire_in

Tell an individual key in the cache to expire in n seconds.

:force

If set to true will force the cache to delete the supplied key.

:race_condition_ttl

Supply seconds as an integer and a block. When an item in the cache is expired for less than the number
of seconds, its time gets updated and its value is set to the result of the block.

There are other available functions on caches, and additional options can be passed depending on the specific
cache store implementation.

delete(name, options)

Delete a value for the key.

exist?(name, options)

Will return true if a value exists for the provided key.

Caching and Performance 490

read(name, options)

Get a value for the supplied key or return nil if none found.

read_multi(*names)

Return the values for the supplied keys as a hash of key/value pairs.

write(name, value, options)

Write a value to the cache.

17.3 Control of Web Caching

Action Controller offers a pair of methods for easily setting HTTP 1.1 Cache-Control headers. Their default
behavior is to issue a private instruction, so that intermediate caches (web proxies) must not cache the
response. In this context, private only controls where the response may be cached and not the privacy of
the message content.

The public setting indicates that the response may be cached by any cache or proxy and should never be
used in conjunction with data served up for a particular end user.

Using curl --head we can examine the way that these methods affect HTTP responses. For reference, let’s
examine the output of a normal index action.

1 $ curl --head localhost:3000/reports

2 HTTP/1.1 200 OK

3 Etag: "070a386229cd857a15b2f5cb2089b987"

4 Connection: Keep-Alive

5 Content-Type: text/html; charset=utf-8

6 Date: Wed, 15 Sep 2010 04:01:30 GMT

7 Server: WEBrick/1.3.1 (Ruby/1.8.7/2009-06-12)

8 X-Runtime: 0.032448

9 Content-Length: 0

10 Cache-Control: max-age=0, private, must-revalidate

11 Set-Cookie: ...124cc92; path=/; HttpOnly

Don’t get confused by the content length being zero. That’s only because curl --head issues a HEAD request.
If you’re experimenting with your own Rails app, try curl -v localhost:3000 to see all the HTTP headers
plus the body content.

17.3.1 expires_in(seconds, options =)

This method will overwrite an existing Cache-Control header.¹²

Examples include

¹²See http://http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9 for more information.

Caching and Performance 491

expires_in 20.minutes

expires_in 3.hours, public: true

expires in 3.hours, 'max-stale' => 5.hours, public: true

Setting expiration to 20 minutes alters our reference output as follows:

Cache-Control: max-age=1200, private

17.3.2 expires_now

Sets a HTTP 1.1 Cache-Control header of the response to no-cache informing web proxies and browsers that
they should not cache the response for subsequent requests.

17.4 ETags

The bulk of this chapter deals with caching content so that the server does less work than it would have to
do otherwise, but still incurs the cost of transporting page data to the browser. The ETags scheme, where E
stands for entity, allows you to avoid sending any content to the browser at all if nothing has changed on the
server since the last time a particular resource was requested. A properly implemented ETags scheme is one
of the most significant performance improvements that can be implemented on a high traffic website.¹³

Rendering automatically inserts the Etag header on 200 OK responses, calculated as an MD5 hash of the
response body. If a subsequent request comes in that has a matching Etag¹⁴, the response will be changed to
a 304 Not Modified and the response body will be set to an empty string.

The key to performance gains is to short circuit the controller action and prevent rendering if you know
that the resulting Etag is going to be the same as the one associated with the current request. I believe you’re
actually being a good Internet citizen by paying attention to proper use of ETags in your application. According
to RFC 2616¹⁵, “the preferred behavior for an HTTP/1.1 origin server is to send both a strong entity tag and a
Last-Modified value.”

Rails does not set a Last-Modified response header by default, so it’s up to you to do so using one of the
following methods.

17.4.1 fresh_when(options)

Sets ETag and/or Last-Modified headers and renders a 304 Not Modified response if the request is already
fresh. Freshness is calculated using the cache_key method of the object (or array of objects) passed as the
:etag option.

For example, the following controller action shows a public article.

¹³Tim Bray wrote a now-classic blog post on the topic at http://www.tbray.org/ongoing/When/200x/2008/08/14/Rails-ETags
¹⁴http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
¹⁵http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3.4

http://www.tbray.org/ongoing/When/200x/2008/08/14/Rails-ETags
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3.4

Caching and Performance 492

1 expose(:article)

2

3 def show

4 fresh_when(etag: article,

5 last_modified: article.created_at.utc,

6 public: true)

7 end

This code will only render the show template when necessary. As you can tell, this is superior even to view
caching because there is no need to check the server’s cache, and data payload delivered to the brower is
almost completely eliminated.

17.4.2 stale?(options)

Sets the ETag and/or Last-Modified headers on the response and checks them against the client request (using
fresh_when). If the request doesn’t match the options provided, the request is considered stale and should be
generated from scratch.

You want to use this method instead of fresh_when if there is additional logic needed at the controller level
in order to render your view.

1 expose(:article)

2

3 expose(:statistics) do

4 article.really_expensive_operation_to_calculate_stats

5 end

6

7 def show

8 if stale?(etag: article,

9 last_modified: article.created_at.utc,

10 public: true)

11 # decent_exposure memoizes the result, later used by the view

12 statistics()

13

14 respond_to do |format|

15 ...

16 end

17 end

18 end

The normal rendering workflow is only triggered inside of the stale? conditional, if needed.

17.5 Conclusion

We’ve just covered a fairly complicated subject: Caching. Knowing how to use caching will really save your
bacon when youwork on Rails applications that need to scale. Indeed, developers of high-traffic Rails websites

Caching and Performance 493

tend to see Rails as a fancy HTML generation platform with which to create content ripe for caching.

18 Background Processing
People count up the faults of those who keep them waiting.

—French Proverb

Users of modern websites have lofty expectations when it comes to application responsiveness - most likely
they will expect behavior and speed similar to that of desktop applications. Proper user experience guidelines
would dictate that no HTTP request/response cycle should take more than a second to execute, however there
will be actions that arise that simply cannot achieve this time constraint.

Tasks of this nature can range from simple, long running tasks due to network latency to more complex
tasks that require heavy processing on the server. Examples of these actions could be sending an email or
processing video, respectively. In these situations it is best to have the actions execute asynchronously, so that
the responsiveness of the application remains swift while the procedures run.

In this chapter these types of tasks are referred to as background jobs. They include any execution that is
handled in a separate process from the Rails application. Rails and Ruby have several libraries and techniques
for performing this work, most notably:

• Delayed Job
• Sidekiq
• Resque
• Rails Runner

This chapter will cover each of these tools, discussing the strengths and weaknesses of each one so that you
may determine what is appropriate for your application.

18.1 Delayed Job

Delayed Job¹ is a robust background processing library that is essentially a highly configurable priority queue.
It provides various approaches to handling asynchronous actions, including:

• Custom background jobs
• Permanently marked background methods
• Background execution of methods at runtime

Delayed Job requires a persistence store to save all queue related operations. Along with the delayed_job

gem, a backend gem is required to get up and running. Supported options are:

• Active Record with the delayed_job_active_record gem.
• Mongoid (for use with MongoDB) with the delayed_job_mongoid gem.

¹https://github.com/collectiveidea/delayed_job

https://github.com/collectiveidea/delayed_job

Background Processing 495

18.1.1 Getting started

Add the delayed_job and delayed_job_active_record gems to your application’s Gemfile, then run the
generator to create your execution and migration scripts.

$ rails generate delayed_job:active_record

This will create the database migration that will need to be run to set up the delayed_jobs table in the
database, as well as a command to run Delayed Job.

To change the default settings for Delayed Job, first add a delayed_job.rb in your config/initializers
directory. Options then can be configured by calling various methods on Delayed::Worker, which include
settings for changing the behavior of the queue with respect to tries, timeouts, maximum run times, sleep
delays and other options.

1 Delayed::Worker.destroy_failed_jobs = false

2 Delayed::Worker.sleep_delay = 30

3 Delayed::Worker.max_attempts = 5

4 Delayed::Worker.max_run_time = 1.hour

5 Delayed::Worker.max_priority = 10

18.1.2 Creating Jobs

Delayed Job can create background jobs using 3 different techniques, and which one you use depends on your
own personal style.

The first option is to chain any method that you wish to execute asynchronously after a call to Object#delay.
This is good for cases where some common functionality needs to execute in the background in certain
situations, but is acceptable to run synchronously in others.

1 # Execute normally

2 mailer.send_email(user)

3

4 # Execute asynchronously

5 mailer.delay.send_email(user)

The second technique is to tell Delayed Job to execute every call to a method in the background via the
Object.handle_asynchronously macro.

Background Processing 496

1 class Mailer

2 def send_email(user)

3 UserMailer.activation(user).deliver

4 end

5

6 handle_asynchronously :send_email

7 end

Durran says…
When using handle_asynchronously, make sure the declaration is after themethod definition, since
Delayed Job uses alias_method_chain internally to set up the behavior.

Lastly, you may create a custom job by creating a separate Ruby object that only needs to respond to perform.
That job can then be run at any point by telling Delayed Job to enqueue the action.

1 class EmailJob < Struct.new(:user_id)

2 def perform

3 user = User.find(user_id)

4 UserMailer.activation(user).deliver

5 end

6 end

7

8 # Enqueue a job with default settings

9 Delayed::Job.enqueue EmailJob.new(user.id)

10

11 # Enqueue a job with priority of 1

12 Delayed::Job.enqueue EmailJob.new(user.id), 1

13

14 # Enqueue a job with priority of 0, starting tomorrow

15 Delayed::Job.enqueue EmailJob.new(user.id), 0, 1.day.from_now

18.1.3 Running

To start up Delayed Job workers, use the delayed_job command created by the generator. This allows for
starting a single worker or multiple workers on their own processes, and also provides the ability to stop all
workers.

Background Processing 497

1 # Start a single worker

2 RAILS_ENV=staging bin/delayed_job start

3

4 # Start multiple workers, each in a separate process

5 RAILS_ENV=production bin/delayed_job -n 4 start

6

7 # Stop all workers

8 RAILS_ENV=staging bin/delayed_job stop

Durran says…
Delayed Job workers generally have a lifecycle that is equivalent to an application deployment.
Because of this, their memory consumption grows over time and may eventually have high swap
usage, causing workers to become unresponsive. A good practice is to have a monitoring tool like
God or monit watching jobs, and restarting them when their memory usage hits a certain point.

18.1.4 Summary

Delayed Job is an excellent choice where you want ease of setup, need to schedule jobs for later dates, or want
to add priorities to jobs in your queue. It works well in situations where the total number of jobs is low and
the tasks they execute are not long running or consume large amounts of memory.

Do note that if you are using Delayed Job with a relational database backend and have a large number of
jobs, performance issues may arise due to the table locking the framework employs. Since jobs may have a
long lifecycle, be wary of resource consumption due to workers not releasing memory once jobs are finished
executing. Also where job execution can take a long period of time, higher priority jobs will still wait for
the other jobs to complete before being processed. In these cases, using a non-relational backend such as
MongoDB or potentially another library such as Sidekiq may be advisable.

18.2 Sidekiq

Sidekiq² is a full-featured background processing librarywith support formultiple weighted queues, scheduled
jobs, and sending asynchronous Action Mailer emails. Like Resque (covered later in this chapter), Sidekiq uses
Redis for its storage engine, minimizing the overhead of job processing.

Sidekiq is currently the best performing and memory efficient background processing library in the Ruby
ecosystem. It is multithreaded, which allows Sidekiq to process jobs in parallel without the overhead of having
to run multiple processes. This also means Sidekiq can process jobs with a much smaller memory footprint
compared to other background processing libraries, such as Delayed Job or Resque. According to the official
documentation³, one Sidekiq process can process a magnitude more than its competitors:

You’ll find that you might need 50 200MB resque processes to peg your CPU whereas one 300MB
Sidekiq process will peg the same CPU and perform the same amount of work.

²http://sidekiq.org/
³https://github.com/mperham/sidekiq/blob/master/README.md

http://sidekiq.org/
https://github.com/mperham/sidekiq/blob/master/README.md

Background Processing 498

Since it’s multithreaded, all code executed by Sidekiq should be threadsafe.

18.2.1 Getting Started

To integrate Sidekiq into your Rails application, add the sidekiq gem in your Gemfile and run bundle

install.

Gemfile

gem 'sidekiq'

By default, Sidekiq will assume that Redis can be found at localhost:6379. To override the location of the
Redis server used by Sidekiq (for production deployments you will probably need to point Sidekiq to an
external Redis server), create a Rails initializer that configures redis in both Sidekiq.configure_server and
Sidekiq.configure_client code blocks.

1 # config/initializers/sidekiq.rb

2

3 Sidekiq.configure_server do |config|

4 config.redis = {

5 url: 'redis://redis.example.com:6379/10',

6 namespace: 'tr4w'

7 }

8 end

9

10 Sidekiq.configure_client do |config|

11 config.redis = {

12 url: 'redis://redis.example.com:6379/10',

13 namespace: 'tr4w'

14 }

15 end

Note that setting the :namespace option is completely optional, but highly recommended if Sidekiq is sharing
access to a Redis database.

Juanito says…
Sidekiq requires Redis 2.4 or greater.

18.2.2 Workers

To create a worker in Sidekiq, one must create a class in the app/workers folder that includes the module
Sidekiq::Worker and responds to perform.

Background Processing 499

1 class EmailWorker

2 include Sidekiq::Worker

3

4 def perform(user_id)

5 user = User.find(@user_id)

6 UserMailer.activation(user).deliver

7 end

8 end

To enqueue a job on the worker, simply call the perform_async class method passing any arguments required
by the perform method of the worker.

1 EmailWorker.perform_async(1)

Be aware that all worker jobs are stored in the Redis database as JSON objects, meaning you must ensure the
arguments provided to your worker can be serialized to JSON. For the sake of clarity, in the above example,
instead of passing an instance of User, we provided the worker with an identifier for the record. The worker
would then be responsible for querying the User record from the database.

Sidekiq workers can be configured via the sidekiq_options macro style method. Available options are:

:backtrace

Specifies whether or not to save error backtraces to the retry payload, defaulting to false. The error
backtrace is used for display purposes in the Sidekiq web UI. Alternatively, you can specify the number
of lines to save (i.e., backtrace: 15).

:queue

The name of queue for the worker, defaulting to “default”.

:retry

By default, a worker is able to retry jobs until it’s successfully completed. Setting the :retry option to
falsewill instruct Sidekiq to run a job only once. Alternatively, you can specify the maximum number
of times a job is retried (i.e., retry: 5).

1 class SomeWorker

2 include Sidekiq::Worker

3 sidekiq_options queue: :high_priority, retry: 5, backtrace: true

4

5 def perform

6 ...

7 end

8 end

18.2.3 Scheduled Jobs

Out of the box, Sidekiq has the ability to schedule when jobs will be executed. To delay the execution of a job
for a specific interval, enqueue the job by calling perform_in.

Background Processing 500

EmailWorker.perform_in(1.hour, 1)

A job can also be scheduled for a specific time using the enqueue method perform_at.

EmailWorker.perform_at(2.days.from_now, 1)

18.2.4 Delayed Action Mailer

When Sidekiq is included in a Rails application, it adds three methods to Action Mailer that allow for email
deliveries to be executed asynchronous.

..

Note
The following methods are also available on Active Record classes to execute class methods asynchronously.
It’s strongly not recommended to call these methods on Active Record instances.

1 User.delay(1.hour).some_background_operation

18.2.4.1 delay

Calling delay from a mailer will result in the email being added to the DelayedMailer worker for processing.

UserMailer.delay.activation(user.id)

18.2.4.2 delay_for(interval)

Using delay_for, an email can be scheduled for delivery at a specific time interval.

UserMailer.delay_for(10.minutes).status_report(user.id)

18.2.4.3 delay_until(timestamp)

The last Action Mailer method added by Sidekiq is delay_until. Sidekiq will wait until the specified time to
attempt delivery of the email.

1 UserMailer.delay_for(1.day).status_report(user.id)

2 UserMailer.delay_until(1.day.from_now).status_report(user.id)

18.2.5 Running

To start up Sidekiq workers, run the sidekiq command from the root of your Rails application.

Background Processing 501

$ bundle exec sidekiq

This allows for starting a Sidekiq process that begins processing against the “default” queue. To use multiple
queues, you can pass the name of a queue and and optional weight to the sidekiq command.

$ bundle exec sidekiq -q default -q critical,2

Queues have a weight of 1 by default. If a queue has a higher weight, it will checked that many more times
than a queue with a weight of 1. For instance, in the example above, the critical queue is checked twice as
often as default.

Stopping jobs involves sending signals to the sidekiq process, which then takes the appropriate action on all
processors:

TERM
Signals that Sidekiq should shut down within the -t timeout option. Any jobs that are not completed
within the timeout period are pushed back into Redis. These jobs are executed again once Sidekiq
restarts. By default, the timeout period is 8 seconds.

USR1
Continues working on current jobs, but stops accepting any new ones.

18.2.5.1 Concurrency

By default, Sidekiq starts up 25 concurrent processors. To explicitly set the amount of processors for Sidekiq
to use, pass the -c option to the sidekiq command.

1 $ bundle exec sidekiq -c 100

Active Record Database Connections
When using Sidekiq alongside Active Record, ensure that the Active Record connection pool setting
pool is close or equal to the number of Sidekiq processors.

1 production:

2 adapter: postgresql

3 database: example_production

4 pool: 25

18.2.5.2 sidekiq.yml

If you find yourself having to specify different options to the sidekiq command for multiple environments,
you configure Sidekiq using a YAML file.

Background Processing 502

1 # config/sidekiq.yml

2 ---

3 :concurrency: 10

4 :queues:

5 - [default, 1]

6 - [critical, 5]

7 staging:

8 :concurrency: 25

9 production:

10 :concurrency: 100

Now, when starting the sidekiq command, pass the path of sidekiq.yml to the -C option.

1 $ bundle exec sidekiq -e $RAILS_ENV -C config/sidekiq.yml

18.2.6 Error Handling

Sidekiq ships with support to notify the following exception notification services if an error occurs within a
worker during processing:

• Airbrake
• Exceptional
• ExceptionNotifier
• Honeybadger

Other services, such as Sentry and New Relic, implement their own Sidekiq middleware that handles the
reporting of errors. Installation usually involves adding a single require statement to a Rails initializer.

config/initializers/sentry.rb

require 'raven/sidekiq'

18.2.7 Monitoring

When Resque was released, it set a precedent for Ruby background processing libraries by shipping with a
web interface to monitor your queues and jobs. Sidekiq follows suit and also comes with a Sinatra application
that can be run standalone or be mounted with your Rails application.

To run the web interface standalone, create a config.ru file and boot it with any Rack server:

Background Processing 503

1 require 'sidekiq'

2

3 Sidekiq.configure_client do |config|

4 config.redis = { size: 1 }

5 end

6

7 require 'sidekiq/web'

8 run Sidekiq::Web

If you prefer to access the web interface within your Rails application, explicitly mount Sidekiq::Web to a
path in your config/routes.rb file.

1 require 'sidekiq/web'

2

3 Rails.application.routes.draw do

4 mount Sidekiq::Web => '/sidekiq'

5 ...

6 end

Since the web interface is a Sinatra application, you will need to add the sinatra gem to your Gemfile.

Gemfile

gem 'sinatra', '>= 1.3.0', require: nil

18.2.8 Summary

Sidekiq is highly recommended for any Rails application that has a large number of jobs. It’s the fastest and
most efficient background processing library available due to it being multithreaded.

With a Redis backend, Sidekiq does not suffer from the potential database locking issues that can arise when
using Delayed Job and has significantly better performance with respect to queue management over both
Delayed Job and Resque.

Note that Redis stores all of its data in memory, so if you are expecting a large amount of jobs but do not have
a significant amount of RAM to spare, you may need to look at a different framework.

18.3 Resque

Resque⁴ is a background processing framework that supports multiple queues and like Sidekiq, uses Redis for
its persistent storage. Resque also comes with a Sinatra web application to monitor the queues and jobs.

Resque workers are Ruby objects or modules that respond to a class method. Jobs are stored in the database
as JSON objects, and because of this only primitives can be passed as arguments to the actions. Resque

⁴https://github.com/resque/resque

https://github.com/resque/resque

Background Processing 504

also provides hooks into the worker and job lifecycles, as well as the ability to configure custom failure
mechanisms.

Due to Resque’s use of Redis as its storage engine, the overhead of job processing is unnoticeable. Resque uses
a parent/child forking architecture, which makes its resource consumption predictable and easily managed.

18.3.1 Getting Started

First in your Gemfile add the resque gem, then configure Resque by creating a Rails initializer and a
resque.yml to store the configuration options. The YAML should be key/value pairs of environment name
with the Redis host and port, and the initializer should load the YAML and set up the Redis options.

Configuring failure backends can also be done in the same manner - Resque supports persistence to Redis
or Airbrake notifications out of the box, but custom backends can be easily created by inheriting from
Resque::Failure::Base.

In config/resque.yml:

1 development: localhost:6379

2 staging: localhost:6379

3 production: localhost:6379

The config/initializers/resque.rb:

1 require 'resque/failure/multiple'

2 require 'resque/failure/airbrake'

3 require 'resque/failure/redis'

4

5 rails_env = ENV['RAILS_ENV'] || 'development'

6 config = YAML.load_file(Rails.root.join 'config','resque.yml')

7 Resque.redis = config[rails_env]

8

9 Resque::Failure::Airbrake.configure do |config|

10 config.api_key = 'abcdefg'

11 config.secure = true

12 end

13 Resque::Failure::Multiple.classes = [Resque::Failure::Redis,

14 Resque::Failure::Airbrake]

15 Resque::Failure.backend = Resque::Failure::Multiple

18.3.2 Creating Jobs

Jobs in Resque are plain old Ruby objects that respond to a perform class method and define which queue
they should be processed in. The simplest manner to define the queue is to set an instance variable on the job
itself.

Background Processing 505

1 class EmailJob

2 @queue = :communications

3

4 def self.perform(user_id)

5 user = User.find(user_id)

6 UserMailer.activation(user).deliver

7 end

8 end

9

10 # Enqueue the job

11 Resque.enqueue(EmailJob, user.id)

18.3.3 Hooks

Resque provides lifecycle hooks that can used to add additional behavior, for example adding an automatic
retry for a failed job. There are two categories of hooks: worker hooks and job hooks.

The available worker hooks are before_first_fork, before_fork, and after_fork. Before hooks are executed
in the parent process where the after hook executes in the child process. This is important to note since changes
in the parent process will be permanent for the life of the worker, whereas changes in the child process will
be lost when the job completes.

1 # Before the worker's first fork

2 Resque.before_first_fork do

3 puts "Creating worker"

4 end

5

6 # Before every worker fork

7 Resque.before_fork do |job|

8 puts "Forking worker"

9 end

10

11 # After every worker fork

12 Resque.after_fork do |job|

13 puts "Child forked"

14 end

Job hooks differ slightly from worker hooks in that they are defined on the action classes themselves, and are
defined as class methods with the hook name as the prefix. The available hooks for jobs are: before_perform,
after_perform, around_perform, and on_failure.

An example job that needs to retry itself automatically on failure, and logged some information before it
started processing would look like so:

Background Processing 506

1 class EmailJob

2 class << self

3 def perform(user_id)

4 user = User.find(user_id)

5 UserMailer.activation(user).deliver

6 end

7

8 def before_perform_log(*args)

9 Logger.info "Starting Email Job"

10 end

11

12 def on_failure_retry(error, *args)

13 Resque.enqueue self, *args

14 end

15 end

16 end

18.3.4 Plugins

Resque has a very good plugin ecosystem to provide it with additional useful features. Most plugins are
modules that are included in your job classes, only to be used on specific jobs that need the extra functionality.
Plugins of note are listed below and a complete list can be found at https://github.com/resque/resque/wiki/
plugins.

resque-scheduler

A job scheduler built on top of Resque.

resque-throttle

Restricts the frequency that jobs are run.

resque-retry

Adds configurable retry and exponential backoff behavior for failed jobs.

resque_mailer

Adds ability to send Action Mailer emails asynchronously.

18.3.5 Running

Resque comes with two rake tasks that can be used to run workers, one to run a single worker for one or more
queues, the second to run multiple workers. Configuration options are supplied as environment variables
when running the tasks, and allow for defining the queue for the workers to monitor, logging verbosity, and
the number or workers to start.

https://github.com/resque/resque/wiki/plugins
https://github.com/resque/resque/wiki/plugins

Background Processing 507

Start 1 worker for the communications queue

$ QUEUE=communications rake environment resque:work

Start 6 workers for the communications queue

$ QUEUE=communications COUNT=6 rake resque:workers

Start 2 workers for all queues

$ QUEUE=* COUNT=2 rake resque:workers

Stopping jobs involves sending signals to the parent Resque workers, which then take the appropriate action
on the child and themselves:

QUIT
Waits for the forked child to finish processing, then exists

TERM/INT
Immediately kills the child process and exits

USR1
Immediately kills the child process, but leaves the parent worker running

USR2
Finishes processing the child action, then waits for CONT before spawning another

CONT
Continues to start jobs again if it was halted by a USR2

18.3.6 Monitoring

One of the really nice features of Resque is the web interface that it ships with for monitoring your queues
and jobs. It can run standalone or be mounted with your Rails application.

To run standalone, simply run resque-web from the command line. If you prefer to access the web interface
within your Rails application, explicitly mount an instance of Resque::Server.new to a path in your
config/routes.rb file.

1 require "resque/server"

2

3 Rails.application.routes.draw do

4 mount Resque::Server.new => '/resque'

5 ...

6 end

Background Processing 508

18.3.7 Summary

Resque is recommended where a large number of jobs are in play and your code is not threadsafe. It does
not support priority queueing but does support multiple queues, which is advantageous when jobs can be
categorized together and given pools of workers to run them.

Since it uses a Redis backend, Resque does not suffer from the potential database locking issues that can arise
when using Delayed Job. However, being single-threaded means that Resque requires a process for every
worker you want to run in parallel.

18.4 Rails Runner

Rails comes with a built-in tool for running tasks independent of the web cycle. The rails runner command
simply loads the default Rails environment and then executes some specified Ruby code. Popular uses include:

• Importing “batch” external data
• Executing any (class) method in your models
• Running intensive calculations, delivering e-mails in batches, or executing scheduled tasks

Usages involving rails runner that you should avoid at all costs are:

• Processing incoming e-mail
• Tasks that take longer to run as your database grows

18.4.1 Getting Started

For example, let us suppose that you have a model called “Report.” The Report model has a class method called
generate_rankings, which you can call from the command line using

$ rails runner 'Report.generate_rankings'

Since we have access to all of Rails, we can even use the Active Record finder methods to extract data from
our application. ⁵

$ rails runner 'User.pluck(:email).each { |e| puts e }'

charles.quinn@highgroove.com

me@seebq.com

bill.gates@microsoft.com

obie@obiefernandez.com

This example demonstrates that we have access to the User model and are able to execute arbitrary Rails
code. In this case, we’ve collected some e-mail addresses that we can now spam to our heart’s content. (Just
kidding!)

⁵Be careful to escape any characters that have specific meaning to your shell.

Background Processing 509

18.4.2 Usage Notes

There are some things to remember when using rails runner. You must specify the production environment
using the -e option; otherwise, it defaults to development. The rails runner help option tells us:

$ rails runner -h

Usage: rails runner [options] ('Some.ruby(code)' or a filename)

-e, --environment=name Specifies the environment for the runner

to operate under (test/development/production).

Default: development

Using rails runner, we can easily script any batch operations that need to run using cron or another system
scheduler. For example, you might calculate the most popular or highest-ranking product in your e-commerce
application every few minutes or nightly, rather than make an expensive query on every request:

$ rails runner â€“e production 'Product.calculate_top_ranking'

A sample crontab to run that script might look like

0 */5 * * * root /usr/local/bin/ruby \

/apps/exampledotcom/current/script/rails runner -e production \

'Product.calculate_top_ranking'

The script will run every five hours to update the Product model’s top rankings.

18.4.3 Considerations

On the positive side: It doesn’t get any easier and there are no additional libraries to install. That’s about it.

As for negatives: The rails runner process loads the entire Rails environment. For some tasks, particularly
short-lived ones, that can be quite wasteful of resources. Also, nothing prevents multiple copies of the same
script from running simultaneously, which can be catastrophically bad, depending on the contents of the
script.

Wilson says…
Do not process incoming e-mail with rails runner. It’s a Denial of Service attack waiting to
happen.

18.4.4 Summary

The Rails Runner is useful for short tasks that need to run infrequently, but jobs that require more heavy
lifting, reporting, and robust failover mechanisms are best handled by other libraries.

Background Processing 510

18.5 Conclusion

Most web applications todaywill need to incorporate some form of asynchronous behavior, andwe’ve covered
some of the important libraries available when needing to implement background processing. There are many
other frameworks and techniques available for handling this, so choose the solution that is right for your needs
- just remember to never make your users wait.

19 Ajax on Rails
Ajax isn’t a technology. It’s really several technologies, each flourishing in its own right, coming
together in powerful new ways

—Jesse J. Garrett, who coined the name AJAX

Ajax is an acronym that stands for Asynchronous JavaScript and XML. It encompasses techniques that allow
us to liven up web pages with behaviors that happen outside the normal HTTP request life-cycle (without a
page refresh).

Some example use-cases for Ajax techniques are:

• “Type ahead” input suggestion, as in Google search.
• Sending form data asynchronously.
• Seamless navigation of web-presented maps, as in Google Maps.
• Dynamically updated lists and tables, as in Gmail and other web-based email services.
• Web-based spreadsheets.
• Forms that allow in-place editing.
• Live preview of formatted writing alongside a text input.

Ajax is made possible by the XMLHttpRequestObject (or XHR for short), an API that is available in all modern
browsers. It allows JavaScript code on the browser to exchange data with the server and use it to change the
user interface of your application on the fly, without needing a page refresh. Working directly with XHR
in a cross-browser-compatible way is difficult, to say the least, however we are lucky as the open-source
ecosystem flourishes with Ajax JavaScript libraries.

Incidentally, Ajax, especially in Rails, has very little to do with XML, despite its presence there at the end of
the acronym. In fact, by default Rails 4 does not include XML parsing (however, this can be reenabled). The
payload of those asynchronous requests going back and forth to the server can be anything. Often it’s just a
matter of form parameters posted to the server, and receiving snippets of HTML back, for dynamic insertion
into the page’s DOM. Many times it even makes sense for the server to send back data encoded in a simple
kind of JavaScript called JavaScript Object Notation (JSON).

It’s outside the scope of this book to teach you the fundamentals of JavaScript and/or Ajax. It’s also outside
of our scope to dive into the design considerations of adding Ajax to your application, elements of which are
lengthy and occasionally controversial. Proper coverage of those subjects would require a whole book and
there are many such books to choose from in the marketplace. Therefore, the rest of the chapter will assume
that you understand what Ajax is and why you would use it in your applications. It also assumes that you
have a basic understanding of JavaScript programming.

Ajax on Rails 512

19.0.1 Firebug

Firebug¹ is an extremely powerful extension for Firefox and a must-have tool for doing Ajax work. It lets you
inspect Ajax requests and probe the DOM of the page extensively, even letting you change elements and CSS
styles on the fly and see the results on your browser screen. It also has a very powerful JavaScript debugger
that you can use to set watch expressions and breakpoints.

Firebug also has an interactive console, which allows you to experiment with JavaScript in the browser just
as you would use irb in Ruby. In some cases, the code samples in this chapter are copied from the Firebug
console, which has a >>> prompt.

As I’ve jokingly told many of my Ruby on Rails students when covering Ajax on Rails: “Even if you don’t
listen to anything else I say, use Firebug! The productivity gains you experience will make up for my fee very
quickly.”

Kevin says…
Alternatively, if you use Chrome or Safari, both browsers have similar built-in tools. My personal
preference is the Chrome DevTools², which is continously improved with each new release of
Chrome.

19.1 Unobtrusive JavaScript

The Unobtrusive JavaScript (UJS) features in Rails provide a library-independent API for specifying Ajax
actions. The Rails team has provided UJS implementations for both jQuery and Prototype, available un-
der https://github.com/rails/jquery-ujs and https://github.com/rails/prototype-rails, respectively. By default,
newly-generated Rails applications use jQuery as its JavaScript library of choice.

To integrate jQuery into your Rails application, simply include the jquery-rails gem in your Gemfile and
run bundle install. Next, ensure that the right directives are present in your JavaScript manifest file (listed
below).

1 # Gemfile

2 gem 'jquery-rails'

1 // app/assets/javascripts/application.js

2 //= require jquery

3 //= require jquery_ujs

By including those require statements in your JavaScript manifest file, both the jQuery and jquery_ujs

libraries will automatically be bundled up along with the rest of your assets and served to the browser
efficiently. Use of manifest files is covered in detail in Chapter 20, “Asset Pipeline”.

¹The first step to getting the Firebug plugin for Firefox is to visit http://www.getfirebug.com
²http://developers.google.com/chrome-developer-tools/

https://github.com/rails/jquery-ujs
https://github.com/rails/prototype-rails
http://www.getfirebug.com
http://developers.google.com/chrome-developer-tools/

Ajax on Rails 513

19.1.1 UJS Usage

Prior to version 3.0, Rails was not unobstrusive, resulting in generated markup being coupled to your
JavaScript library of choice. For example, one of the most dramatic changes caused by the move to UJS was
the way that delete links were generated.

1 = link_to 'Delete', user_path(1), method: :delete,

2 data: { confirm: "Are you sure?" }

Prior to the use of UJS techniques, the resulting HTML would look something like

1 <a href="/users/1" onclick="if (confirm('Sure?')) { var f =

2 document.createElement('form'); f.style.display = 'none';

3 this.parentNode.appendChild(f); f.method = 'POST'; f.action =

4 this.href;var m = document.createElement('input'); m.setAttribute('type',

5 'hidden'); m.setAttribute('name', '_method'); m.setAttribute('value',

6 'delete'); f.appendChild(m);f.submit(); };return false;">Delete

Now, taking advantage of UJS, it will look like

1 <a data-confirm="Are you sure?" data-method="delete" href="/users/1"

2 rel="nofollow">Delete

Note that Rails uses the standard HTML5 data- attributes method as a means to attach custom events to
DOM elements.

Also required for Rails UJS support is the csrf_meta_tag, which must be placed in the head of the document
and adds the csrf-param and csrf-token meta tags used in dynamic form generation.

1 %head

2 = csrf_meta_tag

CSRF stands for cross-site request forgery and the csrf_meta_tag is one method of helping to prevent the
attack from happening. CSRF is covered in detail in Chapter 15, “Security”.

19.1.2 Helpers

As covered in Chapter 11, “All About Helpers”, Rails ships with view helper methods to generate markup for
common HTML elements. The following is a listing of Action View helpers that have hooks to enable Ajax
behavior via the Unobtrusive JavaScript driver.

19.1.2.1 button_to

The button_to helper generates a form containing a single button that submits to the URL created by the
set of options. Setting the :remote option to true, allows the unobtrusive JavaScript driver to make an Ajax
request in the background to the URL.

To illustrate, the following markup

Ajax on Rails 514

= button_to("New User", new_user_path, remote: true)

generates

1 <form action="/users/new" class="button_to" data-remote="true"

2 method="post">

3 <div>

4 <input type="submit" value="New User">

5 <input name="authenticity_token" type="hidden"

6 value="HDVQ/5AHK+f5ChqN8qaah8Pd0gZzkoa21vqbvbayHBY=">

7 </div>

8 </form>

To display a JavaScript confirmation prompt with a question specified, supply data attribute :confirm with a
question. If accepted, the button will be submitted normally; otherwise, no action is taken.

= button_to("Deactivate", user, data: { confirm: 'Are you sure?' })

The Unobtrusive JavaScript driver also allows for the disabling of the button when clicked via the :disable_-
with data attribute. This prevents duplicate requests from hitting the server from subsequent button clicks by
a user. If used in combination with remote: true, once the request is complete, the Unobtrusive JavaScript
driver will re-enable the button and reset the text to its original value.

1 = button_to("Deactivate", user, data: { disable_with: 'Deactivating...' })

19.1.2.2 form_for

The form_for helper is used to create forms with an Active Model instance. To enable the submission of a
form via Ajax, set the :remote option to true. For instance, assuming we had a form to create a new user, the
following:

1 = form_for(user, remote: true) do |f|

2 ...

would generate

1 <form accept-charset="UTF-8" action="/users" class="new_user"

2 data-remote="true" id="new_user" method="post">

3 ...

4 </form>

19.1.2.3 form_tag

Like form_for, the form_tag accepts the :remote option to allow for Ajax form submission. For detailed
information on form_tag, see Chapter 11, “All About Helpers”.

Ajax on Rails 515

19.1.2.4 link_to

The link_to helper creates a link tag of the given name using a URL created by the set of options. Setting the
option :remote to true, allows the unobtrusive JavaScript driver to make an Ajax request to the URL instead
of the following the link.

= link_to "User", user, remote: true

By default, all links will always perform an HTTP GET request. To specify an an alternative HTTP verb, such
as DELETE, one can set the :method option with the desired HTTP verb (:post, :patch, or :delete).

= link_to "Delete User", user, method: :delete

If the user has JavaScript disabled, the request will always fall back to using GET, no matter what :method
you have specified.

The link_to helper also accepts data attributes :confirm and :disable_with, covered earlier in the button_to
section.

19.1.3 jQuery UJS Custom Events

When a form, link, or button is marked with the data-remote attribute, the jQuery UJS driver fires the
following custom events:

Event name parameters Occurrence

ajax:before event Ajax event is started,
aborts if stopped.

ajax:beforeSend event, xhr, Before request is sent,
settings aborts if stopped.

ajax:send event, xhr Request is sent.

ajax:success event, data, Request completed and HTTP
status, xhr response was a success.

ajax:error event, xhr, Request completed and HTTP
status, error response returned an error.

ajax:complete event, xhr, After request completed,
status regardless of outcome.

ajax:aborted:required event, elements When there exists blank
required field in a form.
Continues with submission if
stopped.

ajax:aborted:file event, elements When there exists a populated
file field in the form.
Aborts if stopped.

Ajax on Rails 516

This allows you, for instance, to handle the success/failure of Ajax submissions. To illustrate, let’s bind to both
the ajax:success and ajax:error events in the following CoffeeScript:

1 $(document).ready ->

2 $("#new_user")

3 .on "ajax:success", (event, data, status, xhr) ->

4 $(@).append xhr.responseText

5 .on "ajax:error", (event, xhr, status, error) ->

6 $(@).append "Something bad happened"

19.2 Turbolinks

Rails 4 introduces a new, controversial, feature called Turbolinks. Turbolinks is JavaScript library, that when
enabled, attaches a click handler to all links of a HTML page. When a link is clicked, Turbolinks will execute
an Ajax request, and replace the contents of the current page with the response’s <body> tag.

Using Turbolinks also changes the address of the current page, allowing users to bookmark a specific page
and use the back button as they normally would. Turbolinks uses the HTML5 history API to achieve this.

The biggest advantage of Turbolinks is that it enables the user’s browser to only fetch the required stylesheets,
javascripts, and even images once to render the page. Turbolinks effectively makes your site appear faster and
more responsive.

To integrate Turbolinks into your existing Rails application, simply include the turbolinks gem in your
Gemfile and run bundle install. Next, add “require turbolinks” in your JavaScript manifest file.

1 # Gemfile

2 gem 'turbolinks'

1 // app/assets/javascripts/application.js

2 //= require jquery

3 //= require jquery_ujs

4 //= require turbolinks

19.2.1 Turbolinks usage

In Rails 4, Turbolinks is enabled by default, but can be disabled if you prefer not to use it. To disable the use
of Turbolinks for a specific link on a page, simply use the data-no-turbolink tag like so:

= link_to 'User', user_path(1), 'data-no-turbolink' => true

It does not depend on any particular framework, such as jQuery or ZeptoJS, and is intended on being as
unobtrusive as possible.

One caveat to Turbolinks is it only will work with GET requests. You can, however send POST requests to
a Turbolink-enabled link, as long as it sends a redirect instead of an immediate render. This is because the
method must return the user’s browser to a location that can be rendered on a GET request (pushState does
not record the HTTP method, only the path per request).

Ajax on Rails 517

19.2.2 Turbolink Events

When using Turbolinks, the DOM’s ready event will only be fired on the initial page request, as it overrides
the normal page loading process. This means you cannot rely on DOMContentLoaded or jQuery.ready() to
trigger code evaluation. To trigger code that is dependent on the loading of a page in Turbolinks, one must
attach to the custom Turbolinks page:change event.

1 $(document).on "page:change", ->

2 alert "loaded!"

When Turbolinks requests a fresh version of a page from the server, the following events are fired on document:

page:before-change

A link that is Turbolinks-enabled has been clicked. Returning false will cancel the Turbolinks process.

page:fetch

Turbolinks has started fetching a new target page.

page:receive

The new target page has been fetched from the server.

page:change

The page has been parsed and changed to the new version.

page:update

If jQuery is included, triggered on jQuery’s ajaxSucess event.

page:load

End of page loading process.

By default, Turbolinks caches 10 page loads to reduce requests to the server. In this case, the page:restore
event is fired at the end of the restore process.

jquery.turbolinks

If you have an existing Rails application that extensively binds to the jQuery.ready event, you may
want to look at using the jquery.turbolinks library³. When Turbolinks triggers the page:load

event on a document, jquery.turbolinks will automatically jQuery.ready events as well.

³https://github.com/kossnocorp/jquery.turbolinks

https://github.com/kossnocorp/jquery.turbolinks

Ajax on Rails 518

19.2.3 Controversy

Turbolinks undoubtedly speeds up many sites by avoiding reprocessing of the <head> tag. It was mature
enough for the Rails core team to bundle it as an official part of Rails. Yet it has plenty of critics. Some raise
objections about the headaches of making sure that all the Ajax functions of a large application actually work
correctly with Turbolinks enabled. Others point out how it breaks apps in older browsers such as IE8. And
others point out that it is inefficient, because most applications could get away with refreshing sections of the
page smaller than the entire <body> element.

We think it’s worth giving Turbolinks a try in your application, especially if you’re starting from scratch
and can take its challenges into account from the beginning of a project. However, we also admit that we’ve
disabled it in a lot of our own projects. Your mileage may vary.

Here are some of the issues that you may need to address with your use of Turbolinks:⁴

Memory leaks
Turbolinks does not clear or reload your JavaScript when the page changes. You could potentially see
the effects of memory leaks in your applications, especially if you use a lot of JavaScript.

Event Bindings
You have to take older browsers into consideration. Make sure you listen for page:* events, as well as
DOMContentLoaded.

Client-side frameworks
Turbolinks may not play nicely with other client-side frameworks like Backbone, Angular, Knockout,
Ember, etc.

19.3 Ajax and JSON

JavaScript Object Notation (JSON) is a simple way to encode JavaScript objects. It is also considered a
language-independent data format, making it a compact, human-readable, and versatile interchange format.
This is the preferred method of interchanging data between the web application code running on the server
and any code running in the browser, particularly for Ajax requests.

Rails provides a to_json on every object, using a sensible mechanism to do so for every type. For example,
BigDecimal objects, although numbers, are serialized to JSON as strings, since that is the best way to represent
a BigDecimal in a language-independent manner. You can always customize the to_json method of any of
your classes if you wish, but it should not be necessary to do so.

19.3.1 Ajax link_to

To illustrate an Ajax request, let’s enable our Client controller to respond to JSON and provide a method to
supply the number of draft timesheets outstanding for each client:

⁴http://net.tutsplus.com/tutorials/ruby/digging-into-rails-4

http://net.tutsplus.com/tutorials/ruby/digging-into-rails-4

Ajax on Rails 519

1 respond_to :html, :xml, :json

2 ...

3 # GET /clients/counts

4 # GET /clients/counts.json

5 def counts

6 respond_with(Client.all_with_counts) do |format|

7 format.html { redirect_to clients_path }

8 end

9 end

This uses the Client class method all_with_counts which returns an array of hashmaps:

1 def self.all_with_counts

2 all.map do |client|

3 { id: client.id, draft_timesheets_count: client.timesheets.draft.count }

4 end

5 end

When GET /clients/counts is requested and the content type is JSON the response is:

1 [{"draft_timesheets_count":0, "id":20},

2 {"draft_timesheets_count":1, "id":21}]

You will note in the code example that HTML and XML are also supported content types for the response, so
it’s up to the client to decide which format works best for them. We’ll look at formats other than JSON in the
next few sections.

In this case, our Client index view requests a response in JSON format:

1 - content_for :head do

2 = javascript_include_tag 'clients.js'

3 ...

4 %table#clients_list

5 ...

6 - @clients.each do |client|

7 %tr[client]

8 %td= client.name

9 %td= client.code

10 %td.draft_timesheets_count= client.timesheets.draft.count

11 ...

12 = link_to 'Update draft timesheets count', counts_clients_path,

13 remote: true, data: { type: :json }, id: 'update_draft_timesheets'

To complete the asynchronous part of this Ajax-enabled feature, we also need to add an event-handler to
the UJS ajax:success event, fired when the Ajax call on the update_draft_timesheets element completes
successfully. Here, jQuery is used to bind a JavaScript function to the event once the page has loaded. This is
defined in clients.js:

Ajax on Rails 520

1 $(function() {

2 $("#update_draft_timesheets").on("ajax:success", function(event, data) {

3 $(data).each(function() {

4 var td = $('#client_' + this.id + ' .draft_timesheets_count')

5 td.html(this.draft_timesheets_count);

6 });

7 });

8 });

In each row of the clients listing, the respective td with a class of draft_timesheets_count is updated in
place with the values from the JSON response. There is no need for a page refresh and user experience is
improved.

As an architectural constraint, this does require this snippet of JavaScript to have intimate knowledge of the
target page’s HTML structure and how to transform the JSON into changes on the DOM. This is a major reason
why JSON is the best format for decoupling the presentation layer of your application or, more importantly,
when the page is requesting JSON from another application altogether.

Sometimes, however, it may be desirable for the server to respond with a snippet of HTML which is used to
replace a region of the target page.

19.4 Ajax and HTML

The Ruby classes in your Rails application will normally contain the bulk of that application’s logic and
state. Ajax-heavy applications can leverage that logic and state by transferring HTML, rather than JSON, to
manipulate the DOM.

A web application may respond to an Ajax request with an HTML fragment, used to insert or replace an
existing part of the page. This is most usually done when the transformation relies on complex business rules
and perhaps complex state that would be inefficient to duplicate in JavaScript.

Let’s say your application needs to display clients in some sort of priority order, and that order is highly
variable and dependent on the current context. There could be a swag of rules dictating what order they are
shown in. Perhaps it’s that whenever a client has more than a number of draft timesheets, we want to flag
that in the page.

1 %td.draft_timesheets_count

2 - if client.timesheets.draft.count > 3

3 %span.drafts-overlimit WARNING!

4 %br

5 = client.timesheets.draft.count

Along with that, let’s say on a Friday or Saturday we need to group clients by their hottest spending day so
we can make ourselves an action plan for the beginning of the following week.

These are just two business rules that, when combined, are a bit of a handful to implement both in Rails and
in JavaScript. Applications tend to have many more than just two rules combining and it quickly becomes

Ajax on Rails 521

prohibitive to implement those rules in JavaScript to transform JSON into DOM changes. That’s particularly
true when the page making the Ajax call is external and not one we’ve written.

We can opt to transfer HTML in the Ajax call and using JavaScript to update a section of the page with that
HTML. Under one context, the snippet of HTML returned could look like

1 <tr id="client_22" class="client"></tr>

2 <tr>

3 <td></td><td>Aardworkers</td><td>AARD</td><td>$4321</td>

4 <td class="draft_timesheets_count">0</td>

5 </tr>

6 <tr id="client_23" class="client"></tr>

7 <tr>

8 <td></td><td>Zorganization</td><td>ZORG</td><td>$9999</td>

9 <td class="draft_timesheets_count">1</td>

10 </tr>

Whereas, in another context, it could look like

1 <tr>

2 <td>Friday</td>

3 </tr>

4 <tr>

5 <td>Saturday</td>

6 </tr>

7 <tr id="client_24" class="client"></tr>

8 <tr>

9 <td></td><td>Hashrocket</td><td>HR</td><td>$12000</td>

10 <td class="draft_timesheets_count">

11 WARNING!

12 5

13 </td>

14 </tr>

15 <tr id="client_22" class="client"></tr>

16 <tr>

17 <td></td><td>Aardworkers</td><td>AARD</td><td>$4321</td>

18 <td class="draft_timesheets_count">0</td>

19 </tr>

The JavaScript event handler for the Ajax response then just needs to update the innerHTML of a particular
HTML element to alter the page, without having to know anything about the business rules used to determine
what the resulting HTML should be.

Ajax on Rails 522

19.5 Ajax and JavaScript

The primary reason you want to work with a JavaScript response to an Ajax request is when it is for JSONP
(JSON with Padding). JSONP pads, or wraps, JSON data in a call to a JavaScript function that exists on your
page. You specify the name of that function in a callback query string parameter. Note that some public
APIs may use something other than callback, but it has become the convention in Rails and most JSONP
applications.

..

Xavier says…
Although the Wikipedia entry for Ajax does not specifically mention JSONP and the request is not XHR
by Rails’ definition, we’d like to think of it as Ajax anyways - it is after all asynchronous JavaScript.

http://en.wikipedia.org/wiki/Ajax_(programming)

JSONP is one technique for obtaining cross-domain data, avoiding the browser’s same-origin policy. This
introduces a pile of safety and security issues that are beyond the scope of this book. However, if you need
to use JSONP, the Rails stack provides an easy way to handle JSONP requests (with Rack::JSONP) or make
JSONP requests (with UJS and jQuery).

To respond to JSONP requests, activate the Rack JSONP module from the rack-contrib RubyGem in your
environment.rb file:

1 class Application < Rails::Application

2 require 'rack/contrib'

3 config.middleware.use 'Rack::JSONP'

4 ...

then, just use UJS to tell jQuery it’s a JSONP call by altering the data-type to jsonp:

1 = link_to 'Update draft timesheets count', counts_clients_path,

2 remote: true, data: { type: :jsonp }, id: 'update_draft_timesheets'

jQuery automatically adds the ?callback= and random function name to the query string of the request URI.
In addition to this it also adds the necessary script tags to our document to bypass the same-origin policy.
Our existing event handler is bound to ajax:success so it is called with the data just like before. Now, though,
it can receive that data from another web application.

jQuery also makes the request as if it is for JavaScript, so our Rails controller needs to respond_to :js.
Unfortunately, the Rails automatic rendering for JavaScript responses isn’t there yet so we add a special
handler for JavaScript in our controller:

http://en.wikipedia.org/wiki/Ajax_(programming)

Ajax on Rails 523

1 respond_to :html, :js

2 ...

3

4 def counts

5 respond_with(Client.all_with_counts) do |format|

6 format.html { redirect_to clients_path }

7 format.js { render json: Client.all_with_counts.to_json }

8 end

9 end

We still convert our data to JSON. The Rack::JSONPmodule then pads that JSON data in a call to the JavaScript
function specified in the query string of the request. The response looks like this:

jsonp123456789([{"id":1,"draft_timesheets_count":0},

{"id":2,"draft_timesheets_count":1}])

When the Ajax response is complete, your Ajax event handler is called and the JSON data is passed to it as a
parameter.

19.6 Conclusion

The success of Rails is often correlated to the rise of Web 2.0, and one of the factors linking Rails into that
phenomenon is its baked-in support for Ajax. There are a ton of books about Ajax programming, as it’s a big
subject, but an important enough part of Rails that we felt the need to include a quick introduction to it as
part of this book.

20 Asset Pipeline
It’s not enough to solve the problem, we have to have the pleasure.

—DHH, RailsConf 2011 keynote

The asset pipeline is one of those Railsmagic features that makes developer’s life so easy that once you master
it you will never want to go back. It also significantly improves perceived performance of your application and
reduces burdens on your application server. It’s a huge win for Rails overall that nonetheless might make you
want to tear your hair out and switch to (shudder) Django until you understand how it works. Persevere! We
promise it’s worth the learning curve. According to David, the asset pipeline was by far his favorite element
of the Rails 3.1 release.

“Wait,” you might ask, “what is an asset”?

It’s simple - by “assets” we mean images, Javscript, CSS, and other static files that we need in order to properly
render our pages.

Web applications built with early versions of Rails shared common problems with managing static assets.
Before the asset pipeline, you just dumped all your JavaScript files into the public/javascripts directory,
all your CSS files into public/stylesheets and your image files into public/images without any structure.
Afterwards, you could load all your Javscript files within your templates using the helper <%= javascript_-

include_tag :all %>. It completely ignored files in subdirectories of public/javascripts, so that if you
wanted to organize your assets into subdirectories you had to manually load them into your layout. What a
mess!

There were other inconveniences as well. For instance, if you wanted to load the files in a certain order, you
had to replace the :all directive with a manually maintained list of “includes” in the exact order that you
needed. When you wanted to use a library that came with JavaScript and CSS files (e.g. twitter bootstrap)
you had to copy those files into your public directory and keep it under source control so that they will be
available for the running application. Worse, you had to read the README files carefully to figure out just
what files exactly do you needed to copy and in which exact order you had to load them. Not fun.

20.1 Asset Pipeline

The major goal of the asset pipeline is to make management of static assets easy, even trivial. In this chapter,
we discuss organization of assets, how can they be packaged into neat external gem dependencies, available
asset pre-processors and compressors, helpers that assist us with the Asset Pipeline and more.

Incidentally, automated asset management is not a new concept. It has existed since before the Rails era,
and plugins to add this critical functionality to Rails began appearing many years ago. The most successful
one is Sprockets, written primarily by Sam Stephenson of 37signals and Rails core team fame. Sprockets was
eventually incorporated into Rails itself and is at the core of the Rails asset pipeline implementation.

Asset Pipeline 525

In Rails 4, the whole Asset Pipeline was extracted into a separate gem “sprockets-rails” and can be
removed from your application Gemfile to disable it.

20.2 Wish List

Which features of asset management solutions would be most useful to us in building a Rails application?

For starters, we could organize the asset files into a sensible directory tree instead of ‘junk drawer’ directories
filled haphazardly.

We might also want to compress all our assets, so that they can be served faster to web browsers and eat up
less bandwidth.

We could also consolidatemultiple source files of the same kind (JavaScript or CSS) into single files, reducing
the number of HTTP requests made by the browser and significantly improving page load times.

On the other hand, compressing and consolidating all those source files could make debugging during
development a nightmare, so our wish list would also include the ability to turn those features off except
for production environments.

What else? To speed up page loading times even more, we might “pre-shrink” our asset files with the
maximum compression level, so that our web server doesn’t waste CPU cycles zipping up the same files
over and over again on each request.

We would also want to include cache-busting features, giving us the ability to force expiration of stale assets
from all cache layers (HTTP proxies, browsers, etc.) when their content changes.

Furthermore, we might want the ability to transparently compile languages such as CoffeeScript for Javscript
assets and Sass and Less for CSS stylesheets.

All the highlighted features in our wish list and more are part of the Asset Pipeline, making this aspect of
Rails programming a lot more enjoyable than in earlier versions.

20.3 The Big Picture

We could try to describe how the entire Asset Pipeline works at the high level now, but it would require
too many forward references to stuff we haven’t yet explained. Therefore we are going to build out our
understanding from the bottom up. Keep in mind the overall goal: concatenating and serving asset files
and “bundles” composed of multiple files, which can possibly be pre- and post-processed or compiled from
different formats.

Now let’s dive in.

20.4 Organization. Where does everything go?

Asset Pipeline continues with the Rails tradition of separate directories for images, stylesheets and scripts, but
adds an additional dimension of organization. There are now three locations where you store assets in your
project directory. Those are app/assets, lib/assets, and vendor/assets.

Asset Pipeline 526

This small change already gives us a much better way to organize the project files. Files specific to the current
project go into app/assets, external libraries go into vendor/assets, and assets for your own libraries can
go into lib/assets.

You can still put files into the public directory and Rails will serve them same as before, with no
processing.

You no longer need to copy the static assets bundled with your gems into your project directory. The asset
pipeline will find them automatically and make them available for your application (more on this later).

20.5 Manifest files

The organizational structure doesn’t just involve new directories. If you look into the app/assets direc-
tory of a freshly generated Rails 4 application you’ll notice a couple of files with include directives in
them: app/assets/javascripts/application.js and app/assets/stylesheets/application.css. Those
are called asset manifest files, and they specify instructions on where the pipeline processor can find other
assets and in which order to load them. The loaded files are concatenated into a single “bundle” file named
after the manifest.

Lets take a look at application.js:

1 // This is a manifest file that'll be compiled into application.js,

2 // which will include all the files listed below.

3 //

4 // Any Javscript/Coffee file within this directory, lib/assets/javascripts,

5 // vendor/assets/javascripts, or vendor/assets/javascripts of plugins,

6 // if any, can be referenced here using a relative path.

7 //

8 // It's not advisable to add code directly here, but if you do, it'll

9 // appear at the bottom of the compiled file.

10 //

11 // WARNING: THE FIRST BLANK LINE MARKS THE END OF WHAT'S TO BE PROCESSED,

12 // ANY BLANK LINE SHOULD GO AFTER THE REQUIRES BELOW.

13 //

14 //= require jquery

15 //= require jquery_ujs

16 //= require turbolinks

17 //= require_tree .

And application.css:

Asset Pipeline 527

1 /*

2 * This is a manifest file that'll be compiled into application.css,

3 * which will include all the files listed below.

4 *

5 * Any CSS and SCSS file within this directory, lib/assets/stylesheets,

6 * vendor/assets/stylesheets, or vendor/assets/stylesheets of plugins,

7 * if any, can be referenced here using a relative path.

8 *

9 * You're free to add application-wide styles to this file and they'll

10 * appear at the top of the compiled file, but it's generally better

11 * to create a new file per style scope.

12 *

13 *= require_self

14 *= require_tree .

15 */

A manifest is just a JavaScript or CSS file with a commented block at the beginning of the file that includes
special directives in it that specify other files of the same format to concatenate in the exact order. Several
comment formats are supported:

1 // This is a single line comment (JavaScript, SCSS)

2 //= require foo

1 /* This is a multi-line comment (CSS, SCSS, JavaScript)

2 *= require foo

3 */

1 # This is a single line comment too (CoffeeScript)

2 #= require foo

Note the equal signs at the beginning of the lines. If you skip those the directives won’t work.

Make as many manifest files as you need. For example, the admin.css and admin.js manifest could contain
the JS and CSS files that are used for the admin section of an application.

20.5.1 Manifest directives

There are several manifest directives available:

Asset Pipeline 528

require

is the most basic one. It concatenates the content of the referenced file you specify into the final
packaged asset “bundle”. It will only do it once, even if the same filename appears multiple times in the
manifest, either directly or as a part of require_tree (see below).

include

is just like require, but will insert the file again if it appears in the manifest more then once.

require_self

inserts the content of the file itself (after the directives). This is often useful when you want to make sure
that JavaScript code from a manifest comes before any other code that is loaded with require_tree.
We see an example of that in the default application.css.

require_directory

will load all the files of the same format in the specified directory in an alphabetical order. It will skip
files that were already loaded.

require_tree

is just like require_directory, but it will also recursively load all the files in subdirectories as well. It
will skip files that were already loaded as well.

depend_on

declares a dependency on a file without actually loading it into the “bundle”. It can be useful to force
Rails to recompile cached asset bundle in response to the change in this file, even if it is not concatenated
into the bundle directly.

Directives are processed in the order they are read in the file, but when you use require_tree there is no
guarantee of the order files in which will be included. If for dependency reasons you need to make sure of a
certain order, just require those files explicitly.

20.5.2 Search path

When you require an asset from a manifest file Rails searches for it in all directories in its search path. You
do not need to specify file extensions. The processor assumes you are looking for files that match the type of
the manifest file itself.

The search path can be accessed through the Rails configuration variable config.assets.paths,
which is just an array of directory names that serve as the search path. By modifying it you can
add your own paths to the list.

1 config.assets.paths << Rails.root.join("app", "flash", "assets")

The search path includes all the directories that are directly under the default assets locations app/assets,
lib/assets, and vendor/assets by default, meaning you can easily add other directories for new asset types
to the list by creating them under any of the standard asset locations, e.g. app/assets/fonts

Files in subdirectories can be accessed by using a relative path:

Asset Pipeline 529

1 // this will load the app/assets/javascripts/library/foo.js

2 //= require 'library/foo'

The directories are traversed in the order that they appear in the search path. The first file with the required
name “wins”.

..

Note that all the directories in the search path are “equal”, and can store files of any format. It means you
can put your JavaScript files in app/assets/stylesheets, and CSS files in app/assets/javascripts and
Rails will work just the same. But your fellow developers will probably stop talking to you.

20.5.3 Gemified assets

Asmentioned before, gems can contain assets, and there are gems that exist with the sole purpose of packaging
asset files for Asset Pipeline.

To make gem assets available to an application the gem has to define an “engine” i.e. a class that inherits from
Rails::Engine. Once “required” it will add app/assets, lib/assets, and vendor/assets directories from the
gem to the search path.

Lets see the example from jquery-rails. You can find its engine in the lib/jquery/ui/rails/engine.rb file
of the gem’s source code:

1 module Jquery

2 module Ui

3 module Rails

4 class Engine < ::Rails::Engine

5 end

6 end

7 end

8 end

This Ruby file is loaded when you include this Gem into your application and as a result all the subdirectories
of gem’s vendor/assets directory are added to the search path.

20.5.4 Index files

Index files makes inclusion of ‘bundles’ of files easy. If, for example, your Foobar library has a directory
lib/assets/foobar with index.js file inside, Rails will recognize this files as a manifest and let you include
the whole “bundle” with a single directive:

//= require 'foobar'

As with your Rails project, manifest files can encapsulate all the gem asset files and ensure proper load order
without any additional effort on your part.

Asset Pipeline 530

20.5.5 Format handlers

Asset Pipeline is not called a pipeline for nothing. Source files go into one end, get processed and compiled (if
necessary), concatenated and compressed, then come out of the other end of the pipeline as bundles. There
are multiple stages that the source files go through while traversing the pipeline.

There are many format handlers available with Rails, with more available as third party gems. Some of them
are compilers, like CoffeeScript, that compile one format into another. Others are more simple pre-processors
like “Interpolated Strings” engine that performs ruby substitution, e.g. #{...} regardless of the underlying
format of the file, so that it can process a CoffeeScript file before it will be compiled into JavaScript.

Before we continue with individual handlers, we should discuss the file naming scheme, because the
file extensions used on an asset determine which handlers are invoked. Asset files that are intended for
compilation/pre-processing can have more then one extension, concatenated one after the other.

When asked to serve products in a manifest, either explicitly or as part of a compound require directive, the
asset pipeline constructs the output by iteratively processing the file from one format into the next. It starts
with the processing corresponding to the right-most file extension and continues until the requested leftmost
extension format is obtained.

For example, let’s dissect the processing of an asset source file named products.css.sass.erb.str.

The pipeline will first pass this file through an Interpolated Strings engine, then the ERB template engine,
after which the result is treated as a Sass file. Sass files get compiled into normal CSS, which is in turn served
to the browser as the final result.¹

In case it wasn’t obvious, the order in which you specify the file extensions is important. If you were to name
a file foo.css.erb.sass, the first processor to get the file would be the Sass compiler, and it would blow up
when it encountered ERB tags.

Naturally, for this entire scheme to work, pre-processors and/or compilers should be available for all the
relevant formats. A wide swath of pre-processing power is provided to Rails by a gem named Tilt, a generic
interface to multiple Ruby template engines.²

1 ENGINE FILE EXTENSIONS REQUIRED LIBRARIES

2 ------------------------ ----------------------- ----------------------------

3 Asciidoctor .ad, .adoc, .asciidoc asciidoctor (>= 0.1.0)

4 ERB .erb, .rhtml none (included ruby stdlib)

5 Interpolated String .str none (included ruby core)

6 Erubis .erb, .rhtml, .erubis erubis

7 Haml .haml haml

8 Sass .sass haml (< 3.1) or sass (>= 3.1)

9 Scss .scss haml (< 3.1) or sass (>= 3.1)

10 Less CSS .less less

11 Builder .builder builder

12 Liquid .liquid liquid

13 RDiscount .markdown, .mkd, .md rdiscount

¹We are ignoring post-processing for a moment.
²For an up-to-date list of supported formats please refer to Tilt’s README file. https://github.com/rtomayko/tilt

https://github.com/rtomayko/tilt

Asset Pipeline 531

14 Redcarpet .markdown, .mkd, .md redcarpet

15 BlueCloth .markdown, .mkd, .md bluecloth

16 Kramdown .markdown, .mkd, .md kramdown

17 Maruku .markdown, .mkd, .md maruku

18 RedCloth .textile redcloth

19 RDoc .rdoc rdoc

20 Radius .radius radius

21 Markaby .mab markaby

22 Nokogiri .nokogiri nokogiri

23 CoffeeScript .coffee coffee-script (+ javascript)

24 Creole (Wiki markup) .wiki, .creole creole

25 WikiCloth (Wiki markup) .wiki, .mediawiki, .mw wikicloth

26 Yajl .yajl yajl-ruby

27 CSV .rcsv none (Ruby >= 1.9),

28 fastercsv (Ruby < 1.9)

Note that quite a few of the extensions recognized by Tilt have dependencies on gems that don’t
automatically come with Rails.

20.6 Custom format handlers

Even though Tilt provides quite a few formats, you might need to implement your own. Template handler
classes have a simple interface. They define a class attribute named default_handler containing the desired
Mime-type of the content, and a class method with the signature call(template) that receives the template
content and returns the processed result.

For example, here is the handler class from the Rabl³ gem, used to generate JSON using templates.

1 module ActionView

2 module Template::Handlers

3 class Rabl

4 class_attribute :default_format

5 self.default_format = Mime::JSON

6

7 def self.call(template)

8 # ommitted for clarity...

9 end

10 end

11 end

12 end

³https://github.com/nesquena/rabl

https://github.com/nesquena/rabl
https://github.com/nesquena/rabl

Asset Pipeline 532

Note that by convention, template handlers are defined in the ActionView::Template::Handlers module.
Once your custom code is available to your application in the lib folder or as a gem, register it using the
register_template_handler method, providing the extension to match, and the handler class:

1 ActionView::Template.register_template_handler :rabl, ActionView::Template::Handlers::Rabl

20.7 Post-Processing

In addition to pre-processing various formats into JavaScripts and stylesheets, the asset pipeline can also post-
process the results. By default post-processing compressors are available for both stylesheets and JavaScripts.

20.7.1 Stylesheets

By default stylesheets are compressed using the YUI Compressor⁴, which is the only stylesheets compressor
available out of the box with Rails.

You can control it by changing the config.assets.css_compressor configuration option, that is set to yui

by default.

When using Sass in a Rails project, one could set the CSS compressor to use Sass’ standard compressor with
the config.assets.css_compressor = :sass option.

20.7.2 JavaScripts

There are several JavaScript compression options available: :closure, :uglifier, and :yui, provided by
closure-compiler, uglifier or yui-compressor gems respectively.

The :uglifier option is the default, but you can control it by changing the config.assets.js_compressor
configuration option.

20.7.3 Custom Compressor

You can use a custom post-processor by defining a class with a compress method that accepts a string and
assigning an instance of it to one of the configuration options above, like this:

1 class MyProcessor

2 def compress(string)

3 # do something

4 end

5 end

6

7 config.assets.css_compressor = MyProcessor.new

⁴http://yui.github.io/yuicompressor/css.html

http://yui.github.io/yuicompressor/css.html
http://yui.github.io/yuicompressor/css.html

Asset Pipeline 533

20.8 Helpers

To link assets into your Rails templates, you use the same old helpers as always, javascript_include_tag
and stylesheet_link_tag. Call these helpers in the <head> of your layout template, passing them the name
of your manifest files.

1 <%= stylesheet_link_tag "application" %>

2 <%= javascript_include_tag "application" %>

One of the common frustrations of the Asset Pipeline learning curve is figuring out that you don’t need to
explicitly link to every asset file in your layout template anymore. Unless you break off large portions of
assets for different parts of your app (most commonly, for admin sections) you’ll just need one each for the
application.js and application.css files. If you try to explicitly include or link to assets that are bundled
up, your app will work in development mode where it’s possible to serve up assets dynamically. However, it
will break in production where assets must be precompiled. The bundled-up assets will simply not exist.

You’ll know that you’re running into this problem when you get the following error:

ActionView::Template::Error (foo.js isn't precompiled)

To fix this problem, make sure that foo.js is required in one of your manifest files, and get rid of the call to
‘javascript_include_tag “foo”.

By default, Rails only seeks to precompile assets named “application.” If you have a good reason to break off
additional bundles of assets, like for the admin section of your app, tell the pipeline to precompile those bundles
by adding the names of the manifest files to the config.assets.precompile array in config/application.rb

config.assets.precompile += %w(admin.js optional.js}

..

Note that the most maddening incarnation of this problem happens with older Rails plugin gems that were
written before the advent of the asset pipeline and contain explicit requires to their asset dependencies.
Luckily, as gems are updated this problem is becoming less common than it was in the days of Rails 3.x.

20.8.1 Images

The venerable image_tag helper has been updated so that it knows to search asset/images and not just the
public folder. It will also search through the paths specified in the config.assets.paths setting and any
additional paths added by gems. If you’re passing user-supplied data to the image_tag helper, note that a
blank or non-existant path will raise a server exception during processing of the template.

Asset Pipeline 534

20.8.2 Getting the URL of an asset file

The asset_path and asset_url helpers can be used if you need to generate the URL of an asset. But you’d
need to make sure to include the .erb file extension at the right-most position. For example, consider the
following snippet of JavaScript taken from a file named transitions.js.erb contains the line:

this.loadImage('<%= asset_path "noise.jpg" %>');

The asset pipeline runs the source through ERB processing first, and interpolates in the correct path to the
desired JPG file.

20.8.3 Built-in SASS asset path helpers

Similarly, in a SASS stylesheet named layout.css.scss.erb you might have the following code, but you
wouldn’t for reasons that we’ll explain momentarily:

1 header {

2 background-image: url("<%= asset_path "header-photo-vert.jpg" %>");

3 }

Because this is such a common construct, Rails’ SASS processing has built-in helpers, useful for referencing
image, font, video, audio, and other stylesheet assets.

1 header {

2 background-image: image-url("header-photo-vert.jpg");

3 }

Reusing a familiar pattern, image-url("rails.png") becomes url(/assets/rails.png) and image-path("rails.png")
becomes "/assets/rails.png". Themore generic form can also be used but the asset path and class must both
be specified: asset-url("rails.png", image) becomes url(/assets/rails.png) and asset-path("rails.png",
image) becomes "/assets/rails.png".

20.8.4 Data URIs

You can easily embed the source of an image directly into a CSS file using the Data URL scheme⁵ with the
asset_data_uri method like this:

1 icon {

2 background: url(<%= asset_data_uri 'icon.png' %>)

3 }

Many different kinds of content can be inlined using data urls, although a full explanation of each is outside
the scope of this book. Generally speaking, you want to keep the size of inlined data small to avoid blowing
up the size of your CSS file.

⁵http://tools.ietf.org/html/rfc2397

http://tools.ietf.org/html/rfc2397

Asset Pipeline 535

20.9 Fingerprinting

In the past, Rails encoded and appended an asset’s file timestamp to all asset paths like this:

<link href="/assets/foo.css?1385926153" media="screen" rel="stylesheet" />

This simple scheme allowed you to set a cache-expiration date for the asset far into the future, but still instantly
invalidate it by updating the file. The updated timestamp changed the resulting URL, which busted the cache.

Note that in order for this scheme to work correctly, all your application servers had to return the same
timestamps. In other words, they needed to have their clocks synchronized. If one of them drifted out of sync,
you would see different timestamps at random and the caching wouldn’t work properly.

Another problem with the old approach was that it appended the timestamps as a query parameter. Not all
cache implementations treat query parameters as parts of their cache key, leading to stale cache hits or no
caching at all.

Yet another problem was that with many deployment methods, file timestamps would change on each
deployment. This led to unnecessary cache invalidations after each production deploy.

The new asset pipeline drops the timestamping scheme and uses content fingerprinting instead. Fingerprinting
makes the file name dependent on the files’ content, so that the filename only ever changes when the actual
file content is changed.

It’s worth knowing that these two lines

1 <%= javascript_include_tag "application" %>

2 <%= stylesheet_link_tag "application" %>

will look like this in production:

1 <script src="/assets/application-908e25f4bf641868d8683022a5b62f54.js">

2 </script>

3 <link

4 href="/assets/application-4dd5b109ee3439da54f5bdfd78a80473.css"

5 media="screen" rel="stylesheet"></link>

20.10 Serving the files

To take full advantage of asset fingerprinting provided by the asset pipeline, you should configure your web
server to set headers on your precompiled assets to a far-future expiration date. With cache headers in place,
a client will only request an asset once until either the filename changes, or the cache has expired.

Here’s an example for Apache:

Asset Pipeline 536

1 # The Expires* directives requires the Apache module `mod_expires` to be enabled.

2 <Location /assets/>

3 # Use of ETag is discouraged when Last-Modified is present

4 Header unset ETag

5 FileETag None

6 # RFC says only cache for 1 year

7 ExpiresActive On

8 ExpiresDefault "access plus 1 year"

9 </Location>

And here’s one for Nginx:

1 location ~ ^/assets/ {

2 expires 1y;

3 add_header Cache-Control public;

4 add_header Last-Modified "";

5 add_header ETag "";

6 break;

7 }

The fingerprinting feature is controller by the config.assets.digest Rails setting. By default it is only set
in “production” environment.

..

Note that the asset pipeline always makes copies of non-fingerprinted asset files available in the same
/assets directory.

While you’re thinking about how your asset files are being served, it’s worth investigating the possibility of
seriously improving app performance by having your web server serve asset files directly instead of involving
the Rails stack. Apache and nginx support this option out of the box, and you enable it by turning on right
option in production.rb:

1 # config.action_dispatch.x_sendfile_header = "X-Sendfile" # for apache

2 # config.action_dispatch.x_sendfile_header = 'X-Accel-Redirect' # for nginx

20.10.1 GZip Compression

When the asset pipeline precompiles a file, it generates a full-compression gzipped version as well. So that
alongside /assets/application.css, there is also /assets/application.css.gz. The benefit of doing it
during the precompilation process and not on-the-fly (which is supported by default my most sane server
configurations) is that it only happens once, allowing the use of the maximum compression level to minimize
file size.

Some configuration is needed on the web server side to serve those pre-compressed files.

For Nginx you only need to add gzip_static on; to the configuration:

Asset Pipeline 537

1 location ~ ^/assets/ {

2 expires 1y;

3 add_header Cache-Control public;

4 add_header Last-Modified "";

5 add_header ETag "";

6 gzip_static on;

7 break;

8 }

20.11 Rake Tasks

When in production mode, Rails expects all manifests and asset files to be pre-compiled on disk and available
to be served up by your web server out of the location specified in config.assets.prefix setting, which
defaults to public/assets. Compiled asset files should not be versioned in source control, and the default
.gitignore file for Rails includes a line for public/assets/*.

As part of deploying your application to production, you’ll call the following rake task to create compiled
versions of your assets directly on the server:

$ RAILS_ENV=production bundle exec rake assets:precompile

Note that Heroku automatically does this step for you in such a way that is compatible with its otherwise
read-only filesystem. However, Heroku also prevents your Rails application from being initialized as part of
asset pre-compilation, and certain references to objects or methods will not be available, causing the compile
process to fail. To catch these errors, pre-compile assets on your development machine, noting any errors that
arise.

Also note that local pre-compilation will result in a bunch of unwanted files in your /public/assets directory
that will be served up instead of the originals. You’ll be scratching your head wondering why changes to your
JS and CSS files are not being reflected in your browser. If that happens, you need to delete the compiled
assets. Use the rake assets:clobber task to get rid of them.

..

The official Asset Pipeline guide goes into great detail about using pre-compiled assets with development
mode, or even setting up Rails to compile assets on the fly. It’s rare that you would want or need to do either.

http://guides.rubyonrails.org/asset_pipeline.html#local-precompilation

20.12 Conclusion

The asset pipeline was one of the great additions to Rails 3 and a big part of what makes Ruby on Rails a
cutting-edge and industry leading framework. In this chapter we’ve covered the major aspects of working
with the asset pipeline.

http://guides.rubyonrails.org/asset_pipeline.html#local-precompilation

21 RSpec
I do not think there is any thrill that can go through the human heart like that felt by the inventor
as he sees some creation of the brain unfolding to success.

—Nikola Tesla

RSpec is a Ruby domain-specific language for specifying the desired behavior of Ruby code. Its strongest
appeal is that RSpec scripts (or simply specs) can achieve a remarkable degree of readability, letting the authors
express their intentionwith greater readability and fluidity than is achievable using ActiveSupport::TestCase
style methods and assertions.

RSpec::Rails, a drop-in replacement for the Rails testing subsystem supplies verification, mocking, and
stubbing features customized for use with Rails models, controllers, and views. Since switching to RSpec,
I have never needed to touch ActiveSupport::TestCase for anything significant again. RSpec is simply that
good.

21.1 Introduction

Since RSpec scripts are so readable, I can’t really think of a better way of introducing you to the framework
than to dive into an actual spec. Listing 21.1 is part of a real-world RSpec script defining the behavior of a
Payment in a Hashrocket client project namedWorkbeast.com. As you’re reading the spec, let the descriptions
attached to the blocks of code come together to form sentences that describe the desired behavior.

Listing 21.1: Excerpt of Workbeast.com’s timesheet spec

1 require 'spec_helper'

2

3 describe Timesheet do

4 subject(:timesheet) { FactoryGirl.build(:timesheet) }

5

6 describe "validation of hours worked" do

7 it "fails without a number" do

8 timesheet.hours_worked = 'abc'

9 expect(timesheet.error_on(:hours_worked).size).to eq(1)

10 end

11

12 it "passes with a number" do

13 timesheet.hours_worked = '123'

14 expect(timesheet.error_on(:hours_worked)).to be_empty

15 end

16

17 end

RSpec 539

18

19 context "when submitted" do

20 it "sends an email notification to the manager" do

21 expect(Notifier).to receive(:send_later).

22 with(:deliver_timesheet_submitted, timesheet)

23 timesheet.submit

24 end

25

26 it "notifies its opening" do

27 expect(timesheet.opening).to_not be_nil

28 expect(timesheet.opening).to receive(:fill)

29 timesheet.submit

30 end

31 end

32 end

In the example, the fragment

1 describe Timesheet do

2 subject(:timesheet) { FactoryGirl.build(:timesheet) }

3

4 describe "validation of hours worked" do

5 it "fails without a number" do

6 timesheet.hours_worked = 'abc'

7 expect(timesheet.error_on(:hours_worked).size).to eq(1)

8 end

…should be understood to mean “Timesheet validation of hours worked fails without a number.”

RSpec scripts are collections of behaviors, which in turn have collections of examples. The describe method
creates a Behavior object under the covers. The behavior sets the context for a set of specification examples
defined with the it method, and you should pass a sentence fragment that accurately describes the context
you’re about to specify.

You can use RSpec to specify and test model and controller classes, as well as view templates, as individual
units in isolation, like we did in Listing 21.1. RSpec can also be used to create integration tests that exercise
the entire Rails stack from top to bottom.

RSpec 540

1 feature "Search Colleagues" do

2 let(:user) { FactoryGirl.create(:user, name: 'Joe') }

3

4 let(:public_user) do

5 FactoryGirl.create(:user, name: 'Pete', privacy_level: 'Public')

6 end

7

8 let(:private_user) do

9 FactoryGirl.create(:user, name: 'Nancy', privacy_level: 'Private')

10 end

11

12 background { login_as user }

13

14 scenario "takes you to the search results page" do

15 email_search_for(user, public_user.email)

16 expect(current_path).to eq(search_colleagues_path)

17 end

18

19 scenario "doesn't return the current user" do

20 email_search_for(user, user.email)

21 expect(page).to_not have_content(user.name)

22 end

23

24 scenario "doesn't return private users" do

25 email_search_for(user, private_user.email)

26 expect(page).to_not have_content(private_user.name)

27 end

28

29 context "when the user is not their colleague" do

30 scenario "shows the 'Add colleague' button" do

31 email_search_for(user, FactoryGirl.create(:user).email)

32 expect(page).to have_button('#add-colleague',

33 text: 'Add as Colleague')

34 end

35 end

36

37 def email_search_for(current_user, email)

38 visit colleagues_path

39 fill_in 'Search', with: email

40 click_button 'Search'

41 end

42 end

Use of methods such as visit and fill_in, as well as the checking the contents of objects such as page, hint
at what this spec is doing: running your entire Rails application.

RSpec 541

..

Capybara
Note that the “feature” DSL provided by RSpec demonstrated in the example above is is dependent on the
Capybara gem version 2.0 or later.

https://github.com/jnicklas/capybara

21.2 Basic Syntax and API

Let’s run through some of the basic syntactical features of RSpec, which we’ve just encountered in the code
listings. RSpec is essentially a domain-specific language for creating specifications. The followingAPImethods
form the vocabulary of the language.

21.2.1 describe and context

The describe and contextmethods are used to group together related examples of behavior. They are aliases,
both taking a string description as their first argument and a block to define the context of their scope.

When writing model specs or anything that smacks of a unit test, you can pass a Ruby class as the first
argument to describe. Doing so also creates an implicit subject for the examples, which we’ll hold off on
explaining for the moment. (If you’re impatient, you can jump ahead in this section to the subject method
heading.)

1 describe Timesheet do

2 let(:timesheet) { FactoryGirl.create(:timesheet) }

21.2.2 let(:name) { expression }

The letmethod simplifies the creation of memoized attributes for use in your spec.Memoized means that the
code block associated with the let is executed once and stored for future invocations, increasing performance.
Use of let also allows you to lessen your dependence on instance variables, by creating a proper interface to
the attributes needed in the spec.

So, why use the let method? Let’s step through a typical spec coding session to understand the motivation.
Imagine that you’re writing a spec, and it all starts simply enough with a local blog_post variable.

https://github.com/jnicklas/capybara

RSpec 542

1 describe BlogPost do

2 it "does something" do

3 blog_post = BlogPost.new title: 'Hello'

4 expect(blog_post).to ...

5 end

6 end

You continue on, writing another similar example, and you start to see some duplication. The blog_post

creation is being done twice.

1 describe BlogPost do

2 it "does something" do

3 blog_post = BlogPost.new title: 'Hello'

4 expect(blog_post).to

5 end

6

7 it "does something else" do

8 blog_post = BlogPost.new title: 'Hello'

9 expect(blog_post).to ...

10 end

11 end

So, you refactor the instance creation into a before block, and start using an instance variable in the examples.

1 describe BlogPost do

2 before do

3 @blog_post = BlogPost.new title: 'Hello'

4 end

5

6 it "does something" do

7 expect(@blog_post).to ...

8 end

9

10 it "does something else" do

11 expect(@blog_post).to ...

12 end

13 end

And here comes the punchline: you replace the instance variables with a variable described by a let expression.

RSpec 543

1 describe BlogPost do

2 let(:blog_post) { BlogPost.new title: 'Hello' }

3

4 it "does something" do

5 expect(blog_post).to ...

6 end

7

8 it "does something else" do

9 expect(@blog_post).to ...

10 end

11 end

The advantages of using let are mostly in the realm of readability. One, it gets rid of all those instance
variables and at-signs blotting your code. Two, gets rid of the before block, which arguably has no business
setting up a bunch variables in the first place. And three, it shows youwho the players are.’ A set of let blocks
at the top of an example group reads like a cast of characters in a playbill. You can always refer to it when
you’re deep in the code of an example.

21.2.3 let!(:name) { expression }

There are instances where the lazy evaluation of let will not suffice and you need the value memoized
immediately. This is found often in cases of integration testing, and is where let! comes into play.

1 describe BlogPost do

2 let(:blog_post) { BlogPost.create title: 'Hello' }

3 let!(:comment) { blog_post.comments.create text: 'first post' }

4

5 describe "#comment" do

6 before do

7 blog_post.comment("finally got a first post")

8 end

9

10 it "adds the comment" do

11 expect(blog_post.comments.count).to eq(2)

12 end

13 end

14 end

Since the comment block would never have been executed for the first assertion if you used a let definition,
only one comment would have been added in this spec even though the implementation may be working. By
using let! we ensure the initial comment gets created and the spec will now pass.

21.2.4 before and after

The before (and its reclusive cousin, after) methods are akin to the setup and teardown methods of xUnit
frameworks like MiniTest. They are used to set up the state as it should be prior to running an example, and

RSpec 544

if necessary, to clean up the state after the example has run. None of the example behaviors we’ve seen so far
required an after block, because frankly, it’s rare to need after in Rails programming.

Before and after code can be inserted in any describe or context blocks, and by default they execute for each
it block that shares their scope.

21.2.5 it

The itmethod also takes a description plus a block, similar to describe. As mentioned, the idea is to complete
the thought that was started in the describe method, so that it forms a complete sentence. Your assertions
(aka expectations) will always happen within the context of an it block, and you should try to limit yourself
to one expectation per it block.

1 context "when there are no search results" do

2 before do

3 email_search_for(user, '123')

4 end

5

6 it "shows the search form" do

7 expect(current_url).to eq(colleagues_url)

8 end

9

10 it "renders an error message" do

11 expect(page).to have_selector('.error',

12 text: 'No matching email addresses found.')

13 end

14 end

21.2.6 specify

The specify method is simply an alias of the it method. However, it’s mainly used in a different construct
to improve readability. Consider the following old-school RSpec example:

1 describe BlogPost do

2 let(:blog_post) { BlogPost.new title: 'foo' }

3

4 it "to not be published" do

5 expect(blog_post).to_not be_published

6 end

7 end

Note how the example says “to not be published” in plain English, and the Ruby code within says essentially
the same thing: expect(blog_post).to_not be_published This is a situation where specify comes in handy.
Examine the alternative example implementation:

RSpec 545

1 describe BlogPost do

2 let(:blog_post) { BlogPost.new title: 'foo' }

3 specify { expect(blog_post).to_not be_published }

4 end

The English phrase has been removed, and the Ruby code has been move into a block passed to the specify
method. Since the Ruby block already reads like English, there’s no need to repeat yourself. Especially since
RSpec automatically (which is pretty cool) generates English output by inspection. Here’s what the RSpec
documentation formatter (--format documentation) output looks like:

BlogPost

should not be published

21.2.7 pending

When you leave the block off of an example, RSpec treats it as pending.

1 describe GeneralController do

2 describe "GET to index" do

3 it "will be implemented eventually"

4 end

5 end

RSpec prints out pending examples at the end of its run output, which makes it potentially useful for tracking
work in progress.

Pending:

GeneralController on GET to index will be implemented eventually

Not yet implemented

./spec/controllers/general_controller_spec.rb:6

Finished in 0.00024 seconds

1 example, 0 failures, 1 pending

Randomized with seed 31820

A quick and and easy way to mark existing examples as pending is to prepend the it method with an x, like
so:

RSpec 546

1 describe GeneralController do

2 describe "on GET to index" do

3 xit "should be successful" do

4 get :index

5 expect(response).to be_successful

6 end

7 end

8 end

This is specially useful for debugging and refactoring.

You can also explicitly create pending examples by inserting a call to the pending method anywhere inside
of an example.

1 describe GeneralController do

2 describe "on GET to index" do

3 it "is successful" do

4 pending("not implemented yet")

5 end

6 end

7 end

Interestingly, you can use pending with a block to keep broken code from failing your spec. However, if at
some point in the future the broken code does execute without an error, the pending block will cause a failure.

1 describe BlogPost do

2 it "defaults to rating of 3.0" do

3 pending "implementation of new rating algorithm" do

4 expect(BlogPost.new.rating).to eq(3.0)

5 end

6 end

7 end

Pro-tip: you can make all examples in a group pending simply by calling pending once in the group’s before
block.

RSpec 547

1 describe 'Veg-O-Matic' do

2 before { pending }

3

4 it 'slices' do

5 # will not run, instead displays "slices (PENDING: TODO)"

6 end

7

8 it 'dices' do

9 # will also be pending

10 end

11

12 it 'juliennes' do

13 # will also be pending

14 end

15 end

21.2.8 expect(...).to / expect(...).not_to

As of RSpec 3.0, the preferredway to define positive and negative expectations is to use the new expect syntax.
Instead of using should and should_not to set expectations, one uses expect(...).to and expect(...).to_-
not respectively. Note that the should syntax is still available in RSpec for backwards compatibility, but the
team encourages moving over to the expect syntax for new projects.

Although the syntax is different from the older should syntax, the new expect syntax works exactly the
same. First, you must pass the value/block you want to execute an expectation against to the expectmethod.
Next, chain a method call to or to_not methods to specify if the expectation is to be positive or negative
respectively. Finally, you must pass a matcher to the to/to_notmethod, which will fail the example if it does
not match.

1 expect(page).to have_selector('.error',

2 text: 'No matching email addresses found.')

3

4 # equivalent to

5

6 page.should have_selector('.error',

7 text: 'No matching email addresses found.')

There are several ways to generate expectationmatchers and pass them to expect(...).to (and expect(...).to_-
not):

RSpec 548

1 expect(receiver).to eq(expected) # any value

2 # Passes if (receiver == expected)

3

4 expect(receiver).to eql(expected)

5 # Passes if (receiver.eql?(expected))

6

7 expect(receiver).to match(regexp)

8 # Passes if (receiver =~ regexp)

The process of learning to write expectations is probably one of the meatier parts of the RSpec learning curve.
One of the most common idioms is expect(...).to eq(...) akin to MiniTest’s assert_equal assertion.

21.2.8.1 change and raise_error

When you expect the execution of a block of code to change a value of an object or throw an exception, then
expect with its block syntax is your answer. Here’s an example:

1 expect {

2 BlogPost.create title: 'Hello'

3 }.to change(BlogPost, :count).by(1)

This is just a more readable DSL-style version of the RSpec’s older lambda-based syntax:

1 lambda {

2 BlogPost.create title: 'Hello'

3 }.should change { BlogPost.count }.by(1)

Simply put, expect using a block as input, is an alias of the lambda keyword and the to method is an alias of
the should method.

Then comes the change matcher. This is where you inspect the attribute or value that you’re interested in. In
our example, we’re making sure that the record was saved to the database, thus increasing the record count
by 1.

There are a few different variations on the change syntax. Here’s onemore example, where we’re more explicit
about before and after values by further chaining from and to methods:

RSpec 549

1 describe "#publish!" do

2 let(:blog_post) { BlogPost.create title: 'Hello' }

3

4 it "updates published_on date" do

5 expect {

6 blog_post.publish!

7 }.to change { blog_post.published_on }.from(nil).to(Date.today)

8 end

9 end

Here the published_on attribute is examined both before and after invocation of the expect block. This style
of change assertion comes in handy when you want to ensure a precondition of the value. Asserting from

guarantees a known starting point.

Besides expecting changes, the other common expectation has to dowith code that should generate exceptions:

1 describe "#unpublish!" do

2 context "when brand new" do

3 let(:blog_post) { BlogPost.create title: 'Hello' }

4

5 it "raises an exception" do

6 expect {

7 blog_post.unpublish!

8 }.to raise_error(NotPublishedError, /not yet published/)

9 end

10 end

11 end

In this example, we attempt to “unpublish” a brand new blog post that hasn’t been published yet. Therefore,
we expect an exception to be raised.

21.2.9 Implicit Subject

Whether you know it or not, every RSpec example group has a subject. Think of it as the thing being described.
Let’s start with an easy example:

1 describe BlogPost do

2 it { is_expected.to be_invalid }

3 end

By convention, the implicit subject here is a BlogPost.new instance. The is_expected call may look like it is
being called off of nothing, but actually the call is delegated by the example to the implicit subject. It’s just as
if you’d written the expression:

RSpec 550

expect(BlogPost.new).to be_invalid

21.2.10 Explicit Subject

If the implicit subject of the example group doesn’t quite do the job for you, you can specify a subject explicitly.
For example, maybe we need to tweak a couple of the blog post’s attributes on instantiation:

1 describe BlogPost do

2 subject { BlogPost.new title: 'foo', body: 'bar' }

3 it { is_expected.to be_valid }

4 end

Here we have the same delegation story as with implicit subject. The is_expected.to be_valid call is
delegated to the subject.

You can also talk to the subject directly. For example, you may need to invoke a method off the subject to
change object state:

1 describe BlogPost do

2 subject { BlogPost.new title: 'foo', body: 'bar' }

3

4 it "sets published timestamp" do

5 subject.publish!

6 expect(subject).to be_published

7 end

8 end

Here we call the publish! method off the subject. Mentioning subject directly is the way we get ahold of
that BlogPost instance we set up. Finally, we assert that published? boolean is true.

Kevin says…
Although you can explicitly call subject within your specs, it’s not very intention revealing.
Instead, use “named subjects”, which allow for a subject to be assigned an intention revealing name.
To demonstrate, here is the preceding example using a “named subject”:

1 describe BlogPost do

2 subject(:blog_post) { BlogPost.new title: 'foo', body: 'bar' }

3

4 it "sets published timestamp" do

5 blog_post.publish!

6 expect(blog_post).to be_published

7 end

8 end

RSpec 551

21.3 Matchers

Thanks to method_missing, RSpec can support arbitrary predicates, that is, it understands that if you invoke
something that begins with be_, then it should use the rest of the method name as an indicator of which
predicate-style method to invoke the target object. (By convention, a predicate method in Ruby ends with a
? and should return the equivalent of true or false.) The simplest hard-coded predicate-style matchers are:

1 expect(target).to be

2 expect(target).to be_true

3 expect(target).to be_truthy # Not nil or false

4 expect(target).to be_false

5 expect(target).to be_falsy # nil or false

6 expect(target).to be_nil

7 expect(target).to_not be_nil

Arbitrary predicate matchers can assert against any target, and even support parameters!

1 expect(thing).to be # passes if thing is not nil or false

2 expect(collection).to be_empty # passes if target.empty?

3 expect(target).to_not be_empty # passes unless target.empty?

4 expect(target).to_not be_under_age(16) # passes unless target.under_age?(16)

As an alternative to prefixing arbitrary predicate matchers with be_, you may choose from the indefinite
article versions be_a_ and be_an_, making your specs read much more naturally:

1 expect("a string").to be_an_instance_of(String)

2 expect(3).to be_a_kind_of(Fixnum)

3 expect(3).to be_a_kind_of(Numeric)

4 expect(3).to be_an_instance_of(Fixnum)

5 expect(3).to_not be_instance_of(Numeric) #fails

The cleverness (madness?) doesn’t stop there. RSpec will even understand have_ prefixes as referring to
predicates like has_key?:

1 expect({foo: "foo"}).to have_key(:foo)

2 expect({bar: "bar"}).to_not have_key(:foo)

RSpec has a number of expectation matchers for working with classes that implement module Enumerable.
You can specify whether an array should include a particular element, or if a string contains a substring. This
one always weirds me out when I see it in code, because my brain wants to think that include is some sort of
language keyword meant for mixing modules into classes. It’s just a method, so it can be overriden easily.

RSpec 552

1 expect([1, 2, 3]).to include(1)

2 expect([1, 2, 3]).to_not include(4)

3 expect("foobar").to include("bar")

4 expect("foobar").to_not include("baz")

RSpec also includes a range matcher, that can be used to see if a value is covered within a given range.

expect(1..10).to cover(3)

21.4 Custom Expectation Matchers

When you find that none of the stock expectation matchers provide a natural-feeling expectation, you can
very easily write your own. All you need to do is write a Ruby class that implements the following two
methods:

• matches?(actual)

• failure_message

The following methods are optional for your custom matcher class:

• does_not_match?(actual)

• failure_message_when_negated

• description

The example given in the RSpec API documentation is a game in which players can be in various zones on a
virtual board. To specify that a player bob should be in zone 4, you could write a spec like

expect(bob.current_zone).to eq(Zone.new("4"))

However, it’s more expressive to say one of the following, using the custom matcher in Listing 21.2:

Listing 21.2: BeInZone custom expectation matcher class

1 # expect(bob)to be_in_zone(4) and expect(bob).to_not be_in_zone(3)

2 class BeInZone

3 def initialize(expected)

4 @expected = expected

5 end

6

7 def matches?(actual)

8 @actual = actual

9 @actual.current_zone.eql?(Zone.new(@expected))

10 end

RSpec 553

11

12 def failure_message

13 "expected #{@actual.inspect} to be in Zone #{@expected}"

14 end

15

16 def failure_message_when_negated

17 "expected #{@actual.inspect} not to be in Zone #{@expected}"

18 end

19 end

In addition to the matcher class you would need to write the following method so that it’d be in scope for
your spec.

1 def be_in_zone(expected)

2 BeInZone.new(expected)

3 end

This is normally done by including the method and the class in a module, which is then included in your spec.

1 describe "Player behaviour" do

2 include CustomGameMatchers

3 ...

4 end

Or you can include helpers globally in a spec_helper.rb file required from your spec file(s):

1 RSpec.configure do |config|

2 config.include CustomGameMatchers

3 end

21.4.1 Custom Matcher DSL

RSpec includes a DSL for easier definition of custom matchers. The DSL’s directives match the methods you
implement on custom matcher classes. Just add code similar to the following example in a file within the
spec/support directory.

RSpec 554

1 require 'nokogiri'

2

3 RSpec::Matchers.define :contain_text do |expected|

4 match do |response_body|

5 squished(response_body).include?(expected.to_s)

6 end

7

8 failure_message do |actual|

9 "expected the following element's content to include

10 #{expected.inspect}:\n\n#{response_text(actual)}"

11 end

12

13 failure_message_when_negated do |actual|

14 "expected the following element's content to not

15 include #{expected.inspect}:\n\n#{squished(actual)}"

16 end

17

18 def squished(response_body)

19 Nokogiri::XML(response_body).text.squish

20 end

21 end

21.4.2 Fluent Chaining

You can create matchers that obey a fluent interface using the chain method:

1 RSpec::Matchers.define(:tip) do |expected_tip|

2 chain(:on) do |bill|

3 @bill = bill

4 end

5

6 match do |person|

7 person.tip_for(@bill) == expected_tip

8 end

9 end

This matcher can be used as follows:

1 describe Customer do

2 it { is_expected.to tip(10).on(50) }

3 end

In this way, you can begin to create your own fluent domain-specific languages for testing your complex
business logic in a very readable way.

RSpec 555

21.5 Shared Behaviors

Often you’ll want to specify similar behavior in multiple specs. It would be silly to type out the same code over
and over. Fortunately, RSpec has a feature named shared behaviors that aren’t run individually, but rather are
included into other behaviors; they are defined using shared_examples.

1 shared_examples "a phone field" do

2 it "has 10 digits" do

3 business = Business.new(phone_field: '8004567890')

4 expect(business.errors_on(:phone_field)).to be_empty

5 end

6 end

7

8 shared_examples "an optional phone field" do

9 it "handles nil" do

10 business = Business.new phone_field: nil

11 expect(business.attributes[phone_field]).to be_nil

12 end

13 end

You can invoke a shared example using the it_behaves_like method, in place of an it.

1 describe "phone" do

2 let(:phone_field) { :phone }

3 it_behaves_like "a phone field"

4 end

5

6 describe "fax" do

7 let(:phone_field) { :fax }

8 it_behaves_like "a phone field"

9 it_behaves_like "an optional phone field"

10 end

You can put the code for shared examples almost anywhere, but the default convention is to create a file
named spec/support/shared_examples.rb to hold them.

21.6 Shared Context

When used in combination, shared_context and include_context allow you to share before/after hooks,
subject declarations, let declarations, and method definitions across example groups. This is useful in cases
when several examples share some state. To define a shared context, supply a name and block of code to the
shared_context macro style method.

RSpec 556

1 shared_context 'authenticated user' do

2 let(:current_user) { FactoryGirl.create(:user) }

3

4 before do

5 sign_in current_user

6 end

7 end

To include a shared context in your examples, use the include_context macro style method.

1 context "user is authenticated" do

2 include_context 'authenticated user'

3 ...

4 end

The recommended location to place shared_context definitions is in the spec/support directory.

21.7 RSpec’s Mocks and Stubs

It’s possible to use a number of mocking frameworks including Mocha, Flexmock, RR, and more. In our
examples, however, we’ll use RSpec’s own mocking and stubbing facilities, which are almost the same and
equally powerful. Mostly the method names vary.¹

Read Martin Fowler’s explanation at http://www.martinfowler.com/articles/mocksArentStubs.html.

21.7.0.1 Test Doubles

A test double is an object that stands in for another in your system during a code example. To create a test
double object, you simply call the double method anywhere in a spec, and give it a name as an optional
parameter. It’s a good idea to give test double objects a name if you will be using more than one of them in
your spec. If you use multiple anonymous test doubles, you’ll probably have a hard time telling them apart if
one fails.

echo = double('echo')

With a test double, you can set expectations about what messages are sent to your test double during the
course of your spec (commonly known as a mock). Test doubles with message expectations will cause a spec
to fail if those expectations are not met. To set an expectation on a test double, we invoke receive.

expect(echo).to receive(:sound)

The chained method with is used to define expected parameters. If we care about the return value, we chain
and_return at the end of the expectation or use a block.

¹Confused about the difference between mocks and stubs?

http://www.martinfowler.com/articles/mocksArentStubs.html

RSpec 557

1 expect(echo).to receive(:sound).with("hey").and_return("hey")

2 expect(echo).to receive(:sound).with("hey") { "hey" }

..

Note
In older versions of RSpec, you would define mock and stub objects via the mock and stub methods
respectively. Although these methods are still available in RSpec 3.0, they are available only for backwards
compatibility and may be removed in a future version.

21.7.0.2 Null Objects

Occasionally you just want an object for testing purposes that accepts any message passed to it—a pattern
known as null object. It’s possible to make one using the as_null_object method with a test double object.

null_object = double('null').as_null_object

21.7.0.3 Method Stubs

You can easily create a stub object in RSpec via the double factory method. You pass stub a name and default
attributes as a hash.

yodeler = double('yodeler', yodels?: true)

By the way, there’s no rule that the name parameter of a mock or stub needs to be a string. It’s pretty typical
to pass double a class reference corresponding to the real type of object.

yodeler = double(Yodeler, yodels?: true)

21.7.0.4 Partial Mocking and Stubbing

You can install or replace methods on any object, not just doubles, with a technique called partial mocking
and stubbing. RSpec supports the following two formats for declaring method stubs on existing objects:

1 allow(invoice).to receive(:hourly_total) { 123.45 }

2 allow(invoice).to receive(:billed_expenses).and_return(543.21)

Even though RSpec’s authors warn us about partial stubbing in their docs, the ability to do it is really useful
in practice.

RSpec 558

21.7.0.5 receive_message_chain

It’s really common to find yourself writing some gnarly code when you rely on double to spec be-
havior of nested method calls.² But, sometimes you need to stub methods down a dot chain, where
one method is invoked on another method, which is itself invoked on another method, and so on. For
example, you may need to stub out a set of recent, unpublished blog posts in chronological order, like
BlogPost.recent.unpublished.chronological

Try to figure out what’s going on in the following example. I bet it takes you more than a few seconds!

1 allow(BlogPost).to receive(:recent).

2 and_return(double(unpublished: double(chronological: [double,

3 double, double])))

That example code can be factored to be more verbose, which makes it a little easier to understand, but is still
pretty bad.

1 chronological = [double, double, double]

2 unpublished = double(chronological: chronological)

3 recent = double(unpublished: unpublished)

4 allow(BlogPost).to receive(recent).and_return(recent)

Luckily, Rspec gives you the receive_message_chainmethod, which understands exactly what you’re trying
to do here and dramatically simplifies the code needed:

allow(BlogPost)

.to receive_message_chain(:recent, :unpublished, :chronological)

.and_return([double, double, double])

However, just because it’s so easy to stub the chain, doesn’t mean it’s the right thing to do. The question to
ask yourself is, “Why am I testing something related to methods so deep down a chain? Could I move my
tests down to that lower level?” Demeter would be proud.

21.8 Running Specs

Specs are executable documents. Each example block is executed inside its own object instance, to make sure
that the integrity of each is preserved (with regard to instance variables, etc.).

If I run one of the Workbeast specs using the rspec command that should have been installed on my system
by the RSpec gem, I’ll get output similar to that of Test::Unit—familiar, comfortable, and passing. Just not
too informative.

²ActiveRecord scopes are notoriously prone to causing this problem.

RSpec 559

$ rspec spec/models/colleague_import_spec.rb

.........

Finished in 0.330223 seconds

9 examples, 0 failures

RSpec is capable of outputting results of a spec run in many formats. The traditional dots output that looks
just like Test::Unit is called progress and, as we saw a moment ago, is the default. However, if we add the
-fd command-line parameter to rspec, we can cause it to output the results of its run in a very different and
much more interesting format, the documentation format.

$ rspec -fd spec/models/billing_code_spec.rb

BillingCode

has a bidirectional habtm association

removes bidirectional association on deletion

Finished in 0.066201 seconds

2 examples, 0 failures

Nice, huh? If this is the first time you’re seeing this kind of output, I wouldn’t be surprised if you drifted
off in speculation about whether RSpec could help you deal with sadistic PHB-imposed³ documentation
requirements.

Having these sorts of self-documenting abilities is one of the biggest wins you get in choosing RSpec. It
compels many people to work toward better spec coverage of their project. I also know from experience that
development managers tend to really appreciate RSpec’s output, even to the extent of incorporating it into
their project deliverables.

Besides the different formatting, there are all sorts of other command-line options available. Just type rspec
--help to see them all.

That does it for our introduction to RSpec. Now we’ll take a look at using RSpec with Ruby on Rails.

21.9 RSpec Rails Gem

The RSpec Rails gem provides four different contexts for specs, corresponding to the four major kinds of
objects you write in Rails. Along with the API support you need to write Rails specs, it also provides code
generators and a bundle of Rake tasks.

21.9.1 Installation

Assuming you have the rspec-rails gem bundled already, you should run the rspec:install generator
provided to set up your project for use with RSpec.

³Pointy-Haired Boss, as per Dilbert comic strips.

RSpec 560

$ rails generate rspec:install

create .rspec

create spec

create spec/spec_helper.rb

The generator will add the files and directories necessary to use RSpec with your Rails project.

21.9.1.1 RSpec and Rake

The rspec.rake script sets the default Rake task to run all specs in your /spec directory tree. It also creates
specific rake spec tasks for each of the usual spec directories.

$ rake -T spec

rake spec # Run all specs in spec directory (excluding plugin specs)

rake spec:controllers # Run the code examples in spec/controllers

rake spec:helpers # Run the code examples in spec/helpers

rake spec:lib # Run the code examples in spec/lib

rake spec:mailers # Run the code examples in spec/mailers

rake spec:models # Run the code examples in spec/models

rake spec:requests # Run the code examples in spec/requests

rake spec:routing # Run the code examples in spec/routing

rake spec:views # Run the code examples in spec/views

21.9.1.2 RSpec and Generators

RSpec ensures that other generators in your project are aware of it as your chosen test library. Subsequently
it will be used for command-line generation of models, controllers, etc.

$ rails generate model Invoice

invoke active_record

create db/migrate/20100304010121_create_invoices.rb

create app/models/invoice.rb

invoke rspec

create spec/models/invoice_spec.rb

21.9.1.3 RSpec Options

The .rspec file contains a list of default command-line options. The generated file looks like

--color

--format progress

You can change it to suit your preference. I like my spec output in color, but usually prefer the more verbose
output of --format documentation.

RSpec 561

Tim says…
I go back and forth between preferring the dots of the progress format and the verbose output of
the documentation format. With the more verbose output and long spec suites, it’s easy to miss if
something failed if you look away from your screen. Specially on terminals with short buffers.

Here are some additional options that you might want to set in your .rspec

--fail-fast Tells RSpec to stop running the test suite on the

first failed test

-b, --backtrace Enable full backtrace

-p, --profile Enable profiling of examples w/output of top 10 slowest

examples

21.9.1.4 The RSpec Helper Script

As opposed to command-line options, major settings and configuration of your spec suite are kept in
spec/spec_helper.rb, which is always required at the top of an RSpec spec.

A boilerplate copy is generated by default when you install RSpec into your project. Let’s go through it section
by section and cover what it does.

First of all, we ensure that the Rails environment is set to test. Remember that RSpec replaces the standard
MiniTest-based suite that is generated by default for Rails apps.

ENV["RAILS_ENV"] ||= 'test'

Next the Rails environment and RSpec Rails are loaded up.

1 require File.expand_path("../../config/environment", __FILE__)

2 require 'rspec/rails'

RSpec has the notion of supporting files containing custom matchers and any other code that helps setup
additional functionality for your spec suite, so it scans the spec/support directory to find those files, akin to
Rails initializers.

1 # Requires supporting files with custom matchers and macros, etc,

2 # in ./support/ and its subdirectories.

3 Dir[Rails.root.join("spec/support/**/*.rb")].each { |f| require f }

If Active Record is being utilized in the project, RSpec will check to see if there are any pending migrations
before the tests are run.

RSpec 562

1 # Checks for pending migrations before tests are run.

2 # If you are not using ActiveRecord, you can remove this line.

3 ActiveRecord::Migration.check_pending! if defined?(ActiveRecord::Migration)

Finally, there is a block of configuration for your spec suite where you can set fixture paths, transaction
options, and mocking frameworks.

1 RSpec.configure do |config|

2 # ## Mock Framework

3 #

4 # If you prefer to use mocha, flexmock or RR, uncomment the appropriate line:

5 #

6 # config.mock_with :mocha

7 # config.mock_with :flexmock

8 # config.mock_with :rr

9

10 # Remove this line if you're not using ActiveRecord or ActiveRecord

11 # fixtures

12 config.fixture_path = "#{::Rails.root}/spec/fixtures"

13

14 # If you're not using ActiveRecord, or you'd prefer not to run each of

15 # your examples within a transaction, remove the following line or assign

16 # false instead of true.

17 config.use_transactional_fixtures = true

18

19 # Run specs in random order to surface order dependencies. If you find an

20 # order dependency and want to debug it, you can fix the order by

21 # providing the seed, which is printed after each run.

22 # --seed 1234

23 config.order = "random"

24 end

RSpec 563

Tim says….
Traditionally a lot of extra helper methods were put into the spec_helper file, hence its name.
However, nowadays it’s generally easier to organize your additions in spec/support files, for
the same reasons config/initializers can be easier to manage than sticking everything in
config/environment.rb.

While we’re on the subject, keep in mind that any methods defined at the top level of a support file
will become global methods available from all objects, which almost certainly not what you want.
Instead, create a module and mix it in, just like you’d do in any other part of your application.

1 module AuthenticationHelpers

2 def sign_in_as(user)

3 # ...

4 end

5 end

6

7 Rspec.configure do |config|

8 config.include AuthenticationHelpers

9 end

21.9.2 Model Specs

Model specs help you design and verify the domain model of your Rails application, both Active Record and
your own classes. RSpec Rails doesn’t provide too much special functionality for model specs, because there’s
not really much needed beyond what’s provided by the base library. Let’s generate a Schedule model and
examine the default spec that is created along with it.

1 $ rails generate model Schedule name:string

2 invoke active_record

3 create db/migrate/20131202160457_create_schedules.rb

4 create app/models/schedule.rb

5 invoke rspec

6 create spec/models/schedule_spec.rb

The boilerplate spec/models/schedule_spec.rb looks like

1 require 'spec_helper'

2

3 describe Schedule do

4 pending "add some examples to (or delete) #{__FILE__}"

5 end

Assume for example that our Schedule class has a collection of day objects.

RSpec 564

1 class Schedule < ActiveRecord::Base

2 has_many :days

3 end

Let’s specify that we should be able to get a roll-up total of hours from schedule objects. Instead of fixtures,
we’ll mock out the days dependency.

1 require 'spec_helper'

2

3 describe Schedule do

4 let(:schedule) { Schedule.new }

5

6 it "should calculate total hours" do

7 days = double('days')

8 expect(days).to receive(:sum).with(:hours).and_return(40)

9 allow(schedule).to receive(:days).and_return(days)

10 expect(schedule.total_hours).to eq(40)

11 end

12 end

Here we’ve taken advantage of the fact that association proxies in Rails are rich objects. Active Record gives us
several methods for running database aggregate functions. We set up an expectation that days should receive
the sum method with one argument—:hours—and return 40. We can satisfy this specification with a very
simple implementation:

1 class Schedule

2 has_many :days

3

4 def total_hours

5 days.sum :hours

6 end

7 end

A potential benefit of mocking the days proxy is that we no longer rely on the database⁴ in order to write our
specifications and implement the total_hoursmethod, which will make this particular spec execute lightning
fast.

On the other hand, a valid criticism of this approach is that it makes our code harder to refactor. Our spec
would fail if we changed the implementation of total_hours to use Enumerable#inject, even though the
external behavior doesn’t change. Specifications are not only describing the visible behavior of objects, but
the interactions between an object and its associated objects as well. Mocking the association proxy in this
case lets us clearly specify how a Schedule should interact with its Days.

⁴Well that’s not quite true. Active Record still connects to the database to get the column information for Schedule. However, you could stub that
information out as well to remove your dependency on the database completely.

RSpec 565

Leading mock objects advocates see mock objects as a temporary design tool. You may have noticed that we
haven’t defined the Day class yet. So another benefit of using mock objects is that they allow us to specify
behavior in true isolation, and during design-time. There’s no need to break our design rhythm by stopping
to create the Day class and database table. This may not seem like a big deal for such a simple example, but
for more involved specifications it is really helpful to just focus on the design task at hand. After the database
and real object models exist, you can go back and replace the mock days with calls to the real deal. This is a
subtle, yet very powerful message about mocks that is usually missed.

21.9.3 Controller Specs

RSpec gives you the ability to specify your controllers either in isolation from their associated views or
together with them, as in regular Rails tests. According to the API docs:

Controller Specs support running specs for Controllers in twomodes, which represent the tension
between the more granular testing common in TDD and the more high-level testing built into
rails. BDD sits somewhere in between: we want to achieve a balance between specs that are close
enough to the code to enable quick fault isolation and far enough away from the code to enable
refactoring with minimal changes to the existing specs.

The controller class is passed to the describe method like

describe MessagesController do

An optional second parameter can be provided to include additional information.

I typically group my controller examples by action and HTTPmethod. This example requires a logged-in user,
so I stub my application controller’s current_user accessor to return a user record via FactoryGirl.

before(:each) do

allow(controller).to receive(:current_user) { FactoryGirl.create(user) }

Next, I create a stubbed factory for Message using the build_stubbed FactoryGirl method. I want this stubbed
message to be returned whenever Message.all is called during the spec.

@message = FactoryGirl.build_stubbed(:message)

allow(Message).to receive(:all) { [@message] }

Now I can start specifying the behavior of actions (in this case, the index action). The most basic expectation
is that the response should be successful, HTTP’s 200 OK response code.

RSpec 566

1 it "is successful" do

2 get :index

3 expect(response.status).to eq(200)

4 end

Additional expectations that should be done for most controller actions include the template to be rendered
and variable assignment.

1 it "renders the index template " do

2 get :index

3 expect(response).to render_template(:index)

4 end

5

6 it "assigns the found messages for the view" do

7 get :index

8 expect(assigns(:messages)).to include(@message)

9 end

Previously we saw how to stub out a model’s association proxy. Instead of stubbing the controller’s current_-
user method to return an actual user from the database, we can have it return a double.

@user = double(User, name: "Quentin")

allow(controller).to receive(:current_user) { @user }

21.9.3.1 Isolation and Integration Modes

By default, RSpec on Rails controller specs run in isolation mode, meaning that view templates are not
involved. The benefit of this mode is that you can spec the controller in complete isolation of the view, hence
the name. Maybe you can sucker someone else into maintaining the view specs?

That sucker comment is of course facetious. Having separate view specs is not as difficult as it’s made out to
be sometimes. It also provides much better fault isolation, which is a fancy way of saying that you’ll have an
easier time figuring out what’s wrong when something fails.

If you prefer to exercise your views in conjunction with your controller logic inside the same controller specs,
just as traditional Rails functional tests do, then you can tell RSpec on Rails to run in integration mode using
the render_views macro. It’s not an all-or-nothing decision. You can specify modes on a per-behavior basis.

describe "Requesting /messages using GET" do

render_views

When you invoke render_views, the controller specs will be executed once with view rendering turned on.

RSpec 567

21.9.3.2 Specifying Errors

Ordinarily, Rails rescues exceptions that occur during action processing, so that it can respond with a 501
error code and give you that great error page with the stack trace and request variables, and so on. In order
to directly specify that an action should raise an error, you bypass Rails’ default handling of errors and those
specified with rescue_from with RSpec method bypass_rescue.

To illustrate, assuming the ApplicationController invokes rescue_from for the exception AccessDenied and
redirects to 401.html:

1 class ApplicationController < ActionController::Base

2 rescue_from AccessDenied, with: :access_denied

3

4 private

5

6 def access_denied

7 redirect_to "/401.html"

8 end

9 end

then we could test an error was raised for a controller action using bypass_rescue.

1 it "raises an error" do

2 bypass_rescue

3 expect { get :index }.to raise_error(AccessDenied)

4 end

If bypass_rescuewas not included in the preceding example, the spec would have failed due to Rails rescuing
the exception and redirecting to the page 401.html.

21.9.3.3 Specifying Routes

One of Rails’ central components is routing. The routing mechanism is the way Rails takes an incoming
request URL and maps it to the correct controller and action. Given its importance, it is a good idea to specify
the routes in your application. You can do this with by providing specs in the spec/routes directory and have
two matchers to use, route_to and be_routable.

RSpec 568

1 context "Messages routing" do

2 it "routes /messages/ to messages#show" do

3 expect(get: "/messages").to route_to(

4 controller: "articles",

5 action: "index"

6)

7 end

8

9 it "does not route an update action" do

10 expect(post: "/messages").to_not be_routable

11 end

12 end

21.9.4 View Specs

Controller specs let us integrate the view to make sure there are no errors with the view, but we can do one
better by specifying the views themselves. RSpec will let us write a specification for a view, completely isolated
from the underlying controller. We can specify that certain tags exist and that the right data is outputted.

Let’s say we want to write a page that displays a private message sent between members of an internet forum.
RSpec creates the spec/views/messages directory when we use the controller generator. The first thing we
would do is create a file in that directory for the show view, naming it show.html.haml_spec.rb. Next we
would set up the information to be displayed on the page.

1 describe "messages/show.html.haml" do

2 before(:each) do

3 @message = FactoryGirl.build_stubbed(:message, subject: "RSpec rocks!")

4

5 sender = FactoryGirl.build_stubbed(:person, name: "Obie Fernandez")

6 expect(@message).to receive(:sender).and_return(sender)

7

8 recipient = FactoryGirl.build_stubbed(:person, name: "Pat Maddox")

9 expect(@message).to receive(:recipient).and_return(recipient)

If you want to be a little more concise at the cost of one really long line of code that you’ll have to break up
into multiple lines, you can create the mocks inline like:

1 describe "messages/show.html.haml " do

2 before(:each) do

3 @message = FactoryGirl.build_stubbed(:message,

4 subject: "RSpec rocks!",

5 sender: FactoryGirl.build_stubbed(:person, name: "Obie Fernandez"),

6 recipient: FactoryGirl.build_stubbed(:person, name: "Pat Maddox"))

Either way, this is standard mock usage similar to what we’ve seen before. Again, mocking the objects used
in the view allows us to completely isolate the specification.

RSpec 569

21.9.4.1 Assigning Instance Variables

We now need to assign the message to the view. The rspec_rails gem gives us a method named assign

method to do just that.

assign(:message, @message)

Fantastic! Now we are ready to begin specifying the view page. We’d like to specify that the message subject
is displayed, wrapped in an <h1> tag. The Capybara expectation have_selector takes two arguments—the
tag selector and a hash of options such as :text.

1 it "displays the message subject" do

2 render "messages/show"

3 expect(rendered).to have_selector('h1', text: 'RSpec rocks!')

4 end

HTML tags often have an ID associated with them. We would like our page to create a <div> with the ID
message_info for displaying the sender and recipient’s names. We can pass the ID to have_selector as well.

1 it "displays a div with id message_info" do

2 render "messages/show"

3 expect(rendered).to have_selector('div#message_info')

4 end

21.9.5 Helper Specs

It’s really easy to write specs for your custom helper modules. Just pass describe to your helper module and
it will be mixed into a special helper object in the spec class so that its methods are available to your example
code.

1 describe ProfileHelper do

2 it "profile_photo should return nil if user's photos is empty" do

3 user = mock_model(User, photos: [])

4 expect(helper.profile_photo(user)).to be_nil

5 end

6 end

21.9.6 Feature Specs

A well-written acceptance test suite is an essential ingredient in the success of any complex software project,
particularly those run on Agile principles and methodologies, such as extreme programming. One of the best
definitions for an acceptance test is from the Extreme Programming official website:

RSpec 570

The customer specifies scenarios to test when a user story has been correctly implemented. A
story can have one ormany acceptance tests, what ever it takes to ensure the functionality works.⁵

Stated simply, acceptance tests let us know that we are done implementing a given feature, or user story, in
XP lingo. Incidentally, RSpec ships with a DSL that allows defining examples using the same XP lingo we
are used to. Instead of using the describe method to group together related examples of behavior, we use
feature. To specify a scenario for a given feature, we use the scenario method with a description instead of
it. Although these methods are simply aliases for existing RSpec methods, they add a level of readability and
provide an visual differentiator from isolated RSpec examples.

1 require 'spec_helper'

2

3 feature "Some Awesome Feature" do

4 background do

5 # Setup some common state for all scenarios

6 # same as `before(:each)`

7 end

8

9 scenario "A feature scenario" do

10 ...

11 end

12 end

All feature specs should be located in the spec/features directory.

21.9.6.1 Getting Started

To use RSpec’s feature DSL for acceptance tests, you must first add the capybara gem to your application’s
Gemfile under the test group and run bundle.

1 # Gemfile

2

3 group :test do

4 gem 'capybara', '~> 2.2.0'

5 ...

6 end

To enable Capybara in RSpec, in your spec/spec_helper.rb file, require capybara/rspec:

require 'capybara/rspec'

21.9.6.2 Using Capybara

Capybara provides a DSL that allows you to interact with your application as you would via a web browser.

⁵http://www.extremeprogramming.org/rules/functionaltests.html

http://www.extremeprogramming.org/rules/functionaltests.html

RSpec 571

1 require 'spec_helper'

2

3 feature 'Authentication' do

4 let(:email) { 'bruce@wayneenterprises.com' }

5 let(:password) { 'batman' }

6

7 scenario "signs in with correct credentials" do

8 FactoryGirl.create :user, email: email, password: password

9 visit(new_user_session_path)

10 fill_in 'Email', with: email

11 fill_in 'Password', with: password

12 click_on 'Sign in'

13 expect(current_path).to eq(dashboard_path)

14 expect(page).to have_content('Signed in successfully')

15 end

16

17 ...

18 end

Navigating to a web page using Capybara is done via the visit method. The method will perform a GET

request on the supplied path.

visit('/dashboard')

visit(new_user_session_path)

To interact with a web page, Capybara provides action methods that allow the clicking of buttons or links, and
the ability to fill-in forms. The following are a listing of action methods you can expect to find in a Capybara
feature spec:

attach_file('Image', '/path/to/image.jpg')

check('A Checkbox')

choose('A Radio Button')

click_link('Link Text')

click_button('Save')

click_on('Link Text') # a link or a button

fill_in('Name', with: 'Bruce')

select('Option', from: 'Select Box')

uncheck('A Checkbox')

For a full reference of each action method, see the Capybara official documentation.⁶

Finally, Capybara provides various matchers to assert a page contains a CSS selector, a XPath, or content.

⁶http://rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Actions

http://rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Actions

RSpec 572

expect(page).to have_selector('header h1')

expect(page).to have_css('header h1')

expect(page).to have_selector(:xpath, '//header/h1')

expect(page).to have_xpath('//header/h1')

expect(page).to have_content('TR4W')

21.9.6.3 Capybara Drivers

By default, Capybara uses Rack::Test as a headless driver to interact with your web application. It is best
suited for acceptance tests that don’t require any outside interaction or JavaScript testing. You can also
override the driver Capybara uses through the default_driver configuration setting.

Capybara.default_driver = :selenium

If only some scenarios test JavaScript, you can keep :rack_test as the default driver and explicitly set a driver
for JavaScript.

Capybara.javascript_driver = :poltergeist

For any scenarios that require the JavaScript driver, add js: true following the scenario description.

scenario "JavaScript dependent scenario", js: true do

...

end

These driver settings should be set in spec/spec_helper.rb

..

Database Cleaner
When Capybara runs, it takes care of starting and stopping the HTTP server that will used for testing the
application. However, some drivers require an actual HTTP server, such as Selenium and Poltergeist. Those
drivers are started in another thread and as a result.

Since the drivers are in another thread, applications that are dependent on a SQL database cannot use the
default RSpec strategy of running every test in a transaction. This is because transactions are not shared
across threads. If you were to run a Capybara driver like :poltergist in a transaction, any data you set in
RSpec for the scenario would not be available to Capybara.

Using the gem database_cleaner, we can configure RSpec to use a truncation strategy instead for JavaScript
dependent scenarios. Using truncation, the entire database is emptied out after each test instead of running
in a transaction.

1 RSpec.configure do |config|

2 config.before(:suite) do

3 DatabaseCleaner.clean_with(:truncation)

4 end

RSpec 573

..

5

6 config.before(:each) do

7 DatabaseCleaner.strategy = :transaction

8 end

9

10 config.before(:each, js: true) do

11 DatabaseCleaner.strategy = :truncation

12 end

13

14 config.before(:each) do

15 DatabaseCleaner.start

16 end

17

18 config.after(:each) do

19 DatabaseCleaner.clean

20 end

21

22 end

21.10 RSpec Tools

There are several open-source projects that enhance RSpec’s functionality and your productivity or can be
used in conjunction with RSpec and other testing libraries.

21.10.1 Guard-RSpec

Guard-RSpec⁷ is an automated testing framework that runs your spec suite when files are modified.

21.10.2 Spring

As your application grows, an automated test suite can start to slow down your workflow when writing specs
at a frequent rate. This is due to the nature of Rails needing to load the environment for each spec run. Spring⁸
alleviates this by loading the Rails environment only once and having the remaining specs use the preloaded
environment. Spring will be included by default in Rails 4.1.

21.10.3 Specjour

Specjour⁹ is a tool aimed at lowering the run times of your entire spec suite. It distributes your specs over a
LAN via Bonjour, running the specs in parallel on the number of workers it finds.

⁷https://github.com/guard/guard-rspec
⁸https://github.com/rails/spring
⁹https://github.com/sandro/specjour

https://github.com/guard/guard-rspec
https://github.com/rails/spring
https://github.com/sandro/specjour

RSpec 574

21.10.4 SimpleCov

SimpleCov is a code coverage tool for Ruby.¹⁰ You can run it on your specs to see howmuch of your production
code is covered. It provides HTML output to easily tell what code is covered by specs and what isn’t. The
results are outputted into a directory named coverage and contain a set of HTML files that you can browse
by opening index.html.

21.11 Conclusion

You’ve gotten a taste of the different testing experience that RSpec delivers. At first it may seem like the same
thing as MiniTest with some words substituted and shifted around. One of the key points of TDD is that it’s
about design rather than testing. This is a lesson that every good TDDer learns through lots of experience.
RSpec uses a different vocabulary and style to emphasize that point. It comes with the lesson baked in so that
you can attain the greatest benefits of TDD right away.

¹⁰https://github.com/colszowka/simplecov

https://github.com/colszowka/simplecov

22 XML
Structure is nothing if it is all you got. Skeletons spook people if they try to walk around on their
own. I really wonder why XML does not.

—Erik Naggum

XML doesn’t get much respect from the Rails community. It’s enterprisey. In the Ruby world that other
markup language YAML (YAML Ain’t Markup Language) and data interchange format JSON (JavaScript
Object Notation) get a heck of a lot more attention. However, use of XML is a fact of life for many projects,
especially when it comes to interoperability with legacy systems. Luckily, Ruby on Rails gives us some pretty
good functionality related to XML.

This chapter examines how to both generate and parse XML in your Rails applications, starting with a
thorough examination of the to_xml method that most objects have in Rails.

22.1 The to_xmlMethod

Sometimes you just want an XML representation of an object, and Active Record models provide easy,
automatic XML generation via the to_xml method. Let’s play with this method in the console and see what
it can do.

I’ll fire up the console for my book-authoring sample application and find an Active Record object to
manipulate.

>> User.find_by(login: 'obie')

=> #<User id: 8, login: "obie", email: "obie@example.com",

crypted_password: "4a6046804fc4dc3183ad9012fbfee91c85723d8c",

salt: "399754af1b01cf3d4b87da5478d82674b0438eb8",

created_at: "2010-05-18 19:31:40", updated_at: "2010-05-18 19:31:40",

remember_token: nil, remember_token_expires_at: nil,

authorized_approver: true, client_id: nil, timesheets_updated_at: nil>

There we go, a User instance. Let’s see that instance as its generic XML representation.

XML 576

>> User.find_by(login: 'obie').to_xml

=> "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<user>\n

<authorized-approver type=\"boolean\">true</authorized-approver>\n

<salt>399754af1b01cf3d4b87da5478d82674b0438eb8</salt>\n

<created-at type=\"datetime\">2010-05-18T19:31:40Z</created-at>\n

<crypted-password>4a6046804fc4dc3183ad9012fbfee91c85723d8c

</crypted-password>\n <remember-token-expires-at type=\"datetime\"

nil=\"true\"></remember-token-expires-at>\n

<updated-at type=\"datetime\">2010-05-18T19:31:40Z</updated-at>\n

<id type=\"integer\">8</id>\n <client-id type=\"integer\"

nil=\"true\"></client-id>\n <remember-token nil=\"true\">

</remember-token>\n <login>obie</login>\n

<email>obie@example.com</email>\n <timesheets-updated-at

type=\"datetime\" nil=\"true\"></timesheets-updated-at>\n</user>\n"

Ugh, that’s ugly. Ruby’s print function might help us out here.

>> print User.find_by(login: 'obie').to_xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <user>

3 <authorized-approver type="boolean">true</authorized-approver>

4 <salt>399754af1b01cf3d4b87da5478d82674b0438eb8</salt>

5 <created-at type="datetime">2010-05-18T19:31:40Z</created-at>

6

7 <crypted-password>4a6046804fc4dc3183ad9012fbfee91c85723d8c

8 </crypted-password>

9 <remember-token-expires-at type="datetime" nil="true">

10 </remember-token-expires-at>

11 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

12 <id type="integer">8</id>

13 <client-id type="integer" nil="true"></client-id>

14 <remember-token nil="true"></remember-token>

15 <login>obie</login>

16 <email>obie@example.com</email>

17 <timesheets-updated-at type="datetime" nil="true"></timesheets-updated-at>

18 </user>

Much better! So what do we have here? Looks like a fairly straightforward serialized representation of our
User instance in XML.

22.1.1 Customizing to_xml Output

The standard processing instruction is at the top, followed by an element name corresponding to the class
name of the object. The properties are represented as subelements, with non-string data fields including a type

XML 577

attribute. Mind you, this is the default behavior and we can customize it with some additional parameters to
the to_xml method.

We’ll strip down that XML representation of a user to just an email and login using the only parameter. It’s
provided in a familiar options hash, with the value of the :only parameter as an array:

>> print User.find_by(login: 'obie').to_xml(only: [:email, :login])

1 <?xml version="1.0" encoding="UTF-8"?>

2 <user>

3 <login>obie</login>

4 <email>obie@example.com</email>

5 </user>

Following the familiar Rails convention, the only parameter is complemented by its inverse, except, which
will exclude the specified properties. What if I want my user’s email and login as a snippet of XML that will
be included in another document? Then let’s get rid of that pesky instruction too, using the skip_instruct
parameter.

>> print User.find_by(login: 'obie').to_xml(only: [:email, :login], skip_instruct: true)

1 <user>

2 <login>obie</login>

3 <email>obie@example.com</email>

4 </user>

We can change the root element in our XML representation of User and the indenting from two to four spaces
by using the root and indent parameters respectively.

>> print User.find_by(login: 'obie').to_xml(root: 'employee', indent: 4)

1 <?xml version="1.0" encoding="UTF-8"?>

2 <employee>

3 <authorized-approver type="boolean">true</authorized-approver>

4 <salt>399754af1b01cf3d4b87da5478d82674b0438eb8</salt>

5 <created-at type="datetime">2010-05-18T19:31:40Z</created-at>

6 <crypted-password>4a6046804fc4dc3183ad9012fbfee91c85723d8c</crypted-password>

7 <remember-token-expires-at type="datetime" nil="true"></remember-token-expires-at>

8 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

9 <id type="integer">8</id>

10 <client-id type="integer" nil="true"></client-id>

XML 578

11 <remember-token nil="true"></remember-token>

12 <login>obie</login>

13 <email>obie@example.com</email>

14 <timesheets-updated-at type="datetime" nil="true"></timesheets-updated-at>

15 </employee>

By default Rails converts CamelCase and underscore attribute names to dashes as in created-at and
client-id. You can force underscore attribute names by setting the dasherize parameter to false.

>> print User.find_by(login: 'obie').to_xml(dasherize: false,

only: [:created_at, :client_id])

1 <?xml version="1.0" encoding="UTF-8"?>

2 <user>

3 <created_at type="datetime">2010-05-18T19:31:40Z</created_at>

4 <client_id type="integer" nil="true"></client_id>

5 </user>

In the preceding output, the attribute type is included. This too can be configured using the skip_types

parameter.

>> print User.find_by(login: 'obie').to_xml(skip_types: true,

only: [:created_at, :client_id])

1 <?xml version="1.0" encoding="UTF-8"?>

2 <user>

3 <created-at>2010-05-18T19:31:40Z</created-at>

4 <client-id nil="true"></client-id>

5 </user>

22.1.2 Associations and to_xml

So far we’ve only workedwith a base Active Record and not with any of its associations.What if wewanted an
XML representation of not just a book but also its associated chapters? Rails provides the :include parameter
for just this purpose. The :include parameter will also take an array or associations to represent in XML.

>> print User.find_by(login: 'obie').to_xml(include: :timesheets)

XML 579

1 <?xml version="1.0" encoding="UTF-8"?>

2 <user>

3 <authorized-approver type="boolean">true</authorized-approver>

4 <salt>399754af1b01cf3d4b87da5478d82674b0438eb8</salt>

5 <created-at type="datetime">2010-05-18T19:31:40Z</created-at>

6 <crypted-password>

7 4a6046804fc4dc3183ad9012fbfee91c85723d8c

8 </crypted-password>

9 <remember-token-expires-at type="datetime"

10 nil="true"></remember-token-expires-at>

11 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

12 <id type="integer">8</id>

13 <client-id type="integer" nil="true"></client-id>

14 <remember-token nil="true"></remember-token>

15 <login>obie</login>

16 <email>obie@example.com</email>

17 <timesheets-updated-at type="datetime" nil="true"></timesheets-updated-at>

18 <timesheets type="array">

19 <timesheet>

20 <created-at type="datetime">2010-05-04T19:31:40Z</created-at>

21 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

22 <lock-version type="integer">0</lock-version>

23 <id type="integer">8</id>

24 <user-id type="integer">8</user-id>

25 <submitted type="boolean">true</submitted>

26 <approver-id type="integer">7</approver-id>

27 </timesheet>

28 <timesheet>

29 <created-at type="datetime">2010-05-18T19:31:40Z</created-at>

30 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

31 <lock-version type="integer">0</lock-version>

32 <id type="integer">9</id>

33 <user-id type="integer">8</user-id>

34 <submitted type="boolean">false</submitted>

35 <approver-id type="integer" nil="true"></approver-id>

36 </timesheet>

37 <timesheet>

38 <created-at type="datetime">2010-05-11T19:31:40Z</created-at>

39 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

40 <lock-version type="integer">0</lock-version>

41 <id type="integer">10</id>

42 <user-id type="integer">8</user-id>

43 <submitted type="boolean">false</submitted>

44 <approver-id type="integer" nil="true"></approver-id>

45 </timesheet>

XML 580

46 </timesheets>

47 </user>

Rails has a much more useful to_xml method on core classes. For example, arrays are easily serializable to
XML, with element names inferred from the name of the Ruby type:

>> print ['cat', 'dog', 'ferret'].to_xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <strings type="array">

3 <string>cat</string>

4 <string>dog</string>

5 <string>ferret</string>

6 </strings>

If you have mixed types in the array, this is also reflected in the XML output:

>> print [3, 'cat', 'dog', :ferret].to_xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <objects type="array">

3 <object type="integer">3</object>

4 <object>cat</object>

5 <object>dog</object>

6 <object type="symbol">ferret</object>

7 </objects>

To construct a more semantic structure, the root option on to_xml triggers more expressive element names:

>> print ['cat', 'dog', 'ferret'].to_xml(root: 'pets')

1 <?xml version="1.0" encoding="UTF-8"?>

2 <pets type="array">

3 <pet>cat</pet>

4 <pet>dog</pet>

5 <pet>ferret</pet>

6 </pets>

Ruby hashes are naturally representable in XML, with keys corresponding to element names, and their values
corresponding to element contents. Rails automatically calls to_s on the values to get string values for them:

XML 581

>> print({owners: ['Chad', 'Trixie'], pets: ['cat', 'dog', 'ferret'],

id: 123}.to_xml(root: 'registry'))

1 <?xml version="1.0" encoding="UTF-8"?>

2 <registry>

3 <pets type="array">

4 <pet>cat</pet>

5 <pet>dog</pet>

6 <pet>ferret</pet>

7 </pets>

8 <owners type="array">

9 <owner>Chad</owner>

10 <owner>Trixie</owner>

11 </owners>

12 <id type="integer">123</id>

13 </registry>

Josh G says…
This simplistic serializationmay not be appropriate for certain interoperability contexts, especially if
the output must pass XML Schema (XSD) validation when the order of elements is often important.
In Ruby 1.9.x and 2.0, the Hash class uses insertion order. This may not be adequate for producing
output that matches an XSD. The section “The XML Builder” will discuss Builder::XmlMarkup to
address this situation.

The :include option of to_xml is not used on Array and Hash objects.

22.1.3 Advanced to_xml Usage

By default, Active Record’s to_xml method only serializes persistent attributes into XML. However, there
are times when transient, derived, or calculated values need to be serialized out into XML form as well. For
example, our User model has a method that returns only draft timesheets:

1 class User < ActiveRecord::Base

2 ...

3 def draft_timesheets

4 timesheets.draft

5 end

6 ...

7 end

To include the result of this method when we serialize the XML, we use the :methods parameter:

XML 582

>> print User.find_by(login: 'obie').to_xml(methods: :draft_timesheets)

1 <?xml version="1.0" encoding="UTF-8"?>

2 <user>

3 <id type="integer">8</id>

4 ...

5 <draft-timesheets type="array">

6 <draft-timesheet>

7 <created-at type="datetime">2010-05-18T19:31:40Z</created-at>

8 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

9 <lock-version type="integer">0</lock-version>

10 <id type="integer">9</id>

11 <user-id type="integer">8</user-id>

12 <submitted type="boolean">false</submitted>

13 <approver-id type="integer" nil="true"></approver-id>

14 </draft-timesheet>

15 <draft-timesheet>

16 <created-at type="datetime">2010-05-11T19:31:40Z</created-at>

17 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

18 <lock-version type="integer">0</lock-version>

19 <id type="integer">10</id>

20 <user-id type="integer">8</user-id>

21 <submitted type="boolean">false</submitted>

22 <approver-id type="integer" nil="true"></approver-id>

23 </draft-timesheet>

24 </draft-timesheets>

25 </user>

We could also set the methods parameter to an array of method names to be called.

22.1.4 Dynamic Runtime Attributes

In cases where we want to include extra elements unrelated to the object being serialized, we can pass to_xml
a block, or use the :procs option.

If we are using the same logic applied to different to_xml calls, we can construct lambdas ahead of time and
use one or more of them in the :procs option. They will be called with to_xml’s option hash, through which
we access the underlying XmlBuilder. (XmlBuilder provides the principal means of XML generation in Rails.

XML 583

>> current_user = User.find_by(login: 'admin')

>> generated_at = lambda { |opts| opts[:builder].tag!('generated-at',

Time.now.utc.iso8601) }

>> generated_by = lambda { |opts| opts[:builder].tag!('generated-by',

current_user.email) }

>> print(User.find_by(login: 'obie').to_xml(procs: [generated_at,

generated_by]))

1 <?xml version="1.0" encoding="UTF-8"?>

2 <user>

3 ...

4 <id type="integer">8</id>

5 <client-id type="integer" nil="true"></client-id>

6 <remember-token nil="true"></remember-token>

7 <login>obie</login>

8 <email>obie@example.com</email>

9 <timesheets-updated-at type="datetime" nil="true"></timesheets-updated-at>

10 <generated-at>2010-05-18T19:33:49Z</generated-at>

11 <generated-by>admin@example.com</generated-by>

12 </user>

>> print Timesheet.all.to_xml(procs: [generated_at, generated_by])

1 <?xml version="1.0" encoding="UTF-8"?>

2 <timesheets type="array">

3 <timesheet>

4 ...

5 <id type="integer">8</id>

6 <user-id type="integer">8</user-id>

7 <submitted type="boolean">true</submitted>

8 <approver-id type="integer">7</approver-id>

9 <generated-at>2010-05-18T20:18:30Z</generated-at>

10 <generated-by>admin@example.com</generated-by>

11 </timesheet>

12 <timesheet>

13 ...

14 <id type="integer">9</id>

15 <user-id type="integer">8</user-id>

16 <submitted type="boolean">false</submitted>

17 <approver-id type="integer" nil="true"></approver-id>

18 <generated-at>2010-05-18T20:18:30Z</generated-at>

XML 584

19 <generated-by>admin@example.com</generated-by>

20 </timesheet>

21 <timesheet>

22 ...

23 <id type="integer">10</id>

24 <user-id type="integer">8</user-id>

25 <submitted type="boolean">false</submitted>

26 <approver-id type="integer" nil="true"></approver-id>

27 <generated-at>2010-05-18T20:18:30Z</generated-at>

28 <generated-by>admin@example.com</generated-by>

29 </timesheet>

30 </timesheets>

Note that the :procs are applied to each top-level resource in the collection (or the single resource if the top
level is not a collection). Use the sample application to compare the output with the output from the following:

>> print User.all.to_xml(include: :timesheets, procs: [generated_at, generated_by])

To add custom elements only to the root node, to_xml will yield an XmlBuilder instance when given a block:

>> print(User.all.to_xml { |xml| xml.tag! 'generated-by', current_user.email })

1 <?xml version="1.0" encoding="UTF-8"?>

2 <users type="array">

3 <user>...</user>

4 <user>...</user>

5 <generated-by>admin@example.com</generated-by>

6 </users>

Unfortunately, both :procs and the optional block are hobbled by a puzzling limitation: The record being
serialized is not exposed to the procs being passed in as arguments, so only data external to the object may
be added in this fashion.

To gain complete control over the XML serialization of Rails objects, you need to override the to_xmlmethod
and implement it yourself.

22.1.5 Overriding to_xml

Sometimes you need to do something out of the ordinary when trying to represent data in XML form. In those
situations you can create the XML by hand.

XML 585

1 class User < ActiveRecord::Base

2 ...

3 def to_xml(options = {}, &block)

4 xml = options[:builder] || ::Builder::XmlMarkup.new(options)

5 xml.instruct! unless options[:skip_instruct]

6 xml.user do

7 xml.tag!(:email, email)

8 end

9 end

10 ...

11 end

This would give the following result:

>> print User.first.to_xml

1 <?xml version="1.0" encoding="UTF-8"?><user><email>admin@example.com</email></user>

Of course, you could just go ahead and use good Object Oriented design and use a class responsible for
translating between your model and an external representation.

22.2 The XML Builder

Builder::XmlMarkup is the class used internally by Rails when it needs to generate XML. When to_xml is
not enough and you need to generate custom XML, you will use Builder instances directly. Fortunately, the
Builder API is one of the most powerful Ruby libraries available and is very easy to use, once you get the
hang of it.

The API documentation says: “All (well, almost all) methods sent to an XmlMarkup object will be translated
to the equivalent XML markup. Any method with a block will be treated as an XML markup tag with nested
markup in the block.”

That is a very concise way of describing how Builderworks, but it is easier to understandwith some examples,
again taken from Builder’s API documentation. The xm variable is a Builder::XmlMarkup instance:

XML 586

1 xm.em("emphasized") # => emphasized

2 xm.em { xm.b("emp & bold") } # => emph & bold

3

4 xm.a("foo", "href"=>"http://foo.org")

5 # => foo

6

7 xm.div { br } # => <div>
</div>

8

9 xm.target("name"=>"foo", "option"=>"bar")

10 # => <target name="foo" option="bar"/>

11

12 xm.instruct! # <?xml version="1.0" encoding="UTF-8"?>

13

14 xm.html { # <html>

15 xm.head { # <head>

16 xm.title("History") # <title>History</title>

17 } # </head>

18 xm.body { # <body>

19 xm.comment! "HI" # <!-- HI -->

20 xm.h1("Header") # <h1>Header</h1>

21 xm.p("paragraph") # <p>paragraph</p>

22 } # </body>

23 } # </html>

A common use for Builder::XmlBuilder is to render XML in response to a request. Previouslywe talked about
overriding to_xml on Active Record to generate our custom XML. Another way, though not as recommended,
is to use an XML template.

We could alter our UsersController#show method to use an XML template by changing it from:

1 def UsersController < ApplicationController

2 ...

3 def show

4 @user = User.find(params[:id])

5 respond_to do |format|

6 format.html

7 format.xml { render xml: @user.to_xml }

8 end

9 end

10 ...

11 end

to

XML 587

1 def UsersController < ApplicationController

2 ...

3 def show

4 @user = User.find(params[:id])

5 respond_to do |format|

6 format.html

7 format.xml

8 end

9 end

10 ...

11 end

Now Rails will look for a file called show.xml.builder in the app/views/users directory. That file contains
Builder::XmlMarkup code like

1 xml.user { # <user>

2 xml.email @user.email # <email>...</email>

3 xml.timesheets { # <timesheets>

4 @user.timesheets.each { |timesheet| #

5 xml.timesheet { # <timesheet>

6 xml.draft timesheet.submitted? # <draft>true</draft>

7 } # </timesheet>

8 } #

9 } # </timesheets>

10 } # </user>

In this view the variable xml is an instance of Builder::XmlMarkup. Just as in views, we have access to the
instance variables we set in our controller, in this case @user. Using the Builder in a view can provide a
convenient way to generate XML.

22.3 Parsing XML

Ruby has a full-featured XML library named Nokogiri, and covering it in any level of detail is outside the
scope of this book. If you have basic parsing needs, such as parsing responses from web services, you can use
the simple XML parsing capability built into Rails.

22.3.1 Turning XML into Hashes

Rails lets you turn arbitrary snippets of XML markup into Ruby hashes, with the from_xml method that it
adds to the Hash class.

To demonstrate, we’ll throw together a string of simplistic XML and turn it into a hash:

XML 588

>> xml = <<-XML

<pets>

<cat>Franzi</cat>

<dog>Susie</dog>

<horse>Red</horse>

</pets>

XML

1 >> Hash.from_xml(xml)

2 => {"pets"=>{"cat"=>"Franzi", "dog"=>"Susie", "horse"=>"Red"}}

There are no options for from_xml. You can also pass it an IO object:

>> Hash.from_xml(File.new('pets.xml'))

=> {"pets"=>{"cat"=>"Franzi", "dog"=>"Susie", "horse"=>"Red"}}

22.3.2 Typecasting

Typecasting is done by using a type attribute in the XML elements. For example, here’s the auto-generated
XML for a User object.

>> print User.first.to_xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <user>

3 <authorized-approver type="boolean">true</authorized-approver>

4 <salt>034fbec79d0ca2cd7d892f205d56ea95174ff557</salt>

5 <created-at type="datetime">2010-05-18T19:31:40Z</created-at>

6 <crypted-password>98dfc463d9122a1af0a5dc817601de437c69f365

7 </crypted-password>

8 <remember-token-expires-at type="datetime" nil="true" />

9 <updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

10 <id type="integer">7</id>

11 <client-id type="integer" nil="true" />

12 <remember-token nil="true" />

13 <login>admin</login>

14 <email>admin@example.com</email>

15 <timesheets-updated-at type="datetime" nil="true" />

16 </user>

As part of the to_xml method, Rails sets attributes called type that identify the class of the value being
serialized. If we take this XML and feed it to the from_xml method, Rails will typecast the strings to their
corresponding Ruby objects:

XML 589

>> Hash.from_xml(User.first.to_xml)

=> {"user"=>{"salt"=>"034fbec79d0ca2cd7d892f205d56ea95174ff557",

"authorized_approver"=>true,

"created_at"=>Tue May 18 19:31:40 UTC 2010, "remember_token_expires_at"=>nil,

"crypted_password"=>"98dfc463d9122a1af0a5dc817601de437c69f365",

"updated_at"=>Tue May 18 19:31:40 UTC 2010, "id"=>7, "client_id"=>nil,

"remember_token"=>nil, "login"=>"admin", "timesheets_updated_at"=>nil,

"email"=>"admin@example.com"}}

22.4 Conclusion

In practice, the to_xml and from_xml methods meet the XML handling needs for most situations that the
average Rails developer will ever encounter. Their simplicity masks a great degree of flexibility and power,
and in this chapter we attempted to explain them in sufficient detail to inspire your own exploration of XML
handling in the Ruby world.

Active Model API Reference
Active Model is a Rails library containing various modules used in developing frameworks that need to
interact with the Rails Action Pack and Action View libraries. This came about by extracting common
functionality that was not persistence specific out of Active Record, so that 3rd party libraries did not have
to copy code from Rails or monkey patch helpers in order to conform to the API.

Out of this extraction came extremely useful reusable functionality to developers of Rails compatible libraries,
such as dirty attributes, validations, and serialization into JSON or XML. And simply by using these modules
developers could be DRY and not need to rewrite what has already been done before.

Section headings reflect the name of the Class or Module where the API method is located and are organized
in alphabetical order for easy lookup. Sub-sections appear according to the name of the Ruby file in which
they exist within Active Model’s lib directory. Finally, the sub-sub-sections are the API methods themselves.

AttributeMethods

Adds the ability for your class to have custom prefixes and suffixes on your methods. It’s used by adding
the definitions for the prefixes and suffixes, defining which methods on the object will use them, then
implementing the common behavior for when those methods are called. An example implementation is as
follows:

1 class Record

2 include ActiveModel::AttributeMethods

3

4 attribute_method_prefix 'reset_'

5 attribute_method_suffix '_highest?'

6 define_attribute_methods :score

7

8 attr_accessor :score

9 attr_accessor :previous_score

10

11 private

12

13 def reset_attribute(attribute)

14 send("#{attribute}=", nil)

15 end

16

17 def attribute_highest?(attribute)

18 attribute > 1000 ? true : false

19 end

20 end

Active Model API Reference 591

active_model/attribute_methods.rb

alias_attribute(new_name, old_name)

This super-useful method allows you to easily make aliases for attributes, including their reader and writer
methods.

1 class Person

2 include ActiveModel::AttributeMethods

3 attr_accessor :name

4 alias_attribute :full_name, :name

5 end

6

7

8 person = Person.new

9 person.name = "John Smith"

10 person.name # => "John Smith"

11 person.full_name # => "John Smith"

attribute_method_affix(*affixes)

Defines a prefix and suffix that when used in conjuction with define_attribute_methods creates a instance
method with the prefix and suffix wrapping the previous method name.

attribute_method_prefix(*prefixes)

Defines a prefix that when used in conjuction with define_attribute_methods creates a instance method
with the prefix and the previous method name.

attribute_method_suffix(*suffixes)

Defines a suffix that when used in conjuction with define_attribute_methods creates a instance method
with the suffix and the previous method name.

define_attribute_method(attr_name)

Declares an attribute that will get prefixed and suffixed. The define_attribute_method should be defined
after any prefix, suffix or affix definitions or they will not hook in.

Active Model API Reference 592

1 class Record

2 include ActiveModel::AttributeMethods

3

4 attribute_method_prefix 'reset_'

5 define_attribute_methods :score

6

7 attr_accessor :score

8

9 private

10

11 def reset_attribute(attribute)

12 send("#{attribute}=", nil)

13 end

14 end

15

16 record = Record.new

17 record.score = 1

18 record.reset_score # => nil

define_attribute_methods(*attr_names)

Declares the attributes that will get prefixed and suffixed. Note that define_attribute_methods should be
defined after any prefix, suffix or affix definitions.

generated_attribute_methods

Returns whether or not the dynamic attribute methods have been generated.

undefine_attribute_methods

Removes all the attribute method definitions previously defined.

Callbacks

Gives any class Active Record style callbacks. It is used by defining the callbacks that the model will use, then
in your model running the callbacks at the appropriate time. Once defined you have access to before, after,
and around custom methods.

Active Model API Reference 593

1 class Record

2 extend ActiveModel::Callbacks

3

4 define_model_callbacks :create

5 define_model_callbacks :update, only: :before

6

7 before_update :my_callback

8

9 def create

10 run_callbacks :create do

11 # Your create code here

12 end

13 end

14

15 def update

16 run_callbacks :update do

17 # Your update code here

18 end

19 end

20

21 private

22

23 def my_callback

24 # Your callback code here

25 end

26 end

active_model/callbacks.rb

define_model_callbacks(*callbacks)

Defines the callback hooks that can be used in the model, which will dynamically provide you with a before,
after, and around hook for each name passed. Optionally, one can supply an :only option to specify which
callbacks you want created.

1 define_model_callbacks :create, only: :after

Defined callbacks can accept a callback class, by passing the given callback an object that responds to the
name of the callback and takes the model object as a parameter.

Active Model API Reference 594

1 class Record

2 extend ActiveModel::Callbacks

3 define_model_callbacks :create

4

5 before_create SomeCallbackClass

6 end

7

8 class SomeCallbackClass

9 def self.before_create(obj)

10 # obj is the Record instance the callback is being called on

11 end

12 end

Conversion

A simple module that when included, gives the standard Rails conversion methods to your model. The only
requirement for including this class is that your model contains a method and an method.

active_model/conversion.rb

to_model

Returns self. If your model is not Active Model compliant, then override this method.

to_key

Returns an enumerable of primary key attributes or nil if the object is not persisted.

to_param

Return a url friendly version of the object’s primary key or nil if the object is not persisted.

to_partial_path

Returns a string identifying the path associated with the object.

record = Record.new

record.to_partial_path # => "records/record"

Used by Action View to find a suitable partial to represent the object.

Dirty

A powerful module that allows for tracking in your object what changes have been made to it since it was last
initialized. It creates a handful of dynamic methods based on which attributes you define as attribute methods
on your class, and requires that you also tell the attribute setters that they are being tracked for changes. (You
can optionally also store previous changes each time your object is persisted as well.)

Active Model API Reference 595

1 class User

2 include ActiveModel::Dirty

3

4 define_attribute_methods :email

5

6 def email

7 @email

8 end

9

10 def email=(value)

11 email_will_change! unless value == @email

12 @email = value

13 end

14

15 def save

16 @previously_changed = changes

17 @changed_attributes.clear

18 end

19 end

In the example above, the following dynamic methods would then be available for checking the dirty state of
the flagged field. (Assume user is an instance of the User class.)

1 # Returns an array of the old and new values

2 user.email_change

3

4 # Returns true if the value has changed

5 user.email_changed?

6

7 # Resets the attribute back to the original value

8 user.reset_email!

9

10 # Returns the old value of a changed field

11 user.email_was

12

13 # Flags an attribute that is will be changed

14 user.email_will_change!

active_model/dirty.rb

changed

Returns an array of fields whose values have changed on the object.

Active Model API Reference 596

changed?

Returns whether or not the object’s attributes have changed.

As of Rails 4.1, one can determine if an attribute has changed from one value to another by supplying hash
options :from and :to.

user.name_changed?(from: 'Prince', to: 'Symbol')

changed_attributes

Returns a hash of the fields that have changed with their original values.

changes

Returns a hash of changes, with the attribute names as the keys, and the values being an array of the old and
new value for that field.

previous_changes

Returns a hash of previous changes before the object was persisted, with the attribute names as the keys, and
the values being an array of the old and new value for that field.

Errors

A module that provides a common interface for handling application error messages.

Note that in order for your object to be compatible with the API with i18n and validations support, it needs
to extend ActiveModel::Naming, ActiveModel::Translation, and include ActiveModel::Validations.

1 class User

2 extend ActiveModel::Naming

3 extend ActiveModel::Translation

4 include ActiveModel::Validations

5

6 attr_reader :errors

7 attr_accessor :name

8

9 def initialize

10 @errors = ActiveModel::Errors.new(self)

11 end

12 end

active_model/errors.rb

[](attribute)

Returns the errors for the supplied attribute as an array.

Active Model API Reference 597

1 user.errors[:name] # => ["is invalid"]

[]=(attribute, error)

Adds the provided error message to the attribute errors.

1 user.errors[:name] = 'must be implemented'

add(attribute, message = nil, options = {})

Adds an error message for the supplied attribute. If no message is provided, :invalid is assumed. Options
allowed are:

:strict

If set to true, will raise ActiveModel::StrictValidationFailed over adding an error.

>> user.errors.add(:name)

=> ["is invalid"]

>> user.errors.add(:name, 'must be implemented')

=> ["is invalid", "must be implemented"]

add_on_blank(attributes, options = {})

Adds a “blank” error message for each specified attribute that is blank.

user.errors.add_on_blank(:name)

user.errors[:name] # => ["can't be blank"]

add_on_empty(attributes, options = {})

Adds an error message for each specified attribute that is empty.

user.errors.add_on_empty(:name)

user.errors[:name] # => ["can't be empty"]

added?(attribute, message = nil, options = {})

Returns true if an error on the attribute with the given message is present.

Active Model API Reference 598

user.errors.add :name, :blank

user.errors.added? :name, :blank # => true

as_json(options=nil)

Returns a hash that can be used as the JSON representation for this object. Available options are:

:full_messages

If set to true, returns full errors messages for each attribute.

>> user.errors.as_json

=> {:name=>["can't be blank"]}

>> user.errors.as_json(full_messages: true)

=> {:name=>["Name can't be blank"]}

blank? / empty?

Returns true if there are no errors on the object, false otherwise.

count

Returns the total number of error messages.

delete(key)

Delete all messages for specified key.

1 user.errors[:name] # => ["can't be blank"]

2 user.errors.delete(:name)

3 user.errors[:name] # => []

each

Iterates through the error keys, yielding the attribute and the errors for each. If an attribute has more than
one error message, it will yield for each one.

1 user.errors.each do |attribute, error|

2 ...

3 end

full_message(attribute, message)

Returns a full message for a given attribute.

Active Model API Reference 599

full_messages

Returns all the error messages as an array.

full_messages_for(attribute)

Returns an array of all the full error messages for a given attribute.

1 user.errors.full_messages_for(:name)

generate_message(attr, message = :invalid, options = {})

Generates a translated error message under the scope activemodel.errors.messages for the supplied
attribute. Messages are looked up via the following pattern: models.MODEL.attributes.ATTRIBUTE.MESSAGE.
If a translation is not found, Active Model will then look in models.MODEL.MESSAGE. If that yields no
translations, it will return a default message (activemodel.errors.messages.MESSAGE).

Available options are:

:strict

If set to true, will raise ActiveModel::StrictValidationFailed over adding an error.

If inheritance is being used in your models, and no error messages are found for the model, messages will be
looked up on the parent model.

get(key)

Returns an array of error messages for the given key.

1 user.errors.get(:name)

has_key?(attribute) / include?(attribute)

Returns true if the error messages include an error for the given attribute.

user.errors.include?(:name) # => true

keys

Return all message keys.

set(key, value)

Sets the messages for a key.

Active Model API Reference 600

user.errors.set(:name, ['must be implemented'])

size

Returns the total number of error messages.

to_a

Returns an array of all the error messages, with the attribute name included in each.

to_hash(full_messages = false)

Returns a hash of all the error messages, with the attribute name set as the key, and messages as values. If
full_messages is set to true, it will contain full messages.

to_xml

Returns the errors hash as XML.

values

Returns all message values.

ForbiddenAttributesError

Defines the ForbiddenAttributesError exception, which is raised when forbidden attributes are used for
mass assignment.

1 params = ActionController::Parameters.new(name: 'Bob')

2 User.new(params) # => ActiveModel::ForbiddenAttributesError

3 params.permit!

4 User.new(params) # => #<User:0x007fefd4389020 ...>

Lint::Tests

You can checkwhether an object is compatiblewith theActiveModel API by including ActiveModel::Lint::Tests.
It contains assertions that tell you whether your object is fully compliant.

The tests only check compatibility. They don’t attempt to determine the correctness of the returned values.
For instance, you could implement valid? to always return true and the tests would still pass. It’s up to you
to ensure that the values are correct.

Objects you pass in are expected to return a compliant object from a call to to_model. Generally speaking,
to_model just returns self.

Active Model API Reference 601

Model

Model is a module mixin that includes the required interface for a Ruby object to work with Action Pack and
Action View. Classes that include Model get several other Active Model features out of the box, such as:

• Model name introspection
• Conversions
• Translations
• Validations

Like Active Record objects, Model objects can also be initialized with a hash of attributes.

1 class Contact

2 include ActiveModel::Model

3

4 attr_accessor :name, :email, :message

5

6 validates :name, presence: true

7 validates :email, presence: true

8 validates :message, presence: true, length: { maximum: 300 }

9 end

The implementation of Model is only 24 lines of code is reproduced here for reference purposes:

1 module ActiveModel

2 module Model

3 def self.included(base)

4 base.class_eval do

5 extend ActiveModel::Naming

6 extend ActiveModel::Translation

7 include ActiveModel::Validations

8 include ActiveModel::Conversion

9 end

10 end

11

12 def initialize(params={})

13 params.each do |attr, value|

14 self.public_send("#{attr}=", value)

15 end if params

16

17 super()

18 end

19

20 def persisted?

Active Model API Reference 602

21 false

22 end

23 end

24 end

Name

Name extends String and wraps a bunch of logic around name information about your object so that it can
be used with Rails.

How much name information could there be? Take a look at Name’s constructor.

1 def initialize(klass, namespace = nil, name = nil)

2 @name = name || klass.name

3

4 raise ArgumentError, "Class name cannot be blank. You need to supply a

5 name argument when anonymous class given" if @name.blank?

6

7 @unnamespaced = @name.sub(/^#{namespace.name}::/, '') if namespace

8 @klass = klass

9 @singular = _singularize(@name)

10 @plural = ActiveSupport::Inflector.pluralize(@singular)

11 @element = ActiveSupport::Inflector.

12 underscore(ActiveSupport::Inflector.demodulize(@name))

13 @human = ActiveSupport::Inflector.humanize(@element)

14 @collection = ActiveSupport::Inflector.tableize(@name)

15 @param_key = (namespace ? _singularize(@unnamespaced) : @singular)

16 @i18n_key = @name.underscore.to_sym

17

18 @route_key = (namespace ? ActiveSupport::Inflector.

19 pluralize(@param_key) : @plural.dup)

20 @singular_route_key = ActiveSupport::Inflector.singularize(@route_key)

21 @route_key << "_index" if @plural == @singular

22 end

All of this information is calculated and stored at initialization-time, presumably since it’s used all over Rails.

active_model/naming.rb

cache_key / collection

Returns an underscored plural version of the model name.

element

Returns an underscored version of the model name.

Active Model API Reference 603

human

Returns a translated human readable version of the model name using I18n. The basic recipe is to capitalized
the first word of the name.

1 BlogPost.model_name.human # => "Blog post"

i18n_key

Returns a symbol of the model name to be used as a i18n key.

param_key

Returns a version of the model name to be used for params names.

plural

Returns a pluralized version of the model name.

route_key

Returns a version of the model name to use while generating route names.

singular

Returns a singularized version of the model name.

singular_route_key

Returns a singularized version of the model name to use while generating route names.

Naming

Naming is the module that you extend in your class to get name type information for your model.

active_model/naming.rb

model_name

Returns an ActiveModel::Name instance for the object. Used by Action Pack and Action View to for naming-
related functionality, such as routing.

Active Model API Reference 604

SecurePassword

Including the SecurePasswordmodule adds a single macro style method has_secure_password to your class,
which adds the ability to set and authenticate against a BCrypt password.

A full explanation of how to use has_secure_password is provided in the Chapter 14 section “has_secure_-
password”.

Serialization

Serialization is a module to include in your models when you want to represent your model as a serializable
hash. You only need to define an attributes method and the rest is handled for you.

1 class User

2 include ActiveModel::Serialization

3 attr_accessor :first_name, :last_name

4

5 def attributes

6 { 'first_name' => @first_name, 'last_name' => @last_name }

7 end

8 end

active_model/serialization.rb

serializable_hash(options = nil)

Returns the serializable hash representation of your model. Options provided can be of the following:

:except

Do not include these attributes.

:methods

Include the supplied methods. The method name will be set as the key, and its output the value.

:only

Only include the supplied attributes.

Serializers::JSON

Serializers::JSON is a module to include in your models when youwant to provide a JSON representation of
your object. It automatically includes the module and depends on the attributes and attributes= methods
to be present.

Active Model API Reference 605

1 class User

2 include ActiveModel::Serializers::JSON

3 attr_accessor :first_name, :last_name

4

5 def attributes

6 { 'first_name' => @first_name, 'last_name' => @last_name }

7 end

8

9 def attributes=(attrs)

10 @first_name = attrs['first_name']

11 @last_name = attrs['last_name']

12 end

13 end

active_model/serializers/json.rb

as_json(options = nil)

Returns a hash that can be used as the JSON representation for this object.

from_json(json)

Decodes the supplied JSON, sets the attributes on the model, and returns self.

Serializers::Xml

Serializers::Xml is a module to include in your models when you want to provide an XML representation of
your object. It automatically includes the module and depends on the attributes and attributes= methods
to be present.

1 class Pet

2 include ActiveModel::Serializers::XML

3 attr_accessor :name

4

5 def attributes

6 { 'name' => @name }

7 end

8

9 def attributes=(attrs)

10 @name = attrs['name']

11 end

12 end

Active Model API Reference 606

active_model/serializers/xml.rb

from_xml(xml)

Decodes the supplied XML, sets the attributes on the model, and returns self.

to_xml(options = {}, &block)

Returns an XML representation of the object. Available options are:

:builder

Supply a custom builder to generate the markup.

:except

Do not include supplied attributes in the XML.

:indent

Number of spaces to indent the XML.

:methods

Include the supplied methods. The method name will be set as the key, and its output the value.

:namespace

Sets the XMLNS.

:only

Only include the supplied attributes.

:skip_instruct

Skip processing instructions.

:skip_types

Skip typing.

:type

Add a type to the XML tags.

Translation

Translation provides the ability to add internationalization support to your model

1 class User

2 extend ActiveModel::Translation

3 end

Active Model API Reference 607

active_model/translation.rb

human_attribute_name(attribute, options = {}

Transforms attribute names into a human readable format with options. Available options are:

:default

The default text for the attribute name.

i18n_scope

Returns the i18n_scope for the class (:activemodel). Can be overridden if you want a custom lookup
namespace.

lookup_ancestors

Gets all ancestors of this class that support i18n.

Validations

Validations adds a fully-featured validations framework to your model. This includes the means to validate
the following types of scenarios plus the ability to create custom validators.

• Absence of a field
• Acceptance of a field.
• Confirmation of a field.
• Exclusion of a field from a set of values.
• Format of a field against a regular expression.
• Inclusion of a field in a set of values.
• Length of a field.
• Numericality of a field.
• Presence of a field.
• Size of a field.

Active Model API Reference 608

1 class User

2 include ActiveModel::Validations

3

4 attr_accessor :name

5

6 validates_each :name do |record, attribute, value|

7 record.errors.add(attribute, 'should be present') if value.nil?

8 end

9 end

active_model/validations

Note that available base options for validation macros that use options are as follows. If the specific validation
has additional options they will be explained there. All options are supplied as a Hash, and are the last element
of the first set of arguments to the macros.

:allow_nil

Specify whether to validate nil attributes.

:if Only run if the supplied method or proc returns true.

:on Define when the validation will run.

:strict

If set to true, will raise ActiveModel::StrictValidationFailed over adding an error. It can also be
set to any other exception.

:unless

Only run if the supplied method or proc returns false.

Validations.attribute_method?(attribute)

Returns true if a method is defined for the supplied attribute.

1 class User

2 include ActiveModel::Validations

3

4 attr_accessor :name

5 end

6

7 User.attribute_method?(:name) # => true

Validations.clear_validators!

Clears all of the validators and validations.

Active Model API Reference 609

errors

Get all the errors for the model.

invalid?(context = nil)

Checks if the object is invalid given the optional context.

valid?(context = nil)

Checks if the object is valid given the optional context.

Validations.validate(*args, &block)

Adds a single validation to the model. Can be a method name as a symbol or a block with options. Additional
options are:

:allow_blank

Specify whether to validate blank attributes.

Validations.validates_each(*attrs, &block)

Validates each of the attribute names against the supplied block. Options are passed in as a hash as the last
element in the attrs argument. Additional options are:

:allow_blank

Specify whether to validate blank attributes.

active_model/validations/absence

validates_absence_of(*args)

Validates that an attribute is blank.

1 validates_absence_of :name

Additional options:

:message

An optional custom error message. Defaults to “must be blank”.

active_model/validations/acceptance

validates_acceptance_of(*args)

Validates that an attribute was accepted.

Active Model API Reference 610

validates_acceptance_of :terms, on: :create

Additional options:

:accept

Specify the value that is considered accepted.

:message

An optional custom error message. Defaults to “must be accepted”.

active_model/validations/callbacks

The ActiveModel::Validations::Callbacks module callbacks before_validation and after_validation

to your model.

1 class Record

2 include ActiveModel::Validations::Callbacks

3

4 before_validation :some_before_validation_logic

5 after_validation :some_after_validation_logic

6 end

The interface is the same as ActiveModel::Callbacks covered earlier in this appendix.

active_model/validations/confirmation

validates_confirmation_of(*args)

Validates that an attribute was confirmed. Adds a virtual *_confirmation attribute that exists for validating
the confirmation of the attribute. For example, validating the confirmation of a password attribute would
result in the validator adding an accessor for password_confirmation.

validates_confirmation_of :password, message: "Please try again."

Additional options:

:message

An optional custom error message. Defaults to “doesn’t match confirmation”.

active_model/validations/exclusion

validates_exclusion_of(*args)

Validates that an attribute does not have a value supplied in the list.

Active Model API Reference 611

validates_exclusion_of :age, in: 18..55

Additional options:

:allow_blank

Specify whether to validate blank attributes.

:in An enumerable or range to check the value against. Can also be supplied as a proc, lambda, or symbol
which returns an enumerable.

:message

An optional custom error message. Defaults to “is reserved”.

active_model/validations/format

validates_format_of(*args)

Validates that an attribute conforms to the supplied format.

validates_format_of :phone, with: /\A[\d\-\(\)\sx]+\z/

Additional options:

:allow_blank

Specify whether to validate blank attributes.

:message

An optional custom error message. Defaults to “is invalid”.

:multiline

Set to true if the regular expression contains anchors that match the beginning or end of lines as
opposed to the beginning or end of the string.

:with

The regular expression to check if the format matches.

:without

The regular expression to check that the format does not match.

active_model/validations/inclusion

validates_inclusion_of(*args)

Validates that an attribute is a value supplied in the list.

Active Model API Reference 612

validates_inclusion_of :state, in: ["CA", "NY"]

Additional options:

:allow_blank

Specify whether to validate blank attributes.

:in An enumerable or range to check the value against. Can also be supplied as a proc, lambda, or symbol
which returns an enumerable.

:message

An optional custom error message. Defaults to “is not included in the list”.

active_model/validations/length

validates_length_of(*args)

Validates that an attribute adheres to the supplied length limitations.

validates_length_of :name, maximum: 48

Additional options:

:allow_blank

Specify whether to validate blank attributes.

:in Specify the range the length of the attribute can fall within.

:is Specify the exact length of the attribute.

:maximum

Specify the maximum length of the attribute.

:message

The error message to use for a :minimum, :maximum, or :is violation.

:minimum

Specify the minimum length of the attribute.

:tokenizer

A block to define how the string should be broken up. Defaults to ->(value) { value.split(//) }.

:too_long

Define a custom message if the attribute is too long. Defaults to “is too long (maximum is %{count}
characters)”.

Active Model API Reference 613

:too_short

Define a custom message if the attribute is too short. Defaults to “is too short (min is %{count}
characters)”.

:within

Specify the range the length of the attribute can fall within. * :wrong_length - Define a custommessage
for an incorrect length. Defaults to “is the wrong length (should be %{count} characters)”.

active_model/validations/numericality

validates_numericality_of(*args)

Validates that an attribute is numeric and optionally in a specified value range.

validates_numericality_of :score, only_integer: true

Additional options:

:equal_to

Specify a value the attribute must be exactly.

:even

Specify that the value must be even.

:greater_than

Specify a value the attribute must be greater than.

:greater_than_or_equal_to

Specify a value the attribute must be greater than or equal to.

:less_than

Specify a value the attribute must be less than.

:less_than_or_equal_to

Specify a value the attribute must be less than or equal to.

:message

An optional custom error message, defaulting to “is not a number”.

:odd Specify that the value must be odd.

:only_integer

Specify whether the value has to be an integer.

:other_than

Specify a value the attribute must be other than.

The following can also be supplied with a proc or a symbol which corresponds to a method:

Active Model API Reference 614

• :equal_to

• :greater_than

• :greater_than_or_equal_to

• :less_than

• :less_than_or_equal_to

validates_numericality_of :width, less_than: ->(person) { person.height }

active_model/validations/presence

validates_presence_of(*args)

Validates that an attribute is not blank.

validates_presence_of :foo

Additional options:

:message

An optional custom error message, defaults to “can’t be blank”.

active_model/validations/validates

validates(*attributes)

A method that allows setting all default validators and any custom validator classes ending in “Validator”. To
illustrate, with a single declaration to validates, we can set an attribute to validate presence and uniqueness.

validates :username, presence: true, uniqueness: true

The hash supplied to validates can also handle arrays, ranges, regular expressions, and strings in shortcut
form.

1 validates :email, format: /@/

2 validates :gender, inclusion: %w(male female)

3 validates :password, length: 6..20

validates!(*attributes)

The validates! method allows setting all default validators and any custom validator classes ending in
“Validator”. The difference between validates and validates! is that in the latter all errors are considered
exception. Essentially its the same as defining validates with the :strict option set to true.

Active Model API Reference 615

active_model/validations/with

validates_with(*args, &block)

Validates the model with a supplied custom validator. The validator class must respond to and handle the
options and error message addition internally.

1 class NameValidator < ActiveModel::Validator

2 def validate(object)

3 # Some validation logic here

4 end

5 end

6

7 class User

8 include ActiveModel::Validations

9 validates_with NameValidator, on: :update

10 end

validators

Get all the validators being used by the class.

validators_on(*attributes)

Get all the validators for the supplied attributes.

User.validators_on(:name)

Validator

Validator provides a class that custom validators can extend to seamlessly integrate into the ActiveModel::Validations
API. It only requires that the new class defines a validate method.

A full explanation of how to use Validator and EachValidator is provided in the Chapter 8 section “Custom
Validation Techniques”.

1 class ScoreValidator < ActiveModel::Validator

2 include ActiveModel::Validations

3

4 def validate(object)

5 # Perform validations and add errors here.

6 end

7 end

Active Model API Reference 616

active_model/validator.rb

kind

Returns the type of the validator, which is a symbol of the underscored class name without “Validator”
included.

validate(record)

This method must be overwritten in the validator in order to actually handle the validation itself.

Active Support API Reference
Active Support is a Rails library containing utility classes and extensions to Ruby’s built-in libraries. It usually
doesn’t get much attention on its own—you might even call its modules the supporting cast members of the
Rails ensemble.

However, Active Support’s low profile doesn’t diminish its importance in day-to-day Rails programming. To
ensure that this book is useful as an offline programming companion, here is a complete, enhanced version
of the Rails Active Support API reference, supplemented in most cases with realistic example usages and
commentary. As your reviewing the material in this appendix, note that many of the methods featured here
are used primarily by other Rails libraries and are not particularly useful to application developers.

Section headings reflect the name of the Class or Module where the API method is located and are organized
in alphabetical order for easy lookup. Sub-sections appear according to the name of the Ruby file in which they
exist within Active Support’s lib directory. Finally, the sub-sub-sections are the API methods themselves.

Array

The following methods provide additional functionality for accessing array elements.

active_support/core_ext/array/access

from(position)

Returns the tail of the array starting from the position specified. Note that the position is zero-indexed.

>> %w(foo bar baz quux).from(2)

=> ["baz", "quux"]

to(position)

Returns the beginning elements of the array up to position specified. Note that the position is zero-indexed.

>> %w(foo bar baz quux).to(2)

=> ["foo", "bar", "baz"]

second

Equivalent to calling self[1].

Active Support API Reference 618

>> %w(foo bar baz quux).second

=> "bar"

third

Equivalent to self[2].

fourth

Equivalent to self[3].

fifth

Equivalent to self[4].

forty_two

Equivalent to calling self[41]—a humorous addition to the API by David.

active_support/core_ext/array/conversions

The following methods are used for converting Ruby arrays into other formats.

to_formatted_s(format = :default)

Two formats are supported, :default and :db. The :default format delegates to the normal to_smethod for
an array, which just creates a string representation of the array.

>> %w(foo bar baz quux).to_s

=> "[\"foo\", \"bar\", \"baz\", \"quux\"]"

The much more interesting :db option returns "null" if the array is empty, or concatenates the id fields of
its member elements into a comma-delimited string with code like this:

collect { |element| element.id }.join(",")

In other words, the :db formatting is meant to work with Active Record objects (or other types of objects that
properly respond to id). If the contents of the array do not respond to id, a NoMethodError exception is raised.

>> %w(foo bar baz quux).to_s(:db)

NoMethodError: undefined method `id' for "foo":String

to_s

The to_s method of Array is aliased to to_formatted_s.

Active Support API Reference 619

to_default_s

The to_default_s method of Array is aliased to to_s.

to_sentence(options = {})

Converts the array to a comma-separated sentence in which the last element is joined by a connector word.

>> %w(alcohol tobacco firearms).to_sentence

=> "alcohol, tobacco, and firearms"

The following options are available for to_sentence:

:words_connector

The sign or word used to join the elements in arrays with two or more elements (default: “, “).

:two_words_connector

The sign or word used to join the elements in arrays with two elements (default: “ and “).

:last_word_connector

The sign or word used to join the last element in arrays with three or more elements (default: “, and “).

:locale

If i18n is available, you can set a locale and use the connector options defined on the ‘support.array’
namespace.

to_xml(options = {}) |xml| ...

As covered in Chapter 22, “XML”, the to_xml method on Array can be used to create an XML collection by
iteratively calling to_xml on its members, and wrapping the entire thing in an enclosing element. If the array
element does not respond to to_xml, an XML representation of the object will be returned.

>> ["riding","high"].to_xml

=> "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<strings type=\"array\">\n

<string>riding</string>\n <string>high</string>\n</strings>\n"

The following example yields the Builder object to an optional block so that arbitrary markup can be inserted
at the bottom of the generated XML, as the last child of the enclosing element.

1 {foo: "foo", bar: 42}.to_xml do |xml|

2 xml.did_it "again"

3 end

outputs the following XML:

Active Support API Reference 620

1 <?xml version="1.0" encoding="UTF-8"?>

2 <hash>

3 <bar type="integer">42</bar>

4 <foo>foo</foo>

5 <did_it>again</did_it>

6 </hash>

The options for to_xml are:

:builder

Defaults to a new instance of Builder::XmlMarkup. Specify explicitly if you’re calling to_xml on this
array as part of a larger XML construction routine.

:children

Sets the name to use for element tags explicitly. Defaults to singularized version of the :root name by
default.

:dasherize

Whether or not to turn underscores to dashes in tag names (defaults to true).

:indent

Indent level to use for generated XML (defaults to two spaces).

:root

The tag name to use for the enclosing element. If no :root is supplied and all members of the array
are of the same class, the dashed, pluralized form of the first element’s class name is used as a default.
Otherwise the default :root is objects.

:skip_instruct

Whether or not to generate an XML instruction tag by calling instruct! on Builder.

:skip_types

Whether or not to include a type="array" attribute on the enclosing element.

active_support/core_ext/array/extract_options

Active Support provides a method for extracting Rails-style options from a variable-length set of argument
parameters.

extract_options!

Extracts options from a variable set of arguments. It’s a bang method because it removes and returns the last
element in the array if it’s a hash; otherwise, it returns a blank hash and the source array is unmodified.

Active Support API Reference 621

1 def options(*args)

2 args.extract_options!

3 end

4

5 >> options(1, 2)

6 => {}

7

8 >> options(1, 2, a: :b)

9 => {:a=>:b}

active_support/core_ext/array/grouping

Methods used for splitting array elements into logical groupings.

in_groups(number, fill_with = nil) { |group| ... }

The in_groups method splits an array into a number of equally sized groups. If a fill_with parameter is
provided, its value is used to pad the groups into equal sizes.

1 %w(1 2 3 4 5 6 7 8 9 10).in_groups(3) { |group| p group }

2 ["1", "2", "3", "4"]

3 ["5", "6", "7", nil]

4 ["8", "9", "10", nil]

5

6 %w(1 2 3 4 5 6 7).in_groups(3, ' ') { |group| p group }

7 ["1", "2", "3"]

8 ["4", "5", " "]

9 ["6", "7", " "]

In the special case that you don’t want equally sized groups (in other words, no padding) then pass false as
the value of fill_with.

1 %w(1 2 3 4 5 6 7).in_groups(3, false) { |group| p group }

2 ["1", "2", "3"]

3 ["4", "5"]

4 ["6", "7"]

in_groups_of(number, fill_with = nil) { |group| ... }

Related to its sibling in_groups, the in_groups_ofmethod splits an array into groups of the specified number

size, padding any remaining slots. The fill_with parameter is used for padding and defaults to nil. If a block
is provided, it is called with each group; otherwise, a two-dimensional array is returned.

Active Support API Reference 622

>> %w(1 2 3 4 5 6 7).in_groups_of(3)

=> [[1, 2, 3], [4, 5, 6], [7, nil, nil]

>> %w(1 2 3).in_groups_of(2, ' ') { |group| puts group.to_s }

=> ["1", "2"]

["3", " "]

nil

Passing false to the fill_with parameter inhibits the fill behavior.

>> %w(1 2 3).in_groups_of(2, false) { |group| puts group.to_s }

=> ["1", "2"]

["3"]

nil

The in_groups_ofmethod is particularly useful for batch-processing model objects and generating table rows
in view templates.

split(value = nil, &block)

Divides an array into one or more subarrays based on a delimiting value:

>> [1, 2, 3, 4, 5].split(3)

=> [[1, 2], [4, 5]]

or the result of an optional block:

>> (1..8).to_a.split { |i| i % 3 == 0 }

=> [[1, 2], [4, 5], [7, 8]]

active_support/core_ext/array/prepend_and_append

Adds two aliases that are more the human way of thinking about adding stuff to a list.

append

The append method of Array is aliased to <<.

prepend

The prepend method of Array is aliased to unshift.

active_support/core_ext/array/wrap

A convenience method added to the Array class.

Active Support API Reference 623

Array.wrap(object)

Wraps the object in an Array unless it’s an Array. If nil is supplied, and empty list is returned. Otherwise,
the wrap method will convert the supplied object to an Array using to_ary if it implements that. It differs
with Array() in that it does not call to_a on the argument:

1 Array(foo: :bar) # => [[:foo, :bar]]

2 Array.wrap(foo: :bar) # => [{:foo => :bar}]

3

4 Array("foo\nbar") # => ["foo\nbar"]

5 Array.wrap("foo\nbar") # => ["foo\nbar"]

6

7 Array(nil) # => []

8 Array.wrap(nil) # => []

active_support/core_ext/object/blank

blank?

Alias for empty?

active_support/core_ext/object/to_param

to_param

Calls to_param on all of its elements and joins the result with slashes. This is used by the url_for method in
Action Pack.

>> ["riding","high","and","I","want","to","make"].to_param

=> "riding/high/and/I/want/to/make"

ActiveSupport::BacktraceCleaner

active_support/backtrace_cleaner

Many backtraces include too much information that’s not relevant for the context. This makes it hard to find
the signal in the backtrace and adds debugging time. With a custom BacktraceCleaner, you can setup filters
and silencers for your particular context, so only the relevant lines are included.

If you want to change the setting of Rails’ built-in BacktraceCleaner, to show as much as possible, you
can call BacktraceCleaner.remove_silencers! in your console, specs or an application initializer. Also, if
you need to reconfigure an existing BacktraceCleaner so that it does not filter or modify the paths of any
lines of the backtrace, you can call BacktraceCleaner#remove_filters! These two methods will give you a
completely untouched backtrace.

Active Support API Reference 624

1 bc = ActiveSupport::BacktraceCleaner.new

2 bc.add_filter { |line| line.gsub(Rails.root, '') }

3 bc.add_silencer { |line| line =~ /mongrel|rubygems/ }

4

5 # will strip the Rails.root prefix and skip any lines from mongrel or rubygems

6 bc.clean(exception.backtrace)

Inspired by the Quiet Backtrace gem by Thoughtbot.

Benchmark

The following method provides additional functionality for returning in benchmark results in a human
readable format.

ms

Benchmark realtime in milliseconds

>> Benchmark.realtime { User.all }

=> 8.0e-05

>> Benchmark.ms { User.all }

=> 0.074

ActiveSupport::Benchmarkable

Benchmarkable allows you to measure the execution time of a block in a template and records the result to
the log.

active_support/benchmarkable

benchmark(message = "Benchmarking", options = {})

Wrap this block around expensive operations or possible bottlenecks to get a time reading for the operation.
For example, let’s say you thought your file processing method was taking too long; you could wrap it in a
benchmark block.

1 benchmark "Process data files" do

2 expensive_files_operation

3 end

That would add an entry like “Process data files (345.2ms)” to the log, which can then be used to compare
timings when optimizing your code.

You may give an optional logger level as the :level option. Valid options are :debug, :info, :warn, and
:error. The default level is :info.

Active Support API Reference 625

1 benchmark "Low-level files", level: :debug do

2 lowlevel_files_operation

3 end

Finally, you can pass true as the third argument to silence all log activity inside the block. This is great for
boiling down a noisy block to just a single statement:

1 benchmark "Process data files", level: :info, silence: true do

2 expensive_and_chatty_files_operation

3 end

BigDecimal

active_support/core_ext/big_decimal/conversions

to_formatted_s(*args)

Emits a string representation of the number without any scientific notation and without losing precision.

>> bd = BigDecimal.new("84394878749783498749834734987.839723497347")

=> #<BigDecimal:269fabc,'0.8439487874 9783498749 8347349878 3972349734 7E29',44(48)>

>> bd.to_s

=> "84394878749783498749834734987.839723497347"

to_s

The to_s method of BigDecimal is aliased to to_formatted_s.

active_support/json/encoding

A BigDecimal would be naturally represented as a JSON number. Most libraries, however, parse non-integer
JSON numbers directly as floats. Clients using those libraries would get in general a wrong number and no
way to recover other than manually inspecting the string with the JSON code itself.

That’s why a JSON string is returned. The JSON literal is not numeric, but if the other end knows by contract
that the data is supposed to be a BigDecimal, it still has the chance to post-process the string and get the real
value.

as_json

Returns self.to_s.

Active Support API Reference 626

ActiveSupport::Cache::Store

An abstract cache store class. There are multiple cache store implementations, each having its own additional
features. MemCacheStore is currently the most popular cache store for large production websites.

Some implementations may not support all methods beyond the basic cache methods of fetch, read,
write,exist?, and delete.

ActiveSupport::Cache::Store can store any serializable Ruby object.

>> cache = ActiveSupport::Cache::MemoryStore.new

=> <#ActiveSupport::Cache::MemoryStore entries=0, size=0, options={}>

>> cache.read("city")

=> nil

>> cache.write("city", "Duckburgh")

=> true

>> cache.read("city")

=> "Duckburgh"

Keys are always translated into strings and are case-sensitive.

>> cache.read("city") == cache.read(:city)

=> true

When an object is specified as a key, its cache_key method will be called if it is defined. Otherwise, the
to_param method will be called.

>> r = Report.first

=> #<Report id: 1, name: "Special", created_at: ...>

>> r.cache_key

=> "reports/1-20131001152655016228000"

>> r.to_param

=> "1"

Hashes and Arrays can also be used as keys. The elements will be delimited by slashes and hash elements will
be sorted by key so they are consistent.

>> cache.write ["USA","FL","Jacksonville"], "Obie"

=> true

>> cache.read "USA/FL/Jacksonville"

=> "Obie"

Nil values can be cached.

If your cache is on a shared infrastructure, you can define a namespace for your cache entries. If a namespace
is defined, it will be prefixed on to every key. To set a global namespace, set the :namespace to the constructor
of the cache store. The default value will include the application name and Rails environment.

Active Support API Reference 627

cache = ActiveSupport::Cache::MemoryStore.new(namespace: 'tr4w')

All caches support auto expiring content after a specified number of seconds. To set the cache entry time to
live, you can either specify :expires_in as an option to the constructor to have it affect all entries or to the
fetch or write methods for just one entry.

1 cache = ActiveSupport::Cache::MemoryStore.new(expire_in: 5.minutes)

2 cache.write(key, value, expires_in: 1.minute) # Set a lower value for one entry

It’s a recommended practice to set the :race_condition_ttl option in conjunction with :expires_in. When
a cache entry is used frequently and the system is under a heavy load, a dog pile effect can occur during
expiration. During this scenario, since the cache has expired, multiple processes will try to read the data
natively and all attempt to regenerate the same cache entry simultaneously. Using :race_condition_ttl,
one can set the number of seconds an expired entry can be reused while a new value is being regenerated.
The first process to encounter the stale cache will attempt to write a new value, while other processes will
continue to use slightly state data for the period defined in :race_condition_ttl. Like the :expires_in

option, :race_condition_ttl can be set globally or in the fetch or write methods for a single entry.

Caches can also store values in a compressed format to save space and reduce time spent sending data. Since
there is some overhead, values must be large enough to warrant compression. To turn on compression either
pass compress: true in the initializer or to fetch or write. To specify the threshold at which to compress
values, set :compress_threshold. The default threshold is 16K.

cleanup(options = nil)

Cleanup the cache by removing expired entries. Not all cache implementations may support this method.
Options are passed to the underlying cache implementation.

clear(options = nil)

Clear the entire cache. Not all cache implementations may support this method. You should be careful with
this method since it could affect other processes if you are using a shared cache. Options are passed to the
underlying cache implementation.

decrement(name, amount = 1, options = nil)

Decrement an integer value in the cache. Options are passed to the underlying cache implementation.

delete(name, options = nil)

Delete an entry in the cache. Returns true if there was an entry to delete. Options are passed to the underlying
cache implementation.

delete_matched(matcher, options = nil)

Delete all entries whose keys match a pattern. Options are passed to the underlying cache implementation.

Active Support API Reference 628

>> Rails.cache.write :color, :red

=> true

>> Rails.cache.read :color

=> :red

>> Rails.cache.delete_matched "c"

=> ["city", "color", "USA/FL/Jacksonville"]

>> Rails.cache.read :color

=> nil

exist?(name, options = nil)

Return true if the cache contains an entry with this name. Options are passed to the underlying cache
implementation.

fetch(name, options = nil)

Fetches data from the cache, using the given key. If there is data in the cache with the given key, then that
data is returned.

If there is no such data in the cache (a cache miss occurred), then nil will be returned. However, if a block
has been passed, then that block will be run in the event of a cache miss. The return value of the block will
be written to the cache under the given cache key, and that return value will be returned.

1 cache.write("today", "Monday")

2 cache.fetch("today") # => "Monday"

3

4 cache.fetch("city") # => nil

5 cache.fetch("city") do

6 "Duckburgh"

7 end

8 cache.fetch("city") # => "Duckburgh"

You may also specify additional options via the options argument. Setting :force => true will force a cache
miss:

1 cache.write("today", "Monday")

2 cache.fetch("today", force: true) # => nil

Setting :compress will store a large cache entry set by the call in a compressed format.

Setting :expires_in will set an expiration time on the cache entry if it is set by call.

Setting :race_condition_ttlwill invoke logic on entries set with an :expires_in option. If an entry is found
in the cache that is expired and it has been expired for less than the number of seconds specified by this option
and a block was passed to the method call, then the expiration future time of the entry in the cache will be
updated to that many seconds in the and the block will be evaluated and written to the cache.

Active Support API Reference 629

This is very useful in situations where a cache entry is used very frequently under heavy load. The first process
to find an expired cache entry will then become responsible for regenerating that entry while other processes
continue to use the slightly out of date entry. This can prevent race conditions where too many processes are
trying to regenerate the entry all at once. If the process regenerating the entry errors out, the entry will be
regenerated after the specified number of seconds.

1 # Set all values to expire after one minute.

2 cache = ActiveSupport::Cache::MemoryStore.new(expires_in: 1.minute)

3

4 cache.write("foo", "original value")

5 val_1 = nil

6 val_2 = nil

7 sleep 60

8

9 Thread.new do

10 val_1 = cache.fetch("foo", race_condition_ttl: 10) do

11 sleep 1

12 "new value 1"

13 end

14 end

15

16 Thread.new do

17 val_2 = cache.fetch("foo", race_condition_ttl: 10) do

18 "new value 2"

19 end

20 end

21

22 # val_1 => "new value 1"

23 # val_2 => "original value"

24 # sleep 10 # First thread extend the life of cache by another 10 seconds

25 # cache.fetch("foo") => "new value 1"

Other options will be handled by the specific cache store implementation. Internally, fetch calls read_entry,
and calls write_entry on a cache miss. Options will be passed to the read and write calls.

For example, MemCacheStore’s write method supports the :raw option, which tells the memcached server to
store all values as strings. We can use this option with fetch too:

1 cache = ActiveSupport::Cache::MemCacheStore.new

2 cache.fetch("foo", force: true, raw: true) do

3 :bar

4 end

5 cache.fetch("foo") # => "bar"

increment(name, amount = 1, options = nil)

Increment an integer value in the cache. Options are passed to the underlying cache implementation.

Active Support API Reference 630

mute

Silence the logger within a block.

options

Get the default options set when the cache was created.

read(name, options = nil)

Fetches data from the cache, using the given key. If there is data in the cache with the given key, then that
data is returned. Otherwise, nil is returned. Options are passed to the underlying cache implementation.

read_multi(*names)

Read multiple values at once from the cache. Options can be passed in the last argument. Some cache
implementation may optimize this method.

Returns a hash mapping the names provided to the values found.

>> cache.write :color, :red

=> true

>> cache.write :smell, :roses

=> true

>> cache.read_multi :color, :smell

=> {:color=>:red, :smell=>:roses}

silence!

Silences the logger.

write(name, value, options = nil)

Writes the given value to the cache, with the given key.

You may also specify additional options via the options argument. The specific cache store implementation
will decide what to do with options.

ActiveSupport::CachingKeyGenerator

CachingKeyGenerator is a wrapper around KeyGenerator which avoids re-executing the key generation
process when it’s called using the same salt and key_size.

active_support/key_generator

initialize(key_generator)

Creates a new instance of CachingKeyGenerator.

Active Support API Reference 631

generate_key(salt, key_size=64)

Returns a derived key suitable for use. The default key_size is chosen to be compatible with the default settings
of ActiveSupport::MessageVerifier, such as OpenSSL::Digest::SHA1#block_length. Subsequent calls to
generate_key will return a cached key if the supplied salt and key_size are the same.

ActiveSupport::Callbacks

Callbacks are hooks into the lifecycle of an object that allow you to trigger logic before or after an alteration
of the object state. Mixing in this module allows you to define callbacks in your class.

For instance, assume you have the following code in your application:

1 class Storage

2 include ActiveSupport::Callbacks

3

4 define_callbacks :save

5 end

6

7 class ConfigStorage < Storage

8 set_callback :save, :before, :saving_message

9

10 def saving_message

11 puts "saving..."

12 end

13

14 set_callback :save, :after do |object|

15 puts "saved"

16 end

17

18 def save

19 run_callbacks :save do

20 puts "- running save callbacks"

21 end

22 end

23 end

Running the following code using

1 config = ConfigStorage.new

2 config.save

would output

Active Support API Reference 632

saving...

- running save callbacks

saved

Note that callback defined on parent classes are inherited.

active_support/callbacks

The following methods are used to configure custom callbacks on your classes and are what Rails itself uses
to create things such as before_action in Action Pack and before_save in Active Record. Note that this is
rather advanced functionality which you typically won’t need in your day-to-day Rails programming.

define_callbacks(*callbacks)

Define callbacks types for your custom class.

1 module MyOwnORM

2 class Base

3 define_callbacks :validate

4 end

5 end

The following options determine the operation of the callback:

:terminator

Indicates when a before callback is considered to be halted.

1 define_callbacks :validate, terminator: "result == false"

In the example above, if any before validate callbacks return false, other callbacks are not executed.
Defaults to false.

:skip_after_callbacks_if_terminated

Determines if after callbacks should be terminated by the :terminator option. By default, after
callbacks are executed no matter if callback chain was terminated or not.

:scope

Specify which methods should be executed when a class is given as callback.

Active Support API Reference 633

1 class Audit

2 def before(caller)

3 puts 'before is called'

4 end

5

6 def before_save(caller)

7 puts 'before_save is called'

8 end

9 end

10

11 class Account

12 include ActiveSupport::Callbacks

13

14 define_callbacks :save

15 set_callback :save, :before, Audit.new

16

17 def save

18 run_callbacks :save do

19 puts 'saving...'

20 end

21 end

22 end

Calling save in the above example will execute Audit#before. If the callback is defined with a [:kind,
:name] scope

1 define_callbacks :save, scope: [:kind, :name]

themethod named "#{kind}_#{name}"would be invoked in the given class. In this case, Audit#before_-
save would be invoked.

The :scope option defaults to :kind.

reset_callbacks(symbol)

Remove all set callbacks for the given event.

set_callback(name, *filter_list, &block)

Set callbacks for a given event.

1 set_callback :save, :before, :before_method

2 set_callback :save, :after, :after_method, if: :condition

3 set_callback :save, :around,

4 ->(r, &block) { stuff; result = block.call; stuff }

The second argument indicates the whether callback :before, :after, or :around is to be run. By default, if
nothing is set, :before is assumed. The first example can also be expressed as:

Active Support API Reference 634

set_callback :save, :before_method

The callback that the callback invokes can be specified as a symbol, that references the name of an instance
method, or as a proc, lambda, or block. If a proc, lambda, or block is supplied, its body is evaluated in the
context of the current object. A current object can optionally be set.

skip_callback(name, *filter_list, &block)

Skip a previously defined callback for a given type. The options :if or :unless may be passed in order to
control when the callback is skipped.

Class

Rails extends Ruby’s Class object with a number class methods that then become available on all other classes
in the runtime, regardless of type.

active_support/core_ext/class/attribute

The following method allows for creation of attributes on Ruby classes.

class_attribute(*attrs)

Declare one or more class-level attributes whose value is inheritable and overwritable by subclasses and
instances, like so:

1 class Base

2 class_attribute :setting

3 end

4

5 class Subclass < Base

6 end

7

8 >> Base.setting = "foo"

9 => "foo"

10

11 >> Subclass.setting

12 => "foo"

13

14 >> Subclass.setting = "bar"

15 => "bar"

16

17 >> Subclass.setting

18 => "bar"

19

20 >> Base.setting

21 => "foo"

Active Support API Reference 635

This behavior matches normal Ruby method inheritance: think of writing an attribute on a subclass as
overriding the parent’s reader method. Instances may overwrite the class value in the same way. (Note that
the following code samples create anonymous classes to illustrate usage in a more concise fashion.)

1 klass = Class.new { class_attribute :setting }

2 object = klass.new

3

4 >> klass.setting = "foo

5 => "foo"

6

7 >> object.setting = "bar"

8 => "bar"

9

10 >> klass.setting

11 => "foo"

To opt out of the instance writer method, pass instance_writer: false.

1 klass = Class.new { class_attribute :setting, instance_writer: false }

2

3 >> klass.new.setting

4 NoMethodError: undefined method `setting='

The class_attribute method also works with singleton classes, as can be seen in the following example.

1 klass = Class.new { class_attribute :setting }

2

3 >> klass.singleton_class.setting = "foo"

4 => "foo"

Alternatively, setting instance_reader: false causes class_attribute to not define a reader method.

For convenience, a predicate method is defined as well, which allows you to see if an attribute has been set
on a particular class instance.

1 klass = Class.new { class_attribute :setting }

2

3 >> klass.setting?

4 => false

5

6 >> klass.setting = "foo"

7 => "foo"

8

9 >> klass.setting?

10 => true

To opt out of defining a predicate method, set instance_predicate to false.

Active Support API Reference 636

1 klass = Class.new { class_attribute :setting, instance_predicate: false }

2

3 >> klass.setting?

4 NoMethodError: undefined method `setting?'

active_support/core_ext/class/attribute_accessors

Extends the class object with class and instance accessors for class attributes, just like the native attr*

accessors for instance attributes.

cattr_accessor(*syms)

Creates both reader and writer methods for supplied method names syms.

1 class Person

2 cattr_accessor :hair_colors

3 end

4

5 >> Person.hair_colors = [:brown, :black, :blonde, :red]

6

7 >> Person.new.hair_colors

8 => [:brown, :black, :blonde, :red]

cattr_reader(*syms)

Creates class and instance reader methods for supplied method names syms.

cattr_writer(*syms)

Creates class and instance writer methods for supplied method names syms.

active_support/core_ext/class/attribute_accessors

Extends the class object with class and instance accessors for class attributes, just like the native attr*

accessors for instance attributes.

active_support/core_ext/class/delegating_attributes

Primarily for internal use by Rails.

superclass_delegating_accessors(name, options = {})

Generates class methods name, name=, and name?. These methods dispatch to the private _name, and _name=

methods, making them overridable by subclasses.

If an instances should be able to access the attribute then pass instance_reader: true in the options to
generate a name method accessible to instances.

Active Support API Reference 637

active_support/core_ext/class/subclasses

Provides methods that introspect the inheritance hierarchy of a class. Used extensively in Active Record.

subclasses

Returns an array with the names of the subclasses of self as strings.

1 Integer.subclasses # => ["Bignum", "Fixnum"]

descendents

Returns an array of all class objects found that are subclasses of self.

ActiveSupport::Concern

active_support/concern

The Concernmodule is only 26 lines of Ruby code. Using it, you can make your code more modular and have
less dependency problems than ever before.

You use Concern to define common behavior that you want to mix into other application classes, or into Rails
itself in the case of plugins.

A Concern module has two elements: the included block and the ClassMethods module.

1 require 'active_support/concern'

2

3 module Foo

4 extend ActiveSupport::Concern

5

6 included do

7 self.send(:do_something_in_mixin_class)

8 end

9

10 module ClassMethods

11 def bar

12 ...

13 end

14 end

15

16 def baz

17 ...

18 end

19 end

To use your custom Concern module, just mix it into a class.

Active Support API Reference 638

1 class Widget

2 include Foo

3 end

The included block will be triggered at inclusion time. Methods in ClassMethods will get added to Widget as
class methods. All other methods will get added to Widget as instance methods.

See ActiveSupport::Configurable for a good example of how Concern is used internally by Rails.

ActiveSupport::Concurrency

ActiveSupport::Concurrency::Latch

The Latch class is used internally by Rails to test streaming controllers. It is being included here for
completeness. The initializer of Latch accepts a single argument, representing the number of threads in the
test.

await

Creates lock object for blocks with mutual exclusion and waits until the latch count is greater than zero.

release

Creates lock object for blocks with mutual exclusion. It decreases the latch count if its greater than zero, and
wakes up all threads waiting for this lock if the count reaches zero.

ActiveSupport::Configurable

This Configurablemodule is used internally by Rails to add configuration settings to AbstractController::Base.
You can use it yourself to add configuration to your classes.

active_support/configurable

The implementation of Configurable is done as a Concern that is mixed into other classes.

config

Return the configuration of the object instance.

config_accessor(*names)

Creates configuration properties accessible via class and instance contexts. The names parameter expects one
or more symbols corresponding to property names.

Active Support API Reference 639

1 module ActionController

2 class Base < Metal

3 config_accessor :assets_dir, :javascripts_dir, :stylesheets_dir

4 end

5 end

configure

Yields config.

Date

Active Support provides a wide array of extensions to Ruby’s built-in date and time classes to simplify
conversion and calculation tasks in simple-to-understand language.

active_support/core_ext/date/acts_like

Duck-types as a Date-like class. See Object#acts_like? for more explanation.

1 class Date

2 def acts_like_date?

3 true

4 end

5 end

active_support/core_ext/date/calculations

The following methods enable the use of calculations with Date objects.

+(other) / -(other)

Rails extends the existing + and - operator so that a since calculation is performed when the other argument
is an instance of ActiveSupport::Duration (the type of object returned by methods such as 10.minutes and
9.months).

>> Date.today + 1.day == Date.today.tomorrow

=> true

advance(options)

Provides precise Date calculations for years, months, and days. The options parameter takes a hash with any
of these keys: :years, :months, :weeks, and :days.

Active Support API Reference 640

>> Date.new(2006, 2, 28) == Date.new(2005, 2, 28).advance(years: 1)

=> true

ago(seconds)

Converts Date to a Time (or DateTime if necessary) with the time portion set to the beginning of the day (0:00)
and then subtracts the specified number of seconds.

>> Time.utc(2005, 2, 20, 23, 59, 15) == Date.new(2005, 2, 21).ago(45)

=> true

at_beginning_of_day / at_midnight / beginning_of_day / midnight

Converts Date to a Time (or DateTime if necessary) with the time portion set to the beginning of the day (0:00).

>> Time.utc(2005,2,21,0,0,0) == Date.new(2005,2,21).beginning_of_day

=> true

at_beginning_of_month / beginning_of_month

Returns a new Date object representing the start of the month (1st of the month). Objects will have their time
set to 0:00.

>> Date.new(2005, 2, 1) == Date.new(2005,2,21).beginning_of_month

=> true

at_beginning_of_quarter / beginning_of_quarter

Returns a new Date object representing the start of the calendar-based quarter (1st of January, April, July, and
October).

>> Date.new(2005, 4, 1) == Date.new(2005, 6, 30).beginning_of_quarter

=> true

at_beginning_of_week

Alias for beginning_of_week.

at_beginning_of_year / beginning_of_year

Returns a new Date object representing the start of the calendar year (1st of January).

Active Support API Reference 641

>> Date.new(2005, 1, 1) == Date.new(2005, 2, 22).beginning_of_year

=> true

at_end_of_day / end_of_day

Converts Date to a Time (or DateTime if necessary) with the time portion set to the end of the day (23:59:59).

at_end_of_month / end_of_month

Returns a new Date object representing the last day of the calendar month.

>> Date.new(2005, 3, 31) == Date.new(2005,3,20).end_of_month

=> true

at_end_of_quarter / end_of_quarter

Returns a new Date object representing the end of the calendar-based quarter (31st March, 30th June, 30th
September).

at_end_of_week

Alias for end_of_week.

at_end_of_year / end_of_year

Returns a new Date object representing the end of the year.

>> Date.new(2013, 12, 31) == Date.new(2013, 10, 1).end_of_year

=> true

beginning_of_week

Returns a new Date object representing the beginning of the week. By default, based on Date.beginning_-

of_week.

>> Date.new(2005, 1, 31) == Date.new(2005, 2, 4).beginning_of_week

=> true

Date.beginning_of_week

Returns the week start for the current request/thread.

Active Support API Reference 642

>> Date.beginning_of_week

=> :monday

Can be set Date.beginning_of_week or configuration option beginning_of_week in your Rails application
configuration.

Date.beginning_of_week=(week_start)

Sets Date.beginning_of_week to a week start for current request/thread.

The method accepts the following symbols:

• :monday

• :tuesday

• :wednesday

• :thursday

• :friday

• :saturday

• :sunday

change(options)

Returns a new Datewhere one or more of the elements have been changed according to the options parameter.

The valid options are :year, :month, and :day.

>> Date.new(2007, 5, 12).change(day: 1) == Date.new(2007, 5, 1)

=> true

>> Date.new(2007, 5, 12).change(year: 2005, month: 1) == Date.new(2005, 1, 12)

=> true

Date.current

The preferredway to get the current datewhen your Rails application is timezone-aware. Returns Time.zone.today
when config.time_zone is set, otherwise just returns Date.today.

days_ago(days)

Returns a new Date object minus the specified number of days.

>> Date.new(2013, 10, 1).days_ago(5)

=> Thu, 26 Sep 2013

days_since(days)

Returns a new Date object representing the time a number of specified days into the future.

Active Support API Reference 643

>> Date.new(2013, 10, 5) == Date.new(2013, 10, 1).days_since(4)

=> true

days_to_week_start(start_day = Date.beginning_of_week)

Returns the number of days to the start of the week.

>> Date.new(2013, 10, 10).days_to_week_start

=> 3

end_of_week(start_day = Date.beginning_of_week)

Returns a new Date object representing the end of the week.

>> Date.new(2013, 10, 13) == Date.new(2013, 10, 10).end_of_week

=> true

Date.find_beginning_of_week!(week_start)

Returns the week start day symbol or raises an ArgumentError if an invalid symbol is set.

>> Date.find_beginning_of_week!(:saturday)

=> :saturday

>> Date.find_beginning_of_week!(:foobar)

ArgumentError: Invalid beginning of week: foobar

future?

Returns true if the Date instance is in the future.

>> (Date.current + 1.day).future?

=> true

last_month / prev_month

Convenience method for months_ago(1).

last_quarter / prev_quarter

Convenience method for months_ago(3).

last_week(start_day = Date.beginning_of_week) / prev_week

Returns a new Date object representing the given day in the previous week.

Active Support API Reference 644

last_year / prev_year

Convenience method for years_ago(1).

middle_of_day / noon

Returns a new Date object representing the middle of the day.

monday

Convenience method for beginning_of_week(:monday).

months_ago(months)

Returns a new Date object representing the time a number of specified months ago.

>> Date.new(2005, 1, 1) == Date.new(2005, 3, 1).months_ago(2)

=> true

months_since(months)

Returns a new Date object representing the time a number of specified months into the past or the future.
Supply a negative number of months to go back to the past.

>> Date.today.months_ago(1) == Date.today.months_since(-1)

=> true

next_month

Convenience method for months_since(1).

next_quarter

Convenience method for months_since(3).

next_week(given_day_in_next_week = Date.beginning_of_week))

Returns a new Date object representing the start of the given day in the following calendar week.

>> Date.new(2005, 3, 4) == Date.new(2005, 2, 22).next_week(:friday)

=> true

next_year

Convenience method for years_since(1).

past?

Returns true if Date is in the past.

Active Support API Reference 645

>> (Date.current - 1.day).past?

=> true

since(seconds) / in(seconds)

Converts Date to a Time (or DateTime if necessary) with the time portion set to the beginning of the day (0:00)
and then adds the specified number of seconds.

>> Time.local(2005, 2, 21, 0, 0, 45) == Date.new(2005, 2, 21).since(45)

=> true

sunday

Convenience method for end_of_week(:monday).

today?

Returns true if the Date instance is today.

>> Date.current.today?

=> true

Date.tomorrow

Convenience method that returns a new Date (or DateTime) representing the time one day in the future.

>> Date.tomorrow

=> Thu, 10 Oct 2013

tomorrow

Returns a new Date object advanced by one day.

>> Date.new(2007, 3, 1) == Date.new(2007, 2, 28).tomorrow

=> true

weeks_ago(weeks)

Returns a new Date object representing the time a number of specified weeks ago.

>> Date.new(2013, 10, 1) == Date.new(2013, 10, 8).weeks_ago(1)

=> true

weeks_since(weeks)

Returns a new Date object representing the time a number of specified weeks into the future.

Active Support API Reference 646

>> Date.new(2013, 10, 8) == Date.new(2013, 10, 1).weeks_since(1)

=> true

years_ago(years)

Returns a new Date object representing the time a number of specified years ago.

>> Date.new(2000, 6, 5) == Date.new(2007, 6, 5).years_ago(7)

=> true

years_since(years)

Returns a new Date object representing the time a number of specified years into the future.

>> Date.new(2007, 6, 5) == Date.new(2006, 6, 5).years_since(1)

=> true

Date.yesterday

Convenience method that returns a new Date object representing the time one day in the past.

>> Date.yesterday

=> Tue, 08 Oct 2013

yesterday

Returns a new Date object subtracted by one day.

>> Date.new(2007, 2, 21) == Date.new(2007, 2, 22).yesterday

=> true

active_support/core_ext/date/conversions

The following methods facilitate the conversion of date data into various formats.

readable_inspect

Overrides the default inspect method with a human readable one.

>> Date.current

=> Wed, 02 Jun 2010

to_formatted_s(format = :default)

Converts a Date object into its string representation, according to the predefined formats in the DATE_FORMATS
constant. (Aliased as to_s. Original to_s is aliased as to_default_s.)

The following hash of formats dictates the behavior of the to_s method.

Active Support API Reference 647

1 DATE_FORMATS = {

2 :short => '%e %b',

3 :long => '%B %e, %Y',

4 :db => '%Y-%m-%d',

5 :number => '%Y%m%d',

6 :long_ordinal => lambda { |date|

7 day_format = ActiveSupport::Inflector.ordinalize(date.day)

8 date.strftime("%B #{day_format}, %Y") # => "April 25th, 2007"

9 },

10 :rfc822 => '%e %b %Y'

11 }

to_time(timezone = :local)

Converts a Date object into a Ruby Time object; time is set to beginning of day. The time zone can be :local
or :utc.

>> Time.local(2005, 2, 21) == Date.new(2005, 2, 21).to_time

=> true

Note that Active Support explicitly removes the Date#to_time method in Ruby 2.0, as it converts localtime
only.

xmlschema

Returns a string that represents the time as defined by XML Schema within the current time zone (also known
as iso8601):

CCYY-MM-DDThh:mm:ssTZD

Note that Active Support explicitly removes the Date#xmlschema method in Ruby 2.0, as it converts a date to
a string without the time component.

active_support/core_ext/date/zones

in_time_zone

Converts Date object into a Ruby Time object in the current time zone. If Time.zone or Time.zone_default
is not set, converts Date to a Time via #to_time.

Active Support API Reference 648

>> Time.zone = "Eastern Time (US & Canada)"

=> "Eastern Time (US & Canada)"

>> Thu, 10 Oct 2013 00:00:00 EDT -04:00

active_support/json/encoding

as_json

Returns self as a JSON string. The ActiveSupport.use_standard_json_time_format configuration setting
determines whether the date string is delimited with dashes or not.

>> Date.today.as_json

=> "2010-06-03"

DateTime

The following methods extend Ruby’s built-in DateTime class.

active_support/core_ext/date_time/acts_like

Duck-types as a DateTime-like class. See Object#acts_like? for more explanation.

1 class DateTime

2 def acts_like_date?

3 true

4 end

5

6 def acts_like_time?

7 true

8 endd

9 end

active_support/core_ext/date_time/calculations

The following methods permit easier use of DateTime objects in date and time calculations.

<=> compare_with_coercion

Layers additional behavior on DateTime so that Time and ActiveSupport::TimeWithZone instances can be
compared with DateTime instances.

advance(options)

Uses Date to provide precise Time calculations for years, months, and days. The options parameter takes a
hash with any of the keys :months, :days, and :years.

Active Support API Reference 649

ago(seconds)

Returns a new DateTime representing the time a number of seconds ago. The opposite of since.

at_beginning_of_day / at_midnight / beginning_of_day / midnight

Convenience method that represents the beginning of a day (00:00:00). Implemented simply as change(hour:
0).

at_beginning_of_hour / beginning_of_hour

Returns a new DateTime object representing the start of the hour (hh:00:00). Implemented simply as
change(min: 0).

at_beginning_of_minute / beginning_of_minute

Returns a new DateTime object representing the start of the minute (hh:mm:00). Implemented simply as
change(sec: 0).

at_end_of_day / end_of_day

Convenience method that represents the end of a day (23:59:59). Implemented simply as change(hour: 23,

min: 59, sec: 59).

at_end_of_hour / end_of_hour

Returns a new DateTime object representing the end of the hour (hh:59:59). Implemented simply as change(min:
59, sec: 59).

at_end_of_minute / end_of_minute

Returns a new DateTime object representing the end of the minute (hh:mm:59). Implemented simply as
change(sec: 59).

change(options)

Returns a new DateTime where one or more of the elements have been changed according to the options

parameter. The valid date options are :year, :month, :day. The valid time options are :hour, :min, :sec,
:offset, and :start.

DateTime.current

Timezone-aware implementation of Time.now returns a DateTime instance.

Active Support API Reference 650

future?

Tells whether the DateTime is in the future.

middle_of_day / noon

Returns a new DateTime object representing the middle of the day (12:00:00). Implemented simply as
change(hour: 12).

past?

Tells whether the DateTime is in the past.

seconds_since_midnight

Returns how many seconds have passed since midnight.

seconds_until_end_of_day

Returns how many seconds left in the day until 23:59:59.

since(seconds) \ in(seconds)

Returns a new DateTime representing the time a number of seconds since the instance time (Aliased as in).
The opposite of ago.

utc

Returns a new DateTime with the offset set to 0 to represent UTC time.

utc?

Convenience method returns true if the offset is set to 0.

utc_offset

Returns the offset value in seconds.

active_support/core_ext/date_time/conversions

The following methods permit conversion of DateTime objects (and some of their attributes) into other types
of data.

formatted_offset(colon = true, alternate_utc_string = nil)

Returns the utc_offset as an HH:MM formatted string.

Active Support API Reference 651

datetime = DateTime.civil(2000, 1, 1, 0, 0, 0, Rational(-6, 24))

>> datetime.formatted_offset

=> "-06:00"

The options provide for tweaking the output of the method by doing things like ommitting the colon character.

>> datetime.formatted_offset(false)

=> "-0600"

nsec

Returns the fraction of a second as nanoseconds.

readable_inspect

Overrides the default inspect method with a human-readable one that looks like this:

1 Mon, 21 Feb 2005 14:30:00 +0000

to_date

Converts self to a Ruby Date object, discarding time data.

to_datetime

Returns self to be able to keep Time, Date, and DateTime classes interchangeable on conversions.

to_f

Converts self to a floating-point number of seconds since the Unix epoch. Note the limitations of this methods
with dates prior to 1970.

>> Date.new(2000, 4,4).to_datetime.to_f

=> 954806400.0

>> Date.new(1800, 4,4).to_datetime.to_f

=> -5356627200.0

to_formatted_s(format=:default)

See the options on to_formatted_s of the Time class. The primary difference is the appending of the time
information.

Active Support API Reference 652

>> datetime.to_formatted_s(:db)

=> "2007-12-04 00:00:00"

to_i

Converts self to an integer number of seconds since the Unix epoch. Note the limitations of this methods with
dates prior to 1970.

>> Date.new(2000, 4,4).to_datetime.to_i

=> 954806400

>> Date.new(1800, 4,4).to_datetime.to_i

=> -5356627200

usec

Returns the fraction of a second as microseconds.

active_support/core_ext/date_time/zones

The following method allows conversion of a DateTime into a different time zone.

in_time_zone(zone = ::Time.zone)

Returns the simultaneous time in Time.zone

>> Time.zone = 'Hawaii'

>> DateTime.new(2000).in_time_zone

=> Fri, 31 Dec 1999 14:00:00 HST -10:00

This method is similar to Time#localtime, except that it uses the Time.zone argument as the local zone instead
of the operating system’s time zone. You can also pass it a string that identifies a TimeZone as an argument,
and the conversion will be based on that zone instead. Allowable string parameters are operating-system
dependent.

>> DateTime.new(2000).in_time_zone('Alaska')

=> Fri, 31 Dec 1999 15:00:00 AKST -09:00

active_support/json/encoding

as_json

Returns self as a JSON string. The ActiveSupport.use_standard_json_time_format configuration setting
determines whether the output is formatted using :xmlschema or the following pattern:

Active Support API Reference 653

strftime('%Y/%m/%d %H:%M:%S %z')

ActiveSupport::Dependencies

This module contains the logic for Rails’ automatic class loading mechanism, which is what makes it possible
to reference any constant in the Rails varied load paths without ever needing to issue a require directive.

This module extends itself, a cool hack that you can use with modules that you want to use elsewhere in your
codebase in a functional manner:

1 module Dependencies

2 extend self

3 ...

As a result, you can call methods directly on the module constant, à la Java static class methods, like this:

>> ActiveSupport::Dependencies.search_for_file('person.rb')

=> "/Users/obie/work/time_and_expenses/app/models/person.rb"

You shouldn’t need to use this module in day-to-day Rails coding—it’s mostly for internal use by Rails and
plugins. On occasion, it might also be useful to understand the workings of this module when debugging
tricky class-loading problems.

active_support/dependencies

autoload_once_paths

The set of directories from which automatically loaded constants are loaded only once. Usually consists of
your plugin lib directories. All directories in this set must also be present in autoload_paths.

autoload_paths

The set of directories from which Rails may automatically load files. Files under these directories will be
reloaded on each request in development mode, unless the directory also appears in load_once_paths.

Active Support API Reference 654

>> ActiveSupport::Dependencies.load_paths

=> ["/Users/kfaustino/code/active/example_app/app/assets",

"/Users/kfaustino/code/active/example_app/app/controllers",

"/Users/kfaustino/code/active/example_app/app/helpers",

"/Users/kfaustino/code/active/example_app/app/mailers",

"/Users/kfaustino/code/active/example_app/app/models",

"/Users/kfaustino/code/active/example_app/app/controllers/concerns",

"/Users/kfaustino/code/active/example_app/app/models/concerns"]

constant_watch_stack

An internal stack used to record which constants are loaded by any block.

explicitly_unloadable_constants

An array of constant names that need to be unloaded on every request. Used to allow arbitrary constants to
be marked for unloading.

history

The set of all files ever loaded.

loaded

The Set of all files currently loaded.

log_activity

Set this option to true to enable logging of const_missing and file loads. (Defaults to false.)

mechanism

A setting that determines whether files are loaded (default) or required. This attribute determines whether
Rails reloads classes per request, as in development mode.

>> ActiveSupport::Dependencies.mechanism

=> :load

warnings_on_first_load

A setting that determines whether Ruby warnings should be activated on the first load of dependent files.
Defaults to true.

associate_with(file_name)

Invokes depend_onwith swallow_load_errors set to true. Wrapped by the require_associationmethod of
Object.

Active Support API Reference 655

autoload_module!(into, const_name, qualified_name, path_suffix)

Attempts to autoload the provided module name by searching for a directory matching the expected path

suffix. If found, the module is created and assigned to into’s constants with the name +const_name+.
Provided that the directory was loaded from a reloadable base path, it is added to the set of constants that are
to be unloaded.

autoloadable_module?(path_suffix)

Checks whether the provided path_suffix corresponds to an autoloadable module. Instead of returning a
Boolean, the autoload base for this module is returned.

autoloaded?(constant)

Determines if the specified constant has been automatically loaded.

clear

Clear all loaded items.

constantize(name)

Gets the reference for a specified class name. Raises an exception if the class does not exist.

depend_on(file_name, message = "No such file to load -- %s.rb")

Searches for the file_name specified and uses require_or_load to establish a new dependency. If the file fails
to load, a LoadError is raised. Setting message, one can replace the error message set by LoadError.

hook!

Includes Rails specific modules into some Ruby classes.

• Object includes Loadable
• Module includes ModuleConstMissing
• Exception includes Blamable

load?

Returns true if mechanism is set to :load.

load_file(path, const_paths = loadable_constants_for_path(path))

Loads the file at the specified path. The const_paths is a set of fully qualified constant names to load. When
the file is loading, Dependencies will watch for the addition of these constants. Each one that is defined will
be marked as autoloaded, and will be removed when Dependencies.clear is next called.

If the second parameter is left off, Dependencieswill construct a set of names that the file at pathmay define.
See loadable_constants_for_path for more details.

Active Support API Reference 656

load_once_path?(path)

Returns true if the specified path appears in the load_once_path list.

load_missing_constant(from_mod, const_name)

Loads the constant named const_name, which ismissing from from_mod. If it is not possible to load the constant
from from_mod, try its parent module by calling const_missing on it.

loadable_constants_for_path(path, bases = autoload_paths)

Returns an array of constants, based on a specified filesystem path to a Ruby file, which would cause
Dependencies to attempt to load the file.

mark_for_unload(constant)

Marks the specified constant for unloading. The constant will be unloaded on each request, not just the next
one.

new_constants_in(*descs, &block)

Runs the provided block and detects the new constants that were loaded during its execution. Constants may
only be regarded as new once. If the block calls new_constants_in again, the constants defined within the
inner call will not be reported in this one.

If the provided block does not run to completion, and instead raises an exception, any new constants are
regarded as being only partially defined and will be removed immediately.

qualified_const_defined?(path)

Returns true if the provided constant path is defined?

qualified_name_for(parent_module, constant_name)

Returns a qualified path for the specified parent_module and constant_name.

reference(klass)

Store a reference to a class.

remove_constant(const)

Removes an explicit constant.

remove_unloadable_constants!

Removes the constants that have been autoloaded, and those that have been marked for unloading.

Active Support API Reference 657

require_or_load(file_name, const_path = nil)

Implements the main classloading mechanism. Wrapped by the require_or_load method of Object.

safe_constantize(name)

Gets the reference for class named name if one exists.

search_for_file(path_suffix)

Searches for a file in the autoload paths matching the provided path_suffix.

to_constant_name(desc)

Convert the provided constant description to a qualified constant name.

will_unload?(constant)

Returns true if the specified constant is queued for unloading on the next request.

unhook!

Exclude module ModuleConstMissing from Module and Loadable from Object.

active_support/dependencies/autoload

This module allows you to define autoloads based on Rails conventions.

autoload(const_name, path = @_at_path)

Autoload a constant.

1 autoload :Model

autoload_under(path)

Set the name of a relative directory for all nested autoload declarations. For example, if the current file was
action_controller.rb, and we call autoload_under("metal"), the path used to autoload from is action_-
controller/metal.

Active Support API Reference 658

1 module ActionController

2 extend ActiveSupport::Autoload

3

4 autoload_under "metal" do

5 autoload :Compatibility

6 ...

7 end

8 ...

9 end

autoload_at(path)

Sets an explicit path to autoload at.

1 module ActionView

2 extend ActiveSupport::Autoload

3

4 autoload_at "action_view/template/resolver" do

5 autoload :Resolver

6 ...

7 end

8 ...

9 end

eager_autoload

Eagerly autoload any nested autoload declarations.

1 module ActionMailer

2 extend ::ActiveSupport::Autoload

3

4 eager_autoload do

5 autoload :Collector

6 end

7 ...

8 end

eager_load!

Require each file defined in autoloads.

autoloads

Collection of files to be autoloaded.

Active Support API Reference 659

ActiveSupport::Deprecation

The deprecate method provides Rails core and application developers with a formal mechanism to be able
to explicitly state what methods are deprecated. (Deprecation means to mark for future deletion.) Rails will
helpfully log a warning message when deprecated methods are called.

active_support/deprecation

Deprecation.behavior

Returns the current behavior or if one isn’t set, defaults to :stderr.

Deprecation.behavior=(behavior)

Sets the behavior to the specified value. Can be a single value, array, or an object that responds to call.

The following are available behaviors:

:stderr

Log all deprecation warnings to $stderr

:log Log all deprecation warnings to Rails.logger.

:notify

Use ActiveSupport::Notifications to notify deprecation.rails.

:silence

Do nothing.

Deprecation.deprecation_warning(deprecated_method_name, message = nil, caller_backtrace =

nil)

Outputs a deprecating warning for a specific method.

>> ActiveSupport::Deprecation.

deprecation_warning(:page_cache_extension, :default_static_extension)

=> "page_cache_extension is deprecated and will be removed from Rails 4.1

(use default_static_extension instead)"

Deprecation.deprecate_methods(target_module, *method_names)

Pass the module and name(s) of the methods as symbols to deprecate.

Deprecation.silence(&block)

Silence deprecation warnings within the block.

Deprecation.warn(message = nil, callstack = nil)

Outputs a deprecation warning to the output configured by ActiveSupport::Deprecation.behavior.

Active Support API Reference 660

1 ActiveSupport::Deprecation.warn('something broke!')

2 # => "DEPRECATION WARNING: something broke! (called from your_code.rb:1)"

ActiveSupport::DescendantsTracker

A module used internally by Rails to track descendants, which is faster than iterating through ObjectSpace.

active_support/descendants_tracker

DescendantsTracker.clear

Clears all descendants.

DescendantsTracker.descendants(klass)

Returns a set of all the descendants of a class.

descendants

Aconveniencemethod for returning the descendants of a class. Implemented simply as DescendantsTracker.descendants(self).

DescendantsTracker.direct_descendants(klass)

Returns a set of the direct descendants of a class.

direct_descendants

Aconveniencemethod for returning the direct descendants of a class. Implemented simply as DescendantsTracker.direct_-
descendants(self).

inherited(base)

Sets a class as a direct descendant of another base class. Implemented simply as DescendantsTracker.store_-
inherited(base, self).

DescendantsTracker.store_inherited(klass, descendant)

Adds a direct descendant to a class. Warning this method is not thread safe, but is only called during the eager
loading phase.

ActiveSupport::Duration

Provides accurate date and timemeasurements using the advancemethod of Date and Time. It mainly supports
the methods on Numeric, such as in this example:

Active Support API Reference 661

1.month.ago # equivalent to Time.now.advance(months: -1)

active_support/duration

+ (other)

Adds another Duration or a Numeric to this Duration. Numeric values are treated as seconds.

>> 2.hours + 2

=> 7202 seconds

- (other)

Subtracts another Duration or a Numeric to this Duration. Numeric values are treated as seconds.

>> 2.hours - 2

=> 7198 seconds

ago(time = Time.current)

Calculates a new Time or Date that is as far in the past as this Duration represents.

>> birth = 35.years.ago

=> Tue, 10 Oct 1978 16:21:34 EDT -04:00

from_now(time = Time.current)

Alias for since, which reads a little bit more naturally when using the default Time.current as the time

argument.

>> expiration = 1.year.from_now

=> Fri, 10 Oct 2014 16:22:35 EDT -04:00

inspect

Calculates the time resulting from a Duration expression and formats it as a string appropriate for display in
the console. (Remember that IRB and the Rails console automatically invoke inspect on objects returned to
them. You can use that trick with your own objects.)

>> 10.years.ago

=> Fri, 10 Oct 2003 16:23:10 EDT -04:00

since(time = Time.current)

Calculates a new Time or Date that is as far in the future as this Duration represents.

Active Support API Reference 662

expiration = 1.year.since(account.created_at)

until(time = Time.current)

Alias for ago. Reads a little more naturally when specifying a time argument instead of using the default
value, Time.current.

membership_duration = created_at.until(expires_at)

Enumerable

Extensions to Ruby’s built-in Enumerable module, which gives arrays and other types of collections iteration
abilities.

active_support/core_ext/enumerable

The following methods are added to all Enumerable objects.

exclude?

The negative of the Enumerable#include?. Returns true if the collection does not include the object.

index_by(&block)

Converts an enumerable to a hash, based on a block that identifies the keys. The most common usage is with
a single attribute name:

>> people.index_by(&:login)

=> { "nextangle" => <Person ...>, "chad" => <Person ...>}

Use full block syntax (instead of the to_proc hack) to generate more complex keys:

>> people.index_by { |p| "#{p.first_name} #{p.last_name}" }

=> {"Chad Fowler" => <Person ...>, "David Hansson" => <Person ...>}

many?

Returns true if the enumerable has more than one element.

Use full block syntax to determine if there is more than one element based on a condition:

people.many? { |p| p.age > 26 }

sum(identity = 0, &block)

Calculates a sum from the elements of an enumerable, based on a block.

Active Support API Reference 663

payments.sum(&:price)

It’s easier to understand than Ruby’s clumsier inject method:

payments.inject { |sum, p| sum + p.price }

Use full block syntax (instead of the to_proc hack) to do more complicated calculations:

payments.sum { |p| p.price * p.tax_rate }

Also, sum can calculate results without the use of a block:

[5, 15, 10].sum # => 30

The default identity (a fancy way of saying, “the sum of an empty list”) is 0. However, you can override it
with anything you want by passing a default argument:

[].sum(10) { |i| i.amount } # => 10

active_support/json/encoding

as_json

Returns self.to_a.

ERB::Util

active_support/core_ext/string/output_safety

html_escape(s)

A utility method for escaping HTML tag characters. This method is also aliased as h.

In your templates, use this method to escape any unsafe (often, anything user-submitted) content, like this:

= h @person.name

The method primarily escapes angle brackets and ampersands.

>> puts ERB::Util.html_escape("is a > 0 & a < 10?")

=> "is a > 0 & a < 10?"

html_escape_once(s)

A utility method for escaping HTML without affecting existing escaped entities.

Active Support API Reference 664

>> puts ERB::Util.html_escape_once('1 < 2 & 3')

=> "1 < 2 & 3"

json_escape(s)

A utility method for escaping HTML entities in JSON strings.

In your ERb templates, use this method to escape any HTML entities:

= json_escape @person.to_json

The method primarily escapes angle brackets and ampersands.

>> puts ERB::Util.json_escape("is a > 0 & a < 10?")

=> "is a \\u003E 0 \\u0026 a \\u003C 10?"

FalseClass

active_support/core_ext/object/blank

blank?

Returns true.

active_support/json/encoding

as_json

Returns "false".

File

active_support/core_ext/file/atomic

Provides an atomic_write method to Ruby’s File class.

atomic_write(file_name, temp_dir = Dir.tmpdir)

Writes to a file atomically, by writing to a temp file first and then renaming to the target file_name. Useful
for situations where you need to absolutely prevent other processes or threads from seeing half-written files.

Active Support API Reference 665

1 File.atomic_write("important.file") do |file|

2 file.write("hello")

3 end

If your temp directory is not on the same filesystem as the file you’re trying to write, you can provide a
different temporary directory with the temp_dir argument.

1 File.atomic_write("/data/something.imporant", "/data/tmp") do |f|

2 file.write("hello")

3 end

Hash

active_support/core_ext/hash/compact

compact

Returns a hash with non nil values.

hash = { name: 'Marisa', email: nil }

=> hash.compact

>> { name: 'Marisa' }

compact!

Replaces current hash with non nil values.

active_support/core_ext/hash/conversions

Contains code that adds the ability to convert hashes to and from xml.

Hash.from_trusted_xml(xml)

Builds a Hash from XML just like Hash.from_xml, but also allows Symbol and YAML.

Hash.from_xml(xml)

Parses arbitrary strings of XML markup into nested Ruby arrays and hashes. Works great for quick-and-dirty
integration of REST-style web services.

Here’s a quick example in the console with some random XML content. The XML only has to be well-formed
markup.

Active Support API Reference 666

1 >> xml = %(<people>

2 <person id="1">

3 <name><family>Boss</family> <given>Big</given></name>

4 <email>chief@foo.com</email>

5 </person>

6 <person id="2">

7 <name>

8 <family>Worker</family>

9 <given>Two</given></name>

10 <email>two@foo.com</email>

11 </person>

12 </people>)

13 => "<people>...</people>"

14

15 >> h = Hash.from_xml(xml)

16 => {"people"=>{"person"=>[{"name"=>{"given"=>"Big", "family"=>"Boss"},

17 "id"=>"1", "email"=>"chief@foo.com"}, {"name"=>{"given"=>"Two",

18 "family"=>"Worker"}, "id"=>"2", "email"=>"two@foo.com"}]}}

Now you can easily access the data from the XML:

>> h["people"]["person"].first["name"]["given"]

=> "Big"

An exception DisallowedType is raised if the XML contains attributes with type="yaml" or type="symbol".

to_xml(options={})

Collects the keys and values of a hash and composes a simple XML representation.

1 print ({greetings: {

2 english: "hello",

3 spanish: "hola"}}).to_xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <hash>

3 <greetings>

4 <english>hello</english>

5 <spanish>hola</spanish>

6 </greetings>

7 </hash>

Active Support API Reference 667

active_support/core_ext/hash/deep_merge

deep_merge(other_hash)

Returns a new hash with self and other_hash merged recursively.

deep_merge!(other_hash)

Modifies self by merging in other_hash recursively.

active_support/core_ext/hash/deep_merge

deep_merge(other_hash)

active_support/core_ext/hash/except

except(*keys)

Return a hash that includes everything but the given keys. This is useful for limiting a set of parameters to
everything but a few known toggles.

1 person.update(params[:person].except(:admin))

If the receiver responds to convert_key, the method is called on each of the arguments. This allows except
to play nice with hashes with indifferent access.

>> {a: 1}.with_indifferent_access.except(:a)

=> {}

>> {a: 1}.with_indifferent_access.except("a")

=> {}

except!(*keys)

Replaces the hash without the given keys.

active_support/core_ext/hash/indifferent_access

with_indifferent_access

Returns an ActiveSupport::HashWithIndifferentAccess out of its receiver.

Active Support API Reference 668

>> {a: 1}.with_indifferent_access["a"]

=> 1

active_support/core_ext/hash/keys

Provides methods that operate on the keys of a hash. The stringify and symbolizemethods are used liberally
throughout the Rails codebase, which is why it generally doesn’t matter if you pass option names as strings
or symbols.

You can use assert_valid_keysmethod in your own application code, which takes Rails-style option hashes.

assert_valid_keys(*valid_keys)

Raises an ArgumentError if the hash contains any keys not specified in valid_keys.

1 def my_method(some_value, options={})

2 options.assert_valid_keys(:my_conditions, :my_order, ...)

3 ...

4 end

Note that keys are NOT treated indifferently, meaning if you use strings for keys but assert symbols as keys,
this will fail.

>> { name: "Rob", years: "28" }.assert_valid_keys(:name, :age)

=> ArgumentError: Unknown key(s): years

>> { name: "Rob", age: "28" }.assert_valid_keys("name", "age")

=> ArgumentError: Unknown key(s): name, age

>> { name: "Rob", age: "28" }.assert_valid_keys(:name, :age)

=> {:name=>"Rob", :age=>"28"} # passes, returns hash

deep_stringify_keys

Return a copy of the hash with all keys converted to strings. This includes the keys from the root hash and
from all nested hashes.

deep_stringify_keys!

Destructively converts all keys in the hash to strings. This includes the keys from the root hash and from all
nested hashes.

deep_symbolize_keys

Returns a new hash with all keys converted to symbols, as long as they respond to to_sym. This includes the
keys from the root hash and from all nested hashes.

Active Support API Reference 669

deep_symbolize_keys!

Destructively converts all keys in the hash to symbols, as long as they respond to to_sym. This includes the
keys from the root hash and from all nested hashes.

deep_transform_keys(&block)

Return a copy of the hash with all keys converted by the block operation. This includes the keys from the root
hash and from all nested hashes.

deep_transform_keys!(&block)

Destructively converts all keys in the hash by the block operation. This includes the keys from the root hash
and from all nested hashes.

stringify_keys

Returns a new copy of the hash with all keys converted to strings.

stringify_keys!

Destructively converts all keys in the hash to strings.

symbolize_keys and to_options

Returns a new hash with all keys converted to symbols, as long as they respond to to_sym.

symbolize_keys! and to_options!

Destructively converts all keys in the hash to symbols.

transform_keys(&block)

Return a copy of the hash with all keys converted by the block operation.

transform_keys!(&block)

Destructively converts all keys in the hash by the block operation.

active_support/core_ext/hash/reverse_merge

Allows for reverse merging where the keys in the calling hash take precedence over those in the other_hash.
This is particularly useful for initializing an incoming option hash with default values like this:

Active Support API Reference 670

1 def setup(options = {})

2 options.reverse_merge! size: 25, velocity: 10

3 end

In the example, the default :size and :velocity are only set if the options passed in don’t already have those
keys set.

reverse_merge(other_hash)

Returns a merged version of two hashes, using key values in the other_hash as defaults, leaving the original
hash unmodified.

reverse_merge!(other_hash) and reverse_update

Destructive versions of reverse_merge; both modify the original hash in place.

active_support/core_ext/hash/slice

extract!(*keys)

Removes and returns the key/value pairs matching the given keys.

>> { a: 1, b: 2 }.extract!(:a, :x)

=> {:a => 1}

slice(*keys)

Slice a hash to include only the given keys. This is useful for limiting an options hash to valid keys before
passing to a method:

1 def search(criteria = {})

2 assert_valid_keys(:mass, :velocity, :time)

3 end

4

5 search(options.slice(:mass, :velocity, :time))

If you have an array of keys you want to limit to, you should splat them:

1 valid_keys = %i(mass velocity time)

2 search(options.slice(*valid_keys))

slice!(*keys)

Replaces the hash with only the given keys.

Active Support API Reference 671

>> {a: 1, b: 2, c: 3, d: 4}.slice!(:a, :b)

=> {:c => 3, :d =>4}

active_support/core_ext/object/to_param

to_param(namespace = nil)

Converts a hash into a string suitable for use as a URL query string. An optional namespace can be passed to
enclose the param names (see example below).

>> { name: 'David', nationality: 'Danish' }.to_param

=> "name=David&nationality=Danish"

>> { name: 'David', nationality: 'Danish' }.to_param('user')

=> "user%5Bname%5D=David&user%5Bnationality%5D=Danish"

active_support/core_ext/object/to_query

to_query

Collects the keys and values of a hash and composes a URL-style query string using ampersand and equal-sign
characters.

>> {foo: "hello", bar: "goodbye"}.to_query

=> "bar=goodbye&foo=hello"

active_support/json/encoding

as_json

Returns self as a string of JSON.

active_support/core_ext/object/blank

blank?

Alias for empty?

ActiveSupport::Gzip

A wrapper for the zlib standard library that allows the compression/decompression of strings with gzip.

active_support/gzip

Gzip.compress(source, level=Zlib::DEFAULT_COMPRESSION, strategy=Zlib::DEFAULT_STRATEGY)

Compresses a string with gzip.

Active Support API Reference 672

>> gzip = ActiveSupport::Gzip.compress('compress me!')

=> "\x1F\x8B\b\x00\x9D\x18WR\x00\x03K\xCE\xCF-

(J-.V\xC8MU\x04\x00R>n\x83\f\x00\x00\x00"

Gzip.decompress(source)

Decompresses a string that has been compressed with gzip.

>> ActiveSupport::Gzip.

decompress("\x1F\x8B\b\x00\x9D\x18WR\x00\x03K\xCE\xCF-

(J-.V\xC8MU\x04\x00R>n\x83\f\x00\x00\x00")

=> "compress me!"

ActiveSupport::HashWithIndifferentAccess

A subclass of Hash used internally by Rails.

active_support/hash_with_indifferent_access

Implements a hash where keys set as a string or symbol are considered to be the same.

>> hash = HashWithIndifferentAccess.new

=> {}

>> hash[:foo] = "bar"

=> "bar"

>> hash[:foo]

=> "bar"

>> hash["foo"]

=> "bar"

ActiveSupport::Inflector::Inflections

The Inflections class transforms words from singular to plural, class names to table names, modularized
class names to ones without, and class names to foreign keys.

The default inflections for pluralization, singularization, and uncountablewords are kept in activesupport/lib/active_-
support/inflections.rb and reproduced here for reference.

Active Support API Reference 673

1 module ActiveSupport

2 Inflector.inflections(:en) do |inflect|

3 inflect.plural(/$/, 's')

4 inflect.plural(/s$/i, 's')

5 inflect.plural(/^(ax|test)is$/i, '\1es')

6 inflect.plural(/(octop|vir)us$/i, '\1i')

7 inflect.plural(/(octop|vir)i$/i, '\1i')

8 inflect.plural(/(alias|status)$/i, '\1es')

9 inflect.plural(/(bu)s$/i, '\1ses')

10 inflect.plural(/(buffal|tomat)o$/i, '\1oes')

11 inflect.plural(/([ti])um$/i, '\1a')

12 inflect.plural(/([ti])a$/i, '\1a')

13 inflect.plural(/sis$/i, 'ses')

14 inflect.plural(/(?:([^f])fe|([lr])f)$/i, '\1\2ves')

15 inflect.plural(/(hive)$/i, '\1s')

16 inflect.plural(/([^aeiouy]|qu)y$/i, '\1ies')

17 inflect.plural(/(x|ch|ss|sh)$/i, '\1es')

18 inflect.plural(/(matr|vert|ind)(?:ix|ex)$/i, '\1ices')

19 inflect.plural(/^(m|l)ouse$/i, '\1ice')

20 inflect.plural(/^(m|l)ice$/i, '\1ice')

21 inflect.plural(/^(ox)$/i, '\1en')

22 inflect.plural(/^(oxen)$/i, '\1')

23 inflect.plural(/(quiz)$/i, '\1zes')

24

25 inflect.singular(/s$/i, '')

26 inflect.singular(/(ss)$/i, '\1')

27 inflect.singular(/(n)ews$/i, '\1ews')

28 inflect.singular(/([ti])a$/i, '\1um')

29 inflect.singular(/((a)naly|(b)a|(d)iagno|(p)arenthe|

30 (p)rogno|(s)ynop|(t)he)(sis|ses)$/i, '\1sis')

31 inflect.singular(/(^analy)(sis|ses)$/i, '\1sis')

32 inflect.singular(/([^f])ves$/i, '\1fe')

33 inflect.singular(/(hive)s$/i, '\1')

34 inflect.singular(/(tive)s$/i, '\1')

35 inflect.singular(/([lr])ves$/i, '\1f')

36 inflect.singular(/([^aeiouy]|qu)ies$/i, '\1y')

37 inflect.singular(/(s)eries$/i, '\1eries')

38 inflect.singular(/(m)ovies$/i, '\1ovie')

39 inflect.singular(/(x|ch|ss|sh)es$/i, '\1')

40 inflect.singular(/^(m|l)ice$/i, '\1ouse')

41 inflect.singular(/(bus)(es)?$/i, '\1')

42 inflect.singular(/(o)es$/i, '\1')

43 inflect.singular(/(shoe)s$/i, '\1')

44 inflect.singular(/(cris|test)(is|es)$/i, '\1is')

45 inflect.singular(/^(a)x[ie]s$/i, '\1xis')

Active Support API Reference 674

46 inflect.singular(/(octop|vir)(us|i)$/i, '\1us')

47 inflect.singular(/(alias|status)(es)?$/i, '\1')

48 inflect.singular(/^(ox)en/i, '\1')

49 inflect.singular(/(vert|ind)ices$/i, '\1ex')

50 inflect.singular(/(matr)ices$/i, '\1ix')

51 inflect.singular(/(quiz)zes$/i, '\1')

52 inflect.singular(/(database)s$/i, '\1')

53

54 inflect.irregular('person', 'people')

55 inflect.irregular('man', 'men')

56 inflect.irregular('child', 'children')

57 inflect.irregular('sex', 'sexes')

58 inflect.irregular('move', 'moves')

59 inflect.irregular('zombie', 'zombies')

60

61 inflect.uncountable(%w(equipment information rice money species

62 series fish sheep jeans police))

63 end

64 end

A singleton instance of Inflections is yielded by Inflector.inflections, which can then be used to specify
additional inflection rules in an initializer.

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.plural /^(ox)$/i, '\1en'

3 inflect.singular /^(ox)en/i, '\1'

4 inflect.irregular 'person', 'people'

5 inflect.uncountable %w(fish sheep)

6 end

New rules are added at the top. So in the example, the irregular rule for octopus will now be the first of
the pluralization and singularization rules that are checked when an inflection happens. That way Rails can
guarantee that your rules run before any of the rules that may already have been loaded.

active_support/inflector/inflections

This API reference lists the inflections methods themselves in the modules where they are actually used:
Numeric and String. The Inflections module contains methods used for modifying the rules used by the
inflector.

acronym(word)

Specifies a new acronym. An acronymmust be specified as it will appear in a camelized string. An underscore
string that contains the acronym will retain the acronym when passed to camelize, humanize, or titleize. A
camelized string that contains the acronym will maintain the acronym when titleized or humanized, and will
convert the acronym into a non-delimited single lowercase word when passed to underscore. An acronym
word must start with a capital letter.

Active Support API Reference 675

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.acronym 'HTML'

3 end

4

5 >> 'html'.titleize

6 => "HTML"

7

8 >> 'html'.camelize

9 => "HTML"

10

11 >> 'MyHTML'.underscore

12 => "my_html"

The acronym must occur as a delimited unit and not be part of another word for conversions to recognize it:

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.acronym 'HTTP'

3 end

4

5 >> 'HTTPS'.underscore

6 => "http_s" # => 'http_s', not 'https'

7

8 # Alternatively

9 ActiveSupport::Inflector.inflections(:en) do |inflect|

10 inflect.acronym 'HTTPS'

11 end

12

13 >> 'HTTPS'.underscore

14 => "https"

clear(scope = :all))

Clears the loaded inflections within a given scope. Give the scope as a symbol of the inflection type: :plurals,
:singulars, :uncountables, or :humans.

1 ActiveSupport::Inflector.inflections.clear

2 ActiveSupport::Inflector.inflections.clear(:plurals)

human(rule, replacement)

Specifies a humanized form of a string by a regular expression rule or by a string mapping. When using a
regular expression based replacement, the normal humanize formatting is called after the replacement. When
a string is used, the human form should be specified as desired (example: “The name”, not “the_name”)

Active Support API Reference 676

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.human /_cnt$/i, '\1_count'

3 inflect.human "legacy_col_person_name", "Name"

4 end

inflections(locale = :en)

Yields a singleton instance of ActiveSupport::Inflector::Inflections so you can specify additional
inflector rules. If passed an optional locale, rules for other languages can be specified.

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.uncountable "rails"

3 end

irregular(singular, plural)

Specifies a new irregular that applies to both pluralization and singularization at the same time. The singular
and plural arguments must be strings, not regular expressions. Simply pass the irregular word in singular
and plural form.

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.irregular 'octopus', 'octopi'

3 inflect.irregular 'person', 'people'

4 end

plural(rule, replacement)

Specifies a new pluralization rule and its replacement. The rule can either be a string or a regular expression.
The replacement should always be a string and may include references to the matched data from the rule by
using backslash-number syntax, like this:

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.plural /^(ox)$/i, '\1en'

3 end

singular(rule, replacement)

Specifies a new singularization rule and its replacement. The rule can either be a string or a regular expression.
The replacement should always be a string and may include references to the matched data from the rule by
using backslash-number syntax, like this:

Active Support API Reference 677

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.singular /^(ox)en/i, '\1'

3 end

uncountable(*words)

Adds uncountable words that should not be inflected to the list of inflection rules.

1 ActiveSupport::Inflector.inflections(:en) do |inflect|

2 inflect.uncountable "money"

3 inflect.uncountable "money", "information"

active_support/inflector/transliterate

parameterize(string, sep = '-')

Replaces special characters in a string so that it may be used as part of a ‘pretty’ URL. This method replaces
accented characters with their ASCII equivalents and discards all other non-ASCII characters by turning them
into the string specified as sep. The method is smart enough to not double up separators. Leading and trailing
separators are also removed.

1 class Person < ActiveRecord::Base

2 def to_param

3 "#{id}-#{name.parameterize}"

4 end

5 end

6

7 >> @person = Person.find(1)

8 => #<Person id: 1, name: "Donald E. Knuth">

9

10 >> helper.link_to(@person.name, person_path(@person))

11 => Donald E. Knuth

transliterate(string, replacement = "?")

Replaces non-ASCII characters with an ASCII approximation, or if none exists, a replacement character which
defaults to “?”.

1 transliterate("Ærøskøbing")

2 # => "AEroskobing"

Default approximations are provided for Western/Latin characters, e.g, “ø”, “ñ”, “é”, “ß”, etc.

This method is I18n aware, so you can set up custom approximations for a locale. This can be useful, for
example, to transliterate German’s “ü” and “ö” to “ue” and “oe”, or to add support for transliterating Russian
to ASCII.

In order to make your custom transliterations available, you must set them as the i18n.transliterate.rule
i18n key:

Active Support API Reference 678

1 # Store the transliterations in locales/de.yml

2 i18n:

3 transliterate:

4 rule:

5 ü: "ue"

6 ö: "oe"

1 # Or set them using Ruby

2 I18n.backend.store_translations(:de, i18n: {

3 transliterate: {

4 rule: {

5 "ü" => "ue",

6 "ö" => "oe"

7 }

8 }

9 })

The value for i18n.transliterate.rule can be a simple Hash that maps characters to ASCII approximations
as shown above, or, for more complex requirements, a Proc:

1 I18n.backend.store_translations(:de, i18n: {

2 transliterate: {

3 rule: ->(string) { MyTransliterator.transliterate(string) }

4 }

5 })

Now you can have different transliterations for each locale:

1 I18n.locale = :en

2 transliterate("Jürgen")

3 # => "Jurgen"

1 I18n.locale = :de

2 transliterate("Jürgen")

3 # => "Juergen"

Integer

Extensions to Ruby’s built-in Integer class.

active_support/core_ext/integer/inflections

ordinal

Returns the suffix used to denote the position in an ordered sequence, such as 1st, 2nd, 3rd, 4th.

Active Support API Reference 679

1 1.ordinal # => "st"

2 2.ordinal # => "nd"

3 1002.ordinal # => "nd"

4 1003.ordinal # => "rd"

ordinalize

Turns an integer into an ordinal string used to denote the position in an ordered sequence, such as 1st, 2nd,
3rd, 4th.

1 1.ordinalize # => "1st"

2 2.ordinalize # => "2nd"

3 1002.ordinalize # => "1002nd"

4 1003.ordinalize # => "1003rd"

active_support/core_ext/integer/multiple

multiple_of?(number)

Returns true if the integer is a multiple of number.

1 9.multiple_of? 3 # => true

ActiveSupport::JSON

The JSONmodule adds JSON decoding and encoding support to Rails which takes advantage of the JSON gem.

active_support/json/decoding

decode(json)

Parses a JSON string or IO object and converts it into a hash.

active_support/json/encoding

encode(value, options = nil)

Dumps object in JSON.

>> ActiveSupport::JSON.encode({a: 1, b: 2})

=> "{\"a\":1,\"b\":2}"

Active Support API Reference 680

Kernel

Methods added to Ruby’s Kernel class are available in all contexts.

active_support/core_ext/kernel/agnostics

“‘(command)“

Makes backticks behave (somewhat more) similarly on all platforms. On win32 nonexistent_command raises
Errno::ENOENT, but on Unix, the spawned shell prints a message to stderr and sets $?.

active_support/core_ext/kernel/debugger

debugger

Starts a debugging session if the debugger gem has been loaded. Use rails server --debugger to start Rails
with the debugger enabled.

active_support/core_ext/kernel/reporting

capture(stream)

Captures the given stream and returns it.

1 stream = capture(:stdout) { puts 'notice' }

2 stream # => "notice\n"

enable_warnings

Sets $VERBOSE to true for the duration of the block provided and back to its original value afterward.

quietly(&block)

Silences both STDOUT and STDERR, even for subprocesses.

silence_stream(stream)

Silences any stream for the duration of the block provided.

Active Support API Reference 681

1 silence_stream(STDOUT) do

2 puts 'This will never be seen'

3 end

4

5 puts 'But this will'

silence_warnings

Sets $VERBOSE to false for the duration of the block provided and back to its original value afterward.

suppress(*exception_classes)

A method that should be named swallow. Suppresses raising of any exception classes specified inside of the
block provided. Use with caution.

active_support/core_ext/kernel/singleton_class

class_eval

Forces class_eval to behave like singleton_class.class_eval.

ActiveSupport::KeyGenerator

active_support/key_generator

initialize(secret, options = {})

Creates a new instance of MessageEncryptor.

generate_key(salt, key_size=64)

Returns a derived key suitable for use. The default key_size is chosen to be compatible with the default settings
of ActiveSupport::MessageVerifier, such as OpenSSL::Digest::SHA1#block_length.

>> key_generator = ActiveSupport::KeyGenerator.new('my_secret_key')

=> #<ActiveSupport::KeyGenerator:0x007fde6788b5d8

@secret="my_secret_key", @iterations=65536>

>> key_generator.generate_key('my_salt')

=> "\xB6o5\xB2v\xBA\x03\x8E\xE0\xA0\x06[7<>\x81\xBB\xD6B\xB6,

\xF3@a\x153\xB5\xC1\x8C\x8B\xEF\x04\x1C\xB9\x8D\x93I~`\

xCD\xCB\"IKw\\u\xE9v\x15\xEEl\x99\"\xBD\xC7a\x92Y\x1EY\x94d\xFB"

Active Support API Reference 682

ActiveSupport::Logger

Accessible via the logger property in various Rails contexts such as Active Record models and controller
classes. Always accessible via Rails.logger. Use of the logger is explained in Chapter 1, “Rails Environments
and Configuration”.

active_support/logger

Logger.broadcast(logger)

Generates an anonymous module, that is used to extend an existing logger, which adds the behavior to
broadcast to multiple loggers. For instance, when initializing a Rails console, Rails.logger is extended to
broadcast to STDERR, causing Rails to log to both a log file and STDERR.

1 console = ActiveSupport::Logger.new(STDERR)

2 Rails.logger.extend ActiveSupport::Logger.broadcast(console)

active_support/logger_silence

silence(temporary_level = Logger::ERROR, &block)

Silences the logger for the duration of the block.

ActiveSupport::MessageEncryptor

MessageEncryptor is a simple way to encrypt values which get stored somewhere you don’t trust.

The cipher text and initialization vector are base64 encoded and returned to you.

This can be used in situations similar to the MessageVerifier, but where you don’t want users to be able to
determine the value of the payload.

active_support/message_encryptor

initialize(secret, *signature_key_or_options)

Creates a new instance of MessageEncryptor. The supplied secret must be at least as long as the cipher key
size. By default, the cipher is aes-256-cbc, which would require a cipher key size of at least 256 bits. If you
are using a user-entered secret, you can generate a suitable key with OpenSSL::Digest::SHA256.new(user_-

secret).digest.

Available options are:

:cipher

The cipher to use. Can be any cipher returned by

Active Support API Reference 683

OpenSSL::Cipher.ciphers

Default is ‘aes-256-cbc’

:serializer

Object serializer to use (Default is Marshal).

encrypt_and_sign(value)

Encrypt and sign a value. The value needs to be signed to avoid padding attacks.

decrypt_and_verify(value)

Decrypts and verifies a value. The value needs to be verified to avoid padding attacks.

ActiveSupport::MessageVerifier

MessageVerifier makes it easy to generate and verify signed messages to prevent tampering.

>> v = ActiveSupport::MessageVerifier.new("A_SECRET_STRING")

=> #<ActiveSupport::MessageVerifier:0x007fde68036918

@secret="A_SECRET_STRING", @digest="SHA1", @serializer=Marshal>

>> msg = v.generate([1, 2.weeks.from_now])

=> "BAhbB2kGVTogQWN0aXZlU3VwcG9ydDo..."

>> id, time = v.verify(msg)

=> [1, Fri, 25 Oct 2013 18:03:27 UTC +00:00]

This is useful for cases like remember-me tokens and auto-unsubscribe links where the session store isn’t
suitable or available.

active_support/message_verifier

initialize(secret, options = {})

Creates a new MessageVerifier with the supplied secret.

Available options are:

:digest

Default is ‘SHA1’.

:serializer

Object serializer to use (Default is Marshal).

generate(value)

Generate a signed message.

Active Support API Reference 684

cookies[:remember_me] = verifier.generate([user.id, 2.weeks.from_now])

verify(signed_message)

Verify a signed message.

1 id, time = @verifier.verify(cookies[:remember_me])

2 if time < Time.now

3 self.current_user = User.find(id)

4 end

Module

Extensions to Ruby’s Module class, available in all contexts.

active_support/core_ext/module/aliasing

alias_attribute(new_name, old_name)

This super-useful method allows you to easily make aliases for attributes, including their reader, writer, and
query methods.

In the following example, the Content class is serving as the base class for Email using STI, but e-mails should
have a subject, not a title:

1 class Content < ActiveRecord::Base

2 # has column named 'title'

3 end

4

5 class Email < Content

6 alias_attribute :subject, :title

7 end

As a result of the alias_attribute, you can see in the following example that the title and subject attributes
become interchangeable:

Active Support API Reference 685

>> e = Email.find(:first)

>> e.title

=> "Superstars"

>> e.subject

=> "Superstars"

>> e.subject?

=> true

>> e.subject = "Megastars"

=> "Megastars"

>> e.title

=> "Megastars"

alias_method_chain(target, feature)

Encapsulates the following common pattern:

alias_method :foo_without_feature, :foo

alias_method :foo, :foo_with_feature

With alias_method_chain, you simply do one line of code and both aliases are set up for you:

alias_method_chain :foo, :feature

Query and bang methods keep the same punctuation. The following syntax

alias_method_chain :foo?, :feature

is equivalent to

alias_method :foo_without_feature?, :foo?

alias_method :foo?, :foo_with_feature?

so you can safely chain foo, foo?, and foo!.

active_support/core_ext/module/anonymous

anonymous?

Returns true if self does not have a name.

A module gets a name when it is first assigned to a constant. Either via the module or class keyword

Active Support API Reference 686

1 module M

2 end

3

4 >> M.name

5 => "M"

6

7 m = Module.new

8

9 >> m.name

10 => ""

or by an explicit assignment

1 m = Module.new

2

3 >> M = m # m gets a name here as a side-effect

4

5 >> m.name

6 => "M"

active_support/core_ext/module/attr_internal

attr_internal

Alias for attr_internal_accessor.

attr_internal_accessor(*attrs)

Declares attributes backed by internal instance variables names (using an @_ naming convention). Basically
just a mechanism to enhance controlled access to sensitive attributes.

For instance, Object’s copy_instance_variables_from will not copy internal instance variables.

attr_internal_reader(*attrs)

Declares an attribute reader backed by an internally named instance variable.

attr_internal_writer(*attrs)

Declares an attribute writer backed by an internally named instance variable.

active_support/core_ext/module/attribute_accessors

mattr_accessor(*syms)

Defines one or more module attribute reader and writer methods in the style of the native attr* accessors
for instance attributes.

Active Support API Reference 687

mattr_reader(*syms)

Defines one or more module attribute reader methods.

mattr_writer(*syms)

Defines one or more module attribute writer methods.

active_support/core_ext/module/concerning

concerning(topic, &block)

Equivalent to defining an inline module within a class, having it extend ActiveSupport::Concern, and then
mixing it into the class.

1 class Foo < ActiveRecord::Base

2 concerning :Bar do

3 included do

4 has_many :things

5 end

6

7 private

8

9 def baz

10 ...

11 end

12 end

13 end

concern(topic, &module_definition)

Shorthand form of defining an ActiveSupport::Concern.

1 concern :Bar do

2 ...

3 end

4

5 # equivalent to

6

7 module Bar

8 extend ActiveSupport::Concern

9 ...

10 end

Active Support API Reference 688

active_support/core_ext/module/delegation

delegate(*methods)

Provides a delegate class method to easily expose contained objects’ methods as your own. Pass one or more
methods (specified as symbols or strings) and the name of the target object via the :to option (also a symbol
or string). At least one method name and the :to option are required.

Delegation is particularly useful with Active Record associations:

1 class Greeter < ActiveRecord::Base

2 def hello

3 "hello"

4 end

5

6 def goodbye

7 "goodbye"

8 end

9 end

1 class Foo < ActiveRecord::Base

2 belongs_to :greeter

3 delegate :hello, to: :greeter

4 end

1 Foo.new.hello # => "hello"

2 Foo.new.goodbye # => NoMethodError: undefined method `goodbye' for #<Foo:0x1af30c>

Multiple delegates to the same target are allowed:

1 class Foo < ActiveRecord::Base

2 belongs_to :greeter

3 delegate :hello, :goodbye, to: :greeter

4 end

1 Foo.new.goodbye # => "goodbye"

Methods can be delegated to instance variables, class variables, or constants by providing them as a symbols:

Active Support API Reference 689

1 class Foo

2 CONSTANT_ARRAY = [0,1,2,3]

3 @@class_array = [4,5,6,7]

4

5 def initialize

6 @instance_array = [8,9,10,11]

7 end

8 delegate :sum, to: :CONSTANT_ARRAY

9 delegate :min, to: :@@class_array

10 delegate :max, to: :@instance_array

11 end

12

13 Foo.new.sum # => 6

14 Foo.new.min # => 4

15 Foo.new.max # => 11

Delegates can optionally be prefixed using the :prefix option. If the value is true, the delegate methods are
prefixed with the name of the object being delegated to.

1 Person = Struct.new(:name, :address)

2

3 class Invoice < Struct.new(:client)

4 delegate :name, :address, to: :client, prefix: true

5 end

6

7 john_doe = Person.new("John Doe", "Vimmersvej 13")

8 invoice = Invoice.new(john_doe)

9 invoice.client_name # => "John Doe"

10 invoice.client_address # => "Vimmersvej 13"

It is also possible to supply a custom prefix.

1 class Invoice < Struct.new(:client)

2 delegate :name, :address, to: :client, prefix: :customer

3 end

4

5 invoice = Invoice.new(john_doe)

6 invoice.customer_name # => "John Doe"

7 invoice.customer_address # => "Vimmersvej 13"

If the delegate object is nil an exception is raised, and that happens no matter whether nil responds to the
delegated method. You can get a nil instead with the :allow_nil option.

Active Support API Reference 690

1 class Foo

2 attr_accessor :bar

3 def initialize(bar = nil)

4 @bar = bar

5 end

6 delegate :zoo, to: :bar

7 end

8

9 Foo.new.zoo # raises NoMethodError exception (you called nil.zoo)

10

11 class Foo

12 attr_accessor :bar

13 def initialize(bar = nil)

14 @bar = bar

15 end

16 delegate :zoo, to: :bar, allow_nil: true

17 end

18

19 Foo.new.zoo # returns nil

active_support/core_ext/module/deprecation

deprecate(*method_names)

Provides a deprecate classmethod to easily deprecatemethods. Conveniencewrapper for ActiveSupport::Deprecation.deprecate_-
methods(self, *method_names).

1 deprecate :foo

2 deprecate bar: 'message'

3 deprecate :foo, :bar, baz: 'warning!', qux: 'gone!'

active_support/core_ext/module/introspection

local_constants

Returns the constants that have been defined locally by this object and not in an ancestor.

parent

Returns themodule that contains this one; if this is a rootmodule, such as ::MyModule, then Object is returned.

>> ActiveRecord::Validations.parent

=> ActiveRecord

parent_name

Returns the name of the module containing this one.

Active Support API Reference 691

1 >> ActiveRecord::Validations.parent_name

2 => "ActiveRecord"

parents

Returns all the parents of this module according to its name, ordered from nested outwards. The receiver is
not contained within the result.

1 module M

2 module N

3 end

4 end

5 X = M::N

6

7 >> M.parents

8 => [Object]

9

10 >> M::N.parents

11 => [M, Object]

12

13 >> X.parents

14 => [M, Object]

active_support/core_ext/module/qualified_const

Extends the API for constants to be able to deal with relative qualified constant names.

qualified_const_defined?

Returns true if the qualified constant is defined, nil otherwise.

Object.qualified_const_defined?(“Math::PI”) #⇒ true

>> Object.const_defined?("Math::PI")

NameError: wrong constant name Math::PI

>> Object.qualified_const_defined?("Math::PI")

=> true

qualified_const_get(path)

Returns the relative qualified constant given a path.

Active Support API Reference 692

>> Object.qualified_const_get("Math::PI")

=> 3.141592653589793

qualified_const_set(path, value)

Sets a relative qualified constant.

>> Object.qualified_const_set("Math::Phi", 1.618034)

=> 1.618034

active_support/core_ext/module/reachable

reachable?

Returns true if a named module is reachable through its corresponding constant.

1 module M

2 end

3

4 M.reachable? # => true

However, since constants and modules are decoupled, modules can become unreachable.

>> orphan = Object.send(:remove_const, :M)

=> M

>> orphan.reachable?

=> false

active_support/core_ext/module/remove_method

remove_possible_method(method)

Removes a method definition if it exists.

redefine_method(method, &block)

The method define_method in Ruby allows the definition of methods dynamically. However, define_method
doesn’t check for the existence of the method beforehand, which issues a warning if it does exist. The method
redefine_method resolves this by first removing the method definition if it exists, and internally calling
define_method.

active_support/dependencies

const_missing(const_name)

The const_missing callback is invoked when Ruby can’t find a specified constant in the current scope, which
is what makes Rails autoclass loading possible. See the Dependencies module for more detail.

Active Support API Reference 693

ActiveSupport::Multibyte::Chars

The chars proxy enables you to work transparently with multibyte encodings in the Ruby String class
without having extensive knowledge about encoding.

active_support/multibyte/chars

A Chars object accepts a string upon initialization and proxies String methods in an encoding-safe manner.
All the normal String methods are proxied through the Chars object, and can be accessed through the mb_-
charsmethod.Methods that would normally return a String object now return a Chars object so thatmethods
can be chained together safely.

1 >> "The Perfect String".mb_chars.downcase.strip.normalize

2 => #<ActiveSupport::Multibyte::Chars:0x007ffdcac6f7d0

3 @wrapped_string="the perfect string">

Chars objects are perfectly interchangeable with String objects as long as no explicit class checks are made.
If certain methods do explicitly check the class, call to_s before you pass Chars objects to them, to go back to
a normal String object:

1 bad.explicit_checking_method("T".chars.downcase.to_s)

The default Chars implementation assumes that the encoding of the string is UTF-8. If you want to
handle different encodings, you can write your own multibyte string handler and configure it through
ActiveSupport::Multibyte.proxy_class

1 class CharsForUTF32

2 def size

3 @wrapped_string.size / 4

4 end

5

6 def self.accepts?(string)

7 string.length % 4 == 0

8 end

9 end

10

11 ActiveSupport::Multibyte.proxy_class = CharsForUTF32

Note that a few methods are defined on Chars instead of the handler because they are defined on Object or
Kernel and method_missing (the method used for delegation) can’t catch them.

<=> (other)

Returns -1, 0, or +1 depending on whether the Chars object is to be sorted before, equal to, or after the object
on the right side of the operation. In other words, it works exactly as you would expect it to.

Active Support API Reference 694

capitalize

Converts the first character to uppercase and the remainder to lowercase.

>> 'über'.mb_chars.capitalize.to_s

=> "Über"

compose

Performs composition on all the characters.

decompose

Performs canonical decomposition on all the characters.

downcase

Converts characters in the string to lowercase.

>> 'VĚDA A VÝZKUM'.mb_chars.downcase.to_s

=> "věda a výzkum"

grapheme_length

Returns the number of grapheme clusters in the string.

limit(limit)

Limits the byte size of the string to a number of bytes without breaking characters.

method_missing(m, *a, &b)

Tries to forward all undefined methods to the enclosed string instance. Also responsible for making the bang
(!) methods destructive, since a handler doesn’t have access to change an enclosed string instance.

normalize(form = nil)

Returns the KC normalization of the string by default. NFKC is considered the best normalization form for
passing strings to databases and validations.

A normalization form can be one of the following:

• :c

• :kc

• :d

• :kd

Default is ActiveSupport::Multibyte::Unicode#default_normalization_form.

Active Support API Reference 695

reverse

Reverses all characters in the string.

>> 'Café'.mb_chars.reverse.to_s

=> 'éfaC'

slice!(*args)

Works like like String’s slice!, with the exception that the items in the resulting list are Char instances
instead of String.

split(*args)

Works just like the normal String’s split method, with the exception that the items in the resulting list are
Chars instances instead of String, which makes chaining calls easier.

>> 'Café périferôl'.mb_chars.split(/é/).map { |part| part.upcase.to_s }

=> ["CAF", " P", "RIFERÔL"]

swapcase

Converts characters in the string to the opposite case.

>> "El Cañón".mb_chars.swapcase.to_s

=> "eL cAÑÓN"

tidy_bytes(force = false)

Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in a valid UTF-8 string.

Passing truewill forcibly tidy all bytes, assuming that the string’s encoding is entirely CP1252 or ISO-8859-1.

> "obie".mb_chars.tidy_bytes

=> #<ActiveSupport::Multibyte::Chars:0x007ffdcb76ecf8

@wrapped_string="obie">

active_support/multibyte/unicode

Contains methods handling Unicode strings.

Unicode.compose(codepoints)

Compose decomposed characters to the composed form.

Active Support API Reference 696

Unicode.decompose(type, codepoints)

Decompose composed characters to the decomposed form. The type argument accepts :canonical or
:compatability.

Unicode.downcase(string)

Converts a unicode string to lowercase.

Unicode.in_char_class?(codepoint, classes)

Detect whether the codepoint is in a certain character class. Returns true when it’s in the specified character
class and false otherwise. Valid character classes are: :cr, :lf, :l, :v, :lv, :lvt and :t.

Unicode.normalize(string, form = nil)

Returns the KC normalization of the string by default. NFKC is considered the best normalization form for
passing strings to databases and validations. The form specifies the form you want to normalize in and should
be one of the following: :c, :kc, :d, or :kd. Default is form is stored in the ActiveSupport::Multibyte.default_-
normalization_form attribute and is overridable in an initializer.

Unicode.pack_graphemes(unpacked)

Reverse operation of unpack_graphemes.

Unicode.reorder_characters(codepoints)

Re-order codepoints so the string becomes canonical.

Unicode.swapcase(string)

Swapcase on a unicode string.

Unicode.tidy_bytes(string, force = false)

Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in a valid UTF-8 string.

Unicode.unpack_graphemes(string)

Unpack the string at grapheme boundaries. Returns a list of character lists.

Active Support API Reference 697

>> ActiveSupport::Multibyte::Unicode.unpack_graphemes('ffff')

=> [[102], [102], [102], [102]]

>> ActiveSupport::Multibyte::Unicode.unpack_graphemes('Café')

=> [[67], [97], [102], [233]]

Unicode.upcase(string)

Converts a unicode string to uppercase.

NilClass

Remember that everything in Ruby is an object, even nil, which is a special reference to a singleton instance
of the NilClass.

active_support/core_ext/object/blank

blank?

Returns true.

active_support/json/encoding

as_json

Returns "null".

ActiveSupport::Notifications

Notifications provides an instrumentation API for Ruby. To instrument an action in Ruby you just need to do:

1 ActiveSupport::Notifications.instrument(:render, extra: :information) do

2 render text: "Foo"

3 end

You can consume those events and the information they provide by registering a log subscriber. For instance,
let’s store all instrumented events in an array:

Active Support API Reference 698

1 @events = []

2

3 ActiveSupport::Notifications.subscribe do |*args|

4 @events << ActiveSupport::Notifications::Event.new(*args)

5 end

6

7 ActiveSupport::Notifications.instrument(:render, extra: :information) do

8 render text: "Foo"

9 end

10

11 event = @events.first

12 event.name # => :render

13 event.duration # => 10 (in miliseconds)

14 event.result # => "Foo"

15 event.payload # => { :extra => :information }

When subscribing to Notifications, you can pass a pattern, to only consume events that match the pattern:

1 ActiveSupport::Notifications.subscribe(/render/) do |event|

2 @render_events << event

3 end

Notifications ships with a queue implementation that consumes and publish events to log subscribers in a
thread. You can use any queue implementation you want.

Numeric

Extensions to Ruby’s Numeric class.

active_support/core_ext/object/blank

blank?

Returns false.

active_support/json/encoding

as_json

Returns self.

encode_json

Returns self.to_s.

Active Support API Reference 699

active_support/core_ext/numeric/bytes

Enables the use of byte calculations and declarations, like 45.bytes + 2.6.megabytes.

Constants

The following constants are defined in bytes.rb.

1 class Numeric

2 KILOBYTE = 1024

3 MEGABYTE = KILOBYTE * 1024

4 GIGABYTE = MEGABYTE * 1024

5 TERABYTE = GIGABYTE * 1024

6 PETABYTE = TERABYTE * 1024

7 EXABYTE = PETABYTE * 1024

8 ...

9 end

byte / bytes

Returns the value of self. Enables the use of byte calculations and declarations, like 45.bytes + 2.6.megabytes.

kilobyte / kilobytes

Returns self * 1024.

megabyte / megabytes

Returns self * 1024.kilobytes.

gigabyte / gigabytes

Returns self * 1024.megabytes.

terabyte / terabytes

Returns self * 1024.gigabytes.

petabyte / petabytes

Returns self * 1024.terabytes.

exabyte / exabytes2

Returns self * 1024.petabytes.

Active Support API Reference 700

active_support/core_ext/numeric/conversions

to_formatted_s(format = :default, options = {})

Generates a formatted string representation of a number. Options are provided for phone numbers, currency,
percentage, precision, positional notation, file size and pretty printing.

Aliased as to_s.

:currency

Formats a number into a currency string. The :currency formatting option can be combined with the
following:

:delimiter

Sets the thousands delimiter, defaults to ",".

:format

Sets the format for non-negative numbers, defaults to "%u%n".

:locale

Sets the locale to be used for formatting, defaults to current locale.

:negative_format

Sets the format for negative numbers, defaults to prepending an hyphen to the formatted number.

:precision

Sets the level of precision, defaults to 2.

:separator

Sets the separator between the units, defaults to ".".

:unit

Sets the denomination of the currency, defaults to "$".

>> 1234567890.50.to_s(:currency)

=> $1,234,567,890.50

>> 1234567890.506.to_s(:currency)

=> $1,234,567,890.51

>> 1234567890.506.to_s(:currency, precision: 3)

=> $1,234,567,890.506

>> 1234567890.506.to_s(:currency, locale: :fr)

=> 1 234 567 890,51 €

>> -1234567890.50.to_s(:currency, negative_format: '(%u%n)')

Active Support API Reference 701

=> ($1,234,567,890.50)

>> 1234567890.50.to_s(:currency, unit: '£', separator: ',',

delimiter: '')

=> £1234567890,50

:delimited

Formats a number with grouped thousands using delimiter. The :delimited formatting option can be
combined with the following:

:delimiter

Sets the thousands delimiter, defaults to ",".

:locale

Sets the locale to be used for formatting, defaults to current locale.

:separator

Sets the separator between the units, defaults to ".".

>> 12345678.to_s(:delimited)

=> 12,345,678

>> 12345678.05.to_s(:delimited)

=> 12,345,678.05

>> 12345678.to_s(:delimited, delimiter: '.')

=> 12.345.678

:human

Formats a number that is more readable to humans. Useful for numbers that are extremely large.The :human
formatting option can be combined with the following:

:delimiter

Sets the thousands delimiter, defaults to "".

:format

Sets the format for non-negative numbers, defaults to "%n %u". The field types are:

• %u: The quantifier
• %n: The number

:locale

Sets the locale to be used for formatting, defaults to current locale.

Active Support API Reference 702

:precision

Sets the level of precision, defaults to 3.

:separator

Sets the separator between fractional and integer digits, defaults to ".".

:significant

If true, precision will be the number of significant_digits, otherwise the number of fractional digits are
used. Defaults to true.

:strip_insignificant_zeros

Setting to true removes insignificant zeros after the decimal separator, defaults to true.

:units

A hash of unit quantifier names, or a string containing an i18n scope where to find this hash. It might
have the following keys:

• integers: :unit, :ten, *:hundred, :thousand, :million, *:billion, :trillion, *:quadrillion
• fractionals: :deci, :centi, *:mili, :micro, :nano, *:pico, :femto

>> 123.to_s(:human)

=> "123"

>> 1234.to_s(:human)

=> "1.23 Thousand"

>> 1234567.to_s(:human)

=> "1.23 Million"

>> 489939.to_s(:human, precision: 4)

=> "489.9 Thousand"

:human_size

Formats the bytes in size into a more understandable representation. Useful for reporting file sizes to users.
The :human_size formatting option can be combined with the following:

:delimiter

Sets the thousands delimiter, defaults to "".

:format

Sets the format for non-negative numbers, defaults to "%u%n".

:locale

Sets the locale to be used for formatting, defaults to current locale.

:precision

Sets the level of precision, defaults to 3.

Active Support API Reference 703

:prefix

Setting to :si formats the number using the SI prefix, defaults to :binary.

:separator

Sets the separator between fractional and integer digits, defaults to ".".

:significant

If true, precision will be the number of significant_digits, otherwise the number of fractional digits are
used. Defaults to true.

:strip_insignificant_zeros

Setting to true removes insignificant zeros after the decimal separator, defaults to true.

:raise

Setting to true raises InvalidNumberError when the number is invalid.

1 >> 123.to_s(:human_size)

2 => 123 Bytes

3

4 >> 1234.to_s(:human_size)

5 => 1.21 KB

6

7 >> 12345.to_s(:human_size)

8 => 12.1 KB

9

10 >> 1234567.to_s(:human_size)

11 => 1.18 MB

12

13 >> 1234567.to_s(:human_size, precision: 2)

14 => 1.2 MB

:percentage

Formats a number as a percentage string. The :percentage formatting option can be combined with the
following:

:delimiter

Sets the thousands delimiter, defaults to "".

:format

Sets the format of the percentage string, defaults to "%n%".

:locale

Sets the locale to be used for formatting, defaults to current locale.

:precision

Sets the level of precision, defaults to 3.

Active Support API Reference 704

:separator

Sets the separator between the units, defaults to "."

:significant

If true, precision will be the number of significant_digits, otherwise the number of fractional digits are
used. Defaults to false.

:strip_insignificant_zeros

Setting to true removes insignificant zeros after the decimal separator, defaults to false.

>> 100.to_s(:percentage)

=> 100.000%

>> 100.to_s(:percentage, precision: 0)

=> 100%

>> 1000.to_s(:percentage, delimiter: '.', separator: ',')

=> 1.000,000%

>> 302.24398923423.to_s(:percentage, precision: 5)

=> 302.24399%

>> 1000.to_s(:percentage, locale: :fr)

=> 1 000,000%

>> 100.to_s(:percentage, format: '%n %')

=> 100 %

:phone

Formats a number into a US phone number. The :phone formatting option can be combinedwith the following:

:area_code

Adds parentheses around the area code.

:country_code

Sets the country code for the phone number.

:delimiter

Specifies the delimiter to use, defaults to "-".

:extension

Specifies an extension to add to the end of the generated number.

Active Support API Reference 705

>> 5551234.to_s(:phone)

=> 555-1234

>> 1235551234.to_s(:phone)

=> 123-555-1234

>> 1235551234.to_s(:phone, area_code: true)

=> (123) 555-1234

>> 1235551234.to_s(:phone, delimiter: ' ')

=> 123 555 1234

>> 1235551234.to_s(:phone, area_code: true, extension: 555)

=> (123) 555-1234 x 555

>> 1235551234.to_s(:phone, country_code: 1)

=> +1-123-555-1234

>> 1235551234.to_s(:phone, country_code: 1, extension: 1343, delimiter: '.')

=> +1.123.555.1234 x 1343

:round

Formats a number with the specified level of precision.The :rounded formatting option can be combined with
the following:

:delimiter

Sets the thousands delimiter, defaults to "".

:locale

Sets the locale to be used for formatting, defaults to current locale.

:precision

Sets the level of precision, defaults to 3.

:separator

Sets the separator between the units, defaults to ".".

:significant

If true, precision will be the number of significant_digits, otherwise the number of fractional digits are
used. Defaults to false.

:strip_insignificant_zeros

Setting to true removes insignificant zeros after the decimal separator, defaults to false.

Active Support API Reference 706

>> 111.2345.to_s(:rounded)

=> 111.235

>> 111.2345.to_s(:rounded, precision: 2)

=> 111.23

>> 13.to_s(:rounded, precision: 5)

=> 13.00000

>> 389.32314.to_s(:rounded, precision: 0)

=> 389

>> 111.2345.to_s(:rounded, significant: true)

=> 111

>> 111.2345.to_s(:rounded, precision: 1, significant: true)

=> 100

active_support/core_ext/numeric/time

Enables the use of time calculations and declarations, like 45.minutes + 2.hours + 4.years.

These methods use Time#advance for precise date calculations when using from_now, ago, etc. as well as
adding or subtracting their results from a Time object. For example:

1 # equivalent to Time.now.advance(months: 1)

2 1.month.from_now

3

4 # equivalent to Time.now.advance(years: 2)

5 2.years.from_now

6

7 # equivalent to Time.now.advance(months: 4, years: 5)

8 (4.months + 5.years).from_now

While these methods provide precise calculation when used as in the examples above, care should be taken
to note that this is not true if the result of ‘months’, ‘years’, etc is converted before use:

1 # equivalent to 30.days.to_i.from_now

2 1.month.to_i.from_now

3

4 # equivalent to 365.25.days.to_f.from_now

5 1.year.to_f.from_now

In such cases, Ruby’s core Date and Time should be used for precision date and time arithmetic.

Active Support API Reference 707

ago and until

Appends to a numeric time value to express a moment in the past.

1 10.minutes.ago

day / days

A duration equivalent to self * 24.hours.

fortnight / fortnights

A duration equivalent to self * 2.weeks.

from_now(time = Time.current) / since(time = Time.current)

An amount of time in the future, from a specified time (which defaults to Time.current).

hour / hours

A duration equivalent to self * 3600.seconds.

in_milliseconds

An equivalent to self * 1000. This value can be set in JavaScript functions like getTime().

minute / minutes

A duration equivalent to self * 60.seconds.

month / months

A duration equivalent to self * 30.days.

second / seconds

A duration in seconds equal to self.

week / weeks

A duration equivalent to self * 7.days.

year / years

A duration equivalent to self * 365.25.days.

Active Support API Reference 708

Object

Rails mixes quite a few methods into the Object class, meaning they are available via every other object at
runtime.

active_support/core_ext/object/acts_like

acts_like?(duck)

A duck-type assistant method. For example, Active Support extends Date to define an acts_like_date?

method, and extends Time to define acts_like_time?. As a result, we can do x.acts_like?(:time) and
x.acts_like?(:date) to do duck-type-safe comparisons, since classes that we want to act like Time simply
need to define an acts_like_time? method.

active_support/core_ext/object/blank

blank?

An object is blank if it’s false, empty, or a whitespace string. For example, “”, “ “, nil, [], and {} are blank.

This simplifies:

if !address.nil? && !address.empty?

to

unless address.blank?

presence

Returns object if it’s present? otherwise returns nil. The expression object.presence is equivalent to
object.present? ? object : nil

This is handy for any representation of objects where blank is the same as not present at all. For example, this
simplifies a common check for HTTP POST/query parameters:

state = params[:state] if params[:state].present?

country = params[:country] if params[:country].present?

region = state || country || 'US'

becomes

region = params[:state].presence || params[:country].presence || 'US'

Active Support API Reference 709

present?

An object is present if it’s not blank.

active_support/core_ext/object/deep_dup

Returns a deep copy of object if it’s duplicable. If it’s not duplicable, returns self.

active_support/core_ext/object/duplicable

Most objects are cloneable, but not all. For example you can’t dup nil:

nil.dup # => TypeError: can't dup NilClass

Classes may signal their instances are not duplicable removing dup and clone or raising exceptions from them.
So, to dup an arbitrary object you normally use an optimistic approach and are ready to catch an exception,
say:

arbitrary_object.dup rescue object

Rails dups objects in a few critical spots where they are not that arbitrary. That rescue is very expensive (like
40 times slower than a predicate), and it is often triggered.

That’s why we hardcode the following cases and check duplicable? instead of using the rescue idiom.

duplicable?

Is it possible to safely duplicate this object? Returns false for nil, false, true, symbols, numbers, class and
module objects, true otherwise.

active_support/core_ext/object/inclusion

in?(object)

Returns true if this object is included in the argument. The argument must respond to include?.

1 characters = %w(Hulk Thor Hawkeye)

2

3 >> "Thor".in?(characters)

4 => true

active_support/core_ext/object/instance_variables

instance_values

Returns a hash that maps instance variable names without “@” to their corresponding values. Keys are strings
both in Ruby 1.8 and 1.9.

Active Support API Reference 710

1 class C

2 def initialize(x, y)

3 @x, @y = x, y

4 end

5 end

6

7 C.new(0, 1).instance_values # => {"x" => 0, "y" => 1}

instance_variable_names

Returns an array of instance variable names including “@”.

1 class C

2 def initialize(x, y)

3 @x, @y = x, y

4 end

5 end

6

7 C.new(0, 1).instance_variable_names # => ["@y", "@x"]

active_support/core_ext/object/json

to_json

A basic definition of to_json which prevents calls to to_json from going directly to the json gem on the
following core classes:

• Object

• Array

• FalseClass

• Float

• Hash

• Integer

• NilClass

• String

• TrueClass

active_support/core_ext/object/to_param

to_param

Alias of to_s.

Active Support API Reference 711

active_support/core_ext/object/to_query

to_query(key)

Converts an object into a string suitable for use as a URL query string, using the given key as the param name.

active_support/core_ext/object/try

try(*a, &block)

Attempts to call a public method whose name is the first argument. Unlike public_send, if the object does
not respond to the method, nil is returned rather than an exception being raised.

This simplifies:

@person ? @person.name : nil

to

@person.try(:name)

If try is invoked without arguments, it yields the receiver unless it’s nil.

@person.try do |p|

...

end

Arguments and blocks are forwarded to the method if invoked:

@posts.try(:each_slice, 2) do |a, b|

...

end

active_support/core_ext/object/with_options

with_options(options)

An elegant way to refactor out common options.

Active Support API Reference 712

1 class Post < ActiveRecord::Base

2 with_options(dependent: :destroy) do |post|

3 post.has_many :comments

4 post.has_many :photos

5 end

6 end

active_support/dependencies

load(file, *extras)

Rails overrides Ruby’s built-in load method to tie it into the Dependencies subsystem.

require(file, *extras)

Rails overrides Ruby’s built-in require method to tie it into the Dependencies subsystem.

require_dependency(file_name, file_name, message = "No such file to load -- %s")

Used internally by Rails. Invokes Dependencies.depend_on(file_name).

require_or_load(file_name)

Used internally by Rails. Invokes Dependencies.require_or_load(file_name).

unloadable(const_desc)

Marks the specified constant as unloadable. Unloadable constants are removed each time dependencies are
cleared.

Note that marking a constant for unloading need only be done once. Setup or init scripts may list each
unloadable constant that will need unloading; constants marked in this way will be removed on every
subsequent Dependencies.clear, as opposed to the first clear only.

The provided constant descriptor const_desc may be a (nonanonymous) module or class, or a qualified
constant name as a string or symbol.

Returns true if the constant was not previously marked for unloading, false otherwise.

ActiveSupport::OrderedHash

active_support/ordered_hash

A hash implementation that preserves the ordering of its elements. It’s namespaced to prevent conflicts with
other implementations, but you can assign it to a top-level namespace if you don’t want to constantly use the
fully qualified name:

Active Support API Reference 713

>> oh = ActiveSupport::OrderedHash.new

=> []

>> oh[:one] = 1

=> 1

>> oh[:two] = 2

=> 2

>> oh[:three] = 3

=> 3

>> oh

=> [[:one, 1], [:two, 2], [:three, 3]]

Note that as of Ruby 1.9, hashes preserve their insertion order.

ActiveSupport::OrderedOptions

active_support/ordered_options

A subclass of Hash that adds a method-missing implementation so that hash elements can be accessed and
modified using normal attribute semantics, dot-notation:

1 def method_missing(name, *args)

2 if name.to_s =~ /(.*)=$/

3 self[$1.to_sym] = args.first

4 else

5 self[name]

6 end

7 end

ActiveSupport::PerThreadRegistry

active_support/per_thread_registry

A module that encapsulates access to thread local variables, which prevents the polluting of the thread locals
namespace. Instead of setting and getting variables via Thread.current:

Thread.current[:handler]

you can define a class that extends ActiveSupport::PerThreadRegistry.

Active Support API Reference 714

1 class Registry

2 extend ActiveSupport::PerThreadRegistry

3

4 attr_accessor :handler

5 end

This creates class level methods to get/set attributes on the current thread based on the defined accessors.

>> Registry.handler

=> nil

>> Registry.handler = handler

=> #<Object:0x007fbeb326ea20>

>> Registry.handler

=> #<Object:0x007fbeb326ea20>

The key on Thread.current for the above example would be the class name “Registry”.

>> Thread.current["Registry"]

=> #<Registry:0x007fbeb3279880 @handler=#<Object:0x007fbeb326ea20>>

ActiveSupport::ProxyObject

A class with no predefined methods that behaves similarly to Builder’s BlankSlate. Used for proxy classes
and can come in handy when implementing domain-specific languages in your application code.

active_support/proxy_object

The implementation of ProxyObject inherits from BasicObject, and un-defines two methods, and allows
exceptions to be raised. The implementation is reproduced here for your reference.

1 class ProxyObject < ::BasicObject

2 undef_method :==

3 undef_method :equal?

4

5 # Let ActiveSupport::ProxyObject at least raise exceptions.

6 def raise(*args)

7 ::Object.send(:raise, *args)

8 end

9 end

Active Support API Reference 715

ActiveSupport::Railtie

active_support/railtie

Contains Active Support’s initialization routine for itself and the I18n subsystem.

If you’re depending on Active Support outside of Rails, you should be aware of what happens in this Railtie
in case you end up needing to replicate it in your own code.

1 module ActiveSupport

2 class Railtie < Rails::Railtie # :nodoc:

3 config.active_support = ActiveSupport::OrderedOptions.new

4

5 config.eager_load_namespaces << ActiveSupport

6

7 initializer "active_support.deprecation_behavior" do |app|

8 if deprecation = app.config.active_support.deprecation

9 ActiveSupport::Deprecation.behavior = deprecation

10 end

11 end

12

13 # Sets the default value for Time.zone

14 # If assigned value cannot be matched to a TimeZone, an exception will be raised.

15 initializer "active_support.initialize_time_zone" do |app|

16 require 'active_support/core_ext/time/zones'

17 zone_default = Time.find_zone!(app.config.time_zone)

18

19 unless zone_default

20 raise 'Value assigned to config.time_zone not recognized. ' \

21 'Run "rake -D time" for a list of tasks for finding appropriate time zone names.'

22 end

23

24 Time.zone_default = zone_default

25 end

26

27 # Sets the default week start

28 # If assigned value is not a valid day symbol

29 # (e.g. :sunday, :monday, ...), an exception will be raised.

30 initializer "active_support.initialize_beginning_of_week" do |app|

31 require 'active_support/core_ext/date/calculations'

32 beginning_of_week_default = Date.

33 find_beginning_of_week!(app.config.beginning_of_week)

34

35 Date.beginning_of_week_default = beginning_of_week_default

36 end

Active Support API Reference 716

37

38 initializer "active_support.set_configs" do |app|

39 app.config.active_support.each do |k, v|

40 k = "#{k}="

41 ActiveSupport.send(k, v) if ActiveSupport.respond_to? k

42 end

43 end

44 end

45 end

Range

Extensions to Ruby’s Range class.

active_support/core_ext/range/conversions

to_formatted_s(format = :default)

Generates a formatted string representation of the range.

>> (20.days.ago..10.days.ago).to_formatted_s

=> "Fri Aug 10 22:12:33 -0400 2007..Mon Aug 20 22:12:33 -0400 2007"

>> (20.days.ago..10.days.ago).to_formatted_s(:db)

=> "BETWEEN '2007-08-10 22:12:36' AND '2007-08-20 22:12:36'"

active_support/core_ext/range/each

For internal use by Rails. Disables the ability to iterate over a range of ActiveSupport::TimeWithZone due to
significant performance issues.

active_support/core_ext/range/include_range

include?(value)

Extends the default Range#include? to support range comparisons.

Active Support API Reference 717

>> (1..5).include?(1..5)

=> true

>> (1..5).include?(2..3)

=> true

>> (1..5).include?(2..6)

=> false

The native include? behavior is untouched.

>> ("a".."f").include?("c")

=> true

>> (5..9).include?(11)

=> false

active_support/core_ext/range/overlaps

overlaps?(other)

Compare two ranges and see if they overlap each other

>> (1..5).overlaps?(4..6)

=> true

>> (1..5).overlaps?(7..9)

=> false

active_support/core_ext/enumerable

sum(identity = 0)

Optimize range sum to use arithmetic progression if a block is not given and we have a range of numeric
values.

Regexp

Extensions to Ruby’s Regexp class.

active_support/core_ext/regexp

multiline?

Returns true if a multiline regular expression.

Active Support API Reference 718

active_support/json/encoding

as_json

Returns self.to_s.

ActiveSupport::Rescuable

The Rescuable module is a Concern that adds support for easier exception handling. Used within Rails
primarily in controller actions, but potentially very useful in your own libraries too.

active_support/rescuable

rescue_from(*klasses, &block)

The rescue_from method receives a series of exception classes or class names, and a trailing :with option
with the name of a method or a Proc object to be called to handle them. Alternatively a block can be given.

Handlers that take one argument will be called with the exception, so that the exception can be inspected
when dealing with it.

Handlers are inherited. They are searched from right to left, from bottom to top, and up the hierarchy. The
handler of the first class for which exception.is_a?(klass) returns true is the one invoked, if any.

Here’s some example code taken from Action Controller.

1 class ApplicationController < ActionController::Base

2 rescue_from User::NotAuthorized, with: :deny_access

3 rescue_from ActiveRecord::RecordInvalid, with: :show_errors

4

5 rescue_from 'MyAppError::Base' do |exception|

6 render xml: exception, status: 500

7 end

8

9 protected

10 def deny_access

11 ...

12 end

13

14 def show_errors(exception)

15 exception.record.new? ? ...

16 end

17 end

String

Extensions to Ruby’s String class.

Active Support API Reference 719

active_support/json/encoding

as_json

Returns self.

encode_json

Returns JSON escaped version of self.

active_support/core_ext/object/blank

blank?

Returns true if the string consists of only whitespace.

1 class String

2 def blank?

3 self !~ /\S/

4 end

5 end

active_support/core_ext/string/access

at(position)

Returns the character at position, treating the string as an array (where 0 is the first character). Returns nil
if the position exceeds the length of the string.

>> "hello".at(0)

=> "h"

>> "hello".at(4)

=> "o"

>> "hello".at(10)

=> nil

first(number)

Returns the first number of characters in a string.

Active Support API Reference 720

1 "hello".first # => "h"

2 "hello".first(2) # => "he"

3 "hello".first(10) # => "hello"

from(position)

Returns the remaining characters of a string from the position, treating the string as an array (where 0 is
the first character). Returns nil if the position exceeds the length of the string.

1 "hello".at(0) # => "hello"

2 "hello".at(2) # => "llo"

3 "hello".at(10) # => nil

last(number)

Returns the last number of characters in a string.

1 "hello".last # => "o"

2 "hello".last(2) # => "lo"

3 "hello".last(10) # => "hello"

to(position)

Returns the beginning of the string up to the position treating the string as an array (where 0 is the first
character). Doesn’t produce an error when the position exceeds the length of the string.

1 "hello".at(0) # => "h"

2 "hello".at(2) # => "hel"

3 "hello".at(10) # => "hello"

active_support/core_ext/string/behavior

Duck-types as a String-like class. See Object#acts_like? for more explanation.

1 class String

2 def acts_like_time?

3 true

4 end

5 end

active_support/core_ext/string/conversions

to_date

Uses Date.parse to turn a string into a Date.

Active Support API Reference 721

to_datetime

Uses Date.parse to turn a string into a DateTime.

to_time(form = :local)

Uses Date.parse to turn a string into a Time either using either :utc or :local (default).

active_support/core_ext/string/exclude

exclude?(other)

The inverse of include?. Returns true if self does not include the other string.

active_support/core_ext/string/filters

remove(pattern)

A convenience method for gsub(pattern, ''). It returns a new string with all occurrences of the pattern
removed.

remove!(pattern)

Performs a destructive remove. See remove.

squish

Returns the string, first removing all whitespace on both ends of the string, and then changing remaining
consecutive whitespace groups into one space each.

>> %{ Multi-line

string }.squish

=> "Multi-line string"

>> " foo bar \n \t boo".squish

=> "foo bar boo"

squish!

Performs a destructive squish. See squish.

truncate(length, options =)

Truncates a given text after a given length if text is longer than length. The last characters will be replaced
with the :omission (which defaults to “…”) for a total length not exceeding :length.

Pass a :separator to truncate text at a natural break.

Active Support API Reference 722

>> "Once upon a time in a world far far away".truncate(30)

=> "Once upon a time in a world..."

>> "Once upon a time in a world far far away".truncate(30, separator: ' ')

=> "Once upon a time in a world..."

>> "Once upon a time in a world far far away".truncate(14)

=> "Once upon a..."

>> "And they found that many people were sleeping better.".

truncate(25, omission: "... (continued)")

=> "And they f... (continued)"

active_support/core_ext/string/indent

indent(amount, indent_string=nil, indent_empty_lines=false)

Indents a string by the given amount.

>> "foo".indent(2)

=> " foo"

=> "foo\nbar"

>> " foo\n bar"

The second argument indent_string specifies what indent string to use. If no indent_string is specified, it
will use the first indented line, otherwise a space is used. If indent_empty_lines is set to true, empty lines
will also be indented.

indent!

Performs a destructive indent. See indent.

active_support/core_ext/string/inflections

String inflections define new methods on the String class to transform names for different purposes.

For instance, you can figure out the name of a database from the name of a class:

>> "ScaleScore".tableize

=> "scale_scores"

If you get frustrated by the limitations of Rails inflections, try themost excellent Linguistics library byMichael
Granger at https://github.com/ged/linguistics Linguistics. It doesn’t do all of the same inflections as Rails, but
the ones that it does do, it does better. (See titleize for an example.)

https://github.com/ged/linguistics

Active Support API Reference 723

camelcase

Alias for camelize.

camelize(first_letter = :upper)

By default, camelize converts strings to UpperCamelCase. If the argument to camelize is set to :lower,
then camelize produces lowerCamelCase. Also converts “/” to “::”, which is useful for converting paths to
namespaces.

>> "active_record".camelize

=> "ActiveRecord"

>> "active_record".camelize(:lower)

=> "activeRecord"

>> "active_record/errors".camelize

=> "ActiveRecord::Errors"

>> "active_record/errors".camelize(:lower)

=> "activeRecord::Errors"

classify

Creates a class name from a table name; used by Active Record to turn table names to model classes. Note
that the classify method returns a string and not a Class. (To convert to an actual class, follow classify

with constantize.)

>> "egg_and_hams".classify

=> "EggAndHam"

>> "post".classify

=> "Post"

constantize

The constantize method tries to find a declared constant with the name specified in the string. It raises a
NameError if a matching constant is not located.

>> "Module".constantize

=> Module

>> "Class".constantize

=> Class

dasherize

Replaces underscores with dashes in the string.

Active Support API Reference 724

>> "puni_puni"

=> "puni-puni"

demodulize

Removes the module prefixes from a fully qualified module or class name.

>> "ActiveRecord::CoreExtensions::String::Inflections".demodulize

=> "Inflections"

>> "Inflections".demodulize

=> "Inflections"

foreign_key(separate_class_name_and_id_with_underscore = true)

Creates a foreign key name from a class name.

"Message".foreign_key # => "message_id"

"Message".foreign_key(false) # => "messageid"

"Admin::Post".foreign_key # => "post_id"

humanize(options = {})

Capitalizes the first word of a string, turns underscores into spaces, and strips _id. Similar to the titleize

method in that it is intended for creating pretty output.

>> "employee_salary".humanize

=> "Employee salary"

>> "author_id".humanize

=> "Author"

Setting the :capitalize option to false results in the string being humanized without being capitalized.

>> "employee_salary".humanize(capitalize: false)

=> "employee salary"

parameterize(sep = '-')

Replaces special characters in a string with sep string so that it may be used as part of a pretty URL.

pluralize

Returns the plural form of the word in the string.

Active Support API Reference 725

1 "post".pluralize # => "posts"

2 "octopus".pluralize # => "octopi"

3 "sheep".pluralize # => "sheep"

4 "words".pluralize # => "words"

5 "the blue mailman".pluralize # => "the blue mailmen"

6 "CamelOctopus".pluralize # => "CamelOctopi"

safe_constantize

The safe_constantize method tries to find a declared constant with the name specified in the string. It
returns nil when the name is not in CamelCase or is not initialized.

singularize

The reverse of pluralize; returns the singular form of a word in a string.

1 "posts".singularize # => "post"

2 "octopi".singularize # => "octopus"

3 "sheep".singluarize # => "sheep"

4 "word".singluarize # => "word"

5 "the blue mailmen".singularize # => "the blue mailman"

6 "CamelOctopi".singularize # => "CamelOctopus"

tableize

Creates a plural and underscored database table name based on Rails conventions. Used by Active Record to
determine the proper table name for a model class. This method uses the pluralizemethod on the last word
in the string.

1 "RawScaledScorer".tableize # => "raw_scaled_scorers"

2 "egg_and_ham".tableize # => "egg_and_hams"

3 "fancyCategory".tableize # => "fancy_categories"

titlecase

Alias for titleize.

titleize

Capitalizes all thewords and replaces some characters in the string to create a nicer-looking title. The titleize
method is meant for creating pretty output and is not used in the Rails internals.

Active Support API Reference 726

>> "The light on the beach was like a sinus headache".titleize

=> "The Light On The Beach Was Like A Sinus Headache"

It’s also not perfect. Among other things, it capitalizes words inside the sentence that it probably shouldn’t,
like “a” and “the”.

underscore

The reverse of camelize. Makes an underscored form from the expression in the string. Changes “::” to “/” to
convert namespaces to paths.

1 "ActiveRecord".underscore # => "active_record"

2 "ActiveRecord::Errors".underscore # => active_record/errors

active_support/core_ext/string/inquiry

inquiry

Wraps the current string in the ActiveSupport::StringInquirer class, providing an elegant way to test for
equality.

1 env = 'production'.inquiry

2 env.production? # => true

3 env.development? # => false

active_support/core_ext/string/multibyte

Defines a mutibyte safe proxy for string methods.

mb_chars

The mb_chars method creates and returns an instance of ActiveSupport::Multibyte::Chars encapsulating
the original string. A Unicode safe version of all the String methods are defined on the proxy class. If the
proxy class doesn’t respond to a certain method, it’s forwarded to the encapsuled string.

>> name = 'Claus Müller'

>> name.reverse

=> "rell??M sualC"

>> name.length

=> 13

>> name.mb_chars.reverse.to_s

=> "rellüM sualC"

>> name.mb_chars.length

=> 12

Active Support API Reference 727

All the methods on the Chars proxy which normally return a string will return a Chars object. This allows
method chaining on the result of any of these methods.

>> name.mb_chars.reverse.length

=> 12

The Chars object tries to be as interchangeable with String objects as possible: sorting and comparing between
String and Charwork like expected. The bang! methods change the internal string representation in the Chars
object. Interoperability problems can be resolved easily with a to_s call.

For more information about the methods defined on the Chars proxy see ActiveSupport::Multibyte::Chars.
For information about how to change the default Multibyte behavior see ActiveSupport::Multibyte.

is_utf8?(suffix)

Returns true if the string has UTF-8 semantics, versus strings that are simply being used as byte streams.

active_support/core_ext/string/output_safety

html_safe

Returns an html-escaped version of self. See ERB::Util#html_escape for more information.

active_support/core_ext/string/starts_ends_with

Provides String with additional condition methods.

starts_with?(prefix)

Alias for start_with?.

‘ends_with?(suffix)

Alias for end_with?.

active_support/core_ext/string/strip

strip_heredoc

Strips indentation in heredocs. For example,

Active Support API Reference 728

1 if options[:usage]

2 puts <<-USAGE.strip_heredoc

3 This command does such and such.

4

5 Supported options are:

6 -h This message

7 ...

8 USAGE

9 end

would cause the user to see the usage message aligned against the left margin.

active_support/core_ext/string/in_time_zone

in_time_zone(zone = ::Time.zone)

Converts the string to a TimeWithZone in the current zone if Time.zone or Time.zone_default are set.
Otherwise returns String#to_time.

ActiveSupport::StringInquirer

Wrapping a string in this class gives you a prettier way to test for equality. The value returned by Rails.env

is wrapped in a StringInquirer object so instead of calling this:

Rails.env == "production"

you can call this:

Rails.env.production?

This class is really simple, so you only really want to do this with strings that contain no whitespace or special
characters.

>> s = ActiveSupport::StringInquirer.new("obie")

=> "obie"

>> s.obie?

=> true

Struct

Extensions to Ruby’s Struct class.

Active Support API Reference 729

active_support/core_ext/struct

to_h

Backports of Struct#to_h from Ruby 2.0 unless defined.

ActiveSupport::Subscriber

The ActiveSupport::Subscriber object is used to consume ActiveSupport::Notifications. The subscriber
dispatches notifications to a registered object based on its given namespace.

For example, a subscriber could collect statistics about Active Record queries:

1 module ActiveRecord

2 class StatsSubscriber < ActiveSupport::Subscriber

3 def sql(event)

4 Statsd.timing("sql.#{event.payload[:name]}", event.duration)

5 end

6 end

7 end

To attach a subscriber to a namespace, use the attach_to method.

1 ActiveRecord::StatsSubscriber.attach_to :active_record

Symbol

Extensions to Ruby’s Symbol class.

active_support/json/encoding

as_json

Returns to_s version of itself.

ActiveSupport::TaggedLogging

Wraps any standard Logger object to provide tagging capabilities.

active_support/tagged_logger

flush

Clear all tags and invoke the parent definition if it exists.

Active Support API Reference 730

tagged(*tags, &block)

Prefix tags to each log message in the yielded block.

1 logger = ActiveSupport::TaggedLogging.new(Logger.new(STDOUT))

2 logger.tagged("tr4w") { logger.info "Stuff" } # [tr4w] Stuff

ActiveSupport::TestCase

Inheriting from MiniTest::Unit::TestCase, adds Rails specific testing methods and behavior.

active_support/test_case

assert_no_match

Alias for refute_match for Test::Unit backwards compatibility.

assert_not_empty

Alias for refute_empty for Test::Unit backwards compatibility.

assert_not_equal

Alias for refute_equal for Test::Unit backwards compatibility.

assert_not_in_delta

Alias for refute_in_delta for Test::Unit backwards compatibility.

assert_not_in_epsilon

Alias for refute_in_epsilon for Test::Unit backwards compatibility.

assert_not_includes

Alias for refute_includes for Test::Unit backwards compatibility.

assert_not_instance_of

Alias for refute_instance_of for Test::Unit backwards compatibility.

assert_not_kind_of

Alias for refute_kind_of for Test::Unit backwards compatibility.

Active Support API Reference 731

assert_not_nil

Alias for refute_nil for Test::Unit backwards compatibility.

assert_not_operator

Alias for refute_operator for Test::Unit backwards compatibility

assert_not_predicate

Alias for refute_predicate for Test::Unit backwards compatibility

assert_not_respond_to

Alias for refute_respond_to for Test::Unit backwards compatibility

assert_not_same

Alias for refute_same for Test::Unit backwards compatibility

assert_nothing_raised(*args)

Tests if the block doesn’t raise an exception.

assert_raise

Alias for assert_raises for Test::Unit backwards compatibility

ActiveSupport::Testing::Assertions

active_support/testing/assertions

Rails adds a number of assertions to the basic ones provided with MiniTest.

assert_difference(expressions, difference = 1, message = nil, &block)

Tests whether a numeric difference in the return value of an expression is a result of what is evaluated in the
yielded block. (Easier to demonstrate than to explain!)

The following example eval’s the expression Article.count and saves the result. Then it yields to the block,
which will execute the post :create and return control to the assert_difference method. At that point,
Article.count is eval’d again, and the difference is asserted to be 1 (the default difference).

Active Support API Reference 732

1 assert_difference 'Article.count' do

2 post :create, article: {...}

3 end

Any arbitrary expression can be passed in and evaluated:

1 assert_difference 'assigns(:article).comments(:reload).size' do

2 post :create, comment: {...}

3 end

Arbitrary difference values may be specified. The default is 1, but negative numbers are okay too:

1 assert_difference 'Article.count', -1 do

2 post :delete, id: ...

3 end

An array of expressions can also be passed in—each will be evaluated:

1 assert_difference ['Article.count', 'Post.count'], 2 do

2 post :create, article: {...}

3 end

A lambda or a list of lambdas can be passed in and evaluated:

1 assert_difference ->{ Article.count }, 2 do

2 post :create, article: {...}

3 end

4

5 assert_difference [->{ Article.count }, ->{ Post.count }], 2 do

6 post :create, article: {...}

7 end

A error message can be specified:

1 assert_difference 'Article.count', -1, "Article should be destroyed" do

2 post :delete, id: ...

3 end

assert_no_difference(expressions, message = nil, &block)

Tests that the return value of the supplied expression does not change as a result of what is evaluated in the
yielded block.

Active Support API Reference 733

1 assert_no_difference 'Article.count' do

2 post :create, article: invalid_attributes

3 end

assert_not(object, message = nil)

Assert that an expression is not truthy.

1 assert_not nil # => true

2 assert_not false # => true

3 assert_not 'foo' # => 'foo' is not nil or false

active_support/testing/time_helpers

travel(duration, &block)

Changes the current time to the time in the future or in the past by a given time difference. This is accomplished
by stubbing Time.now and Date.today.

1 Time.current # => Sat, 09 Nov 2013 15:34:49 EST -05:00

2 travel 1.day

3 Time.current # => Sun, 10 Nov 2013 15:34:49 EST -05:00

4 Date.current # => Sun, 10 Nov 2013

travel_to(date_or_time, &block)

Changes the current time to the supplied date or time. This is accomplished by stubbing Time.now and
Date.today.

Thread

Extensions to Ruby’s built-in Thread class.

active_support/core_ext/thread

freeze

Freeze thread local variables.

thread_variable?(key)

Returns true if the given string (or symbol) exists as a thread local variable.

Active Support API Reference 734

>> current_thread = Thread.current

=> #<Thread:0x007fd2c08c0da8 run>

>> current_thread.thread_variable?(:tr4w)

=> false

>> current_thread.thread_variable_set(:tr4w, 'is awesome')

=> "is awesome"

>> current_thread.thread_variable?(:tr4w)

=> true

thread_variable_get(key)

Returns the value of a thread local variable that has been set.

thread_variable_set(key, value)

Set a thread local variable .

>> Thread.current.thread_variable_set(:tr4w, 'is awesome')

=> "is awesome"

thread_variables

Returns an array of thread local variables represented as symbols.

>> Thread.current.thread_variables

=> [:tr4w]

Time

Extensions to Ruby’s built-in Time class.

active_support/json/encoding

as_json

Returns self as a JSON string. The ActiveSupport.use_standard_json_time_format configuration setting
determines whether the output is formatted using :xmlschema or the following pattern:

%(#{strftime("%Y/%m/%d %H:%M:%S")} #{formatted_offset(false)})

active_support/core_ext/time/acts_like

Duck-types as a Time-like class. See Object#acts_like? for more explanation.

Active Support API Reference 735

1 class Time

2 def acts_like_time?

3 true

4 end

5 end

active_support/core_ext/time/calculations

Contains methods that facilitate time calculations.

===(other)

Overriding case equality method so that it returns true for ActiveSupport::TimeWithZone instances.

+ (other)

Implemented by the plus_with_duration method. It allows addition of times like this:

expiration_time = Time.now + 3.days

- (other)

Implemented by the minus_with_duration method. It allows addition of times like this:

two_weeks_ago = Time.now - 2.weeks

<=>

Implemented by the compare_with_coercion method. Layers additional behavior on Time#eql? so that
ActiveSupport::TimeWithZone instances can be compared with Time instances.

advance(options)

Provides precise Time calculations. The options parameter takes a hash with any of the keys :months, :days,
:years, :hours, :minutes, and :seconds.

ago(seconds)

Returns a new Time representing the time a number of seconds into the past; this is basically a wrapper around
the Numeric extension of the same name. For the best accuracy, do not use this method in combination with
x.months; use months_ago instead!

all_day

Convenience method for beginning_of_day..end_of_day. Returns a Range representing the whole day of
the current time.

Active Support API Reference 736

all_month

Convenience method for beginning_of_month..end_of_month. Returns a Range representing the whole
month of the current time.

all_quarter

Convenience method for beginning_of_quarter..end_of_quarter. Returns a Range representing the whole
quarter of the current time.

all_week(start_day = Date.beginning_of_week)

Convenience method for beginning_of_week(start_day)..end_of_week(start_day). Returns a Range rep-
resenting the whole week of the current time.

all_year

Convenience method for beginning_of_year..end_of_year. Returns a Range representing the whole year of
the current time.

at_beginning_of_day / at_midnight / beginning_of_day / midnight

Returns a new Time object representing the “start” of the current instance’s day, hard-coded to 00:00 hours.

at_beginning_of_hour / beginning_of_hour

Returns a new Time object representing the start of the hour (hh:00:00). Implemented simply as change(min:
0).

at_beginning_of_minute / beginning_of_minute

Returns a new Time object representing the start of the minute (hh:mm:00). Implemented simply as
change(sec: 0).

at_beginning_of_quarter / beginning_of_quarter

Returns a new Time object representing the start of the calendar quarter (1st of January, April, July, October,
00:00 hours).

at_beginning_of_week

Alias for beginning_of_week.

at_beginning_of_year / beginning_of_year

Returns a new Time object representing the start of the year (1st of January, 00:00 hours).

Active Support API Reference 737

at_end_of_day / end_of_day

Returns a new Time object representing the end of a day (23:59:59). Implemented simply as change(hour: 23,

min: 59, sec: 59).

at_end_of_hour / end_of_hour

Returns a new Time object representing the end of the hour (hh:59:59). Implemented simply as change(min:
59, sec: 59).

at_end_of_minute / end_of_minute

Returns a new Time object representing the end of theminute (hh:mm:59). Implemented simply as change(sec:
59).

at_end_of_month / end_of_month

Returns a new Time object representing the end of the month (last day of the month at 23:59:59 hours).

at_end_of_quarter / end_of_quarter

Returns a new Time object representing the end of the quarter (31st of March, 30th June, 30th September, 31st
December, at 23:59:59 hours)

at_end_of_week

Alias for end_of_week.

at_end_of_year / end_of_year

Returns a new Time object representing the end of the year (last day of the year at 23:59:59 hours).

beginning_of_week(start_day = Date.beginning_of_week)

Returns a new Time object representing the “start” of the current instance’s week, defaulting to Date.beginning_-
of_week.

change(options)

Returns a new Timewhere one ormore of the elements have been changed according to the options parameter.
The valid date options are :year, :month, :day. The valid time options are :hour, :min, :sec, :offset, and
:start.

Time.current

Returns Time.zone.now when Time.zone or config.time_zone are set, otherwise returns Time.now.

Active Support API Reference 738

days_ago(days)

Returns a new Time object minus the specified number of days.

Time.days_in_month(month, year = nil)

Returns the number of days in the given month. If a year is given, February will return the correct number
of days for leap years. Otherwise, this method will always report February as having 28 days.

>> Time.days_in_month(7, 1974)

=> 31

days_since(days)

Returns a new Time object representing the time a number of specified days into the future.

days_to_week_start(start_day = Date.beginning_of_week)

Returns the number of days to the start of the week.

end_of_week(start_day = Date.beginning_of_week)

Returns a new Time object representing the “end” of the current instance’s week, with the week start_day

defaulting to Date.beginning_of_week.

future?

Returns true if the Time instance is in the future.

middle_of_day / noon

Returns a new Time object representing the middle of the day (12:00:00). Implemented simply as change(hour:
12).

last_month / prev_month

Convenience method for months_ago(1).

last_quarter / prev_quarter

Convenience method for months_ago(3).

last_week(start_day = Date.beginning_of_week) / prev_week

Returns a new Time object representing the given day in the previous week, with the week start_day

defaulting to Date.beginning_of_week.

Active Support API Reference 739

last_year / prev_year

Convenience method for years_ago(1).

monday

Convenience method for beginning_of_week(:monday).

months_ago(months)

Returns a new Time object representing the time a number of specified months into the past.

months_since(months)

The opposite of months_ago. Returns a new Time object representing the time a number of specified months

into the future.

next_month

Convenience method for months_since(1).

next_quarter

Convenience method for months_since(3).

next_week(given_day_in_next_week = Date.beginning_of_week)

Returns a new Time object representing the start of the given day in the following calendar week.

next_year

Convenience method for years_since(1).

seconds_since_midnight

Returns the number of seconds that have transpired since midnight.

seconds_until_end_of_day

Returns how many seconds left in the day until 23:59:59.

since(seconds) / in(seconds)

Returns a new Time representing the time a number of seconds into the future starting from the instance
time. This method is basically a wrapper around the Numeric extension of the same name. For best accuracy,
do not use this method in combination with x.months; use months_since instead!

Active Support API Reference 740

sunday

Convenience method for end_of_week(:monday).

today?

Returns true if the Time is today.

tomorrow

Returns a new Time object advanced by one day.

weeks_ago(weeks)

Returns a new Time object representing the time a number of specified weeks ago.

weeks_since(weeks)

Returns a new Time object representing the time a number of specified weeks into the future.

years_ago(years)

Returns a new Time object representing the time a number of specified years into the past.

years_since(years)

The opposite of years_ago. Returns a new Time object representing the time a number of specified years into
the future.

yesterday

Returns a new Time object subtracted by one day.

active_support/core_ext/time/conversions

Extensions to Ruby’s Time class to convert time objects into different convenient string representations and
other objects.

Date Formats

The DATE_FORMATS hash constant holds formatting patterns used by the to_formatted_s method to convert
a Time object into a string representation:

Active Support API Reference 741

1 DATE_FORMATS = {

2 :db => '%Y-%m-%d %H:%M:%S',

3 :number => '%Y%m%d%H%M%S',

4 :nsec => '%Y%m%d%H%M%S%9N',

5 :time => '%H:%M',

6 :short => '%d %b %H:%M',

7 :long => '%B %d, %Y %H:%M',

8 :long_ordinal => lambda { |time|

9 day_format = ActiveSupport::Inflector.ordinalize(time.day)

10 time.strftime("%B #{day_format}, %Y %H:%M")

11 },

12 :rfc822 => lambda { |time|

13 offset_format = time.formatted_offset(false)

14 time.strftime("%a, %d %b %Y %H:%M:%S #{offset_format}")

15 }

16 }

formatted_offset(colon = true, alternate_utc_string = nil)

Returns the UTC offset as an HH:MM formatted string.

1 Time.local(2000).formatted_offset # => "-06:00"

2 Time.local(2000).formatted_offset(false) # => "-0600"

to_formatted_s(format = :default)

Converts a Time object into a string representation. The :default option corresponds to the Time object’s own
to_s method.

>> time = Time.now

=> Thu Jan 18 06:10:17 CST 2007

>> time.to_formatted_s(:time)

=> "06:10"

>> time.to_formatted_s(:db)

=> "2007-01-18 06:10:17"

>> time.to_formatted_s(:number)

=> "20070118061017"

>> time.to_formatted_s(:short)

=> "18 Jan 06:10"

>> time.to_formatted_s(:long)

Active Support API Reference 742

=> "January 18, 2007 06:10"

>> time.to_formatted_s(:long_ordinal)

=> "January 18th, 2007 06:10"

>> time.to_formatted_s(:rfc822)

=> "Thu, 18 Jan 2007 06:10:17 -0600"

to_s

Aliased to to_formatted_s.

active_support/core_ext/time/marshal

Rails layers behavior on the _dump and _load methods so that utc instances can be flagged on dump, and
coerced back to utc on load.

Ruby 1.9.2 adds utc_offset and zone to Time, but marshaling only preserves utc_offset. Rails preserves
zone also, even though it may not work in some edge cases.

active_support/core_ext/time/zones

Extensions to Time having to do with support for time zones.

find_zone(time_zone)

Returns a TimeZone instance or nil it does not exist.

>> Time.find_zone("Eastern Time (US & Canada)")

=> #<ActiveSupport::TimeZone:0x007fd2c0bc49c8

@name="Eastern Time (US & Canada)", ...>

find_zone!(time_zone)

Same as find_zone, except it raises an ArgumentError if an invalid time_zone is provided.

in_time_zone(zone = ::Time.zone)

Returns the simultaneous time in the supplied zone.

Active Support API Reference 743

>> Time.zone = 'Hawaii'

=> "Hawaii"

>> Time.utc(2000).in_time_zone

=> Fri, 31 Dec 1999 14:00:00 HST -10:00

use_zone(time_zone, &block)

Allows override of Time.zone locally inside supplied block; resets Time.zone to existing value when done.

>> Date.today

=> Wed, 02 Jun 2010

>> Time.use_zone(ActiveSupport::TimeZone['Hong Kong']) { Date.today }

=> Thu, 03 Jun 2010

zone

Returns the TimeZone for the current request, if this has been set (via Time.zone=). If Time.zone has not been
set for the current request, returns the TimeZone specified in config.time_zone.

zone=(time_zone)

Sets Time.zone to a TimeZone object for the current request/thread.

This method accepts any of the following:

• A Rails TimeZone object.
• An identifier for a Rails TimeZone object (e.g., “Eastern Time (US & Canada)”, -5.hours).
• A TZInfo::Timezone object.
• An identifier for a TZInfo::Timezone object (e.g., “America/New_York”).

Here’s an example of how you might set Time.zone on a per request basis. The code assumes that current_-
user.time_zone returns a string identifying the user’s preferred TimeZone:

1 class ApplicationController < ActionController::Base

2 before_action :set_time_zone

3

4 def set_time_zone

5 Time.zone = current_user.time_zone

6 end

7 end

Active Support API Reference 744

ActiveSupport::TimeWithZone

A Time-like class that can represent a time in any time zone. Necessary because standard Ruby Time instances
are limited to UTC and the system’s ENV['TZ'] zone.

You shouldn’t ever need to create a TimeWithZone instance directly via new. Rails provides the methods local,
parse, at and now on TimeZone instances, and in_time_zone on Time and DateTime instances, for a more user-
friendly syntax.

>> Time.zone = 'Eastern Time (US & Canada)'

=> 'Eastern Time (US & Canada)'

>> Time.zone.local(2007, 2, 10, 15, 30, 45)

=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.parse('2007-02-01 15:30:45')

=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.at(1170361845)

=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.now

=> Sun, 18 May 2008 13:07:55 EDT -04:00

>> Time.utc(2007, 2, 10, 20, 30, 45).in_time_zone

=> Sat, 10 Feb 2007 15:30:45 EST -05:00

See Time and ActiveSupport::TimeZone for further documentation of these methods.

TimeWithZone instances implement the same API as Ruby Time instances, so that Time and TimeWithZone

instances are interchangeable.

>> t = Time.zone.now

=> Sun, 18 May 2008 13:27:25 EDT -04:00

>> t.class

=> ActiveSupport::TimeWithZone

>> t.hour

=> 13

>> t.dst?

=> true

>> t.utc_offset

=> -14400

Active Support API Reference 745

>> t.zone

=> "EDT"

>> t.to_s(:rfc822)

=> "Sun, 18 May 2008 13:27:25 -0400"

>> t + 1.day

=> Mon, 19 May 2008 13:27:25 EDT -04:00

>> t.beginning_of_year

=> Tue, 01 Jan 2008 00:00:00 EST -05:00

>> t > Time.utc(1999)

=> true

>> t.is_a?(Time)

=> true

ActiveSupport::TimeZone

The TimeZone class serves as a wrapper around TZInfo::Timezone instances. It allows Rails to do the
following:

• Limit the set of zones provided by TZInfo to a meaningful subset of 146 zones
• Retrieve and display zones with a friendlier name (e.g., “Eastern Time (US & Canada)” instead of
“America/New_York”)

• Lazily load TZInfo::Timezone instances only when they’re needed
• Create ActiveSupport::TimeWithZone instances via TimeZone’s local, parse, at and now methods.

If you set config.time_zone in an initializer, you can access this TimeZone object via Time.zone:

1 config.time_zone = "Eastern Time (US & Canada)"

2

3 Time.zone # => #<TimeZone:0x514834...>

4 Time.zone.name # => "Eastern Time (US & Canada)"

5 Time.zone.now # => Sun, 18 May 2008 14:30:44 EDT -04:00

active_support/values/time_zone

The version of TZInfo bundled with Active Support only includes the definitions necessary to support the
zones defined by the TimeZone class. If you need to use zones that aren’t defined by TimeZone, you’ll need
to install the TZInfo gem. If a recent version of the gem is installed locally, this will be used instead of the
bundled version.

Active Support API Reference 746

<=> (other)

Compares this timezone to the parameter. The two are compared first based on their offsets, and then by
name.

=∼(re)

Compare name and TZInfo identifier to a supplied regexp. Returns true if a match is found.

TimeZone[] (arg)

Locates a specific timezone object. If the argument is a string, it is interpreted to mean the name of the
timezone to locate.

>> ActiveSupport::TimeZone['Dublin']

=> #<TimeZone:0x3208390 @name="Dublin", @utc_offset=nil ...>

If it is a numeric value it is either the hour offset, or the second offset, of the timezone to find. (The first one
with that offset will be returned.)

Returns nil if no such timezone is known to the system.

TimeZone.all

Returns an array of all 146 TimeZone objects. There are multiple TimeZone objects per timezone (in many
cases) to make it easier for users to find their own timezone.

>> ActiveSupport::TimeZone.all

=> [#<ActiveSupport::TimeZone:0x551c34...

at(seconds)

Creates a new ActiveSupport::TimeWithZone instance in time zone of self from the number of seconds
since the Unix epoch.

1 Time.zone = 'Hawaii' # => "Hawaii"

2 Time.utc(2000).to_f # => 946684800.0

3 Time.zone.at(946684800.0) # => Fri, 31 Dec 1999 14:00:00 HST -10:00

TimeZone.create(name, offset)

Creates a new TimeZone instance with the given name and offset.

Active Support API Reference 747

>> ActiveSupport::TimeZone.create("Atlanta", -5.hours)

=> #<ActiveSupport::TimeZone:0x007fd2c136b118 @name="Atlanta",

@utc_offset=-18000 seconds, @tzinfo=#<TZInfo::TimezoneProxy: Atlanta>,

@current_period=nil>

TimeZone.find_tzinfo(name)

Returns a TZInfo instance matching the specified name.

formatted_offset(colon=true, alternate_utc_string = nil)

Returns the offset of this timezone as a formatted string, in the format HH:MM. If the offset is zero, this method
will return an empty string. If colon is false, a colon will not be inserted into the output.

initialize(name, utc_offset = nil, tzinfo = nil)

Create a new TimeZone object with the given name and offset. The offset is the number of seconds that this
time zone is offset from UTC (GMT). Seconds were chosen as the offset unit because that is the unit that Ruby
uses to represent time zone offsets (see Time#utc_offset). The tzinfo parameter can be explicitly passed in,
otherwise the name will be used to find it: TimeZone.find_tzinfo(name)

local(*args)

Creates a new ActiveSupport::TimeWithZone instance in time zone of self from given values.

local_to_utc(time, dst=true)

Adjust the given time to the simultaneous time in UTC. Returns a Time.utc() instance.

now

Returns Time.now adjusted to this timezone.

>> Time.now

=> 2013-10-16 17:45:49 -0400

>> ActiveSupport::TimeZone['Hawaii'].now

=> Wed, 16 Oct 2013 11:46:05 HST -10:00

parse(str, now=now)

Creates a new ActiveSupport::TimeWithZone instance in time zone of self from parsed string.

Active Support API Reference 748

>> Time.zone = 'Hawaii'

=> "Hawaii"

>> Time.zone.parse('1999-12-31 14:00:00')

=> Fri, 31 Dec 1999 14:00:00 HST -10:00

period_for_local(time, dst=true)

Method exists so that TimeZone instances respond like TZInfo::Timezone.

period_for_utf(time)

Method exists so that TimeZone instances respond like TZInfo::Timezone.

TimeZone.seconds_to_utc_offset(seconds, colon = true)

Assumes self represents an offset from UTC in seconds (as returned from Time#utc_offset) and turns this
into an +HH:MM formatted string.

1 ActiveSupport::TimeZone.seconds_to_utc_offset(-21_600) # => "-06:00"

to_s

Returns a textual representation of this timezone.

1 ActiveSupport::TimeZone['Dublin'].to_s # => "(GMT+00:00) Dublin"

today

Returns the current date in this timezone.

>> Date.today

=> Wed, 16 Oct 2013

>> ActiveSupport::TimeZone['Darwin'].today

=> Thu, 17 Oct 2013

TimeZone.us_zones

A convenience method for returning a collection of TimeZone objects for timezones in the USA.

Active Support API Reference 749

>> ActiveSupport::TimeZone.us_zones.map(&:name)

=> ["Hawaii", "Alaska", "Pacific Time (US & Canada)", "Arizona",

"Mountain Time (US & Canada)", "Central Time (US & Canada)", "Eastern

Time (US & Canada)", "Indiana (East)"]

utc_offset

Returns the offset of this time zone from UTC in seconds.

utc_to_local(time)

Adjust the given time to the simultaneous time in the timezone.

TrueClass

active_support/core_ext/object/blank

blank?

Returns false.

active_support/json/encoding

as_json

Returns "true".

ActiveSupport::XmlMini

The XmlMini module contains code that allows Rails to serialize/deserialize and parse XML using a number
of different libraries.

• JDOM (requires JRuby)
• LibXML (fast native XML parser)
• Nokogiri (requires nokogiri gem)

active_support/xml_mini

If you’re doing anything of significance with XML in your application, you should definitely use the super-fast
native libxml parser. Install the binaries (instructions vary depending on platform) then the Ruby binding:

Active Support API Reference 750

gem 'libxml-ruby', '=0.9.7'

Set XmlMini to use libxml in application.rb or an initializer.

XmlMini.backend = 'LibXML'

Constants

The TYPE_NAMES constant holds a mapping of Ruby types to their representation when serialized as XML.

1 TYPE_NAMES = {

2 "Symbol" => "symbol",

3 "Fixnum" => "integer",

4 "Bignum" => "integer",

5 "BigDecimal" => "decimal",

6 "Float" => "float",

7 "TrueClass" => "boolean",

8 "FalseClass" => "boolean",

9 "Date" => "date",

10 "DateTime" => "dateTime",

11 "Time" => "dateTime",

12 "Array" => "array",

13 "Hash" => "hash"

14 }

The FORMATTING constant holds a mapping of lambdas that define how Ruby values are serialized to strings
for representation in XML.

1 FORMATTING = {

2 "symbol" => Proc.new { |symbol| symbol.to_s },

3 "date" => Proc.new { |date| date.to_s(:db) },

4 "dateTime" => Proc.new { |time| time.xmlschema },

5 "binary" => Proc.new { |binary| ::Base64.encode64(binary) },

6 "yaml" => Proc.new { |yaml| yaml.to_yaml }

7 }

The PARSING constant holds a mapping of lambdas used to deserialize values stored in XML back into Ruby
objects.

Active Support API Reference 751

1 PARSING = {

2 "symbol" => Proc.new { |symbol| symbol.to_sym },

3 "date" => Proc.new { |date| ::Date.parse(date) },

4 "datetime" => Proc.new {

5 |time| Time.xmlschema(time).utc rescue ::DateTime.parse(time).utc },

6 "integer" => Proc.new { |integer| integer.to_i },

7 "float" => Proc.new { |float| float.to_f },

8 "decimal" => Proc.new { |number| BigDecimal(number) },

9 "boolean" => Proc.new {

10 |boolean| %w(1 true).include?(boolean.strip) },

11 "string" => Proc.new { |string| string.to_s },

12 "yaml" => Proc.new { |yaml| YAML::load(yaml) rescue yaml },

13 "base64Binary" => Proc.new { |bin| ::Base64.decode64(bin) },

14 "binary" => Proc.new { |bin, entity| _parse_binary(bin, entity) },

15 "file" => Proc.new { |file, entity| _parse_file(file, entity) }

16 }

1 PARSING.update(

2 "double" => PARSING["float"],

3 "dateTime" => PARSING["datetime"]

4)

Rails Essentials
Chances are you learned about Rails from watching beginner screencasts or studying our highly-rated
companion in the Pro Ruby Series, the excellent Ruby on Rails Tutorial by Michael Hartl. Those resources
will get you through the initial slope of the learning curve and on a trajectory towards serious productivity.
But to continue making progress, it helps to know the tools that real Rails masters use every day.

Environmental Concerns

No, I’m not about to go off on a tangent about carbon credits and global warming. As a Rails pro, you’re going
to spend a lot of time using the command line, so you might as well save yourself as much confusion and
extra typing as possible. The following little tips and tricks should make your life easier and more enjoyable.

Operating System

While it is certainly possible to write Rails application on a Windows platform, and quite a few people do
that, it is far from being optimal.

The fact is, your application is most probably going to run on a Linux server in production, and so, being able
to install all the essential pieces locally is very important. Many of the gems that you might want to use will
simply refuse to compile in a non-Unix environment.

Note that while your server is most probably runs Linux, you can quite easily use OS X as your development
environment. At first glance this goes against the notion of running the same OS as the server, but fortunately
most Rails developers use Apple machines for development and so historically they’ve made sure all relevant
gems and software packages are available and compatible with those from the Linux environment. Practically
all the gems that can be compiled on Linux will happily compile on OS X as well.

If you are stuckwithWindows as your developmentmachine it is usually better to run a Linux virtual machine
to host the Ruby environment. Check out Vagrant¹ for easy installation of development virtual machines.

Aliases

At minimum you should add aliases for starting your Rails server and console to your shell’s execution
environment. Geoffrey Grosenbach suggests alias ss 'bundle exec rails server' and alias sc 'bundle

exec rails console'.

Vitaly says…
You might want to add –debugger to your aliases if you always include a debugger gem in your
applications

¹http://www.vagrantup.com

http://www.vagrantup.com
http://www.vagrantup.com

Rails Essentials 753

Essential Gems

Some gems are so valuable that (arguably) they should be a part of the core Rails distribution. However,
because of the “less is more” philosophy of the core team, the Rails core distribution is actually shrinking, not
growing.

The following section contains an alphabetical list of essential gems for the Rails pro to be aware of and use
on a regular basis.

Better Errors

https://github.com/charliesome/better_errors

Better Errors replaces the standard Rails error page with a much better and more useful error page. It is also
usable outside of Rails in any Rack app as Rack middleware.

Instead of a plain default error page, Better Errors will display a full interactive stack trace with source code
inspection.

If you also include the companion binding_of_caller² gem into your application Better Errors will be able to
also let you inspect local and instance variables and even embed a full REPL into every stack frame of your
error page backtrace. Of course you should only ever do that in a development environment.

To use it simply add the following to your Gemfile:

1 group :development do

2 gem "better_errors"

3 gem 'binding_of_caller'

4 end

Country Select

https://github.com/stefanpenner/country_select

This plugin, previously in Rails core, provides a simple way to get an HTML select tag with a list of countries.
It lists countries as their full names and can optionally take a list of priority countries to display at the top of
the options. It is English only and provides no i18n support.

Debugger

https://github.com/cldwalker/debugger

Debugger is a fork of a once-popular ruby-debug and ruby-debug19 gems. It will work with Ruby 1.8.7, and
1.9.x out of the box.

With the ruby-debug and ruby-debug19 gems, you had to choose one of them according to your Ruby version,
whereas debugger will just work. Debugger is usually added to the :development and :test groups of your
Gemfile.

²https://github.com/banister/binding_of_caller

https://github.com/charliesome/better_errors
https://github.com/banister/binding_of_caller
https://github.com/stefanpenner/country_select
https://github.com/cldwalker/debugger
https://github.com/banister/binding_of_caller

Rails Essentials 754

Once installed you can simply add a call to debuggermethod in any place of your code to force the execution
of the application to stop and start Debugger REPL.

Draper

https://github.com/drapergem/draper

As Rails applications grow, so can the complexity in the view layer. Some common symptoms for a complex
view can include if/else conditions, multiple instance variables, and extensive chaining. The Draper gem
provides an elegant solution to this problem by adding an object-oriented layer of presentation logic to your
Rails application.

Instead of using a model instance variable directly in a view, using Draper, one can define a decorator instead.
A decorator wraps an instance of a model with presentation-related logic. This allows you to encompass view
specific logic for a model in one place. Not only is this a cleaner solution, it’s also easier to test, as Draper
supports RSpec, MiniTest::Rails, and Test::Unit out of the box.

To get started, add the draper gem to your Gemfile and run bundle.

Gemfile

gem 'draper'

Towrite a decorator for amodel, create a new class in app/decoratorswhich inherits from Draper::Decorator.
For the purposes of our examples, assume we have an Active Record model Post that we wish to decorate.

1 # app/decorators/post_decorator.rb

2 class PostDecorator < Draper::Decorator

3 ...

4 end

Draper also comes with a Rails generator to automatically create a decorator for a given model.

$ rails generate decorator Post

Within a decorator, you can access the underlying model via the objectmethod. Draper also provides access
to Rails helpers within your decorators via the hmethod. To demonstrate, the method below renders an avatar
if the post author has one.

https://github.com/drapergem/draper

Rails Essentials 755

1 # app/decorators/post_decorator.rb

2 class PostDecorator < Draper::Decorator

3 ...

4 def author_avatar

5 return unless object.author.avatar?

6 h.image_tag(object.author.avatar, class: 'avatar')

7 end

8 end

To assign a decorator to an object, call the decoratemethod on a given object instance. This will automatically
infer the decorator based on the object.

@post = Post.first.decorate

Alternatively, you can always explicitly instantiate a decorator yourself, supplying an instance of the
decorated model as its argument.

@post = PostDecorator.new(Post.first)

Note that Draper also supports decoration on a collection. Each item in the collection will be decorated with
the inferred decorator.

@posts = Posts.all.decorate

Kaminari

https://github.com/amatsuda/kaminari

One frequent need in a Rails application is paginating the database query results. For a long time the number
one plugin to do it was will_paginate, but lately it is being replaced by a better alternative - “Kaminari”.

“A Scope & Engine based, clean, powerful, customizable and sophisticated paginator for Rails”

The interface is scope based. For example, to paginate a list of projects you can do this:

@projects = Project.page(params[:page])

One area where Kaminari shines is customization. If you need a custom markup for your pagination links
you don’t need to edit obscure configuration files. Instead, you just edit html templates. To get the templates
to customize run the following command:

https://github.com/amatsuda/kaminari

Rails Essentials 756

$ rails g kaminari:views THEME

where THEME is ‘default’ or one of the themes from https://github.com/amatsuda/kaminari_themes.

Nested Form Fields

https://github.com/ncri/nested_form_fields

It’s super common to want to edit records along with their has_many associations on a single page.

This Rails gem helps creating forms for models with nested has_many associations and relies on jQuery to
dynamically add and remove nested form fields without a page reload.

• Works for arbitrarily deeply nested associations (tested up to 4 levels).
• Works with form builders like simple_form.
• Requires at least Ruby 1.9 and the Rails asset pipeline

To install, add nested_form_fields to your application’s Gemfile, run bundle and in your application.js file
add:

//= require nested_form_fields

Usage is straightforward. The Readme file uses the following example (assuming that you have a User model
with nested videos):

1 class User < ActiveRecord::Base

2 has_many :videos

3 accepts_nested_attributes_for :videos, allow_destroy: true

4 end

Use the nested_fields_for helper inside your user form to add the video fields:

1 = form_for @user do |f|

2 = f.nested_fields_for :videos do |ff|

3 = ff.text_field :video_title

4 ..

Links to add and remove fields can be added using the add_nested_fields_link and remove_nested_-

fields_link helpers:

https://github.com/amatsuda/kaminari_themes
https://github.com/ncri/nested_form_fields

Rails Essentials 757

1 = form_for @user do |f|

2 = f.nested_fields_for :videos do |ff|

3 = ff.remove_nested_fields_link

4 = ff.text_field :video_title

5 ..

6 = f.add_nested_fields_link :videos

Note that remove_nested_fields_link needs to be called within the nested_fields_for call and add_-

nested_fields_link outside of it via the parent builder.

Pry and friends

Pry³ is a powerful alternative to the standard IRB shell for Ruby. It features syntax highlighting, a flexible
plugin architecture, runtime invocation and source and documentation browsing.

The pry plugin pry-debugger⁴ adds navigation commands via the debugger (formerly ruby-debug) gem.

These two gems allow you to debug like a pro. Instead of debugger you use binding.pry as your breakpoint
command.

Once the execution stops you have all the power of Pry, including syntax highlighted source listing, variables
inspections, shell access etc.

To use Pry, just add the following two gems to your Gemfile development and test groups:

1 group :development, :test do

2 gem 'pry-rails'

3 gem 'pry-debugger'

4 end

Note that the standard debugger commands won’t work at a Pry prompt. Try help to see available commands.

You add the following to ∼/.pryrc file to make the n, c, s, f, and l work as before:

1 Pry.commands.alias_command 'l', 'whereami'

2 Pry.commands.alias_command 'c', 'continue'

3 Pry.commands.alias_command 'n', 'next'

4 Pry.commands.alias_command 's', 'step'

5 Pry.commands.alias_command 'f', 'finish'

Another useful pry plugin to be aware of is pry-rescue⁵. If an exception is raised and is not rescued,
pry-rescue will automatically start a Pry session for you.

³http://pryrepl.org
⁴https://github.com/nixme/pry-debugger
⁵https://github.com/ConradIrwin/pry-rescue

http://pryrepl.org
https://github.com/nixme/pry-debugger
https://github.com/ConradIrwin/pry-rescue

Rails Essentials 758

Rails Admin

https://github.com/sferik/rails_admin

Unlike some other frameworks, for example Django, Rails doesn’t come with a standard admin interface. Not
to worry though, as there is no shortage of gems that provide this functionality.

Rails Admin is one of the better looking and functional ones.

It will allow you to display, create, edit, and delete records in the database, export data to CSV, JSON, or XML
formats, manage your record associations and more.

To install it just add ‘rails_admin’ gem to your Gemfile, run bundle install and then run the provided
generator:

$ rails g rails_admin:install

Rails Admin uses devise for authentication and will install it if it is not yet present in your project.

It is recommended to use a separate user model Admin in a separate table admins to authenticate access to the
admin interface as it is less susceptible to accidental security exposure.

Remote debugger In you are using Pow or any other web server that runs in a background, you can not
directly use the debugger console. In this case remote debugger can be used.

Add the following code to the bottom of config/application.rb:

1 if ENV['RUBY_DEBUG_PORT']

2 Debugger.start_remote nil, ENV['RUBY_DEBUG_PORT'].to_i

3 end

Now you just need to start your server with RUBY_DEBUG_PORT environment variable set to a port value, like
25001, to enable remote debugger.

To connect to this server you use rdebug command line:

$ rdebug -c -p 25001

Simple Form

Generating complex forms by hand can be a very tedious and error prone process. A number of gems are
available to help. One of the most popular lately is SimpleForm.

https://github.com/plataformatec/simple_form

“SimpleForm aims to be as flexible as possible while helping you with powerful components to
create your forms.”

To add it to your project, first add the gem to your Gemfile:

https://github.com/sferik/rails_admin
https://github.com/plataformatec/simple_form

Rails Essentials 759

gem 'simple_form'

Then run bundler to install it and a generator to install configuration file:

$ bundle install

$ rails g simple_form:install --bootstrap

The --bootstrap switch causes the generated markup to be Twitter Bootstrap compatible. Refer to the
documentation for other markups supported out of the box.

State Machine

State machines can be a very powerful tool to describe, validate and maintain a complex object state. You can
get by with using a couple of booleans for simple case, but it becomes too messy pretty soon. A proper state
machine, on the other hand, can make even a quite complex case manageable.

The most popular state machine implementation at the time of writing is the state_machine gem. It has been
described as the “gorilla of state machine gems” because it is packed with features like multiple state machines
per class, event parallelization and namespacing, plus it includes adapters for ActiveRecord, DataMapper,
Mongoid, MongoMapper and Sequel.

https://github.com/pluginaweek/state_machine

Be sure to check its state machine drawing functionality:

$ rake state_machine:draw CLASS=Project,Issue

The Graphiz-based visualizations can be invaluable when you have complicated state transitions.

Some people think that it is overkill for simple uses cases. A popular alternative is the lighter-weight Workflow
gem, which is fairly lightweight at only 500 lines of code, and also features visualization capabilities.

https://github.com/geekq/workflow

The primary difference between the two libraries is that in Workflow, you define events inside of their related
states. You possibility lose some reusability, but the definitions are somewhat easier to read and understand.

1 class Article

2 include Workflow

3

4 workflow do

5 state :new do

6 event :submit, :transitions_to => :awaiting_review

7 end

8

9 state :awaiting_review do

10 event :review, :transitions_to => :being_reviewed

https://github.com/pluginaweek/state_machine
https://github.com/geekq/workflow

Rails Essentials 760

11 end

12

13 state :being_reviewed do

14 event :accept, :transitions_to => :accepted

15 event :reject, :transitions_to => :rejected

16 end

17

18 state :accepted

19 state :rejected

20 end

21 end

Ruby Toolbox

Didn’t see what you’re looking for in the list above?

https://www.ruby-toolbox.com

This site lists and organizes a lot of Ruby and Rails gems by category and popularity. It’s usually the first place
to look if you’re searching for 3rd-party functionality to add to your Rails application.

Screencasts

Screencasts are videos distributed online that teach you a narrowly focused topic of interest by capturing
actual screen output (hence the name) while the author explains concepts and writes code. The Rails
community loves to create screencasts!

Railcasts

http://railscasts.com/

Short on cash? Host Ryan Bates posts a new screencast almost every two weeks for free. Episodes range
between 5 to 15 minutes in length and are focused on Rails specific topics.

https://www.ruby-toolbox.com
http://railscasts.com/

	Table of Contents
	Foreword
	Foreword (to The Rails 3 Way)
	Foreword (to The Rails Way)
	Acknowledgments
	About the Authors
	Obie Fernandez
	Kevin Faustino

	Introduction
	About This Book
	Recommended Reading and Resources
	Goals
	Prerequisites
	Required Technology

	Rails Environments and Configuration
	Bundler
	Startup and Application Settings
	Development Mode
	Test Mode
	Production Mode
	Configuring a Database
	Configuring Application Secrets
	Logging

	Routing
	The Two Purposes of Routing
	The routes.rb File
	Route Globbing
	Named Routes
	Scoping Routing Rules
	Listing Routes
	Conclusion

	REST, Resources, and Rails
	REST in a Rather Small Nutshell
	Resources and Representations
	REST in Rails
	Routing and CRUD
	The Standard RESTful Controller Actions
	Singular Resource Routes
	Nested Resources
	Routing Concerns
	RESTful Route Customizations
	Controller-Only Resources
	Different Representations of Resources
	The RESTful Rails Action Set
	Conclusion

	Working with Controllers
	Rack
	Action Dispatch: Where It All Begins
	Render unto View…
	Additional Layout Options
	Redirecting
	Controller/View Communication
	Action Callbacks
	Streaming
	Variants
	Conclusion

	Working with Active Record
	The Basics
	Macro-Style Methods
	Defining Attributes
	CRUD: Creating, Reading, Updating, Deleting
	Database Locking
	Where Clauses
	Connections to Multiple Databases in Different Models
	Using the Database Connection Directly
	Other Configuration Options
	Conclusion

	Active Record Migrations
	Creating Migrations
	Data Migration
	schema.rb
	Database Seeding
	Database-Related Rake Tasks
	Conclusion

	Active Record Associations
	The Association Hierarchy
	One-to-Many Relationships
	The belongs_to Association
	The has_many Association
	Many-to-Many Relationships
	One-to-One Relationships
	Working with Unsaved Objects and Associations
	Association Extensions
	The CollectionProxy Class
	Conclusion

	Validations
	Finding Errors
	The Simple Declarative Validations
	Common Validation Options
	Conditional Validation
	Short-form Validation
	Custom Validation Techniques
	Skipping Validations
	Working with the Errors Hash
	Testing Validations with Shoulda
	Conclusion

	Advanced Active Record
	Scopes
	Callbacks
	Calculation Methods
	Single-Table Inheritance (STI)
	Abstract Base Model Classes
	Polymorphic has_many Relationships
	Enums
	Foreign-key Constraints
	Modules for Reusing Common Behavior
	Modifying Active Record Classes at Runtime
	Using Value Objects
	Non-Persisted Models
	PostgreSQL enhancements
	Conclusion

	Action View
	Layouts and Templates
	Partials
	Conclusion

	All About Helpers
	ActiveModelHelper
	AssetTagHelper
	AtomFeedHelper
	CacheHelper
	CaptureHelper
	CsrfHelper
	DateHelper
	DebugHelper
	FormHelper
	FormOptionsHelper
	FormTagHelper
	JavaScriptHelper
	NumberHelper
	OutputSafetyHelper
	RecordTagHelper
	RenderingHelper
	SanitizeHelper
	TagHelper
	TextHelper
	TranslationHelper and the I18n API
	UrlHelper
	Writing Your Own View Helpers
	Wrapping and Generalizing Partials
	Conclusion

	Haml
	Getting Started
	The Basics
	Doctype
	Comments
	Evaluating Ruby Code
	Helpers
	Filters
	Haml and Content
	Configuration Options
	Conclusion

	Session Management
	What to Store in the Session
	Session Options
	Storage Mechanisms
	Cookies
	Conclusion

	Authentication and Authorization
	Devise
	has_secure_password
	Pundit
	Conclusion

	Security
	Password Management
	Log Masking
	SSL (Secure Sockets Layer)
	Model mass-assignment attributes protection
	SQL Injection
	Cross-Site Scripting (XSS)
	XSRF (Cross-Site Request Forgery)
	Session Fixation Attacks
	Keeping Secrets
	Conclusion

	Action Mailer
	Setup
	Mailer Models
	Receiving Emails
	Server Configuration
	Testing Email Content
	Previews
	Conclusion

	Caching and Performance
	View Caching
	Data Caching
	Control of Web Caching
	ETags
	Conclusion

	Background Processing
	Delayed Job
	Sidekiq
	Resque
	Rails Runner
	Conclusion

	Ajax on Rails
	Unobtrusive JavaScript
	Turbolinks
	Ajax and JSON
	Ajax and HTML
	Ajax and JavaScript
	Conclusion

	Asset Pipeline
	Asset Pipeline
	Wish List
	The Big Picture
	Organization. Where does everything go?
	Manifest files
	Custom format handlers
	Post-Processing
	Helpers
	Fingerprinting
	Serving the files
	Rake Tasks
	Conclusion

	RSpec
	Introduction
	Basic Syntax and API
	Matchers
	Custom Expectation Matchers
	Shared Behaviors
	Shared Context
	RSpec's Mocks and Stubs
	Running Specs
	RSpec Rails Gem
	RSpec Tools
	Conclusion

	XML
	The to_xml Method
	The XML Builder
	Parsing XML
	Conclusion

	Active Model API Reference
	AttributeMethods
	Callbacks
	Conversion
	Dirty
	Errors
	ForbiddenAttributesError
	Lint::Tests
	Model
	Name
	Naming
	SecurePassword
	Serialization
	Serializers::JSON
	Serializers::Xml
	Translation
	Validations
	Validator

	Active Support API Reference
	Array
	ActiveSupport::BacktraceCleaner
	Benchmark
	ActiveSupport::Benchmarkable
	BigDecimal
	ActiveSupport::Cache::Store
	ActiveSupport::CachingKeyGenerator
	ActiveSupport::Callbacks
	Class
	ActiveSupport::Concern
	ActiveSupport::Concurrency
	ActiveSupport::Configurable
	Date
	DateTime
	ActiveSupport::Dependencies
	ActiveSupport::Deprecation
	ActiveSupport::DescendantsTracker
	ActiveSupport::Duration
	Enumerable
	ERB::Util
	FalseClass
	File
	Hash
	ActiveSupport::Gzip
	ActiveSupport::HashWithIndifferentAccess
	ActiveSupport::Inflector::Inflections
	Integer
	ActiveSupport::JSON
	Kernel
	ActiveSupport::KeyGenerator
	ActiveSupport::Logger
	ActiveSupport::MessageEncryptor
	ActiveSupport::MessageVerifier
	Module
	ActiveSupport::Multibyte::Chars
	NilClass
	ActiveSupport::Notifications
	Object
	ActiveSupport::OrderedHash
	ActiveSupport::OrderedOptions
	ActiveSupport::PerThreadRegistry
	ActiveSupport::ProxyObject
	ActiveSupport::Railtie
	Range
	Regexp
	ActiveSupport::Rescuable
	String
	ActiveSupport::StringInquirer
	Struct
	ActiveSupport::Subscriber
	Symbol
	ActiveSupport::TaggedLogging
	ActiveSupport::TestCase
	ActiveSupport::Testing::Assertions
	Thread
	Time
	ActiveSupport::TimeWithZone
	ActiveSupport::TimeZone
	TrueClass
	ActiveSupport::XmlMini

	Rails Essentials
	Environmental Concerns
	Essential Gems
	Ruby Toolbox
	Screencasts

