
M A N N I N G

Chris A. Mattmann
Jukka L. Zitting

FOREWORD BY JÉRÔME CHARRON

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

Tika in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Tika in Action
CHRIS A. MATTMANN

JUKKA L. ZITTING

M A N N I N G

SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditor: Benjamin Berg
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781935182856
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To my lovely wife Lisa and my son Christian

 —CM

 To my lovely wife Kirsi-Marja and our happy cats

 —JZ

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

brief contents

PART 1 GETTING STARTED ..1

1 ■ The case for the digital Babel fish 3

2 ■ Getting started with Tika 24

3 ■ The information landscape 38

PART 2 TIKA IN DETAIL ...53

4 ■ Document type detection 55

5 ■ Content extraction 73

6 ■ Understanding metadata 94

7 ■ Language detection 113

8 ■ What’s in a file? 123

PART 3 INTEGRATION AND ADVANCED USE143

9 ■ The big picture 145

10 ■ Tika and the Lucene search stack 154

11 ■ Extending Tika 167

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSviii

PART 4 CASE STUDIES ..179

12 ■ Powering NASA science data systems 181

13 ■ Content management with Apache Jackrabbit 191

14 ■ Curating cancer research data with Tika 196

15 ■ The classic search engine example 204

www.allitebooks.com

http://www.allitebooks.org

ix

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the authors xxv
about the cover illustration xxvi

PART 1 GETTING STARTED.. 1

1 The case for the digital Babel fish 3

1.1 Understanding digital documents 4
A taxonomy of file formats 5 ■ Parser libraries 6
Structured text as the universal language 9 ■ Universal
metadata 10 ■ The program that understands everything 13

1.2 What is Apache Tika? 15
A bit of history 15 ■ Key design goals 17 ■ When and where to
use Tika 21

1.3 Summary 22

2 Getting started with Tika 24

2.1 Working with Tika source code 25
Getting the source code 25 ■ The Maven build 26
Including Tika in Ant projects 26

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

2.2 The Tika application 27
Drag-and-drop text extraction: the Tika GUI 29 ■ Tika on the
command line 30

2.3 Tika as an embedded library 32
Using the Tika facade 32 ■ Managing dependencies 34

2.4 Summary 36

3 The information landscape 38

3.1 Measuring information overload 40
Scale and growth 40 ■ Complexity 42

3.2 I’m feeling lucky—searching the information
landscape 44
Just click it: the modern search engine 44 ■ Tika’s role in
search 46

3.3 Beyond lucky: machine learning 47
Your likes and dislikes 48 ■ Real-world machine learning 50

3.4 Summary 52

PART 2 TIKA IN DETAIL..53

4 Document type detection 55

4.1 Internet media types 56
The parlance of media type names 58 ■ Categories of media
types 58 ■ IANA and other type registries 60

4.2 Media types in Tika 60
The shared MIME-info database 61 ■ The MediaType class 62
The MediaTypeRegistry class 63 ■ Type hierarchies 64

4.3 File format diagnostics 65
Filename globs 66 ■ Content type hints 68 ■ Magic bytes 68
Character encodings 69 ■ Other mechanisms 70

4.4 Tika, the type inspector 71
4.5 Summary 72

5 Content extraction 73

5.1 Full-text extraction 74
Abstracting the parsing process 74 ■ Full-text indexing 75
Incremental parsing 77

CONTENTS xi

5.2 The Parser interface 78
Who knew parsing could be so easy? 78 ■ The parse() method 79
Parser implementations 80 ■ Parser selection 82

5.3 Document input stream 84
Standardizing input to Tika 84 ■ The TikaInputStream
class 85

5.4 Structured XHTML output 87
Semantic structure of text 87 ■ Structured output via SAX
events 88 ■ Marking up structure with XHTML 89

5.5 Context-sensitive parsing 91
Environment settings 91 ■ Custom document handling 92

5.6 Summary 93

6 Understanding metadata 94

6.1 The standards of metadata 96
Metadata models 96 ■ General metadata standards 99
Content-specific metadata standards 99

6.2 Metadata quality 101
Challenges/Problems 101 ■ Unifying heterogeneous
standards 103

6.3 Metadata in Tika 104
Keys and multiple values 105 ■ Transformations and
views 106

6.4 Practical uses of metadata 107
Common metadata for the Lucene indexer 108 ■ Give me my
metadata in my schema! 109

6.5 Summary 111

7 Language detection 113

7.1 The most translated document in the world 114
7.2 Sounds Greek to me—theory of language detection 115

Language profiles 116 ■ Profiling algorithms 117
The N-gram algorithm 118 ■ Advanced profiling
algorithms 119

7.3 Language detection in Tika 119
Incremental language detection 120 ■ Putting it all together 121

7.4 Summary 122

CONTENTSxii

8 What’s in a file? 123

8.1 Types of content 124
HDF: a format for scientific data 125 ■ Really Simple Syndication:
a format for rapidly changing content 126

8.2 How Tika extracts content 127
Organization of content 128 ■ File header and naming
conventions 133 ■ Storage affects extraction 139

8.3 Summary 141

PART 3 INTEGRATION AND ADVANCED USE143

9 The big picture 145

9.1 Tika in search engines 146
The search use case 146 ■ The anatomy of a search
index 146

9.2 Managing and mining information 147
Document management systems 148 ■ Text
mining 149

9.3 Buzzword compliance 150
Modularity, Spring, and OSGi 150 ■ Large-scale
computing 151

9.4 Summary 153

10 Tika and the Lucene search stack 154

10.1 Load-bearing walls 155
ManifoldCF 156 ■ Open Relevance 157

10.2 The steel frame 159
Lucene Core 159 ■ Solr 161

10.3 The finishing touches 162
Nutch 162 ■ Droids 164 ■ Mahout 165

10.4 Summary 166

11 Extending Tika 167

11.1 Adding type information 168
Custom media type configuration 169

CONTENTS xiii

11.2 Custom type detection 169

The Detector interface 170 ■ Building a custom type
detector 170 ■ Plugging in new detectors 172

11.3 Customized parsing 172

Customizing existing parsers 173 ■ Writing a new
parser 174 ■ Plugging in new parsers 175
Overriding existing parsers 176

11.4 Summary 176

PART 4 CASE STUDIES ..179

12 Powering NASA science data systems 181

12.1 NASA’s Planetary Data System 182

PDS data model 182 ■ The PDS search
 redesign 184

12.2 NASA’s Earth Science Enterprise 186

Leveraging Tika in NASA Earth Science SIPS 187
Using Tika within the ground data systems 188

12.3 Summary 190

13 Content management with Apache Jackrabbit 191

13.1 Introducing Apache Jackrabbit 192

13.2 The text extraction pool 192

13.3 Content-aware WebDAV 194

13.4 Summary 195

14 Curating cancer research data with Tika 196

14.1 The NCI Early Detection Research Network 197

The EDRN data model 197 ■ Scientific data
curation 198

14.2 Integrating Tika 198
Metadata extraction 199 ■ MIME type identification
and classification 201

14.3 Summary 203

CONTENTSxiv

15 The classic search engine example 204

15.1 The Public Terabyte Dataset Project 205
15.2 The Bixo web crawler 206

Parsing fetched documents 207 ■ Validating Tika’s charset
detection 209

15.3 Summary 210

appendix A Tika quick reference 211

appendix B Supported metadata keys 214

index 219

xv

foreword
I’m a big fan of search engines and Java, so early in the year 2004 I was looking for a
good Java-based open source project on search engines. I quickly discovered Nutch.
Nutch is an open source search engine project from the Apache Software Foundation.
It was initiated by Doug Cutting, the well-known father of Lucene.

 With my new toy on my laptop, I tested and tried to evaluate it. Even if Nutch was
in its early stages, it was a promising project—exactly what I was looking for. I pro-
posed my first patches to Nutch relating to language identification in early 2005.
Then, in the middle of 2005 I become a Nutch committer and increased my number
of contributions relating to language identification, content-type guessing, and docu-
ment analysis. Looking more deeply at Lucene, I discovered a wide set of projects
around it: Nutch, Solr, and what would eventually become Mahout. Lucene provides
its own analysis tools, as do Nutch and Solr, and each one employs some “proprietary”
interfaces to deal with analysis engines.

 So I consulted with Chris Mattmann, another Nutch committer with whom I had
worked, about the potential for refactoring all these disparate tools in a common and
standardized project. The concept of Tika was born.

 Chris began to advocate for Tika as a standalone project in 2006. Then Jukka
Zitting came into the picture and took the lead on the Tika project; after a lot of refac-
toring and enhancements, Tika became a Lucene top-level project.

 At that point in time, Tika was being used in Nutch, Droids (an Incubator project
that you’ll hear about in chapter 10), and many non-Lucene projects—the activity on
Tika mailing lists was indicative of this. The next promising steps for the project
involved plugging Tika into top-level Lucene projects, such as Lucene itself or Solr.

FOREWORDxvi

That amounted to a big challenge, as it required Tika to provide a flexible and robust
set of interfaces that could be used in any programming context where metadata anal-
ysis was needed.

 Luckily, Tika got there. With this book, written by Tika’s two main creators and
maintainers, Chris and Jukka, you’ll understand the problems of document analysis
and document information extraction. They first explain to the reader why develop-
ers have such a need for Tika. Today, content handling and analysis are basic building
blocks of all major modern services: search engines, content management systems,
data mining, and other areas.

 If you’re a software developer, you’ve no doubt needed, on many occasions, to
guess the encoding, formatting, and language of a file, and then to extract its meta-
data (title, author, and so on) and content. And you’ve probably noticed that this is a
pain. That’s what Tika does for you. It provides a robust toolkit to easily handle any data
format and to simplify this painful process.

 Chris and Jukka explain many details and examples of the Tika API and toolkit,
including the Tika command-line interface and its graphical user interface (GUI) that
you can use to extract information about any type of file handled by Tika. They show
how you can use the Tika Application Programming Interface (API) to integrate Tika
commodities directly with your own projects. You’ll discover that Tika is both simple
to use and powerful. Tika has been carefully designed by Chris and Jukka and, despite
the internal complexity of this type of library, Tika’s API and tools are simple and easy
to understand and to use.

 Finally, Chris and Jukka show many real-life uses cases of Tika. The most noticeable
real-life projects are Tika powering the NASA Science Data Systems, Tika curating can-
cer research data at the National Cancer Institute’s Early Detection Research Net-
work, and the use of Tika for content management within the Apache Jackrabbit
project. Tika is already used in many projects.

 I’m proud to have helped launch Tika. And I’m extremely grateful to Chris and
Jukka for bringing Tika to this level and knowing that the long nights I spent writing
code for automatic language identification for the MIME type repository weren’t in
vain. To now make (even) a small contribution, for example, to assist in research in
the fight against cancer, goes straight to my heart.

 Thank you both for all your work, and thank you for this book.

 JÉRÔME CHARRON

 CHIEF TECHNICAL OFFICER

 WEBPULSE

xvii

preface
While studying information retrieval and search engines at the University of Southern
California in the summer of 2005, I became interested in the Apache Nutch project.
My professor, Dr. Ellis Horowitz, had recently discovered Nutch and thought it a good
platform for the students in the course to get real-world experience during the final
project phase of his “CS599: Seminar on Search Engines” course.

 After poking around Nutch and digging into its innards, I decided on a final proj-
ect. It was a Really Simple Syndication (RSS) plugin described in detail in NUTCH-30.1

The plugin read an RSS file, extracted its outgoing web links and text, and fed that
information back into the Nutch crawler for later indexing and retrieval.

 Seemingly innocuous, the class taught me a great detail about search engines,
and helped pinpoint the area of search I was interested in—content detection and
extraction.

 Fast forward to 2007: after I eventually became a Nutch committer, and focused in
on more parsing-related issues (updates to the Nutch parser factory, metadata repre-
sentation updates, and so on), my Nutch mentor Jérôme Charron and I decided that
there was enough critical mass of code in Nutch related to parsing (parsing, language
identification, extraction, and representation) that it warranted its own project. Other
projects were doing it—rumblings of what would eventually become Hadoop were
afoot—which led us to believe that the time was ripe for our own project. Since nam-
ing projects after children’s stuffed animals was popular at the time, we felt we could
do the same, and Tika was born (named after Jérôme’s daughter’s stuffed animal).

1 https://issues.apache.org/jira/browse/NUTCH-30

https://issues.apache.org/jira/browse/NUTCH-30

PREFACExviii

 It wasn’t as simple as we thought. After getting little interest from the broader
Lucene community (Nutch was a Lucene subproject and thus the project we were pro-
posing had to go through the Lucene PMC), and with Jérôme and I both taking on
further responsibility that took time away from direct Nutch development, what would
eventually be known as Tika began to fizzle away.

 That’s where the other author of this book comes in. Jukka Zitting, bless him, was
keenly interested in a technology, separate from the behemoth Nutch codebase, that
would perform the types of things that we had carved off as Tika core capabilities:
parsing, text extraction, metadata extraction, MIME detection, and more. Jukka was a
seasoned Apache veteran, so he knew what to do. Jukka became a real leader of the
original Tika proposal, took it to the Apache Incubator, and helped turn Tika into a
real Apache project.

 After working with Jukka for a year or so in the Incubator community, we took our
show on the road back to Lucene as a subproject when Tika graduated. Over a period
of two years, we made seven Tika releases, infected several popular Apache projects
(including Lucene, Solr, Nutch, and Jackrabbit), and gained enough critical mass to
grow into a full-fledged Apache Top Level Project (TLP).

 But we weren’t done there. I don’t remember the exact time during the Christmas
season in 2009 when I decided it was time to write a book, but it matters little. When I
get an idea in my head, it’s hard to get it out. This book was happening. Tika in Action

was happening. I approached Jukka and asked him how he felt. In characteristic fash-
ion, he was up for the challenge.

 We sure didn’t know what we were getting ourselves into! We didn’t know that the
rabbit hole went this deep. That said, I can safely say I don’t think we could’ve taken
any other path that would’ve been as fulfilling, exciting, and rewarding. We really put
our hearts and souls into creating this book. We sincerely hope you enjoy it. I think I
speak for both of us in saying, I know we did!

 CHRIS MATTMANN

xix

acknowledgments
No book is born without great sacrifice by many people. The team who worked on this
book means a lot to both of us. We’ll enumerate them here.

 Together, we’d like to thank our development editor at Manning, Cynthia Kane,
for spending tireless hours working with us to make this book the best possible, and
the clearest book to date on Apache Tika. Furthermore, her help with simplifying dif-
ficult concepts, creating direct and meaningful illustrations, and with conveying com-
plex information to the reader is something that both of us will leverage and use well
beyond this book and into the future.

 Of course, the entire team at Manning, from Marjan Bace on down, was a tremen-
dous help in the book’s development and publication. We’d like to thank Nicholas
Chase specifically for his help navigating the infrastructure and tools to put this book
together. Christina Rudloff was a tremendous help in getting the initial book deal set
up and we are very appreciative. The production team of Benjamin Berg, Katie
Tennant, Dottie Marsico, and Mary Piergies worked hard to turn our manuscript into
the book you are now reading, and Alex Ott did a thorough technical review of the final
manuscript during production and helped clarify numerous code issues and details.

 We’d also like to thank the following reviewers who went through three time-
crunched review cycles and significantly improved the quality of this book with their
thoughtful comments: Deepak Vohra, John Griffin, Dean Farrell, Ken Krugler, John
Guthrie, Richard Johannesson, Andreas Kemkes, Julien Nioche, Rick Wagner, Andrew
F. Hart, Nick Burch, and Sean Kelly.

www.allitebooks.com

http://www.allitebooks.org

ACKNOWLEDGMENTSxx

 Finally, we’d like to acknowledge and thank Ken Krugler and Chris Schneider of
Bixo Labs, for contributing the bulk of chapter 15 and for showing us a real-world
example of where Tika shines. Thanks, guys!

CHRIS—I would like to thank my wife Lisa for her tremendous support. I originally
promised her that my PhD dissertation would be the last book that I wrote, and after
four years of sleepless nights (and many sleepless nights before that trying to make
ends meet), that I would make time to enjoy life and slow down. That worked for
about two years, until this opportunity came along. Thanks for the support again,
honey: I couldn’t have made it here without you. I can promise a few more years of
slowdown now that the book is done!

JUKKA—I would like to thank my wife Kirsi-Marja for the encouragement to take on
new challenges and for understanding the long evenings that meeting these chal-
lenges sometimes requires. Our two cats, Juuso and Nöpö, also deserve special thanks
for their insistence on taking over the keyboard whenever a break from writing was
needed.

xxi

about this book
We wrote Tika in Action to be a hands-on guide for developers working with search
engines, content management systems, and other similar applications who want to
exploit the information locked in digital documents. The book introduces you to the
world of mining text and binary documents and other information sources like inter-
net media types and Dublin Core metadata. Then it shows where Tika fits within this
landscape and how you can use Tika to build and extend applications. Case studies
present real-world experience from domains ranging from search engines to digital
asset management and scientific data processing.

 In addition to the architectural overviews, you will find more detailed information
in the later chapters that focus on advanced features like XMP metadata processing,
automatic language detection, and custom parser extensions. The book also describes
common file formats like MS Word, PDF, HTML, and Zip, and open source libraries
used to process files in these formats. The included code examples are designed to
support hands-on experimentation.

 No previous knowledge of Tika or text mining techniques is required. The book
will be most valuable to readers with a working knowledge of Java.

Roadmap

Chapter 1 gives the reader a contextual overview of Tika, including its history, its core
capabilities, and some basic use cases where Tika is most helpful. Tika includes abili-
ties for file type identification, text extraction, integration of existing parsing libraries,
and language identification.

ABOUT THIS BOOKxxii

 Chapter 2 jumps right into using Tika, including instructions for downloading it,
building it as a software library, and using Tika in a downstream Maven or Ant project.
Quick tips for getting Tika up and running rapidly are present throughout the chapter.

 Chapter 3 introduces the reader to the information landscape and identifies where
and how information is fed into the Tika framework. The reader will be introduced to
the principles of the World Wide Web (WWW), its architecture, and how the web and
Tika synergistically complement one another.

 Chapter 4 takes the reader on a deep dive into MIME type identification, covering
topics ranging from the MIME hierarchy of the web, to identifying of unique byte pat-
tern signatures present in every file, to other means (such as regular expressions and
file extensions) of identifying files.

 Chapter 5 introduces the reader to content extraction with Tika. It starts with a
simple full-text extraction and indexing example using the Tika facade, and contin-
ues with a tour of the core Parser interface and how Tika uses it for content extrac-
tion. The reader will learn useful techniques for things such as extracting all links
from a document or processing Zip archives and other composite documents.

 Chapter 6 covers metadata. The chapter begins with a discussion of what metadata
means in the context of Tika, along with a short classification of the existing metadata
models that Tika supports. Tika’s metadata API is discussed in detail, including how it
helps to normalize and validate metadata instances. The chapter describes how to
supercharge the LuceneIndexer from chapter 5 and turn it into an RSS-based file noti-
fication service in a few simple lines of code.

 Chapter 7 introduces the topic of language identification. The language a docu-
ment is written in is a highly useful piece of metadata, and the chapter describes
mechanisms for automatically identifying written languages. The reader will encoun-
ter the most translated document in the world and see how Tika can correctly identify
the language used in many of the translations.

 Chapter 8 gives the reader an in-depth overview of how files represent informa-
tion, in terms of their content organization, their storage representation, and the way
that metadata is codified, all the while showing how Tika hides this complexity and
pulls information from these files. The reader takes an in-depth look at Tika’s RSS and
HDF5 parser classes, and learns how Tika’s parsers codify the heterogeneity of files,
and how you can develop your own parsers using similar methodologies.

 Chapter 9 reviews the best places to leverage Tika in your information manage-
ment software, including pointing out key use cases where Tika can solely (or with a
little glue code) implement many of the high-end features of the system. Document
record archives, text mining, and search engines are all topics covered.

 Chapter 10 educates the reader in the vocabulary of the Lucene ecosystem.
Mahout, ManifoldCF, Lucene, Solr, Nutch, Droids—all of these will roll off the tongue
by the time you’re done surveying Lucene’s rich and vibrant community. Lucene was
the birthplace of Tika, specifically within the Apache Nutch project, and this chapter

ABOUT THIS BOOK xxiii

takes the opportunity to show you how Tika has grown up over the years into the load-
bearing walls of the entire Lucene ecosystem.

 Chapter 11 explains what to do when stock Tika out of the box doesn’t handle
your file type identification, extraction, and representation needs. Read: you don’t
have to pick another whiz-bang technology—you simply extend Tika. We show you
how in this chapter, taking you start-to-end through an example of a prescription file
type that you may exchange with a doctor.

 Chapter 12 is the first case study of the book, and it’s high-visibility. We show you
how NASA and its planetary and Earth science communities are using Tika to search
planetary images, to extract data and metadata from Earth science files, and to iden-
tify content for dissemination and acquisition.

 Chapter 13 shows you how the Apache Jackrabbit content repository, a key compo-
nent in many content and document management systems, uses Tika to implement
full-text search and WebDAV integration.

 Chapter 14 presents how Tika is used at the National Cancer Institute, helping to
power data systems for the Early Detection Research Network (EDRN). We show you
how Tika is an integral component of another Apache technology, OODT, the data sys-
tem infrastructure used to power many national-scale data systems. Tika helps to
detect file types, and helps to organize cancer information as it’s catalogued, archived,
and made available to the broader scientific community.

 For chapter 15, we interviewed Ken Krugler and Chris Schneider of Bixo Labs
about how they used Tika to classify and identify content from the Public Terabyte
Dataset project, an ambitious endeavor to make available a traditional web-scale data-
set for public use. Using Tika, Ken and his team demonstrate a classic search engine
example, and identify several areas of improvement and future work in Tika including
language identification and charset detection.

 The book contains two appendixes. The first is a Tika quick reference. Think of it
as a cheat-sheet for using Tika, its commands, and a compact form of some of Tika’s
documentation. The second appendix is a description of Tika’s relevant metadata
keys, giving the reader an idea of how and when to use them in a custom parser, in any
of the existing Parser classes that ship with Tika, or in any downstream program or
analysis desired.

Code conventions and downloads

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out key con-
cepts, and numbered bullets are sometimes used in the text to provide additional
information about the code.

 The source code for the examples in the book is available for download from the
publisher’s website at www.manning.com/TikainAction. The code is organized by
chapter and contains special markers that link individual code snippets to specific

http://www.manning.com/TikainAction
http://www.manning.com/TikainAction
http://www.manning.com/TikainAction

ABOUT THIS BOOKxxiv

sections in the book. See the respective chapters for details about the dependencies
required to compile and run the examples.

 All the example source code has been written for and tested with Tika version 1.0
and should work with any future Tika 1.x release. Visit http://tika.apache.org/ to
download the latest Tika release. See chapter 2 for more details on how to get started.

Author Online

The purchase of Tika in Action includes free access to a public forum run by Manning
Publications. The Tika in Action Author Online forum allows readers of the book to
log on, write comments, interact with the authors, and discuss the book. Please feel
free to jump on and share your thoughts!

 You will find the Author Online link on the publisher’s website at www
.manning.com/TikainAction.

http://www.manning.com/TikainAction
http://www.manning.com/TikainAction
http://tika.apache.org/
http://www.manning.com/TikainAction

xxv

about the authors
CHRIS MATTMANN has a wealth of experience in software design and in the construc-
tion of large-scale data-intensive systems. His work has infected a broad set of commu-
nities, ranging from helping NASA unlock data from its next generation of Earth
science system satellites, to assisting graduate students at the University of Southern
California (his alma mater) in the study of software architecture, all the way to help-
ing industry and open source as a member of the Apache Software Foundation. When
he’s not busy being busy, he’s spending time with his lovely wife and son braving the
mean streets of Southern California.

JUKKA ZITTING is a core Tika developer with more than a decade of experience with
open source content management. Jukka works as a senior developer for Adobe Sys-
tems in Basel, Switzerland. His work involves building systems for managing ever-
larger and more-complex volumes of digital content. Much of this work is contributed
as open source to the Apache Software Foundation.

xxvi

about the cover illustration
The figure on the cover of Tika in Action is captioned “Habit of Turkish Courtesan in
1568” and is taken from the four-volume Collection of the Dresses of Different Nations by
Thomas Jefferys, published in London between 1757 and 1772. The collection, which
includes beautiful hand-colored copperplate engravings of costumes from around the
world, has influenced theatrical costume design since its publication.

 The diversity of the drawings in the Collection of the Dresses of Different Nations speaks
vividly of the richness of the costumes presented on the London stage over 200 years
ago. The costumes, both historical and contemporaneous, offered a glimpse into the
dress customs of people living in different times and in different countries, making
them come alive for London theater audiences.

 Dress codes have changed in the last century and the diversity by region, so rich in
the past, has faded away. It’s now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and
visual diversity for a more varied personal life. Or a more varied and interesting intel-
lectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional and theatrical
life of two centuries ago, brought back to life by the pictures from this collection.

Part 1

Getting started

“The Babel fish,” said The Hitchhiker’s Guide to the Galaxy quietly, “is small, yel-
low and leech-like, and probably the oddest thing in the Universe. It feeds on brain-
wave energy not from its carrier but from those around it. It absorbs all
unconscious mental frequencies from this brainwave energy to nourish itself with.
It then excretes into the mind of its carrier a telepathic matrix formed by combining
the conscious thought frequencies with nerve signals picked up from the speech cen-
ters of the brain which has supplied them. The practical upshot of all this is that if
you stick a Babel fish in your ear you can instantly understand anything said to
you in any form of language.”

 —Douglas Adams, The Hitchhiker’s Guide to the Galaxy

This first part of the book will familiarize you with the necessity of being
able to rapidly process, integrate, compare, and most importantly understand the
variety of content available in the digital world. Likely you’ve encountered only a
subset of the thousands of media types that exist (PDF, Word, Excel, HTML, just
to name a few), and you likely need dozens of applications to read each type,
edit and add text to it, view the text, copy and paste between documents, and
include that information in your software programs (if you’re a programmer
geek like us).

 We’ll try to help you tackle this problem by introducing you to Apache
Tika—a software framework focused on automatic media type identification,
text extraction, and metadata extraction. Our goal for this part of the book is to
equip you with historical knowledge (Tika’s motivation, history, and inception),
practical knowledge (how to download and install it and leverage Tika in your
application), and the steps required to start using Tika to deal with the prolifera-
tion of files available at your fingertips.

3

The case for the
digital Babel fish

The Babel fish in Douglas Adams’ book The Hitchhiker’s Guide to the Galaxy is a uni-
versal translator that allows you to understand all the languages in the world. It
feeds on data that would otherwise be incomprehensible, and produces an under-
standable translation. This is essentially what Apache Tika, a nascent technology
available from the Apache Software Foundation, does for digital documents. Just
like the protagonist Arthur Dent, who after inserting a Babel fish in his ear could
understand Vogon poetry, a computer program that uses Tika can extract text and
objects from Microsoft Word documents and all sorts of other files. Our goal in this
book is to equip you with enough understanding of Tika’s architecture, implemen-
tation, extension points, and philosophy that the process of making your programs
file-agnostic is equally simple.

 In the remainder of this chapter, we’ll familiarize you with the importance of
understanding the vast array of content that has sprung up as a result of the

This chapter covers

 Understanding documents

 Parsing documents

 Introducing Apache Tika

www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1 The case for the digital Babel fish

information age. PDF files, Microsoft Office files (including Word, Excel, PowerPoint,
and so on), images, text, binary formats, and more are a part of today’s digital lingua
franca, as are the applications tasked to handle such formats. We’ll discuss this issue
and modern attempts to classify and understand these file formats (such as those from
the Internet Assigned Numbers Authority, IANA) and the relationships of those frame-
works to Tika. After motivating Tika, we’ll discuss its core Parser interface and its use
in obtaining text for processing. Beyond the nuts and bolts of this discussion, we’ll
provide a brief history of Tika, along with an overview of its architecture, when and
where to use Tika, and a brief example of Tika’s utility.

 In the next section, we’ll introduce you to the existing work by IANA on classifying
all the file formats out there and how Tika makes use of this classification to easily
understand those formats.

1.1 Understanding digital documents

The world of digital documents and their file formats is like a universe where every-
one speaks a different language. Most programs only understand their own file for-
mats or a small set of related formats, as depicted in figure 1.1. Translators such as
import modules or display plugins are usually required when one program needs to
understand documents produced by another program.

 There are literally thousands of different file formats in use, and most of those for-
mats come in various different versions and dialects. For example, the widely used PDF
format has evolved through eight incremental versions and various extensions over
the past 18 years. Even the adoption of generic file formats such as XML has done little
to unify the world of data. Both the Office Open XML format used by recent versions
of Microsoft Office and the OpenDocument format used by OpenOffice.org are XML-
based formats for office documents, but programs written to work with one of these
formats still need special converters to understand the other format.

 Luckily most programs never need to worry about this proliferation of file formats.
Just like you only need to understand the language used by the people you speak with,
a program only needs to understand the formats of the files it works with. The trouble
begins when you’re trying to build an application that’s supposed to understand most
of the widely used file formats.

 For example, suppose you’ve been asked to implement a search engine that can
find any document on a shared network drive based on the file contents. You browse
around and find Excel sheets, PDF and Word documents, text files, images and audio
in a dozen different formats, PowerPoint presentations, some OpenOffice files, HTML
and Flash videos, and a bunch of Zip archives that contain more documents inside
them. You probably have all the programs you need for accessing each one of these
file formats, but when there are thousands or perhaps millions of files, it’s not feasible
for you to manually open them all and copy-paste the contained text to the search
engine for indexing. You need a program that can do this for you, but how would you
write such a program?

5Understanding digital documents

The first step in developing such a program is to understand the properties of the pro-
liferation of file formats that exist. To do this we’ll leverage the taxonomy of file for-
mats specified in the Multipurpose Internet Mail Extensions (MIME) standard and
maintained by the IANA.

1.1.1 A taxonomy of file formats

In order to write the aforementioned search engine, you must understand the various
file formats and the methodologies that they employ for storing text and information.
The first step is being able to identify and differentiate between the various file types.
Most of us understand commonly used terms like spreadsheet or web page, but such terms
aren’t accurate enough for use by computer programs. Traditionally extra information
in the form of filename suffixes such as .xls or .html, resource forks in Mac OS, and
other mechanisms have been used to identify the format of a file. Unfortunately these

Adobe Photoshop

?

pdf psd jpg

gif png

...

Microsoft Office

xls doc docx

xlsx vsd

...

Firefox, IE, Safari, etc.

html xhtml xml

rdf rss

...

Figure 1.1 Computer programs usually specialize in reading and interpreting only one file format (or

family of formats). To deal with .pdf files, .psd files, and the like, you’d purchase Adobe products. If you

needed to deal with Microsoft Office files (.doc, .xls, and so on), you’d turn to Microsoft products or other

office programs that support these Microsoft formats. Few programs can understand all of these formats.

6 CHAPTER 1 The case for the digital Babel fish

mechanisms are often tied to specific operating systems or installed applications, which
makes them difficult to use reliably in network environments such as the internet.

 The MIME standard was published in late 1996 as the Request for Comment (RFC)
documents 2045–2049. A key concept of this standard is the notion of media types1 that
uniquely name different types of data so that receiving applications can “deal with the
data in an appropriate manner.” Section 5 of RFC 2045 specifies that a media type con-
sists of a type/subtype identifier and a set of optional attribute=value parameters.
For example, the default media type text/plain; charset=us-ascii identifies a
plain-text document in the US-ASCII character encoding. RFC 2046 defines a set of
common media types and their parameters, and since no single specification can list
all past and future document types, RFC 2048 and the update in RFC 4288 specify a
registration procedure by which new media types can be registered at IANA. As of
early 2010, the official registry2 contained more than a thousand media types such as
text/html, image/jpeg, and application/msword, organized under the eight top-
level types shown in figure 1.2. Thousands of unregistered media types such as image/
x-icon and application/vnd.amazon.ebook are also being used.

 Given that thousands of media types have already been classified by IANA and oth-
ers, programmers need the ability to automatically incorporate this knowledge into
their software applications (imagine building a collection of utensils in your kitchen
without knowing that pots were used to cook sauces, or that kettles brewed tea, or that
knives cut meat!). Luckily Tika provides state-of-the-art facilities in automatic media
type detection. Tika takes a multipronged approach to automatic detection of media
types as shown in table 1.1.

 We’re only scratching the surface of Tika’s MIME detection patterns here. For
more information on automatic media type detection, jump to chapter 4.

 Now that you’re familiar with differentiating between different file types, how do
you make use of a file once you’ve identified it? In the next section, we’ll describe
parser libraries, used to extract information from the underlying file types. There are
a number of these parser libraries, and as it turns out, Tika excels (no pun intended)
at abstracting away their heterogeneity, making them easy to incorporate and use in
your application.

1.1.2 Parser libraries

To be able to extract information from a digital document, you need to understand
the document format. Such understanding is built into the applications designed to

1 Though often referred to as MIME type, the MIME standard in reality was focused on extending email to sup-
port different extensions, including non-text attachments and multipart requests. The use of MIME has since
grown to cover the array of media types, including PDF, Office, and non-email-centric extensions. Although
the use of MIME type is ubiquitous, in this book, we use MIME type and the more historically correct media type
interchangeably.

2 The official MIME media type registry is available at http://www.iana.org/assignments/media-types/.

http://www.iana.org/assignments/media-types/

7Understanding digital documents

jpeg

basic

mpeg

...

...

...

...

...

...

...

...

...

...

...

...

RFC822

Partial

External
body

Message

Mixed

Digest

Alternative

Parallel

Multipart

Octet-
stream

Audio

Image

Video

Application

Postscript

PlainText

Discrete

Composite

Top-level
media
types

Figure 1.2 Seven top-level MIME types

hierarchy as defined by IANA’s RFC

2046 (the eighth type model was added

later in RFC 2077). Top-level types can

have subtypes (children), and so on, as

new media types are defined over the

years. The use of the multiplicity

denotes that multiple children may be

present at the same level in the

hierarchy, and the ellipses indicate that

the remainder of the hierarchy has been

elided in favor of brevity.

8 CHAPTER 1 The case for the digital Babel fish

work with specific kinds of documents. For example, the Microsoft Office suite is used
for reading and writing Word documents, whereas Adobe Acrobat and Acrobat
Reader do the same for PDF documents. These applications are normally designed for
human interaction and usually don’t allow other programs to easily access document
content. And even if programmatic access is possible, these applications typically can’t
be run in server environments.

 An alternative approach is to implement or use a parser library for the document
format. A parser library is a reusable piece of software designed to enable applications
to read and often also write documents in a specific format (as will be shown in
figure 1.3, it’s the software that allows text and other information to be extracted from
files). The library abstracts the document format to an API that’s easier to understand
and use than raw byte patterns. For example, instead of having to deal with things
such as CRC checksums, compression methods, and various other details, an applica-
tion that uses the java.util.zip parser library package included in the standard Java
class library can simply use concepts such as ZipFile and ZipEntry, as shown in the
following example that outputs the names of all of the entries within a Zip file:

public static void listZipEntries(String path) throws IOException {

ZipFile zip = new ZipFile(path);

for (ZipEntry entry : Collections.list(zip.entries())) {
System.out.println(entry.getName());

}

}

In addition to Zip file support, the standard Java class library and official extensions
include support for many file formats, ranging from plain text and XML to various

Table 1.1 Tika’s main methods of media type detection. These techniques can be performed in

isolation or combined together to formulate a powerful and comprehensive automatic file detection

mechanism.

Detection mechanism Description

File extension,

filename, or alias

Each media type in Tika has a glob pattern associated with it, which can be

a Java regular expression or a simple file extension, such as *.pdf or *.doc

(see http://mng.bz/pNgw).

Magic bytes Most files belonging to a media type family have a unique signature associ-

ated with them in the form of a set of control bytes in the file header. Each

media type in Tika defines different sequences of these control bytes, as

well as offsets used to define scanning patterns to locate these bytes

within the file.

XML root characters XML files, unique as they are, include hints that suggest their true media

type. Outer XML tags (called root elements), namespaces, and referenced

schemas are some of the clues that Tika uses to determine an XML file’s

real type (RDF, RSS, and so on).

Parent and children media

types

By leveraging the hierarchy shown in figure 1.2, Tika can determine the

most accurate and precise media type for a piece of content, and fall back

on parent types if the precise child isn’t detectable.

http://mng.bz/pNgw

9Understanding digital documents

image, audio, video, and message formats. Other advanced programming languages
and platforms have similar built-in capabilities. But most document formats aren’t
supported, and even APIs for the supported formats are often designed for specific
use cases and fail to cover the full range of features required by many applications.
Many open source and commercial libraries are available to address the needs of such
applications. For example, the widely used Apache PDFBox (http://pdfbox
.apache.org/) and POI (http://poi.apache.org/) libraries implement comprehensive
support for PDF and Microsoft Office documents.

THE WONDERFUL WORLD OF APIS APIs, or application programming interfaces, are
interfaces that applications use to communicate with each other. In object-
oriented frameworks and libraries, APIs are typically the recommended
means of providing functionality that clients of those frameworks can con-
sume. For example, if you’re writing code in Java to read and/or process a
file, you’re likely using java.io.* and its set of objects (such as java.io
.File) and its associated sets of methods (canWrite, for example), that
together make up Java’s IO API.

Thanks to parser libraries, building an application that can understand multiple dif-
ferent file formats is no longer an insurmountable task. But lots of complexity is still
to be covered, starting with understanding the variety of licensing and patent con-
straints on the use of different libraries and document formats. The other big prob-
lem with the myriad available parser libraries is that they all have their own APIs
designed for each individual document format. Writing an application that uses more
than a few such libraries requires a lot of effort learning how to best use each library.
What’s needed is a unified parsing API to which all the various parser APIs could be
adapted. Such an API would essentially be a universal language of digital documents.

 In the ensuing section, we’ll make a case for that universal language of digital doc-
uments, describing the lowest common denominator in that vocabulary: structured
text.

1.1.3 Structured text as the universal language

Though the number of multimedia documents is rising, most of the interesting infor-
mation in digital documents is still numeric or textual. These are also the forms of
data that current computers and computing algorithms are best equipped to handle.
The known search, classification, analysis, and many other automated processing tools
for numeric and textual data are far beyond our current best understanding of how to
process audio, image, or video data. Since numbers are also easy to express as text,
being able to access any document as a stream of text is probably the most useful
abstraction that a unified parser API could offer. Though plain text is obviously close
to a least common denominator as a document abstraction, it still enables a lot of use-
ful applications to be built on top of it. For example, a search engine or a semantic
classification tool only needs access to the text content of a document.

http://pdfbox.apache.org/
http://pdfbox.apache.org/
http://poi.apache.org/

10 CHAPTER 1 The case for the digital Babel fish

 A plain text stream, as useful as it is, falls short of satisfying the requirements of
many use cases that would benefit from a bit of extra information. For example, all
the modern internet search engines leverage not only the text content of the docu-
ments they find on the net but also the links between those documents. Many modern
document formats express such information as hyperlinks that connect a specific
word, phrase, image or other part of a document to another document. It’d be useful
to be able to accurately express such information in a uniform way for all documents.
Other useful pieces of information are things such as paragraph boundaries, head-
ings, and emphasized words and sentences in a document.

 Most document formats express such structural information in one way or another
(an example is shown in figure 1.3), even if it’s only encoded as instructions like
“insert extra vertical space between these pieces of text” or “use a larger font for that
sentence.” When such information is available, being able to annotate the plain text
stream with semantically meaningful structure would be a clear improvement. For
example, a web page such as ESPN.com typically codifies its major news categories
using instructions encoded via HTML list () tags, along with Cascading Style
Sheets (CSS) classes to indicate their importance as top-level news categories.

 Such structural annotations should ideally be well known and easy to understand,
and it should be easy for applications that don’t need or care about the extra informa-
tion to focus on just the unstructured stream of text. XML and HTML are the best-
known and most widely used document formats that satisfy all these requirements.
Both support annotating plain text with structural information, and whereas XML
offers a well-defined and easy-to-automate processing model, HTML defines a set of
semantic document elements that almost everyone in the computing industry knows
and understands. The XHTML standard combines these advantages, and thus provides
an ideal basis for a universal document language that can express most of the interest-
ing information from a majority of the currently used document formats. XHTML is
what Tika leverages to represent structured text extracted from documents.

1.1.4 Universal metadata

Metadata, or “data about data,” as it’s commonly defined, provides information that
can aid in understanding documents independent of their media type. Metadata
includes information that’s often pre-extracted, and stored either together with the
particular file, or stored in some registry available externally to it (when the file has an
entry associated with it in some external registry). Since metadata is almost always less
voluminous than the data itself (by orders of magnitude in most cases), it’s a prefera-
ble asset in making decisions about what to do with files during analysis. The action-
able information in metadata can range from the mundane (file size, location,
checksum, data provider, original location, version) to the sophisticated (start/end
data range, start/end time boundaries, algorithm used to process the data, and so
forth) and the richness of the metadata is typically dictated by the media type and its
choice of metadata model(s) that it employs.

11Understanding digital documents

One widely accepted metadata model is the Dublin Core standard (http://dublin-
core.org/) for the description of electronic resources. Dublin Core defines a set of 15
data elements (read attributes) that are said to sufficiently describe any electronic
resource. These elements include attributes for data format (HDF, PDF, netCDF, Word
2003, and so on), title, subject, publisher language, and other elements. Though a
sound option, many users have felt that Dublin Core (which grew out of the digital
library/library science community) is too broad and open to interpretation to be as
expressive as it purports.

...
<ul class="top">

<li class="t-allsports"><a href="http://espn.go.com/sports/"
name="&lpos=sitenav&lid=sitenav_sports"> ALL SPORTS
<div>

...
<li class="t-commentary"><a href="http://espn.go.com/espn/commentary/"
name="&lpos=sitenav&lid=sitenav_columnists"> COMMENTARY
<div>
<ul class="last">
<a href="http://sports.espn.go.com/espn/blog/main"
name="&lpos=sitenav&lid=sitenav_columnists_blogs">Blogs
...
<li class="t-page2"><a href="http://espn.go.com/espn/page2/"
name="&lpos=sitenav&lid=sitenav_page2">PAGE 2
<div>
...

Figure 1.3 A snippet of HTML (at bottom) for the ESPN.com home page. Note the top-level category

headings for sports (All Sports, Commentary, Page 2) are all surrounded by HTML tags that are

styled by a particular CSS class. This type of structural information about a content type can be

exploited and codified using the notion of structured text.

http://dublincore.org/
http://dublincore.org/

12 CHAPTER 1 The case for the digital Babel fish

 Metadata models can be broad (as is the case for Dublin Core), or narrow, focused
on a particular community—or some hybrid combination of the two. The Extensible

Metadata Platform (XMP) defined by Adobe is a combined metadata model that con-
tains core elements (including those defined by Dublin Core), domain-specific ele-
ments related to Photoshop files, images, and more, as well as the ability for users to
use their own metadata schemas. As another example, the recently developed Climate

Forecast (CF) metadata model describes climate models and observational data in the
Earth science community. CF, though providing limited extensibility, is primarily
focused on a single community (climate researchers and modelers) and is narrowly
focused when compared with the likes of Dublin Core or XMP.

 Most times, the metadata for a particular file format will be influenced by existing
metadata models, likely starting with basic file metadata and then getting more specific,
with at least a few instances of metadata pertaining to that type (Photoshop-specific, CF-
specific, and so on). This is illustrated in figure 1.4, where three example sets of meta-
data driven by three metadata models are used to describe an image of Mars.

 In order to support the heterogeneity of metadata models, their different attri-
butes, and different foci, Tika has evolved to allow users to either accept default meta-
data elements conforming to a set of core models (Dublin Core, models focused on
document types such as Microsoft Word models, and so forth) supported out of the
box, or to define their own metadata schema and integrate them into Tika seamlessly.
In addition, Tika doesn’t dictate how or where metadata is extracted within the overall

...
describes

Image of Mars

...

...

describes

describes

...

Basic file metadata

Filename: mars1.jpg
Size: 256kb

...

EXIF metadata

x-resolution: 72
y-resolution: 72
Resolution-unit: inch
Manufacturer: NASA

...

s
Dublin core metadata

Formats: jpeg-2000
Creators: Mars Odyssey
Title: approaching Mars

Figure 1.4 An image of Mars (the data), and the metadata (data about

data) that describes it. Three sets of metadata are shown, and each set

of metadata is influenced by metadata models that prescribe what

vocabularies are possible, what the valid values are, what the definitions

of the names are, and so on. In this example, the metadata ranges from

basic (file metadata like filename) to image-specific (EXIF metadata like

resolution-unit).

13Understanding digital documents

content understanding process, as this decision is typically closely tied to both the
metadata model(s) employed and the overall analysis workflow, and is thus best left up
to the user.

 Coupled with the ability to flexibly extract metadata comes the realization that not
all content on the web, or in a particular software application, is of the same language.
Consider a software application that integrates planetary rock image data sets from
NASA’s Mars Exploration Rover (MER) mission with data from the European Space
Agency’s Mars Express orbiter and its High Resolution Stereo Camera (HRSC) instru-
ment, which captures full maps of the entire planet at 10m resolution. Consider that
some of the earliest full planet data sets are directly available from HRSC’s principal
investigator—a center in Berlin—and contain information encoded in the German
language. On the other hand, data available from MER is captured in plain English.
To even determine that these two data sets are related, and that they can be corre-
lated, requires reading lengthy abstracts describing the science that each instrument
and mission is capturing, and ultimately understanding the languages in which each
data set is recorded. Tika again comes to the rescue in this situation, as it provides a
language identification component that implements sophisticated techniques includ-
ing N-grams that assist in language detection.

 More information on structured text, metadata extraction, and language identifi-
cation is given in chapter 6. Now that we’ve covered the complexity of dealing with the
abundance of file formats, identifying them, and doing something with them (such as
parsing them and extracting their metadata), it’s time to bring Tika to the forefront
and show you how it can alleviate much or all of the complexity induced by the mod-
ern information landscape.

1.1.5 The program that understands everything

Armed with the knowledge that Tika can help us navigate the modern information
ecosystem, let’s revisit the search engine example we considered earlier, depicted
graphically in figure 1.5. Imagine that you’re tasked with the construction of a local
search application whose responsibility is to identify PDF, Word, Excel, and audio doc-
uments available via a shared network drive, and to index those documents’ locations
and metadata for use in a web-based company intranet search appliance.

 Knowing what you know now about Tika, the steps required to construct this
search engine may go something like the following. First, you leverage a crawling
application that gathers the pointers to the available documents on the shared net-
work drive (depending on your operating system, this may be as simple as a fancy call
to ls or find). Second, after collecting the set of pointers to files of interest, you iter-
ate over that set and then determine each file’s media type using Tika (as shown in the
middle-right portion of figure 1.5). Once the file’s media type is identified, a suitable
parser can be selected (in the case of PDF files, Apache’s PDFBox), and then used by
Tika to provide both the extracted textual content (useful for keyword search, sum-
marizing and ranking, and potentially other search functions such as highlighting), as

www.allitebooks.com

http://www.allitebooks.org

14 CHAPTER 1 The case for the digital Babel fish

well as extracted metadata from the underlying file (as shown in the upper-middle
portion of figure 1.5). Metadata can be used to provide additional information on a
per-media-type basis—for example, for PDF files, display a lock icon if a metadata field
for locked is set, or for Excel files, listing the number of cells in the document or the
number of rows and columns in a sheet. From there, you’d decide whether to display
additional icons that link to services that can further process the file pointed to by
each search result returned from a query. The final step is language identification.
Language identification is a process that discerns what language a document is codi-
fied in. Search engines can use this information to decide whether a link to an associ-
ated translation service should be provided along with the original document. This
process is summarized in figure 1.5.

 As can be gleaned from the discussion thus far, Tika strives to offer the necessary
functionality required for dealing with the heterogeneity of modern information con-
tent. Search is only one application domain where Tika provides necessary services.
Chapters 12 through 15 describe other domain examples, including content manage-
ment, data processing at NASA, and grid systems at the National Cancer Institute.

 Before getting any further down the rabbit hole, it’s worth providing a bit of his-
tory on Tika’s inception, discussing its design goals, and describing its relationship to
its parent project, Apache Lucene, and other related technologies.

.pdf

.jpg

Excel

Audio

Shared Network Drive

crawling,
fetching, link

analysis,
scoring, etc.

Search engine

MIME
identification

Parsing
Metadata
extraction

Language
identification

Tika

Legend

Software
component

Data flow Files

details elided

Figure 1.5 Revisiting the search engine example

armed with Tika in tow. Tika provides the four

canonical functions (labeled as software

components in the figure) necessary for content

detection and analysis in the search engine

component. The remainder of the search engine’s

functions (crawling, fetching, link analysis,

scoring) are elided in order to show the data flow

between the search engine proper, the files it

crawls from the shared network drive, and Tika.

15What is Apache Tika?

1.2 What is Apache Tika?

We’ve talked a lot about Tika already, but much like a new friend at school, you prob-
ably are still lacking a bit of context, and some of the background details (what city
was that friend from; how many brothers does she have, or sisters?) that would make
you feel better about continuing the relationship. We’ll begin with some details on
Tika’s grandparents and parents: technologies originating in parts from the world of
search engines at Apache, from work in XML parsing at Sourceforge.net, and from
origins in document management. After an introduction to Tika’s predecessors, you’ll
want some information on Tika’s key philosophies, its goals, and where it wants to be
in five years. Is Tika your friend for life, or simply filling a hole until you meet the next
great technology? Read on and we’ll give you that information on your new pal Tika.

1.2.1 A bit of history

Figure 1.6 shows a timeline of Tika’s development, from proposal to top-level project.
 As the figure depicts, the idea for Tika was originally proposed in the Apache

Nutch project. Nutch is best described as an open source framework for large-scale
web search. The project commenced as the brainchild of Doug Cutting (the father of
the Lucene and Hadoop projects, a general wizard of open source search), who was
frustrated with commercial search companies and the proprietary nature of their
ranking algorithms and features. As the original Nutch website at Sourceforge.net
stated:

Nutch provides a transparent alternative to commercial web search engines. Only open
source search results can be fully trusted to be without bias. (Or at least their bias is
public.) All existing major search engines have proprietary ranking formulas, and will
not explain why a given page ranks as it does. Additionally, some search engines
determine which sites to index based on payments, rather than on the merits of the sites
themselves. Nutch, on the other hand, has nothing to hide and no motive to bias its
results or its crawler in any way other than to try to give each user the best results possible.

2004

D. Cutting

starts Nutch

2010

Nutch 0.7

released

(in use at OSU,

Internet

Archive)

20052004 2006

Hadoop used as

basis for Nutch

Tika idea

proposed to

Lucene PMC

by Jerome and

Chris

2006 2006

Jukka discusses

Tika for Jackrabbit

Rida offers to

contribute the

Luis project to

Tika efforts

2007 2007

Tika project enters

Apache Incubator

Tika graduates

to Lucene sub-

project

2008 2010

Tika graduates into

top-level Apache

project

Figure 1.6 A visual timeline of Tika’s history. Its early beginnings formed from the Apache Nutch project, which

itself spawned several children and grandchildren, including Apache Hadoop and its subprojects. After some steps

along the way, as well as the work of a few individuals who kept the fire lit, Tika eventually moved into its current

form as a top-level Apache project.

16 CHAPTER 1 The case for the digital Babel fish

Nutch rapidly grew from a nascent effort into an established framework, with commu-
nity involvement spanning academia (the Central Web Services department at Ore-
gon State); industry, for example, at the Internet Archive (a nonprofit focused on
digitally archiving the web); government (with some of the search efforts in planetary
science and cancer research performed by yours truly at NASA); and dozens of other
commercial entities and efforts. Eventually, Nutch reached its upper limits in scalabil-
ity, around 100 million web pages, a factor of 40 less than that of the commercial
search engines such as Google. Around the same time, the grid computing team at
Yahoo! came into the picture and began to evaluate Nutch, but the scalability limita-
tion was a problem that needed to be solved.

 The most promising approach for obviating the scalability problem came when
Google published its seminal papers describing its MapReduce and Google File System
(GFS) technologies, and when Doug Cutting ran across these papers. Doug, along with
Mike Cafarella, decided to implement the software and algorithms described therein
in the open source community at Apache. Nutch quickly moved from a technology
that ran on a single node, and maxed out around 100 million web pages, to a technol-
ogy that could run on 20 nodes and scale to billions of web pages. Once the initial pro-
totype was demonstrated, Yahoo! jumped in with engineers and resources, and
eventually the Apache Hadoop project was born. Apache Hadoop was the result of an
effort to generalize the MapReduce and Distributed File System portions of Nutch
implemented by Cutting and Cafarella, and to port them to a standalone project, mak-
ing it easier to inherit their capabilities in isolation, without pulling all of Nutch in.

 Around the same time, we and others (including Jerome Charron) saw the value in
doing the exact same thing for the parsing code in Nutch, and for its MIME detection
capabilities. Jerome and Chris sent a proposal to the Apache Lucene Project Manage-
ment Committee (PMC), but despite positive feedback, the idea gained little momen-
tum until later in the year when Jukka came along with the parsing and content-
detection needs of the Apache Jackrabbit community, and others, including Rida Ben-
jelloun, offered to donate the Lius framework Rida developed at Sourceforge (a set of
parsers and utilities for indexing various content types in Lucene). Critical mass was
achieved, and the Tika idea and project were brought into the Apache Incubator.
After a successful incubating release, and a growing community, Tika graduated as a
full-fledged Lucene subproject, well on its way to becoming the framework that you’re
reading about today.

WHAT’S A TIKA? Tika’s name followed the open source baby-naming tech-
nique du jour circa 2005—naming the project after your child’s stuffed toy.
No, we’re not kidding. Doug Cutting, the progenitor of Apache Lucene,
Apache Nutch, and Apache Hadoop, had a penchant for naming open source
projects after his children’s favorite stuffed animals. So, when Jerome and
Chris were discussing what to call their proposed text analysis project, Tika
seemed a perfect choice—it was Jerome’s son’s stuffed animal!

17What is Apache Tika?

Now that you’ve heard about Tika’s ancestors and heritage, let’s familiarize you with
Tika’s current state of mind and discuss its design goals, now and going forward.

1.2.2 Key design goals

A summary of Tika’s overall architecture is provided in figure 1.7. Throughout this
section, we’ll describe the key design goals that influenced Tika’s architecture and its
key components: a parser framework (middle portion of the diagram), a MIME detec-
tion mechanism (right side of the diagram), language detection (left side of the dia-
gram), and a facade component (middle portion of the diagram) that ties all of the
components together. External interfaces, including the command line (upper-left
portion of the diagram) and a graphical user interface (discussed in chapter 2 and
shown in the upper-right portion of the diagram), allow users to integrate Tika into
their scripts and applications and to interact with Tika visually. Throughout its archi-
tecture, Tika leverages the notion of repositories: areas of extensibility in the architec-
ture. New parsers can be easily added and removed from the framework, as can new
MIME types and language detection mechanisms, using the repository interface.
Hopefully, this terminology has become second nature to you by now!

Content

MIME type

identifier

MIME type

repository

Parser

repository

Tika facade

Metadata

Extracted
textual
content

Command-line interface GUI

Tika
framework

Parser

Language

identifier

Language

repository
Figure 1.7 High-level Tika

architecture. Note explicit

components exist that deal with

MIME detection (understanding

how to identify the different file

formats that exist), language

analysis, parsing, and structured

text and metadata extraction. The

Tika facade (center of the diagram)

is a simple, easy-to-use frontend to

all of Tika’s capabilities.

18 CHAPTER 1 The case for the digital Babel fish

Strong early interest in Tika paved the way for discussions on the mailing lists, for
birds-of-a-feather (BOF) meetings at ApacheCon (Apache’s flagship conference), and
for other public forums where much of the original design and architecture for Tika
were fleshed out. Several of the concepts we’ve already discussed—providing a means
to extract text in XHTML format; allowing for flexible metadata models, and explicit
interfaces for its extraction; and support for MIME-type detection—were all identified
as necessary first-order features and input accordingly into Tika’s JIRA issue tracking
system. The key design goals are summarized in table 1.2, and further discussed in the
remainder of this section.

UNIFIED PARSING INTERFACE

One of the main early discussions was regarding the creation of the
org.apache.tika.parser.Parser interface. The choices were many: Parse content in
one fell swoop or parse the content incrementally? How should the parsed text be
provided—via the return of the method signature or via reference? What was the rela-
tionship of the parsers to media types?

Table 1.2 Tika’s key design goals, numbered and described briefly for reference. Each design goal is

elaborated upon in detail in this section, and ties back to the overall necessity for Tika.

Design goal Description

G1: Unified parsing Provide a single uniform set of functions and a single Java interface to

wrap around heterogeneous third-party parsing libraries.

G2: Low memory footprint Tika should be embeddable within Java applications at low memory cost

so that it’s as easy to use Tika in a desktop-class environment with capa-

cious network and memory as it is within a mobile PDA with limited

resources on which to operate.

G3: Fast processing The necessity of detecting file formats and understanding them is perva-

sive within software, and thus we expect Tika to be called all the time, so

it should respond quickly when called upon.

G4: Flexible metadata There are many existing metadata models to commonly describe files, and

Tika has the burden of understanding all of the file formats that exist, so it

should in turn understand the formats’ associated metadata models.

G5: Parser integration Just as there are many metadata models per file format, there are also

many parsing libraries. Tika should make it easy to use these within an

application.

G6: MIME database MIME types provide an easy-to-use, understandable classification of file

formats and Tika should leverage these classifications.

G7: MIME detection There are numerous ways to detect MIME types based on their existing

IANA classifications (recall table 1.1), and Tika should provide a means

for leveraging all or some combination of these mechanisms.

G8: Language detection Understanding what language a document’s content is in is one of the cor-

nerstones of extracting metadata from it and its textual information, so

Tika should make language identification a snap.

19What is Apache Tika?

LOW MEMORY FOOTPRINT AND FAST PROCESSING

After lengthy discussions, the decision was made to parse text incrementally and out-
put it as SAX-based XHTML events. SAX, the Simple API for XML processing, is the pri-
mary alternative to parsing XML using the Document Object Model (DOM), which
loads the entire XML document into memory and then makes it available via an API.
SAX, on the other hand, parses tags incrementally, causing a low memory footprint,
allowing for rapid processing times, and ultimately providing the functionality
required by the Tika architecture. After that, you may be wondering, why does DOM
even exist? DOM exists because it provides a more conceptually understandable API
than SAX, where you have to be cognizant of state (if you’re parsing a complex XML
model with many tags) as you iterate over the XML document. SAX parsers by their
nature attach “handler” code to callback functions (agglomerated as
org.xml.sax.ContentHandler implementations) that implement the workflow of
processing an XML document. SAX callback functions include startDocument (called
when the SAX parser begins parsing), endDocument (called when the SAX parser is fin-
ished), startElement (called when an XML open tag is encountered for a tag with a
given name, such as <book>), and endElement (called when the SAX parser encoun-
ters an end XML tag, such as </book>), to name a few. Developers fill in the body of
these functions to tell the SAX parser what to do as it parses the XML document piece-
meal. In DOM, these details are obfuscated from the user and handled by the DOM
implementation provider, at the cost of memory footprint and overall speed.

 By adopting the SAX model, Tika allows developers and those wishing to customize
how Tika’s Parser deals with extracted information to define custom org.xml.sax
.ContentHandlers that describe what to do: pass along a subset of the extracted
XHTML tags; pass along all of the tags, discard others, and so on.

FLEXIBLE METADATA

The next major question to answer in Tika’s Parser was determining how extracted
metadata should be provided. Earlier versions of Tika focused on modifying a passed-
in org.apache.tika.metadata.Metadata object instance, and adding the extracted
metadata to that object. Modern and future versions of Tika have moved in the direc-
tion of an org.apache.tika.parser.ParseContext object, containing the returned
state from the parser, including the extracted text and metadata. The decision of how
to deal with extracted metadata boils down to the metadata’s lifecycle. Questions
include, what should Tika do with existing metadata keys (overwrite or keep)? Should
Tika return a completely new Metadata object instance during each parse? There are
benefits of allowing each scenario. For example, MIME detection can benefit from a
provided metadata “hint”—whereas creating a new Metadata object and returning it
per parse simplifies the key management and merge issues during metadata extrac-
tion.

EASY-TO-INTEGRATE NEW PARSER LIBRARIES

Some other early design considerations in Tika’s parsing framework were focused on
exactly how third-party parsing libraries should be provided. Should Tika developers

20 CHAPTER 1 The case for the digital Babel fish

become experts in the underlying parsing libraries, and as such, should Tika be in the
business of providing parser library implementations? The resounding community
consensus was no, and fittingly so, as each parsing library can be the result of many
years of work from hundreds of developers and users. The consensus from a design
perspective was that Tika should look to virtualize underlying parser libraries, and
ensure their conformance to Tika’s org.apache.tika.parser.Parser interface. But
much complexity is hidden in that simple sentence. Dealing with underlying parser
exceptions, threads of control, delegation, and nuances in each of these libraries has
been a large effort in its own right. But this effort is a cost well spent, as it opens the
door to cross-document comparison, uniformity, standardized metadata and
extracted text, and other benefits we’re hopefully starting to ingrain in your mind.

MIME DATABASE

Several design considerations in Tika’s MIME framework pervade its current reifica-
tion in the Tika library. First and foremost, we wanted Tika to support a flexible mech-
anism to define media types, per the discussion on IANA and its rich repository and
media type model discussed earlier. Because the IANA MIME specification and the
aforementioned RFCs were forward-looking, they defined a mechanism procedurally
for adding additional media types as they’re created—we desired this same flexibility
for Tika’s MIME repository. In addition, we wanted Tika to provide an easy, XML-based
mechanism (similar to Freedesktop.org, Apache Nutch, and other projects) for add-
ing media types, their magic character patterns, regular expressions, and glob pat-
terns (such as *.txt) for identifying filename patterns and extensions.

 Besides ensuring that the definition of media types in Tika is user-friendly and
easy, we also wanted to support as many of the existing IANA types as possible. One of
our design considerations was the creation of the comprehensive media type repository,
akin to the MIME information used by Apache’s HTTPD web server, or by Freedesk-
top.org’s shared MIME-info database. With more than 1,276 defined MIME types and
relationships captured, Tika is well on its way in this regard.

PROVIDE FLEXIBLE MIME DETECTION

To expose the MIME information programmatically, we decided to expose as many
MIME detection mechanisms (via byte[] arrays, java.io.Files, filenames and
java.net.URLs pointing to the files, and so forth) as possible to end users of the Tika
API. Tika’s org.apache.tika.mime.MimeTypes class was designed to act as this honest
broker of functionality. The class loads up a Tika XML MIME repository file, and then
provides programmatic access to detection mechanisms and allows users to obtain
org.apache.tika.mime.MimeTypes (encapsulating not only the name, but other
MIME information such as the parents, magic characters, patterns, and more), or sim-
ply the names of the detected type for the provided file.

 Another important consideration for Tika’s MIME repository was tying the MIME
information to that of org.apache.tika.parser.Parsers that deal with extracting
text content and metadata. The main details to flush out in this arena were whether
Tika Parsers should deal with only single media types, or handle many per Parser.

21What is Apache Tika?

This issue dictates whether specific Parser implementations are allowed to be com-
plex (dealing with multiple media types), or whether each supported Tika Parser
should be more canonical, dealing with a single media type, and increasing the num-
ber of parsers in the Tika framework. Beyond that detail (Tika opted to allow one to
many types per Parser, achieving the greatest flexibility and decreasing the overall
number of parsers), the exchange of MIME information between Parser and Meta-
data object was another important consideration, as the detected media type can be
useful information to return as extracted metadata along with the parsing operation.

PROVIDE LANGUAGE DETECTION

Language identification, though a newer feature in Tika, fits into the overall Tika
framework, because it’s simply another piece of information that can be fed into the
Parser and leveraged (similar to the media type information) during the parsing pro-
cess. Much of the design discussion to date in this area is centered on mechanisms to
improve language-specific charset detection, and to inject that information into the
overall Tika lifecycle (for example, make it present in the Metadata object, make it
available during parsing, and so on).

 In the following section, we’ll detail more on the best places to use Tika, provide
some example domains, and set the stage for advanced discussion of Tika features in
the forthcoming chapters.

1.2.3 When and where to use Tika

Now that you have an idea of what Tika is and what it does, the next question is where
and when it’s best used, and more importantly, is it of any use to you? This section cov-
ers some of the more prominent use cases and domains where Tika is now being used.

SEARCH ENGINES AND CONTENT REPOSITORIES

The main use case for which Tika was originally conceived is supporting a search
engine to index the full-text contents of various kinds of digital documents. A search
engine typically includes a crawler component that repeatedly traverses a set of docu-
ments and adds them to a search index. Since the search index normally only under-
stands plain text, a parser is needed to extract the text contents from the documents.
Tika fits this need perfectly, and we’ll cover this use case in more detail in chapter 10
where we discuss integration with the various search engine components of the
Apache Lucene project. The case study in chapter 15 takes a more practical view on
how Tika fits into such a search engine.

 A related use case includes different kinds of document and content repositories
that make all contained documents searchable. Whenever a document is added to or
modified in the repository, its content is extracted and indexed. A generic and exten-
sible parsing tool such as Tika allows the repository to support virtually any kind of
documents, and Tika’s metadata extraction capabilities can be used to automatically
classify or annotate the documents stored in the repository. The case study in chapter
13 shows how the Apache Jackrabbit project uses Tika for such purposes.

22 CHAPTER 1 The case for the digital Babel fish

DOCUMENT ANALYSIS

The field of artificial intelligence is often associated with large promises and poor
results, but the decades of research have produced some impressive tools for automat-
ically analyzing documents on a semantic level and extracting all sorts of interesting
information. Some of the simpler practical applications, are the ability to extract key
terms, such as people and places and their relationships, from normal written text,
and the ability to automatically classify documents based on the key topics covered.
Projects such as Apache UIMA and Mahout provide open source tools for such appli-
cations, and Tika can be used to easily extend the scope of the applications from plain
text to any kind of digital documents.

DIGITAL ASSET MANAGEMENT

The key assets of many organizations are increasingly digital. CAD drawings, book
manuscripts, photographs, music, and video are just some examples of digital assets
with high value. Instead of storing such documents on a disk or backup tape some-
where, organizations are increasingly using more sophisticated digital asset manage-
ment (DAM) applications to keep track of these assets and to guide related processes.
A DAM system often categorizes tracked documents by type, annotates them with rich
metadata, and makes them easily searchable, all of which can easily be implemented
with support from Tika.

1.3 Summary

We’ve introduced you to Apache Tika, an extensible Java-based framework for content
analysis and detection. First, we explained the motivation for Tika by describing the
proliferation of content types such as PDFs, Word, Excel, and HTML, and tools associ-
ated with performing functions on those types. The sad fact is that the typical pattern
involves specializing knowledge of these types to particular applications, and needing
to maintain a set of applications to deal with each type of file (the Microsoft Office
suite, Adobe Photoshop, XML editors, and so forth). Beyond applications, many appli-
cation programming interfaces (APIs) exist that handle these document types, but
they’re highly heterogeneous—they make different assumptions, provide different
interfaces, and support varying qualities of service. Enter Apache Tika, a mechanism to
bridge the content type diversity and to deal with file types in a uniform way.

 The nuances and complexity in writing an application (such as a search engine)
that must deal with all of these content types at once quickly grow to be untenable
without a technology like Tika. Clearly, the problem of obtaining information from
these file types is centered around the ability to identify the type of file automatically
(especially when dealing with large numbers of such files), extract the textual infor-
mation, and extract common metadata (such as Dublin Core) useful for quickly com-
paring and understanding the file types. Language detection is also a needed feature
(similar to MIME detection) to determine means for extracting out the textual infor-
mation from each file type. As it turns out, Apache Tika (big surprise!) provides sim-
ple mechanisms to address these functions in modern software.

23Summary

 To familiarize you more with Tika, we provided some history, explaining how and
why certain design decisions and goals were arrived upon. Tika’s modular design and
its assumptions were detailed, hopefully providing more intimate understanding of
the existing framework and its high-level benefits, strengths, and weaknesses.

 We gave you some tips and high-level advice on where to leverage Tika in your
applications: where it works, and where you shouldn’t even think of putting it. (Hint:
it doesn’t cook your breakfast for you!) We wrapped up the chapter by grounding our
discussion in some real-world domains, using the discussion to describe Tika’s utility
clearly and concisely.

 In the next chapter, we’ll get you familiar with how to obtain Tika from the Apache
Software Foundation (ASF), how to construct your application (including Tika’s code,
its distribution JAR files, and so on), and we’ll travel further down the path of auto-
matic content detection and analysis engendered by the Tika technology.

www.allitebooks.com

http://www.allitebooks.org

24

Getting started with Tika

Equipped with sufficient background on Apache Tika, you’re probably thinking to
yourself: how do I start leveraging Tika in my own application? Tika is a modern
Java application, and its development has undergone the natural evolution that
most Java applications do: beginning as a set of Java classes exported as an API, fol-
lowed by a basic command-line interface, and culminating with a graphical user
interface (GUI) for the command-line neophyte (or those with a preference for
visual interfaces).

 Executing Tika at runtime is a separate step from building Tika from source
code. Because Tika is an open source project at the Apache Software Foundation
and provided under the Apache License version 2.0 (ALv2),1 many of its users (you
may be one of them) will be perfectly comfortable grabbing the Tika source code

This chapter covers

 Working with the Tika source code

 The Tika application

 Tika as an embedded library

1 The Apache Software Foundation is a community of open source projects characterized by a collaborative
and consensus-based development process. The Apache License used by Apache projects is a permissive
open source license that allows software with the license to be used and redistributed as a part of proprie-
tary software. See the Apache website at http://www.apache.org/ for more details.

http://www.apache.org/

25Working with Tika source code

and building/integrating it into their applications. To do so, you’ll need some basic
knowledge of the primary Tika build tool, Apache Maven, along with some basic
knowledge of JUnit tests in order to make sure the Tika software will execute correctly
in your environment.

 In this chapter, we’ll cover the basics of integrating Tika into your environment,
whether you prefer executing Tika via command line, API, GUI form, or starting from
the source code. We’ll start by introducing you to building Tika using Apache Maven
or Apache Ant, a world you’ll need to familiarize yourself with (albeit briefly) to get
working with the Tika source code.

2.1 Working with Tika source code

Before we get too deep into building Tika, we’ll briefly describe how to obtain the
Tika source code, the starting point for building Tika and for integrating Tika into
your Java application. You can skip this section if you’re only interested in using
released Tika binaries, but as with any open source project, having access to and being
able to modify and build the source code gives you a lot of extra opportunities.

2.1.1 Getting the source code

The first step in building Tika, obviously, is getting the source code. You download
the source code of all Tika releases from the download section of the Tika website
(http://tika.apache.org), but often the most interesting stuff is in the latest develop-
ment tree that you can find in the version control system.

 All Apache projects manage their source code in a big Subversion repository at
http://svn.apache.org/, and Tika is no exception. Assuming you have a Subversion
client installed, you can check out the latest Tika development tree with the following
command:

svn checkout http://svn.apache.org/repos/asf/tika/trunk tika-trunk

GIT MIRRORS If you prefer the Git version control system over Subversion,
you’ll want to check out the Git mirrors that Apache makes available at
http://git.apache.org/. The Git clone URL for Tika is git://git.apache.org/
tika.git and you can find Tika also on Github at http://github.com/apache/
tika.

To keep up with the latest developments, run svn update (or git pull if you use Git)
in the checked-out directory. This updates your copy with the latest changes commit-
ted to the Subversion repository. And if you want to submit a bug fix or a new feature
to Tika, you can use svn diff to get a nicely formatted patch that includes all the
changes you’ve made to your local copy of the source tree. But let’s not get ahead of
ourselves—first we need to get the source code to build!

http://tika.apache.org
http://svn.apache.org/
http://git.apache.org/
git://git.apache.org/tika.git
git://git.apache.org/tika.git
http://github.com/apache/tika
http://github.com/apache/tika

26 CHAPTER 2 Getting started with Tika

2.1.2 The Maven build

The Tika build is based on Apache Maven. If you don’t already have Maven installed
on your computer, you can grab the latest version from the Maven website at http://
maven.apache.org/. Once you’ve done that, you can start the Tika build by executing
the following command in the project directory that you just checked out:

mvn clean install

That’s it. You can do a lot with Maven, but the preceding command will automatically
clean up the build environment, download all the external dependencies, compile and
package all the Tika source code, run the included unit and integration tests, and
finally install the tested Tika libraries to your local Maven repository. You can, for exam-
ple, find the freshly built standalone tika-app JAR file in the tika-app/target directory.

MAVEN RUNNING OUT OF MEMORY? Running into memory issues when trying
to compile Tika? Recent versions of Tika build several deliverable JAR files,
some of which pull in many dependencies. If you’re getting Java or Maven
OutOfMemory exceptions when running mvn install, try setting environment
variable MAVEN_OPTS="-Xmx512m". This will allocate 512 megabytes of memory
to Java and Maven; most times, this will get you through the build.

All of the major integrated development environment (IDE) tools such as Eclipse,
IDEA, and NetBeans have good support for Maven builds, so you can easily import Tika
to your IDE workspace for easy access to this functionality and more. See the relevant
documentation of your favorite IDE for details on how to work with Maven projects.

2.1.3 Including Tika in Ant projects

Though Tika’s build is optimized for Maven, it’s fairly easy to use Tika with Apache
Ant, another popular build tool. Ant is commonly included with many modern *nix
distributions, but if you need to install Ant for any reason, you can grab it from the
Ant website at http://ant.apache.org/. We’ll assume that you’ve created a build.xml
file to begin working with Ant in your project. Including Tika in that Ant project is as
simple as finding the existing <classpath> entry in your build.xml file (or adding a
new <classpath> entry) and then including the Tika JARs in your <classpath> block.

 It’s worth noting that version numbers could change by the time you read this, so
to discern the actual dependencies, it’s better to use the mvn dependency:list or mvn
dependency:tree commands to determine the latest versions of dependent libraries:

<classpath>

... <!-- your other classpath entries -->

<pathelement location="path/to/tika-core-1.0.jar"/>
<pathelement location="path/to/tika-parsers-1.0.jar"/>

<pathelement location="path/to/slf4j-api-1.5.6.jar"/>

<pathelement location="path/to/slf4j-log4j12-1.5.6.jar"/>
<pathelement location="path/to/log4j-1.2.14.jar"/>

<pathelement location="path/to/commons-logging-1.1.1.jar"/>

<pathelement location="path/to/commons-codec-1.4.jar"/>

http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org/

27The Tika application

<pathelement location="path/to/commons-compress-1.1.jar"/>
<pathelement location="path/to/netcdf-4.2-min.jar"/>

<pathelement location="path/to/pdfbox-1.5.0.jar"/>

<pathelement location="path/to/fontbox-1.5.0.jar"/>
<pathelement location="path/to/jempbox-1.5.0.jar"/>

<pathelement location="path/to/poi-3.8-beta2.jar"/>

<pathelement location="path/to/poi-scratchpad-3.8-beta2.jar"/>
<pathelement location="path/to/poi-ooxml-3.8-beta2.jar"/>

<pathelement location="path/to/poi-ooxml-schemas-3.8-beta2.jar"/>

<pathelement location="path/to/xmlbeans-2.3.0.jar"/>
<pathelement location="path/to/dom4j-1.6.1.jar"/>

<pathelement location="path/to/geronimo-stax-api_1.0_spec-1.0.1.jar"/>

<pathelement location="path/to/tagsoup-1.2.jar"/>
<pathelement location="path/to/asm-3.1.jar"/>

<pathelement location="path/to/metadata-extractor-2.4.0-beta-1.jar"/>

<pathelement location="path/to/apache-mime4j-0.6.jar"/>
<pathelement location="path/to/bcmail-jdk15-1.45.jar"/>

<pathelement location="path/to/bcprov-jdk15-1.45.jar"/>

<pathelement location="path/to/boilerpipe-1.1.0.jar"/>
<pathelement location="path/to/rome-0.9.jar"/>

<pathelement location="path/to/jdom-1.0.jar"/>

</classpath>

Alternatively, you may include just the tika-app-1.0.jar file as a classpath element in
your build.xml:

<classpath>

... <!-- your other classpath entries -->
<pathelement location="path/to/tika-app-1.0.jar"/>

</classpath>

Once you’ve integrated Tika into your classpath using one of these methods, to get
going with your build, run

ant -f build.xml

... and you’re set!
 Now that you’ve built Tika and learned how to integrate it into your Ant project,

it’s time to learn how to interact with its two primary external interfaces: the com-
mand line and Tika’s graphical user interface (GUI).

2.2 The Tika application

The first step in revving up your new Babel Fish is deciding between two simple exter-
nal interfaces that are part of the Tika application: a graphical user interface (GUI)
that provides drag-and-drop functionality, and a command-line interface for folks
comfortable with scripting environments. In this section we’ll first show you how to
download Tika, and then walk you through each of these interfaces.

 The quick-and-easy way to get started with Tika is to use the Tika application, a
standalone JAR archive that contains everything you need to access the key Tika fea-
tures. The application is available for download from the Tika website at http://
tika.apache.org/. The current version of Tika is 1.0 at the time of writing this book, so

http://tika.apache.org/
http://tika.apache.org/

28 CHAPTER 2 Getting started with Tika

we’ll use that in our examples, but any recent Tika version should work equally well if
not better. It’s worth noting that you’ll need Java 5 or higher to run the standalone
JAR archive, called tika-app-1.0.jar. The archive is available after you compile Tika
inside of the tika-app/target directory.

 To start up the standalone JAR, use the java command’s -jar option: java -jar
tika-app-1.0.jar. The --help option displays a summary of the available command-
line options and a brief description of the application, as shown next.

$ java -jar tika-app-1.0.jar --help
usage: java -jar tika-app.jar [option...] [file|port...]

Options:

-? or --help Print this usage message
-v or --verbose Print debug level messages

-g or --gui Start the Apache Tika GUI

-s or --server Start the Apache Tika server

-x or --xml Output XHTML content (default)
-h or --html Output HTML content

-j or --json Output JSON content

-t or --text Output plain text content
-T or --text-main Output plain text content (main content only)

-m or --metadata Output only metadata

-l or --language Output only language
-d or --detect Detect document type

-eX or --encoding=X Use output encoding X

-z or --extract Extract all attachments into current directory

--list-parsers

List the available document parsers

--list-parser-details
List the available document parsers, and their supported mime types

--list-met-models

List the available metadata models, and their supported keys
--list-supported-types

List all known media types and related information

Description:
Apache Tika will parse the file(s) specified on the

command line and output the extracted text content

or metadata to standard output.

Instead of a file name you can also specify the URL

of a document to be parsed.

If no file name or URL is specified (or the special
name "-" is used), then the standard input stream

is parsed. If no arguments were given and no input

data is available, the GUI is started instead.

- GUI mode

Use the "--gui" (or "-g") option to start the

Listing 2.1 Built-in documentation of the Tika application

29The Tika application

Apache Tika GUI. You can drag and drop files from
a normal file explorer to the GUI window to extract

text content and metadata from the files.

- Server mode

Use the "-server" (or "-s") option to start the

Apache Tika server. The server will listen to the

ports you specify as one or more arguments.

As you can see, the graphical user interface (GUI) mode is invoked with the --gui
option or if you run tika-app.jar without any arguments. The GUI provides a visual
means of navigating Tika’s features, along with a simple drag-and-drop interface for
exploring a document’s extracted textual content and metadata, as well as for deter-
mining whether the document was parsed correctly. Let’s take a look at the GUI first
before discussing the other methods of interacting with Tika.

2.2.1 Drag-and-drop text extraction: the Tika GUI

The Tika GUI mode is especially useful when you’re sitting in front of your computer
interactively trying to figure out how well Tika understands some specific documents.
By “how well,” we mean the information that Tika is able to identify about the docu-
ment, such as its MIME type, its language, the structured text, and the extracted meta-
data. In particular, it’s important to interactively explore Tika’s understanding of your
document types, as you may be dealing with files that Tika has never seen before, or
that contain content for which Tika needs tuning to better understand. In this regard,
first interactively exploring the document using the Tika GUI is a viable solution
before turning your deployed Tika app into a lights-out solution that you can run in
batch mode automatically (we’ll see more of that in the command-line section).

 At its core, the Tika GUI is a simple tool that allows you to try out the canonical
Tika features (text extraction, metadata extraction, and so on) on all sorts of files. To
start the GUI, use the --gui option like this: java -jar tika-app-1.0.jar --gui. This
starts up a simple Apache Tika GUI window as shown in figure 2.1.

Figure 2.1 Tika GUI window

30 CHAPTER 2 Getting started with Tika

You can drag and drop files or URL links from a file explorer or a web browser into this
window, and Tika will automatically extract all the content and metadata it can from
the given document. The various forms of extracted information are shown in separate
views as described in table 2.1. Any parsing errors or other problems are reported in a
separate window that shows the relevant error message and related stack trace.

The Tika GUI is great for interaction-driven exploration of your files and documents,
but what if you want to automatically process large batches of documents or to inte-
grate Tika with other (existing) applications automatically, without human interven-
tion? This is where the other command-line options come in.

2.2.2 Tika on the command line

When you don’t specify the --gui option, the standalone JAR will act as any normal
command-line application would. It reads a document from standard input and writes
the extracted content to standard output. The default command-line behavior is
highly relevant, especially after exploring your Tika deployment and its understand-
ing of your document types interactively via the GUI. In most cases, once you’re com-
fortable parsing your documents via the GUI, you’ll move into a mode of batch
processing the documents with Tika, leveraging that default command-line behavior.

 You can customize the command-line behavior with various command-line
options, but by default the output consists of the extracted text in XHTML format. In
the following example, we first call Tika and provide (via a Unix input pipe, the < sym-
bol) the contents of the document.doc file, then take the output results of the Tika
command (extracted XHTML text) and write that output (via the Unix output pipe,
the > symbol) to the file extracted-text.xhtml:

java -jar tika-app-1.0.jar < document.doc > extracted-text.xhtml

Table 2.1 Information included in views of the Tika GUI window

View Description

Formatted text Extracted text content as formatted XHTML. You can use this view to see how well

Tika understands the structure of the document that was parsed. Ideally you should

see all content in correct order with details such as links and headings in place.

Plain text Extracted text content as plain text. This view is most useful for understanding how

(for example) a simple search index that doesn’t care about text structure sees your

document.

Structured text Extracted text content as raw XHTML. Shows the exact XHTML output produced by

the Tika parser. See chapter 5 for more details on this and the other two text views.

Metadata Extracted document metadata. This view will tell you the exact document type and

any other information, such as title or author of the document, that Tika was able to

extract. See chapter 6 for more details about document metadata.

31The Tika application

You can use this command-line mode to integrate Tika with non-Java environments,
such as shell scripts or other scripting languages. For example, it’s easy to use Tika as a
part of a Unix pipeline either directly on the command line, or as part of a more com-
plex script. In the following example, a document is printed to Unix standard output
(via cat), then piped into a call to Tika (the java -jar.. command), and then spe-
cific text is identified in the extracted text output using the Unix grep command:

cat document.doc | java -jar tika-app-1.0.jar | grep some-text

SAVE SOME TYPING If you’re using the bash shell on a Unix-like computer,
you can avoid some extra typing by defining the following alias: alias
tika="java -jar /path/to/tika-app-1.0.jar". Then you can run the Tika
application by typing just tika on the command line. The syntax of the alias
command may differ slightly if you use another shell such as tcsh. See the rel-
evant man page for details.

If the input document is available as a normal file or can be downloaded from a URL,
then you can pass the filename or the URL as a command-line argument. Tika will
read the document from the given file or URL instead of from the standard input, and
will also use the filename or a possible content type setting returned by a web server as
additional information when processing the document:

java -jar tika-app-1.0.jar http://www.example.com/document.doc

Instead of XHTML output, you can also request traditional HTML or plain text by spec-
ifying the --html or --text command-line option:

java -jar tika-app-1.0.jar --text document.doc

Note that Tika will by default output text using the normal character encoding used
on your computer. This is great if you’re using Tika with tools such as your command-
line console window that expect this default character encoding, but may cause trou-
ble otherwise. To avoid unexpected encoding problems, you can explicitly set the out-
put encoding with the --encoding option:

java -jar tika-app-1.0.jar --encoding=UTF-8 --text document.doc

If you’re more interested in the document metadata than in the contents of the docu-
ment, you can ask for a metadata printout with the --metadata option. This will out-
put the extracted document metadata in the Java properties file format:

java -jar tika-app-1.0.jar --metadata document.doc

The GUI and command-line modes are useful tools, but as Java developers likely
already understand, leveraging Tika as an embedded library within Java is where the
full power of Tika really lies. Tika’s GUI and command-line interface are powered
under the hood by a set of Java classes and APIs that the GUI and command-line inter-
face expose to Tika’s users. From a GUI perspective, interaction with visual aids and
via clicks and drag-and-drop actions are a means to codify user intent—to turn that

32 CHAPTER 2 Getting started with Tika

intent into a series of method calls to Tika’s Java API, grab the results from Tika, and
present those findings to the user. The same goes for the command-line API. It grabs
user interaction in the form of command-line arguments and switches, then sends
that information to the Tika Java classes. It gets the results and finally presents those
results to the user by printing the results to the terminal output. Because both the GUI
and command-line interface ultimately restrict interaction to their mode of choice
and simplify the underlying complexity of the Tika library (which is a good thing
because it lowers the entry barrier to using Tika), a lot of “advanced user” expressive-
ness and flexibility are limited to what’s provided in those interaction modes. Using
Tika in native Java affords you all of the necessary language-level and build-level tools
to overcome those interaction limitations and unlock the power and features of Tika.

 So, now that we’ve covered most of Tika’s GUI and command-line functionality,
we’ll switch gears and start writing some Java code to help you unlock Tika’s true flex-
ibility and expressiveness!

2.3 Tika as an embedded library

Though GUIs and command-line integration are rapid ways of exploring what Tika
has to offer, the real power of Tika is unveiled when you leverage Tika Java classes and
APIs in your application. We’ll start with the simplest and most direct way of calling
Tika from Java: the Tika facade. After the facade discussion, you’ll be introduced to
Tika’s modules and source code organization, a necessary primer for building and
running Tika code and ultimately for integrating Tika into your Java project.

2.3.1 Using the Tika facade

As we’ll see in later chapters, Tika provides powerful and detailed APIs for many con-
tent detection and analysis tasks. This power comes with a price of some complexity,
which is why Tika also contains a facade class that implements many basic use cases
while hiding most of the underlying complexity. This facade class, org.apache
.tika.Tika, is what we’ll be using in this section.

 Think of the facade as you would a financial broker that manages your invest-
ments. You provide your broker investment capital and that broker works behind the
scenes to invest your money in different bonds and stocks that meet your desired level
of risk. To do so, the broker must understand what companies suit your risk profile
and are a sound investment; where to find those companies; how to purchase stock in
your name; what’s been going on in the market—navigating the complex financial
landscape on your behalf. Your interface to this broker is the simple exchange of
money, along with some high-level specifications for your investment strategy.

 In the same vein, the Tika facade is an honest broker of the information land-
scape. Its goal is to simplify the complexity behind all of the unique aspects of the
underlying Tika library: its MIME detection mechanism, used to quickly and accurately
identify files; its parsing interface, used to quickly summarize a document by extract-
ing its text and metadata; its language detection mechanism; and so on. As we’ll see in

33Tika as an embedded library

later chapters, the use of each one of these features within Tika deserves a chapter’s
worth of material in its own right. But the Tika facade’s job is to obfuscate this com-
plexity for you (just like the financial broker) and to provide simple, clear methods
for making document file analysis and understanding a snap.

 The SimpleTextExtractor class shown next uses the Tika facade for basic text
extraction. A Tika object is first created with the default configuration and then used
to extract the text content of all files listed on the command line.

import java.io.File;
import org.apache.tika.Tika;

public class SimpleTextExtractor {

public static void main(String[] args) throws Exception {
// Create a Tika instance with the default configuration

Tika tika = new Tika();

// Parse all given files and print out the extracted text content

for (String file : args) {
String text = tika.parseToString(new File(file));

System.out.print(text);

}
}

}

The standalone JAR archive discussed earlier contains everything that this
SimpleTextExtractor class needs, so you can compile and run it with the javac and
java commands included in the standard Java Development Kit (JDK):

$ javac -cp tika-app-1.0.jar SimpleTextExtractor.java
$ java -cp tika-app-1.0.jar:. SimpleTextExtractor document.doc

Or, if you're a Maven guru, you can compile and run the SimpleTextExtractor from
the book's source code using your favorite document.doc file by issuing the below
command:

$ mvn exec:java -

Dexec.mainClass="tikainaction.chapter2.SimpleTextExtractor" \
-Dexec.args="document.doc"

As you can see from this simple text
extractor example, the Tika facade is a
powerful tool. In a few lines of code,
we’ve created an application that can
understand and process dozens of differ-
ent file formats. Let’s see what else you
can do with the facade. The class diagram
in figure 2.2 summarizes the key features.

Listing 2.2 Simple text extractor example

<<facade>>
Tika

+parseToString(...): String

+parse(...): Reader

+detect(...): String

InputStream

File

URL

input

Figure 2.2 Overview of the Tika facade

www.allitebooks.com

http://www.allitebooks.org

34 CHAPTER 2 Getting started with Tika

Each of these three key methods takes an input document as an argument and returns
information extracted from it. The document can be passed in as a generic
java.io.InputStream instance or a more specific java.io.File or java.net.URL
instance. The key methods are described in more detail in table 2.2.

Despite its simplicity, the Tika facade covers many of the basic text extraction and
detection use cases. For example, the “program that understands everything” that we
set out to create in section 1.1 can easily be implemented using the functionality of
the Tika facade.

 We’ve spent most of the chapter thus far discussing various means of interacting
with Tika: calling it from the command line or via a GUI, and ultimately integrating
Tika’s classes and APIs into Java code for maximum flexibility. Now, we’re going to
open up the hood and learn about how Tika’s modules and code are organized. This
should help you understand how to extend Tika, compile its sources, and begin to
integrate Tika into your existing Java applications as an external dependency.

2.3.2 Managing dependencies

Tika’s facade interface exposes functionality provided by Tika’s canonical Java classes,
relationships, and APIs. As you begin to use the facade, or even the other aspects of
Tika’s API that will be discussed in later chapters, you’ll probably wonder why certain
class imports (such as org.apache.tika.Tika) are organized in particular packages,
and why those packages are part of separate projects, such as tika-core versus tika-
parsers. In short, you’ll need to understand the organization of the Tika code, shown
in figure 2.3.

Table 2.2 Key methods of the Tika facade

Method name Description

parseToString() The parseToString() method used in the preceding example parses the

given input document and returns the extracted plain-text content as a simple

string. The length of the returned string is limited by default, so you don’t need

to worry about running out of memory even when parsing huge documents. You

can set a custom string length limit with the setMaxStringLength()
method.

parse() To conserve memory or to avoid the size limit, you can use the parse()
method that returns a java.io.Reader instance for incrementally reading the

text content of the input document. This method starts a background thread that

parses the given document on demand as your application consumes the

returned reader.

detect() You can use the detect() method to detect the internet media type of a docu-

ment. As discussed in more detail in chapter 4, Tika uses heuristics like known

file extensions and magic byte patterns to detect file types. This method hides

the details of all those mechanisms and returns the media type that most likely

matches the given document.

35Tika as an embedded library

Tika is separated into four concrete components—tika-core, tika-parsers, tika-
app, and tika-bundle—as shown in the bottom, middle left, top left, and top right of
figure 2.3, respectively. Each of the four components is organized as a Maven project,
all referencing a tika-parent Maven project which stores project defaults such as
common dependencies, mailing lists, developer contact, information, and other
goodies that are fairly independent of the source code and the four aforementioned
components.

TIKA-CORE

The tika-core component is the base component on which the other three package
components are built. The component provides the Tika facade, the classes for MIME
type detection (the org.apache.tika.mime package); the core parser interface (the
org.apache.tika.parser package that Parsers in tika-parsers extend and imple-
ment the interface from); the language identifier interface (the org.apache

.tika.language package); the core metadata structure (from the org.apache.tika

.metadata package) output from Tika; and the methods for outputting structured
text (the org.apache.tika.sax package). The tika-core component is also home to
the Tika configuration (which configures the overall framework with properties, sets
defaults, allows for extensibility, and so forth) and other utilities useful for other Tika
components to leverage.

TIKA-PARSERS

The tika-parsers component represents the Tika wrappers around different parsing
libraries, providing implementations of the generic org.apache.tika.parser.Parser
interface specified by the tika-core component. Each package within tika-parsers
provides all the necessary classes and functionality to wrap the underlying parser
library, and insulates the dependencies and uniqueness of those classes from the rest
of the Tika core framework components. In this manner, users wanting to take advan-
tage of MIME detection or language identification independent of actually parsing the
extracted text and metadata can do so without pulling in the vast array of (down-
stream) dependencies induced by integrating many parsing libraries into a single
framework.

tika-app

tika-parsers

tika-bundle

tika-core

Figure 2.3 The Tika component stack. The bottom layer, tika-core,

provides the canonical building blocks of Tika: its Parser interface,

MIME detection layer, language detector, and the plumbing to tie it all

together. tika-parsers insulates the rest of Tika from the

complexity and dependencies of the third-party parser libraries that

Tika integrates. tika-app exposes tika-parsers graphically,

and from the command line to external users for rapid exploration of

content using Tika. Finally, tika-bundle provides an Open Services

Gateway Initiative (OGSI)-compatible bundle of tika-core and

tika-parsers for using Tika in an OGSI environment.

36 CHAPTER 2 Getting started with Tika

TIKA-APP

The tika-app component provides the command line and graphical user interface
aspects of Tika, and is built on top of tika-parsers. Ultimately, the GUI and com-
mand-line interface expose the underlying parsing functionality, and through this ele-
ments of MIME detection and language identification are eventually plumbed as
metadata output from a Tika Parser after its execution. In providing these external
interfaces through tika-app, users are given a single packaged solution containing all
of Tika (it’s what we showed you earlier in terms of the command-line interface), with-
out having to worry about the underlying APIs and classes used to provide that exter-
nal interface. This package also ensures fairly automatic interaction with Tika, as
opposed to manually building and constructing Tika core classes (say, via tika-core
and/or tika-parsers), and then calling their functionality as a series of methods that
we’ll see later in the book. The trade-off here is automatically serving and exposing
functionality for higher-level batch processing use cases within Tika.

TIKA-BUNDLE

The tika-bundle component rounds out the Tika stack: it’s used to provide an Open
Services Gateway Initiative (OGSI) bundle so that Tika can be included in an OGSI
environment. OGSI is essentially a software component model and middleware frame-
work for allowing component-based software development in Java. This means that
OGSI is highly similar to Java Beans, a model for describing and implementing Java
classes that deal with data as plain old Java objects (POJOs), and for operating both
computationally and in a data-intensive matter on those POJOs. The goal of Java Beans
was to pave the way for a component marketplace, separation of concerns, and ulti-
mately for modular software to be written in Java so that systems and components
could be extended, ported to a number of platforms, and evolved with as little direct
code modifications as possible. OGSI encourages this mode of development, and
defines on top of it explicit lifecycle phases for bundles; a security mechanism for
those bundles; a means for registering and discovering bundles; and finally a way to
make use of those bundles (call them, deploy them, and so on). The tika-bundle
package was created because of a need in recent Tika deployments to include the full
Tika stack (ideally, tika-app), but without pulling in all of tika-app’s transitive
dependencies.

 We’ve covered some basic Tika code, its use in Java, as well as its organization, and
you’re hopefully familiar enough with Tika to start leveraging it via the command line,
Tika’s GUI, or including its classes in your application.

2.4 Summary

Our goal in this chapter was to highlight the power of Tika, be it from a command-
line shell, GUI, or by integrating Tika into your existing Java code. Along the way we
covered the ancillary steps (tips for using Tika from a command shell, downloading
Maven or Subversion) as well, but didn't spend much time since most of those topics
are the subjects of books in their own right.

37Summary

 The simplest and most visual method of using Tika is via its GUI, a thin wrapper
around the tika-parsers module which exposes the ability to extract structured text,
metadata, and plain text from any type of content through drag and drop. A lot of
power with little barrier to entry.

 If you’re a command-line hacker, or are looking to run Tika in batch mode, the
command-line interface is your tool of choice. We covered the basics of Tika’s com-
mand-line help system, inputting files into Tika via pipes, writing out extracted text
from Tika to files, and piping data into or out of Tika into the next application.

 Tika is written in Java, which is where it gets most of its flexibility and expressive-
ness. We covered Tika’s facade, an interface to the underlying MIME detector, parsing
framework, and language detection framework, and showed how in a few lines of Java
code you too can quickly extract text and metadata from all of your documents.

 In the next chapter, we’ll take a step back and reflect on the information land-
scape. Where are documents and other forms of content housed, and how do we
unlock that information so we can send it to Tika? What are some advanced technolo-
gies to simplify getting and analyzing information, and how can Tika work with those
technologies to improve how computers automatically comprehend information?
Read on, and you’ll find out!

38

The information landscape

Now that you’ve gotten started with Tika, you probably feel ready to attack the infor-
mation content that’s out there. The interfaces that you know so far will allow you to
grab content from the command line, GUI, or from Java, and feed that content into
Tika for further analysis. In upcoming chapters, you’ll learn advanced techniques
for performing those analyses and extending the powerful Java API on which Tika is
constructed to classify your content, parse it, and represent its metadata.

 Before diving too deep into Tika’s guts, as we’ll do in the next few chapters,
we’d like you to collectively take a step back and consider this: where does all of the
information that you feed to your Babel Fish come from? How is it stored? What’s
the information’s ultimate utility, and where can Tika help to deliver that utility in
the way that you (or others) expect?

 For example, take movies from a movie content provider, as shown in figure 3.1.
You can probably think of a few existing ones that either ship movies to you on DVD
or Blu-ray, or that stream movies over the internet to one of a number of powerful
computing devices such as a computer, video game system, or specialized hardware

This chapter covers

 The information landscape

 Using Tika in search engines

 Machine learning

39

unit. Though the ability to extract text such as speech from these movie files is more
of a research task than a turnkey practice, the extraction of metadata isn’t. All sorts of
metadata is useful in these situations! A movie title, its production company, a series of
lead actors and actresses—these are just the set of metadata that you may search on.
Beyond these attributes, you may be interested in textual summaries of the movie
(which unlike speech are easily extractable), your ratings of the movies, your friends’
ratings, and so on.

 As we’ve learned by now, making this type of metadata and text available to Tika
unlocks the ability to differentiate and categorize those movie files (based on their
MIME type); to identify the relevant language of the movie, the representation of rat-
ings, and other user-defined metadata; and much more. In reality, Tika is useful in a
number of areas—the question is how the content is provided to Tika. Is Tika called

Consumer movie distribution company

Movie
metadata
catalog

Movie
repository

(disk)

Tika

NetworkDVDs, Blue-ray,
digital, etc.

Movie data management
system

Some movie

Actors: Rating:
Joe Bob
Jim Bob

User interface

DVDs, Blue-ray,
digital, etc.

Joe User's home

Tika

Movie
distributors

Network

Figure 3.1 A postulated movie distribution system. Movies are sent via the network (or hard media) to a consumer

movie distribution company. The company stores the electronic media on their hard disk (the movie repository),

and then metadata and information is extracted (using Tika) from the movie files and stored in a movie metadata

catalog. The metadata and movie files are made available electronically to consumers from the company’s user

interface. An average user, Joe User, accesses the movie files, and, potentially, to save bandwidth across the wire,

Tika can be called on the server to extract summaries, provide ratings, and so on from the streamed movie to the

end user’s console systems.

40 CHAPTER 3 The information landscape

on the client side of this application, living inside your computer, video game system,
or custom hardware? Or is Tika present in some server-side functionality, leveraged to
categorize and classify movie content which is then presented back to you as a user of
the system?

 The goal of this chapter is to paint a picture of where and how information is
stored out there and what kind of information-processing mechanisms could benefit
from using Tika. In doing so, we’ll characterize that landscape in terms of scale,
growth, and heterogeneity, and suggest how and where Tika can be used to incremen-
tally and efficiently navigate the space.

3.1 Measuring information overload

In this section, we’ll give you a feel for the scale and growth rate of the internet by
exploring some real data. We’ll discuss why the internet is growing at the rate that it is,
and explore its underlying architecture from first principles. What follows is a discus-
sion of the growing complexity of the internet in terms of the types of information
available (PDF files, Word documents, JPEG images, QuickTime files), and in terms of
the number of languages and encoding schemes that this information is provided in.
Aren’t you glad that frameworks such as Tika exist to help you weed through this elec-
tronic haystack?

3.1.1 Scale and growth

The internet has grown tremendously over the years—by some estimates nowadays
(see figures 3.2 and 3.3) well into the hundreds of millions of websites, and into the
tens of billions of web pages. According to one published report (http://mng.bz/
qvry), as of 2007 the amount of digital information available had reached well into the
281 exabyte range, which is somewhere near 281 billion gigabytes.

 Much of this information is courtesy of the World Wide Web (WWW). The collec-
tive knowledge of the world is made available through technologies such as HTML (a
language for authoring web documents), components called web servers that respond
to user requests for HTML documents, and client browsers (Firefox, Safari, Internet
Explorer, and so on) that request those HTML documents (and other forms of con-
tent) from those web servers. A wealth of content is also available from File Transfer
Protocol (FTP) servers, especially science data sets.

 Each element can be thought of as a component in the overall WWW’s architecture. In
the traditional sense, architecture is the blueprint that guides how software systems
are designed. It consists of the logical components of the architecture, their interac-
tions, and the principles that enforce a particular methodology for arranging the
components and guiding their interactions. The WWW’s architecture is called REST.
The REST architecture and its foundational principles have a direct causal relation-
ship on the WWW’s inherent scalability and growth properties.

 The web’s architecture was first comprehensively documented in 2000 by Roy
Fielding in his Ph.D. dissertation, Architectural Styles and the Design of Network-based Soft-

ware Architectures, where he described the Representational State Transfer (REST)

http://mng.bz/qvry
http://mng.bz/qvry

41Measuring information overload

Figure 3.2 An estimate of the size of the World Wide Web from http://www.worldwidewebsize.com/.

The graph is estimated and generated dynamically by inspecting results from Google, Yahoo!, Bing, and

Ask.com from 2008–2010. The size of the web has remained relatively constant, with a large gap

between those results that are weighted using Google’s estimate (GYWA) and those weighted using

Yahoo!’s estimate (YGWA) (a +20–30 billion page difference, with Google having the more conservative

estimate). Still, the scale is representative of both the amount of information out there, as well as the

difficulty in understanding it (your home library likely nowhere near approaches 10 billion pages in size!).

Figure 3.3 The amount of website growth per year (in millions of websites) over the last decade,

estimated by http://pingdom.com with data provided by Netcraft. There was steady growth (tens of

millions of sites per year) for the later part of the 1990s and into the early 2000s, but between 2005–

2008 there has been three orders of magnitude growth (from 10 million to ~30 million) in new websites

per year.

http://www.worldwidewebsize.com/
http://pingdom.com

42 CHAPTER 3 The information landscape

architecture. REST prescribes the methodology by which the internet has grown to its
current scale, including promotion of intermediaries to reduce single points of failure
and enhance scalability, enforcing that all interactions are context-free, and promot-
ing the use of metadata in interactions, to name a few. These principles (and others)
have helped to grow the web’s scale and ultimate availability of information, as shown
in table 3.1.

3.1.2 Complexity

You might be wondering: why is scale

important? or how does this relate to Tika?

Scale influences the web’s overall com-
plexity in that the more content that’s
made available (which is growing at a
tremendous rate), the greater the likeli-
hood of the content’s non-uniformity.
And, true to form, this is certainly the
case. By some accounts (see http://
filext.com), between 15,000 and 51,000
content types are available out there (a
sampling of which is shown in
figure 3.4), and despite efforts to clas-
sify those types, the number is growing
at a rate faster than any standards body
can keep up with.

 Content types typically vary along
several dimensions such as size, scale,
format, and encoding, all of which

Table 3.1 Some underlying principles of the REST architecture and their influence on the web’s

scalability. These are only a cross-section of the full description of REST from Fielding’s dissertation.

REST principle Influence

Promotion of intermediaries This principle promotes scalability and reliability by increasing the num-

ber of replicas of data, and replicas of software and components in the

form of gateways, proxies, and other providers.

Context-free interaction Not requiring state means that actions and histories of actions

required to produce a result need not be maintained, which lessens

memory requirements and increases scalability.

Use of metadata Interaction and resources within the REST architecture are both

described using rich metadata. The use of this metadata directly

enables technologies that understand metadata, like Tika, to have a

good shot at understanding not just the ultimate content (web pages,

PDFs, and so on) out there, but also the interactions which obtain the

content.

Figure 3.4 A sampling of well-known content types

of the up to 51,000 in existence. As a user of the

modern internet, you’ll likely see some of these

documents and files while navigating and searching

for your topic of interest. What’s even more likely is

that custom applications are required to view,

modify, or leverage these documents and files in

your particular task.

http://filext.com
http://filext.com

43Measuring information overload

make it difficult to bring the data together and “mash it up” for the purposes of study
and exploration. As a further illustration of this, consider some of the recent discus-
sion within the Tika community regarding character sets (often abbreviated charsets),
which are (sometimes numerical) encodings of characters from a particular alphabet,
language, or dialect used to ensure interoperability and proper representation of het-
erogeneous electronic textual formats. Examples of charsets include the American
Standard Code for Information Interchange (ASCII) and Unicode.

 The charset discussion centered on results (shown in figure 3.5) from a topical test
run wherein which a large public internet dataset called the Public Terabyte Dataset
(PTD: see http://mng.bz/gYOt) was used along with Tika to determine what types of
charsets were in use on the internet. PTD contains somewhere between 50–250 mil-
lion pages from the top million US domains, and is a sufficiently rich, representative
example of the internet.

 The results were informative. Besides demonstrating that character detection at
internet scale is tricky (Tika ranged anywhere from 60% accuracy in terms of correctly
identifying charsets from an average number of pages in the dataset to a low of 30% in

big5

euc-kr

gb2312

iso-8859-1
iso-8859-2

iso-8859-5

iso-8859-7

iso-8859-9

shift_jis

utf-8

windows-1250 windows-1251

windows-1252
windows-1254

windows-1255

windows-1256

x-windows-874
0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

P
e
r
c
e
n

ta
g

e
 C

o
r
r
e
c
t

Number of Pages

Tika Charset Detection Quality

tis-620 us-ascii windows-1253

Figure 3.5 Results from a test run by Bixolabs and its Public Terabyte Dataset (PTD) project. The

dataset contains 50–250 million representative pages crawled from the top million US-traffic domains.

The test involved running a large-scale crawl job programmed in Cascading (a concurrent workflow

construct and API for running jobs on a Hadoop cluster) on Amazon EC2. One part of the crawl job used

Tika to evaluate the charset of the document being crawled. The Y axis demonstrates accuracy in

detection, and the points show the particular charset and its frequency within documents in the dataset.

The results of the test demonstrate decent (60%) accuracy on charsets that were in the median

frequency of the dataset, and mixed results (30%) on some common charsets such as UTF-8.

www.allitebooks.com

http://mng.bz/gYOt
http://www.allitebooks.org

44 CHAPTER 3 The information landscape

accuracy on some of the more common charsets, such as UTF-8), the test highlighted
the proliferation of charsets in use today, and the strong need to improve on soft-
ware’s ability to interpret and understand these encodings (we’re working on it in
Tika!). See chapter 15 for a more detailed case study of this PTD experiment.

 By understanding the rationale behind the internet’s growth, we’re better
equipped in Tika to exploit that information in developing novel solutions to navigat-
ing the internet’s vast information landscape. As an example, understanding the scale
and growth of the internet helped inform the importance of having a sound MIME
classification framework as part of Tika. Additionally, in understanding the principles
of REST such as context-free interactions, we can leverage the existing metadata pro-
vided in each HTTP request to obtain more information (such as the provided content
type, content length, and content encoding) about the files we feed into Tika to clas-
sify and analyze.

 Luckily, as information and content has accumulated, so has our collective skill in
searching through the information rapidly and accurately. Modern search engines
can deal with the internet’s scale and still provide results in a few milliseconds. In the
next section, we’ll examine how search engines have dealt with the information over-
load, and point to areas where Tika fits in and helps reduce the work that the search
engine must perform to sift through the information.

3.2 I’m feeling lucky—searching
the information landscape

The digital world is vast, but thankfully we’re not flying blind. More than 15 years ago,
the first modern search engines arrived on the scene (anyone remember Hotbot?),
spawned by the desire to enter a few keywords and quickly sift through the results.
Though the first search engines weren’t as quick as we’d expect in modern days, they
did inspire the development of improvements in speed, scalability, and quality of
results that gave us the eventual search engine architecture, described by Sergey Brin
and Lawrence Page in their seminal Ph.D. research project on Google (see http://
ilpubs.stanford.edu:8090/361/). We’ll cover the search engine architecture in this
section, providing information about its techniques for helping to accurately and rap-
idly allow users to sift through information. Then, we’ll tell you where Tika fits into
that overall search engine architecture and how it enables many of its features.

3.2.1 Just click it: the modern search engine

Search engines are a big part of how we cope with the information overload nowadays.
Though search has been in the mainstream for the past 15–20 years, only since the
early ’90s and the advent of the G word (yes we’re talking about Google) has search
solidified its place in the technology stack.

 Modern search engines are complex, distributed software systems that must deal
with all of the aforementioned heterogeneity of the internet. They must decide what
content is the most appropriate to crawl and make available in the system, how to

http://ilpubs.stanford.edu:8090/361/
http://ilpubs.stanford.edu:8090/361/

45I’m feeling lucky—searching the information landscape

obtain that content, what to do with it (parse out the relevant text and metadata), and
then how to index the content at scale so that it can be made available for search to
the system’s end users. Even with all of those responsibilities, we’ve still significantly
simplified what the search engine system is actually doing; for example, the problem
of determining what content is worth crawling is extremely complex.

 See the example search engine architecture shown in figure 3.6. The crawler
(denoted by the bold label C) navigates different website nodes on the internet,
guided by its internal architecture shown in the upper-right portion of the figure. Two
core components of that architecture are URL filtering and deduplication. URL filtering
is the process of selecting URLs from the internet to crawl based on some criteria,
such as a set of accepted sites (white list), sets of unacceptable sites (black list), accept-
able file types (PDF, Word, but not XLS, for example), domain-based URL filtering (all
.edu domain pages, all .com pages), and so forth.

WWW

Site1

Site1
Site1

1 Site1

Site1

Site1

1

Site1

Site1

1
1

1
1

1
1

1
Site1

1
1
Site1

Site1

Site1

1
1

1
Site1

1
Site1

Protocol layer

parsers
parsers
Parsers

Indexer Index

URL filteringDeduplication

Policy
(politeness, etc.)

T

T

T

T T

C

Figure 3.6 The architecture of a web search engine. The circular structures in the middle of the diagram

are websites that the crawler (the eight-legged creature labeled with a bold C) visits during a full web

crawl. The crawler is itself made up of several functional components, shown magnified in the upper-right

corner of the figure. The components include URL filtering (for narrowing down lists of URLs to sites that

the crawler must visit); deduplication (for detecting exact or near-exact copies of content, so the crawler

doesn’t need to fetch the content); a protocol layer (for negotiating different URL protocols such as

http://, ftp://, scp://); a set of parsers (to extract text and metadata from the fetched content); and

finally an indexer component (for taking the parsed text and metadata, and ingesting them into the

search index, making them available for end users). The crawler is driven by configurable policy

containing rules and semantics for politeness, for identification of the crawler, and for controlling the

behavior of the crawler’s underlying functional components. The stars labeled with T indicate areas

where Tika is a critical aspect of the crawler’s functionality.

46 CHAPTER 3 The information landscape

Deduplication is the process of determining similarity of fetched content to that of
existing content in the index, or to-be-fetched URLs later on in the fetch list. This is
performed to weed out the indexing and fetching of duplicate content, which saves
resources such as disk space, and helps the overall politeness rating of the crawler by
not wasting resources on web content providers and their already overloaded web
servers. Deduplication can feed into URL filtering, and vice versa.

 Deduplication can be classified into a few areas. The first area is concerned with
URL detection and virtual hosting, such as noting that two different URLs point at the
same content (such as http://www.espn.com and http://espn.go.com, which both
point to ESPN’s main website). Beyond URL detection, deduplication can also involve
content-matching techniques, which boil down to either exacting similarity (such as
examining the bytes of two fetched URLs and hashing them using the MD5 or SHA1
hashing algorithms, and then comparing the resultant hash values) or near-similarity
(two pages that have the same content, but that differ in ads present on the page,
timestamps, counters, or some other form of dynamic content). Deduplication can
also be concerned with the link structure of pages, looking and filtering out sets of
pages that link to one another in similar ways, or the physical properties of the net-
work such as node structures, ISPs, and content available only in certain countries or
in certain languages.

3.2.2 Tika’s role in search

The preceding is a simple illustration that even a subset of the functional components
in a search codify complex processes that make the end user experience more fulfill-
ing and do much to alleviate the complexity of navigating the information landscape.
What’s more, Tika provides many of the capabilities that directly enable both the sim-
ple and more complex capabilities required by the search engine. For example, many
of the mechanisms for URL filtering discussed earlier can be provided through Tika’s
MIME detector, which provides classification based on URL or file extension. The pro-
cess of deduplication? In many cases, it’s a snap with Tika’s parsing framework, which
extracts structured text that can be used for feature comparison and for hashing to
determine exact and near-exact similarity matching, as well as page link structure.
This pervasiveness is noted in figure 3.6 everywhere you see a star—these indicate
places where Tika’s capabilities provide significant functionality leveraged by the
search engine and the crawler. You’ll hear more about this when we cover Nutch and
Tika in chapter 10.

 Once the search engine and its crawler decide which URLs to visit and which URLs
are duplicates of one another, the content must be obtained somehow. Crawlers typi-
cally have robust protocol handlers and a protocol layer that understands how to inter-
pret a URL and map it to a mechanism to obtain the content (if it’s an HTTP URL, a
HTTP request must be made, and so forth). The protocol layer obtains the bits of the
remote files referenced by the URLs, and once those bits are obtained, they must be
analyzed and summarized, two steps that are regularly handled by a set of parsers that

http://www.espn.com
http://espn.go.com

47Beyond lucky: machine learning

are available to the crawler. As we’ve seen, Tika provides a fairly generalized and
robust interface for normalizing the heterogeneity of parsing libraries. In addition,
the process by which the crawler decides which parser (or set of parsers) to call for a
particular fetched content item is another area where Tika shines—its MIME detection
framework and its AutoDetectParser perform this mapping automatically. Once the
content is parsed by the crawler, the extracted text and metadata are sent to a search
index by the indexer component, which is interested in metadata to make available
for search. This is another area where Tika shines: in reducing the overall complexity
of the activity through its rich support for metadata, which we’ll learn more about in
chapter 6.

 If we’ve whetted your appetite for thinking about the overall search engine stack,
its use in providing a roadmap for the information landscape, and Tika’s relationship
to the search engine’s success, then we direct you to chapter 10 for a more detailed
breakdown of Tika’s involvement in Apache Lucene. Lucene is a family of search-
related projects at the Apache Software Foundation, including a RESTful search web
service called Solr; Lucene-java, the core indexing and searching library; and formerly
including Mahout, a classification, clustering, and analysis platform which we’ll briefly
discuss in the next section.

 We’ve focused at length on dealing with information discovery as a means of navi-
gating information, but once you’ve found the information, you need to do something
with it. Cluster it. Make a hypothesis. Leverage it to determine what types of books you
may be interested in buying. You can do a lot with the data that you find and retrieve
with a search engine. We’ll discuss some neat things you can do with your data in the
next section, and pinpoint the utilities of Tika in these activities along the way.

3.3 Beyond lucky: machine learning

Cruising around the internet with a powerful search engine is great, but after awhile,
you may develop a set of favorite websites that you regularly visit and no longer
require a search engine to get you there. What’s more, as you frequent these sites, you
begin to notice that they remember certain things about you: products that you like to
purchase, other users of the sites with similar interests, and so forth. How do they do
this? The sites exploit modern approaches to machine learning, which you’ll learn
about in this section. Techniques for machine learning help reduce the complexity of
the information landscape by using information that sites remember about you to
make highly accurate recommendations for content you’ll be interested in, obviating
the need to search any further for it. We’ll discuss some common uses of machine
learning, and then discuss two real-world implementations of machine learning algo-
rithms from the open source community at Apache—we’re pleased to say that Tika is
a part of both of them! Read on to find out the how and the where.

48 CHAPTER 3 The information landscape

3.3.1 Your likes and dislikes

So far, we’ve discussed finding your way around the information landscape with a
search engine, whose main goal is data reduction, and navigating the landscape via
exploration. Another common approach is to have software suggest what information
would be relevant to you, based on indicated preferences—movie genres you’ve
declared that you like, your past purchase history, and so on. These are all types of
machine learning, or ML. Some of the more popular ML techniques that are relevant to
our discussion are collaborative filtering for providing item- and user-based recommen-
dations, clustering (of seen content) based on similarities deduced, and categorization

(of unseen content and users) for the purposes of shoe-horning that content and
those users into existing clusters. These techniques are often combined to make rec-
ommendations to users about what items to buy, other users who are similar to them,
and so on. A good example of collaborative filtering in action is the recommendations
that you regularly get from e-commerce sites like Amazon.com when you log in, as
shown in figure 3.7.

Figure 3.7 An example of collaborative filtering as provided by Amazon.com. Recommendations are

automatically suggested on entering the site through collection and processing of past purchases and user

preferences. In the bottom portion of the figure, Amazon explicitly solicits feedback and ratings for items in a

category from the user to use in future recommendations.

49Beyond lucky: machine learning

E-commerce websites have recently taken up ML techniques so that they can take
advantage of the data that they have been collecting for years. The collected informa-
tion falls into a few basic categories, a representative cross-section of which is shown in
table 3.2.

As the internet has grown, and with the advent of social media such as Facebook and
Twitter, more and more information is being gathered, even outside of the realm of
the traditional e-commerce sites. Imagine all of the information that you as a user
include in your Facebook profile that would be useful for Amazon.com to relate to the
items that it would like to sell you. For example, Facebook user profiles have a Likes
and Interests section, which users create by clicking the Like button on pages belong-
ing to rock bands, political parties, types of food, all sorts of different things. Imagine
that Amazon.com is promoting a new book on Southern-style cooking. Ideally, Ama-
zon.com would only want to recommend this book to those interested in buying it,
because recommending it to someone who isn’t interested weakens the belief of users
that Amazon.com really understands their likes and dislikes. On the other hand, rec-
ommending the book to a user who enjoys Southern food is an instant recipe for
increasing Amazon.com’s profits.

 Amazon.com doesn’t collect information about your likes and dislikes. But Face-
book and Twitter do, and provide open APIs for other companies to access your infor-
mation based on your declared privacy ratings. So the clear goal of a company like

Table 3.2 Information representative of the type collected about users of e-commerce sites. This

would then be fed into a collaborative filtering, clustering, or categorization technique to provide

recommendations, find similarities between your purchasing history with that of other users, and so on.

Information category ML utility

Item rating By explicitly requesting that a user rate an item (as shown in the bottom por-

tion of figure 3.7) websites can obviate the need to sense your mental

model of popularity. Ratings are typically on some numerical scale, such as

1–5, or 1–10, and visually depicted as “tagging” an item with gold stars.

Ratings can be fed into algorithms such as Slope One, an approach for col-

laborative filtering which uses your ratings and those of other users to deter-

mine future recommendations tailored to your tastes.

User purchase history Purchase history typically includes information such as item bought, cate-

gory, number of times purchased, date purchased, cost, and other informa-

tion that can be fed into clustering techniques to relate your purchase

history to that of like users. If the websites can determine the appropriate

cluster for you and your fellow users, and map that to the items you and oth-

ers in that cluster have purchased, it has a good sense of what future items

you and your cluster mates may be interested in purchasing.

User characteristics Includes information such as location, gender, credit card type, and other

demographics that can be used to relate you to users of similar characteris-

tics. Tying this information with existing user-to-item mappings deduced from

purchase history or ratings can allow websites to provide recommendations

immediately to users as soon as they enter the site.

50 CHAPTER 3 The information landscape

Amazon.com would be to leverage the social media information about you to increase
its chances of targeting the right users for sales. That said, accessing your social infor-
mation is only one part of the battle, as we’ve seen by now! Once the information is
acquired, it’s likely in a form that requires further processing, including text and
metadata extraction, exactly like the processing provided by Tika! Likes and dislikes as
provided by social media APIs might not be in the format that Amazon.com expects,
and may be annotated with HTML tags (for emphasis and structure), as well as rele-
vant metadata that could be useful as well.

3.3.2 Real-world machine learning

Three recent open source software projects that directly implement many of the ML
techniques we’ve discussed are Apache Mahout (http://mahout.apache.org/),
Apache UIMA (Unstructured Information Management Architecture: see http://
uima.apache.org/), and the Behemoth project (https://github.com/jnioche/
behemoth). All three have extensions built in that leverage Tika in a fashion similar to
our Amazon.com example.

Apache Mahout is a framework for providing ML algorithms on top of a scalable
cloud computing platform called Apache Hadoop. Mahout implements collaborative
filtering, clustering, and categorization techniques, and provides an extension mech-
anism and architecture called Taste. With Taste, users can write their own ML algo-
rithms, provide them vector data from a variety of different sources, and then
produce user recommendations. Common mechanisms for providing data via Taste
include CSV files, Java programs that extract and translate internet data sources,
approaches involving databases, and so forth. A recent extension to Mahout involved
integrating Tika to assist in taking arbitrary binary content, extracting its text and
metadata, and then using the combination of text and metadata to form vector input
to Mahout’s ML algorithms. This process is depicted in the upper portion of
figure 3.8.1

Apache UIMA is an open source implementation of the UIMA standard actively
being worked on by the OASIS standards organization. UIMA was originally donated to
the Apache Software Foundation by IBM, and has since grown into an Apache Top
Level Project (TLP), in a fashion similar to Mahout. UIMA’s goal is to make sense of
unstructured information by providing explicit support for modeling, analyzing, and
processing it in a number of programming languages, including Java and C++. One
use case of UIMA is taking in content and running several analyzers on it to produce
what UIMA calls annotations, which are content features extracted by the UIMA annota-
tors. A recent contribution to UIMA is the Tika Annotator, which uses Tika to extract
document text and metadata as a means of feature extraction. Features are grouped
into a common analysis structure (CAS), which can then be fed into further informa-
tion analysis and visualizations. This interaction is depicted in the bottom portion of
figure 3.8.

1 For more detail, have a look at another recent Manning book, Mahout in Action (http://manning.com/owen/).

http://mahout.apache.org/
http://uima.apache.org/
http://uima.apache.org/
https://github.com/jnioche/behemoth
https://github.com/jnioche/behemoth
http://manning.com/owen/

51Beyond lucky: machine learning

Another example of open source machine learning and analysis is the Behemoth
framework. Behemoth brings together UIMA and the General Architecture for Text
Engineering (GATE: see http://gate.ac.uk/) software toolkits, as well as Tika for pro-
viding textual analysis software that runs on top of the Hadoop framework. Behemoth
allows users to rapidly go between GATE annotations and heterogeneous document
formats using Hadoop as the underlying substrate. In a nutshell, Behemoth focuses
on linking together various information extraction components which operate on
documents. Many folks use Behemoth as “glue” to ease large-scale processing of docu-
ments and to help combine various open source projects such as Nutch, Tika, UIMA,
Mahout, and Solr. For instance, Behemoth can take the output of a Nutch crawl, pro-
cess it with Tika, get extra information using UIMA, and then convert it all into vectors
for Mahout or send the data to index in Solr.

Mahout

Common
analysis
structure

UIMA analysis pipeline

Tika annotator

Mahout

Tika
Content

Annotation

Annotation

Annotation

Shallow parser Speech
annotator

Tika

Content

Content

Content

Mahout
vector

Mahout

Recommendations

Similar existing
items

Classified unseen

items

Collaborative

filtering

Categorization

Clustering

vector

vector

Figure 3.8 Tika’s utility in machine learning (ML) applications. The dashed line in the middle of the

figure delineates two use cases. The first is within the Apache Mahout project, whose goal is to use

ML to provide collaborative filtering, clustering, and categorization. Mahout algorithms usually take

vectors as input—descriptions of the clustering, user or item preferences, or categorizations of

incoming content, where content can be arbitrary electronic documents. An emerging use case is to

take files and use Tika to extract their textual contents and metadata, which can be translated into

Mahout vectors to feed into its ML algorithms. In the bottom of the figure is a use case for Apache

UIMA, a reference implementation of the UIMA standard being developed by OASIS. In this use case,

Tika is used to implement a UIMA annotator that extracts features from incoming content, and then

classifies those features in a UIMA Common Analysis Structure (CAS) model.

http://gate.ac.uk/

52 CHAPTER 3 The information landscape

 Tika’s recent use with Mahout, UIMA, and Behemoth is likely only the tip of the
iceberg as more ML technologies and techniques emerge and as more user informa-
tion is made available on the internet with the advent of social media. E-commerce
sites and other for-profit corporations are increasingly interested in collecting as
much of the disparate information out there as possible and correlating it using
machine learning techniques. Technologies such as Tika can insulate the ML tech-
niques from having to deal with the heterogeneity of the information landscape,
allowing them to focus on improving the way computers understand our documents,
and ultimately increasing our collective ability to leverage the power of the informa-
tion that’s out there.

3.4 Summary

The focus of this chapter was to navigate the information landscape and reflect on the
breadth of information out there in the form of HTML pages, PDF files, Word docu-
ments, and other goodies that you’ll want Tika to automatically understand for you.

 We started out examining the scale, growth, and complexity of the information
that’s available via the internet. Its distributed nature, its resiliency to failures, and its
ultimate scalability have engendered its role in modern society, and at the same time
increased the available information by orders of magnitude, well into the tens of bil-
lions of web pages. That includes much more than just HTML pages, which is why
technologies such as search engines and content management systems must easily
extract information from numerous types of documents available out there.

 Search engines came about to help tame the complexity of the web by allowing
users to type keywords into a text box to rapidly and accurately find documents that
matched their interest. Dealing with the scale, complexity, and growth of the internet
(or even a corporate intranet) required search engines to have a fairly detailed modu-
lar architecture, involving determining what links on the WWW to crawl, fetching the
content pointed to by the links, parsing the content, indexing its metadata and text,
and ultimately making the information available for query. We saw where Tika came
into play in the overall search engine architecture, as well as its utility in understand-
ing content at scale.

 Once content is identified and obtained via the search engine process, most often
it needs to be analyzed or processed in some way. We saw how technologies such as
UIMA and Mahout make it easier to cluster and analyze data, and what role Tika can
play in assisting those technologies even beyond the point of identifying the content
and files that feed into them.

 We’re pretty far down the rabbit hole at this point in terms of looking at Tika,
understanding its architecture, and integrating it into software. But we’ve only
scratched the surface of what Tika can do. In the next few chapters, we’ll get up close
and personal with Tika and its Java codebase, looking first at its typical initial utility in
your application: MIME type identification!

Part 2

Tika in detail

By now you should have a fairly good understanding of what Tika is, what it
can do, and where it fits in the bigger picture of information-processing systems.
If you read through chapter 2 and tried out the examples, you’ve seen Tika in
action and written your first Tika-based application. But if you’re anything like
us, you’re wondering how this toolkit is put together and what programming
APIs it provides. Wait no more, because that’s what we’ll be covering in this part
of the book!

 We’ll start in chapter 4 by describing the internet media type system and how
Tika can detect the type of virtually any kind of document. Once the type is
known, Tika can parse the document to extract its content and any associated
metadata. Content extraction with Tika is covered in chapter 5, and metadata
handling in chapter 6. In chapter 7, we’ll show how Tika can help deduce infor-
mation like the natural language in which a document is written. Finally, chapter
8 looks at some of the more popular file formats and the details that you should
know when dealing with such files.

 That’s a lot of ground to cover, so let’s get started!

55

Document type detection

Let’s talk about taxonomy. Taxonomy is the science of classification. Taxonomies are
used to identify and classify concepts in order to better understand them and to
have a shared vocabulary for describing things. For example, the Linnaean taxon-
omy1 is the classical system of naming all biological organisms using two-part Latin
names that identify both the genus or category and the specific species within that
category. The term Homo sapiens identifies the modern human species as a part of
the family of earlier human-like species, along with the extinct Homo neanderthalen-

sis. A similar taxonomy, called the internet media type system, is used to identify
digital document formats.

This chapter covers

 Introduction to MIME types

 Working with MIME types in Tika

 Identifying file formats

1 Carl Linnaeus, a famous Swedish scientist, wrote Systema Naturae in 1735, in which he describes and cate-
gorizes plants, animals, and minerals. The seminal work was one of the first widely known uses of rank-based
classification, in which certain categories can be ranked higher or lower than others. In Linnaeus’s taxon-
omy, plants, animals, and minerals are first ranked by class, then by order, and then by species. Relating
back to this chapter, the IANA’s (Internet Assigned Number Authority’s) classification of internet media
types mentioned in section 1.1.1 is a modern example of a rank-based classification system. MIME types
are broken down into top-level categories, then specialized as subtypes within those categories.

56 CHAPTER 4 Document type detection

Taxonomies are often associated with ways of identifying or detecting specific things.
For example, biological taxonomies come with details such as descriptions of the
appearance of species, their behavior or growth patterns, or ultimately their DNA
structure as ways to identify the species of any single animal or plant. Similar mecha-
nisms exist for detecting formats of digital documents.

 In this chapter, we’ll dive deep into the taxonomy of document formats and
explain how to use the taxonomy and other mechanisms to determine a document’s
true classification. The first stop on our journey is an introduction to the internet
media type system and how media types are handled by Tika. Then, we’ll look at the
different type detection mechanisms that are included in Tika. Finally, we’ll put these
things together in a simple example application to give you a feel for using Tika’s doc-
ument type detection system.

4.1 Internet media types

As you may remember from section 1.1.1, the internet media type system documented
in RFC 2046 is the best available standard for identifying document types. Media types
(or MIME types, as they’re often called based on the Multipurpose Internet Mail

Figure 4.1 Table of the Animal Kingdom (Regnum Animale) from an early 1735 edition of Carolus Linnaeus’s

Systema Naturae. This and Linnaeus’s other seminal book, Species Plantarum, laid the groundwork for most of

the biological nomenclature in use today. A similar classification of types can also be found in the internet media

type system.

57Internet media types

Extensions (MIME) standard that defined the concept) play a crucial role in the
underlying interactions whenever you browse the web or read your email. In short,
MIME types make the right applications run on your computer whenever you interact
with a particular file. For example, have you ever wondered how your browser knows
that when it encounters a QuickTime movie, rather than displaying the movie as
binary or text content in your browser, it should load up your QuickTime player and
start playing the file?

 Most browsers either explicitly (as shown in figure 4.2 demonstrating Firefox’s
media type to application mapping) or implicitly have to understand the underlying
media type of a file, and then know what to do with it. Without an understanding of
media types on the internet and their associated applications, your internet browsing
experience would still be composed mostly of plain ASCII text, which wouldn’t be
much fun at all.

 We’re ready to dive into the naming scheme for internet media types. After that,
you’ll be introduced to the eight top-level internet media types, as defined by the sem-
inal Internet Assigned Number Authority (IANA) media type registry (http://
www.iana.org/assignments/media-types/index.html). We’ll briefly describe the IANA

Figure 4.2 The document media type to application mapping from Mozilla Firefox.

This panel can be brought up on a Mac by clicking on the Firefox menu, then selecting

Preferences, then clicking on the Applications tab (note: this sequence depends on

the operating system used, but is likely similar for platforms other than Mac). Each

listed media type is mapped to one or more handler applications, which Firefox tries

to send the content to when it encounters the document on the internet.

http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html

58 CHAPTER 4 Document type detection

registry as well as a few other ones, and how Tika leverages the information present in
any media type registry to accurately and reliably detect media types.

4.1.1 The parlance of media type names

The name of a media type consists of a type/subtype type definition and an optional set
of name=value parameters as shown in figure 4.3, following the Linnaean (and more
generally rank-based) taxonomy development approach. The type/subtype part and
the parameter names are restricted to a subset of printable US-ASCII strings and are
always treated case-insensitively.

The type/subtype part tells you the document format you’re dealing with, and the
optional parameters add format-specific information needed to properly process the
document. For example, the media type text/plain; charset=UTF-8 identifies a
plain text document with Unicode characters encoded using the UTF-8 character
encoding. Similarly, the image/jpeg type identifies an image stored in the JPEG/JFIF
image format.

THE ODD BOX When dealing with lots of documents and media types, you’re
bound to encounter some abnormal cases sooner or later. A common mistake
is to reverse the order of the parts in a media type name, for example,
charset=utf-8; text/html. A toolkit such as Tika shields your application
from having to deal with the complexities of such anomalies.

Now that we know what a media type looks like, it’s natural to ask what kinds of types
are being used out there and how the set of known media types is managed. Read on
to find out.

4.1.2 Categories of media types

There are currently eight official top-level types as shown in table 4.1, and thousands
of registered or otherwise known subtypes. Similar to Linnaeus’s animal taxonomy,
these top-level types form the basis for classifying and organizing a taxonomy of inter-
net media types.

Type

Value"="";"

"/"

Name

Subtype

Figure 4.3 Railroad diagram of the syntax of media type names. See section 5.1 of RFC 2045 for

the full details of the format.

59Internet media types

In addition to the official top-level types, there’s a reserved example/* category for use
only in examples. Some experimental applications may also use unregistered top-level
types of the format x-*/*, though more frequently you see applications using unregis-
tered subtypes with names that match formats like application/x-* or image/x-*.

 As media types are identified, they need to be persisted in some manner so that
others can look up their definitions and understand their relationships. Media types
are stored in a media type registry for this purpose. There are a few canonical media type

Table 4.1 Officially specified top-level media types by IANA. These types form the basis for a detailed

classification framework of available document types. Children are allowed for each top-level type,

indicating some specialization of the parent (a more specific schema, a slightly different encoding

format, and so on).

Top-level type Description

text/* Text-based documents such as HTML (text/html) and Cascading Style

Sheets (CSS, text/css) files, comma-separated values data (CSV, text/

csv), and unformatted plain text (text/plain). All text documents are pro-

cessed primarily as characters instead of as bytes, so a text media type is

often accompanied with a charset parameter that identifies the character

encoding used in a specific document.

image/* Image formats such as JPEG (image/jpeg) and Portable Network Graphics

(PNG, image/png). Most image documents share some basic characteristics

like image size and resolution, color space and depth, and compression ratio

(including whether the used image compression is lossy). All of this information

is normally embedded within the image document in a format-specific way, so

media type parameters are usually not used or needed for image types.

audio/* Music and other audio formats such as MP3 (audio/mpeg) and Ogg audio

(audio/ogg). There are also many audio formats designed for things like inter-

net telephony and are usually used for transmitting instead of storing audio.

video/* Video formats such as QuickTime (video/quicktime) and Ogg video

(video/ogg). Typical characteristics of video formats are frame rate and size,

and the possible inclusion of synchronized audio and text tracks.

model/* File formats for expressing physical or behavioral models in various domains.

The best-known example is the Virtual Reality Modeling Language (VRML,

model/vrml) format used to express 3D models.

application/* Application-specific document formats that don’t necessarily fit any of the other

top-level categories. Well-known examples include PDF (application/pdf)

and Microsoft Word (application/msword) documents. The generic

application/octet-stream type is used as a fallback for any documents

whose exact type is unknown (the document can only be processed as a stream

of bytes).

message/* Email and other message types sent over the internet and other networks.

multipart/* Container formats for multiple consecutive, alternative, or otherwise related

component documents. Like message/* types, multipart/* documents are

normally used for messages transmitted over the network, whereas packaging

formats like Zip archives (application/zip) are categorized as application

types.

60 CHAPTER 4 Document type detection

registries, so before you go out and try creating your own, it’s worth understanding
some of the existing registries of media types, including the largest, most comprehen-
sive source, the IANA registry.

4.1.3 IANA and other type registries

Among its other responsibilities, the Internet Assigned Numbers Authority maintains
a list of officially registered media types. This list is publicly available on the web at
http://www.iana.org/assignments/media-types/, and anyone may register new types
by following the procedure described in RFCs 4288 and 4289.

 There are hundreds of officially registered types, and more are constantly being
added. Besides being one of the largest and most well-maintained media type regis-
tries in existence, the IANA registry is significant because the media types defined in it
are of high quality, both in terms of the sheer amount of relationships captured (par-
ent and child types), and because of the peer-reviewed nature of the attributes that
are captured for each type (MAGIC byte patterns, file extensions, and so forth). IANA
is a well-respected internet standards body, with many data curators and folks respon-
sible for ensuring that the information captured in its registries isn’t junk, but actually
useful to consumers of the information held within.

 There are also many widely adopted types that haven’t been officially registered
and thus haven’t been as extensively vetted by the broader community. Information
about such types may at times be hard to come by, may require searching through
both online and offline resources, and may also require vetting of misleading or even
incorrect information. A few websites, such as http://filext.com, http://file-exten-
sion.net/, and TrID (http://mark0.net/onlinetrid.aspx), maintain huge file format
databases that often provide the best hints about some unknown media types that you
may encounter, or at least have information that may not be present in the higher-
quality, harder-to-get-into registries (like IANA). Unfortunately such information is
often incomplete or contradictory, but luckily Tika solves some of these problems in a
number of different ways, such as combining information from multiple existing
media type registries, easily allowing for the addition and curation of those media
types in a well-known format like XML (which in itself provides excellent tool support
for managing media types), and finally by adopting a comprehensive specification for
representing media types, allowing for their easy comparison, extension, and manage-
ment. Now that we’ve covered the basics, let’s take a deep dive into Tika’s techniques
for taming the complexity of media types.

4.2 Media types in Tika

Media types are the basic atomic building blocks of interaction with files and your
computer’s software—they tell your computer what applications to associate with what
files. Detecting media types accurately and reliably is of the utmost importance, and
something Tika happens to excel at (no pun intended).

 Now that you know a bit about the hassle of dealing with media types, such as the
eight top-level media types and their countless children, how to name the media types

http://www.iana.org/assignments/media-types/
http://filext.com
http://file-extension.net/
http://file-extension.net/
http://mark0.net/onlinetrid.aspx

61Media types in Tika

and classify them, and where they’re stored (in registries, some high-quality and oth-
ers not), it’s time we told you how Tika simplifies the complexity of dealing with
media types.

 First, Tika maintains a rich, easy-to-update, easy-to-understand MIME database
internal to the project, reducing external dependencies to existing registries. Second,
Tika provides Java API and class-level support for interacting with the Tika MIME data-
base, exposing management APIs for the database but also exposing all sorts of meth-
ods of media type detection (by magic byte patterns, file extensions, and so on) that
we’ll cover later in the chapter. The methods for media type detection are entirely
driven by the richness of the underlying Tika MIME database that we’ll explain in this
section ad nauseam. Read on!

ALERT: SOURCE CODE AHEAD Before getting too deep into the source code
examples and MIME-info database in this chapter, we’d like to remind you to
refresh your memory regarding working with the Tika source code and build-
ing the Tika codebase by reviewing section 2.1.

The Tika project maintains its own media type registry that contains both official
IANA-registered types and other known types that are being used in practice. The Tika
type registry also keeps track of associated information such as type relationships and
key characteristics of the file formats identified by the media types. This section covers
the basics of this registry and the key classes you can use to access the included type
information.

4.2.1 The shared MIME-info database

Unix environments have traditionally had no standard way of sharing document type
information among applications. This was a problem for popular open source desktop
environments such as Gnome and KDE that are distributed with Linux. These environ-
ments strive to make the user experience more consistent with standard icons and pro-
gram associations for all document types, akin to their commercial counterparts
(Windows or the Mac desktop environment). To manage such document type informa-
tion in a platform-independent manner, they came up with the Shared MIME-info
Database specification (http://mng.bz/7Ylh), which among other things defines an
XML format for media type information. This format, shown next, is used also by Tika.

<mime-info xmlns="http://www.freedesktop.org/standards/shared-mime-info">

<mime-type type="application/pdf">

<alias type="application/x-pdf"/>

<acronym>PDF</acronym>
<expanded-acronym>

Portable Document Format

</expanded-acronym>
<comment xml:lang="en">

PDF document

Listing 4.1 Basic MIME-info database file

Canonical
name

Known aliases
Short acronym

Human-readable description
in given language

http://mng.bz/7Ylh

62 CHAPTER 4 Document type detection

</comment>
...

</mime-type>

...

</mime-info>

A mime-info file contains a sequence of mime-type records that each describe a single
media type. A type record specifies the official name of the type as well as any known
aliases. For example, many officially registered media types are also known by experi-
mental x-* names that predate the official type registration. A type record can also
contain informal type names that are frequently used in human communications. Just
like most people would call a domestic cat a cat rather than a “member of the Felis

catus species,” a term like PDF document is usually preferred to the more technically
accurate application/pdf in informal language.

 Capturing the media types in the mime-info file (called tika-mimetypes.xml in
Tika’s source) provides a single point of access for managing Tika’s knowledge about
media types. Tika ships with a rich, well-curated mime-info file, but nothing prevents
you from adding to or removing from it to suit your needs. Just make sure that you try
to fill in as much of the information shown in listing 4.1 as you can; it’ll help Tika to
detect the right file type, and your programs and operating systems to map that file to
the right application.

 Before going further into all the detailed type information that can be included in
a mime-info database, let’s first take a look at how you can access the recorded type
information using Tika’s APIs.

4.2.2 The MediaType class

Tika uses the MediaType class to represent media types. Instances of this class are
immutable and contain only the media type’s type/subtype pair and optional
name=value parameters. The type and parameter names are all normalized to lower-
case and the MediaType class supports the standard Java object equality and order
comparison methods for easy use in all kinds of data structures. The class is depicted
visually in the Unified Modeling Language (UML) notation in figure 4.4.

Other details

Other media types

org.apache.tika.mime

<<immutable>>

MediaType

getType(): String

getSubtype(): String

getParameters(): Map

toString(): String

hashCode(): int

etc.

Comparable

Serializable

Figure 4.4 Basic UML class

diagram that summarizes the key

features of the MediaType class.

The class implements both the

Comparable and Serializable

standard Java interfaces. The type

name, its subtype, and the

associated type parameters are all

available through getter methods,

and the MediaType can be

serialized to human-readable form

by calling the toString method.

63Media types in Tika

The static MediaType.parse(String) method is used to turn media type strings such
as text/plain; charset=UTF-8 to MediaType instances. The type parser is flexible and
tries to return a valid media type even for malformed inputs, but will return null if
passed a string like “this is not a type” that simply can’t be interpreted as a media type.

 The following example shows how to use the key methods of the MediaType class.
Full details of the class can be found in the API documentation on the Tika website:

MediaType type = MediaType.parse("text/plain; charset=UTF-8");

System.out.println("type: " + type.getType());

System.out.println("subtype: " + type.getSubtype());

Map<String, String> parameters = type.getParameters();
System.out.println("parameters:");

for (String name : parameters.keySet()) {

System.out.println(" " + name + "=" + parameters.get(name));
}

Individual MediaType instances don’t do much, but they form the basis for higher-level
concepts such as the MediaTypeRegistry class we’ll encounter in the next section.

4.2.3 The MediaTypeRegistry class

The type information included in mime-info XML databases and other sources can be
accessed through the MediaTypeRegistry class. As the name indicates, an instance of
this class is a registry of media types and related information. The MediaTypeRegistry
class and its important features are described in figure 4.5.

 Tika contains a fairly extensive media type database that you can access using the
static MediaTypeRegistry.getDefaultRegistry() method. The following example
uses this method to print out all the media types and type aliases known to Tika.
That’s more than a thousand types!

MediaTypeRegistry registry = MediaTypeRegistry.getDefaultRegistry();

for (MediaType type : registry.getTypes()) {

Set<MediaType> aliases = registry.getAliases(type);
System.out.println(type + ", also known as " + aliases);

}

Now that we’ve studied the media type registry, we’ll show you how the power and
flexibility of Tika’s media type detection mechanism is driven by the richness of the

org.apache.tika.mime

MediaTypeRegistry

getTypes():SortedSet

getAliases(MediaType): SortedSet

etc...

MediaType

Figure 4.5 UML class diagram that

summarizes the key features of the

MediaTypeRegistry class. The

class allows the set of loaded

MediaType object instances to be

returned as a SortedSet, and

allows a user to obtain a

SortedSet of aliases belonging to

a particular MediaType.

64 CHAPTER 4 Document type detection

information captured in its media type registry (aka MIME database, mime-info file,
and the rest of the aliases we’ve given it so far). So, in other words, the more accurate,
more fleshed-out, and more easily accessible and updateable Tika’s media type regis-
try is, the better your programs and software that leverage Tika will be able to discern
the right application to handle files that you’ll encounter.

 A key part of the richness of the media type registry is the notion of media type
hierarchies. Type hierarchies tell your applications things like the fact that the media
type application/xml is a subtype of plain text (text/plain), and can be viewed in a
text editor, not something like QuickTime for viewing movies.

4.2.4 Type hierarchies

Many media types are based on a more generic format. For example, all text/* types
like text/html are supposed to be understandable even if treated as plain text, like
when using the View Source feature included in most web browsers. It’s thus accurate
to say that text/html is a specialization of the more generic text/plain type.

 These kinds of type hierarchies (parent-child relationships, or specializations) are
different from the type/subtype categorization encoded in the standard internet
media type system. Even though text/plain can be seen as a supertype of all text/*
types, there’s no similar generic format for all image/* types. In fact the Scalable Vec-
tor Graphics (SVG, image/svg+xml) format is based on XML (application/xml) and
thus SVG images can also be processed as XML documents, the gist of which is demon-
strated in figure 4.6. Such type relationships are often indicated with a name suffix
like +xml. For example, the Electronic Publication (Epub, application/epub+zip)
format used by many electronic books is actually a Zip archive (application/zip)
with some predefined content.

 Tika has built-in knowledge about handling text types and types with name suffixes
such as +xml and +zip. Tika also knows that ultimately all documents can be treated as
raw application/octet-stream byte streams. But more specific type hierarchy infor-
mation needs to be explicitly encoded in the type database using sub-class-of ele-
ments as shown in the following example:

<mime-type type="application/vnd.apple.keynote">

<sub-class-of type="application/zip"/>
</mime-type>

<mime-type type="application/xml">

<sub-class-of type="text/plain"/>
</mime-type>

Keynote
files as Zip

XML documents
as plain text

Figure 4.6 Four levels of type

hierarchy with the image/svg+xml

type. The SVG image can be

processed either as a vector image,

as a structured XML document, as

plain text, or ultimately as a raw

sequence of bytes.

65File format diagnostics

This kind of type hierarchy information is highly useful when trying to determine how
a particular document can best be processed. For example, even if you don’t have the
required tools to process Keynote presentations, you may still be able to extract some
useful information about the presentation by looking at the contents of the Keynote
Zip archive.

 Tika supports such use cases by making type hierarchy information easily available
through the getSupertype() and isSpecializationOf() methods of the Media-
TypeRegistry class. The former Java API method returns the closest supertype of a
given media type (or null if the given type happens to be application/octet-
stream), whereas the latter method checks whether a given type is a specialization of
another more generic type. The use of the getSupertype() method is illustrated
next:

MediaTypeRegistry registry = MediaTypeRegistry.getDefaultRegistry();

MediaType type = MediaType.parse("image/svg+xml");

while (type != null) {

System.out.println(type);

type = registry.getSupertype(type);
}

That’s all there is to say about media types themselves. Let’s move on to figuring out
how you can tell the media type of any given file or document using this information
about how to capture and represent. Even armed with this huge knowledge base of
media type information, detecting the media type of a given file can be more compli-
cated than you might expect. Tika simplifies this for you, and we’ll show you how.

4.3 File format diagnostics

Biologists use details such as the shapes of leaves to detect different species of trees,
and the color and patterns of feathers for bird species. Similarly, a researcher of doc-
ument formats can use characteristic features of digital documents to detect the
media types of those documents. This section is a guidebook for such a researcher,
and provides you a full range of tools for detecting even the most unusual types of
documents.

 We’ll begin with filename glob patterns, one of the most widely used and easy
methods for media type detection. We’ll cover content-type hints, magic bytes, and
character encodings—a comprehensive set of digital fingerprinting techniques pro-
vided by Tika for identifying file types. The latter part of the chapter contains
advanced techniques such as exploiting the structure of XML or combining both file-
name patterns and digital fingerprinting for detecting the underlying type of a file.

 This entire section builds on the guidebook and information recorded and made
available by Tika and its media type registry. Think of that registry as the biologist’s
sketchbook and additional literature that provide the necessary hints to make the spe-
cies identification for the leaves that they’re examining. See table 4.2 for a roadmap of
the different detection types we'll cover in this chapter.

66 CHAPTER 4 Document type detection

4.3.1 Filename globs

The simplest and most widely used mechanism for detecting file formats is to look at
the filename. Most modern operating systems and applications use filename exten-
sions such as .txt or .png to indicate the file type, even though this is mostly an informal
practice with few guarantees that the extension actually matches the format of a file.

APRIL FOOLS’ You can easily trick your computer using the concept of file
extensions. For example, independent of whether you’re using Windows or
Mac, try taking an image file and changing its extension to .txt. Now, double
click on the file. What happened? More than likely your computer tried to
open the image file in a text editor program. It based this decision off of the
file extension, which is as easy to change as the filename. Some modern oper-
ating systems try to use more information than the file extension to decide
what application to open the file with.

Table 4.3 lists the name extensions of some of the more popular file formats.

Table 4.2 Methods for detecting the type of a file using Tika. The methods build on top of the media

type information curated in the Tika media type registry.

Method Good for Covered in

File globs Well-known file types, with common extensions like

*.txt, *.png.

Section 4.3.8

Content-type hints When an application will touch a file before you do,

and when it correctly identifies the right type (some-

times it won’t!).

Section 4.3.9

MAGIC bytes The general case. This approach works in most

cases because nearly all file types have a unique

digital fingerprint.

Section 4.3.10

Character encodings When an odd charset was used and can be

exploited in a fashion similar to MAGIC bytes as a

digital fingerprint.

Section 4.3.11

Other mechanisms If you’re dealing with XML, whose digital fingerprint

isn’t always unique, but also whose schema can

give away the underlying type.

Section 4.3.12

Combined approaches In the most general case, as it combines the best

capabilities of all of the underlying approaches.

Section 4.3.12

Table 4.3 Popular file formats and their filename extensions

Extension File format Media type

.txt Text document text/plain

.html HTML page text/html

.xls Microsoft Excel spreadsheet application/vnd.ms-excel

67File format diagnostics

The practice of using filename extensions dates back to 40 years ago, when the operat-
ing systems of computers built by the Digital Equipment Corporation (DEC) started
splitting filenames into a base name and a type extension. This practice was adopted
by other vendors, including Microsoft who popularized the 8.3 filename format in
their Disk Operating System (DOS) and early versions of Windows. Modern versions of
Microsoft Windows no longer limit the filename length (in reality they limit length of
the file path), but filename extensions are still used to determine which application
should be used to process a file. Modern Mac OS and Unix systems handle filenames
similarly.

 In addition to filename extensions, there are also some more specific filenames
and filename patterns that can be used to identify the type of a file. For example,
many software projects contain text files such as README, LICENSE, and Makefile
without any filename extensions. Unix systems also widely use textual configuration
files whose names match the filename pattern .*rc (where * signifies any sequence of
characters).

 These and hundreds of other known filename patterns and extensions are
included in Tika as <glob pattern="..."/> entries in the media type registry
described in section 4.2. For example, here’s how Tika represents the various file
extensions typically used by C and C++ source files.

<mime-type type="text/x-c">

<glob pattern="*.c"/>

<glob pattern="*.cc"/>
<glob pattern="*.cxx"/>

<glob pattern="*.cpp"/>

<glob pattern="*.h"/>
<glob pattern="*.hh"/>

<glob pattern="*.dic"/>

<sub-class-of type="text/plain"/>
</mime-type>

If you use file formats with specific extensions or filename patterns that Tika doesn’t
already know about, you can extend Tika with this information by modifying the tika-
mimetypes.xml configuration file present in tika-core (recall section 2.3.7). Adding
information to this file is as simple as pulling up the XML file in your favorite editor,
quickly cutting and pasting some existing media type blocks, and then modifying the
information for your new type and setting it to your liking.

.jpg JPEG image image/jpeg

.mp3 MP3 audio audio/mpeg

.zip Zip archive application/zip

Listing 4.2 C and C++ filename patterns

Table 4.3 Popular file formats and their filename extensions (continued)

Extension File format Media type

68 CHAPTER 4 Document type detection

 Next, we’ll study how to determine a file’s media type leveraging information
besides just the file extension, including leveraging hints inside the file.

4.3.2 Content type hints

Sometimes a document’s filename isn’t available, or the name lacks a type extension.
This is common when the document is stored in a database, accessed over the net-
work, or included as an attachment in another document. In such cases it’s typical for
the document to be associated with some external type information, most often an
explicit media type.

 For example, the HTTP protocol used by web browsers to request HTML pages and
other documents from web servers specifies a Content-Type header that a server is
expected to add to its response whenever it returns a document to the client.

 Another example of this situation is when some application sets the Content-type
metadata of a file, as when Microsoft Word saves a Word document for you. In these
cases, regardless of the underlying extension that the application saves the Word doc-
ument with (it could be named myfile.foo for all that it matters), Microsoft Word has
still provided a hint to any other software that tries to detect the file’s type.

 We can exploit this information as part of our toolbelt, and we should when possi-
ble. But sometimes, this information isn’t set, and even when it is, we’re still not abso-
lutely sure how much we can trust these content type hints, so Tika still goes the extra
mile and employs more advanced techniques, such as magic byte detection.

4.3.3 Magic bytes

Filename extensions and other content type hints are usually fairly accurate, but
there’s no guarantee of that. In some cases such external information is either not
available or is incorrect, so the only way to determine the type of a document is to
look inside it and try to detect the document type based on its content.

 A file format is just that: a format for expressing information in a file. Almost all
file formats have some characteristic features or patterns that can be detected when
looking at a file’s raw byte contents. Many formats even include a magic byte prefix
that’s designed to accurately identify the file format. For example, the contents of GIF
images always start with the ASCII characters GIF87a or GIF89a depending on the ver-
sion of the GIF format used. More such magic byte patterns of common file formats
are listed in table 4.4.

 Using magic bytes as a means for media type detection is great, but it’s only half of
the problem. Another obstacle that presents itself is accurately identifying a file’s char-
acter encoding, often referred to as its charset. In the next section, we’ll explore this in
detail.

69File format diagnostics

4.3.4 Character encodings

After the complexities of detecting magic bytes, file extensions, and content type
hints, you might assume that at least the handling of plain text files should be simple.
If only! The big problem with text is that there are so many ways of representing it as
bytes. These representations are called character encodings, and there are hundreds of
different encodings in active use.

 As discussed earlier, the test/plain media type is often accompanied with a
charset parameter that indicates the character encoding used in a text document.
But even when this information is available, it’s often incorrect. A better way of detect-
ing the character encoding of a text document is clearly needed.

BOM MARKERS

The easiest way to detect a character encoding is to look for the optional byte order

mark (BOM) used by Unicode encodings to indicate the order in which the encoded
bytes are stored in the document. The Unicode character U+FEFF is reserved for this
purpose and is included as the first character of an encoded Unicode stream.
Table 4.5 shows how the BOM looks in the commonly used Unicode encodings.

 If the first few bytes of a document match a known BOM pattern, you can be fairly
confident that you’re dealing with a text document in the character encoding indi-
cated. Otherwise you’re out of luck, since few of the other character encodings use
byte order marks, and there are no other easy markers to be relied on.

Table 4.4 Magic byte patterns in popular file formats. Some of the patterns are represented as plain

ASCII text, whereas others are shown in their hexadecimal equivalent.

Magic bytes File format Media type

%PDF- (ascii) PDF document application/pdf

{\rtf (ascii) Rich Text Format text/rtf

PK (ascii) Zip archive application/zip

FF D8 FF (hex) JPEG image image/jpeg

CA FE BA BE (hex) Java class file application/java-vm

D0 CF 11 E0 (hex) Microsoft Office document application/vnd.ms-excel,

application/vnd.ms-word,etc.

Encoded BOM (hex) Unicode encoding

EF BB BF UTF-8

FE FF UTF-16 (big endian)

FF FE UTF-16 (little endian)

00 00 FE FF UTF-32 (big endian)

FF FE 00 00 UTF-32 (little endian)
Table 4.5

BOM in common Unicode encodings

70 CHAPTER 4 Document type detection

BYTE FREQUENCY

The best approach to detecting the type and encoding of such documents is to look at
the frequency of different bytes within, say, the first few kilobytes of the document.
Plain ASCII text hardly ever contains control characters except newline and tab, and
most other character encodings avoid using those bytes for normal text. So if you see
many control bytes (characters with code < 32), you can assume that you’re not deal-
ing with a plain text document.

 If the document does look like plain text, you still need to determine the character
encoding. There are a few tricks for detecting encodings such as UTF-8 that use easily
recognizable bit patterns when encoding multibyte characters, and some character
encodings never use certain byte values (for example, ASCII only uses the lowest seven
bits).

STATISTICAL MATCHING

After you’ve checked for easy matches and ruled out impossible alternatives, the last
resort is to use statistical matching to determine which character encoding is most
likely to produce the bytes and byte sequences in the input document. Many character
encodings are associated with a specific language or a group of languages for which
the encoding is particularly designed, so the frequency of encoded characters or char-
acter pairs can be used for a reasonably accurate estimate of the language and encod-
ing used in a document.

 Tika’s MediaTypeRegistry implements all of the aforementioned detection mech-
anisms and allows you to leverage them in your application. In the next section, we’ll
explore Tika’s final type detection mechanisms, including XML root detection.

4.3.5 Other mechanisms

Some document formats are based on more generic formats like Zip archives
(application/zip), XML (application/xml), or Microsoft’s format for Object Linking
and Embedding (OLE) or Compound File Binary File Format (MS-CFB: see http://
mng.bz/gU1C) documents. Even if such a container format can be easily detected using
magic bytes or other details, it may be difficult to determine if the format is used to host
a more specific kind of document. The container format needs to be parsed to deter-
mine whether the content matches that of a more specific document type.

XML FORMAT

The most notable of such formats is XML, which has been used for countless more-
specific document types such as XHTML (application/xhtml+xml) and SVG (image/
svg+xml). To detect the specific type of a given XML document, the root element of
the document is parsed and then matched against known root element names and
namespaces.

OLE FORMAT

Microsoft’s OLE format is another troublesome format to detect. Used by default by all
Microsoft Office versions released between 1995 and 2003, many of which are still in
production use, the OLE format is one of the most widely used document formats on

http://mng.bz/gU1C
http://mng.bz/gU1C

71Tika, the type inspector

the planet. The OLE format is essentially a miniature file system within a single file.
Specifically named directories and file entries within such a file are used by specific
programs, so the type of a document can be determined by looking at the directory
tree of the OLE container. Unfortunately, the OLE format is somewhat complicated
and requires random access to the document, which makes OLE type detection diffi-
cult for documents that are being streamed, for example, from a web server. Tika uses
a best-effort approach for OLE detection that works pretty well in practice even within
these constraints.

COMBINED HEURISTICS

These and other custom detectors are constantly being developed as Tika encounters
new document formats that can’t be detected using one or more of the simpler mech-
anisms we discussed earlier.

 That’s quite a load of different type detection mechanisms, and none of them
promise to be absolutely accurate! Are we to announce defeat in the face of such com-
plexity? Luckily the situation isn’t that bad, as many of the preceding approaches can
be used independently to verify the results of another detection method. Then, by
combining the various detection heuristics at hand, we can come up with a highly
accurate estimate of the media type of almost all kinds of documents. And the best
part is that Tika does this automatically for you. The next section shows you how.

4.4 Tika, the type inspector

As you can probably remember from chapter 2, the Tika facade class has a detect()
method that returns the detected media type of a given document. The SimpleType-
Detector class shows how this works in practice.

import java.io.File;

import org.apache.tika.Tika;

public class SimpleTypeDetector {

public static void main(String[] args) throws Exception {
Tika tika = new Tika();

for (String file : args) {

String type = tika.detect(new File(file));
System.out.println(file + ": " + type);

}

}

}

Pretty simple, right? Now let’s look at what else you can do with type detection. The
first thing is to switch to a customized type registry that contains some extra type infor-
mation which you need in your application. The following shows how you can specify
which media type configuration file is used by Tika. The default type configuration is

Listing 4.3 Simple type detector example

72 CHAPTER 4 Document type detection

included as an embedded classpath resource at /org/apache/tika/mime/tika-
mimetypes.xml:

String config = "/org/apache/tika/mime/tika-mimetypes.xml";

Tika tika = new Tika(MimeTypesFactory.create(config));

In addition to passing java.io.File instances to the detect() method, you can also
give it input streams, URLs, or even nothing but a filename string. In each of these
cases Tika will do its best to combine all the available type information it has with the
document details you’ve given. The result is usually the type you were looking for.

4.5 Summary

This completes our discussion of the taxonomy of document formats and the associ-
ated ways in which document types can be detected. We started by introducing the
internet media type system and looking at how media types are handled in Tika using
the mime-info database and the MediaType and MediaTypeRegistry classes. We then
covered several heuristics for detecting document types, and finally brought it all
together into the detect() method of the Tika facade.

 By now you should know not only how to use Tika to detect document types, but
also how Tika achieves this task internally and how you can extend Tika with custom
type information. This knowledge will come in handy in the next chapters as we look
at how to proceed from knowing the type of a document to being able to extract con-
tent and metadata from it.

73

Content extraction

Armed with Tika, you can be confident of knowing each document’s pedigree, so
sorting and organizing documents will be a snap. But what do you plan on doing
with those documents once they’re organized?

 Interactively, you’d likely pull the documents into your favorite editing appli-
cation and start reading and updating their internal text. Programmatically,
you’re more than likely to do the same thing, and once you know what’s what in
terms of document types, and what applications are associated with them (like we
showed you in chapter 4), you can make sure you’re using the right parser tool-
kits and libraries to read and modify each document’s text via your software pro-
gram automatically.

 But there are literally scores of those parsing toolkits and libraries, and each
extracts the underlying text and information from documents differently. It’d help
to have some software in your toolbelt that could assist you in choosing the right
parsing library, and then normalizing the extracted text and information. Tika can

This chapter covers

 Full-text extraction

 Working with the Parser interface

 Reading data from a stream

 Exporting in XHTML format

74 CHAPTER 5 Content extraction

help you here. The original and most important use case for Tika is extracting textual
content from digital documents for use in building a full-text search index—which
requires dealing with all of the different parsing toolkits out there—and representing
text in a uniform way.

 This chapter describes Tika’s content extraction capabilities in detail, and shows
how this functionality can be used for full-text indexing and other related use cases.

 We’ll start with a simple full-text extraction and indexing example based on the
Tika facade and the Apache Lucene search library. Then we’ll proceed to cover the
Parser interface that’s the central abstraction for all the content extraction function-
ality in Tika. Finally, the latter half of this chapter discusses the inputs, outputs, and
internals of Tika’s parser classes. That’s a lot of ground to cover, so let’s get started!

5.1 Full-text extraction

The series of steps involved in generically extracting text from any type of document is
somewhat involved. Though Tika exposes all of the steps as callable APIs and Java
classes, allowing you to pick and choose how they’re called, there’s a common use case
and ordering of the extraction steps.

 We’ve codified that common use case as a method called parseToString within
the Tika facade. Back when we first discussed the facade in chapter 2, we glossed over
the internal steps that the method was abstracting. Not anymore. Let’s take a deep
dive into the method and see what it’s doing. Once we know that, we’ll show two ways
to confidently integrate the facade method with Apache Lucene to perform full
extraction and indexing.

5.1.1 Abstracting the parsing process

Let’s look at the Tika facade and the parseToString method in action. Given a
document as a file or an input stream, this method returns the text content of that
document:

File document = new File("example.doc");
String content = new Tika().parseToString(document);

System.out.print(content);

What happens during this parseToString call when given the PDF version of this
book as input? Figure 5.1 highlights the key steps of this process, and we’ll discuss
each of them in more detail next.

3. Text extraction

"..."The Babel fish,"

said The Hitch Hiker's

Guide to the Galaxy

quietly, "is small,

yellow and leech-like,

and probably the oddest

thing in the Universe..."

2. Parser selection

1. Type detection

application/pdf

PDFParser

Figure 5.1 Overview of

Tika’s parsing process

75Full-text extraction

1 First the Tika facade will use the heuristics described in chapter 4 to detect the
given document’s media type.

Our example document starts with the magic bytes %PDF-, which allow Tika
to identify it as a PDF document, more precisely application/pdf.

2 Once the type of the document is known, a matching parser implementation is
looked up. Tika comes with many different parser implementations, some
based on external parser libraries and some included in Tika itself, and the one
that can best parse the given document is automatically selected.

The org.apache.tika.parser.pdf.PDFParser class supports application/
pdf, so Tika selects an instance of that class for parsing the example document.

3 The given document is then passed to the selected parser implementation,
which interprets the bytes of the document according to the respective media
type’s rules. A TikaException is thrown if the document doesn’t match these
rules and thus can’t be parsed. Alternatively, an IOException gets thrown if the
input document can’t be read.

The PDFParser class is a wrapper around the advanced PDF parsing capabili-
ties of the Apache PDFBox library, so it passes the example document to PDFBox
and converts the returned metadata and text content to a format defined by Tika.

The parseToString() method will also buffer the extracted text content in memory
until the entire document has been parsed, and before the collected text gets returned
to the client application as a single string. The buffer size is limited to 100,000 charac-
ters by default to avoid the risk of unexpectedly running out of memory.

 This book is longer than the default limit, so somewhere around chapter 3 the buf-
fer gets full and the rest of the book is ignored. The returned string starts with the
foreword and continues with the text of the first few chapters of this book.

 In sections 5.1.3 and 5.3.2 we’ll cover how to deal with larger documents and other
more complex topics, but let’s first take a detour to see what we can do with the text
we’ve just extracted.

5.1.2 Full-text indexing

Full-text search is the feature that makes it possible for a search engine to return all
the documents that contain one or more words or phrases included in a user’s query.
Such search engines are increasingly important in our world of information overload,
which makes full-text indexing one of Tika’s key use cases.

 Tika itself doesn’t include indexing and querying capabilities, so you’ll need to com-
bine it with a search library such as Apache Lucene to implement full-text search. The
LuceneIndexer class contains the essential piece of code needed for such integration.

import java.io.File;
import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene.document.Field.Index;

Listing 5.1 Simple full-text indexer with Tika and Lucene

76 CHAPTER 5 Content extraction

import org.apache.lucene.document.Field.Store;
import org.apache.lucene.index.IndexWriter;

import org.apache.tika.Tika;

public class LuceneIndexer {

private final Tika tika;

private final IndexWriter writer;

public LuceneIndexer(Tika tika, IndexWriter writer) {
this.tika = tika;

this.writer = writer;

}

public void indexDocument(File file) throws Exception {

Document document = new Document();

document.add(new Field(
"filename", file.getName(),

Store.YES, Index.ANALYZED));

document.add(new Field(
"fulltext", tika.parseToString(file),

Store.NO, Index.ANALYZED));

writer.addDocument(document);

}

}

A Lucene search index contains Document objects that themselves consist of named
Field instances. Each Field can be stored as-is for later retrieval and/or indexed in
various ways for searchability. For example, each Field may be tokenized on
whitespace, to make it easier to search text by common keywords. Alternatively, Fields
may be stemmed and their common roots be stored to make it easier to search on plu-
ral keywords. For example, this is useful when searching for the keyword book is
expected to return hits containing the text books.

 Once an index has been built and Document object instances have been recorded,
users of Lucene can leverage the Lucene search API, which allows advanced searching
against DocumentFields that have been indexed.

 The code in listing 5.1 allows you to create a search index that can return the
names of all files that contain selected words. The only missing piece is a main()
method that opens an index for writing and adds selected documents to the index.
Such a method is shown next:

public static void main(String[] args) throws Exception {

IndexWriter writer = new IndexWriter(

new SimpleFSDirectory(new File(args[0])),
new StandardAnalyzer(Version.LUCENE_30),

MaxFieldLength.UNLIMITED);

try {
LuceneIndexer indexer = new LuceneIndexer(new Tika(), writer);

for (int i = 1; i < args.length; i++) {

indexer.indexDocument(new File(args[i]));
}

} finally {

Class for
full-text
indexing

Facade
instance for
full-text
extraction

Lucene index writer for
indexing extracted text

Create Lucene
indexer instance

Add file
to index

77Full-text extraction

writer.close();
}

}

We’re only scratching the surface of Lucene’s indexing features here. Chapter 10
describes such Lucene integration and related search engine and web crawler proj-
ects in more detail. More comprehensive information on building search engines
with Lucene can be found in the book Lucene in Action1 or on the Lucene website at
http://lucene.apache.org/.

 With the preceding code you can already create a simple full-text search index, but
a number of improvements could be made. The first and most obvious is the string
size limitation of the parseToString method. In the next section we’ll find out how to
index documents of arbitrary length.

5.1.3 Incremental parsing

An average novel can easily contain more than 100,000 words, each about five charac-
ters long on average. Such an amount of text requires about a megabyte of memory
when loaded into a string in Java. It’s not uncommon for something like a Zip archive
containing many e-books to expand to up to a gigabyte of text, which makes the
parseToString method unsuitable for processing such documents.

 The alternative is to use incremental parsing, which is supported by the parse
method of the Tika facade. This method returns a java.io.Reader instance that the
client application can use to incrementally read the text content of the parsed docu-
ment. Lucene supports reader instances as field values, so it’s easy to modify the
indexDocument of our LuceneIndexer example to take advantage of this feature.

public void indexDocument(File file) throws Exception {
Reader fulltext = tika.parse(file);
try {

Document document = new Document();
document.add(new Field(

"filename", file.getName(),
Store.YES, Index.ANALYZED));

document.add(new Field("fulltext", fulltext));
writer.addDocument(document);

} finally {
fulltext.close();

}
}

With this modification, our full-text indexer is capable of indexing the full contents of
documents of all sizes. To query the search index created by our simple indexer exam-
ple, you can use the IndexReader class from Lucene or a higher-level index browser
tool like Luke.2

1 Lucene in Action, written by Lucene developers Mike McCandless, Erik Hatcher, and Otis Gospodnetić and
published by Manning, is the authoritative guide to Lucene. To find out more about the book, see the website
at http://www.manning.com/hatcher3/.

2 Luke is a development and diagnostic tool for Lucene search indexes. See the Luke website at http://source
forge.net/projects/luke/ for downloads and documentation.

http://lucene.apache.org/
http://www.manning.com/hatcher3/
http://sourceforge.net/projects/luke/
http://sourceforge.net/projects/luke/

78 CHAPTER 5 Content extraction

FIELD SIZE TRADE-OFF In practice many search engines choose to sacrifice
query accuracy for better performance and smaller index size. Lucene sup-
ports such trade-offs through the IndexWriter constructor’s MaxFieldSize
argument.

That’s full-text extraction and indexing in a nutshell. Sounds simple, right? That’s
because the Tika facade was designed to make basic text extraction tasks as simple and
easy to achieve as possible. Sometimes your needs are more complex, and that’s where
the Parser interface comes in. The rest of this chapter is dedicated to this interface
and all the different ways it can be used to extract content from digital documents.

5.2 The Parser interface

The Tika facade simplifies and streamlines text extraction; it also, through its sim-
plicity, insulates the user from being able to easily tweak each step in the process it
automates.

 Similar to its MIME identification system and metadata and language frameworks
(which you’ll read about in chapters 6 and 7, respectively), Tika’s text extraction sys-
tem is built on top of a set of extensible Java APIs. We’ll elucidate those APIs to you in
this section, walking you through Tika’s Parser interface and its methods.

 Once you have a working knowledge of the interface, we’ll tell you about the exist-
ing Parser implementations in Tika, explaining how to customize them and using
them as a model to write your own Parsers and integrate them back into the Tika text
extraction process.

5.2.1 Who knew parsing could be so easy?

The org.apache.tika.parser.Parser interface is the cornerstone of the Tika API.
It’s used both as a public interface accessed by client applications and as an extension
point implemented by parser plugins that each support different document formats.
The interface has been carefully crafted over years based on experience and feedback
from many different users and use cases. That’s a lot of responsibility for a single inter-
face, so let’s see what it looks like.

package org.apache.tika.parser;

import java.io.IOException;
import java.io.InputStream;

import java.util.Set;

import org.apache.tika.exception.TikaException;
import org.apache.tika.metadata.Metadata;

import org.apache.tika.mime.MediaType;

import org.apache.tika.parser.ParseContext;
import org.xml.sax.ContentHandler;

import org.xml.sax.SAXException;

/** Tika parser interface. */
public interface Parser {

Listing 5.2 Tika parser interface

79The Parser interface

/** Returns the set of media types supported by this parser. */
Set<MediaType> getSupportedTypes(ParseContext context);

/** Parses a document stream into a XHTML SAX events and metadata. */

void parse(
InputStream stream, ContentHandler handler,

Metadata metadata, ParseContext context)

throws IOException, SAXException, TikaException;

}

The Javadoc comments here have been trimmed to save space. The full Javadocs are
available on the Tika website, and we’ll discuss all the details of this interface shortly.

 With just two declared methods, this interface is surprisingly compact when com-
pared to the amount of functionality it hides. The first method, getSupported-
Types(), is used internally by Tika when selecting the best parser implementation for
parsing a given input document, a feature that we’ll cover later in section 5.2.4. The
second and more important method, parse(), is the real workhorse behind most of
Tika’s functionality. What’s so special about this method? Read on to find out!

5.2.2 The parse() method

The parse() method takes four arguments that are used to pass information to and
from the document parser. Instead of returning a formal return value, the parser
implementation uses callbacks to pass parsed content back to the calling application.
The information flows between the parse() method and its arguments are shown in
figure 5.2.

 The purpose of each of the four arguments is summarized in table 5.1.

java.io.
InputStream

 document stream

org.xm.sax.
ContentHandler

XHTML event handler

ParseContext

org.apache.tika.
metadata.Metadata

 document metadata

«interface»
Parser

parse(...)

ParseContext

«interface»
Parser

parse(...)

org.apache.tika.parser

Figure 5.2 Information flows between the parse() method and its

arguments. The input stream and metadata arguments are used as

sources of document data, and the results of the parsing process are

written out to the given content handler and metadata object. The

context object is used as a source of generic context information from the

client application to the parsing process.

80 CHAPTER 5 Content extraction

If the parsing process fails for some reason, the parse() method throws an exception
whose type indicates the kind of problem that was encountered, as shown in table 5.2.

 Now that we know how parse() is supposed to behave, let’s look at all the different
ways in which it has been implemented by Tika.

5.2.3 Parser implementations

Tika supports dozens of different document formats through concrete parser classes
that each support a single format or a family of closely related formats. There are also
a few more generic implementations of the Parser interface, designed to simplify
working with multiple different parsers. The class diagram in figure 5.3 summarizes
these different kinds of parser classes and their relationships.

 The format-specific parser classes support various document formats either by
directly implementing the required parsing logic or preferably by relying on an exter-
nal parser library. The goal of Tika is to provide a uniform API for content extraction,
not to be the ultimate parser library that by itself understands all the document

Table 5.1 The arguments for the org.apache.tika.parser.Parser’s parse() method. Some

of the arguments are only read, such as the InputStream and the ParseContext; some are

callbacks (such as the ContentHandler); and some objects are actually written to, such as the

Metadata argument.

Argument Description

InputStream stream The document input stream—The raw byte stream of the docu-

ment to be parsed is read from this input stream. Note that this

stream is read but not closed by the parse() method.

ContentHandler handler XHTML SAX event handler—The structured text content of the

input document is written to this handler as a semantic XHTML

document. The use of XHTML as the output format allows Tika to

represent structures like headings, paragraphs, and hyperlinks

within the extracted text. Instead of serializing the XHTML output

to a byte stream, it’s delivered using the event-based SAX API

which allows efficient and flexible post-processing of the extracted

content.

Metadata metadata Document metadata—The metadata object is used both as a

source and a target of document metadata. Input metadata avail-

able to the client application, like the name of the document file,

can be passed in the metadata object to help the parser better

understand the document format. Parsed document metadata like

the document title is written to the metadata object for use by the

client application after the parse() method has returned. All

aspects of metadata processing will be covered in chapter 6.

ParseContext context Context of the parsing process—This argument is used in cases

where the client application wants to customize the parsing pro-

cess by passing custom context information. Things like custom

XML parsers, alternative HTML mapping rules, and locale informa-

tion can be injected through this context object.

81The Parser interface

formats in the world. Tika tries to leverage the existing content extraction capabilities
of various open source parser libraries as much as possible, making the Tika parser
classes behave as thin adapters between the uniform Parser interface and the custom
APIs of the external parser libraries. For example, the PDFParser class uses the

Table 5.2 Potential problems that can be encountered during the parse() method. Outside of SAX

parsing errors and I/O errors, Tika wraps the remaining parsing exceptions in its own custom

TikaException class.

Error type Description

IOException Failure to read the input document—The parser reads the given InputStream
in order to parse the document, but sometimes the stream fails with an excep-

tion, for example, if the underlying file, network resource, or other data source

becomes unavailable. In such cases the parsing process is terminated and the

exception gets thrown all the way up to the client application.

SAXException Failure to process the XHTML SAX events—The extracted text is sent as XHTML

SAX events to the given ContentHandler instance, which may sometimes

have trouble processing the events. For example, a full-text indexer might need

to throw an exception if the extracted text can’t be written to the underlying

search index. Like the IOExceptions discussed above, exceptions thrown by

the content handler will terminate the parsing process and be delivered directly

to the client application.

TikaException Failure to parse the document format—The previous two kinds of exceptions

indicate problems that come from outside the parsing process, either from

reading the input document or from writing the extracted text content. What if

the parser itself encounters an error, for example, when it fails to interpret the

format of the given document? That’s when a TikaException gets thrown.

«interface»
Parser

PDFParser

OfficeParser

TXTParser

HtmlParser

XMLParser

JpegParser

Mp3Parser

CompositeParser

AutoDetectParser

PackageParser

org.apache.tika.parser

org.apache.tika.parser.*

Figure 5.3 Class diagram that summarizes some of the most prominent

implementations of the Parser interface. The generic classes in the

org.apache.tika.parser package aren’t tied to any specific

document types, unlike the format-specific concrete parser classes

organized in various subpackages.

82 CHAPTER 5 Content extraction

PDFTextStripper class provided by the Apache PDFBox library to support the com-
plex task of extracting text content from PDF documents.

 The most notable of Tika’s general-purpose parser classes are the Composite-
Parser class and its subclass AutoDetectParser. The CompositeParser class imple-
ments the composite pattern3 and allows a client to use a group of parser instances as a
single parser that supports all the document types supported by any of the component
parsers. Imagine being able to pick and choose which subsets of parsers out of Tika’s
bag you’d like to use for a given text extraction problem, and not needing to repeat-
edly configure and instantiate these parsers over and over again? Pretty useful, huh?

 The AutoDetectParser subclass adds automatic type detection functionality,
described in chapter 4, and uses it to automatically dispatch incoming documents to
the appropriate component parsers using the composite methodology.

5.2.4 Parser selection

We’ve learned that there are multiple parser implementations in Tika, one for each
document format and then some. How does Tika know which parser implementation
to use for parsing a given document? That’s what we’ll find out in this section.

 The simplest way to select a parser for a specific document format is to directly
instantiate the corresponding parser class. For example, if you already know that
you’re processing an HTML document, then you can use the HtmlParser class directly
like in the following example:

Parser parser = new HtmlParser();

parser.parse(stream, handler, metadata, context);

What if you need to support more than a single document format? Instead of using
custom if or case statements to switch between different parser instances, you can
use the CompositeParser class to automatically select a configured parser instance
that matches the media type given as a part of the input metadata. The following
example sets up a composite parser that supports both HTML and XML documents
and that tries to parse any other input documents as plain text. The composite parser
is then used to parse an HTML document:

Map<MediaType, Parser> parsersByType = new HashMap<MediaType, Parser>();

parsersByType.put(MediaType.parse("text/html"), new HtmlParser());
parsersByType.put(MediaType.parse("application/xml"), new XMLParser());

CompositeParser parser = new CompositeParser();

parser.setParsers(parsersByType);
parser.setFallback(new TXTParser());

Metadata metadata = new Metadata();

metadata.set(Metadata.CONTENT_TYPE, "text/html");
parser.parse(stream, handler, metadata, context);

3 The composite design pattern is one of the most widely used patterns in object-oriented programming. It
allows a client to treat a group of objects as a single instance, accessed using the same interface as any of the
component objects.

83The Parser interface

An extra benefit of using the CompositeParser class is that you can use the setMedia-
TypeRegistry() method to associate one of the media type registries discussed in
chapter 4 with the composite parser. The parser will then automatically use the type
inheritance rules encoded in the type registry to find the best match for a given input
document type. For example, if the preceding code was given an XHTML document of
type application/xhtml+xml, an associated type registry would automatically map
that to text/html and cause the correct component parser to be selected.

 Often the type of the input document isn’t known in advance, so we need to use
Tika’s type detection capabilities described in the previous chapter. The easy way to do
so is to use the AutoDetectParser class that extends the CompositeParser class with
automatic type detection and other nice features. You can use AutoDetectParser as
we just did by explicitly specifying the component parsers, but an easier way is to let it
automatically look up and use all the available parser classes:

Parser parser = new AutoDetectParser();

parser.parse(stream, handler, metadata, context);

The preceding is just like our original example with the HtmlParser, but now we have
a parser that automatically detects and supports all the document types known by
Tika. How does this happen? The AutoDetectParser constructor first loads the
default media type configuration included in Tika and then proceeds to look up all
the available detector and parser implementations using Java’s service provider mecha-
nism. Type detectors are used to automatically identify the media type of the input
document. Finally the appropriate parser for the detected media type is selected and
used based on the type information returned by the component parsers’ get-
SupportedTypes() method.

SERVICE PROVIDERS IN JAVA A service in Java is a defined set of interfaces or
classes, like the Parser interface and related classes in Tika. A service provider is
a specific implementation of a service. For example, the XMLParser class is
one provider of the Parser service.

A particular service’s available providers are configured in a provider con-
figuration file located in the META-INF/services directory within a JAR
archive. The provider configuration file for Parser services is called
org.apache.tika.parser.Parser. This file lists the fully qualified class names of
the service provider classes, and these classes get instantiated using the
default constructor when the providers of the service are being looked up.
In chapter 11 we’ll look at how to use this mechanism to extend Tika with
custom parser implementations.

Now we know what Tika’s parsers look like and how they can be used separately or in
combination. In the next sections we’ll extend this knowledge by covering parser
inputs, outputs, and internals in more detail.

84 CHAPTER 5 Content extraction

5.3 Document input stream

At the core of Tika’s Parser interface is the methodology by which Tika receives the
input document: Java’s java.io.InputStream. Standardizing on this class allows Tika
to support streaming parsing for efficiency and for scalability.

 This design decision also has some implications on how to feed Tika input docu-
ments from external sources, as well as how to best leverage the streaming interface
for dealing with compression, and for dealing with parsing libraries that require the
entire stream source for text extraction.

 We’ll discuss all of these challenges and how Tika’s use of the Java InputStream
class, as well as its own derivative input stream called TikaInputStream, help you over-
come these difficulties with ease.

5.3.1 Standardizing input to Tika

The java.io.InputStream class is Java’s lowest common denominator for reading any
kind of raw byte streams. It defines a uniform API for reading digital documents
regardless of their size or location, which is why the Parser interface uses an Input-
Stream for reading the document to be parsed.

 The following example shows how to pass a java.io.FileInputStream to a parser
for parsing a document that’s stored as a file in the local file system. Note how, as men-
tioned in the previous section, the responsibility to close the stream remains in the
context where the stream was created:

InputStream stream = new FileInputStream(new File(filename));
try {

parser.parse(stream, handler, metadata, context);

} finally {
stream.close();

}

RESOURCE MANAGEMENT DONE RIGHT It’s surprising how few APIs define
proper resource management policies. Streams and other similar objects are
often tied to costly system resources, and it’s important that they be closed as
soon as they’re no longer needed. The best way to achieve such proper
resource management is to make the creator of a resource also responsible
for closing it, which is why the parse() method in Tika will explicitly not close
the stream it’s been given. Instead, the caller of the parse() method should
use a try-finally block like in our example to guarantee that the stream is
properly closed even if the parsing process fails with an exception.

The same mechanism can be used to parse documents that are stored in databases,
accessed over the network, buffered in memory, or come from another source. Using
an InputStream makes it also easy to apply decompression, decryption, or other filters
before the parsing process. The following example shows how to parse a gzip-
compressed network resource addressed with a URL:

InputStream stream =
new GZIPInputStream(new URL(address).openStream());

85Document input stream

try {
parser.parse(stream, handler, metadata, context);

} finally {

stream.close();
}

COMPRESSION NEVER STOPPED US BEFORE Tika’s built-in parsers for gzip and
other common compression algorithms will automatically decompress the
stream before recursively parsing the underlying document. Thus the text
content extracted by Tika will be the same even if the client application
doesn’t apply a decompression filter like in our example. But the returned
document metadata would refer users to the compressed stream, and, for
example, the returned media type metadata would be application/x-gzip
instead of the type of the underlying document. More about that later.

The InputStream class is a great least common denominator, but unfortunately it
doesn’t support random access reads, which are important for efficient processing of
some file formats. For example, the OLE format used by older versions of Microsoft
Office is designed for random access, and files such as Zip archives and PDF docu-
ments come with suffix sections at the end of the document stream that may affect the
processing of earlier parts of the document.

 One way to better support such formats would be to automatically spool the docu-
ment input stream into a temporary file, but that would be highly inefficient if the
document already exists on the local file system or is kept entirely in a memory buffer.
Another approach would be to overload parse() with alternative ways to pass in the
input document, but that would complicate the Parser interface and make it more
difficult to use stream filters like in our decompression example. Is there a way to
combine the benefits while avoiding the drawbacks of these different approaches? Yes,
and it’s called TikaInputStream.

5.3.2 The TikaInputStream class

The org.apache.tika.io.TikaInputStream class solves this problem by extending
the InputStream class with methods for accessing the underlying file or other
resource when it’s available. The following example uses the TikaInputStream class to
pass a local file to a parser:

InputStream stream = TikaInputStream.get(new File(filename));

try {

parser.parse(stream, handler, metadata, context);
} finally {

stream.close();

}

Here we’re using the same parse() method as in the earlier examples, and a parser
implementation that only needs normal InputStream functionality would behave as it
did before. But a parser that needs access to the underlying file can do so using the
extra methods provided by TikaInputStream:

86 CHAPTER 5 Content extraction

TikaInputStream tikaInputStream = TikaInputStream.get(stream);
File file = tikaInputStream.getFile();

What if the parse() method is called with a normal InputStream? No problem, as the
TikaInputStream.get() method will automatically wrap the given stream into a
TikaInputStream instance that will spool the stream into a temporary file when the
getFile() method is invoked. getFile() should be called before the stream has been
processed; otherwise the method throws a java.io.IOException.

 The extra functionality offered by TikaInputStream is summarized in the class dia-
gram in figure 5.4. For example, the hasFile() method can be used to check whether
the stream already has an underlying file that can be accessed directly. This is useful,
for example, when parsing Zip archives, where direct access to the package index at
the end of the file enables more accurate parsing results, but where the benefit isn’t
worth the extra cost of spooling the stream into a temporary file if the stream’s not
already backed by a file.

 The static get() method, which is used to get or create TikaInputStream
instances, is overloaded to allow multiple different document sources, ranging from
byte arrays to network resources and database blobs. These factory methods also take
an optional Metadata argument that’s then filled with all available input metadata,
including things such as the filename and length as well as any media type hint that’s
available when requesting resources from network servers.

 As an extra benefit the TikaInputStream also includes efficient buffering and
guarantees support for the mark() feature that’s used by type detectors and many
parser implementations. The Tika facade will automatically use the TikaInputStream
wherever needed, and doing so is often a good idea, though not strictly necessary
when you’re dealing directly with the Parser interface.

THE MARK() FEATURE This optional feature of the InputStream class allows a
reader to mark() the current position of the stream and later reset() the
stream to that earlier position. This is highly useful, for example, for parsers
that need to look a few bytes ahead in the stream in order to decide how to
proceed with the parsing process. Unfortunately many stream implementa-
tions that claim to support this feature fail to do so properly, especially
around the end of the stream. Using TikaInputStream guarantees proper
mark() support even in such corner cases.

java.io.InputStream

TikaInputStream

hasFile(): boolean
getFile(): File
hasLength(): boolean
getLength(): long

org.apache.tika.io

Static factory methods:

TikaInputStream.
 get(InputStream)
 get(byte[], Metadata?)
 get(File, Metadata?)
 get(URI, Metadata?)
 get(URL, Metadata?)
 get(Blob, Metadata?)

creates

Figure 5.4 Class diagram that shows

the extra functionality provided by the

TikaInputStream class

87Structured XHTML output

That’s pretty much all there is to say about passing documents to a parser. In the next
section we’ll look at what happens at the other end of the parsing process, where the
extracted text content of the document is written back to the client application.

5.4 Structured XHTML output

The structured text content extracted by a parser is written out to the client applica-
tion as a semantic XHTML document through a series of SAX events. That’s a lot of
advanced technology for something that could be covered by a simple character
stream like the Reader returned by the Tika facade. To understand why Tika opts for
the more complex solution, we need some background on how textual content is nor-
mally structured and why knowing that structure is useful to a computer program.

5.4.1 Semantic structure of text

Text is more than just a stream of characters. Starting with basic constructs like words
and sentences, text is usually organized in increasingly large structures such as para-
graphs, sections, chapters, and so on. Some pieces of text within such structures can
serve special roles such as headings or captions. It’s also possible for an author to spe-
cifically emphasize certain terms or phrases, for example, using italics or underlining.
Finally, embedded links are an integral part of hypertext documents. The semantic
structure of text is shown in figure 5.5.

 These typographical constructs are used to organize and add meaning to written
text, and are thus a part of the semantic structure of text. Document processing software
and document formats typically include some of this structural information either
directly (for example, by marking paragraph boundaries) or indirectly by including
formatting information that a human reader or a sufficiently sophisticated program
can use to deduce the structure. Having access to such information allows client appli-
cations to identify keywords, boost scoring of certain parts of the extracted text in a
search index, follow hyperlinks to other related documents, and so on.

 Deeper semantic details like the grammar of sentences, the meaning of words, or
the overall style and composition of the document are still mostly beyond the capabil-
ities of normal computer programs, so such information is only included implicitly in
the text itself (see figure 5.6). The state of programmatic natural language processing
tools like those provided by the Apache OpenNLP project4 has been improving

4 http://incubator.apache.org/opennlp/

Hyperlink
In computing, a hyperlink (or link)
is a reference to a document that
the reader can directly follow, or
that is followed automatically.

p g,

heading

p
a
ra

g
ra

p
h

hyperlink

emphasis Figure 5.5 Structural breakdown of the beginning of the

Wikipedia article on hyperlinks. In addition to the obvious

heading, the authors of the text have used hyperlinks and

different forms of emphasis to highlight key concepts in the

opening paragraphs. These words—computing, hyperlink, link,

reference, document—could well be treated as keywords of

the document.

http://incubator.apache.org/opennlp/

88 CHAPTER 5 Content extraction

steadily over the last years and
decades, which makes this level of
information more readily available
to computer programs. A good
introduction to these topics is
Taming Text (Ingersoll and Mor-
ton, Manning, publication pro-
jected for 2012).

 Instead of trying to do such
deep analysis of the document
text, Tika strives to propagate the
structural information encoded in the file format of the document. For example, the
parser for Microsoft Excel spreadsheets produces normalized tables based on the
worksheet structure of an Excel document. The design goal is to preserve all relevant
structural information from the original document. If needed, more advanced seman-
tic analysis tools (such as Apache UIMA) can then be used to post-process the output
from Tika.

5.4.2 Structured output via SAX events

How should structural information be included in a Tika parser’s output? The plain
character stream returned by the Tika facade doesn’t offer a place for such informa-
tion, so a more complex output mechanism is needed. This is why the Parser inter-
face uses a SAX content handler for the output.

SAX, or the Simple API for XML, is an event-based API for processing XML docu-
ments. SAX events that mark the opening or closing of XML elements, or the output-
ting of character data in between, are delivered as callbacks to the org.xml.sax
.ContentHandler interface. This allows a parser implementation to easily annotate
the extracted text with structural information. The callback mechanism avoids the
need to build the entire XML document in memory or to serialize it into a byte stream
that would then again be parsed to understand the contents. It also makes it easy for
clients that are only interested in the extracted text stream to ignore the XML annota-
tions by listening for only the character events.

PUSH AND PULL APIS SAX is a push API where the producer of content, in this
case the parser instance, controls the flow of execution and uses callback
methods to “push” out SAX events that carry information to the given event
handler.

This is different from the pull mechanism used, for example, by the Reader
API as seen earlier with the Tika facade. Here the consumer of content, in
our case the client application, controls the flow of execution and uses the
read() method to “pull” characters from the reader instance.

Most of the parser libraries used by Tika expect to be in control of the pars-
ing process, so a push API like SAX is the best fit for the Parser interface. The

a hyperlink is a reference to a document
verb

noun (subject) noun (object)

prepositional phrase

Figure 5.6 Grammatical breakdown of a simple sentence.

Some computer programs and libraries can perform this

kind of analysis of text, at times even more accurately

than an average human, but the value of such analysis is

limited without extensive knowledge about the meaning of

words and their relationships. For now Tika doesn’t

attempt to parse such grammatical structures.

89Structured XHTML output

org.apache.tika.parser.ParsingReader class used by the Tika facade starts
a background thread and an internal pipe to translate between these differ-
ent API styles.

SAX is a perfect match for Tika’s output needs, but as a generic XML API it doesn’t
specify any particular vocabulary that clients could use to understand the outputted
XML elements. For example, a client that wants to extract all hyperlinks from a docu-
ment needs to know which XML elements and attributes are used for the link annota-
tions. Tika solves this problem by requiring all parsers to output strict XHTML
markup. In addition, this information could also be codified as document metadata
and extracted separately during the metadata processing step. We’ll cover this in more
detail in chapter 6.

5.4.3 Marking up structure with XHTML

The Extensible Hypertext Markup Language (XHTML, application/xhtml+xml) is a
reformulation of the HTML standard using rigid XML instead of a more relaxed syn-
tax. It supports familiar HTML markup elements and is easy to use with XML process-
ing tools and APIs like SAX. To illustrate XHTML in action, the following shows how
our earlier snippet from Wikipedia would appear in XHTML markup after processing
by Tika’s HTML parser:

<h1>Hyperlink</h1>
<p>In computing, a hyperlink
(or link) is a reference to a
document that the reader can directly follow,
or that is followed automatically.</p>

MORE XHTML OUTPUT EXAMPLES The Structured Text tab of the Tika GUI
mentioned in chapter 2 is a good tool for reviewing Tika’s XHTML output for
different kinds of documents.

A ContentHandler instance passed as an argument to a parse() method call would
see the preceding XHTML snippet as the following sequence of SAX events:

1 Start element h1
2 Output characters “Hyperlink”
3 End element h1
4 Start element p
5 Output characters “In”
6 Start element a with an href attribute
7 Output characters “computing”
8 End element a
9 Output characters “, a”

10 Start element strong
11 Output characters “hyperlink”
12 End element strong

90 CHAPTER 5 Content extraction

13 Output characters “(or”
14 Start element em
15 Output characters “link”
16 End element em
17 Output characters “) is a ”
18 Start element a with an href attribute
19 Output characters “reference”
20 End element a
21 Output characters “to a”
22 Start element a with an href attribute
23 Output characters “document”
24 End element a
25 Output characters “that the reader can ...”
26 End element p

That’s a lot of tedious low-level processing, so Tika also provides utility classes in the
org.apache.tika.sax package to make handling of SAX events easier. The most use-
ful of these utilities are listed in table 5.3.

The following example illustrates how these utility classes can be combined to write
the text content of a document to a file while collecting any links for use in locating
any referenced documents:

LinkContentHandler linkCollector = new LinkContentHandler();
OutputStream output = new FileOutputStream(new File(filename));

Table 5.3 Tika’s SAX helper utility classes. These helper classes allow easy extensibility and

customization of the output from Tika’s text extraction functionality.

Class Description

BodyContentHandler The BodyContentHandler class picks the <body> part of the XHTML

output and redirects it to another ContentHandler instance, writes the

text content of the body to a java.io.Writer or java.io

.OutputStream instance, or buffers the text in memory to be returned

as a single string.

LinkContentHandler The LinkContentHandler class detects all ele-

ments in the XHTML output and collects these hyperlinks for use by tools

such as web crawlers. Tika does its best to output fully resolved absolute

URIs even if the document uses local URI references. This way you don’t

need to worry about tracking base URIs or correctly applying the some-

times complex URI resolution rules.

TeeContentHandler The TeeContentHandler class delivers incoming SAX events to a col-

lection of other event handlers, and can thus be used to easily process

the parser output with multiple tools in parallel. Chapter 7 shows an

excellent use case for this functionality.

91Context-sensitive parsing

try {
ContentHandler handler = new TeeContentHandler(

new BodyContentHandler(output), linkCollector);

parser.parse(stream, handler, metadata, context);
} finally {

output.close();

}

You can mix and match such output processors as much as you like. Alternatively you
could choose to use Java’s TransformerHandler5 class to serialize the XHTML output
to be stored or transferred over the network as a byte stream. The serialized XHTML
can later be parsed to run post-processing actions like the one shown here.

 Now you know how Tika outputs the text content it has extracted and how you can
process that output in your applications. Before wrapping up this chapter we’ll look
briefly at how you can use context to customize the parsing process and its output.

5.5 Context-sensitive parsing

The parser classes in Tika are mostly self-contained and need little external informa-
tion apart from the actual document to be parsed and related input metadata. But
there are a few cases where it’s useful to be able to pass extra context information to a
parser. This section summarizes the most important of such cases.

 Context information is passed in the ParseContext argument to the parse()
method, and parser implementations can use this information to customize the pars-
ing process. A ParseContext instance is a simple container object that maps interface
declarations to objects that implement those interfaces.

5.5.1 Environment settings

The simplest category of usable context information is various environmental settings
such as the client application’s locale or a specific XML library that should be used for
parsing XML data.

 Locale information specifies the way things such as numbers and dates should be
represented in text. Some documents like Microsoft Excel spreadsheets contain such
binary data that needs to be rendered to text when outputted by Tika. Since the
spreadsheet documents usually don’t specify the exact formatting or the output locale
for such data, the parser needs to decide which locale to use. Using a hardcoded
locale or the default locale of the Java runtime environment may not always be the
correct solution, so a parser can allow the client application to explicitly specify which
locale to use. The following shows how this is done:

ParseContext context = new ParseContext();
context.set(Locale.class, Locale.ENGLISH);

parser.parse(stream, handler, metadata, context);

5 You can use the javax.xml.transform.sax.SAXTransformerFactory class to create SAX event han-
dlers that transform SAX events to a DOM tree or serialize them to a byte stream.

92 CHAPTER 5 Content extraction

Java supports multiple different XML parser libraries, but specifying which library and
settings to use can be complicated. To address this problem, Tika allows a client appli-
cation to explicitly specify which library should be used for parsing XML data both in
entire XML documents and in XML snippets included as components of other
document formats. To do this, a client application needs to pass a javax.xml.parsers
.SAXParserFactory or a specific javax.xml.parsers.SAXParser instance through
the parsing context.

5.5.2 Custom document handling

The environmental settings just described cause only minor modifications to a
parser’s functionality. Sometimes a client application needs more direct control over
the parsing process to implement custom processing of specific kinds of documents.
This can be achieved by passing custom handler objects through the parsing context.

 The most notable of such handler interfaces is HtmlMapper, used by the Html-
Parser class. The HTML parser first transforms the incoming HTML document to well-
formed XHTML and then maps the included elements to a “safe” subset. The default
mapping drops things such as <style> and <script> elements that don’t affect the
text content of the HTML page and applies other normalization rules. This default
mapping produces good results in most use cases, but sometimes a client wants more
direct access to the original HTML markup. The IdentityHtmlMapper class can be
used to achieve this:

ParseContext context = new ParseContext();

context.set(HtmlMapper.class, new IdentityHtmlMapper());

parser.parse(stream, handler, metadata, context);

Another common case where custom processing is needed is handling of composite
documents like Zip archives. When encountering such documents that contain other
documents as components or embedded attachments, Tika will by default attempt to
parse such component documents using a parser provided in the parsing context.
The extracted text of the component document is then included in the output of the
containing document.

 Sometimes you’d rather process the component documents completely separately,
for example, by adding all the entries in a Zip archive as separate entries of a full-text
index. Such use cases can be implemented by passing a custom parser instance
through the parsing context, as shown here:

ParseContext context = new ParseContext();

context.set(Parser.class, new ParserDecorator(parser) {

@Override
public void parse(

InputStream stream, ContentHandler handler,

Metadata metadata, ParseContext context)
throws IOException, SAXException, TikaException {

// custom processing of the component document

}
});

parser.parse(stream, handler, metadata, context);

93Summary

More information on the available customization options can be found in chapter 8
where we’ll explore common document formats and the related parser classes in
more detail.

5.6 Summary

This was a big chapter with lots of material, so let’s take a moment to review what
we’ve learned before moving on. We started with simple full-text extraction and index-
ing examples based on the Tika facade and the Lucene search library. Equipped with
that background, we went on a tour through the Parser interface, its implementa-
tions, and the ways they can be used separately or in various combinations.

 In the second half of this chapter we extended our coverage of the Parser inter-
face to its inputs and outputs and the various utility classes Tika provides to support
the parsing process. Finally, we looked at how context information can be used to cus-
tomize the internal workings of Tika’s parsers.

 You should now have a good idea of the overall design and functionality of the
content extraction features in Tika. To complete this picture we’ll look at metadata
extraction in the next chapter.

94

Understanding metadata

Conquering your fears of extracting text from files in a few lines of Java code has
hopefully put Tika on your personal must-have list. The ease and simplicity with
which Tika can turn an afternoon’s parsing work into a smorgasbord of content
handler plugins and event-based text processing is likely fresh on your mind. If not,
head back to chapter 5 and relive the memories.

 Looking ahead, sometimes before you’ve even obtained the textual content
within the files you’re interested in, you may be able to weed out which files you’re
not interested in, based on a few simple criteria, and save yourself a bunch of time
(and processing power).

 Take, for example, the use case presented in figure 6.1.
 Figure 6.1 shows a user’s perspective on a search engine. Much of the time is

spent inspecting links—a critical step in the search engine process is deciding which
links to follow (and which not to follow). Considering that some web pages may be
larger than others, and unduly waste precious time and resources, a user’s goal is to

This chapter covers

 Metadata models and standards

 Metadata quality

 Capturing metadata with Tika

95

leverage the few pieces of metadata, or data about data, available in the web page’s title,
description, and so on, to determine whether the web page is worth visiting.

 In this scenario, a user is searching for web pages about a new book on software
technology written by a pair of good-looking gentlemen. The user is interested in pur-
chasing the book and is ultimately searching for the first link returned from the
Google search, but wants to consider at least a few other relevant web pages that may
also yield the desired outcome. How should the user go about using the web pages
returned from their query?

 The user (often unconsciously) examines the few snippets of information available
for each result in the list. These snippets of information include the web page’s title,
description, and URL. Whether they realize it or not, they’re using metadata to make
their decision. Clicking can be expensive, as sometimes web pages are large, and con-
tain large numbers of scripts or media files that must be fetched by the browser upon
requesting the web page.

 This scenario illustrates the power of metadata as an effective summary of the
information stored in web pages. But metadata isn’t limited to a few simple fields—it
can be much richer, and include date/time ranges, value ranges for particular data
values, spatial locations, and a host of other properties.

HTML
HTML

HTML HTML

The World Wide Web (aka the "data")

Title: Tika in Action
Description: Jun 12, 2010...Hi Folks
, just wanted to give you an...
Link: mail-archives.apache.org/../ti..

describes

describes

T

 www

Title: Manning: ika in Action
Description: Tika in Action
is a hands-on guide...
Link: .manning.com/mattmann/

Figure 6.1 The search engine process and metadata. Metadata about a page, including its title, a short

description, and its link are used to determine whether to “click” the link and obtain the content.

96 CHAPTER 6 Understanding metadata

 Consider a set of PDF research paper files stored on a local hard disk. As a devel-
oper, you may be writing a program whose goal is to process papers written by a partic-
ular author (or set of authors), and to only consider those papers produced by a
particular version of the PDF generation software. Since some of the files may be quite
large, and contain fancy diagrams, tables, and figures, you may be interested in a
quick means of deciding whether or not the PDF files are of interest to your program.

 Metadata comes to the rescue again in this scenario, as often PDF files contain
explicit document metadata that rapidly (without reaching into the file and extracting
its textual content which may not even ultimately answer your question) exposes fields
such as Author and PDFVersion, and that allows you to engage in the weeding out pro-
cess quickly and with low memory footprint.

 So, how does Tika help you deal with metadata? We’ll spend the rest of this chap-
ter answering that question in great detail. We’ll first focus on exploring the existing
metadata standards, and how Tika leverages these standards to provide a common
vocabulary and representation of metadata across file formats. As the old saying goes,
“The best thing about standards is that there are so many to choose from,” but no
need to worry—we’ll point out which standards are more generic, and which are spe-
cific to concrete types of files.

 Either way, you’ll want to keep Tika close by, as it’ll allow you to easily leverage all
kinds of metadata standards, and to convert between them using metadata transfor-
mations. Capturing and exposing metadata from documents would be of little use
without some quality control, so we’ll explain how Tika helps you in that regard.
Throughout the chapter, we’ll build on top of the LuceneIndexer from chapter 5,
focusing on making it metadata-aware.

 To begin, let’s discuss a few of the existing metadata standards to give you a feel for
what types of metadata fields and relationships are available to you as a software devel-
oper, and more importantly, as a Tika user.

6.1 The standards of metadata

So metadata is useful summary information, usually generated along with the docu-
ment itself, that allows you to make informed decisions without having to reach into
the document and extract its text, which can be expensive. What are some of the types
of things that you can do with metadata? And are there any existing metadata guide-
lines or specifications that you can leverage to help figure this out?

 As it turns out, the answer to both questions is, yes! This section will teach you about
the two canonical types of metadata standards as well as different uses of standards,
including data quality assessment and validation, as well as metadata unification.

6.1.1 Metadata models

Though PDF file and HTML page properties are useful for making decisions such as
Do I want to read this research paper? or Is this the web page I was looking for?, the property
names themselves don’t tell you everything you need to know in order to make use of

97The standards of metadata

them. For example, is PDFVersion an integer or an alphanumeric? This would be use-
ful to know because it would allow you to compare different PDFVersion attributes.
What about Author? Is it multivalued, meaning that a paper can have multiple
authors, or is it only single-valued?

 To answer these questions, we usually turn to metadata standards or metadata mod-

els. Standards describe all sorts of information about metadata such as cardinality
(of fields), relationships between fields, valid values and ranges, and field defini-
tions, to name a few. Some representative properties of metadata standards are
given in table 6.1.

The International Standards Organization (ISO) has published a reference standard for
the description of metadata elements as part of metadata models, numbered ISO-
11179. Found at http://metadata-stds.org/11179/, ISO-11179 prescribes a generally
accepted mechanism for defining metadata models.

 Multitudes of metadata models are out there, and they can be loosely classified as
either general models or content-specific models, as depicted in figure 6.2.

 Tika supports both general and content-specific metadata standards.

GENERAL METADATA STANDARDS

General metadata standards are applicable to all known file types. The attributes, rela-
tionships, valid values, and definitions of these models focus on the properties that all

Table 6.1 Relevant components of a metadata standard (or metadata model). Metadata standards

help to differentiate between metadata fields, allow for their comparison and validation, and ultimately

clearly describe the use of metadata fields in software.

Property Definition

Name The name of the metadata field, such as Author or Title. The name is useful for

humans to discern the meaning of the property, but doesn’t help a software pro-

gram to disambiguate metadata properties.

Definition The definition of the metadata property, typically in human consumable form. If the

metadata property were Target Name and the domain of discourse were planetary

science, a definition might be, “The celestial body that the mission and its instru-

ments are observing.”

Valid values The allowed or valid values for a particular metadata property. Valid values may

identify a particular numerical range, for example, between 1 and 100. Valid values

may also identify a controlled-value set of allowed values; for example, if the meta-

data property were CalendarMonth, a three-character representation of the 12 cal-

endar months in a year, we may have a valid value set of {Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}.

Relationships Indicates that this property may have a relationship with another property, such as

requiring its presence. For example, if the Latitude field is present, so should

the Longitude field.

Cardinality Prescribes whether the metadata property is multivalued, for example, metadata

describing a file’s set of MimeType names.

http://metadata-stds.org/11179/

98 CHAPTER 6 Understanding metadata

electronic documents share (title, author, format, and so forth). Some examples of
these models include ISO-11179 and Dublin Core, http://dublincore.org/. ISO-11179
defines the important facets of metadata attributes that are part of a metadata model.
Dublin Core is a general metadata model consisting of less than 20 attributes (Cre-
ator, Publisher, Format) which are said to describe any electronic resource. Finally, the
Extensible Metadata Platform (XMP: see http://www.adobe.com/products/xmp/) is
a generic standard that provides a unified way for storing and transmitting metadata
information based on various different metadata schemas such as Dublin Core or the
more content-specific ones described next.

CONTENT-SPECIFIC METADATA STANDARDS

Content-specific metadata standards are defined according to the important relation-
ships and attributes associated with specific file types and aren’t exclusively generic. For
example, attributes, values, and relationships associated with Word documents such as
the number of words or number of tables aren’t likely to be relevant to other file
types, such as images. Other examples of content-specific metadata standards are Fed-
eral Geographic Data Committee (FGDC), a model for describing spatial data files,
and the XMP dynamic media schema (xmpDM), a metadata model for digital media
such as images, audio, and videos.

 You can get a list of which standard metadata models your version of Tika supports
via the --list-met-models option we saw in chapter 2:

java -jar tika-app-1.0.jar --list-met-models

The full output is a long list of supported metadata, so instead of going through it all,
let’s focus on a few good examples of both generic and content-specific metadata
models. In appendix B you’ll find a full description of all the metadata models and
keys supported by Tika.

ISO-11179

Dublin
Core

MSOffice

XMP

FGDC

Metadata models

General Content-specific

Figure 6.2 Classes of metadata models. Some are general, such as ISO-11179

and Dublin Core. Others are content-specific: they’re unique to a particular file

type, and only contain metadata elements and descriptions which are relevant

to the content type.

http://dublincore.org/
http://www.adobe.com/products/xmp/

99The standards of metadata

6.1.2 General metadata standards

Most electronic files available via the internet have a common set of metadata proper-
ties, the conglomerate of which are part of what we call general metadata models or gen-

eral standards for metadata. General models describe electronic resources at a high
level as in who authored the content, what format(s) the content represented is in,
and the like.

 To illustrate, let’s look at some of the properties of the Dublin Core metadata
model as supported by Tika. Recall the command we showed in the previous section.
By using a simple grep command, we can augment the --list-met-models output to
isolate only the Dublin Core part:

java -jar tika-app-1.0.jar --list-met-models | grep -A16 DublinCore

This produces the following output:

DublinCore

CONTRIBUTOR

COVERAGE

CREATOR
DATE

DESCRIPTION

FORMAT
IDENTIFIER

LANGUAGE

MODIFIED
PUBLISHER

RELATION

RIGHTS
SOURCE

SUBJECT

TITLE
TYPE

Looking at these attributes, it’s clear that most or all of them are representative of all

electronic documents. Think back to table 6.1. What would the valid values be for
something like the FORMAT attribute? Most of the time the metadata field is filled with
a valid MIME media type as we discussed in chapter 4. What would the cardinality be
for something like the AUTHOR attribute? A document may be authored by multiple
people, so the cardinality is one or more values.

 We’ll cover ways that Tika can help you codify the information from table 6.1 on a
per-property basis later in section 6.1.4. For now, let’s focus in on content-specific
metadata models.

6.1.3 Content-specific metadata standards

Generic metadata standards and models are great because they address two funda-
mentally important facets of capturing and using metadata:

 Filling in at least some value per field—Content-specific metadata standards pro-
vide at least some value for each field (for example, for a PDF file the values for

100 CHAPTER 6 Understanding metadata

FORMAT and TITLE might be application/pdf and mypdffile.pdf, respec-
tively), reducing the generic nature of the metadata.

 Being easily comparable—Mainly due to having some default value, the actual
attributes themselves are so general that they’re more likely to mean the same
thing (it’s clear what TITLE is referring to in a document).

On the other hand, content-specific metadata standards and models are less likely to
fulfill either of these properties. First, they aren’t guaranteed to fill in any values of
any of their particular fields. Take MS Office files and their field, COMPANY, derived
from the same grep trickery we showed earlier:

java -jar target/tika-app-1.0.jar --list-met-models | grep -A28 MSOffice

MSOffice

APPLICATION_NAME

APPLICATION_VERSION
AUTHOR

CATEGORY

CHARACTER_COUNT

CHARACTER_COUNT_WITH_SPACES
COMMENTS

COMPANY

CONTENT_STATUS
CREATION_DATE

EDIT_TIME

KEYWORDS
LAST_AUTHOR

LAST_PRINTED

LAST_SAVED
LINE_COUNT

MANAGER

NOTES
PAGE_COUNT

PARAGRAPH_COUNT

PRESENTATION_FORMAT
REVISION_NUMBER

SECURITY

SLIDE_COUNT
TEMPLATE

TOTAL_TIME

VERSION
WORD_COUNT

COMPANY will only be filled out if the user entered a company name when installing MS
Office on the computer that created the file. So, if you didn’t fill out the Company
field when registering MS Office, and you begin sharing MS Word files with your other
software colleagues, they won’t be able to use Tika to see what company you work for.
(For privacy-minded people, this is a good thing!)

 As for being easily comparable, this is another area where content-specific meta-
data models don’t provide a silver bullet. The LAST_MODIFIED field in the Http-
Headers metadata model doesn’t correspond directly to the MODIFIED field in the

101Metadata quality

DublinCore model, nor does it correspond to the LAST_SAVED field from the MSOffice
metadata model. So, content-specific metadata model attributes aren’t easily compara-
ble across metadata models.

 Most document formats in existence today have a content- or file-specific metadata
model associated with them (even in the presence of a general model, like Dublin
Core). In addition to common models such as XMP, there are a slew of MS Office
metadata formats, various models for science files such as Climate Forecast for climate
sciences and FITS for astrophysics. A bunch of formats are out there, and their specif-
ics are outside the scope of this book. The good news is this: Tika already supports a
great number of existing content-specific metadata models, and if it doesn’t support
the one you need, it’s extensible so you can add your own. We’ll show you how
throughout the rest of the chapter.

 Let’s not get too far ahead of ourselves though. First we’ll tell you a bit about meta-
data quality, and how it influences all sorts of things like comparing metadata, under-
standing it, and validating it.

6.2 Metadata quality

Metadata is like the elephant in the room that no one wants to be the first to identify:
how did it get there? What’s it going to do? What can we do with it?

 Metadata comes from a lot of different actors in the information ecosystem. In
some cases, it’s created when you save files in your favorite program. In other cases,
other software that touches the files and delivers them to you over the internet anno-
tates the file with metadata. Sometimes, your computer OS will create metadata for
your file.

 With so many hands touching a file’s metadata, it’s likely that the quality and abun-
dance of the metadata captured about your files will be of varying quality. This can
lead to problems when trying to leverage the metadata captured about a file, for
example, for validation, or for making decisions about what to do with the file.

 In this section, we’ll walk you through the challenges of metadata quality and then
see how Tika comes to the rescue, helping you more easily compare and contrast the
collected metadata about your files. Onward!

6.2.1 Challenges/Problems

The biggest thing we’ve glossed over until now is how metadata gets populated. In
many cases, the application that generates a particular file is responsible for annotat-
ing a file with metadata. An alternative is that the user may explicitly fill out metadata
about the file on their own when authoring it. Many software project management
tools (such as MS Project, or FastTrack on Mac OS X) prompt a user to fill out basic
metadata fields (Title, Duration, Start Project Date, End Project Date, and so on)
when authoring the file.

 Sometimes, downstream software programs author metadata about files. A classic
example is when a web server returns metadata about the file content it’s delivering

102 CHAPTER 6 Understanding metadata

back to a user request. The web server isn’t the originator of the file, but it has the
ability to tell a requesting user things such as file size, content type (or MIME type),
and other useful properties. This is depicted in figure 6.3.

 With all of these actors in the system, it’s no wonder that metadata quality, or the
examination and assessment of captured metadata for file types, is a big concern. In
any of the steps in figure 6.3, the metadata for the file could be changed or simply not
populated, affecting some downstream user of the file or some software that must
make sense of it later.1 What’s more, even if the metadata is populated, it’s often diffi-
cult to compare metadata captured in different files, even if the metadata captured
represents the same terminology. This is often due to each metadata model using its

1 In a way, this is one of the main things that makes metadata extraction, and libraries that do so like Tika, so
darned useful. So maybe we Tika community members should be happy this occurs!

Some

file

Content
creator

AUTHOR: User
PAGE_COUNT: 1
PARAGRAPH_COUNT: 4

Some

file

APACHE

HTTPD

MS Word

User

community

CONTENT_TYPE : application/msword
CONTENT_LENGTH: 2056

Figure 6.3 A content creator (shown in the upper left portion of the figure) may author

some file in Microsoft Word. During that process, Word annotates the file with basic

MSOffice metadata. After the file is created, the content creator may publish the file on

an Apache HTTPD web server, where it will be available for downstream users to acquire.

When a downstream user requests the file from Apache HTTPD, the web server will annotate

the file with other metadata.

103Metadata quality

own terms, potentially its own units for those terms, and ultimately its own definitions
for those terms as well.

 Metadata quality is of prime importance, especially in the case of correlating meta-
data for files of different types, and most often different metadata models. As a writer
of software that must deal with thousands of different file types and metadata models
every day, it’s no easy challenge to tackle metadata correlation. You’re probably get-
ting used to this broken record by now, but here comes Tika to save the day again!

6.2.2 Unifying heterogeneous standards

Lucky for us, Tika’s metadata layer is designed with metadata quality in mind. Tika
provides a Property class based on the XMP standard for capturing metadata attri-
butes. XMP defines a property (called PropertyType in Tika) as some form of metadata
captured about an annotated document. XMP also defines property values that are cap-
tured for each metadata property. In Tika we call XMP property values ValueTypes.
Let’s take a quick look at a snippet of the Tika Property class.

public final class Property {

public static enum PropertyType {

SIMPLE, STRUCTURE, BAG, SEQ, ALT

}

public static enum ValueType {

BOOLEAN, OPEN_CHOICE, CLOSED_CHOICE, DATE, INTEGER, LOCALE,

MIME_TYPE, PROPER_NAME, RATIONAL, REAL, TEXT, URI, URL, XPATH
}

// ...

}

The PropertyType and ValueType enums allow Tika to define a metadata attribute’s
cardinality (is it a SIMPLE value, or a sequence of them—called SEQ for shorthand), its
controlled vocabulary (a CLOSED_CHOICE or simple OPEN_CHOICE), and its units (a
REAL or an INTEGER). Using Tika and its Property class, you can decide whether
LAST_MODIFIED in the HttpHeaders metadata model is roughly equivalent in terms of
units, controlled vocabulary, and cardinality to that of LAST_SAVED in the MSOffice
metadata model.

 These capabilities are useful in comparing metadata properties (recall from
table 6.1 that these are important things to capture for each metadata element), in
validating them, in understanding them, and in dealing with heterogeneous metadata
models and formats. Tika’s goal is to allow you to curate high-quality metadata in your
software application.

 So now that you’re familiar with metadata models, Tika’s support for the different
properties of metadata models, and most of the important challenges behind dealing
with metadata models, it’s time to learn about Tika’s metadata APIs in greater detail.

Listing 6.1 Property class and support for XMP-like metadata

Maps to
XMP property

Maps to XMP
property value

104 CHAPTER 6 Understanding metadata

6.3 Metadata in Tika

In this section, we’ll jump into Tika’s code-level support for managing instances of
metadata—the actual information captured in metadata, informed by the metadata
models. Specifically we’ll explore Tika’s org.apache.tika.metadata package and its
Metadata and Property classes, and their relationships. These classes will become
your friend: transforming metadata and making it viewable by your end users is going
to be something that you’ll have to get used to. Never fear! Tika’s here to help.

 We’ve talked a lot so far about metadata models, but we’ve done little to show what
instances of those models look like. Metadata instances are actual metadata attributes,
prescribed by a model, along with their values that are captured for files. In other
words, instances are the actual metadata captured for each file that you run through
Tika. Let’s get ourselves some metadata to work with in the following listing. When
given a URL, the program will obtain the metadata corresponding to the content avail-
able from that URL.

public class DisplayMetInstance {

public static Metadata getMet(URL url) throws IOException, SAXException,
TikaException {

Metadata met = new Metadata();

PDFParser parser = new PDFParser();
parser.parse(url.openStream(), new BodyContentHandler(), met,

new ParseContext());

return met;
}

public static void main(String[] args) throws Exception {

Metadata met = DisplayMetInstance.getMet(new URL(args[0]));
System.out.println(met);

}

}

The output from this program is a Java String representation of the Tika Metadata
instance. Run listing 6.2 on a PDF file (passed in via the URL parameter identified B)
and the output may look like the following (reformatted for easier viewing):

created=Sun Jul 25 09:32:47 PDT 2010

producer=pdfeTeX-1.21a

creator=TeX
xmpTPg:NPages=20

PTEX.Fullbanner=This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) \

kpathsea version 3.5.6
Creation-Date=2010-07-25T16:32:47Z

Content-Type=application/pdf

The preceding example contains seven metadata attributes—created, producer, cre-
ator, xmpTPg:NPages, PTEX.Fullbanner, Creation-Date, and Content-Type—and

Listing 6.2 Metadata instances in Tika

Get metadata
from URLB

Print
metadata

105Metadata in Tika

seven corresponding metadata values. The values and attributes used in this Metadata
object instance in Tika were selected by the PdfParser class in Tika. Recall from chap-
ter 5 that each Tika Parser class not only extracts text using XHTML as the representa-
tion, but also extracts and populates Metadata, provided to it in its parse() method:

void parse(

InputStream stream, ContentHandler handler,

Metadata metadata, ParseContext context)
throws IOException, SAXException, TikaException;

Each Tika Parser is responsible for using the metadata models defined in the Tika
metadata package to determine which metadata attributes to populate. Looking at the
example, metadata attributes such as Content-Type come from the HttpHeaders
model, others such as creator are defined by the DublinCore model, and for flexibil-
ity, Tika allows other attributes (and values) to be populated that may not yet have a
defined metadata model in Tika’s org.apache.tika.metadata package.

 At its core, Tika provides a Metadata class and a map of keys and their multiple val-
ues to record metadata for files it examines. Let’s wave the magnifying class over it and
see what’s inside.

6.3.1 Keys and multiple values

Tika’s Metadata class, shown in figure 6.4, provides all of the necessary methods and
functionality for recording metadata instances extracted from files. The class inherits
and implements the set of metadata models (such as DublinCore) shown in the
periphery of the diagram. The core class, org.apache.tika.metadata.Metadata, is a
key/multivalued structure that allows users to record metadata attributes as keys using
the set(Property,...) methods (which use the Property class previously discussed).
The Metadata class allows a user to add multiple values for the same key (as in the
case of Metadata.AUTHOR having multiple author values) using the add(String,
String) method. The class also provides other methods that allow for introspection,
including names(), which returns the set of recorded attribute names in the Metadata
object instance, and the isMultiValued(String) method that allows users to test
whether a particular metadata attribute has more than one value recorded. The Meta-
data class has a set of XMP-compatible Property attributes as we mentioned earlier,
where each property is defined by its PropertyType (think attribute name) and its asso-
ciated PropertyValue (think attribute value). Property classes provide facilities for val-
idating and checking attributes, their units, and types, and for cross-comparing them.

 To implement various metadata models, the Metadata class implements several
model interfaces, such as ClimateForecast, TIFF, and Geographic, each of which pro-
vide unique metadata attributes to the Metadata object instance. The Metadata class
has a one-to-many relationship with the Property class. Each Property provides nec-
essary methods for validating metadata values, for example, making sure that they
come from a controlled value set, or checking their units. This is accomplished using
the XMP-like PropertyType and PropertyValue helper classes.

106 CHAPTER 6 Understanding metadata

Tika’s Parser implementations can use the Metadata class, as can users of Tika who
are interested in recording metadata and leveraging commonly defined metadata
attributes and properties. Because of its general nature, the Metadata class serves as a
great intermediate container of metadata, and can help you generate a number of dif-
ferent views of the information you’ve captured, including RSS and other formats.

6.3.2 Transformations and views

Since metadata extraction can be time-consuming, often involving the integration of
parsing libraries, MIME detection strategies, text extraction, and other activities, once
you have metadata for a corpus of files, you’ll probably want to hold on to it for a
while. But the metadata community is constantly defining new metadata standards
that somehow better support a particular user community’s needs.

 Because of this, you’ll inevitably be asked the question, “Can you export file X’s
metadata in my new Y metadata format?” It’s worth considering what that request
entails. Before you jump across the table and attack the person who caused you more
work, consider how Tika can be of service to help defuse this situation.

org.apache.tika.metadata

Metadata

getString(String): String
getDate(String): Date
set(Property, Date)
set(Property, double)
add(String, String)
isMultiValued(): boolean
names(): String[]
...

MSOffice
Climate

Forecast

TIFF

Creative
Commons

Message

Geographic

Property
value

Property

getChoices(): Set<String>
getName(): String
getPropertyType(): PropertyType
getValueType(): PropertyValue
internalDate(): Property
externalDate(): Property
isExternal(): boolean
isInternal(): boolean
...

Property
type

Dublin
Core

Figure 6.4 The code-level organization of the Tika metadata

framework. A core base class, Metadata, provides methods for

getting and setting metadata properties, checking whether they’re

multivalued, and representing metadata in the correct units.

107Practical uses of metadata

REPRESENTING METADATA INSTANCES

Often, new metadata models are simply formatting variations and different represen-
tations of existing attributes defined in common metadata models, and already cap-
tured by Tika. Let’s take the Really Simple Syndication (RSS) format as an example.
RSS has been a commonly used XML-based format since the early 2000s, and is inte-
grated into most web browsers and news websites as a means of publishing and sub-
scribing to frequently changing content. RSS defines a channel as a set of recently
published items. Each RSS document usually contains a single Channel tag (such as
News Items or Hot Deals!), and several Item tags which correspond to the recent doc-
uments related to that channel.

TRANSFORMING RECORDED METADATA

As it turns out, turning basic key/multivalued metadata into RSS isn’t as challenging as
you may think. The same is true for changing basic key/multivalued metadata into a
number of similar XML-based formats, or views of your captured metadata. The steps
involved usually boil down to the following:

1 Map the metadata attribute keys into the view’s tag or item names —This process
amounts to deciding for each metadata attribute in your recorded metadata
what the corresponding view tag’s name is (for example, Metadata.SOURCE
maps to RSS’s link tag).

2 Extract the metadata values for each mapped view tag and format accordingly—For
each mapped view tag, grab the values in the recorded metadata and shovel
them into the view’s output XML representation (for example, shove the value
for Metadata.SOURCE into the value for the link tag, and enclose it within an
outer item tag).

Now that you know how to represent metadata instances and values in Tika, and how
to transform that recorded metadata, let’s take a real use case and revisit the Lucene-
Indexer example from chapter 5. We’ll augment it to explicitly record DublinCore
metadata, and then use that to feed an RSS service that shows the files recently
indexed in the last 5 minutes. Sound difficult? Nah, you’ve got Tika!

6.4 Practical uses of metadata

Remember the LuceneIndexer from chapter 5? It was a powerful but simple example
that showed how you could use the Tika facade class to automatically select a Tika
Parser for any file type that you encountered in a directory, and then index the con-
tent of that file type inside of the Apache Lucene search engine.

 One thing that we skipped in that prior example was using Tika to extract not just
the textual content from the files we encountered, but the metadata as well. Now that
you’re a metadata master, you’re ready for this next lesson in your Tika training. We’ll
show you two variations where we augment the LuceneIndexer with explicit recording
of metadata fields. In the first example, we’ll specifically index DublinCore metadata,
leveraging Tika’s support for metadata models. In the second example, you’ll see how

108 CHAPTER 6 Understanding metadata

easily Tika can be used to extract content-specific metadata for any type of file
encountered.

6.4.1 Common metadata for the Lucene indexer

Let’s hop to it. The following listing rethinks the indexDocument(File) function from
the existing LuceneIndexer and records some explicit file metadata using the Dublin-
Core model.

public void indexWithDublinCore(File file) throws Exception {
Metadata met = new Metadata();
met.add(Metadata.CREATOR, "Manning");
met.add(Metadata.CREATOR, "Tika in Action");
met.set(Metadata.DATE, new Date());
met.set(Metadata.FORMAT, tika.detect(file));
met.set(DublinCore.SOURCE, file.toURL().toString());
met.add(Metadata.SUBJECT, "File");
met.add(Metadata.SUBJECT, "Indexing");
met.add(Metadata.SUBJECT, "Metadata");
met.set(Property.externalClosedChoise(Metadata.RIGHTS,

"public", "private"), "public");
InputStream is = new FileInputStream(file);
tika.parse(is, met);
try {

Document document = new Document();
for (String key : met.names()) {

String[] values = met.getValues(key);
for (String val : values) {

document.add(new Field(key, val, Store.YES, Index.ANALYZED));
}
writer.addDocument(document);

}
} finally {

is.close();
}

}

It’s worth pointing out that Tika’s Metadata class explicitly supports recording meta-
data as Java core types—String, Date, and others. If you record metadata using a non-
String type, Tika will perform validation for you on the field. At the time of this writ-
ing, Tika’s support explicitly focuses on Date properties, but additional support is
being added to handle the other types. Note the use of the add(String,String)
method to record metadata that contains multiple values (like Metadata.CREATOR).
The example in listing 6.3 also includes the use of an XMP-style explicit closed choice,
recording whether the indexed file is public or private, in terms of its security rights
(defined in DublinCore as DublinCore.RIGHTS).

 Listing 6.3 is great because it uses a common, general metadata model like Dublin
Core to record metadata (we saw in section 6.3.2 what this can buy us), but our exam-
ple is limited to only using one set of metadata attributes. What if we wanted to use
metadata attributes from all of the different metadata models that Tika supports?

Listing 6.3 Extending the Lucene indexer with generic metadata

109Practical uses of metadata

public void indexContentSpecificMet(File file) throws Exception {
Metadata met = new Metadata();
InputStream is = new FileInputStream(file);
tika.parse(is, met);
try {

Document document = new Document();
for (String key : met.names()) {

String[] values = met.getValues(key);
for (String val : values) {

document.add(new Field(key, val, Store.YES, Index.ANALYZED));
}
writer.addDocument(document);

}
} finally {

is.close();
}

}

In this example, we leverage the Tika facade class and its parse(InputStream,
Metadata) method, an entry point into all of Tika’s underlying Parser implementa-
tions. By leveraging the Tika facade, we allow any of Tika’s Parsers to be called, and
to contribute metadata in their respective metadata models to the underlying file that
we’re indexing in Lucene. Pretty easy, huh?

 Now that you have support for arbitrary metadata indexing and the ability to build
up your corpus of metadata, let’s see how you can easily transform that metadata and
satisfy the inevitable questions you’ll get from some of your downstream users. Just
remember, Tika wants you to build bridges to your users, not choke them!

6.4.2 Give me my metadata in my schema!

Suppose one of your users asked you to produce an RSS-formatted report of all of the
files your server received within the last 5 minutes. It turns out a hacker got into the
system and the security team is doing a forensic audit trying to figure out whether the
hacker has created any malicious files on the system.

 Assume that you thought so highly of the metadata-aware LuceneIndexer that you
created here that you put a variant of it into production on your system long before
the hacker got in. So, you have an index that you incrementally add to, usually on the
hour, which contains file metadata and free-text content for all files on your system.

 In a few lines of Tika-powered code, we’ll show you how to generate an RSS feed
from your Tika-enabled metadata index. First, you’ll need to get a listing of the files
that have appeared within the last 5 minutes. The following takes care of this for you
and provides the general framework for our RSS report.

public String generateRSS(File indexFile) throws CorruptIndexException,

IOException {

Listing 6.4 Extending the Lucene indexer with content-specific metadata

Listing 6.5 Getting a list of recent files from the Lucene indexer

Leverage
Tika facade

Any metadata
model handled

110 CHAPTER 6 Understanding metadata

StringBuffer output = new StringBuffer();
output.append(getRSSHeaders());

try {

reader = IndexReader.open(new SimpleFSDirectory(indexFile));
IndexSearcher searcher = new IndexSearcher(reader);

GregorianCalendar gc = new java.util.GregorianCalendar();

gc.setTime(new Date());
String nowDateTime = ISO8601.format(gc);

gc.add(java.util.GregorianCalendar.MINUTE, -5);

String fiveMinsAgo = ISO8601.format(gc);
TermRangeQuery query = new TermRangeQuery(Metadata.DATE.toString(),

fiveMinsAgo, nowDateTime, true, true);

TopScoreDocCollector collector =
TopScoreDocCollector.create(20, true);

searcher.search(query, collector);

ScoreDoc[] hits = collector.topDocs().scoreDocs;
for (int i = 0; i < hits.length; i++) {

Document doc = searcher.doc(hits[i].doc);

output.append(getRSSItem(doc));
}

} finally {

reader.close();

}

output.append(getRSSFooters());

return output.toString();

}

The key Tika-enabled part of listing 6.5 is the use of a standard metadata attribute,
DublinCore.DATE, as the metadata key to perform the query. Since Lucene doesn’t
enforce a particular metadata schema, your use of the metadata-enabled Lucene-
Indexer allows you to use a common vocabulary and presentation for dates that’s
compatible with Lucene’s search system. For each Lucene Document found from the
Lucene Query, listing 6.6 demonstrates how to use Tika to assist in unmarshalling the
Lucene Document into an RSS-compatible item, surrounded by an enclosing RSS-
compatible channel tag (provided by the getRSSHeaders() method and the getRSS-
Footers() called in the following listing).

public String getRSSItem(Document doc) {
StringBuffer output = new StringBuffer();

output.append("<item>");

output.append(emitTag("guid", doc.get(DublinCore.SOURCE), "isPermalink",
"true"));

output.append(emitTag("title", doc.get(Metadata.TITLE), null,

null));
output.append(emitTag("link", doc.get(DublinCore.SOURCE), null,

null));

output.append(emitTag("author", doc.get(Metadata.CREATOR), null,
null));

for (String topic : doc.getValues(Metadata.SUBJECT)) {

Listing 6.6 Using Tika metadata to convert to RSS

111Summary

output.append(emitTag("category", topic, null, null));
}

output.append(emitTag("pubDate", rssDateFormat.format(ISO8601.

parse(doc
.get(Metadata.DATE.toString()))), null, null));

output.append(emitTag("description", doc.get(Metadata.TITLE), null,

null));
output.append("</item>");

return output.toString();

}

The getRSSItem(Document) method shown in listing 6.6 is responsible for executing
the processed we saw in listing 6.1, effectively using Tika’s standard DublinCore meta-
data and its values and reformatting it to the RSS format and syntax. Scared of RSS
reports, or metadata model–happy end users? Not anymore!

6.5 Summary

Phew! We just used Tika to leverage general and content-specific metadata models
(Dublin Core and RSS, respectively), validated the outgoing RSS metadata by leverag-
ing Tika’s Metadata class and its underlying Property class, and built up a search
engine index generated in large part by standardizing on Tika metadata and its mod-
els. After we constructed the index, we showed you how to transform your recorded
metadata instances in Dublin Core into the language of RSS, using Tika APIs. Meta-
data is grand, isn’t it?

 In this chapter, we’ve covered a multitude of things related to the world of meta-
data. Let’s review.

 First, we defined what metadata is (data about data), and its ultimate utility in the
world of text extraction, content analysis, and all things Tika. We also defined what a
metadata model is, and its important facets: attributes, relationships between those
attributes, and information about the attributes, such as their formats, cardinality, def-
initions, and of course their names! After these definitions, we looked at some of the
challenges behind metadata management, and how Tika can help.

 Metadata comparison and quality—We discussed a bunch of different metadata
models, and classified them into two areas: general models (like Dublin Core)
and content-specific models (HttpHeaders, or MS Word) that are directly
related to specific types of files and content. We also highlighted the impor-
tance of metadata quality and dealing with metadata transformation.

 Implementation-level support for metadata—With a background on metadata mod-
els and standards, we took a deep dive into Tika’s support for representing
metadata, looking at Tika’s Metadata class. We discussed the simplicity and
power of a basic key/multivalued text-based structure for metadata, and how
Tika leverages this simplicity to provide powerful representation of metadata
captured in both general and content-specific models for all the files that you
feed through the system.

112 CHAPTER 6 Understanding metadata

 Metadata representation, validation and transformation in action—The latter part of
the chapter focused in on practical examples of Tika’s Metadata class, and we
brought the LuceneIndexer example from chapter 5 back to life, showing you
how to augment the LuceneIndexer with common Dublin Core metadata, and
how to extend the code to include property-specific metadata attributes (Date-
related, Integer-related, and more). Finally, we showed you how to turn the
metadata extracted by the LuceneIndexer into different metadata views, includ-
ing some common XML formats you’re probably familiar with (RSS), and even
some that you probably aren’t (remember: the metadata community is not out
to cause you more work—well, maybe they are!).

It’s been a great ride! Now that you’re a bona fide Tika metadata expert, the time has
come to understand how an important piece of per-file metadata gets populated by
Tika: the file’s language. It’s a lot harder than it looks, and more involved than simply
calling set(Property, String) on Tika’s Metadata class—so much so that it warrants
its own chapter, which is next up on your Tika training. Enjoy!

113

Language detection

Imagine you’re in charge of developing a searchable document database for a mul-
tilingual organization like the European Union, an international corporation, or a
local restaurant that wants to publish its menus in more than one language. Typi-
cally no single user of such a database knows all the languages used in the stored
documents, so the system should be able to categorize and retrieve documents by
language in order to present users with information that they can understand. And,
to make things challenging, most of the documents added to the database don’t
come with reliable metadata about the language they’re written in.

 To implement such a multilingual document database, you need a language
detection tool like the one shown in figure 7.1. This tool would act like a pipeline
that takes incoming documents with no language metadata and automatically
annotates them with the languages they’re written in. The annotation should take
the form of a Metadata.LANGUAGE entry in the document metadata. Our task in this
chapter is to find out how this can be done.

This chapter covers

 Language detection theory

 Language profiles

 N-gram algorithms

114 CHAPTER 7 Language detection

Identifying written languages is in principle like the file format detection we covered in
chapter 4, so the structure of this chapter follows a similar approach. After a quick look
at our sample document and a simple code example in section 7.1, we re-encounter
taxonomies in section 7.2, which describes the ISO 639 standard of language codes.
Then, in section 7.2.1 we’ll find out about different ways in which the language of a
given text can be detected. Finally, section 7.3 shows how Tika implements language
detection and how you can leverage this functionality in your applications. And as
usual, we’ll end the chapter with a brief summary that wraps up all the key points.

7.1 The most translated document in the world

The Universal Declaration of Human Rights (UDHR) is our sample document in this
chapter. This famous declaration was adopted by the United Nations General Assem-
bly in 1948 and has since become one of the best-known documents in the world. It
has been translated into almost 400 languages.1 In fact the UDHR holds the Guinness
World Record for being the most-translated text in the world! It’s the perfect example
for studying language identification, especially since the United Nations makes all the
translations easily available online at http://www.ohchr.org/. Figure 7.2 gives you an
idea of the range of available translations by showing the UDHR opening sentence in
the six official languages of the United Nations.

 Let’s see what Tika can tell us about these translations. The simplest way to do that
is to use the Tika application’s --language command-line option. This option tells
Tika to detect the languages of given documents. The detection results are printed

1 As of late 2010 the UDHR was available in 375 different languages and new translation efforts were ongoing.

Language

detection

Figure 7.1 The language detection pipeline. Incoming documents with no language metadata are

analyzed to determine the language they’re written in. The resulting language information is associated

with the documents as an extra piece of metadata.

.قوقحلاو ةماركلا يف نيواستمً ارارحأ سانلا عيمج دلوي

All human beings are born free and equal in dignity and rights.

Todos los seres humanos nacen libres e iguales en dignidad y derechos.

Tous les êtres humains naissent libres et égaux en dignité et en droits.

Все люди рождаются свободными и равными в своем достоинстве и правах.

Figure 7.2 The first sentence

of the first article of the

Universal Declaration of

Human Rights, written in

Arabic, Chinese, English,

French, Russian, and Spanish—

the six official languages of

the United Nations.

http://www.ohchr.org/

115Sounds Greek to me—theory of language detection

out as ISO 639 language codes. The following example shows Tika correctly detecting
the English, French, Russian, and Spanish versions of the UDHR. Tika doesn’t yet
understand Arabic or Chinese, but it’s learning fast!

$ java -jar tika-app-1.0.jar --language \
http://www.ohchr.org/EN/UDHR/Documents/UDHR_Translations/eng.pdf \

http://www.ohchr.org/EN/UDHR/Documents/UDHR_Translations/frn.pdf \

http://www.ohchr.org/EN/UDHR/Documents/UDHR_Translations/rus.pdf \
http://www.ohchr.org/EN/UDHR/Documents/UDHR_Translations/spn.pdf

en

fr
ru

es

What’s the magic behind the --language option, and how can you use it in your appli-
cations? Let’s find out!

7.2 Sounds Greek to me—theory of language detection

As discussed in chapter 4, the ability to consistently name and classify things is essen-
tial for fully understanding them. There are thousands of languages in the world,
many with multiple dialects or regional variants. Some of the languages are extinct
and some are artificial. Some don’t even have names in English! Others, like Chinese,
have names whose specific meaning is highly context-sensitive.2 A standard taxonomy
that can name and classify all languages is needed to allow information systems to reli-
ably store and process information about languages.

 There are a number of different increasingly detailed systems for categorizing and
naming languages, their dialects, and other variants. For example, according to the
RFC 5646: Tags for Identifying Languages standard, you could use de-CH-1996 to iden-
tify the form of German used in Switzerland after the spelling reform of 1996. Luckily
there aren’t many practical applications where such detail is necessary or even desir-
able, so we’ll focus on just the de part of this identifier.

 The RFC 5646 standard leverages ISO 639 just like most of the other formal lan-
guage taxonomies. ISO 639 is a set of standards defined by the International Organiza-

tion for Standardization (ISO). The ISO 639 standards define a set of two- and three-
letter language codes like the de code for German we encountered earlier. The two-
letter codes that are most commonly used are defined in the ISO 639-1 standard.
There are currently 184 registered two-letter language codes, and they represent most
of the major languages in the world. The three-letter codes defined in the other ISO
639 standards are used mostly for more detailed representation of language variants
and also for minor or even extinct languages.

2 The Chinese language people normally refer to is Standard Mandarin, the official language of China and Tai-
wan. But Chinese is a complex family of related languages that span vast demographic, geographic, and his-
toric spaces, though most of them share at least variations of the same written form. For example, the Chinese
you hear in Hong Kong, Guangzhou, and Macau is Cantonese, a dialect that’s about as far from Mandarin as
German or French is from English.

English
French

Russian
Spanish

116 CHAPTER 7 Language detection

 The full list of ISO 639-1 codes is available from http://www.loc.gov/standards/
iso639-2/ along with the larger lists of ISO 639-2 codes. Tika can detect 18 of the
184 currently registered ISO 639-1 languages. Here are the codes of these sup-
ported languages:

 da—Danish  fi—Finnish  no—Norwegian
 de—German  fr—French  pl—Polish
 et—Estonian  hu—Hungarian  pt—Portuguese
 el—Greek  is—Icelandic  ru—Russian
 en—English  it—Italian  sv—Swedish
 es—Spanish  nl—Dutch  th—Thai

After detecting the language of a document, Tika will use these ISO 639-1 codes to
identify the detected language. But how do we get to that point? Let’s find out!

7.2.1 Language profiles

Detecting the language of a document typically involves constructing a language profile

of the document text and comparing that profile with those of known languages. The
structure and contents of the language profile depend heavily on the detection algo-
rithm being used, but usually consist of some statistic compilation of relevant features
of the text. In this section you’ll learn about the profiling process and different profil-
ing algorithms.

 Usually the profile of a known language is
constructed in the same way as that of the text
whose language is being detected. The only
difference is that the language of this text set,
called a corpus, is known in advance. For exam-
ple, you could use the combined works of
Shakespeare to create a profile for detecting
his plays, those of his contemporaries, or mod-
ern works that mimic the Shakespearean style.
Should you come across and old-looking book
like the one shown in figure 7.3 you could use
the Shakespearean profile to test whether the
contents of the book match its looks. Of
course, such a profile would be less efficient at
accurately matching the English language as
it’s used today.

 A key question for developers of language
detection or other natural language processing
tools is how to find a good corpus that accu-
rately and fairly represents the different ways a
language is used. It’s usually true that the bigger

Figure 7.3 Title page of a 16th century

printing of Romeo and Juliet by William

Shakespeare

http://www.loc.gov/standards/iso639-2/
http://www.loc.gov/standards/iso639-2/

117Sounds Greek to me—theory of language detection

a corpus is, the better it is. Common sources of such sets of text are books, magazines,
newspapers, official documents, and so forth. Some are also based on transcripts of spo-
ken language from TV and radio programs. And the internet is quickly becoming an
important source, even though much of the text there is poorly categorized or labeled.

 Once you’ve profiled the corpus of a language, you can use that profile to detect
other texts that exhibit similar features. The better your profiling algorithm is, the
better those features match the features of the language in general instead of those of
your corpus. The result of the profile comparison is typically a distance measure that
indicates how close or how far the two profiles are from each other. The language
whose profile is closest to that of the candidate text is also most likely the language in
which that text is written. The distance can also be a percentage estimate of how likely
it is that the text is written in a given language.

 You’re probably already wondering what these profiling algorithms look like. It’s
time to find out!

7.2.2 Profiling algorithms

The most obvious way to detect the language used in a piece of text is to look up the
used words in dictionaries of different languages. If the majority of words in a given
piece of text can be found in the dictionary of some language, it’s likely that the text is
written in that language. Even a relatively small dictionary of the most commonly used
words of a language is often good enough for such language detection. You could
even get reasonably accurate results with just the word the for detecting English; the
words le and la for French; and der, die, and das for German!

 Such a list of common words is probably the simplest reasonably effective language
profile. It could be further improved by associating each word with its relative fre-
quency and calculating the distance of two profiles as the sum of differences between
the frequencies of matching words.3 Another advantage of this improvement is that it
allows the same profiling algorithm to be used to easily generate a language profile
from a selected corpus instead of needing to use a dictionary or other explicit list of
common words.

 Alas, the main problem with such an algorithm is that it’s not very efficient at
matching short texts like single sentences or just a few words. It also depends on a way
to detect word boundaries, which may be troublesome for languages like German with
lots of compound words or Chinese and Japanese where no whitespace or other extra
punctuation is used to separate words. Finally, it has big problems with agglutinative

languages like Finnish or Korean where most words are formed by composing smaller
units of meaning. For example, the Finnish words kotona and kotoa mean “at home”
and “from home” respectively, which makes counting common words like at, from, or
even home somewhat futile.

3 The distance computation can more accurately be represented as calculating the difference of two
n-dimensional vectors, where each dimension corresponds to a distinct word and the component along that
dimension represents the relative frequency of that word in the profiled text.

118 CHAPTER 7 Language detection

 Given these difficulties, how about looking at individual characters or character
groups instead?

7.2.3 The N-gram algorithm

The profiling algorithm based on word frequencies can just as easily be applied to
individual characters. In fact this makes the algorithm simpler, because instead of a
potentially infinite number of distinct words, you only need to track a finite number
of characters. And it turns out that character frequencies really do depend on the lan-
guage, as shown in figure 7.4.

 Obviously this algorithm works even better with many Asian languages that have
characters which are used in only one or just a handful of languages. But this algo-
rithm has the same problem as the word-based one in that it needs a lot of text for an
accurate match. Interestingly enough, the problem here is opposite of that with
words. Where a short sentence may not contain any of the most common words of a
language, it’s practically guaranteed to contain plenty of the common characters.
Instead the problem is that there isn’t enough material to differentiate between lan-
guages with similar character frequencies.

 This detail hints at an interesting approach that turns out to be useful in language
detection. Instead of looking at individual words or characters, we could look at char-
acter sequences of a given length. Such sequences are called 2-, 3-, and 4-grams or
more generally N-grams based on the sequence length. For example, the 3-grams of a
word like hello would be hel, ell, and llo, plus _he and lo_ when counting word boundar-
ies as separate characters.

 It turns out that N-grams4 are highly effective for isolating the essential features of
at least most European languages. They nicely avoid problems with compound words
or the oddities of languages like Finnish. And they still provide statistically significant
matches even for relatively short texts. Tika opts to use 3-grams, as that seems to offer
the best trade-off of features in most practical cases.

4 There are many research papers on N-grams for language detection. A simple search on scholar.google.com
for “N-gram language identification” will reveal many of most relevant ones.

Figure 7.4 Frequency of letters in many languages based on the Latin alphabet

119Language detection in Tika

7.2.4 Advanced profiling algorithms

Other more advanced language profiling algorithms are out there, but few match the
simplicity and efficiency of the N-gram method just described. Typically such algo-
rithms target specific features like maximum coverage of different kinds of languages,
the ability to accurately detect the language of very short texts, or the ability to detect
multiple languages within a multilingual document.

 Tika tracks developments in this area and may incorporate some new algorithms in
its language detection features in future releases, but for now N-grams are the main
profiling algorithm used by Tika.

 Now that we’ve learned the basics of language codes and profiling algorithms, let’s
look at how to use them in practice. It’s coding time!

7.3 Language detection in Tika

The language detection support in Tika is designed to be as easy to use as possible.
You already saw the --language command-line option in action in section 7.1, and the
Java API is almost as easy to use. The class diagram in figure 7.5 summarizes the key
parts of this API.

The keys to language detection in Tika are the LanguageProfile and Language-
Identifier classes in the org.apache.tika.language package. A LanguageProfile
instance represents the language profile of a given piece of text. The default imple-
mentation in Tika 1.0 uses 3-grams for the language profile. Once you’ve constructed
the language profile of a document, you can use the LanguageIdentifier class to
map the profile into a matching ISO 639 language code. The following code shows
how to do this:

LanguageProfile profile = new LanguageProfile(
"Alla människor är födda fria och"

+ " lika i värde och rättigheter.");

LanguageIdentifier identifier =
new LanguageIdentifier(profile);

System.out.println(identifier.getLanguage());

LanguageWriter LanguageHandler

LanguageProfile

LanguageIdentifier

getLanguage(): String
isReasonablyCertain(): boolean

«matches»

LanguageWriter LanguageHandler

LanguageProfile

LanguageIdentifier

getLanguage(): String
isReasonablyCertain(): boolean

«matches»

org.apache.tika.language

 «creates»

java.io.Writer org.xml.sax.ContentHandler

Figure 7.5 Class diagram of Tika’s language detection API

UDHR opening
sentence in Swedish

Prints sv, ISO 639-1
code for Swedish

120 CHAPTER 7 Language detection

Sometimes there’s no clear match for a language profile, either because the language
of the profiled text isn’t yet known by Tika or because the profiling algorithm doesn’t
work optimally for that language or for that particular piece of text. You can use the
isReasonablyCertain() predicate method of the LanguageIdentifier class to detect
whether the language match is reliable. This method uses best-effort heuristics to esti-
mate the accuracy of the language match, so even a positive result doesn’t guarantee a
100% accurate match, but helps filter out most of the false matches encountered in
practice.

7.3.1 Incremental language detection

You may have noticed that the LanguageProfile constructor used in the preceding
example takes the entire input document as a single string. But as discussed in chap-
ter 5, a better approach is usually to use a character stream or a SAX event handler to
process document content. This way we don’t need to keep the entire document in
memory, and useful results can be obtained after accessing just part of the document.
Tika supports such incremental language detection through the ProfilingWriter
and ProfilingHandler classes.

 The ProfilingWriter class is a java.io.Writer subclass that builds a language pro-
file of the incoming character stream. The following example shows how this works:

ProfilingWriter writer = new ProfilingWriter();
writer.append("Minden emberi lény");

writer.append(" szabadon születik és");

writer.append(" egyenl? méltósága és");
writer.append(" joga van.");

LanguageIdentifier identifier =

writer.getLanguage();
System.out.println(identifier.getLanguage());

You can call the ProfilingWriter instance’s getLanguage() method at any point, and
it’ll return the profile of the text that has already been seen. In practice even a few
hundred characters is usually more than enough to get a fairly accurate language pro-
file. For example, the language profile of the preceding example starts to match Hun-
garian after the second append() call.

 What if you want to profile the XHTML output of a Tika parser? The answer to that
question is the ProfilingHandler class. A ProfilingHandler instance listens to SAX
character events and profiles the contained text just like the ProfilingWriter. The
following shows how to detect the language of a document parsed from the standard
input stream:

ProfilingHandler handler = new ProfilingHandler();
new AutoDetectParser().parse(

System.in, handler,

new Metadata(), new ParseContext());

LanguageIdentifier identifier = handler.getLanguage();

System.out.println(identifier.getLanguage());

UDHR opening
sentence in Hungarian

Prints hu, ISO 639-1
code for Hungarian

121Language detection in Tika

With these tools we’re now ready to address the task we set before ourselves at the
beginning of this chapter!

7.3.2 Putting it all together

Remember the requirements of the multilingual document database described at the
beginning of this chapter? It should be searchable and support categorization and fil-
tering of documents based on the language they’re written in. Chapter 5 showed how
to do the search part based on extracted text, and the metadata features described in
chapter 6 are ideal for categorizing and filtering documents. We’ve just learned how
to build the automatic language detector. Now we only need to combine these tools to
achieve our goal.

 Assuming you’ve already implemented full-text and metadata processing based on
the previous chapters, the easiest way to add language detection functionality is to
decorate your existing parser instance. We can do that easily by extending the
DelegatingParser class that by default delegates all parsing tasks to the Parser
instance found in the parsing context. Our extension is to inject a ProfilingHandler
instance to the parsing process and add the identified language to the document
metadata once the parsing process is completed. Here’s the complete source code for
this solution.

import java.io.IOException;
import java.io.InputStream;

import org.apache.tika.exception.TikaException;
import org.apache.tika.language.LanguageIdentifier;
import org.apache.tika.language.ProfilingHandler;
import org.apache.tika.metadata.Metadata;
import org.apache.tika.parser.DelegatingParser;
import org.apache.tika.parser.ParseContext;
import org.apache.tika.sax.TeeContentHandler;
import org.xml.sax.ContentHandler;
import org.xml.sax.SAXException;

public class LanguageDetectingParser extends DelegatingParser {

public void parse(
InputStream stream, ContentHandler handler,
final Metadata metadata, ParseContext context)
throws SAXException, IOException, TikaException {

ProfilingHandler profiler =
new ProfilingHandler();

ContentHandler tee =
new TeeContentHandler(handler, profiler);

super.parse(stream, tee, metadata, context);

LanguageIdentifier identifier =
profiler.getLanguage();

if (identifier.isReasonablyCertain()) {
metadata.set(

Listing 7.1 Source code of a language-detecting parser decorator

Custom
parse()
method

Combine language profiler
with content handler

Call decorated
parser

Get detected language

Avoid uncertain
matches

122 CHAPTER 7 Language detection

Metadata.LANGUAGE,
identifier.getLanguage());

}

}

}

So how does this example work? We start by customizing the parse() method so we
can inject language detection functionality. We use the TeeContentHandler class to
direct the extracted text both to the original content handler given by the client appli-
cation and to the ProfilingHandler instance we’ve created for detecting the docu-
ment language. You may remember the TeeContentHandler class from chapter 5. It’s
perfect for our needs here, as it allows you to copy the parser output to multiple paral-
lel handlers.

 Once the setup is done, we invoke the original parse() method to parse the given
document. Once the parsing is complete, we ask our profiler for the detected
language identifier and use it to set the Metadata.LANGUAGE metadata entry if the lan-
guage match was good enough to rely on.

 You’d think that complex problems such as language detection would require lots
of complicated code to achieve, but with the right tools it’s pretty simple! The preced-
ing code is all you need to make your application tell the difference between docu-
ments written in French, Russian, English, or a dozen other languages. And the best
part is that your application will grow brighter every time a new Tika release adds new
language profiles or improves its profiling algorithms.

7.4 Summary

Let’s take a moment to look back at what we’ve learned in this chapter. Even though
natural language processing is a fiendishly complex subject that has and probably will
be a topic of scientific research for decades, certain areas are already useful in practi-
cal applications. Language detection is one of the simpler tasks of natural language
processing, and can for the most part be implemented with relatively simple statistical
tools. Tika’s N-gram–based language detection feature is one such implementation.

 We described this feature through the examples of the UDHR document and a
multilingual document database. After the introduction we covered standard ISO 639
language codes and proceeded to discuss commonly used language detection algo-
rithms. Armed with this theoretical background, we looked at how Tika implements
language detection. Finally, we combined the lessons of this chapter to a Parser deco-
rator that can be used to integrate language detection to the full-text and metadata
processing features from previous chapters.

 If you’ve read this book from the beginning, you’ll by now have learned about type
detection, text extraction, metadata processing, and, finally, language detection with
Tika. These are the four main features of Tika, and the rest of this book will tell you
more about how these features interact with the world around Tika. To begin, the
next chapter takes you on a tour of the structure and quirks of many common file for-
mats and the way Tika handles them.

Set language
metadata

123

What’s in a file?

By now, your Tika-fu is strong, and you’re feeling like there’s not much that you
can’t do with your favorite tool for file detection, metadata extraction, and lan-
guage identification. Believe it or not, there’s plenty more to learn!

 One thing we’ve purposefully stayed away from is telling you what’s in those files
that Tika makes sense of.1 That’s because files are a source of rich information,
recording not only text or metadata, but also things like detailed descriptions of
scenery, such as a bright image of a soccer ball on a grass field; waveforms repre-
senting music recorded in stereo sound; all the way to geolocated and time-
referenced observations recorded by a Fourier Transform Spectrometer (FTS)
instrument on a spacecraft. The short of the matter is that their intricacies and
complexities deserve treatment in their own right.

This chapter covers

 File formats

 Extracting content from files

 How file storage impacts data extraction

1 We covered some parts of the file contents, for example, we discussed BOM markers in chapter 4 while
talking about file detection. In chapter 5, we discussed methods for dealing with file reading via
InputStreams. In both cases, we stayed away from the actual contents of files in particular, since it would
receive full treatment in this chapter.

124 CHAPTER 8 What’s in a file?

Files store their information using different methodologies as shown in figure 8.1.
The information may be available only by sequentially scanning each byte of informa-
tion recorded in the logical file, as shown at B in the figure, or it may be accessible
randomly by jumping around through the file, as C in the figure demonstrates. Meta-
data information may be available by reading the file’s header (its beginning bytes on
disk) as shown at E, or it could be stored in a file’s name or directory structure on
disk as shown at D. Finally, files may be physically split across multiple parts on disk,
or they may be logically organized according to some common collection somehow as
shown at F. It sounds complex, and it is, but we’ll hone in on Tika’s ability to exploit
these complexities.

 In this chapter, we’ll cover all internal and external aspects of files, as well as how
Tika exploits this information to extract textual content and metadata. Files, their
content, their metadata, and their storage representation are all fair game. The big
takeaway from this chapter is that it’ll show you how to develop your own Tika parsers
and methodologies for extracting information from files using Tika, demonstrated by
looking at how existing Tika parsers exploit file content for some common file for-
mats like RSS and HDF. Let’s dive in!

8.1 Types of content

The types of content within files vary vastly. We’ve picked two sample file format types
to examine in this section: the Hierarchical Data Format (HDF), http://www.hdf-
group.org/, a common file format used to capture scientific information, and Really
Simple Syndication (RSS), the most commonly used format to spread news and rap-
idly changing information.

Here is some text

available within a

le sequentially.

Unfortunately 2|

int|CreationDate|

edDate

CreationDate :

2007-01-01

edDate

: 2007-01-01
this text is not

sequential.

g_2_011611.docg_1_011611.doc

File system

disk1 disk2

B

C

D

E

F

Figure 8.1 Several areas

where content can be

gleaned from a file

http://www.hdfgroup.org/
http://www.hdfgroup.org/

125Types of content

8.1.1 HDF: a format for scientific data

Consider a scenario in which a science instrument flown on a NASA satellite records
data, which is then downlinked via one of a number of existing ground stations here
on the earth, as shown in figure 8.2. The downlinked data is then transferred via dedi-
cated networks to a science data processing center for data transformation, and ulti-
mately for dissemination to the public.

 In this scenario the raw data arriving at the science data processing center repre-
sents engineering and housekeeping information, including raw voltages from the
instrument and rudimentary location information (such as an orbit number). This
information is represented as a series of files, each corresponding to one channel of
data from the instrument (three channels in total), and one set of three files per each
orbit of the satellite around the earth.

Figure 8.2 A postulated satellite scenario, observing the earth and collecting those observations

in data files represented in the Hierarchical Data Format (HDF). HDF stores data in a binary format,

arranged as a set of named scalars, vectors, and matrices corresponding to observations over

some space/time grid.

126 CHAPTER 8 What’s in a file?

Data within each channel file is stored initially in a binary data format; for the pur-
poses of this example we’ll assume the widely used Hierarchical Data Format (HDF),
version 5 (HDF5). HDF provides an external user-facing API for writing to and reading
from HDF5 files. The HDF5 API allows users to write data using a small canonical set of
data constructs, specifically those shown in table 8.1.

All of the data and metadata from our postulated scenario is represented in a set of
three HDF5 files (corresponding to each channel of the instrument) for each orbit the
satellite makes around the earth. That means that if the instrument is measuring a set
of scientific variables, such as air temperature, wind speed, CO2, or any number of
other variables, that information is represented in the HDF5 files as sets of named sca-
lars, vectors, and matrices.

8.1.2 Really Simple Syndication: a format for rapidly changing content

Let’s consider another scenario, such as a Really Simple Syndication (RSS) feed file
that lists the latest news stories provided by CNN.com, an example of which is provided
in figure 8.3.

RSS files are based on a simple but powerful data model. Each RSS file is an XML
file adhering to a prescribed XML schema that defines the RSS vocabulary. That vocab-
ulary consists of two main data structures. First, each RSS file typically contains a chan-

nel, which aggregates a set of associated RSS items, each of which typically points to
some news story of interest. Every RSS channel has a set of metadata associated with it,
such as a URL and description (http://www.cnn.com/sports/ for the URL and “Latest
news stories about sports within the last hour” as the description), as does each RSS
item tag.

Table 8.1 Simplified representation of content within Hierarchical Data Format (HDF) files. HDF

represents observational data and metadata information using a small set of constructs: named scalars,

vectors, and matrices.

Data type Description

Scalar Named scalar data, such as single-valued metadata information, numer-

ical, or string-based. Examples might include Mission Name, with the

associated scalar value Orbiting Carbon Observatory, as well as Instru-

ment Type, with an associated scalar value of Spectrometer.

Vector (aka “1-dimensional

Arrays” in HDF5)

Named vector data, including multivalued metadata or multivalued

numerical arrays of integers and floats. Examples may include a set of

latitudes corresponding to the satellite orbit path.

Matrix (aka “2-dimensional

Arrays” in HDF5)

Named matrix data, including multidimensional numerical array data

such as integers and floats. The information contained inside of these

data types may correspond to a pixel matrix of some scene observed by

the instrument, such as a 45 x 30 matrix of temperatures stored as float

values (measured in some unit, such as kelvins), where each value in

the 45 x 30 matrix has a corresponding latitude or longitude, stored in

some associated additional matrices in the HDF5 file.

http://www.cnn.com/sports/

127How Tika extracts content

In the CNN example, CNN publishes sets of RSS files, each containing an RSS channel,
one for each CNN news category (such as Top Stories, World, U.S., or any of the other
categories in figure 8.3). Each RSS channel has a corresponding set of latest news sto-
ries and links that users can subscribe to via any number of different RSS readers,
including most modern web browsers.

 Understanding the types of content is the first step toward automatically extracting
information from it. We’ll go into the details of that in the next section, describing
how Tika codifies the process of extracting content.

8.2 How Tika extracts content

By now, you’ve seen that engineers often must write applications that can understand
many different file types, including HDF5 and RSS files as discussed earlier. The orga-
nization of content within different file types has a strong effect on the methodology

Figure 8.3 The CNN Really Simple Syndication (RSS) index page. CNN provides a set of RSS

files that users can subscribe to in order to stay up to date on all of their favorite news stories,

categorized by the type of news that users are interested in.

128 CHAPTER 8 What’s in a file?

Tika uses to extract information from them, as well as the overall performance of the
extraction process.

 In particular, the organization of content within a file impacts Tika’s two main
approaches to content extraction. The first is Tika’s ability to access a file in a stream-
ing fashion, extracting content as it’s read, in contrast to reading the whole file at
once, extracting the content, and being able to access it randomly. The next section
will demonstrate how Tika extracts content no matter how it’s organized!

8.2.1 Organization of content

We’ll spend this section examining how Tika makes sense of content, whether it sup-
ports streaming or random access in the context of RSS files and HDF5 files. We’ll use
Tika’s FeedParser and HDFParser classes to demonstrate. Onward!

STREAMING

Content that’s organized as a set of discrete, independent chunks within a file can be
interpreted in a streaming fashion. Those independent chunks can be read in or out of
order, and the entire file isn’t required to make sense of those chunks—they make
sense on their own. RSS is an XML-based file format that’s amenable to streaming.

 We’ll start off by putting an RSS file under the microscope and by inspecting its
organization:

<?xml version="1.0" encoding="ISO-8859-1"?>
<rss version="2.0">

<channel>
<title>CNN.com</title>
<link>http://www.cnn.com/?eref=rss_topstories</link>
<description>

CNN.com delivers up-to-the-minute news and information ...
</description>
<language>en-us</language>
<copyright>© 2010 Cable News Network LP, LLLP.</copyright>
<pubDate>Tue, 07 Dec 2010 22:25:36 EST</pubDate>
<ttl>5</ttl>

<item>

<title>Elizabeth Edwards dies ...</title>
<guid isPermaLink="false">...</guid>
<link>http://rss.cnn.com/...</link>
<description>Elizabeth Edwards, the ...</description>
<pubDate>Tue, 07 Dec 2010 22:15:33 EST</pubDate>

</item>
<item>

<title>Obama slams GOP, ...</title>
...

</item>
<item>

<title>WikiLeaks founder sent to jail</title>
...

</item>
...

</channel>
</rss>

129How Tika extracts content

One advantage of RSS is that it’s implemented using a specific XML dialect as men-
tioned earlier. An RSS document consists of a single channel tag, wrought with item
tags with descriptive information such as links to the actual content (in this case, the
news story), along with information about when the story was published, who pub-
lished it, an optional media file, and so on.

 Tika’s org.apache.tika.parser.feed.FeedParser class exploits the underlying
content structure of the RSS file to extract its text and metadata information, as
depicted in figure 8.4. The open source RSS parser library ROME is used for handling
the nitty-gritty details of the RSS format.

 The following listing starts off with the gory details. We’ll discuss the listing shortly
after.

public void parse(

InputStream stream, ContentHandler handler,

Metadata metadata, ParseContext context)
throws IOException, SAXException, TikaException {

try { //

Listing 8.1 Tika’s RSS feed parser exploiting RSS’s XML-based content structure

...

<item>

<title>Elizabeth Edwards dies

after long struggle with

cancer</title>

<guid isPermaLink="false">

http://www.cnn.com/2010/

POLITICS/12/06/

elizabeth.edwards.obit/

index.html?

eref=rss_topstories</guid>

<link>http://rss.cnn.com/~r/rss/

cnn_topstories/~3/-gR1U_I6wJg/

index.html </link>

<description>Elizabeth Edwards,

the estranged wife of former

vice presidential nominee and

U.S. senator ...</description>

<pubDate>Tue, 07 Dec 2010

22:15:33 EST</pubDate>

<feedburner:origLink>http://

www.cnn.com/2010/POLITICS/12/06/

elizabeth.edwards. obit/

index.html?eref=rss_topstories

</feedburner:origLink>

</item>

...

<item>

...

</item>

...

ROME RSS API

Tika RSS
parser

XHTML

with links

and titles

Channel

metadata,

title, and

descriptionoutput

output

input

(streaming)

Figure 8.4 The Tika FeedParser’s

parsing process. The ROME API is used

to access the file in a streaming fashion,

making the output available to Tika.

Leverage ROME
API for parsing

B

130 CHAPTER 8 What’s in a file?

SyndFeed feed = new SyndFeedInput().build(
new InputSource(stream)); //

String title = stripTags(feed.getTitleEx()); //

String description = stripTags(feed.getDescriptionEx());

metadata.set(Metadata.TITLE, title);

metadata.set(Metadata.DESCRIPTION, description);

... //

xhtml.endDocument();

} catch (FeedException e) {

throw new TikaException("RSS parse error", e);
}

}

As should be second nature by now (if not, head back over to chapter 5), Tika parsers
implement the parse(...) method defined in the org.apache.tika.parser.Parser
interface. The FeedParser begins by leveraging the ROME API for RSS feed process-
ing, as shown in B. ROME allows for stream-based XML parsing via its SAX-based parse
interface, as shown in C. In doing so, Tika is able to exploit the SAX parsing model
for XML and take advantage of a number of its emergent properties, including low
memory footprint and faster result processing. Once Tika hands off the RSS input
stream to ROME, ROME provides methods, as shown in the bottom portion of the list-
ing, that allow extraction of information from the RSS channel, which Tika’s Feed-
Parser flows into its extracted metadata, as shown in D.

WHEN IN ROME The Java ROME API (humorously subtitled All feeds lead to
ROME) is the most widely developed and most actively used Java API for RSS
feed parsing. ROME handles a number of the modern RSS formats in develop-
ment including RSS 2.0 and ATOM. Tika uses ROME’s RSS parsing functional-
ity because, well, it rocks, and there’s no reason to write it again.

Here’s the second half of the parse method.

XHTMLContentHandler xhtml =

new XHTMLContentHandler(handler, metadata);
xhtml.startDocument();

xhtml.element("h1", title);

xhtml.element("p", description);

xhtml.startElement("ul");

for (Object e : feed.getEntries()) {

SyndEntry entry = (SyndEntry) e;
String link = entry.getLink();

if (link != null) {

xhtml.startElement("li");
xhtml.startElement("a", "href", link);

xhtml.characters(stripTags(entry.getTitleEx()));

Listing 8.2 The latter half of the FeedParser’s parse method: extracting links

Parse using
SAX parser

C

D

Extract
core channel

metadata

See next listing

Use ROME to
extract feed items

B

Obtain item linksC

Output Tika
XHTML links
and title textD

131How Tika extracts content

xhtml.endElement("a");
SyndContent content = entry.getDescription();

if (content != null) {

xhtml.newline();
xhtml.characters(content.getValue());

}

xhtml.endElement("li");
}

}

xhtml.endElement("ul");

After the channel Metadata has been extracted, the FeedParser proceeds to iterate
over each Item in the feed as shown in B. The first step is to use ROME’s SyndEntry
class, which represents a single Item from the Channel. For each Item, its links and
metadata are extracted as shown in C. Once the information has been extracted, it’s
output as XHTML in the final step D of listing 8.2.

 Tika was able to exploit the underlying content organization of an RSS file and the
associated ROME library’s easy API. ROME provided access to RSS file information to
extract both RSS metadata and link text in a streaming fashion, sending the informa-
tion to Tika’s FeedParser class.

 Now that we’ve seen streaming, let’s take another example, this time looking at an
HDF5 file and how Tika’s HDFParser is affected by the underlying file content organi-
zation. The HDF5 file format prohibits random access of information, requiring the
user to have an API which loads the entire file into memory before accessing it.

RANDOM ACCESS

Tika’s HDFParser builds on top of the NetCDF Java API. NetCDF is a popular binary sci-
entific format, similar to HDF5 except for how data and metadata are stored, as shown
in figure 8.5. In HDF5 (and prior versions), data and metadata can be grouped into dif-
ferent associations, connected by a common group name. In NetCDF, all of the data
and metadata within the file is assumed to be “flat,” and all within the global group.

Geometry Group{
 Latitude: [23.0, 24.0,
26.0,...]
 Longitude: [-160.0,
-161.2, ...]
}

Global Metadata{
 StartDateTime:
2007-01-01T00:00:00Z,
...}

HDF file NetCDF file

 Latitude: [23.0, 24.0,
26.0,...]
 Longitude: [-160.0,
-161.2, ...]
 StartDateTime:
2007-01-01T00:00:00Z,
...

No groups

(flattened keys)

Groups

(nested keys)

Figure 8.5 A side-by-side comparison

of HDF and NetCDF. HDF supports

grouping of keys like putting Latitude

and Longitude inside of the Geometry

group. NetCDF doesn’t support

grouping, and the keys are all flattened

and ungrouped.

132 CHAPTER 8 What’s in a file?

As it turns out, the underlying content model of scalars, vectors, and matrices
(remember table 8.1?) is so similar for HDF5 and NetCDF4 that we can leverage the
same Java API (originally intended for NetCDF4) to read HDF5. Let’s take a look at
Tika’s HDFParser and see.

public void parse(InputStream stream, ContentHandler handler,

Metadata metadata, ParseContext context) throws IOException,

SAXException, TikaException {
ByteArrayOutputStream os = new ByteArrayOutputStream();

this.writeStreamToMemory(stream, os);

NetcdfFile ncFile = NetcdfFile.openInMemory("", os.toByteArray());

this.unravelStringMet(ncFile, null, metadata);

}

Much of the magic of the HDFParser lies in the unravelStringMet function which
we’ll look at shortly. But there’s one important aspect of the parser to point out, and it
has to do directly with the way that the HDF5 content is organized. HDF5 does not sup-
port random access (in contrast to RSS, which as we saw in the prior section, does sup-
port random access). Because of this limitation, the API used to read the HDF5 file
must be given the entire file contents as a ByteArray as shown in upper portion of the
following listing.

protected void unravelStringMet(NetcdfFile ncFile, Group group,

Metadata met)

{
if (group == null) {

group = ncFile.getRootGroup();

}

// unravel its string attrs

for (Attribute attribute : group.getAttributes()) {

if (attribute.isString()) {
met.add(attribute.getName(), attribute.getStringValue());

} else {

// try and cast its value to a string
met.add(attribute.getName(), String.valueOf(attribute

.getNumericValue()));

}
}

for (Group g : group.getGroups()) {

unravelStringMet(ncFile, g, met);
}

}

Listing 8.3 The Tika HDFParser’s parse method

Listing 8.4 The Tika HDFParser’s unravelStringMet method

Must read entire
file in memory

Use NetCDF API
to parse fileHelper function to

extract string met

Only consider
HDF scalars

Typecast values
to Strings

Flatten and
unpack recursively

133How Tika extracts content

Luckily Tika supports both types of files: those that support random access, and those
that don’t. We should note that file formats that support random access typically also
support file streaming, as was the case with the FeedParser example from listing 8.1.

 Now that we’ve seen how the organization of a file’s content can influence the way
that Tika extracts information from it, we’ll focus on how a file’s header structure and
naming conventions can also play a big role in how Tika extracts metadata informa-
tion. File creators codify information in all sorts of different ways; we’ll have to do
some detective work for the upcoming sections, but luckily Tika is like your Watson to
help unravel the mystery!

8.2.2 File header and naming conventions

A file’s metadata information can take many forms and be locked away in a number of
places. In some cases, you can examine the first few bytes of information (sometimes
called a file header) and obtain rich semantic information. In other cases, you’re forced
to look elsewhere to find metadata to extract from a particular file, including the file’s
name and (in some cases) its directory structure.

 In this section, we’ll examine both areas of metadata that a file presents, and we’ll
show you how Tika is the right tool for the job no matter which one the file uses to
codify its metadata.

FILE HEADERS

Depending on the file type, it’s possible to focus on just the file header information in
order to extract useful information. Let’s take a real HTML page as an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- -->
<html><!-- InstanceBegin template="/Templates/book.dwt"
codeOutsideHTMLIsLocked="false" -->
<head>
<!-- InstanceBeginEditable name="doctitle" -->
<title>Manning: Tika in Action</title>
<!-- InstanceEndEditable -->
<link href="../styles/main.css" rel="stylesheet" type="text/css" />
<!-- InstanceBeginEditable name="head" --><!--
InstanceEndEditable -->
<meta name = "keywords" content = "Apache, Tika, content analysis,
language
identification, mime detection, file format, Lucene, Solr, Nutch,
search engine,
indexing, full text, parser, MIME-INFO, freedesktop.org, Office Open
XML, PDF,
Zitting, Mattmann, metadata, Dublin Core, XMP, ISO 11179, MIME type,
media type,
magic bytes, IETF" />
</head>

<body>
<!-- ... -->
</body>
</html>

134 CHAPTER 8 What’s in a file?

In the sample HTML file, note the <meta> tag and its attribute name, which lists a set of
keywords about the HTML page. In this particular example, we’ve omitted much of
the actual page in between the <body> tags, focusing only on the header of the file.

HEAD HUNTING The HTML file format uses the tag <head> to denote the
HTML file header, a pointer to the location of header information. This is an
area where meta information about the page is placed, including stylesheets,
JavaScript, base links, and other global page information.

Most HTML parsers provide a mechanism to extract header information fron the
HTML file, and Tika’s HtmlParser leverages this functionality to pull out the file meta-
data as shown next.

if ("META".equals(name) && atts.getValue("content") != null) {

if (atts.getValue("http-equiv") != null) {

metadata.set(

atts.getValue("http-equiv"),
atts.getValue("content"));

} else if (atts.getValue("name") != null) {

metadata.set(
atts.getValue("name"),

atts.getValue("content"));

}
}

Other file formats have similar notions of file header information. JPEG and other
image formats are good examples of this behavior. For example, most image formats
encode the size, color depth, and other similar facts about a image within the first few
hundred bytes of the file.

 But it’s not always possible to get all the metadata information present in a file by
examining its header. In other cases, the entire file needs to be parsed. (Remember
the HDFParser from the previous section?) In some other cases, we don’t even need to
crack open the file to get the metadata information. We’ll specifically look at those
cases in the next section, where we examine file naming conventions as a means of
metadata extraction.

FILE NAMING CONVENTIONS

File naming conventions sometimes convey metadata. Many people name their files
intuitively based on some hierarchy of how the files should be organized in their
mind, or attributing to some other criteria.

 For example, let’s look at the following output from a UNIX /bin/ls command run
on a local machine of ours. Note that this command was run on Mac OS X 10.6, with
the -FG option also provided as an alias to ls (in other words the command is actually
ls -lFG). We’ve redacted the host names and other identifying information to protect
the innocents.

Listing 8.5 Snippet of Tika’s HtmlHandler class that deals with meta tags

Parse and add
meta keywords

135How Tika extracts content

[host:~/src/tikaInAction] unixuser% ls -l
total 25944
-rw-r--r--@ 1 unixuser unixgrp 5590 Sep 30 14:07 Tika-in-Action.xml
-rw-r--r--@ 1 unixuser unixgrp 585 Jun 18 08:53 assembly.xml
-rw-r--r--@ 1 unixuser unixgrp 268853 Sep 30 14:07 cover.jpg
drwxr-xr-x 13 unixuser unixgrp 442 Nov 22 20:42 figs/
drwxr-xr-x 4 unixuser unixgrp 136 Apr 19 2010 misc/
-rw-r--r--@ 1 unixuser unixgrp 3373 Sep 30 14:07 pom.xml
drwxr-xr-x 8 unixuser unixgrp 272 Sep 30 22:07 src/
drwxr-xr-x 11 unixuser unixgrp 374 Nov 22 16:33 target/
-rw-r--r--@ 1 unixuser unixgrp 73088 Nov 22 12:53 tia-ch01.xml
-rw-r--r--@ 1 unixuser unixgrp 50181 Nov 22 12:56 tia-ch02.xml
-rw-r--r--@ 1 unixuser unixgrp 49612 Sep 30 14:07 tia-ch03.xml
-rw-r--r--@ 1 unixuser unixgrp 71947 Nov 22 13:02 tia-ch04.xml
-rw-r--r--@ 1 unixuser unixgrp 77175 Nov 22 13:50 tia-ch05.xml
-rw-r--r--@ 1 unixuser unixgrp 63988 Nov 22 13:45 tia-ch06.xml
-rw-r--r--@ 1 unixuser unixgrp 30700 Nov 22 13:27 tia-ch07.xml
-rw-r--r--@ 1 unixuser unixgrp 7076 Nov 22 21:18 tia-ch08.xml
-rw-r--r--@ 1 unixuser unixgrp 1917 Nov 21 20:21 tia-ch09.xml
-rw-r--r--@ 1 unixuser unixgrp 223 Sep 30 14:07 tia-ch10.xml
-rw-r--r--@ 1 unixuser unixgrp 167 Sep 30 14:07 tia-ch11.xml
-rwx------@ 1 unixuser unixgrp 12085010 Nov 22 21:20 tika.pdf*

This listing output holds a lot of information. First, we can gather information such as
who created the file, when it was created, how big it is, and the permissions for read-
ing, writing, and executing the file. We’ll see later that the actual file path, including
both its directory path and filename, provide metadata that we can extract.

 For the first part of information available from the /bin/ls output, we can leverage
Tika’s Parser interface to write a Parser implementation which will allow us to
extract Metadata from the /bin/ls output. Let’s cook up the example next.

public void parse(InputStream is, ContentHandler handler, Metadata metadata,
ParseContext context) throws IOException, SAXException, TikaException {

List<String> lines = FileUtils.readLines(TikaInputStream.get(is).
getFile());

for (String line : lines) {
String[] fileToks = line.split("\s+");
if (fileToks.length < 8)

continue;
String filePermissions = fileToks[0];
String numHardLinks = fileToks[1];
String fileOwner = fileToks[2];
String fileOwnerGroup = fileToks[3];
String fileSize = fileToks[4];
StringBuffer lastModDate = new StringBuffer();
lastModDate.append(fileToks[5]);
lastModDate.append(" ");
lastModDate.append(fileToks[6]);
lastModDate.append(" ");
lastModDate.append(fileToks[7]);
StringBuffer fileName = new StringBuffer();
for (int i = 8; i < fileToks.length; i++) {

Listing 8.6 Leveraging directory information to extract file metadata

Ignore
nonlisting entries

B

Parse line cols
from /bin/ls

C

136 CHAPTER 8 What’s in a file?

fileName.append(fileToks[i]);
fileName.append(" ");

}

fileName.deleteCharAt(fileName.length() - 1);
this

.addMetadata(metadata, filePermissions, numHardLinks,

fileOwner,
fileOwnerGroup, fileSize, lastModDate.toString(),

fileName

.toString());
}

}

private void addMetadata(Metadata metadata, String filePerms,

String numHardLinks, String fileOwner, String fileOwnerGroup,

String fileSize, String lastModDate, String fileName) {
metadata.add("FilePermissions", filePerms);

metadata.add("NumHardLinks", numHardLinks);

metadata.add("FileOwner", fileOwner);
metadata.add("FileOwnerGroup", fileOwnerGroup);

metadata.add("FileSize", fileSize);

metadata.add("LastModifiedDate", lastModDate);

metadata.add("Filename", fileName);

if (filePerms.indexOf("x") != -1 &&

filePerms.indexOf("d") == -1) {

if (metadata.get("NumExecutables") != null) {
int numExecs = Integer.valueOf(

metadata.get("NumExecutables"));

numExecs++;
metadata.set("NumExecutables", String.valueOf(numExecs));

} else {

metadata.set("NumExecutables", "1");
}

}

}

In effect, our Parser implementation is a glorified streaming line tokenizer, pulling
out the relevant pieces of the /bin/ls output as shown in C and D. The Parser
implementation tokenizes each line on whitespace, and ignores lines such as the first
line where the information provided is summary information—specifically the total
size of the directory as shown in B.

 One nice feature of the provided Parser implementation is that it not only
extracts scalar metadata (shown in E) from the /bin/ls output, but it extracts derived
metadata (shown in F). In this case, it extracts the number of executables it could
find by counting the number of files that contain the x permission in their File-
Permissions extracted metadata field.

 We can see the output of listing 8.6 by running a command similar to the following:

ls -l | java -classpath \

tika-app-1.0.jar:tika-in-action-SNAPSHOT.jar:commons-io-1.4.jar \

tikainaction.chapter8.DirListParser

Add extracted file metaD

Add scalar metaE

Add derived metaF

137How Tika extracts content

Or, you can also use Maven to execute the command:

ls -l | mvn exec:java -Dexec.mainClass="tikainaction.chapter8.DirListParser"

Now that we’ve seen how to examine basic file and directory information available as
output from a listing command,2 let’s look at what metadata information we can
extract if we examine the full file path including both its directory and filename com-
ponents. Figure 8.6 magnifies a particular file from the directory listing output and
demonstrates the file’s conceptual parts.

 Taking an example from the /bin/ls command output, note the different compo-
nents of the full file path. Information including who created the file, which book the
file is associated with, and the chapter number are all available by examining the file
and directory naming conventions.

 The file includes information such as its creator (denoted by the particular user ID
part of the /Users/ folder on the file system), the book that the file is associated with
(the first set of information after/src/ and before tikaInAction), as well as the chapter
number (the information available after the hyphen in tia-ch and before .xml in the
filename). These rules that we’ve codified in parentheses provide a recipe for exploit-
ing filename and directory information to extract useful and relevant metadata that
we may use in processing the associated file.

 There’s one other major place where metadata information may lie. Files often
point to other files which may themselves have metadata associated with both files or all
files in a particular collection. Let’s see how we can extract and leverage this link
information using Tika.

LINKS TO OTHER FILES

Often files, in order to cut down on the amount of direct metadata and text they cap-
ture, will reference other files. In the MS Office suite, you can create explicit hyper-
links between Word documents and Excel files, or Excel files and PowerPoint files,
and so on. In HTML files, you can create <a> tags with an href attribute, a hyperlink
pointing at related content from the origin HTML file. In content management

2 We used /bin/ls, a basic UNIX utility. Similar information would have been available if we used the Windows
dir command.

FileExtension: xmlCreator: mattmann Book: Tika In Action

Transformation: 1. Split on case change

2. Join with whitespace

3. Camel case join

DirectoryName: /Users/mattmann/src/tikaInAction/ Filename: tia-ch08.xml

/Users/mattmann/src/tikaInAction/ tia-ch08.xml

Chapter: 8

Figure 8.6

The semantics of extracting

file and directory metadata

138 CHAPTER 8 What’s in a file?

systems, you can also explicitly create links between web pages, documents, and other
forms of media as part of the content metadata information. There are numerous
examples of file-based linking; these are only a representative few.

 File links themselves are valuable metadata information because they may point us
to other forms of rich associated content, ripe for extraction. So, how does Tika help
you with deciphering things such as links to other files?

 Tika uses a SAX ContentHandler interface mechanism to allow output from its
XHTML extraction step to be customized in some specific way. One of the useful
ContentHandler implementations included in Tika is the LinkContentHandler class.
This class is responsible for taking document link information extracted by the under-
lying parser, and making it easily available to downstream Tika API users. The main
snippet of the LinkContentHandler class is highlighted next.

public void startElement(
String uri, String local, String name, Attributes attributes) {

if (XHTML.equals(uri)) {

if ("a".equals(local)) {

LinkBuilder builder = new LinkBuilder("a");
builder.setURI(attributes.getValue("", "href"));

builder.setTitle(attributes.getValue("", "title"));

builderStack.addFirst(builder);
} else if ("img".equals(local)) {

LinkBuilder builder = new LinkBuilder("img");

builder.setURI(attributes.getValue("", "src"));
builder.setTitle(attributes.getValue("", "title"));

builderStack.addFirst(builder);

String alt = attributes.getValue("", "alt");
if (alt != null) {

char[] ch = alt.toCharArray();

characters(ch, 0, ch.length);
}

}

}
}

public void endElement(String uri, String local, String name) {

if (XHTML.equals(uri)) {
if ("a".equals(local) || "img".equals(local)) {

links.add(builderStack.removeFirst().getLink());

}
}

}

The LinkContentHandler first determines whether it’s encountered an <a> tag within
the XHTML as shown in B. If it has found an <a> tag, the LinkContentHandler
extracts its href and title attributes as shown in C. The LinkContentHandler also
inspects tags and extracts their relevant links as demonstrated in D. All of the
extracted links are then passed onto the downstream handler, shown in E.

Listing 8.7 Tika’s LinkContentHandler class makes extracting file links a snap

Detected <a> tagB

Cache extracted linkC

Cache extracted
image linkD

Commit extracted
links to link setE

139How Tika extracts content

 The last section of the chapter is up next. In it, we’ll explain how the physical and
logical representation of how a file is stored affects methods for information extrac-
tion, and throws off ordinary toolkits that purport to do text and metadata extraction.
Good thing you have Tika, and good thing it’s no ordinary toolkit!

8.2.3 Storage affects extraction

The mechanism by which a file is stored on media may transmit useful information
worthy of Tika’s extraction. These mechanisms include the logical representation of
files via storage, such as through links (such as symbolic links), as well as the notion
that files can be sets of independent physical files linked together somehow.

 Files can be physically stored on a single disk or via the network. Sometimes files
may be physically distributed—as in the case of networked file systems like Google File
System (GFS) or Hadoop Distributed File System (HDFS)—but centrally represented
via a collection of network data blocks or some other higher-order structure. We’ll dis-
cuss how Tika’s use of the InputStream abstraction hides some of this complexity and
uniqueness.

 Individual files may be stored on disk as part of a larger whole of logically or physi-
cally linked files via some mechanism such as a common collection label, or a unique
directory to collect the files. Tika doesn’t care because it can exploit information from
either case. Madness, you say? Read on!

LOGICAL REPRESENTATION

Let’s postulate a simple example of software deployment to illustrate how logical rep-
resentation of files and directories may convey otherwise-hidden meaning that we’ll
want to bring out in the open using Tika. Take, for example, the software deployment
scenario in figure 8.7.

 In our postulated scenario, software is extracted from a configuration manage-
ment system—let’s say Apache Subversion—and then run through a deployment pro-
cess which installs the latest and greatest version of the software into the /deploy
directory, giving the installed software a unique version number. A symbolic link,
titled current, is also updated to point to the most recent installed version of the soft-
ware as a result of this process.

guration
management

system
(Subversion)

Deployment
process

/deploy

 /current

 /1.2.0

 /1.3.0

 /1.4.1

 /bin

 /lib

 /etc

Figure 8.7 A software deployment

scenario in which the system is

pulled out of configuration

management, run through a

deployment process that copies

and installs the software to a

directory path, and codified with

the unique software version number.

A symlink titled current points to the

latest and greatest installed version

of the software.

140 CHAPTER 8 What’s in a file?

What if we wanted to write a quick software program that would roll back the software
to the last prior working version when there’s some critically identified bug as a result
of the latest software deployment process? Let’s whip something up with Tika that
could address this problem for us!

public void rollback(File deployArea) throws IOException, SAXException,
TikaException {

LinkContentHandler handler = new LinkContentHandler();

Metadata met = new Metadata();
DeploymentAreaParser parser = new DeploymentAreaParser();

parser.parse(IOUtils.toInputStream(deployArea.getAbsolutePath()),

handler,
met);

List<Link> links = handler.getLinks();

if (links.size() < 2)
throw new IOException("Must have installed at least 2 versions!");

Collections.sort(links, new Comparator<Link>() {

public int compare(Link o1, Link o2) {

return o1.getText().compareTo(o2.getText());
}

});

this.updateVersion(links.get(links.size() - 2).getText());

}

The example program from listing 8.8 first passes along the path of the deployment
area to the DeploymentAreaParser class, whose parse is shown in listing 8.9. The
DeploymentAreaParser reads the underlying logical file structure, determining which
files are actual deployed software versions in contrast to symlink files pointing to the
current version. The returned software version directories are made available by call-
ing LinkContentHandler’s getLinks method, and then the directories are sorted in
descending order. To roll back, we pass along the second-to-last version directory to a
function called updateVersion, where we update the version to the prior stable soft-
ware. Not too shabby, huh?

public void parse(InputStream is, ContentHandler handler,
Metadata metadata, ParseContext context) throws IOException,

SAXException, TikaException {

File deployArea = new File(IOUtils.toString(is));
File[] versions = deployArea.listFiles(new

FileFilter() {

public boolean accept(File pathname) {
return !pathname.getName().startsWith("current");

}

});

Listing 8.8 A sample program to roll back a software version using Tika

Listing 8.9 A custom Tika Parser implementation for our deployment area

Extract versions
from deploy area

Sort by
version desc

Roll back to
prior version

Obtain deploy
area path

141Summary

XHTMLContentHandler xhtml = new
XHTMLContentHandler(handler, metadata);

xhtml.startDocument();

for (File v : versions) {
if(isSymlink(v)) continue;

xhtml.startElement("a", "href", v.toURL().toExternalForm());

xhtml.characters(v.getName());
xhtml.endElement("a");

}

}

PHYSICAL REPRESENTATION

If we expand our focus beyond the logical links between files and consider how those
files are actually represented on disk, we arrive at a number of interesting information
sources ripe for extraction. For example, considering that more and more file systems
are moving beyond simple local disks to farms of storage devices, we’re faced with an
interesting challenge. How do we deal with the extraction of information from a file if
we only have available to us a small unit of that file? Even worse, what do we do if that
small unit available to us is not a “power” unit like the file header?

 The reality is that we need a technology that can abstract away the mechanism by
which the file is actually stored. If the storage mechanism and physical file representa-
tion were abstracted away, then the extraction of text and agglomeration of metadata
derived from a file could easily be fed into Tika’s traditional extraction processes that
we’ve covered so far.

 This is precisely why Tika leverages the InputStream as the core data passing inter-
face to its Parser implementations via the parse(...) method. InputStreams obfus-
cate the underlying storage and protocol used to physically represent file contents (or
sets of files). Whether it’s a GFS URL pointer to a file that’s distributed as blocks over
the network, or a URL pointer to a file that’s locally on disk, Tika still deals with the
information as an InputStream via a call to URL.openStream. And URLs aren’t the only
means of getting InputStreams—InputStreams can be generated from Files, byte[]
arrays, and all sorts of objects, making it the right choice for Tika’s abstraction for the
file physical storage interface.

8.3 Summary

Bet you never thought files had such an influence over how their information is con-
sumed! This chapter served as a wake-up call to the reality that a file’s content organi-
zation, naming conventions, and storage on disk can greatly influence the way that
meaning is derived from them.

 File content and organization—We started out by showing you how file content
organization can affect performance and memory properties, and influence
how Tika parses out information and metadata. In the case of RSS, its content
organization (based on XML) allows for easy streaming and random access,
whereas in the case of HDF5, the entire file had to be read into memory, pre-
cluding streaming, but supporting random access.

Iterate over
deployed
versions

Extract file info,
ignore symlink

142 CHAPTER 8 What’s in a file?

 Extracting file header information and exploiting naming conventions—The middle
portion of the chapter focused on file header metadata and file naming con-
ventions, showing how in many cases metadata can be extracted from a file
without even having to open the file. This feature can greatly affect the ability to
easily and quickly catalog metadata about files, using Tika as the extractor.

 File storage and how it affects extraction—The last important aspect of files is the
physical location of a file (or set of associated files) on disk. In many cases, indi-
vidual files are part of some larger conglomerate, as in the case of directories
and split files generated by archive/compression utilities. We examined how
this information can be exploited by Tika to extract text and metadata that
would normally be impossible to extract when considering each file in isolation.

The next fork in the road will take us to the advanced use and integration of Tika into
the larger search ecosystem. You should be well prepared for this journey by now and
hopefully eager to see where Tika fits with other information technologies!

Part 3

Integration and
advanced use

Many traditional crafts are taught using an apprentice system where stu-
dents work under the guidance of a master craftsman. They learn each aspect of
the craft, starting from the basics and moving up to more advanced tasks as their
understanding and skills grow. Once the apprentice has learned everything their
master has to teach, they move on to independent practice. Through knowledge
and experience from practice they eventually become masters themselves.

 The previous part of this book was our attempt to carry you through a Tika
apprenticeship. By following the chapters and trying out the included examples,
you’ve had a chance to work your way through all of Tika’s key features and
should now be ready to start using these skills in practice. Perhaps you’ll go on to
become a master Tika craftsman!

 But in a complex world it’s often not enough to master just your own craft.
You need to be aware of and understand the world around you and the ways in
which it affects your work. This is why the apprentices of even traditional crafts
like woodworking are encouraged to study topics like marketing, finance, and
other business skills before they go on to start their own practice. Similarly, in
this part of our book we want to give you a picture of the world around Tika and
perhaps give you ideas of how to most successfully apply your newfound Tika
skills within this world.

 We’ll start with a look at various kinds of information-processing systems and
architectures in chapter 9. Many of these systems are related to search in various

ways, so chapter 10 looks at how Tika fits together with a comprehensive stack of open
source search tools. Finally, in chapter 11 we’ll discover Tika’s plugin model and how
you can use it to easily extend Tika functionality.

 Welcome to the next stage in your Tika studies!

145

The big picture

It’s time to start thinking big. After looking at the details of how Tika works, you’re
probably already thinking of how to integrate it with your applications. The pur-
pose of this chapter is to give you ideas about where and how Tika best fits with dif-
ferent kinds of applications, architectures, and requirements.

 We’ll do this in two parts. First we’ll focus on functionality and look at common
information-processing systems. We’ll start with search engines and then look at
document management and text mining as examples of other information-
processing systems where Tika comes in handy. The question is about what such sys-
tems can achieve with Tika and where Tika fits in the system architecture. Then in the
latter part of this chapter we’ll turn to nonfunctional features such as modularity
and scalability. The question there is how to use Tika to best meet such requirements.

This chapter covers

 Using Tika in search engines

 Document management systems

 Modularity and scalability

146 CHAPTER 9 The big picture

9.1 Tika in search engines

Throughout this book we’ve mentioned search engines as common places where Tika
is used, so let’s take a closer look at what a search engine does and where Tika fits in.
If you already know search engines, you can probably skip this section. If not, we’ll
start with a quick reminder of what a search engine does before a more detailed dis-
cussion of the components in a search engine.

9.1.1 The search use case

As outlined in figure 9.1, a search engine is broadly speaking an information-processing
system that makes it possible to efficiently search for documents by maintaining an
index of a document collection. Users look for information within a possibly
unbounded collection of documents. They express what they’re looking for as a search
query that can consist of keywords, phrases, or more complex constraints.

 A classic example is a web search engine such as Google Search or Microsoft’s
Bing, where the document collection is the entire web, the documents are web pages
and other web resources, and the index is
maintained by constantly “crawling” the
web for new or updated documents.

 The search engine works by indexing
documents in the specified collection. A
user then issues queries to the search
engine and receives results through some
addressing mechanism such as URLs for
web resources or ISBN codes for printed
books. The user can then find and access
the matching document from the source
collection.

9.1.2 The anatomy of a search index

What does a search engine look like internally, and where does Tika fit in there? The
architectural diagram in figure 9.2 answers these questions by showing the key compo-
nents of a typical search engine.

 If we follow the flow of data within such a search engine, we first encounter the
crawler component, whose task is to fetch documents to be indexed. There are many
strategies for finding and fetching documents, but typically a crawler will either tra-
verse a structured collection like a file system or follow document links in an unstruc-
tured collection like the public web. Often a crawler also has an update strategy by
which it refetches already-indexed documents to check whether they’ve been modi-
fied. In the next chapter we’ll look at the Apache Nutch project, which contains a
highly versatile and scalable crawler. The Apache ManifoldCF project (that we will
cover later in chapter 10) provides another crawler example, optimized for ingestion
into Apache Solr (also covered in chapter 10).

documents

Collec�on of Collec�on of

documents

Collec�on of

documents

Search

engine

Search

engine

Search

engine

User

Figure 9.1 Overview of a search engine. The

arrows indicate flows of information.

147Managing and mining information

 After a document has been fetched by the crawler, it’s
handed to the extraction component whose task is to
extract text and other data from the document. As dis-
cussed in chapters 5 and 6, the extracted text content and
metadata of a document are much more useful to a
search engine than raw bytes. In some search engines, the
extraction component is also used to feed interdocument
links back to the crawler component for use in traversing
the document collection. These tasks are exactly what
Tika does, so the extraction component of a search
engine can easily consist of nothing but Tika and a bit of
related glue code.

 The next component in line is the indexer that con-
verts the extracted document information into records
stored in the search index. A typical search engine uses
an inverse index that consists of a mapping from individual words or other search terms
to the documents that contain them. The index is called “inverse” because instead of
mapping a document identifier to the contents of the document, the mapping is from
the content of a document to its identifier. Often the indexer uses a special analyzer
tool to preprocess the previously extracted text; for example, to normalize words and
other tokens into their base forms and to exclude common words such as the or and

from being indexed. The Apache Lucene project discussed in the next chapter con-
tains everything you’d need to build an indexer like this.

 Finally, after the document has been indexed, there needs to be some way for the
user to query the search index. The query component takes queries expressed by the
user and translates them into the index access operations needed to find all the
matching documents. The query component is normally tightly related to the indexer
component, because they both contain information about the structure and organiza-
tion of the inverse index and typically need to use the same analyzer configuration to
map both documents and queries to the same underlying index terms. Because of this
interdependence, you’ll normally use the same library or framework for both of these
components.

 Search is useful as a standalone service, but elements of search engines are often
found also in other types of information-processing systems. This is natural, both
because search is such an important feature and because the crawling and extraction
components of a search engine are useful also in other applications. In the next sec-
tion we’ll look at two broad categories of such applications.

9.2 Managing and mining information

A classic search engine as described in the previous section deals with documents that
are stored and managed elsewhere and produces results that typically point to those
external resources. What if your application is in charge of managing all those

CrawlCrawl

ExtractExtract

IndexIndex

Inverse
index

Inverse
index

QueryQueryQuery

t

Figure 9.2 Architecture of a

search engine. Blocks identify

key components and the

arrows show how data flows

between them. Tika is

typically used in the starred

extraction component.

148 CHAPTER 9 The big picture

documents or needs to produce high-level reports that summarize or combine the
contained information in some intelligent manner? These are the two categories of
information-processing systems that we’ll cover next.

 The first category is document management systems, of which there are quite a few
different types, ranging from personal information management systems to huge
record archives. The second is the emerging field of text mining, which has experi-
enced some nice advances in recent years. Let’s start with document management.

9.2.1 Document management systems

Understood broadly, a document management system

combines a document collection and search
engine into a single service. Such a system takes
care of storing, classifying, archiving, and tracking
documents or other sorts of digital assets, and pro-
vides support for accessing the documents in vari-
ous different ways, including searching and
reporting. Often a document management system
also includes things such as workflow support and
integration with various other systems, for exam-
ple, Documentum, SharePoint, and so on.

 Common examples of document management are content, asset, and records
management systems used by many companies. Even tools such as customer relation-
ship management systems have similar features or contain an embedded document
database, because they need to efficiently track and access documents such as sales
quotes, customer requests, and other related correspondence.

 Figure 9.3 shows a high-level overview of the typical architecture of a document
management system. The system consists of a document database and a search index
for locating documents within the database.

 A document management system can use Tika not only as a part of the embedded
search index, but also as a tool for helping automatically classify documents and
report document characteristics. The metadata extraction (see chapter 6) and lan-
guage detection (see chapter 7) capabilities of Tika are often highly useful, as they
allow the system to better understand and categorize a document that might other-
wise look like a bunch of bits that a user would need to explicitly classify. Even the
basic type detection feature discussed in chapter 4 can be important for such a system.

DOWNLOADS DONE RIGHT A web-based document management system nor-
mally needs to provide a way for users to download documents for local
review and editing. An important part of such a feature is annotating the
download with a Content-Type header that contains the correct media type
of the document, because without that information it’s difficult for the
browser to determine how to best handle the document. With Tika’s auto-
matic type detection there’s no excuse not to provide that information.

Document

management

Document

management

DocumentsDocumentsDocuments

Search indexSearch indexSearch index

User

Figure 9.3 Overview of a document

management system

149Managing and mining information

Search engines and different kinds of document management systems are probably
the most important environments where Tika is being used, but there’s also an excit-
ing new category of tools that’s quickly becoming mature. Read on to learn more
about text mining and how to use Tika in that context!

9.2.2 Text mining

Traditional search engines or document management systems mostly just organize or
manage information and are typically judged in quantitative terms such as how many
documents they cover. Text mining applications are different in that they take existing
documents but produce qualitatively different information, for example, in the form
of relationships or key concepts.

 Consider a task where you’re given an archive of all the email messages and other
documents from your company over the last three years, and asked to provide a sum-
mary of all information related to a particular product or event. How would you go
about achieving such a task? The sheer magnitude of raw data even in a small company
rules out any manual approaches. You’ll need a computer (or a whole set of them) to
mine through the data and report back with the information you’re looking for.

 This is one example of the large class of information-processing tasks that are now-
adays being performed using text mining tools. The key elements of such tasks are
their large scale and the unstructured nature of the information being processed. A
more traditional data mining task would typically consist of correlating and summariz-
ing individual data points stored as structured rows in a relational database. With text
mining, we don’t have the luxury of predefined structure. The relevant data is usually
stored within the ambiguity of natural language and scattered around among multiple
kinds of documents, messages, and databases.

 Figure 9.4 shows a high-level overview of a typical data mining system. The system
consumes documents from a large collection, processes the information contained in
the documents, and outputs the mining results in the form of reports, databases, or
other high-level summaries that users can often use directly without having to reach
back to any individual source document.

 Text mining systems like these are normally designed to work on plain text, from
which they then extract structure and meaning through natural language processing
or other text processing methods. But the source data to be mined is usually stored in
formats such as email messages, web pages, or office documents. A text extraction step
is needed to make such data useful to a text mining system, and this is where Tika
comes in handy.

Collec�on of C

documents

ollec�on of

documents

Collec�on of

documents

Text

mining

Text

mining

Text

mining

User
Figure 9.4 Overview of a

text mining system

150 CHAPTER 9 The big picture

Many text mining systems use an internal processing pipeline to convert the incoming
data from raw bytes or characters to increasingly meaningful units of information
such as grammar trees or word occurrence vectors. Tika can usually be plugged into
an early part of such a pipeline in order to convert incoming documents from bytes to
text that can then be used as input to later stages of the pipeline.

 That’s where Tika fits within text mining. Together with earlier points about search
engines and document management systems, you should now have a good picture of
the most common kinds of applications where Tika is being used. Next we’ll turn our
attention to some key nonfunctional features that are relevant to all these and other
kinds of applications.

9.3 Buzzword compliance

When talking about software components and applications, modularity or scalability
come up often. Such features are so desirable that they’ve become buzzwords. If you
trust marketing materials, virtually all software is highly scalable and modular. But
what do these features mean in practice, and how does Tika scale on this buzzword-
meter? Read on to find out!

9.3.1 Modularity, Spring, and OSGi

Most information-processing systems are complex applications composed of many
smaller libraries and components. Being able to incrementally upgrade, customize, or
fix individual components without breaking the rest of the system is therefore very
useful. Complex deployment requirements (cloud, mobile, and so on) and the
increasingly distributed organization of software development teams also benefit from
good component architectures. Modularity has been a goal of software architects for
decades, but it’s never been as important as today!

 How does Tika fit within a modular component architecture? As discussed in previ-
ous chapters, Tika’s internal architecture is designed to be as pluggable and modular
as possible. Most notably, one of the key design criteria for the Parser API covered in
chapter 5 was to support easy integration with external parser libraries and compo-
nents. Thus a Tika deployment with parser components from multiple different
sources could easily look like the one featured in figure 9.5. In chapter 11 we’ll go into
more detail on how and why to implement such custom or third-party parser plugins.

Parser API

(�ka-core)

Default parsers

(�ka-parsers)
Third-party parsersCustom parsers

User

Figure 9.5 Tika deployment with

parser implementations from

multiple different sources

151Buzzword compliance

In addition to being easy to implement, Tika parsers are also easy to use in a compo-
nent environment. For example, all parser classes are expected to have a zero-
argument constructor and be configurable dynamically through the parsing context
mechanism discussed in chapter 5. The following Spring bean configuration snippet
illustrates this by wiring up a simple composite parser that understands both plain text
and PDF documents:

-->
<bean id="tika" class="org.apache.tika.parser.AutoDetectParser">

<constructor-arg>

<list>
<ref bean="txt"/>

<ref bean="pdf"/>

</list>
</constructor-arg>

</bean>

<bean id="txt" class="org.apache.tika.parser.txt.TXTParser"/>
<bean id="pdf" class="org.apache.tika.parser.pdf.PDFParser"/>

<!

A component configuration like the one shown here creates a static composition of
parsers. Modifying the configuration requires restarting your application or at least
reloading the configuration and all components that depend on it. But sometimes a
more dynamic mechanism is needed. Imagine being able to replace the PDF parser
with a commercially licensed alternative, upgrade the plain text parser for a version
with the latest bug fixes, and add a new parser for a custom file format without having
to restart or even reload any other components of the system! This is what the OSGi
framework makes possible.

 The OSGi framework is a modular service platform for the Java environment. Origi-
nally designed for embedded systems with complex deployment and management
requirements, OSGi is also quickly becoming popular on the server side. Tika supports
OSGi through the tika-bundle component, which combines Tika core classes and all
the default parsers into a single package that can easily be deployed into an OSGi con-
tainer. Once deployed, the Tika bundle will provide all the standard Tika classes and
interfaces that we’ve already covered. And as an extra twist, the bundle will automati-
cally look up and use possible parser services from other bundles.

9.3.2 Large-scale computing

What if your modules are entire computers instead of individual software compo-
nents? Especially in large search and text mining applications, it’s becoming increas-
ingly common to spread the processing load to hundreds or thousands of commodity
servers. Cloud services like Amazon’s Elastic Computing Cloud (EC2) make such envi-
ronments readily available at low cost and minimal overhead. But how do you run
Tika on such systems?

 Such large-scale deployments typically use sharding or map-reduce algorithms for
controlling their workload. The basic idea is that the data to be processed is

152 CHAPTER 9 The big picture

distributed over the computing cluster,
and each individual computer is only
responsible for handling a small subset
of the data. This approach works well
with Tika, which only really cares about a
single document at a time.

 For example, consider a case where
you need to create a full-text index of
millions of documents. In chapter 5 we
outlined how to build a simple full-text
indexer with Tika, but it may take
months for such an application to index
all the documents on a single computer.
Now what if you’re given 1,000 computers to achieve this task? Figure 9.6 illustrates
what a difference distributing such computations over multiple computers can make.

 The only requirements for such distribution of computing work is that the process-
ing can be split into independent pieces that can be processed in parallel and that the
results of these partial processes can be combined easily. Luckily, an inverse search
index meets both these requirements in that documents can be indexed in parallel
and it’s easy to merge two or more independent indexes into a single larger index.
This suggests a straightforward map-reduce solution illustrated in figure 9.7.

 What happens here is that we split our collection of input documents into parts
that each contain a few hundred documents. These parts are then sent to individual
computers for producing an index that covers just those documents. This is the “map”
part of our map-reduce solution. The resulting small indexes are then “reduced” into
a big index by merging them together.

 An important concern in such a solution is being able to properly handle com-
puter failures. The more computers you’re using, the more likely it becomes that at
least one of them will fail while it’s doing important work. The solution to such cases is
to restart the failed computation on another computer.

 There’s a fast-growing ecosystem of tools and communities focused on such large-
scale information systems. A good place to start is the Apache Hadoop project which,

TermA

TermB

TermA

TermC

TermB

TermA: Doc1

TermB: Doc1

TermA: Doc2

TermC: Doc2

TermB: Doc3

TermA: Doc1, Doc2

TermB: Doc1, Doc3

TermC: Doc2

Doc1

Doc2

Doc3

Index1

Index2

Index3

Map

Reduced index

Map

Map

Figure 9.7 Building an inverse

index as a map-reduce operation

Doc

Doc

Doc

Doc

One computer

Overloaded

Many computers

Distributed load

Figure 9.6 Distributing a large workload over

multiple computers can dramatically improve

system throughput.

153Summary

together with related Apache projects, implements a comprehensive suite of cloud
computing tools.

9.4 Summary

This completes our high-level overview of where and how you might find yourself
using Tika. We started with a search engine walkthrough and a brief overview of docu-
ment management and text mining as examples of related information-processing sys-
tems. Then we turned to modularity and scalability as key nonfunctional features. As
we found out, Tika supports component systems such as Spring and OSGi, and it also
fits in nicely with large-scale architectures such as map-reduce operations.

 A single chapter is only enough to scratch the surface, but you’ll find a lot more
information in books and other resources dedicated to these topics. Good starting
points are other books in Manning’s In Action series, which covers pretty much all the
projects and technologies mentioned in this chapter. Since Tika is such a new tool, it’s
not yet widely referenced in existing literature, and the information from this chapter
should help you fill in those blanks where appropriate.

 The next chapter is dedicated to a sprawling collection of open source tools and
projects that are often found in applications and systems described in this chapter.
Read on to discover the Lucene search stack!

154

Tika and the Lucene
search stack

We’re going to take a break from our in-depth tour of the Tika framework. By now,
those topics should be second nature to you. But you may not be so comfortable
with phrases like Mahout, or Droids, or (eep!) Open Relevance.

 Though these terms might sound foreign, they’re common terminology to
those familiar with the Apache Lucene1 family of search-related applications.
Lucene is an Apache Top Level Project, or TLP, originally home to a number of
search-related software products that themselves have grown to TLP-level status,
including Tika.

This chapter covers

 ManifoldCF and Open Relevance

 Lucene and Solr

 Nutch, Droids, and Mahout

1 The name Lucene was Doug Cutting’s wife’s middle name, and her maternal grandmother’s first name as
detailed at http://mng.bz/XyTG.

http://mng.bz/XyTG

155Load-bearing walls

 It’s our job in this chapter to educate you about these projects, and frame your
understanding of Tika’s usefulness and relationship to this family of software applica-
tions. We’ll keep it high-level, focusing more on the architecture and less on the
actual implementations. Those are dutifully covered in other fine Manning books.2

VIEW FROM THE TOP An Apache Top Level Project (TLP) signifies a level of
maturity for a particular software product. TLP indicates that the project has
attracted a diverse base of committers, across multiple organizations; made
frequent software releases under the Apache license, adhering to Apache stan-
dards in terms of dependent libraries, attribution, and legal protection; and
demonstrated the ability to self-govern, elect new committers, and effectively
manage itself. Tika reached this tremendous milestone on April 21, 2010.

10.1 Load-bearing walls

We’ll begin by explaining the high-level diagram shown in figure 10.1, indicative of
the rich and blossoming Lucene ecosystem.

 Each of the boxes shown in the diagram represents a current Apache Lucene sub-
project, or Apache Top Level Project, with its own diverse community, release cycle,
and set of software products released under its umbrella.

 The diagram is layered to demonstrate the architectural properties of the system.
In traditional software architecture, the layered architectural style has the following
characteristics. Each layer represents some component (or set of related components)
providing computation and functionality. Communication may occur intralayer
(between components in the same layer) or interlayer, indicating that two adjacent
layers are communicating. Interlayer communication may only occur between adja-
cent layers, originating from a top layer (the service consumer), and being responded
to by a bottom adjacent layer (the service provider). Layers at the bottom of the archi-
tecture have little abstraction—they provide core functionality upon which all top lay-
ers rely.

2 Specifically, we encourage you to check out Mahout in Action, Lucene in Action (1st and 2nd editions), and Solr
in Action, because they cover Tika in some form and will help as a supplement to this book.

ManifoldCF

Lucene

Solr

OpenRelevance

Nutch

Hadoop/

HBase

Mahout Droids

Tika

Tika

Figure 10.1 The Apache Lucene

ecosystem and its family of software

products. Some of the software products

(such as Mahout, Nutch, Tika, and

Hadoop) have graduated to form their

own software ecosystems, but they all

originated from Lucene. Tika is the third

dimension in the stack, servicing each

layer in some form or fashion.

156 CHAPTER 10 Tika and the Lucene search stack

Layers at upper levels of the architecture have increasing layers of abstraction,
depending on those services provided by the directly adjacent service provider layer.
Some layers are cross-cutting (Hadoop/HBase and Solr) and are shown as layers span-
ning multiple levels in the architecture. In addition, Tika is shown as the three-
dimensional layer, since its applicability spans each one of the service consuming and
providing layers in the Lucene ecosystem.

 The technologies at the lower portion of the stack in figure 10.1 form the load-
bearing walls on which the rest of the ecosystem stands tall. In this section, we’ll
restrict our focus to ManifoldCF and Open Relevance and their relationship to Tika.
As can be seen from the diagram, even though ManifoldCF and Open Relevance form
the load-bearing walls, there’s still room for some Tika “mortar” to hold those walls
together!

10.1.1 ManifoldCF

The Apache Manifold Connectors (or ManifoldCF) project3 is an Apache Incubator
podling focused on building connections between external enterprise document
repositories (for example, SharePoint, Documentum, and so on) and higher-level con-
tent technologies such as Apache Solr (which we’ll talk about in section 10.2.2).
ManifoldCF was originally conceived and implemented as a closed source set of software
made available by the MetaCarta company, but was donated to the Apache Software
Foundation in January 2010. The home page for the project is shown in figure 10.2.

3 For more information see http://incubator.apache.org/connectors/ or check out ManifoldCF in Action at
http://manning.com/wright/.

Figure 10.2 The Apache ManifoldCF home page from the Apache Incubator

http://incubator.apache.org/connectors/
http://manning.com/wright/

157Load-bearing walls

PEAS IN A POD An Apache Incubator podling is a project not yet fully
endorsed by the Apache Software Foundation. All projects enter Apache
through the Apache Incubator, a super-project whose sole responsibility is to
guide new podlings through the ins and outs of Apache. Specifically, the goal
is to attract a diverse set of committers, encourage frequent releases under
the Apache license, and to move toward the ability to self-manage and self-
govern. It should be no surprise that the next step for projects after graduat-
ing from the Incubator is Apache TLP status.

The project originally entered the Apache Incubator under the title Lucene Connec-

tors Framework, or LCF, but was later renamed ManifoldCF to avoid confusion with
other Apache connector-related products, including the Apache Tomcat connector
framework.

 The main goal of ManifoldCF is to make it easy to connect to existing enterprise-
level document sources, including Microsoft SharePoint, EMC Documentum, and
Windows File Shares, to name a few. Once connected, ManifoldCF extracts content
from those sources. Once extracted, ManifoldCF provides a set of tools to easily make
the extracted content available to send to output sinks, with a specific focus on
Lucene and Solr. In addition, ManifoldCF also extracts security-related information
and passes it along to the Lucene and Solr index for use in downstream policies.

 There has been some light discussion4 in the ManifoldCF community about using
Tika’s MIME detection capabilities (recall chapter 4) to identify content as it travels
from input source to output sink, but nothing beyond discussion has materialized to
date. Beyond identifying content, Tika may also prove useful in ManifoldCF as an out-
put content transformer, extracting information from content traveling across the wire
and making that extracted information easily available to the ManifoldCF framework.

 We’ll see in section 10.2.2 how ManifoldCF currently integrates Tika via Apache
Solr’s ExtractingRequestHandler, more commonly known as SolrCell. ManifoldCF
sends output content as Document constructs directly to SolrCell, which then uses
Tika to parse out metadata and text to send to Apache Solr.

 Let’s take a look at the Open Relevance project (ORP) next. Open Relevance is a
community of volunteers whose goal involves making large document collections eas-
ily available for analysis and relevancy identification.

10.1.2 Open Relevance

Open Relevance (http://lucene.apache.org/openrelevance/) started out as an
Apache Lucene subproject in June 2009, with the stated goals of making large cor-
puses of web content available under the Apache license. Search ranking techniques
require these corpuses in order to train their algorithms to identify content relevant
to return in search results. Since search ranking must be fairly content agnostic, cor-
puses of web content such as those provided by OpenNLP must be comparatively
large, and representative of the entire web.5 The home page for the Open Relevance
project is shown in figure 10.3.

4 See, in particular, http://mng.bz/4018.
5 Though smaller corpuses are also useful for specific relevancy training and algorithms.

http://lucene.apache.org/openrelevance/
http://mng.bz/4018

158 CHAPTER 10 Tika and the Lucene search stack

To date, three data sets are part of the Open Relevance collection in Apache SVN
(http://mng.bz/04Tk):

1 Hamshahri corpus—This is a moderately sized data set (~350MB) of newspaper
articles from 1996 to 2002 covering 82 categories of interest including politics,
arts, and so on.

2 OHSUMED corpus—This is a larger data set (~850MB) of analyzed medical docu-
ments from 1987 to 1991.

3 Tempo corpus—This is a small data set (~45MB) of newspaper articles from 2000
to 2002.

In making these datasets available, and providing a community for discussion of them,
Open Relevance serves to inform other search-related projects in the Lucene ecosys-
tem. For example, Lucene Analyzer classes6 can be trained to recognize the same pat-
terns and concepts identified as part of each corpus. In addition, Solr Analyzers can
take advantage of these. Nutch also uses a custom set of Lucene Analyzers, which can
be furthered informed by the data sets in Open Relevance. In addition, ranking algo-
rithms in Solr, Lucene, and Nutch can be tuned according to the suggested impor-
tance and relevancy of the documents as identified in each training corpus from
Open Relevance.

 So, where does Tika play into this equation? Open Relevance expects as input a num-
ber of document collections, containing document IDs, relevant textual summaries, and
other queries that help ascertain the relevancy of documents to common categories and
queries of interest. This is precisely the type of information that Tika can extract and pro-
vide from a corpus of documents. For example, consider the following listing:

6 Don’t worry—we’ll explain what these are shortly.

Figure 10.3 The Apache Open Relevance home page

http://mng.bz/04Tk

159The steel frame

public TrecDocument summarize(File file) throws FileNotFoundException,
IOException, TikaException {

Tika tika = new Tika();

Metadata met = new Metadata();

String contents = tika.parseToString(new FileInputStream(file), met);

return new TrecDocument(met.get(Metadata.RESOURCE_NAME_KEY),

contents, met
.getDate(Metadata.DATE));

}

The only code developed so far for Open Relevance is a set of utility code to represent
documents according to TREC (Text Retrieval Conference) standards. These document
contain three attributes: a document identifier, a date associated with the document,
and its text summary.

 By this point in the book, you should know that Tika excels in extracting all three of
the TREC document attributes that are modeled by ORP. The program in listing 10.1
shows how simple the integration is in Tika. A single call to the Tika facade takes care
of all the work!

 So far, we’ve shown you the load-bearing walls on which the rest of the Lucene eco-
system stands, and how Tika helps those walls (and can be thought of as their mortar).
In the next section, we’ll discuss the core search technologies in the next layer of the
Lucene ecosystem: Lucene Core and Solr.

10.2 The steel frame

The “bread and butter” technologies that stand on top of the load-bearing walls in the
Lucene ecosystem are the flagship Apache Lucene library itself (sometimes called
Lucene Core), as well as Apache Solr, which builds on top of Lucene, but still belongs in
this level.

10.2.1 Lucene Core

Apache Lucene7 is a Java-based library that provides a few basic constructs which,
when brought together, form a powerful, flexible mechanism to implement search. Its
home page is shown in figure 10.4.

 At its core is the Document
model, allowing for the arbitrary
storage of named Fields per
Document, with multiple values
per Field. This allows metadata to
be stored per Document in the
index, as shown in table 10.1.

Listing 10.1 Integrating Tika into Open Relevance

7 See http://lucene.apache.org/or check out Lucene in Action at http://manning.com/hatcher3/.

Use Tika facade Extract text
and metadata

Build ORP TREC document

Table 10.1 A table-oriented view of a Lucene Document

Field Value(s)

Title Tika in Action

Author Chris A. Mattmann, Jukka Zitting

Number of Pages 250

http://lucene.apache.org/
http://manning.com/hatcher3/

160 CHAPTER 10 Tika and the Lucene search stack

Table 10.1 represents a Lucene Document that itself represents metadata about an
upcoming important book. The Document contains three Fields: Title, Author, and
Number of Pages, where Author is a multivalued field containing two values, separated by
a comma, and the other two fields are single-valued entries.

 In addition to the Document model for representing content in a search index,
Lucene provides a query model and a set of tools for analysis and tokenization of both
text and numeric data. Lucene also contains a number of additional modules, for
highlighting (partial) word matches, for indexing content from dictionaries like
WordNet,8 and even for geographic information system (or spatial) search!

 Tika has grown to provide a number of useful features to the core Lucene library.
We saw some of these in action when we saw the LuceneIndexer from chapter 5, and
the MetadataAwareLuceneIndexer from chapter 6. In short, Tika can feed both text
and metadata to a Lucene index for any type of file that Tika knows about.9 Not only
can Tika extract text and metadata to feed into a Lucene index, it can also dynami-
cally pick and choose the type of files (using its MIME detector, which you read about
in chapter 4) to send to the Lucene index.

 Once files have been indexed in Lucene, Tika can also help out, as we saw in the
RecentFiles example from chapter 6, where Tika’s standard metadata field names
were used to automatically determine the names of the document metadata field
names to query on.

 Tika’s utility doesn’t stop at Lucene Core. One of Tika’s most frequent usages
within the Lucene family in is connection with Apache Solr, as we’ll read about in the
next section.

8 A large lexical database of English words. Read more about it at http://wordnet.princeton.edu/.
9 And by now, we know that includes many types of files, more than 1200!

Figure 10.4 The Apache Lucene Top Level Project home page

http://wordnet.princeton.edu/

161The steel frame

10.2.2 Solr

Apache Solr (http://lucene.apache.org/solr/) builds on top of Lucene but offers
many of the same functions (highlighting, query parsing, tokenization, analysis, and so
forth), exposing these capabilities over a RESTful interface. Solr also extends Lucene
to support concurrent index writing and reading, leveraging an HTTP Servlet Applica-
tion server such as Apache Tomcat or Jetty to assist in concurrency and transaction
management. The home page for the Apache Solr project is shown in figure 10.5.

 Solr originally began as an internal project at CBS Interactive (or CNET), but was
donated to the Apache Software Foundation in January 2006 via the Apache Incuba-
tor. After graduating from the Incubator, Solr became a Lucene subproject. Over the
years, the Lucene and Solr communities have grown closer together, resulting in a
merge of their development activities in March 2010.

 One of Solr’s flagship capabilities is its plugin mechanism, and one of the most
useful plugins developed for Solr to date directly integrates Tika into Solr’s toolkit. The
ExtractingRequestHandler, or SolrCell as it’s more commonly known, is a Solr
UpdateHandler implementation that allows any arbitrary document to be sent to Solr
via its HTTP update interface. Once the document arrives in Solr, Tika is leveraged to
extract text and metadata from the document, and to map that text and metadata into
fields stored per Document in the Lucene/Solr index. Recall in section 10.1.1 we dis-
cussed that one of ManifoldCF’s key features is its easy integration with SolrCell and
Tika, by sucking documents out of proprietary enterprise document and content
repositories and ingesting them into Solr via Tika and SolrCell.

 Other areas of integration between Tika and Solr include a recent project to inte-
grate Tika’s language identifier (recall chapter 7) as an UpdateProcessor interface in
Solr known as the LanguageIdentifierUpdateProcessor. More information on
LanguageIdentifierUpdateProcessor can be found on the Solr JIRA system.10

10 http://issues.apache.org/jira/browse/SOLR-1979

Figure 10.5 The Apache Solr Project home page

http://lucene.apache.org/solr/
http://issues.apache.org/jira/browse/SOLR-1979

162 CHAPTER 10 Tika and the Lucene search stack

Now that we’ve covered the steel frame of the Lucene search ecosystem, it’s time to
talk about some of the advanced applications that sit on top of the frame. You proba-
bly won’t be surprised at this, but Tika is used a lot in each of the applications and soft-
ware systems we’re about to discuss.

10.3 The finishing touches

With a strong foundation and core, it’s no wonder that higher-level applications and
frameworks have blossomed in the Lucene ecosystem. The oldest of these frameworks
was the original home to Apache Hadoop—the Apache Nutch project. Nutch’s goal is
to leverage Lucene, Solr, and various content-loading and extraction technologies to
provide web-scale (tens of billions of web pages) search, in an efficient and effective
matter. Apache Droids is an Incubator podling whose focus is developing a lightweight
extensible crawler that can integrate into projects such as Nutch, Lucene, and Solr,
without all the complex features and functions that those technologies provide.
Finally, though we discussed Mahout earlier (in section 3.3), we’ll revisit it in the con-
text of the Lucene ecosystem discussion, and discuss the applications that sit on top of
the core and load-bearing walls of Lucene.

 The best thing about our upcoming foray into these technologies? They all lever-
age Tika!

10.3.1 Nutch

Apache Nutch entered the Apache Incubator in January 2005, and quickly graduated
that June to Lucene subproject status. At its core, Nutch’s primary goal was (and
remains) opening up the “black box” that is web search and allowing for infinite tin-
kering and exploration in order to improve user experience and advance the state of
the practice. According to Doug Cutting (Nutch’s creator), Nutch came about for this
reason:

Nutch provides a transparent alternative to commercial web search engines. Only open
source search results can be fully trusted to be without bias. (Or at least their bias is
public.) All existing major search engines have proprietary ranking formulas, and will
not explain why a given page ranks as it does. Additionally, some search engines
determine which sites to index based on payments, rather than on the merits of the sites
themselves. Nutch, on the other hand, has nothing to hide and no motive to bias its
results or its crawler in any way other than to try to give each user the best results possible.

—Doug Cutting
 Founder of Nutch, 2004

After a period of years and eventual 1.0 release under the Lucene umbrella, Nutch
graduated to Top Level Project status in April 2010. Its home page (http://
nutch.apache.org/) is shown in figure 10.6.

 Nutch is the integration architecture that leverages most or all of the components
from the Lucene ecosystem as shown in figure 10.7.

 At its core, Nutch provides a crawling framework (similar to what we’ll discuss
when we talk about Droids) that leverages different Protocol plugins responsible for

http://nutch.apache.org/
http://nutch.apache.org/

163The finishing touches

downloading file content (over HTTP, FTP, SCP, and so on). Once content is obtained,
it’s fed through Tika for parsing and metadata extraction. Once the metadata and text
has been extracted, that information is passed along to Solr for indexing, and made
available for search via Solr’s REST APIs. The original content is cached in Apache Gora

(http://incubator.apache.org/gora/), a new Apache Incubator podling responsible
for data storage and object-relational mapping. Nutch’s crawling process is run on top
of Apache Hadoop as a set of distributed crawling jobs, efficiently distributing the
load of crawling billions of web pages across a set of clustered computing resources.

 What we’ve just described is the current Nutch2 architecture, and it represents a
huge advancement over the 1.x series. Nutch2’s goal is to leverage the rest of the proj-
ects in the Lucene ecosystem to do its heavy lifting, and to make construction and
experimentation with a web-scale search engine possible by forging the necessary con-
nections between these powerful (but complex) software technologies.

Figure 10.6 The Apache Nutch Top Level Project home page

Gora

(storage framework)
Solr

(indexing framework)

Web
pages

Index

HBase/Hadoop

Tika

(parsing framework)

P
ro

to
c
o
l
la

y
e
r

Figure 10.7 The Apache Nutch2

Architecture. A major refactoring of the

overall system, Nutch is now a delegation

framework, leaving the heavy lifting to the

other systems in the Lucene ecosystem.

http://incubator.apache.org/gora/

164 CHAPTER 10 Tika and the Lucene search stack

Clearly, from figure 10.7, Tika is a huge part of the Nutch architecture. Besides assist-
ing in content extraction and metadata extraction for parsing, Tika’s MIME detection
system is also heavily used to help determine which content should be pulled down
and crawled, how it should be parsed (which parser to leverage), and how to flow the
extracted information into Solr. As we’ve seen with the search engine examples (from
chapters 1 and 9 and as you’ll see in chapter 15), it’s hard to build a search engine
without leveraging a framework like Tika since parsing, metadata extraction, MIME
detection, and language identification are all critical functions of search.

 Next we’ll cover Apache Droids, an Incubator podling whose focus is restricted to
extensible file crawling and delivery to systems such as Solr and Nutch. Don’t worry;
Tika will pop up there again, too!

10.3.2 Droids

One of the more serious complaints about Nutch over the years came from users who
felt it was too configurable.11 Nutch’s plentiful configuration parameters threw off
users who wanted to start crawling and indexing information about files and docu-
ments out of the box. Additionally, many potential users didn’t have access to a 100-
node cluster to see the benefits of deployment over Hadoop and thus wanted a more
minimal, out-of-the-box crawler to begin experimenting with a corpus of documents.

 Enter Apache Droids, an effort to refactor and reconfigure the crawler portion of
Nutch into an independent, easy-to-use framework for text extraction and crawling.
Droids entered the Apache Incubator in October 2008, and has been an Incubator
project ever since. The home page for Droids is shown in figure 10.8.

 Droids has no qualms about leveraging Tika as a core component in its framework.
The Droids home page (http://incubator.apache.org/droids/) says it all.

11 Yes, it’s possible for users to get annoyed with too much extensibility in a system. Good software frameworks
make the appropriate trade-off between sensible defaults and existing functionality at the expense of total
configuration, but usually that lesson is learned over a looong time.

Figure 10.8 The Apache Droids Project home page

http://incubator.apache.org/droids/

165The finishing touches

Apache Tika, the parser component, is just a wrapper for Tika since it offers everything
we need. No need to duplicate the effort.

A Handler is a component that uses the original stream and/or the parser
(ContentHandler coming from Tika) and the url to invoke arbitrary business logic on
the objects.

That pretty much covers web-crawling and file-crawling frameworks built on top of the
Lucene stack. At this point, we hope you appreciate how Tika fills in as the mortar
connecting most of these technologies, providing the common functionality that
Lucene components require to implement world-class search software.

 We’ll wrap up the section with a short revisit to the Apache Mahout project, and its
role in the overall Lucene ecosystem.

10.3.3 Mahout

Apache Mahout12 started out as a Lucene subproject in January 2008, when a number
of Lucene project members realized that they shared a common interest in imple-
menting scalable machine learning algorithms on top of the Apache Hadoop frame-
work. The home page for Mahout is shown in figure 10.9. In April 2010, Mahout
become an Apache Top Level project.

12 See http://mahout.apache.org/ or check out Mahout in Action at http://manning.com/owen/.

Figure 10.9 The Apache Mahout Top Level Project home page

http://mahout.apache.org/
http://manning.com/owen/

166 CHAPTER 10 Tika and the Lucene search stack

Since its inception, Mahout has grown to focus on the field of machine learning, opt-
ing to add capabilities for collaborative filtering (finding common products and rec-
ommending them), clustering, and (automatic) categorization. Mahout gels nicely
with Lucene in that it can load data from Lucene indexes and feed the information
into its machine learning algorithms to run analyses and assist in decision making in
software applications, such as suggest a book you should buy on Amazon (based on
your purchase history), or categorize a new product you’ve added to your website
based on its features and extracted information.

 We covered Mahout pretty extensively in section 3.3, but let’s summarize in case
you’ve forgotten by this point.13 Tika can be leveraged in Mahout’s algorithms as a
means of turning files and documents into extracted text, which is in turn fed into
Mahout’s software framework for collaborative filtering, clustering, and so forth. Since
Mahout algorithms are Hadoop-enabled, Mahout represents another real-world
example (akin to Nutch) of bringing Tika to Hadoop, which remains a large load-
bearing wall in the Lucene ecosystem.

 For an in-depth look at Mahout and Tika, we recommend heading back to
section 3.3 and checking out figure 3.8. Now that we’ve covered all of the core por-
tions of the Lucene architecture and ecosystem, it’s time for a quick recap and wrap-
up of the chapter.

10.4 Summary

The goal of this chapter was to introduce you to the vibrant Lucene ecosystem, and
all of the supporting cast involved in it, including Mahout, Lucene, ManifoldCF, and
others. We tried to keep it high-level and focus on the architecture and broader
details of each of these projects, as an in-depth treatment of them is beyond the
scope of this book.

 We framed Tika’s relationship to each of these technologies, and tried to indicate
the overall layered architecture and commonalities between each of these software
products, taking special care to show you where Tika fit in along the way. The key take-
aways should include these points:

1 The architecture of the Lucene ecosystem—Identifying which technologies fit where,
and why.

2 The broad infection of Tika into each layer of the architecture—There’s no getting
around it—Tika forms the mortar that holds the “bricks” or layers of the archi-
tecture together.

Now that you can tell your Tikas from your Solrs, it’s time to wrap up this part of the
book and discuss some advanced usage of Tika, focusing on the cases where Tika as
shipped requires some extensions and additional functionality to meet your needs.
It’s called “Extending Tika” and it’s up next!

13 We wouldn’t blame you, seven chapters later!

167

Extending Tika

There are thousands of document formats in the world and new ones are con-
stantly being introduced, so it’s impossible for a library like Tika to support all of
them out of the box. Thus even though each Tika version adds support for new for-
mats, there will be times when Tika won’t be able to extract content from or even
detect the type of a document you’re trying to use. This chapter is about what you
can do in such a situation.

 Imagine that you’re working with a new XML-based file format for medical pre-
scriptions. Each file describes a single prescription and consists of a set of both
fixed and free-form fields of information. Optionally the prescription documents
can be digitally signed and encrypted for better security and privacy. Figure 11.1
shows how such digital prescriptions can be used in practice.

 It’d be useful to make such documents searchable based on both free-form text
and selected metadata fields like the patient name or identifier. The easiest way to
implement such a search engine is to use an existing search stack like the one we

This chapter covers

 Teaching Tika about new media types

 Custom type detection

 Building custom parsers

168 CHAPTER 11 Extending Tika

described in the previous chapter, and to do that you simply need to teach Tika how
these documents should be parsed.

 We’ll use such digital prescription documents as our example for extending Tika.
First we’ll teach Tika how to detect and identify such documents, and then we’ll see
how to make Tika correctly parse these documents.

11.1 Adding type information

The first step in dealing with a new document type is identifying it with a media type.
Let’s tentatively name our prescription format application/x-prescription+xml.
The x- prefix marks this as an experimental type that hasn’t been officially registered,
and the +xml suffix signals that the type is XML-based.

 We also need some information to help automatic detection of prescription docu-
ments. As discussed in chapter 4, the file extension and the XML root element are
good hints for type detection. So let’s assume that the prescription files are named
with a .xpd extension for extensible prescription document. Furthermore let’s assume that
the XML documents start with an <xpd:prescription> element whose prefix xpd is
mapped to the namespace http://example.com/2011/xpd. The following listing
shows what such a document might look like:

<xpd:prescription xmlns:xpd="http://example.com/2011/xpd">
<xpd:doctor>...</xpd:doctor>
<xpd:patient>...</xpd:patient>
<xpd:medicine>...</xpd:medicine>
<xpd:instructions>...</xpd:instructions>

</xpd:prescription>

All this type information can be described in the media type record shown next.
Please refer back to chapter 4 where we covered the MIME-info database for more
details about the media type record structure:

<mime-info>
<mime-type type="application/x-prescription+xml">

<sub-class-of type="application/xml"/>
<acronym>XPD</acronym>
<expanded-acronym>Extensible Description Document</expanded-acronym>
<comment xml:lang="en">Digital prescription</comment>
<glob pattern="*.xpd"/>
<root-XML localName="prescription"

namespaceURI="http://example.com/2011/xpd"/>
</mime-type>
</mime-info>

Digital

signature

Prescrip�on document

Encrypted message

Doctor Pharmacist

Figure 11.1 Illustration of how a digital

prescription document can be used to

securely transfer accurate prescription

information from a doctor to a

pharmacy. A digital signature ensures

that the document came from someone

authorized to make prescriptions, and

encryption is used to ensure the privacy

of the patient.

169Custom type detection

The most obvious way to teach Tika about new document types is to extend the exist-
ing media type database, so that’s what we’ll focus on first.

11.1.1 Custom media type configuration

Let’s look at the shared MIME-info database file we covered earlier in chapter 4. The
database contains details of all the media types known to Tika, so to support a new
type you’ll need to add it to the database. This section shows how to do that.

 By default Tika will load this database from the org/apache/tika/mime/tika-
mimetypes.xml file inside the tika-core JAR. But you can also instruct Tika to load an
alternative file using the MimeTypesFactory class. For example, the following listing
shows how to load an alternative MIME-info database and use it to set up a Tika facade
instance for use in type detection:

String path = "file:///path/to/prescription-type.xml";
MimeTypes typeDatabase = MimeTypesFactory.create(new URL(path));

Tika tika = new Tika(typeDatabase);

String type = tika.detect("/path/to/prescription.xpd");

When executed with the described custom settings, this code snippet will return the
expected application/x-prescription+xml media type. You can also use the Mime-
Types object returned by the MimeTypesFactory for constructing AutoDetectParser
instances or anywhere you need a Detector object.

 Tika currently doesn’t support merging multiple MIME-info databases, so the best
way to create a customized database is to start with the default version included in the
tika-core JAR. This unfortunately means that you should update your customized ver-
sion whenever a new Tika release is made. A future Tika release will no doubt add sup-
port for incremental database updates to make it easier to maintain these kinds of
custom extensions.

 Now that Tika knows our custom types, our next step is to look at adding more
generic type detection strategies through custom Detector classes.

11.2 Custom type detection

Customizing the MIME-info database is all it takes to teach Tika about new types and
new type detection rules based on common features such as file extensions, magic
bytes, or XML elements. But what if you’re dealing with a more complex format for
which none of these simple detection mechanisms work? The answer lies in Tika’s
Detector interface, which allows you to plug in custom type detection algorithms.

 To better understand the Detector interface and how to use it as an extension
point, we’ll first go through a quick overview of how the interface works. Then we’ll
dive in and implement a complete custom type detector for encrypted prescription
documents. Finally we’ll see how custom detectors can be plugged into Tika.

170 CHAPTER 11 Extending Tika

11.2.1 The Detector interface

The Detector interface specifies a
generic API for type detection algo-
rithms. The detect method defined in
this interface detects the type of a docu-
ment based on the document’s raw byte
stream and any available document meta-
data. The diagram in figure 11.2 outlines
how this works.

 One detector implementation can look at the byte stream for known byte patterns
while another can inspect the available document metadata for known filename suf-
fixes or other media type hints. Detector implementations should also be prepared
for the absence of either of these inputs, for example, when dealing with just a file-
name or a raw byte stream. If the detector can’t determine the document type based
on the available information, it should return the generic application/octet-
stream media type.

 Tika will automatically load all available detector implementations using Java’s ser-
vice provider mechanism. When detecting the type of a document, all these available
detectors are invoked in sequence and the most specific media type is returned to the
client application as the detection result. You can add custom detection algorithms by
implementing the Detector interface and adding the required service provider set-
tings. The next section shows how this is done in practice.

11.2.2 Building a custom type detector

For example, let’s assume that the pharmacy automation system we described earlier
is supposed to automatically detect and process digital prescriptions sent as encrypted
email attachments. We have the decryption key but can’t rely on things such as file
extensions or other external type hints for detecting these documents.

 So how would we go about detecting such documents? As described earlier, the
solution is to create a custom Detector class and plug it into Tika’s type detection
mechanism. The example class shown next does exactly this. Take a moment to study
the code, and read on for a more detailed description.

public class EncryptedPrescriptionDetector implements Detector {

public MediaType detect(InputStream stream, Metadata metadata)

throws IOException {
Key key = Pharmacy.getKey();

MediaType type = MediaType.OCTET_STREAM;

InputStream lookahead =
new LookaheadInputStream(stream, 1024);

try {

Cipher cipher = Cipher.getInstance("RSA");

Listing 11.1 Custom type detector for encrypted prescription documents

Pharmacy’s
private keyB

Look at beginning
of streamC

Decrypt streamD

detect()detect())detect()

Detector implementa�on

Detected type

Document stream

Document metadata

Figure 11.2 Overview of a generic type detector

171Custom type detection

cipher.init(Cipher.DECRYPT_MODE, key);
InputStream decrypted =

new CipherInputStream(lookahead, cipher);

QName name = new XmlRootExtractor()
.extractRootElement(decrypted);

if (name != null
&& "http://example.com/

xpd".equals(name.getNamespaceURI())
&& "prescription".equals(name.getLocalPart())) {

type =
MediaType.application("x-prescription");

}
} catch (GeneralSecurityException e) {

// unable to decrypt, fall through
} finally {

lookahead.close();
}
return type;

}

}

What’s happening here? Let’s go through the code in steps.

1 First, detector classes are instantiated using the public default constructor and
can’t access extra settings through the ParseContext object that the Parser
classes can. Thus in this case we need a static reference to the pharmacy’s
decryption key B.

2 Then in the detect() method we start trying to detect the document type. This
method can assume that the given stream supports the mark feature, and is
only expected to reset the stream to its original position before returning. The
org.apache.tika.io.LookaheadInputStream (introduced in Tika 1.0) utility
class C is a perfect tool for this, as it takes care of all the details of properly
managing the stream state. See the Javadocs of that class for more details.

3 We then try to decrypt D the lookahead stream using the standard cryptogra-
phy API in Java. If the decryption fails for whatever reason, we can assume that
the document is either not encrypted or that we don’t have the correct key for
that document. In either case this detector can return application/octet-
stream as the fallback type.

4 If we do manage to decrypt the stream, our next task is to check whether it
looks like XML and starts with the xpd:prescription element. The org.apache
.tika.detect.XmlRootExtractor utility class E is designed for this purpose,
and is also used by the default type detection code in Tika.

5 Finally, if all signs point to this being an encrypted digital prescription, we can
inform Tika of that fact by returning the application/x-prescription media
type F. Note that we’ve dropped the +xml suffix from the type name, as the
encryption makes the document unusable for standard XML-processing tools.
This new media type should also be added to the MIME-info database as a sib-
ling of the already declared XML type.

Does it look
like XML?E

Found digital
prescription!F

172 CHAPTER 11 Extending Tika

11.2.3 Plugging in new detectors

The one last thing you need after compiling this custom detector class is to plug it
into Tika. The easiest way to do that is to place the compiled class into a JAR archive
together with a META-INF/services/org.apache.tika.detect.Detector file that contains
the fully qualified name of this class on a line by itself. Then include that JAR in your
classpath, and Tika will automatically pick up and use the new detector.

 If you want more control over the set of detectors used by your application, you
can also use the CompositeDetector class to explicitly compose a combination of
them. The following code snippet shows how to extend our previous detection exam-
ple with support for encrypted prescription documents:

String path = "file:///path/to/prescription-type.xml";

MimeTypes typeDatabase = MimeTypesFactory.create(new URL(path));
Tika tika = new Tika(new CompositeDetector(

typeDatabase,

new EncryptedPrescriptionDetector()));
String type = tika.detect("/path/to/tmp/prescription.xpd");

By now you’ve learned how to extend Tika’s media type database and type detection
capabilities to cover pretty much any new document type you encounter. The next step
is to let Tika parse such documents, and that’s what we’ll focus on in the next section.

11.3 Customized parsing

Knowing the type of a document is useful, but even better is being able to extract infor-
mation from the document. To do this you need to be able to parse the document for-
mat, and for that you use the Parser interface described in chapter 5. To enable Tika
to extract information from a new document type, the first step is to implement a new
parser class or to extend an existing one. In this section we’ll do both.

 Consider the digital prescription documents we’ve been discussing. In their unen-
crypted form they’re XML documents with a specific structure, and the encrypted
form wraps a digital signature and
encryption around the underlying XML
document. To best handle such docu-
ments, we need two new parser classes,
one for the basic XML format and
another for the encrypted form. The
relationship between these custom
parser classes and the greater Tika
parser design is outlined in figure 11.3.

 As shown in this diagram, we’ll first
implement support for the unen-
crypted prescription documents by
extending the standard XMLParser class
in Tika. Once we have that class, it’ll be

<<interface>>

Parser
<<interface>>

Parser

<<interface>>

Parser

<<custom class>>

Prescrip�onParser

<<custom class>>

Prescrip�onParser

<<custom class>>

Prescrip�onParser

<<standard Tika class>>

XMLParser
<<standard Tika class>>

XMLParser

<<standard Tika class>>

XMLParser

<<custom class>>

Encrypted-

Prescrip�onParser

<<custom class>>

Encrypted-

Prescrip�onParser

<<custom class>>

Encrypted -
Prescrip�onParseruses

Figure 11.3 Custom parser classes for handling

digital prescription documents

173Customized parsing

easy to combine it with our earlier work on detecting encrypted documents to imple-
ment a custom parser for encrypted digital prescriptions.

11.3.1 Customizing existing parsers

Let’s start with the existing parsers that you can already find in Tika. Most of the time
they work pretty well, but what if you need to make some minor adjustments to help
them better understand the kinds of documents you’re working with? The Parse-
Context object that we covered in chapter 5 allows some level of customization, but
sometimes you need to make more extensive changes to parser behavior.

 Many parser classes in Tika have been designed with such customization in mind,
so you can often extend them with a subclass that overrides selected methods. See the
Javadocs of the parser classes for more information on the ways in which they can be
extended. A good example of such extensibility is the XMLParser class that we’ll be
using next.

 Remember the simple XML outline of a basic prescription document in
section 11.1? The document contains separate elements for the doctor, the patient,
the medicine, and any instructions associated with the prescription. The default XML
parser will take the text content of all these elements and make it available as the out-
put of the parsing process. Wouldn’t it be useful if at least some of these fields were
also made available as structured metadata fields?

 An example class that does this is shown in the following listing. It retains the
default behavior of the XMLParser class while also mapping the contents of the
xpd:doctor and xpd:patient elements into similarly named metadata fields.

public class PrescriptionParser extends XMLParser {

@Override
protected ContentHandler getContentHandler(

ContentHandler handler, Metadata metadata,
ParseContext context) {

String xpd = "http://example.com/2011/xpd";

ContentHandler doctor = new ElementMetadataHandler(
xpd, "doctor", metadata, "xpd:doctor");

ContentHandler patient = new ElementMetadataHandler(
xpd, "patient", metadata, "xpd:patient");

return new TeeContentHandler(
super.getContentHandler(handler, metadata, context),
doctor, patient);

}

@Override
public Set<MediaType> getSupportedTypes(

ParseContext context) {
return Collections.singleton(

MediaType.application("x-prescription+xml"));
}

}

Listing 11.2 An XMLParser subclass for parsing prescription documents

Override with
custom behavior

B

Capture
element
metadata

C

Combine with
default behavior

D

Report
supported type

E

174 CHAPTER 11 Extending Tika

Let’s step through the code to better understand how it works.

1 To start with, the class extends the existing XMLParser class and overrides the
protected getContentHandler() method B. This method controls how the
SAX events from the parsed XML document are mapped to Tika’s XHTML out-
put. The default implementation strips out all elements and passes only the text
content to the client. In this case we customize this project to map selected
parts of the XML document into corresponding metadata fields.

2 To achieve this we use the ElementMetadataHandler utility class from the
org.apache.tika.parser.xml package C. This class interprets an incoming
SAX event stream and maps the text content of selected elements to a given
metadata field. In our case we’re interested in the names of the doctor and the
patient mentioned in the prescription, so we construct two such handlers.

3 We use the TeeContentHandler class D to tie these metadata handlers together
with the default XMLParser behavior as returned by the superclass method. See
chapter 5 for more details on how the TeeContentHandler class works.

4 Finally we override the getSupportedTypes() method E to only return the
application/x-prescription+xml media type. This allows our custom class to
coexist with the default XMLParser class that supports just the standard
application/xml media type.

That wasn’t too hard, was it? Let’s move on to creating an entirely new parser class.

11.3.2 Writing a new parser

You probably guessed it already: we also need a way to parse the encrypted prescrip-
tion documents. Since there’s currently no generic parser in Tika for encryption for-
mats, we need to write a new one to be able to extract information from encrypted
prescriptions.

 We already have all the basic building blocks we need from previous examples, so
the only thing left to do is to put those block together into a fresh new parser class.
The result is shown in the following listing.

public class EncryptedPrescriptionParser
extends AbstractParser {

public void parse(
InputStream stream, ContentHandler handler,
Metadata metadata, ParseContext context)
throws IOException, SAXException, TikaException {

try {
Key key = Pharmacy.getKey();
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.DECRYPT_MODE, key);
InputStream decrypted =

new CipherInputStream(stream, cipher);

Listing 11.3 Parser class for encrypted prescription documents

New parser classB

Implement
parse() method

C

Decrypt incoming
document stream

D

175Customized parsing

new PrescriptionParser().parse(
decrypted, handler, metadata, context);

} catch (GeneralSecurityException e) {

throw new TikaException(

"Unable to decrypt a digital prescription", e);
}

}

public Set<MediaType> getSupportedTypes(
ParseContext context) {

return Collections.singleton(

MediaType.application("x-prescription"));
}

}

You can probably tell what each part in this code does, but let’s still go through it so
we don’t miss any details.

1 Instead of implementing the Parser interface directly, we start by extending
the AbstractParser base class B. This simple class comes with default imple-
mentations for deprecated old methods so we don’t need to worry about them
in our code.

2 The main functionality goes into the parse() method C whose behavior we
covered in detail in chapter 5. Here we want to first decrypt the encrypted doc-
ument stream D and then pass the XML content to the extended XML parser
we already created E.

3 Since we’re delegating detailed processing to another parser class, we don’t
need to worry about producing XHTML output in this class. Otherwise we could
use the XHTMLContentHandler utility class that we also covered in chapter 5.

4 And like before, we implement the getSupportedTypes() method F in this
class to tell Tika about the kinds of documents it should be using this parser
class for. The returned media type should match the type returned by the corre-
sponding detector.

Now we have two new parser classes: one for encrypted and one for unencrypted digi-
tal prescriptions. We still need to tell Tika to use these parsers, which is what we’ll do
next.

11.3.3 Plugging in new parsers

Parser plugins are just like new detectors, in that Tika by default uses the service pro-
vider mechanism to load all available implementations from the classpath. To tell Tika
about your two new parsers, you need to place the compiled classes into a JAR file
together with a META-INF/services/org.apache.tika.parser.Parser file that lists the fully
qualified names of these two classes on separate lines. When you include that JAR in
your classpath, Tika will automatically start using these new parsers.

JAR archives like this are an easy way to extend Tika. For example, you can put all
the code from this chapter into a new tika-xpd-1.0.0.jar file together with the two

Delegate
to parser
we createdE

Report
supported type

F

176 CHAPTER 11 Extending Tika

service provider files in META-INF/services. Then you’ll have a complete Tika plugin
that you can easily use to enable support for digital prescriptions in any system that
uses Tika for metadata and content extraction.

 So what happens if you want to override an existing parser in case you have two
parsers that both claim to support the same MIME type (such as application/
x-prescription+xml)?

11.3.4 Overriding existing parsers

When you have two Parsers that both claim to support the same type, a simple bit of
code can help you ensure the Parser you want to be selected is called by Tika, as
shown next.

Parser custom = new MyCustomPrescriptionParser();

Parser parser = new AutoDetectParser(
parser.getDetector(),

ParserDecorator.withTypes(custom,

Collections.singleton("application/x-prescription+xml")));
parser.parse(...);

In listing 11.4, first you declare an instance of the MyCustomPrescriptionParser in B.
This is the Parser that you’d like to be called instead of the default parser for the type
application/x-prescription+xml. Then, to link that Parser to the media type, you
can decorate your MyCustomPrescriptionParser by creating an AutoDetectParser
instance with your MyCustomPrescriptionParser as the first Parser in the list pro-
vided to the constructor, as shown in C. The combination of the ParserDecorator
and the ordered set of Parser passed to the AutoDetectParser constructor helps
ensure that no matter what MyCustomPrescriptionParser purports to deal with in
terms of MIME types, it’ll be called and selected as the Parser for the application-
x-prescription+xml type.

 That’s a lot of functionality packed into a few small classes and some lines of con-
figuration, and a good place to end our coverage of how to extend Tika. It’s time to
summarize what we’ve learned here.

11.4 Summary

In this chapter we learned about a digital prescription document format, which
despite being fictional is a good example of the kinds of new document formats that
are being developed and used every day. Being able to easily detect, index, and search
such documents is often an important requirement. Tika and the tools it integrates
with can be a major help in implementing such requirements. You only need to
extend Tika to understand such new document formats, which is what we’ve done in
this chapter.

Listing 11.4 Overriding Parsers in Tika

Declare custom parserB

Call custom parser firstC

177Summary

 After briefly explaining our example document format, we looked at how to add
information about that type into Tika’s media type database along with basic type
detection details. Then, we covered more complex detection strategies by writing a
custom Detector class. Finally, we implemented two custom Parser classes, one
extended and one standalone, to allow Tika to extract text and metadata from our
example documents. All this functionality was wrapped into a simple JAR archive that
can be used as a drop-in plugin to extend the capabilities of any Tika-enabled system.

 This concludes the third part of this book. By now you should know pretty much
everything there is to know about Tika and should be able to start using it even in
complex ways in your own applications. In the next part of this book we’ll discuss of
how others are using Tika.

Part 4

Case studies

Welcome to the last major section of the book. It’s hard to imagine we’ve
come this far, but here we are!

 You should have a fundamental understanding of Tika, its features and func-
tionality, its methods for extension, and its placement among other leading tech-
nologies in the search space and overall information landscape.

 This portion of the book focuses on one of the basic methods of human learn-
ing: by example. What better way to get more ideas of how to use Tika in your par-
ticular software application than seeing how others have done so successfully?

 In chapter 12 we’ll show you how the National Aeronautics and Space
Administration (NASA) has been using Tika as a major component of its ground
data processing system pipelines. We’ll follow that in chapter 13 by sharing our
experience using Tika to help manage content with the Apache Jackrabbit con-
tent repository. Chapter 14 gives you a feel for how Tika has been used in the
context of a bioinformatics data collection system at the National Cancer Insti-
tute. And we’ll wrap up the book the same way we started it: with a classic real-
world case study of Tika’s use in the search engine community in chapter 15.

181

Powering NASA
science data systems

Welcome to the first of four deep dives showing Tika’s use in a real-world system.
We’ll assume that, by now, you have a firm grasp of what Tika can do, how you can
use its functionality in your application, and how you can extend Tika and add new
functionality to it.

 In this chapter, we’ll spend less time covering Tika’s nuts and bolts, and we’ll
spend more time showing you how a real-world, huge-scale organization like the
National Aeronautics and Space Administration (NASA) uses Tika in some of its
newer, large-scale data system efforts.

 One of Tika’s flagship deployments has been within NASA. We’ve used Tika to
help power search for NASA’s Planetary Data System, the archive for all planetary
science information collected over the past 40 years. Tika’s helped us extract infor-
mation from PDS datasets and index them for a revamp of PDS’s search

This chapter covers

 The Planetary Data System

 The Earth Science Enterprise systems

 How Tika fits in

182 CHAPTER 12 Powering NASA science data systems

architecture, helping to turn its online data distribution system into a Google-like,
free-text and facet-based search. We’ll explain Tika’s role in this revamp early in the
chapter.

 Besides planetary science, Tika has also helped NASA in the Earth science domain.
Tika now helps power many of NASA’s Earth Science Ground Data Systems, augment-
ing the power of another Apache technology called Object Oriented Data Technology

(OODT) to identify files for cataloging and archiving, delivery to geospatial informa-
tion systems, and processing and distribution to the general public. We’ll briefly dis-
cuss examples of Tika’s use within the Orbiting Carbon Observatory (OCO), the
National Polar-orbiting Operational Environmental Satellite System (NPOESS) Prepa-
ratory Project (NPP), Sounder Product Evaluation and Analysis Tool Element
(PEATE), and the Soil Moisture Active Passive (SMAP) missions. Yes, that was a ton of
acronyms—welcome to the world of NASA and let’s dive in!

12.1 NASA’s Planetary Data System

We’ll cover the important aspects of the NASA’s Planetary Data System (PDS) search
engine redesign project in this section, starting with some basic information about
PDS, including discussion on its core data model and its improved search engine
architecture. Along the way, we’ll explain where Tika fits in, and how it helped.

 The PDS is NASA’s archive for all of its planetary science information. All of the
planetary missions as far back as Viking1 are cataloged in the PDS.

 The system accepts data and metadata processed from instrument science data
teams after those teams receive raw data records downlinked from the spacecraft. The
data can be arbitrarily represented and formatted (Word documents, engineering
datasets, images—sound familiar?) as long as there’s a plain-text, ASCII metadata file
(called a label) describing the data delivered along with it. This architecture is
depicted in figure 12.1.

 In the next section, we’ll provide some brief background on the PDS data model.

12.1.1 PDS data model

All metadata in the Planetary Data System is guided by a domain data model, built
around familiar NASA mission concepts. A Mission is flown with one or more science
Instruments, concerned with observing a Target which could be a planet, star, or some
small celestial body (a comet or asteroid). The full PDS data model is beyond the
scope of what we could cover in this chapter (let alone this whole book), but we have
enough to go on with the previous.

THE GREAT THING ABOUT STANDARDS The full PDS standards reference is a 14
MB, 531-page document describing the PDS data and metadata model in glo-
rious detail. If you’re interested in learning more about PDS data, check out
http://mng.bz/6r1B.

1 For a full list of NASA planetary missions, see http://science.nasa.gov/planetary-science/missions/.

http://mng.bz/6r1B
http://science.nasa.gov/planetary-science/missions/

183NASA’s Planetary Data System

Every (set of) data file(s), or as PDS and NASA in general call them product(s), delivered
to PDS must have a label associated with it that in some form captures this data model.
So, for example, if the Cassini mission sends some data to the system, that data will
have the basic metadata information shown in table 12.1.

Table 12.1 A PDS label for Cassini

Metadata field Value

Mission Cassini–Huygens

Instrument Cassini Plasma Spectrometer (CAPS); Cosmic Dust Analyzer (CDA); Composite

Infrared Spectrometer (CIRS); Ion and Neutral Mass Spectrometer (INMS); Imaging

Science Subsystem (ISS); Dual Technique Magnetometer (MAG); Magnetospheric

Imaging Instrument (MIMI); Radar, Radio and Plasma Wave Science instrument

(RPWS); Radio Science Subsystem (RSS); Ultraviolet Imaging Spectrograph (UVIS);

Visible and Infrared Mapping Spectrometer (VIMS)

Target Saturn

Data and
metadata

PDS-D (data dissemination and search system)

Instrument
science

team
center

PDS node

Figure 12.1 The flow of data through NASA’s Planetary Data System

184 CHAPTER 12 Powering NASA science data systems

Metadata is made accessible via the PDS Data Distribution System, or PDS-D for short.
Each PDS product has an associated metadata entry available in PDS-D, made available
in a variety of formats ranging from the Object Description Language (ODL) to the
W3C standard Resource Description Framework (RDF).

 Core understanding of the PDS data model is necessary to understand how to
improve the search and access the information in the system described by instances of
that model. On the surface, most PDS searches are domain-specific, powered by form
elements, corresponding to some subset of the model. For the expert user, this is pre-
cisely the type of search that still today is useful for finding information in the system.
But naive users of PDS were quickly put off by the difficulty of using these domain-
specific search utilities, and wanted something as simple as a “Google-box” to input
keywords in to, and to receive pointers to PDS data from.

 Next, we’ll describe the redesign of the PDS search system that we began in 2005.
Here’s where Tika comes in.

12.1.2 The PDS search redesign

In 2005, the PDS team began an effort in response to the growing desire for free-text
or Google-like search within the PDS. To construct this capability, the decision was
made to dump PDS metadata from PDS-D in the emerging W3C standard RDF format.
RDF is an XML-based format, similar to the RSS example2 we showed you in chapter 8.

 Once the RDF files were dumped for datasets in the PDS, the files would be
indexed in the Apache Lucene (and eventually Apache Solr) search technology, mak-
ing them easily searchable and available for the PDS-D website and portal to leverage
as shown in figure 12.2.

 This sounds eerily familiar to examples from chapter 1, 3, 8, and 9 where similar
search pipelines resulted in making content available using the Lucene ecosystem of
technologies. In the case of PDS, we ended up writing a parser for PDS metadata out-
side of the context of Tika (it was only a glimmer in our collective eyes at that point)
that was eventually translated into a Tika Parser interface implementation. The
PDSRDFParser extracted PDS dataset metadata and text that we then sent to Solr for
indexing.

 One nifty portion of this example is that we were able to leverage the PDS and its
rich data model to identify facets that you see on the main PDS website at http://
pds.nasa.gov, an example of which is shown in figure 12.3. Those facets are extracted
by the Tika PDSRDFParser class and then sent to Solr, where the field names are speci-
fied as facet fields in the Solr schema. This allows the values to be counted and “buck-
eted,” allowing interested PDS users to use a combination of the facets and free-text
search to find the PDS data (called products) of interest. Once those products are
found, a user may click a link to find and download the product from a particular PDS
discipline node site.

2 Earlier versions of RSS actually leveraged RDF schema.

http://pds.nasa.gov
http://pds.nasa.gov

185NASA’s Planetary Data System

T
ik

a
 R

D
F

e
x

tra
c

to
r

PDS-D

catalog

PDS indexer

PDS Lucene/

Solr index

Figure 12.2 The PDS Search

Engine architecture redesign

resultant architecture. Metadata

is dumped from the PDS-D

catalog, transformed to RDF by a

custom Tika PDS parser, and then

sent to Lucene/Solr for indexing.

Figure 12.3 The NASA Planetary Data System (PDS) main web page and its drill-down (facet-based)

search interface

186 CHAPTER 12 Powering NASA science data systems

Porting the original PDS parser to Tika was natural and didn’t require any additional
overhead. And, like we mentioned in chapter 10, since Tika is one of the load-bearing
walls for a number of other Lucene technologies, we were able to easily integrate it
into Lucene and Solr to help create the new PDS search architecture.

 Now that we’ve described the planetary use case, let’s switch gears and tell you how
Tika is used to power data systems focused on our planet, rather than our neighbors in
the solar system!

NASA Earth science data systems are traditionally more computationally intensive
and more focused on data processing rather than data archival, so it represents
another important and relevant domain to see where and how Tika is being used. The
great thing is that Tika is just as useful in Earth science data processing systems (for
file identification, classification, parsing, and more) as it is for extracting text and
metadata from planetary data files and images.

12.2 NASA’s Earth Science Enterprise

NASA’s Earth Science Enterprise is vast, consisting of three major families of software
systems, as depicted in figure 12.4.

 One of the most tremendous challenges in keeping up with the data volume, new
instruments and missions, and sheer pace of scientific discovery in the NASA Earth

FM

WM

RM

d
e

liv
e

ry

In
g

e
s
t

Science Information

Processing System

(SIPS)

FM

WM

RM

d
e

liv
e

ry

In
g

e
s
t

Distributed Active

Archive Center

(DAAC)

FM

WM

In
g

e
s
t

Proposal-funded

analysis system

Science
portal

Science community

Figure 12.4 NASA’s Earth Science Enterprise, consisting of three families of software

systems: SIPS takes raw data and process it; DAACs distribute that data to the public;

proposal systems do ad hoc analyses.

187NASA’s Earth Science Enterprise

science Enterprise involves the classification and archival of science information files.
Tika is a welcome friend when confronted with this challenge. We’ll explain how in
this section, but first you’ll need some background on NASA jargon to understand
what’s going on.

Science Information Processing Systems (SIPS) are typically directed by a principal inves-

tigator (PI), along with a science team, co-located at a particular institution along with
the SIPS. The PI and the science team get early access to the data, help to develop the
processing system and science algorithms that transform data from raw data records,
to geolocated, calibrated, physically meaningful Earth science data files (or products),
which are disseminated to the broader community. SIPS typically include components
for file management (labeled FM in figure 12.4), workflow management (labeled WM
in the figure), and for resource management (labeled RM in the figure). SIPS also
include ingestion components and delivery components, which take in raw data
records (ingest), and deliver processed science data products to long-term archives
and dissemination centers (called DAACs, and discussed next).

Distributed Active Archive Centers (DAACs) are NASA’s long-term Earth science data
archives, geographically distributed around the United States, co-located with science
expertise in oceans, land processes, carbon and atmospheres, to name a few. Each
DAAC includes the same basic software stack (FM+WM+RM, ingest and delivery) as
SIPS, yet typically has different requirements than that of a SIPS. For example, SIPS
aren’t expected to preserve their data for any long-standing period of time; DAACs are,
which uses more disk space and requires more metadata requirements, and more
thought in general with respect to software development.3 DAACs are the recom-
mended NASA dissemination centers for all of the agency’s Earth science data.

 Rounding out the Earth science enterprise are NASA proposal-funded systems, typ-
ically conducting ad hoc analyses or generating value-added data products to distrib-
ute to the community. These systems may contain different combinations of the core
data system software stack, and may add specific foci, such as science data portals, ad
hoc workflows, or data extraction tools. These systems are direct consumers of data
made available by DAACs.

12.2.1 Leveraging Tika in NASA Earth Science SIPS

Next we’ll explain a few Earth science SIPS systems where Tika has been directly lever-
aged to help identify files for ingestion, to identify files to pull down from remote
sources, and to extract information from those files during pipeline processing.

THE ORBITING CARBON OBSERVATORY

NASA’s Orbiting Carbon Observatory (OCO) mission is focused on obtaining high-
resolution measurements of carbon dioxide sources and sinks at global scale. OCO is a
first-of-its-kind mission, set to produce never-before-seen estimates of carbon through-
out the entire world.

3 Imagine if you had to make sure that data produced from a Java algorithm would still be reproducible in 30
years!

188 CHAPTER 12 Powering NASA science data systems

 The first version of the OCO mission failed to launch in 2009, but is being rapidly
reconstructed as OCO2 for a relaunch in the 2013 timeframe. OCO2’s SIPS is under
construction at NASA’s Jet Propulsion Laboratory, heavily leveraging the system devel-
oped for launch in the 2009 timeframe.

 Next up is the NPP Sounder PEATE mission.

NPOESS PREPARATORY PROJECT (NPP) SOUNDER PEATE

The NPOESS Preparatory Project is a joint NASA, Department of Defense, and
National Oceanic and Atmospheric Administration (NOAA) satellite meant to take the
United States into the next generation of weather and climate measurements.

NPP Sounder PEATE is one of five Product Evaluation and Testing Environment
projects that support the overall NPP mission, assessing the climate quality of several
important science data products (vertical temperature, moisture, and pressure).

 The last Earth mission that we’ll talk about in this case study is the Soil Moisture
Active Passive (SMAP) mission.

SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION

NASA’s Soil Moisture Active Passive (SMAP) mission is one of two current missions
identified in the National Research Council’s Decadal Survey for Earth Science study
that are part of the Tier 1 objective measurements required to better understand our
planet over the next decade (the other Tier 1 mission is ICESAT-2).

PRIORITIES FOR THE NEXT DECADE OF EARTH MEASUREMENTS In 2007, the
United States National Research Council produced a study identifying the
most important Earth-related measurements that the nation should focus its
attention over the next decade. These national priority measurements are
proposed as missions that should be flown and tier-based priorities for those
missions (Tier 1, Tier 2, and so on). You can read more about the Earth sci-
ence decadal study report at http://mng.bz/Lj24.

SMAP’s main focus is on increasing the accuracy of freeze-thaw measurements, provid-
ing necessary information that will improve the overall measurements and predicative
capabilities of regional water models.

 The good news is that all of the aforementioned Earth science missions are in
great shape: Tika’s helping out their data systems!

12.2.2 Using Tika within the ground data systems

So, where does Tika fit in? All throughout the architecture of each of the aforemen-
tioned NASA Earth science missions! File management typically needs to both identify
files for ingestion and extract metadata from those files. In addition, ingestion lever-
ages Tika to help identify what files to pull down into the system (based on MIME type).
Further, many of the science algorithms that are pipelined together as workflows
require the ingestion of pipeline-produced data files and metadata. This information
is provided by leveraging Tika to extract metadata and text from these data files, and to
either send them for cataloging to a file management component or to marshal the

http://mng.bz/Lj24

189NASA’s Earth Science Enterprise

extracted metadata to the next science algorithm, which leverages it to make some sort
of decision (how to geolocate the data file, how to calibrate it, and so on).

 So what’s unique about each of these NASA Earth science missions? Typically the
uniqueness comes from the areas shown in figure 12.5.

DIFFERENT DATA FILE TYPES

File types vary from mission to mission. For example, SMAP’s data files and OCO’s data
files, though both formatted using the HDF5 standard, store vastly different data.
OCO, stores vertical columns of computed CO2, and thus stores matrices that repre-
sent those columns of data (recall chapter 8 to jog your memory about how informa-
tion is stored in HDF5 files). On the other hand, data files from SMAP are radar-
oriented, and may store data in matrices with different sizes, may use vectors with dif-
ferent names, or may choose some other representation supported by HDF. Tika is a
huge help here in normalizing the HDF information extracted into a Tika Metadata
object instance that can be introspected and transformed (recall chapter 6). This use
case is shown in the upper-left portion of figure 12.5.

DIFFERENT PROCESSING ALGORITHMS AND WORKFLOWS

The NPP Sounder PEATE project tests and executes on the order of 5–10 science algo-
rithms with vastly different control and data flow from that of OCO, for example,
which uses on the order of 10–20 different science algorithms, arranged into different
workflows. To support these differences, Tika helps to send metadata between each
workflow task (a step in the overall pipeline) by using a common representation. This
is depicted in the lower-/middle-right portion of figure 12.5.

COMPUTING RESOURCES

OCO’s projected 100-node cluster and SMAP’s similarly sized cluster that will be pur-
chased are five orders of magnitude larger than that of the NPP Sounder PEATE execu-
tion environment, which consists of around 20 machines, individually networked and
shared between several environments, as opposed to collectively partitioned and clus-
tered together.

Tika

Work�ow

manager

Tika

File
type Catalog

Archive

Shared metadata context

File

manager

Task

Task

Task

Task
Figure 12.5 Tika’s use in the NASA

Earth Science Enterprise. Tika helps

classify files for file management,

metadata extraction, and cataloging as

shown in the upper left of the diagram.

In the lower right, Tika helps workflow

tasks share metadata and information

used to trigger science algorithms.

190 CHAPTER 12 Powering NASA science data systems

IDENTIFYING FILES FOR INGESTION AND THE OVERALL INGESTION PROCESS

Each mission requires different ancillary datasets and must pull this information from
various sources. Tika saves the day here because we’ve been able to use its MIME iden-
tification system to automatically decide which files to pull down remotely, and to
then decide how to extract metadata from those files and how to ingest them into the
system. This is shown in the upper/middle portion of figure 12.5.

REQUIREMENTS FOR DATA DELIVERY AND DISSEMINATION

The missions all have their own requirements for dissemination to the public, for
delivery to an archive such as a DAAC, and for long-term archival. These requirements
and functions are supported by Tika, where it’s used to augment metadata models
that have already been captured by the processing system, add flags for data quality,
and decide when the time is right to ship a data product (or set data products) to a
DAAC or to the general scientific community. This is shown (partially) in the upper-
left/middle portion of figure 12.5.

 Tika has infected quite a number of areas within the walls of NASA as you’ve seen.
We’ll summarize lessons learned in the next section and get ready for the next case
study!

12.3 Summary

We introduced you to two vastly different domains within NASA: the planetary
domain, with its rich data model, and its search-focused virtual data system called
PDS-D; and the Earth science domain, with its processing-centric family of Earth sci-
ence data systems.

 One of the major lessons learned from our experience using Tika at NASA is that
large-scale data archival, processing, and dissemination almost always need the core
capabilities that Tika provides along the road. MIME type identification of files was a
huge help because we could leverage not just standards provided by organizations like
IANA, but also the rigor and detail that NASA itself put into file naming conventions,
file type identification, and documentation.

 In addition, we’ve found that NASA data systems are metadata-centric, requiring
rich descriptions of datasets as a front line of defense. Since the metadata is at a
greatly reduced scale compared to the data (we’re talking the difference between
hundreds of kilobytes and hundreds of terabytes!), science users appreciate the ability
to browse and identify the data they’d like to start crunching on, before they have to
download it.

 We hope that this case study has helped generate ideas in your mind regarding
how to leverage Tika within your own data system, and what types of situations and
needs arise when using Tika in data ingestion, archival, and dissemination. In the next
case study, we’ll introduce you another related (but entirely different) usage of Tika’s
abilities: in the realm of digital content management!

191

Content management
with Apache Jackrabbit

Apache Jackrabbit, http://jackrabbit.apache.org, is a content repository that pro-
vides a rich storage layer on which to build content and document management
systems like the ones we discussed earlier in chapter 9. Full-text search and WebDAV
integration are two key features of a content repository. In this case study we’ll
learn how Jackrabbit uses Tika to help implement these features.

 We’ll start by briefly describing the key features of Apache Jackrabbit and the
Content Repository for Java technology (JCR) API (http://www.jcp.org/en/jsr/
detail?id=170) that it implements. Armed with this background, we’ll then look
deeper into how Jackrabbit’s search feature uses a pool of Tika threads to achieve
the illusion of being able to index arbitrarily large documents nearly in real time.
We’ll also look at how Tika’s type detection feature is used to add smarts to Jackrab-
bit’s WebDAV integration layer. We’ll end this case study with a brief summary.

This chapter covers

 The Apache Jackrabbit Content Repository

 The use of Tika in Jackrabbit

 File detection and parsing for Jackrabbit WebDAV

http://jackrabbit.apache.org
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170

192 CHAPTER 13 Content management with Apache Jackrabbit

13.1 Introducing Apache Jackrabbit

Apache Jackrabbit is an implementation of a new special kind of a database called a
content repository. Defined in Java Specification Requests (JSRs) 170 and 283, a content
repository is a hierarchically organized storage engine that combines features from
advanced file systems and relational databases.

 Documents, files, records, and all other kinds of information entities are stored as
nodes in the content tree inside a repository. Each node consists of any number of prop-

erties and child nodes. Properties contain numbers, strings, byte streams, or other
types of data, including arrays of such values. Figure 13.1 shows how this content
model looks in practice.

 In addition to storing such hierarchical data, the content repository also makes it
searchable, keeps track of past versions of content, sends notifications of changes, and
supports a number of other features that make life easier for an application developer.
As the reference implementation of JSR 170 and 283, Apache Jackrabbit implements
all these features and more.

 The most interesting features for
this case study are full-text search and
WebDAV integration. Jackrabbit uses
an integrated Lucene search index to
make all repository content, including
binary properties, searchable as soon
as it has been stored. The WebDAV
integration lets users access and mod-
ify repository content over the web or
to mount a repository as a part of their
normal file systems. Tika is an integral
part of these features, as we’ll see in
the next two sections.

13.2 The text extraction pool

One feature that separates a Jackrabbit content repository from a relational database
is the ease by which it can handle normal files. You can drop digital documents such
as PowerPoint presentations or PDFs into a content repository and have them search-
able by content without any custom indexing setup. Let’s see how Jackrabbit does this.

 Whenever a node is added, modified, or removed in Jackrabbit, the integrated
Lucene index is updated to match the change. If the node contains binary properties,
the contents of those properties are extracted with Tika and added to the index as
text. Since text extraction can be time-consuming for some documents, Jackrabbit
uses a set of background threads for this purpose. This allows the index to be updated
immediately during a save, and then reupdated as soon as the extracted text becomes
available. Together these updates create an illusion of a super-fast index whose accu-
racy improves incrementally over time.

/ (root)

document1 folder

document2

Title: Example

Created: 2010-12-04

Content: (binary)

Proper�es

Nodes

Figure 13.1 Example content in a content repository

193The text extraction pool

 So how does this work in practice? When an index update is needed, new text
extraction tasks are created for all binary properties and scheduled for execution by a
pool of background threads. The essential Jackrabbit code for the text extraction task
is shown next.

try {
InputStream stream = value.getStream();

try {

parser.parse(stream, handler, metadata, context);
} finally {

stream.close();

}
} catch (LinkageError e) {

// Capture and ignore

} catch (Throwable t) {
if (t != STOP) {

log.debug("Failed to extract text.", t);

setExtractedText("TextExtractionError");

return;
}

} finally {

value.discard();
}

setExtractedText(handler.toString());

The code starts in B with a standard use of the parse() method as described in chap-
ter 5. The more interesting bits happen next. The first catch block C takes care of
silently ignoring problems caused by a deployment omitting some parser libraries,
which is an easy way to customize and streamline an installation. The second block D
catches any other problems, including a special STOP exception that’s sent by a spe-
cially instrumented ContentHandler instance to signal that up to a given maximum
number of characters have already been extracted from the binary stream. The extrac-
tion process is terminated when the STOP event is received; otherwise an exception is
logged and any extracted text is replaced with a TextExtractionError token to make
such problems easy to locate within a repository. Finally in E the extracted text is
made available for use by the indexer.

 Meanwhile, as the extraction task is running, the indexer first waits for a fraction of
a second to see whether the extracted text is already available for use in the first index
update. If not, the node is first indexed with an empty text extraction result and a new
index update is scheduled for when the extraction task is complete. This way a new or
updated document is immediately searchable by its nonbinary properties, and by the
extracted full-text contents normally within a few seconds from when the changes
were saved.

Listing 13.1 Background text extraction task in Jackrabbit

Use parse()
methodB

Catch
linkage errors

C

Catch other errors
or STOP event

D

Save
extracted text

E

194 CHAPTER 13 Content management with Apache Jackrabbit

13.3 Content-aware WebDAV

WebDAV, or Web-based Distributed Authoring and Versioning protocol as it’s officially called,
is an extension of the Hypertext Transfer Protocol (HTTP) designed for remotely
managing files and other resources on web servers. WebDAV makes a web server work
like an advanced remote file system, and is thus a great match for a remote access
protocol for a Jackrabbit content repository. Most operating systems have a Connect
to Server feature that allows a WebDAV server to be mounted as a part of the file sys-
tem, and many applications ship with integrated WebDAV support for accessing and
modifying remote resources. Figure 13.2 shows the WebDAV mount feature in Win-
dows Vista.

 Jackrabbit implements WebDAV in two varieties: one focused on integration with
traditional WebDAV clients like the ones mentioned here, and another more compli-
cated one that makes nearly all repository functionality available to advanced remote
clients. The traditional clients are often fairly simple, and Jackrabbit needs to do some
extra work to fill in details that the clients fail to provide. This is where Tika comes in.

 A classic use case for WebDAV integration in Jackrabbit is being able to copy files
to and from the repository by dragging and dropping them in a normal file explorer
window. Another use case is browsing and downloading these files using a web
browser. The trouble is that the latter use case needs accurate media type information
so that the browser can easily associate a file with the correct application, whereas the
WebDAV mount features in operating systems typically don’t provide such type infor-
mation along with added files. The solution is to use Tika to automatically detect the
types of incoming files.

 If you remember the type detection examples from chapter 4, then the related
Jackrabbit code in the following listing will look familiar.

Figure 13.2 Doing

a WebDAV mount in

Windows Vista

195Summary

Metadata metadata = new Metadata();
if (ctx != null && ctx.getContentType() != null) {

metadata.set(

Metadata.CONTENT_TYPE, ctx.getContentType());
}

if (systemId != null) {

metadata.set(
Metadata.RESOURCE_NAME_KEY, systemId);

}

if (stream != null && !stream.markSupported()) {
stream = new BufferedInputStream(stream);

}

type = detector.detect(stream, metadata);

The code takes advantage of the possible media type hint B provided by the WebDAV
client, the name of the uploaded file C, and the contents of the file itself D to auto-
matically detect its type. With this code in place, a user who copies a PDF document to
the repository with no associated type information will be able to access it as a prop-
erly annotated application/pdf resource later on. Small touches like this are essen-
tial for a smooth user experience.

13.4 Summary

The purpose of a content repository like Apache Jackrabbit is to make it easy to man-
age all kinds of content, including collections of digital documents. To do this well,
Jackrabbit needs a way to understand and look inside the documents stored in the
repository. Tika is the perfect tool for this purpose.

 We started this chapter with a brief introduction to Apache Jackrabbit and the con-
tent repository model. Then we looked at two ways in which Jackrabbit uses Tika. The
first was text extraction for use with the Lucene-based search index in Jackrabbit, and
the second was automatic type detection for smooth WebDAV integration.

 The Jackrabbit content repository powers many high-end content management
systems that are used for purposes ranging from large-scale digital asset management
to high-profile web content management. Tika might already be there working
behind the scenes when you next visit a large website!

 This concludes our discussion of Tika in Apache Jackrabbit. Our next case study is
also related to the management of digital assets, but in a different way than in a
generic tool like Jackrabbit. Read on to find out how the National Cancer Institute
uses Tika to help manage the vast amounts of data it collects.

Listing 13.2 Automatic type detection in Jackrabbit

Type hint
from client

B

Name
of file

C

Detect
type

D

196

Curating
cancer research data

with Tika

For more than 10 years, the goal of the National Cancer Institute’s (NCI) Early
Detection Research Network (EDRN) program has been to accelerate research into
the identification and detection of cancer biomarkers, early indicators of disease.

 Over the last three years, Tika has been assisting in that fight. Tika helps cap-
ture and curate mass spectrometry files, CSV files, PDF files, SAS files, and other data
sets produced by lab instruments, analysis programs, and by EDRN investigators for
further scientific research and role-based dissemination to the broader community.
In this chapter, we’ll explain how Tika has been used in EDRN’s Catalog and
Archive Service, or eCAS. Let’s hop to it.

This chapter covers

 The Early Detection Research Network (EDRN) project

 Using Tika within EDRN curation

 Integrating Tika and Apache OODT

197The NCI Early Detection Research Network

14.1 The NCI Early Detection Research Network

The National Cancer Institute’s EDRN project has focused on the identification of can-
cer biomarkers for over a decade. Biomarkers are indicators of early onset of disease,
and identifying accurate and precise methods for their detection is one of the EDRN’s
primary goals.

 As part of the biomarker discovery process, EDRN collects many different types of
data, ranging from information about biomarkers themselves (names, aliases, related
organs, and so forth), to instrument-produced raw science data files, study protocols,
and specimen information. We’ll talk about these types in the next section.

14.1.1 The EDRN data model

EDRN’s (simplified) data model is shown in figure 14.1. We’ll discuss the relationships
between each of the major data types and the relationships of these types to Tika. As
we’ll detail, Tika helps identify, sort, and extract metadata from EDRN’s science data
sets, shown in the middle of the figure.

 In EDRN, research information about biomarkers, science data sets (collections of
files produced by an instrument), and specimens (taken during some associated
EDRN study), are all guided by common study information called a protocol. Protocols
are led by principal investigators, potentially from multiple EDRN participating sites.

 With that in mind, let’s restrict our focus to the science data set portion of the
EDRN data model, shown conveniently in the middle portion of figure 14.1. There are
myriad science instruments in the EDRN, ranging from high-end mass spectrometers,
to biospecimen catalog tools, to low-end microscopes. Each of these instruments pro-
duces data associated with some EDRN biomarker, and some EDRN study, and is of
interest to the broader program.

 This is where Tika comes in. The process of collecting, curating, annotating, and
making these data sets available to the rest of the EDRN program is called scientific data

curation, and we’ll explain it in more detail in the next section.

associated

produces

associatedguided by

guided by

guided by

produce

Instrument

Protocols

Specimens

d
Biomarkers

a

Science

data sets

Figure 14.1 Simplified view of the EDRN

data model, showing the relationship

between protocols, specimens, science

data sets, biomarkers, and instruments

198 CHAPTER 14 Curating cancer research data with Tika

14.1.2 Scientific data curation

More and more, the community at large is seeing the importance of data curation.
Data curation involves the careful preparation of data for cataloging, archiving, and
eventual dissemination to the external community. Just like librarians curate books
that codify our collective knowledge, data curators (and the associated tools they use)
do the same thing for data.

 One of the key goals of the EDRN is to capture rich metadata and data that con-
forms to the EDRN data model described in figure 14.1. Specifically, EDRN investiga-
tors, program managers, and users want to query the system and determine the
current state of progress on a particular biomarker or set of biomarkers. This includes
answering questions such as the following:

 What publications have been generated for a particular EDRN biomarker?
 What associated science data files are available to help reproduce the experi-

ments and results described in those publications?
 What protocols being studied have produced the most biomarkers?

In order to answer these questions, scientific data curation within the EDRN requires
the creation of linked data, a term used to reference richly curated and annotated
information captured by an information system.

 The EDRN curation process is led by the EDRN biocurator, which sits between com-
puter scientists and cancer researchers helping to capture needed information in a
way that leverages the underlying technology but is also scientifically meaningful. Bio-
curators require the ability to perform both “lights-out” ingestion of day-to-day infor-
mation, as well as carefully review and annotate that data with additional publication
information, study and protocol information, and anything else that the biocurator
deems useful to link to the existing EDRN datasets.

 A key enabling technology in the EDRN curation process is Tika. Let’s find out in
more detail how Tika enables this functionality.

14.2 Integrating Tika

Within EDRN, we’ve built a system called eCAS, which stands for the EDRN Catalog and

Archive Service. eCAS provides data curation services for the EDRN and builds upon
Apache Tika (along with a number of other technologies, including the Apache
OODT framework that we’ll mention in an upcoming sidebar), as figure 14.2 and the
ensuing discussion will show. The eCAS system is responsible for providing the neces-
sary software to allow rich metadata and information to be extracted and captured,
and to be made available to the rest of the EDRN.

IT’S NOT JUST FOR CURATING NASA DATA; IT WORKS FOR BIOMARKERS TOO! Apache
OODT (http://oodt.apache.org) is the first NASA project to be contributed to
and hosted at the Apache Software Foundation. OODT includes a number of
components that deal with file management, workflow management, resource
management, and crawling and archiving sets of files and metadata. It’s the

http://oodt.apache.org

199Integrating Tika

perfect bootstrapping framework to feed information to Tika. It’s a vast frame-
work though, so much so that we can’t go into detail on it here. A careful
description of OODT in itself is probably the topic of a forthcoming book.

The first step in EDRN data curation is the extraction of metadata before ingestion.

14.2.1 Metadata extraction

EDRN curators need the ability to perform metadata extraction at various stages
throughout the data lifecycle. Initially, data files may be delivered in two methodolo-
gies: offline or online. Offline methods include hard disks, CD/DVD ROMs, and so
forth. Online methods include electronic protocols such as WebDAV and FTP. Once
the data arrives at the EDRN, the eCAS Curator provides a view into the staging area, as
shown in the leftmost portion of figure 14.3.

 One of the most important parts about data curation in EDRN is capturing rich
metadata that can be used to later discover what information is available on a particu-
lar EDRN biomarker. For this purpose, we’ve constructed a curation system called
eCAS Curator, a webapp (we’ll show you what it looks like later in the chapter) that
orchestrates the curation process as shown in figure 14.2. eCAS Curator invokes an
Ingester component that’s responsible for extraction of metadata from incoming EDRN
files delivered from external sites and investigators. The Ingester is also responsible
for generation of file location information, called references.

 Tika assists in the eCAS curation process in two ways. First, Tika helps extract addi-
tional client-side metadata on a per-file basis, including file naming convention meta-
data (recall chapter 8) and other information that becomes useful later during the
curation process. This is depicted in the left side of figures 14.2 and 14.3 with the
Metadata class, extracted from files by Tika. After assisting with metadata extraction,

eCAS

Curator

Metadata

extractor
Ingester Reference

Tika Mime

Repository

File

Manager

Metadata

extractors

Tika Mime

Extractor

Metadata

Figure 14.2 EDRN’s eCAS architecture. The components on the left side of the

diagram use Tika to prepare data for ingestion into a file manager. The

components on the right side of the diagram use Tika to classify incoming files.

The components that are directly implemented by Tika are shaded in grey.

200 CHAPTER 14 Curating cancer research data with Tika

Tika is also used to classify files to be ingested. This is performed using the Tika Mime
Repository shown in the middle of figure 14.2. The Reference class uses Tika to
determine the underlying MIME type classification for files collected during the cura-
tion process. A snippet of code extracted from Apache OODT’s Reference class (part
of the File Manager module) is shown next.

public class Reference {

private String origReference = null;
private String dataStoreReference = null;

private long fileSize = 0L;

private MimeType mimeType = null;
private static MimeTypes mimeTypeRepository;

static {

try {

Listing 14.1 Detecting file types prior to ingestion in the eCAS system

Figure 14.3 The EDRN curation cockpit. The left side of the web application focuses on the staging area, allowing

a curator to perform metadata extraction and manipulation. The right side of the webapp deals with data curation

and ingestion in the File Manager component, allowing for classification of different file types. Most of the

underlying extraction and classification functionality is driven by Tika.

Properties describing
reference

B

201Integrating Tika

mimeTypeRepository = MimeTypesFactory.create(
new FileInputStream(new File(PathUtils

.replaceEnvVariables(System.

getProperty(
"org.apache.oodt.cas.filemgr.mime.type.repository",

"mime-types.xml")))));

} catch (Exception e){
mimeTypeRepository = TikaConfig.

getDefaultConfig().

getMimeRepository();
}

}

public Reference(String origRef, String dataRef, long size) {
origReference = origRef;

dataStoreReference = dataRef;

fileSize = size;
try {

this.mimeType = mimeTypeRepository

.getMimeType(new URL(origRef));
} catch (MalformedURLException e) {

e.printStackTrace();

}

}
}

The code in listing 14.1 illustrates that all eCAS Reference class implementations
store a Tika MimeType used to capture the MIME type, along with its fully qualified
name (recall chapter 4), illustrated in B. This information is detected when the
Reference class constructor is called in D. The Reference class tries to load a user-
specified Tika MIME type configuration file in C and if it can’t be found for whatever
reason, then Tika’s default MIME type repo is utilized. Though OODT provides other
constructors for the Reference class, this auto-detect constructor is leveraged during
the EDRN ingestion process.

 The middle of figure 14.2 depicts the File Manager component, responsible for
taking the extracted Metadata and Reference information and cataloging and
archiving it. Part of this process involves the creation of derived metadata (final file
locations, data versions, file received time, and so on) that’s best generated on the
server side. Another part of this process involves determining and classifying data sets,
a process that involves Tika and that we’ll describe in the next section.

14.2.2 MIME type identification and classification

Tika helps the EDRN eCAS system classify and organize collected data files based on
more granular MIME types as well as file collection types called data sets in EDRN
terminology.

 To compute server-side Metadata, Tika is also leveraged as shown in the right side
of figure 14.2 with the Tika Mime Extractor component. This server-side metadata
extractor makes the extracted MIME type information searchable in the underlying

Statically
initialize Tika

C

Detect
file type

D

202 CHAPTER 14 Curating cancer research data with Tika

File Manager catalog, breaking the MIME type down into its primary (text in text/
html) and subtype (html in text/html) in addition to cataloging its full form (text/
html). This functionality is shown in the following listing.

public class MimeTypeExtractor extends AbstractFilemgrMetExtractor {

public Metadata doExtract(Product product, Metadata met)
throws MetExtractionException {

Metadata extractMet = new Metadata();

merge(met, extractMet);

if (product.getProductStructure().equals

(Product.STRUCTURE_FLAT)) {

Reference prodRef = (Reference) product.
getProductReferences().get(

0);

extractMet.addMetadata(MIME_TYPE, prodRef.

getMimeType().getName());

extractMet.addMetadata(MIME_TYPE, prodRef.

getMimeType()

.getType().getType());

extractMet.addMetadata(MIME_TYPE, prodRef.

getMimeType()
.getType().getSubtype());

}

return extractMet;
}

}

Appending the full, primary, and subtypes to the extractMet variable as shown in list-
ing 14.2 allows this information to flow through to the underlying File Manager cata-
log used by eCAS. Also, allowing the MIME type to be broken up into subparts allows
EDRN users to search for specific kinds of primary files. For example, you could search
for all text files associated with a particular biomarker, while retaining the flexibility to
drill down into specifics such as subfile categories and data set types. To perform this
functionality, during extraction, the Product class and its first Reference instance are
looked up as shown in B. After locating the first ProductReference instance, the
MIME type information is added as shown in C.

 Besides driving search and display of metadata, the MIME information extracted by
Tika is also used to display download links to EDRN data files, and to determine
whether the underlying file is capable of being displayed by the browser (in case the
primary type is image), versus directly streaming the data file back to the user from
the browser link.

 At this point, we’ve covered all of the primary areas where Tika has helped out in
the EDRN. Let’s review the chapter.

Listing 14.2 Making extracted MIME information available for search and retrieval

Gets first
product reference

B

Add full, primary, and
subtypes to catalog

C

203Summary

14.3 Summary

We explained the US National Cancer Institute’s Early Detection Research Network
(EDRN) project, and how the goal of the project is to develop accurate and precise
means of identifying cancer biomarkers, early indicators of disease.

 Part of the identification process involves understanding the types of data made
available within the EDRN, ranging from specimens collected during a protocol or
study, data sets associated with instruments that operate on those specimens, bio-
marker information providing an up-to-date look into the research progress within
EDRN, and PI (principal investigator) and investigator information used to track who’s
researching what and how far they are.

 The system within EDRN that allows for the capture, preparation, and dissemina-
tion of EDRN science data files is the EDRN Catalog and Archive Service. eCAS heavily
leverages Tika to provide needed functionality, including file type classification, meta-
data extraction (both client- and server-side), search, and data download.

 We explained each of these areas of eCAS in detail and described where and how
Tika was used to implement key eCAS functionality.

 We’ve made it to the top of the hill. Only one more chapter to go, and it’s fitting
that it begins where the book itself began—with a classic search engine example!

204

The classic
search engine example

What better way to close out the book then the way we started it—with a classic
search engine example?

 You’re in for a treat. We interviewed Ken Krugler and his team from Bixo labs
about their recent Public Terabyte Dataset Project, http://mng.bz/gYOt, and how Tika
was a core component of a large-scale series of tests that helped shed some light on
variations between languages, charsets, and other content available on the internet.

 This chapter will show you even more of Tika in action, especially how you can
leverage Tika inside of a workflow system such as Cascading, which is built on top
of Hadoop to analyze a representative (by today’s standards) data set that many
other internet researchers are also exploring. The tests run by Bixo labs that we’ll

This chapter covers

 Bixo Labs and the Public Terabyte Dataset

Project

 Bixo’s crawler that uses Tika

 Charset detection and language identification

with Tika

http://mng.bz/gYOt

205The Public Terabyte Dataset Project

describe in the rest of the chapter should identify areas of further refinement in Tika,
particularly in charset detection and language identification (recall chapter 7). Heck,
they may even motivate you to get involved in improving Tika and working within the
community.

 Let’s hear more about it!

15.1 The Public Terabyte Dataset Project

The web contains a staggering amount of useful source data for a variety of interesting
programming projects (for example, analyzing the geographical distribution of Chi-
nese restaurants in the United States, as shown in figure 15.1). In order to make use of
that data, you must enumerate a target set of URLs, make connections to each web
server, and then individually download each page of content. Web crawlers are
employed to automate this web mining process, but the complexity of developing a
web crawler or even using an existing web crawling tool requires a large time invest-
ment before any work can be done to process the data collected.

 In 2010, Bixo Labs, Inc., Amazon Web Services, and Concurrent, Inc., decided to
sponsor a large-scale crawl of the top 1–2 million web domains, based on traffic from
clients in the United States. The goal was to fetch approximately 100–500 million
pages from these domains and then put the content into the public domain on Ama-
zon’s S3, in a format that would be easy to import into other applications, particu-
larly those using Hadoop for scalability. This Public Terabyte Dataset would
therefore constitute a very large corpus of both high value and relatively easily acces-
sible web content.

Chinese
restaurant

home page
(Santa Monica)

Photo
(JPG)

Photo
(GIF)

Photo
(PNG)

Photo
(JPG)

Restaurant
review
page

Chinese
restaurant

home page
(Las Vegas)

Newspaper
restaurant

article Chinese
Restaurant
Home Page

(Los Angeles)

Figure 15.1 Searching the web for

restaurant reviews discussing

Chinese food by geographic location

206 CHAPTER 15 The classic search engine example

Although most web content is delivered in HTML, a great deal of potentially useful
content is available in other formats such as Microsoft Word, Adobe Portable Docu-
ment Format (PDF), and so on. Parsing this web content to extract the text (and
graphics) after it’s fetched makes the resulting data set much more useful than it
would be in its raw form. Tika provides an attractive architecture for parsing arbitrary
web content because its AutoDetectParser feature (recall chapter 5) automates the
process of selecting an appropriate parser for each fetched document.

 In addition, an essential part of any web crawler is its ability to collect outbound
links from each fetched page and then add the target URLs to a database that it’ll use
for subsequent content fetching. The Tika HtmlParser (recall the discussion of cus-
tomizing parts of this component in chapter 8) also provides excellent support for
link extraction while each page is being processed.

 Now that we have some background on the Public Terabyte Dataset Project, we’ll
explain a bit about Bixo, a company building software focused on exploiting such a
corpus.

15.2 The Bixo web crawler

Bixo (see http://openbixo.org/) is an open source web mining toolkit based on
Hadoop, the dominant open source implementation of the MapReduce algorithm.
Bixo uses the Cascading open source project (see http://www.cascading.org/) to
define the web crawling workflow. The use of Cascading allows Bixo to focus on the
mechanics of web crawling and the associated data flow rather than Hadoop/
MapReduce implementation details.

 Cascading provides a rich API for defining and implementing scale-free and fault-
tolerant data processing workflows on a Hadoop cluster. The Cascading workflow
model is one of operations that are connected via
“pipes,” much like classic Unix tools. Bixo consists of a
number of Cascading operations and subassemblies,
which can be combined to form a data processing work-
flow that (typically) starts with a set of URLs to be
fetched and ends with some results extracted from
parsed HTML pages. The entire Bixo workflow is shown
in figure 15.2.

 The Fetch subassembly is the component where the
heavy lifting is done. URLs enter via the input data pipe,
and its two tail (results) pipes emit the raw fetched con-
tent and status information (such as whether the fetch
was successful or failed due to a particular transient or
permanent error condition).

 The Parse subassembly is used to process the raw
fetched content. As mentioned, it uses Tika to handle
the details of extracting text from various formats and to
help extract outbound links.

Status

URLs

Content

Parse
subassembly

Parse

Fetch
subassembly

Figure 15.2 Bixo data flow

http://openbixo.org/
http://www.cascading.org/

207The Bixo web crawler

 Bixo also takes care to crawl in a “polite” manner, honoring the directives in each
web server’s robots.txt file (a file specifying areas of the website to be excluded from
crawling, how long to wait after completing a small set of requests to the web server,
and so forth). Pages with noarchive HTML meta tags are also automatically excluded
from the data set.

15.2.1 Parsing fetched documents

When Bixo was first developed, the team considered incorporating Nutch’s complete
parsing architecture. But they were pleased to discover that Tika provided most of the
required support, eliminating the hassle of maintaining such a large, complex body of
code and keeping it synchronized with the Nutch project. Since then, the folks at Bixo
have been encouraged to see Tika adopted by both Nutch and Apache Droids, as this
can only help to improve Tika’s stability and performance, as well as support for fea-
tures of particular interest to crawler developers (such as language detection, which
you read about in chapter 7).

SPREADING THE WEALTH Apache Nutch was the progenitor of many of the
modern popular open source web and big data technologies, including most
notably Apache Hadoop, Droids, and Tika. The ability to use these descen-
dants without having to pull in all of the Nutch core has greatly increased
not only the individual user bases of Hadoop, Droids, and Tika, but, Nutch’s
as well.

Most web pages fall short of compliance with any HTML standard, and so web browsers
are extremely forgiving when displaying content. Tika’s HTMLParser makes use of the
TagSoup software library to perform the actual parsing, and TagSoup’s ability to han-
dle and clean up badly broken HTML documents is essential when parsing web con-
tent. Because a web server can also return an arbitrarily long document, Bixo is
configured to abort the fetch after a user-configured limit (such as 128 KB of text).
Accordingly, TagSoup’s forgiving nature is also important in collecting content from
such truncated pages.

 Bixo uses Tika’s TeeContentHandler to employ two separate ContentHandlers
simultaneously: one to extract the content itself and another to extract outbound
links, as demonstrated in the following listing. If content language detection is
desired, Tika’s ProfilingHandler that you might recall from chapter 7 can be used
simultaneously as well.

TeeContentHandler teeContentHdlr;
ProfilingHandler profilingHdlr = null;

if (extractLanguage) {

profilingHdlr = new ProfilingHandler();

teeContentHandler = new TeeContentHandler(contentHdlr, linkHdlr,

Listing 15.1 Linking together link extraction and language detection

For language
detection

B

208 CHAPTER 15 The classic search engine example

profilingHdlr);

} else {

teeContentHdlr = new TeeContentHandler(contentHdlr, linkHdlr);

}

parser.parse(input, teeContentHdlr, metadata, makeParseContext());

If language detection is desired, Bixo uses the ProfilingHandler as shown in B. The
ProfilingHandler is used to hand off SAX events containing the text extracted by
Tika to the language detection mechanism (remember this from chapter 7). Then the
TeeContentHandler joins the ProfilingHandler to the existing LinkHandler shown
in C. If language detection isn’t desired, Bixo joins the LinkHandler to extract links
from the existing content handler stream as shown in D.

 Although not used directly for the Public Terabyte Dataset Project, Tika’s Boiler-
pipeContentHandlercan be useful for focusing on the meat of each HTML page by
ignoring banner advertisements and navigation controls that typically appear in the
header, footer, and margin areas.

 Parsing is always a relatively CPU-intensive operation, especially when compared
with other jobs in a Bixo workflow. For example, fetch performance tends to be I/O
bound (say, by the bandwidth of the cluster’s internet connection and the constraints
imposed by polite fetching), so it can be accomplished easily with a small army of rela-
tively inexpensive machines. We found instead that parsing was best accomplished
using a cluster of higher-end machines (dual-core CPUs with 7.5 GB of RAM, aka
m1.large instances in Amazon’s EC2 environment). Despite the best efforts of the Tika
development community, arbitrary web content sometimes causes a parser to hang.
Accordingly, Bixo runs the Tika parsers in a separate thread via a TikaCallable object
whose FutureTask will attempt to abort the parsing thread after a user-configured
time limit has expired (say, 30 seconds). Unfortunately, it’s difficult to reliably termi-
nate parsing threads. Note that there’s an outstanding JIRA issue (TIKA-456) to further
insulate the client application from such zombie threads. Jukka Zitting has also devel-
oped a way to perform Tika parsing within a separate child JVM that could be killed
off completely if necessary.

 In order for TagSoup to successfully parse HTML content, the encoding of the text
stream must also be provided. Although the HTML 5 specification states that clients
should trust any Content-Encoding response headers returned by the web server,
we’ve found that Tika’s “trust but verify” approach is far more robust when faced with
arbitrary web content. Bixo puts the Content-Type and Content-Language from the
server response headers into the metadata it passes to Tika. Tika first searches the ini-
tial 8 KB of the content for <meta> tags with Content-Type and charset attributes. If
the charset isn’t found in the <meta> tags, it uses its CharsetDetector (along with any
hints from the server response header) to pick the best charset, using statistical analy-
sis of short character sequences.

 Next, we’ll hear about an interesting analysis result we arrived at directly as a bene-
fit of using Tika in the Public Terabyte Dataset Project. Yes, this example is more than

Extract links
and languageC

Just
extract links

D

209The Bixo web crawler

just cool technology—it’s also produced a genuine scientific result that will be used to
further improve charset detection mechanisms within the domain of internet-scale
web crawling. Read on to find out!

15.2.2 Validating Tika’s charset detection

As an interesting dataset use case, we took a sample set of several thousand pages that
each provided the charset via <meta> tags, and then examined the accuracy of the
Tika CharsetDetector (we assumed that the charset provided in the <meta> tags was
correct.) The results are summarized in figure 15.3.

 It would be ideal if the most common character sets (particularly UTF-8) also
enjoyed the highest detection accuracy, but unfortunately this wasn’t the case as indi-
cated in figure 15.3. Instead, there seem to be significant biases in the Tika Charset-
Detector toward unusual character sets. For example, many UTF-8 pages were
incorrectly classified as gb2312. We hope that future analysis using the full Public
Terabyte Dataset will help support efforts to improve Tika’s character set detection
support. Similar analysis could be performed to diagnose and improve Tika’s lan-
guage detection support, which typically provides even poorer results despite requir-
ing a great deal of extra processing time.

big5

euc-kr

gb2312

iso-8859-1
iso-8859-2

iso-8859-5

iso-8859-7

iso-8859-9

shift_jis

utf-8

windows-1250 windows-1251

windows-1252
windows-1254

windows-1255

windows-1256

x-windows-874
0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

P
e
r
c
e
n

ta
g

e
 c

o
r
r
e
c
t

Number of pages

Tika charset detection quality

tis-620 us-ascii windows-1253

Figure 15.3 Evaluating Tika’s charset detection with a web-scale data set

210 CHAPTER 15 The classic search engine example

15.3 Summary

We hope you’ve enjoyed hearing about the way in which Bixo Labs, Inc., Amazon Web
Services, and Concurrent, Inc., leveraged Tika to generate the public internet-scale
web dataset called the Public Terabyte Dataset Project. To date, they’ve already pro-
duced an interesting scientific result, and we anticipate this result will help further
efforts in improving the Tika system, especially in the areas of charset support and lan-
guage detection.

 To summarize, we heard about

1 The goal of the Public Terabyte Dataset Project: to build a semi-processed web-
scale dataset where the text and links have been pre-extracted, making the data
more easily processed and amenable to analysis.

2 The Bixo web crawler, and its layering on top of technologies like Tika,
Hadoop, and Cascading. We heard about the Bixo crawler workflow, and how it
separates out the fetching and the parsing steps.

3 How Bixo’s web crawler allows link extraction and language detection via Tika.
4 An interesting real-world science result demonstrating the need for improve-

ment in Tika’s charset detection mechanism, especially on not-so-common
character sets.

We’d also like to acknowledge you for sticking with us to the end. The development of
Tika has been a tremendously challenging, intellectually stimulating body of work
over the past five years, and describing it here over the past 15 chapters has been a
blast. We hope you’ve had as much fun as we have and that you find Tika truly useful
in your own software development. Stop by the Author Online forum or the
user@tika.apache.org or dev@tika.apache.org Apache mailing lists and share your
experiences with the rest of the community!

211

appendix A
Tika quick reference

All the key interfaces in Tika were described in detail earlier in this book and their
Javadocs are all available online, but it’s often useful to have a quick reference for
looking up some of the more commonly used functionality. This appendix answers
that need by providing a summary of the key parts of the Tika API.

A.1 Tika facade

As discussed in chapter 2 and later in this book, the org.apache.tika.Tika facade
class is designed to make simple Tika use cases as easy to use as possible. The facade
class supports the methods shown in table A.1.

Table A.1 Key methods of the Tika facade class

Method Description

detect(...) Returns the automatically detected media type of the given docu-

ment. The return value is a string like application/pdf.

parse(...) Parses the given document and returns the extracted plain text con-

tent. The return value is a java.io.Reader instance and the pars-

ing happens in a background thread while the text stream is read.

parseToString(...) Parses the given document and returns the extracted plain text con-

tent. The return value is a string whose length is limited by default to

avoid memory issues with large documents.

setMaxStringLength(int) Sets the maximum length of the parseToString return value.

212 APPENDIX A Tika quick reference

The type detection and text extraction methods accept the document to be pro-
cessed in various different ways. Table A.2 lists the most common ways of specifying a
document.

A.2 Command-line options

The tika-app runnable JAR file allows you to use Tika as a command-line tool. To use
this jar, start it as follows:

java -jar tika-app.jar [options] [file|URL]

The most commonly used command-line options are summarized in table A.3.

A.3 ContentHandler utilities

As discussed in chapter 5, the document content extracted by a parser is returned as
XHTML SAX events to the client application. Handling these events can be compli-
cated at times, so Tika provides a number of utility classes in the org.apache.tika
.sax package for various different purposes. Table A.4 summarizes the most com-
monly used utility classes.

Table A.2 Document arguments to the Tika facade methods

Argument type Description

java.io.InputStream The document is read from the given byte stream. You can also option-

ally specify an explicit Metadata instance to be used along with the

document stream.

java.io.File The document is read from the given file. The filename and other file

metadata are passed along with the document stream.

java.net.URL The document is read from the given URL. The possible filename at the

end of the URL and any content type and other metadata hints included

in the access protocol are passed along with the document stream.

Table A.3 Tika command-line options

Option Description

--xml or -x Outputs the extracted document content as XHTML. This is the default mode.

--text or -t Outputs the extracted document content as plain text.

--metadata or -m Outputs the extracted document metadata using a simple key: value format.

--json or -j Outputs the extracted document metadata as a JSON object.

--detect or -d Outputs only the detected document type.

--gui or -g Starts the Tika GUI. Useful for quick manual testing or experimentation.

--help or -? Prints a detailed listing of all the available command-line options.

213APPENDIX A Tika quick reference

Table A.4 ContentHandler utility classes

Class Description

BodyContentHandler Captures the contents of the <body> tag of the incoming XHTML docu-

ment and writes it to another ContentHandler instance, a character

or a byte stream, or to an internal string buffer that can be accessed

using the toString() method.

LinkContentHandler Collects all links from the incoming XHTML document. The collected

links are available as a list of Link records from the getLinks()
method.

TeeContentHandler Forwards the incoming XHTML document to any number of

ContentHandler instances. Useful when you want to, for example,

combine link extraction with other types of content processing.

XHTMLContentHandler Utility class used by Parser implementations to make it easier to pro-

duce valid and complete XHTML output.

214

appendix B
Supported metadata keys

Here’s a quick reference for the metadata models and keys that are supported in the
latest version of Tika, as of 1.0. The models are briefly described, as are the metadata
keys associated with them. The keys are found in the Tika code package
org.apache.tika.metadata and its associated classes.

B.1 Climate Forecast

The Climate Forecast (CF) metadata model is used to describe climate-relevant data
stored in NetCDF files. Tika currently supports a subset of the metadata keys:

ACKNOWLEDGEMENT—An acknowledgment that is traditionally added describing the sponsor
and contributors to the generation of the associated data file.

COMMAND_LINE—The command line used to generate this data.

COMMENT—Free-text comments from the data provider.

CONTACT—Information such as email, phone, address, and so on for getting more informa-
tion about this file.

CONVENTIONS—Identifies the specific CF conventions that are applied to this data file.

EXPERIMENT_ID—A unique identifier typically associated with the model experiment that
produced this file.

HISTORY—Lineage or processing history for this file.

INSTITUTION—The institution that generated this file.

MODEL_NAME_ENGLISH—An English name describing the climate model that generated
this file.

PROGRAM_ID—The funding program or agency that generated this model output file.

PROJECT_ID—The specific project (part of a program) that generated this file.

REALIZATION—Identifies the parameters and variables that this file realizes.

REFERENCES—Any associated references, including URLs, papers, and so forth that describe
the science behind this file.

SOURCE—A pointer to the software, the system, the institution, or the contact that generated
this file.

TABLE_ID—The identifier of an associated table that this climate file was generated from.

215APPENDIX B Supported metadata keys

B.2 Creative Commons

A set of basic descriptive elements for software produced using Creative Commons
Licenses. You can read more about Creative Commons Metadata at http://wiki
.creativecommons.org/Metadata.

LICENSE_LOCATION—The local (non-URL) location of the Creative Commons License that
is applied to this content.

LICENSE_URL—The URL location of the Creative Commons License that is applied to this
content.

WORK_TYPE—The type of work that the Creative Commons License applies to, one (or
more) of Text, Still Image, Moving Image, Interactive Resource, Sound, or Other.

B.3 Dublin Core

A set of 15–20 (depending on the version) metadata elements that are said to describe
“any electronic resource.” See http://dublincore.org/documents/dcmi-terms/ for
more information.

CONTRIBUTOR—An entity responsible for making contributions to the resource.

COVERAGE—The spatial or temporal topic of the resource, the spatial applicability of the
resource, or the jurisdiction under which the resource is relevant.

CREATOR—An entity primarily responsible for making the resource.

DATE—A point or period of time associated with an event in the lifecycle of the resource.

DESCRIPTION—An account of the resource.

FORMAT—The file format, physical medium, or dimensions of the resource.

IDENTIFIER—An unambiguous reference to the resource within a given context.

LANGUAGE—A language of the resource.

MODIFIED—Date on which the resource was changed.

PUBLISHER—An entity responsible for making the resource available.

RELATION—A related resource.

RIGHTS—Information about rights held in and over the resource.

REFERENCES—A related resource that is referenced, cited, or otherwise pointed to by the
described resource.

SOURCE—A related resource from which the described resource is derived.

SUBJECT—The topic of the resource.

TITLE—A name given to the resource.

TYPE—The nature or genre of the resource.

B.4 Geographic metadata

A set of basic geographic metadata to describe the spatial extent of content.

ALTITUDE—The altitude, measured in some units (height, millibars, and so on) of this con-
tent at the time it was generated.

http://wiki.creativecommons.org/Metadata
http://wiki.creativecommons.org/Metadata
http://dublincore.org/documents/dcmi-terms/

216 APPENDIX B Supported metadata keys

LATITUDE—The angular distance of a place north or south of the earth’s equator, usually
expressed in degrees and minutes.

LONGITUDE—The angular distance of a place east or west of the meridian at Greenwich,
England, or west of the standard meridian of a celestial object, usually expressed in
degrees and minutes.

B.5 HTTP headers

HTTP metadata headers as specified in RFC 2616 (http://mng.bz/vdx0 and http://
mng.bz/QWw7).

CONTENT_DISPOSITION—A means for the origin server to suggest a default filename if the
user requests that the content be saved to a file.

CONTENT_ENCODING—Defines how to decode an HTTP payload’s content, and may affect
the underlying media type.

CONTENT_LANGUAGE—Specification of the language of the underlying HTTP content.

CONTENT_LENGTH—A length specified in octets (8-bit bytes) for the underlying HTTP
content.

CONTENT_LOCATION—An alternate location for the returned data.

CONTENT_MD5—A Base64-encoded binary MD5 sum of the content of the response.

CONTENT_TYPE—The mime type of this content.

LAST_MODIFIED—The last modified date for the requested object, in RFC 2822 format.

LOCATION—Used in redirection, or when a new resource has been created.

B.6 Microsoft Office

Metadata fields captured in standard Microsoft Office document formats like Word,
Excel, and PowerPoint, as specified at http://msdn.microsoft.com/en-us/library/
cc313118%28v=office.1.2%29.aspx.

APPLICATION_NAME—The MS Office application that generated this file.

APPLICATION_VERSION—The version identifier of the MS Office application that gener-
ated this file.

AUTHOR—The original author of this MS Office file.

CATEGORY—A categorical classification of this MS Office file.

CHARACTER_COUNT—The number of characters present in this MS Office file, without
spaces.

CHARACTER_COUNT_WITH_SPACES—The number of characters present in this MS Office
file, with spaces.

COMPANY—The company registration information for the MS Office application that gener-
ated this file.

CONTENT_STATUS—The status of this content, for example draft, in-review, and so on.

CREATION_DATE—The date on which this file was created.

EDIT_TIME—The last time that this file was edited.

http://mng.bz/vdx0
http://mng.bz/QWw7
http://mng.bz/QWw7
http://msdn.microsoft.com/en-us/library/cc313118%28v=office.1.2%29.aspx
http://msdn.microsoft.com/en-us/library/cc313118%28v=office.1.2%29.aspx

217APPENDIX B Supported metadata keys

KEYWORDS—Free-text comments about this file, specified by the document
creator.

LAST_AUTHOR—The username of the last person or software to modify this file.

LAST_PRINTED—The last date on which this file was printed.

LAST_SAVED—The last date on which this file was saved.

LINE_COUNT—The number of lines in this file.

MANAGER—The manager of the project for which this file was created, as specified by the
document author/owner in the particular MS Office application.

NOTES—Free-text comments from the author regarding this file.

PAGE_COUNT—The number of pages for this file.

PARAGRAPH_COUNT—The number of paragraphs present in the text portions of this file.

PRESENTATION_FORMAT—For MS Office Power Point files, the presentation style: slide-
show, and so forth.

REVISION_NUMBER—The revision number for this particular file.

SECURITY—Groups, rights, and permissions for modifying, reading and accessing this file.

SLIDE_COUNT—For MS Office PowerPoint files, the number of slides present in this file.

TEMPLATE—Indicates the template (if any) applied to this file.

TOTAL_TIME—Total time spent modifying/editing/creating content for this file.

WORD_COUNT—The number of words present in this file.

B.7 Message (email)

A set of metadata fields related to email messaging content, as specified in http://
www.ietf.org/rfc/rfc2822.txt.

MESSAGE_BCC—An email address to blind carbon copy (BCC) this particular email message.

MESSAGE_CC—An email address to carbon copy a recipient of this email content.

MESSAGE_FROM—Specifies the From email address of the sender of this email message.

MESSAGE_RECIPIENT_ADDRESS—The actual recipient of this email message.

MESSAGE_TO—The intended recipient of this email message.

B.8 TIFF (Image)

TIFF image metadata as specified in http://mng.bz/I2kQ and Exchangeable image
file format (EXIF) metadata as specified at http://mng.bz/sp5V, http://www.exif
.org/Exif2-2.PDF, http://en.wikipedia.org/wiki/F-number and http://mng.bz/xh0I.

BITS_PER_SAMPLE—Number of bits per component.

EQUIPMENT_MAKE—The scanner manufacturer.

EQUIPMENT_MODEL—The scanner model name or number.

EXPOSURE_TIME—Exposure time, given in seconds (sec).

FLASH_FIRED—This tag is recorded when an image is taken using a strobe light (flash).

http://www.ietf.org/rfc/rfc2822.txt
http://www.ietf.org/rfc/rfc2822.txt
http://mng.bz/I2kQ
http://mng.bz/sp5V
http://www.exif.org/Exif2-2.PDF
http://www.exif.org/Exif2-2.PDF
http://en.wikipedia.org/wiki/F-number
http://mng.bz/xh0I

218 APPENDIX B Supported metadata keys

FOCAL_LENGTH—The actual focal length of the lens, in mm. Conversion is not made to the
focal length of a 35 mm film camera.

F_NUMBER—In optics, the f-number (sometimes called focal ratio, f-ratio, f-stop, or relative
aperture) of an optical system expresses the diameter of the entrance pupil in terms of
the focal length of the lens.

IMAGE_LENGTH—The number of rows of image data. In JPEG compressed data, a JPEG
marker is used instead of this tag.

IMAGE_WIDTH—The number of columns of image data, equal to the number of pixels per
row. In JPEG compressed data, a JPEG marker is used instead of this tag.

ISO_SPEED_RATINGS—Indicates the ISO Speed and ISO Latitude of the camera or input
device as specified in ISO 12232.

ORIENTATION—The image orientation viewed in terms of rows and columns.

ORIGINAL_DATE—Original date when the image was taken.

RESOLUTION_HORIZONTAL—The horizontal resolution of the camera focal plane.

RESOLUTION_UNIT—The unit image resolution is measured in (ExifXResolution and
ExifYResolution).

RESOLUTION_VERTICAL—The vertical resolution of the image.

SAMPLES_PER_PIXEL—The number of components (channels) in one pixel.

SOFTWARE—The name of the software that created this image.

219

index

A

<a> tag 137
AbstractParser class 175
add() method 105
agglutinative languages 117
alias 31
analyzers. See search engines
annotations 50
Ant build 26–27

See also source code
Apache Droids 164–165
Apache Gora 163
Apache Hadoop 16, 50

Bixo 206
Apache Incubator 156–157, 161

podlings 157
Apache Jackrabbit 192–193, 195

and ContentHandler interface 193
and parse() method 193
and WebDAV 194
content repositories 192
Content Repository for Java API 191
nodes 192
text extraction pool 192–193
TextExtractionError 193

Apache Lucene 75
Document class 159
ecosystem 155
Field class 159
Lucene Core 159–160

Apache Mahout 50, 165–166
Apache Manifold Connectors. See ManifoldCF
Apache Nutch 15, 162, 164

and Bixo 207
Apache Gora 163
Protocol plugins 162

Apache PDFBox 75, 82
Apache Solr 161–162
Apache Tika, history of 15, 17
Apache UIMA 50

annotations 50
application programming interfaces (APIs) 9

Java ROME API 130
Parser API 150
pull APIs 88
push APIs 88
See also Content Repository for Java API

application/* MIME type 59
Architectural Styles and the Design of Network-based

Software Architectures 40
audio/* MIME type 59
AutoDetectParser 47
AutoDetectParser class 82, 176

B

Babel fish 3
Behemoth 51
/bin/ls output 135
biomarkers 197
Bixo 206, 209

and Apache Nutch 207
and TagSoup 207
Cascading 206
Fetch subassembly 206
Parse subassembly 206
parsing documents 207, 209
robots.txt file 207

black lists 45
BodyContentHandler class 90
BoilerpipeContentHandler class 208
BOM markers 69
Brin, Sergey 44

220 INDEX

build.xml file 26
byte frequency matching 70
byte order marks. See BOM markers; magic bytes

C

callback functions 19
cancer research 196, 203

biomarkers 197
See also Early Detection Research Network

Cardinality property 97
Cascading 206
Cascading Style Sheets 10
categorization 48
CF. See Climate Forecast model
character encodings 69–70

BOM markers 69
byte frequency matching 70
statistical encoding detection 70
See also character sets; charsets

character sets 43, 69–70
validating character set detection 209
See also character encodings

CharsetDetector class 209
charsets 69–70

See also character encodings; character sets
classes

AbstractParser 175
AutoDetectParser 82, 176
BodyContentHandler 90
BoilerpipeContentHandler 208
CharsetDetector 209
CompositeDetector 172
CompositeParser 82
DelegatingParser 121
DeploymentAreaParser 140
Document 76, 159
ElementMetadataHandler 174
ExtractingRequestHandler 161
FeedParser 128, 131
Field 76, 159
FileInputStream 84
HDFParser 131, 133
HTMLParser 82, 134
HtmlParser 207
IdentityHtmlMapper 92
IndexReader 77
IndexWriter 78
InputStream 84, 87, 141
java.io.Writer 120
LanguageIdentifier 119
LanguageIdentifierUpdateProcessor 161
LanguageProfile 119

LinkContentHandler 90, 138
LinkHandler 208
LookaheadInputStream 171
LuceneIndexer 75
MediaType 62–63
MediaTypeRegistry 63–64
Metadata 19, 105–106, 199
MimeType 201
MimeTypes 20, 169
MimeTypesFactory 169
Parse 105
ParseContext 19, 171
ParserDecorator 176
ParsingReader 89
PDFParser 75, 81
PdfParser 105
PDFTextStripper 82
PDSRDFParser 184
Product 202
ProfilingHandler 120, 207
ProfilingWriter 120
Property 103
PropertyType 105
PropertyValue 105
Reader 34, 77
Reference 200, 202
SAXTransformerFactory 91
SimpleTypeDetector 71
TeeContentHandler 90, 122, 207
Tika facade class 32, 34
TikaCallable 208
TikaInputStream 85, 87
TransformerHandler 91
UpdateHandler 161
XMLParser 173
XmlRootExtractor 171

classpath 26
Climate Forecast model 12
ClimateForecast interface 105
cloud computing 151, 153
clustering 48
collaborative filtering 48
command-line interface

--language option 114
See also Tika CLI

composite design pattern 82
CompositeDetector class 172
CompositeParser class 82
compression 85
content 123, 142

how Tika extracts it 127, 141
organization of 128, 133
random access 131, 133
streaming 128, 131
types 124, 127

221INDEX

content extraction
effect of data storage on 139, 141
for search engines 147
how it works 127, 141

content management. See document management
systems

content repositories 21, 192
text extraction pool 192–193

Content Repository for Java API 191
content type hints 68
Content-Encoding headers 208
ContentHandler argument 80
ContentHandler interface 88, 138

in Apache Jackrabbit 193
content-specific metadata standards 98–99, 101

compared to general standards 99
difficulty of comparing across standards 100

Content-Type header. See content type hints
context-free interaction 42
COO. See Orbiting Carbon Observatory
corpus 116

distance from 117
Hamshahri 158
OHSUMED 158
Tempo 158

Cotent-Type header 208
crawlers. See search engine
CSS. See Cascading Style Sheets
custom MIME types

custom detectors for 170, 172
detecting 169, 172

custom parsers 172, 176
creating 174–175
customizing existing parsers 173–174

D

DAACs. See Distributed Active Archive Centers
data curation 198
data mining, text mining 149–150
data models, Planetary Data System 182, 184
data, linked 198
databases, MIME-info 61–62
deduplication 45
Definition property 97
DelegatingParser class 121
dependencies, managing 34, 36
DeploymentAreaParser class 140
design goals 17, 21

fast processing 19
flexible metadata 19
flexible MIME type detection 20
language detection 21
low memory footprint 19

MIME database 20
parser libraries 19
unified parsing interface 18

detect() method 34, 71, 170–171
detecting custom MIME types 169, 172

custom type detectors 170, 172
detecting file formats 65, 71
detecting MIME types 6
Detector interface 170

custom type detectors 170, 172
dictionary-based profiling 117
digital asset management 22

See also document management systems
Distributed Active Archive Centers 187
document analysis 22
Document class 76, 159
document management systems 148–149

Content-Type headers 148
Document Object Model 19
document stream

InputStream 87
InputStream class 84

documents 4, 14
analyzing 22
as text 9
custom 92–93
document management systems 148–149
input stream 84, 87
language detection 113, 122
parsing with Bixo 207, 209
text mining 149–150
See also files

DOM. See Document Object Model
downloading

Git 25
Subversion 25
Tika source code 25

drag and drop 30
Droids. See Apache Droids
Dublin Core 11, 98–99

E

Early Detection Research Network 197, 203
data model 197
data sets 201
eCAS Curator 199
EDRN Catalog and Archive Service 198
identifying MIME types 201–202
linked data 198
metadata extraction 199, 201
protocols 197
scientific data curation 198
use of Tika 198, 202

222 INDEX

Earth Science Enterprise 186, 190
Distributed Active Archive Centers 187
how Tika fits in 187, 190
principal investigator 187
Science Information Processing Systems 187

eCAS Curator 199
Ingester 199
references 199
See also EDRN Catalog and Archive Service

e-commerce, useful user data 49
EDRN Catalog and Archive Service 198

eCAS Curator 199
See also Early Detection Research Network

ElementMetadataHandler class 174
embedding Tika 32, 36

Tika facade 32, 34
encoding, output encoding 31
endDocument function 19
endElement function 19
environment settings 91
errors, TextExtractionError 193

See also exceptions
events, STOP 193
example/* MIME type 59
exceptions

IOException 75, 81
SAXException 81
TikaException 75, 81

extending Tika 167, 177
adding MIME types 168–169

Extensible Hypertext Markup Language 10
in Tika CLI 30
structured output 87, 91

Extensible Markup Language (XML) 10, 70
Resource Description Framework 184
See also XML files

Extensible Metadata Platform (XMP) 12, 98
properties and property types 103

extracting text
full text 74, 78
with Apache Jackrabbit 192–193

ExtractingRequestHandler class 161

F

facade class 32
Facebook 49
fast processing 19
FeedParser class 128, 131
Fetch subassembly 206
Field class 76, 159
Fielding, Roy 40
file extensions 8

See also glob patterns

file formats 4–6
combined heuristics 71
content type hints 68
detecting 65, 71
filename globs 66, 68
HDF 125–126, 131, 133
headers 133–134
magic bytes 68
OLE 70
RSS 126–128, 131
XML 70

file headers 133–134
File Manager catalog 202
file naming conventions 134, 137
file storage. See storage
FileInputStream class 84
filenames, glob pattern 66, 68
files

compression 85
content of 123, 142
file extensions 8
formats 4–6
headers 133–134
HTML 133
links between 137, 139
magic bytes 8
matrix data 126
naming conventions 134, 137
scalar data 126
storage 139, 141
text files 9
vector data 126
XML 8
See also documents

formatted text 30
full-text extraction 74, 78

incremental parsing 77–78
indexing 75, 77

full-text indexes, for large-scale systems 152

G

general metadata standards 97, 99
compared to content-specific standards 99
Dublin Core 99

Geographic interface 105
get() method 86
getContentHandler() method 174
getDefaultRegistry() method 63
getFile() method 86
getLanguage() method 120
getLinks() method 140
getSupertype() method.See MediaTypeRegistry

class

223INDEX

getSupportedTypes() method 79, 83, 174–175
Git 25
glob patterns 66, 68
graphical user interface.See Tika GUI

H

Hamshahri corpus 158
handling custom documents 92–93
hasFile() method 86
HDF 125–126

matrix data 126
organization of content 131, 133
scalar data 126
vector data 126
See also Hierarchical Data Format

HDFParser class 131, 133
<head> tag 134
headers

Content-Encoding 208
Content-Type 148, 208

heuristics 71
Hierarchical Data Format 125–126

organization of content 131, 133
Hitchhiker’s Guide to the Galaxy 3
HTML.See Hypertext Markup Language
HtmlMapper interface 92
HTMLParser class 82, 134
HtmlParser class 207
Hypertext Markup Language 10, 40

<head> tag 133
in Tika CLI 31

I

IANA. See Internet Assigned Numbers Authority
IdentityHtmlMapper class 92
image/* MIME type 59
implementing parsers 80, 82
incremental language detection 120–121
incremental parsing, streaming 77–78
indexers

full-text indexing 152
See also search engines

indexing, full-text search 75, 77
IndexReader class 77
IndexWriter class 78
information overload 40
Ingester 199

references 199
input, standardizing 84
InputStream argument 80
InputStream class 84, 87, 141

and parse() method 85

interfaces
ClimateForecast 105
ContentHandler 88, 138, 193
Detector 170
Geographic 105
HtmlMapper 92
org.apache.tika.parser.Parser 18
org.xml.sax.ContentHandler 19
Parser 20, 35, 78, 83, 130, 135
TIFF 105

intermediaries, promotion 42
International Organization for

Standardization 115
internet

complexity of 42, 44
scale and growth of 40, 42

Internet Assigned Numbers Authority 4, 60
MIME type registry 6

inverse indexes 147
IOException 75, 81

input error 81
isMultiValued() method 105
ISO 639 115
isReasonablyCertain() method 120
isSpecializationOf() method. See MediaTypeRegis-

try class

J

Jackrabbit. See Apache Jackrabbit
Java

embedding Tika 32, 36
managing dependencies 34, 36
ROME API 130
service providers 83

Java Beans 36
Java ROME API 130
java.io.Writer class 120
java.util.zip package 8
JCR. See Content Repository for Java API

L

language detection 21, 113, 122
advanced algorithms 119
agglutinative languages 117
corpus 116
distance 117
in Tika 119, 122
incremental 120–121
ISO 639 standards 115
language profiles 116–117
N-gram algorithm 118
profiling algorithms 117, 119

224 INDEX

language detection (continued)
theory 115, 119
UDHR example 114–115

language detection theory 115, 119
--language option 114
language profiles 116–117
LanguageIdentifier class 119
LanguageIdentifierUpdateProcessor class 161
LanguageProfile class 119
libraries

Apache PDFBox 75
Lucene Core 159–160
parser libraries 6, 9, 19
PDFBox 82
Tika as embedded library 32, 36

LinkContentHandler class 90, 138
getLinks() method 140

linked data 198
LinkHandler class 208
links, between files 137, 139
Linnaean taxonomy. See taxonomy
Linnaeus, Carl 55
locale 91
LookaheadInputStream class 171
Lucene 154
Lucene Core 159–160
Lucene ecosystem 155

Apache Droids 164–165
Apache Mahout 165–166
Apache Nutch 162, 164
Apache Solr 161–162
ManifoldCF 156–157
Open Relevance 157, 159

LuceneIndexer class 75
and metadata 108–109
converting metadata to RSS 109

Luke 77

M

machine learning 47, 52
categorization 48
clustering 48
collaborative filtering 48
predicting user likes and dislikes 48, 50
real-world examples 50, 52

magic bytes 68
Mahout. See Apache Mahout
ManifoldCF 156–157
mark feature 86
mark() method 86
matrix data 126
Maven build 26

See also source code

Maven, memory problems 26
media type registries 59

MediaTypeRegistry class 63–64
media types 56

See also MIME types
MediaType class 62–63

See also media types
MediaTypeRegistry class 63–64
memory footprint 19
message/* MIME type 59
<meta> tag. name attribute 134
metadata 10, 13, 30, 94, 112

and Early Detection Research Network 199, 201
and LuceneIndexer 108–109
and rest 42
and Tika CLI 31
and Tika facade 109
Cardinality property 97
challenges of acquiring 101, 103
Climate Forecast model 12
Content-Type header 148
converting to RSS 109, 111
Definition property 97
Extensible Metadata Platform 12
flexibility 19
how it's created 101, 103
in Lucene Document objects 159
instances 104
metadata models 10
Metadata.LANGUAGE entry 113, 122
Name property 97
practical uses for 107, 111
quality of 101, 103
Relationships property 97
representing 107
standards 96, 101
transforming 107
Valid values property 97

Metadata argument 80
Metadata class 19, 105–106, 199
metadata instances 104

representing 107
transforming 107

metadata models 10
Climate Forecast model 12
Dublin Core 11
See also metadata standards

metadata quality 101, 103
metadata schema 98
metadata standards 96, 101

content-specific standards 97–99, 101
Dublin Core 99
general standards 97, 99

methods
add() 105

225INDEX

methods (continued)
detect() 34, 71, 170–171
get() 86
getContentHandler() 174
getFile() 86
getLanguage() 120
getLinks() 140
getSupertype() 65
getSupportedTypes() 79, 83, 174–175
hasFile() 86
isMultiValued 105
isReasonablyCertain() 120
isSpecializationOf() 65
mark() 86
MediaTypeRegistry 63
parse() 34, 79–80, 122, 129, 175, 193
parser() 105
parseToString() 34, 74–75
reset() 86
set methods 105
setMaxStringLength() 34
setMediaTypeRegistry() 83

MIME database 20
MIME type identifiers 6
MIME types 6, 56, 60

adding new types to Tika 168–169
adding to MIME-info database 169
and Early Detection Research Network

201–202
and Parser interface 20
application/* 59
audio/* 59
categories of 58
custom 169, 172
custom MIME type detectors 170, 172
detecting 6, 20
example/* 59
identifiers 6
image/* 59
Internet Assigned Numbers Authority 60
media type registries 59
MediaType class 62–63
MediaTypeRegistry class 63–64
message/* 59
MIME database 20
MIME-info database 61–62
model/* 59
multipart/* 59
parent and child types 8
registration 6
syntax 58
text/* 59
Tika MIME repository 200
top-level 58
video/* 59
working with 60, 65

MIME-info database 61–62
adding new types to 169

MimeType class 201
MimeTypes class 20, 169
MimeTypesFactory class 169
ML. See machine learning
model/* MIME type 59
modularity 150
multipart/* MIME type 59
Multipurpose Internet Mail Extensions. See MIME

types

N

Name property 97
NASA 181, 190

Earth Science Enterprise 186, 190
how they use Tika 187, 190
National Polar-orbiting Operational Environ-

mental Satellite System 188
Orbiting Carbon Observatory 187
PDS search redesign 184, 186
Planetary Data System 182, 186
Product Evaluation and Analysis Tool

Element 188
Soil Moisture Active Passive 188

National Cancer Institute, Early Detection
Research Network 197, 203

National Polar-orbiting Operational Environmen-
tal Satellite System 188

NetCDF 131
N-gram algorithm 118
nodes 192
NPOESS. See National Polar-orbiting Operational

Environmental Satellite System
Nutch. See Apache Nutch

O

Object Linking and Embedding 70
OHSUMED corpus 158
OLE format 70
OLE. See Object Linking and Embedding
OODT 198
Open Relevance 157, 159

Hamshahri corpus 158
OHSUMED corpus 158
Tempo corpus 158

Open Services Gateway Initiative (OSGi) 36, 151
Orbiting Carbon Observatory 187

computing resources 189
org.apache.tika.language package 35, 119
org.apache.tika.metadata package 35, 105
org.apache.tika.mime package 35
org.apache.tika.parser.Parser interface 18, 20

226 INDEX

org.apache.tika.parser package 35, 174
org.apache.tika.sax package 35
org.xml.sax.ContentHandler interface 19
organization of content 128, 133
OSGI. See Open Services Gateway Initiative
output

SAX events 88–89
structured XHTML 87, 91
XHTML 89, 91

output serialization 91
overriding parsers 176

P

packages
org.apache.tika.language 35, 119
org.apache.tika.metadata 35, 105
org.apache.tika.mime 35
org.apache.tika.parser 35, 174
org.apache.tika.sax 35
See also java.util.zip

Page, Lawrence 44
Parse subassembly 206
parse() method 34, 79–80, 105, 109, 122, 129, 175

and input streams 85
ContentHandler argument 80
in Apache Jackrabbit 193
InputStream argument 80
Metadata argument 80
ParseContext argument 80, 91

ParseContext 91
ParseContext argument 80
ParseContext class 19, 171
Parser API 150
Parser class 105
Parser interface 35, 78, 83, 130, 135

and MIME types 20
implementation 80, 82
InputStream class 84
SAX content handler 88

parser libraries 6, 9, 19
parser override 176
parser selection 82–83
ParserDecorator class 176
parsers 47, 78, 83

as plugins 175
AutoDetectParser 47
customizing 172, 176
customizing existing parsers 173–174
DelegatingParser 121
DeploymentAreaParser 140
FeedParser class 128, 131
HDFParser class 131, 133
HTMLParser 134

implementation 80, 82
overriding 176
parser libraries 6, 9, 19
selecting 82–83
unified parsing interface 18
writing a new one 174–175

parseToString() method 34, 74–75
parsing 78, 83

context-sensitive 91, 93
customizing 172, 176
customizing existing parsers 173–174
incrementally 77–78
overview 74–75
parser libraries 6, 9
PDF files 74
SAX events 89
SAX-based output 19
unified parsing interface 18
with Bixo 207, 209
writing a new parser 174–175

parsing context 91, 93
environment settings 91
locale 91

ParsingReader class 89
PDF files, parsing 74
PDFBox library 82
PDFParser class 75, 81
PdfParser class 105
PDFTextStripper class 82
PDS 182
PDSRDFParser class 184
PEATE. See Product Evaluation and Analysis Tool

Element
plain text 30
Planetary Data System 182, 186

data model 182, 184
Instruments 182–183
labels 182
Missions 182–183
PDS Data Distribution System 184
products 184
search redesign 184, 186
Targets 182–183

Planetary Data System Data Distribution System
(PDS-S). See Planetary Data System

plugins, parser plugins 175
podlings 157
principal investigator. See Science Information

Processing Systems
Product class 202
Product Evaluation and Analysis Tool

Element 188
and Tika 189

profiling algorithms 117, 119
advanced 119
N-gram algorithm 118

227INDEX

ProfilingHandler class 120, 207
ProfilingWriter class 120
promotion of intermediaries 42
properties, in Apache Jackrabbit 192
Property class 103
property types 105
property values 103, 105
PropertyType class 105
PropertyType enum 103
PropertyValue class 105
Protocol plugins 162
protocols 46

in Early Detection Research Network 197
provider configuration files 83
Public Terabyte Dataset (PTD) 43
Public Terabyte Dataset Project 204–205
pull API 88
purchase history 49
push API 88

R

random access 85
ratings 49
RDF. See Resource Description Framework format
Reader class 34, 77
Really Simple Syndication (RSS) 107, 126–127

from metadata 109, 111
organization of content 128, 131

Reference class 200, 202
Relationships property 97
Representational State Transfer. See REST
reset() method 86
Resource Description Framework format 184
resource management, close() method 84
REST 42

context-free interaction 42
principles of 42
promotion of intermediaries 42
use of metadata 42

RFC 5646 115
robots.txt file 207
ROME 129
root element detection, XML root detection 70
root elements 8
RSS 126–127

channels 126
organization of content 128, 131
See also Really Simple Syndication

S

SAX events 88
parsing 89
See also Simple API for XML

SAXException 81
output error 81

SAXTransformerFactory class 91
scalability 151, 153
scalar data 126
Science Information Processing Systems

(SIPS) 187
how Tika fits in 187, 190
principal investigator 187

search engine 44
search engines 13–14, 21, 44, 47, 146–147,

204, 210
analyzers 147
and Tika 46–47
Bixo 206, 209
black lists 45
crawlers 146
deduplication 45
indexers 147
inverse indexes 147
Public Terabyte Dataset Project 205
structure of 146–147
URL filtering 45
web crawlers 45
white lists 45

service providers 83
provider configuration files 83

set methods 105
setMaxStringLength() method 34
setMediaTypeRegistry() method 83
shared MIME-info database. See MIME-info

database
Simple API for XML 19

callback functions 19
parse() method ContentHandler argument 80
structured output 88–89

SimpleTypeDetector class 71
SIPS. See Science Information Processing Systems
SMAP. See Soil Moisture Active Passive
social media 49
Soil Moisture Active Passive 188
Solr. See Apache Solr
SolrCell 161
source code 25, 27

downloading 25
Git 25
Subversion 25

Spring framework 151
bean configuration 151

startDocument function 19
startElement function 19
statistical encoding detection 70
STOP event, in Apache Jackrabbit 193
storage

how it affects extraction 139, 141

228 INDEX

storage (continued)
logical representation 139, 141
physical representation 141

streaming 128, 131
structured text 9–10, 30, 87, 91

as SAX output 88–89
semantic structure 87–88

sub-class-of 64
Subversion 25

trunk checkout 25

T

TagSoup 207
Taste. See Apache Mahout
taxonomy 55
TeeContentHandler class 90, 122, 207
Tempo corpus 158
text mining 149–150
Text Retrieval Conference. See TREC standards
text, structured 9–10
text/* MIME type 59
TextExtractionError 193
TIFF interface 105
Tika

adding new MIME types 168–169
and cancer research 196, 203
and Early Detection Research Network 198,

202
and NASA 181, 190
and PEATE 189
Ant build 26–27
as Babel fish 3
as embedded library 32, 36
command-line interface 30, 32
computing resources 189
design goals 17, 21
extending 167, 177
extracting full text 74, 78
facade 32, 34
fast processing 19
for search engines 204, 210
GUI 29–30
history of 15, 17
how it extracts content 127, 141
how NASA uses 187, 190
identifying files for ingestion 190
in search engines 46–47, 146–147
indexing across different file types 189
introduction to 15, 22
language detection 119, 122
managing dependencies 34, 36
Maven build 26
memory footprint 19
MIME repository 200

modularity 150
origin of name 16
requirements for data delivery and

dissemination 190
scalability 151, 153
source code 25, 27
standardizing input 84
Tika application 27, 32
Tika CLI 30, 32
validating character set detection 209
when to use 21–22
working with metadata 104, 107
working with MIME types 60, 65

Tika Annotator. See Apache UIMA
Tika application 27, 32

documentation 28
tika-app. See also Tika CLI; Tika GUI

Tika bundle. See Open Services Gateway Initiative
Tika CLI 30, 32

HTML 31
--language option 114
metadata 31
output encoding 31
XHTML 30

Tika CLI. See Tika application, Tika GUI
Tika facade 32, 34

and metadata 109
detect() method 34
parse() method 34
parseToString() method 34, 74–75
setMaxStringLength() method 34

Tika GUI 29–30
views 30

Tika GUI. See Tika application; CLI
Tika MIME repository 200
Tika. See Apache Tika
tika-app 36
tika-bundle 36
TikaCallable class 208
tika-core 35
TikaException 75, 81

parse error 81
TikaInputStream class 85, 87

See also document stream
tika-mimetypes.xml. See media type registries
tika-parent 35
tika-parsers 35
top level project 155
TransformerHandler class 91
transforming metadata 107
TREC standards 159
Twitter 49
type hierarchies 64–65

media type inheritance. See media type
sub-class-of 64

229INDEX

type hints, content type hints 68
type/subtype 58

U

UDHR. See Universal Declaration of Human
Rights

Unicode 43
BOM markers 69

uniform resource locators, URL filtering 45
Universal Declaration of Human Rights

(UDHR) 114–115
Unix pipeline. See Tika CLI
unravelStringMet function 132
UpdateHandler class 161
updateVersion function 140
URL filtering 45
users

characteristics 49
item ratings 49
purchase history 49

V

Valid values property 97
ValueType enum 103
vector data 126
video/* MIME type 59

W

web browsers 40
web crawlers 45

protocol layer 46
web servers 40
Web-based Distributed Authoring and Versioning

Protocol (WebDAV) 194–195
when to use 194

white lists 45
World Wide Web

architecture 40
complexity of 42, 44
scale and growth of 40, 42

X

XHTML output 89, 91
XHTML. See Extensible Hypertext Markup Lan-

guage
XML files, root elements 8
XML. See Extensible Markup Language
XMLParser class 173
XmlRootExtractor class 171
XMP dynamic media 98
XMP. See Extensible Metadata Platform
xmpDM. See XMP dynamic media

C. A. Mattmann ● J. Zitting

T
ika is an Apache toolkit that has built into it everything you
and your app need to know about i le formats. Using Tika,
your applications can discover and extract content from

digital documents in almost any format, including exotic ones.

Tika in Action is the ultimate guide to content mining using
Apache Tika. You’ll learn how to pull usable information from
otherwise inaccessible sources, including internet media and
i le archives. � is example-rich book teaches you to build and
extend applications based on real-world experience with search
engines, digital asset management, and scientii c data processing.
In addition to architectural overviews, you’ll i nd detailed chap-
ters on features like metadata extraction, automatic language
detection, and custom parser development.

What’s Inside
● Crack MS Word, PDF, HTML, and ZIP

● Integrate with search engines, CMS, and other data sources
● Learn through experimentation
● Many examples

� is book requires no previous knowledge of Tika or text min-
ing techniques. It assumes a working knowledge of Java.

Chris Mattmann is an information architect experienced in the
construction of large data-intensive systems. Jukka Zitting is a
core Tika developer, a member of the JCR expert group, and
chairman of the Apache Jackrabbit project.

For access to the book’s forum and a free eBook for owners of this
book, go to manning.com/TikainAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

Tika IN ACTION

JAVA/SEARCH

M A N N I N G

“By Tika’s two main creators
and maintainers.”—From the Foreword by

Jérôme Charron, WebPulse

“Easily the most dei nitive
guide to this great new text

analysis toolkit.”
—John Guthrie, SAP

“An easy-to-read guide—
plenty of technical content.”

—Rick Wagner, Red Hat

“� ere’s not a single page
of ‘inaction’ in the

entire book!”—Sean Kelly
Technologist, NASA

“Complete, practical,
accurate.”

—Julien Nioche
DigitalPebble Ltd

SEE INSERT

	Tika in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the authors
	about the cover illustration
	Part 1 Getting started
	Chapter 1 The case for the digital Babel fish
	1.1 Understanding digital documents
	1.1.1 A taxonomy of file formats
	1.1.2 Parser libraries
	1.1.3 Structured text as the universal language
	1.1.4 Universal metadata
	1.1.5 The program that understands everything

	1.2 What is Apache Tika?
	1.2.1 A bit of history
	1.2.2 Key design goals
	1.2.3 When and where to use Tika

	1.3 Summary

	Chapter 2 Getting started with Tika
	2.1 Working with Tika source code
	2.1.1 Getting the source code
	2.1.2 The Maven build
	2.1.3 Including Tika in Ant projects

	2.2 The Tika application
	2.2.1 Drag-and-drop text extraction: the Tika GUI
	2.2.2 Tika on the command line

	2.3 Tika as an embedded library
	2.3.1 Using the Tika facade
	2.3.2 Managing dependencies

	2.4 Summary

	Chapter 3 The information landscape
	3.1 Measuring information overload
	3.1.1 Scale and growth
	3.1.2 Complexity

	3.2 I’m feeling lucky—searching the information landscape
	3.2.1 Just click it: the modern search engine
	3.2.2 Tika’s role in search

	3.3 Beyond lucky: machine learning
	3.3.1 Your likes and dislikes
	3.3.2 Real-world machine learning

	3.4 Summary

	Part 2 Tika in detail
	Chapter 4 Document type detection
	4.1 Internet media types
	4.1.1 The parlance of media type names
	4.1.2 Categories of media types
	4.1.3 IANA and other type registries

	4.2 Media types in Tika
	4.2.1 The shared MIME-info database
	4.2.2 The MediaType class
	4.2.3 The MediaTypeRegistry class
	4.2.4 Type hierarchies

	4.3 File format diagnostics
	4.3.1 Filename globs
	4.3.2 Content type hints
	4.3.3 Magic bytes
	4.3.4 Character encodings
	4.3.5 Other mechanisms

	4.4 Tika, the type inspector
	4.5 Summary

	Chapter 5 Content extraction
	5.1 Full-text extraction
	5.1.1 Abstracting the parsing process
	5.1.2 Full-text indexing
	5.1.3 Incremental parsing

	5.2 The Parser interface
	5.2.1 Who knew parsing could be so easy?
	5.2.2 The parse() method
	5.2.3 Parser implementations
	5.2.4 Parser selection

	5.3 Document input stream
	5.3.1 Standardizing input to Tika
	5.3.2 The TikaInputStream class

	5.4 Structured XHTML output
	5.4.1 Semantic structure of text
	5.4.2 Structured output via SAX events
	5.4.3 Marking up structure with XHTML

	5.5 Context-sensitive parsing
	5.5.1 Environment settings
	5.5.2 Custom document handling

	5.6 Summary

	Chapter 6 Understanding metadata
	6.1 The standards of metadata
	6.1.1 Metadata models
	6.1.2 General metadata standards
	6.1.3 Content-specific metadata standards

	6.2 Metadata quality
	6.2.1 Challenges/Problems
	6.2.2 Unifying heterogeneous standards

	6.3 Metadata in Tika
	6.3.1 Keys and multiple values
	6.3.2 Transformations and views

	6.4 Practical uses of metadata
	6.4.1 Common metadata for the Lucene indexer
	6.4.2 Give me my metadata in my schema!

	6.5 Summary

	Chapter 7 Language detection
	7.1 The most translated document in the world
	7.2 Sounds Greek to me—theory of language detection
	7.2.1 Language profiles
	7.2.2 Profiling algorithms
	7.2.3 The N-gram algorithm
	7.2.4 Advanced profiling algorithms

	7.3 Language detection in Tika
	7.3.1 Incremental language detection
	7.3.2 Putting it all together

	7.4 Summary

	Chapter 8 What’s in a file?
	8.1 Types of content
	8.1.1 HDF: a format for scientific data
	8.1.2 Really Simple Syndication: a format for rapidly changing content

	8.2 How Tika extracts content
	8.2.1 Organization of content
	8.2.2 File header and naming conventions
	8.2.3 Storage affects extraction

	8.3 Summary

	Part 3 Integration and advanced use
	Chapter 9 The big picture
	9.1 Tika in search engines
	9.1.1 The search use case
	9.1.2 The anatomy of a search index

	9.2 Managing and mining information
	9.2.1 Document management systems
	9.2.2 Text mining

	9.3 Buzzword compliance
	9.3.1 Modularity, Spring, and OSGi
	9.3.2 Large-scale computing

	9.4 Summary

	Chapter 10 Tika and the Lucene search stack
	10.1 Load-bearing walls
	10.1.1 ManifoldCF
	10.1.2 Open Relevance

	10.2 The steel frame
	10.2.1 Lucene Core
	10.2.2 Solr

	10.3 The finishing touches
	10.3.1 Nutch
	10.3.2 Droids
	10.3.3 Mahout

	10.4 Summary

	Chapter 11 Extending Tika
	11.1 Adding type information
	11.1.1 Custom media type configuration

	11.2 Custom type detection
	11.2.1 The Detector interface
	11.2.2 Building a custom type detector
	11.2.3 Plugging in new detectors

	11.3 Customized parsing
	11.3.1 Customizing existing parsers
	11.3.2 Writing a new parser
	11.3.3 Plugging in new parsers
	11.3.4 Overriding existing parsers

	11.4 Summary

	Part 4 Case studies
	Chapter 12 Powering NASA science data systems
	12.1 NASA’s Planetary Data System
	12.1.1 PDS data model
	12.1.2 The PDS search redesign

	12.2 NASA’s Earth Science Enterprise
	12.2.1 Leveraging Tika in NASA Earth Science SIPS
	12.2.2 Using Tika within the ground data systems

	12.3 Summary

	Chapter 13 Content management with Apache Jackrabbit
	13.1 Introducing Apache Jackrabbit
	13.2 The text extraction pool
	13.3 Content-aware WebDAV
	13.4 Summary

	Chapter 14 Curating cancer research data with Tika
	14.1 The NCI Early Detection Research Network
	14.1.1 The EDRN data model
	14.1.2 Scientific data curation

	14.2 Integrating Tika
	14.2.1 Metadata extraction
	14.2.2 MIME type identification and classification

	14.3 Summary

	Chapter 15 The classic search engine example
	15.1 The Public Terabyte Dataset Project
	15.2 The Bixo web crawler
	15.2.1 Parsing fetched documents
	15.2.2 Validating Tika’s charset detection

	15.3 Summary

	Appendix A: Tika quick reference
	A.1 Tika facade
	A.2 Command-line options
	A.3 ContentHandler utilities

	Appendix B: Supported metadata keys
	B.1 Climate Forecast
	B.2 Creative Commons
	B.3 Dublin Core
	B.4 Geographic metadata
	B.5 HTTP headers
	B.6 Microsoft Office
	B.7 Message (email)
	B.8 TIFF (Image)

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

