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Preface

Time series databases enable a fundamental step in the central storage
and analysis of many types of machine data. As such, they lie at the
heart of the Internet of Things (IoT). There’s a revolution in sensor–
to–insight data flow that is rapidly changing the way we perceive and
understand the world around us. Much of the data generated by sen‐
sors, as well as a variety of other sources, benefits from being collected
as time series.

Although the idea of collecting and analyzing time series data is not
new, the astounding scale of modern datasets, the velocity of data ac‐
cumulation in many cases, and the variety of new data sources together
contribute to making the current task of building scalable time series
databases a huge challenge. A new world of time series data calls for
new approaches and new tools.

In This Book
The huge volume of data to be handled by modern time series data‐
bases (TSDB) calls for scalability. Systems like Apache Cassandra,
Apache HBase, MapR-DB, and other NoSQL databases are built for
this scale, and they allow developers to scale relatively simple appli‐
cations to extraordinary levels. In this book, we show you how to build
scalable, high-performance time series databases using open source
software on top of Apache HBase or MapR-DB. We focus on how to
collect, store, and access large-scale time series data rather than the
methods for analysis.

Chapter 1 explains the value of using time series data, and in Chap‐
ter 2 we present an overview of modern use cases as well as a com‐

v
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parison of relational databases (RDBMS) versus non-relational
NoSQL databases in the context of time series data. Chapter 3 and
Chapter 4 provide you with an explanation of the concepts involved
in building a high-performance TSDB and a detailed examination of
how to implement them. The remaining chapters explore some more
advanced issues, including how time series databases contribute to
practical machine learning and how to handle the added complexity
of geo-temporal data.

The combination of conceptual explanation and technical implemen‐
tation makes this book useful for a variety of audiences, from practi‐
tioners to business and project managers. To understand the imple‐
mentation details, basic computer programming skills suffice; no spe‐
cial math or language experience is required.

We hope you enjoy this book.

vi | Preface
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“Collect your data as if your life
depends on it!”

CHAPTER 1

Time Series Data: Why Collect It?

This bold admonition may seem like a quote from an overzealous
project manager who holds extreme views on work ethic, but in fact,
sometimes your life does depend on how you collect your data. Time
series data provides many such serious examples. But let’s begin with
something less life threatening, such as: where would you like to spend
your vacation?

Suppose you’ve been living in Seattle, Washington for two years.
You’ve enjoyed a lovely summer, but as the season moves into October,
you are not looking forward to what you expect will once again be a
gray, chilly, and wet winter. As a break, you decide to treat yourself to
a short holiday in December to go someplace warm and sunny. Now
begins the search for a good destination.

You want sunshine on your holiday, so you start by seeking out reports
for rainfall in potential vacation places. Reasoning that an average of
many measurements will provide a more accurate report than just
checking what is happening at the moment, you compare the yearly
rainfall average for the Caribbean country of Costa Rica (about 77
inches or 196 cm) with that of the South American coastal city of Rio
de Janeiro, Brazil (46 inches or 117cm). Seeing that Costa Rica gets
almost twice as much rain per year on average than Rio de Janeiro, you
choose the Brazilian city for your December trip and end up slightly
disappointed when it rains all four days of your holiday.

1
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The probability of choosing a sunny destination for December might
have been better if you had looked at rainfall measurements recorded
with the time at which they were made throughout the year rather than
just an annual average. A pattern of rainfall would be revealed, as
shown in Figure 1-1. With this time series style of data collection, you
could have easily seen that in December you were far more likely to
have a sunny holiday in Costa Rica than in Rio, though that would
certainly not have been true for a September trip.

Figure 1-1. These graphs show the monthly rainfall measurements for
Rio de Janeiro, Brazil, and San Jose, Costa Rica. Notice the sharp re‐
duction in rainfall in Costa Rica going from September–October to
December–January. Despite a higher average yearly rainfall in Costa
Rica, its winter months of December and January are generally drier
than those months in Rio de Janeiro (or for that matter, in Seattle).

This small-scale, lighthearted analogy hints at the useful insights pos‐
sible when certain types of data are recorded as a time series—as

2 | Chapter 1: Time Series Data: Why Collect It?
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measurements or observations of events as a function of the time at
which they occurred. The variety of situations in which time series are
useful is wide ranging and growing, especially as new technologies are
producing more data of this type and as new tools are making it feasible
to make use of time series data at large scale and in novel applications.
As we alluded to at the start, recording the exact time at which a critical
parameter was measured or a particular event occurred can have a big
impact on some very serious situations such as safety and risk reduc‐
tion. The airline industry is one such example.

Recording the time at which a measurement was made can greatly
expand the value of the data being collected. We have all heard of the
flight data recorders used in airplane travel as a way to reconstruct
events after a malfunction or crash. Oddly enough, the public some‐
times calls them “black boxes,” although they are generally painted a
bright color such as orange. A modern aircraft is equipped with sen‐
sors to measure and report data many times per second for dozens of
parameters throughout the flight. These measurements include alti‐
tude, flight path, engine temperature and power, indicated air speed,
fuel consumption, and control settings. Each measurement includes
the time it was made. In the event of a crash or serious accident, the
events and actions leading up to the crash can be reconstructed in
exquisite detail from these data.

Flight sensor data is not only used to reconstruct events that precede
a malfunction. Some of this sensor data is transferred to other systems
for analysis of specific aspects of flight performance in order for the
airline company to optimize operations and maintain safety standards
and for the equipment manufacturers to track the behavior of specific
components along with their microenvironment, such as vibration,
temperature, or pressure. Analysis of these time series datasets can
provide valuable insights that include how to improve fuel consump‐
tion, change recommended procedures to reduce risk, and how best
to schedule maintenance and equipment replacement. Because the
time of each measurement is recorded accurately, it’s possible to cor‐
relate many different conditions and events. Figure 1-2 displays time
series data, the altitude data from flight data systems of a number of
aircraft taking off from San Jose, California.

Time Series Data: Why Collect It? | 3



Figure 1-2. Dynamic systems such as aircraft produce a wide variety
of data that can and should be stored as a time series to reap the max‐
imum benefit from analytics, especially if the predominant access pat‐
tern for queries is based on a time range. The chart shows the first few
minutes of altitude data from the flight data systems of aircraft taking
off at a busy airport in California.

To clarify the concept of a time series, let’s first consider a case where
a time series is not necessary. Sometimes you just want to know the
value of a particular parameter at the current moment. As a simple
example, think about glancing at the speedometer in a car while driv‐
ing. What’s of interest in this situation is to know the speed at the
moment, rather than having a history of how that condition has
changed with time. In this case, a time series of speed measurements
is not of interest to the driver.

Next, consider how you think about time. Going back to the analogy
of a holiday flight for a moment, sometimes you are concerned with
the length of a time interval --how long is the flight in hours, for in‐
stance. Once your flight arrives, your perception likely shifts to think
of time as an absolute reference: your connecting flight leaves at 10:42
am, your meeting begins at 1:00 pm, etc. As you travel, time may also
represent a sequence. Those people who arrive earlier than you in the
taxi line are in front of you and catch a cab while you are still waiting.
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Time as interval, as an ordering principle for a sequence, as absolute
reference—all of these ways of thinking about time can also be useful
in different contexts. Data collected as a time series is likely more useful
than a single measurement when you are concerned with the absolute
time at which a thing occurred or with the order in which particular
events happened or with determining rates of change. But note that
time series data tells you when something happened, not necessarily
when you learned about it, because data may be recorded long after it
is measured. (To tell when you knew certain information, you would
need a bi-temporal database, which is beyond the scope of this book.)
With time series data, not only can you determine the sequence in
which events happened, you also can correlate different types of events
or conditions that co-occur. You might want to know the temperature
and vibrations in a piece of equipment on an airplane as well as the
setting of specific controls at the time the measurements were made.
By correlating different time series, you may be able to determine how
these conditions correspond.

The basis of a time series is the repeated measurement of parameters
over time together with the times at which the measurements were
made. Time series often consist of measurements made at regular in‐
tervals, but the regularity of time intervals between measurements is
not a requirement. Also, the data collected is very commonly a num‐
ber, but again, that is not essential. Time series datasets are typically
used in situations in which measurements, once made, are not revised
or updated, but rather, where the mass of measurements accumulates,
with new data added for each parameter being measured at each new
time point. These characteristics of time series limit the demands we
put on the technology we use to store time series and thus affect how
we design that technology. Although some approaches for how best
to store, access, and analyze this type of data are relatively new, the
idea of time series data is actually quite an old one.

Time Series Data Is an Old Idea
It may surprise you to know that one of the great examples of the
advantages to be reaped from collecting data as a time series—and
doing it as a crowdsourced, open source, big data project—comes from
the mid-19th century. The story starts with a sailor named Matthew
Fontaine Maury, who came to be known as the Pathfinder of the Seas.
When a leg injury forced him to quit ocean voyages in his thirties, he
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1. From image digitized by http://www.oldweather.org and provided via http://
www.naval-history.net. Image modified by Ellen Friedman and Ted Dunning.

turned to scientific research in meteorology, astronomy, oceanogra‐
phy, and cartography, and a very extensive bit of whale watching, too.

Ship’s captains and science officers had long been in the habit of keep‐
ing detailed logbooks during their voyages. Careful entries included
the date and often the time of various measurements, such as how
many knots the ship was traveling, calculations of latitude and longi‐
tude on specific days, and observations of ocean conditions, wildlife,
weather, and more. A sample entry in a ship’s log is shown in Figure 1-3.

Figure 1-3. Old ship’s log of the Steamship Bear as it steamed north as
part of the 1884 Greely rescue mission to the arctic. Nautical logbooks
are an early source of large-scale time series data.1

Maury saw the hidden value in these logs when analyzed collectively
and wanted to bring that value to ships’ captains. When Maury was
put in charge of the US Navy’s office known as the Depot of Charts
and Instruments, he began a project to extract observations of winds
and currents accumulated over many years in logbooks from many
ships. He used this time series data to carry out an analysis that would
enable him to recommend optimal shipping routes based on prevail‐
ing winds and currents.

6 | Chapter 1: Time Series Data: Why Collect It?
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2. http://icoads.noaa.gov/maury.pdf

In the winter of 1848, Maury sent one of his Wind and Current
Charts to Captain Jackson, who commanded a ship based out of Bal‐
timore, Maryland. Captain Jackson became the first person to try out
the evidence-based route to Rio de Janeiro recommended by Maury’s
analysis. As a result, Captain Jackson was able to save 17 days on the
outbound voyage compared to earlier sailing times of around 55 days,
and even more on the return trip. When Jackson’s ship returned more
than a month early, news spread fast, and Maury’s charts were quickly
in great demand. The benefits to be gained from data mining of the
painstakingly observed, recorded, and extracted time series data be‐
came obvious.

Maury’s charts also played a role in setting a world record for the fastest
sailing passage from New York to San Francisco by the clipper ship
Flying Cloud in 1853, a record that lasted for over a hundred years. Of
note and surprising at the time was the fact that the navigator on this
voyage was a woman: Eleanor Creesy, the wife of the ship’s captain and
an expert in astronomy, ocean currents, weather, and data-driven de‐
cisions.

Where did crowdsourcing and open source come in? Not only did
Maury use existing ship’s logs, he encouraged the collection of more
regular and systematic time series data by creating a template known
as the “Abstract Log for the Use of American Navigators.” The logbook
entry shown in Figure 1-3 is an example of such an abstract log. Mau‐
ry’s abstract log included detailed data collection instructions and a
form on which specific measurements could be recorded in a stand‐
ardized way. The data to be recorded included date, latitude and lon‐
gitude (at noon), currents, magnetic variation, and hourly measure‐
ments of ship’s speed, course, temperature of air and water, and general
wind direction, and any remarks considered to be potentially useful
for other ocean navigators. Completing such abstract logs was the
price a captain or navigator had to pay in order to receive Maury’s
charts.2

Time Series Data Sets Reveal Trends
One of the ways that time series data can be useful is to help recognize
patterns or a trend. Knowing the value of a specific parameter at the
current time is quite different than the ability to observe its behavior
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over a long time interval. Take the example of measuring the concen‐
tration of some atmospheric component of interest. You may, for in‐
stance, be concerned about today’s ozone level or the level for some
particulate contaminant, especially if you have asthma or are planning
an outdoor activity. In that case, just knowing the current day’s value
may be all you need in order to decide what precautions you want to
take that day.

This situation is very different from what you can discover if you make
many such measurements and record them as a function of the time
they were made. Such a time series dataset makes it possible to discover
dynamic patterns in the behavior of the condition in question as it
changes over time. This type of discovery is what happened in a sur‐
prising way for a geochemical researcher named Charles David Keel‐
ing, starting in the mid-20th century.

David Keeling was a postdoc beginning a research project to study the
balance between carbonate in the air, surface waters, and limestone
when his attention was drawn to a very significant pattern in data he
was collecting in Pasadena, California. He was using a very precise
instrument to measure atmospheric CO2 levels on different days. He

found a lot of variation, mostly because of the influence of industrial
exhaust in the area. So he moved to a less built–up location, the Big
Sur region of the California coast near Monterrey, and repeated these
measurements day and night. By observing atmospheric CO2 levels as

a function of time for a short time interval, he discovered a regular
pattern of difference between day and night, with CO2 levels higher at

night.

This observation piqued Keeling’s interest. He continued his meas‐
urements at a variety of locations and finally found funding to support
a long-term project to measure CO2 levels in the air at an altitude of

3,000 meters. He did this by setting up a measuring station at the top
of the volcanic peak in Hawaii called Mauna Loa. As his time series
for atmospheric CO2 concentrations grew, he was able to discern an‐

other pattern of regular variation: seasonal changes. Keeling’s data
showed the CO2 level was higher in the winter than the summer, which

made sense given that there is more plant growth in the summer. But
the most significant discovery was yet to come.

Keeling continued building his CO2 time series dataset for many years,

and the work has been carried on by others from the Scripps Institute
of Oceanography and a much larger, separate observation being made

8 | Chapter 1: Time Series Data: Why Collect It?



by the US National Ocean and Atmospheric Administration (NOAA).
The dataset includes measurements from 1958 to the present. Meas‐
ured over half a century, this valuable scientific time series is the
longest continuous measurement of atmospheric CO2 levels ever

made. As a result of collecting precise measurements as a function of
time for so long, researchers have data that reveals a long-term and
very disturbing trend: the levels of atmospheric CO2 are increasing

dramatically. From the time of Keeling’s first observations to the
present, CO2 has increased from 313 ppm to over 400 ppm. That’s an

increase of 28% in just 56 years as compared to an increase of only
12% from 400,000 years ago to the start of the Keeling study (based
on data from polar ice cores). Figure 1-4 shows a portion of the Keeling
Curve and NOAA data.

Figure 1-4. Time series data measured frequently over a sufficiently
long time interval can reveal regular patterns of variation as well as
long-term trends. This curve shows that the level of atmospheric CO2

is steadily and significantly increasing. See the original data from
which this figure was drawn.

Not all time series datasets lead to such surprising and significant dis‐
coveries as did the CO2 data, but time series are extremely useful in

revealing interesting patterns and trends in data. Alternatively, a study
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of time series may show that the parameter being measured is either
very steady or varies in very irregular ways. Either way, measurements
made as a function of time make these behaviors apparent.

A New Look at Time Series Databases
These examples illustrate how valuable multiple observations made
over time can be when stored and analyzed effectively. New methods
are appearing for building time series databases that are able to handle
very large datasets. For this reason, this book examines how large-scale
time series data can best be collected, persisted, and accessed for anal‐
ysis. It does not focus on methods for analyzing time series, although
some of these methods were discussed in our previous book on anom‐
aly detection. Nor is the book report intended as a comprehensive
survey of the topic of time series data storage. Instead, we explore some
of the fundamental issues connected with new types of time series
databases (TSDB) and describe in general how you can use this type
of data to advantage. We also give you tips that to make it easier to
store and access time series data cost effectively and with excellent
performance. Throughout, this book focuses on the practical aspects
of time series databases.

Before we explore the details of how to build better time series data‐
bases, let’s first look at several modern situations in which large-scale
times series are useful.

10 | Chapter 1: Time Series Data: Why Collect It?



CHAPTER 2

A New World for
Time Series Databases

As we saw with the old ship’s logs described in Chapter 1, time series
data—tracking events or repeated measurements as a function of time
—is an old idea, but one that’s now an old idea in a new world. One
big change is a much larger scale for traditional types of data. Differ‐
ences in the way global business and transportation are done, as well
as the appearance of new sources of data, have worked together to
explode the volume of data being generated. It’s not uncommon to
have to deal with petabytes of data, even when carrying out traditional
types of analysis and reporting. As a result, it has become harder to do
the same things you used to do.

In addition to keeping up with traditional activities, you may also find
yourself exposed to the lure of finding new insights through novel ways
of doing data exploration and analytics, some of which need to use
unstructured or semi-structured formats. One cause of the explosion
in the availability of time series data is the widespread increase in re‐
porting from sensors. You have no doubt heard the term Internet of
Things (IoT), which refers to a proliferation of sensor data resulting
in wide arrays of machines that report back to servers or communicate
directly with each other. This mass of data offers great potential value
if it is explored in clever ways.

How can you keep up with what you normally do and plus expand
into new insights? Working with time series data is obviously less la‐
borious today than it was for oceanographer Maury and his colleagues
in the 19th century. It’s astounding to think that they did by hand the

11



painstaking work required to collect and analyze a daunting amount
of data in order produce accurate charts for recommended shipping
routes. Just having access to modern computers, however, isn’t enough
to solve the problems posed by today’s world of time series data. Look‐
ing back 10 years, the amount of data that was once collected in 10
minutes for some very active systems is now generated every second.
These new challenges need different tools and approaches.

The good news is that emerging solutions based on distributed com‐
puting technologies mean that now you can not only handle tradi‐
tional tasks in spite of the onslaught of increasing levels of data, but
you also can afford to expand the scale and scope of what you do. These
innovative technologies include Apache Cassandra and a variety of
distributions of Apache Hadoop. They share the desirable character‐
istic of being able to scale efficiently and of being able to use less-
structured data than traditional database systems. Time series data
could be stored as flat files, but if you will primarily want to access the
data based on a time span, storing it as a time series database is likely
a good choice. A TSDB is optimized for best performance for queries
based on a range of time. New NoSQL approaches make use of non-
relational databases with considerable advantages in flexibility and
performance over traditional relational databases (RDBMS) for this
purpose. See “NoSQL Versus RDBMS: What’s the Difference,
What’s the Point?” for a general comparison of NoSQL databases with
relational databases.

For the methods described in this book we recommend the Hadoop-
based databases Apache HBase or MapR-DB. The latter is a non-
relational database integrated directly into the file system of the MapR
distribution derived from Apache Hadoop. The reason we focus on
these Hadoop-based solutions is that they can not only execute rapid
ingestion of time series data, but they also support rapid, efficient
queries of time series databases. For the rest of this book, you should
assume that whenever we say “time series database” without being
more specific, we are referring to these NoSQL Hadoop-based data‐
base solutions augmented with technologies to make them work well
with time series data.

12 | Chapter 2: A New World for Time Series Databases
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NoSQL Versus RDBMS: What’s the Difference,
What’s the Point?

NoSQL databases and relational databases share the same basic goals:
to store and retrieve data and to coordinate changes. The difference
is that NoSQL databases trade away some of the capabilities of rela‐
tional databases in order to improve scalability. In particular, NoSQL
databases typically have much simpler coordination capabilities than
the transactions that traditional relational systems provide (or even
none at all). The NoSQL databases usually eliminate all or most of
SQL query language and, importantly, the complex optimizer re‐
quired for SQL to be useful.

The benefits of making this trade include greater simplicity in the
NoSQL database, the ability to handle semi-structured and denor‐
malized data and, potentially, much higher scalability for the system.
The drawbacks include a compensating increase in the complexity of
the application and loss of the abstraction provided by the query op‐
timizer. Losing the optimizer means that much of the optimization
of queries has to be done inside the developer’s head and is frozen
into the application code. Of course, losing the optimizer also can be
an advantage since it allows the developer to have much more pre‐
dictable performance.

Over time, the originally hard-and-fast tradeoffs involving the loss of
transactions and SQL in return for the performance and scalability
of the NoSQL database have become much more nuanced. New forms
of transactions are becoming available in some NoSQL databases that
provide much weaker guarantees than the kinds of transactions in
RDBMS. In addition, modern implementations of SQL such as open
source Apache Drill allow analysts and developers working with
NoSQL applications to have a full SQL language capability when they
choose, while retaining scalability.

Until recently, the standard approach to dealing with large-scale time
series data has been to decide from the start which data to sample, to
study a few weeks’ or months’ worth of the sampled data, produce the
desired reports, summarize some results to be archived, and then dis‐
card most or all of the original data. Now that’s changing. There is a
golden opportunity to do broader and deeper analytics, exploring data
that would previously have been discarded. At modern rates of data
production, even a few weeks or months is a large enough data volume
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that it starts to overwhelm traditional database methods. With the new
scalable NoSQL platforms and tools for data storage and access, it’s
now feasible to archive years of raw or lightly processed data. These
much finer-grained and longer histories are especially valuable in
modeling needed for predictive analytics, for anomaly detection, for
back-testing new models, and in finding long-term trends and corre‐
lations.

As a result of these new options, the number of situations in which
data is being collected as time series is also expanding, as is the need
for extremely reliable and high-performance time series databases (the
subject of this book). Remember that it’s not just a matter of asking
yourself what data to save, but instead looking at when saving data as
a time series database is advantageous. At very large scales, time-based
queries can be implemented as large, contiguous scans that are very
efficient if the data is stored appropriately in a time series database.
And if the amount of data is very large, a non-relational TSDB in a
NoSQL system is typically needed to provide sufficient scalability.

When considering whether to use these non-relational time series da‐
tabases, remember the following considerations:

Use a non-relational TSDB when you:

• Have huge amount of data

• Mostly want to query based on time

The choice to use non-relational time series databases opens the door
to discovery of patterns in time series data, long-term trends, and cor‐
relations between data representing different types of events. Before
we move to Chapter 3, where we describe some key architectural con‐
cepts for building and accessing TSDBs, let’s first look at some exam‐
ples of who uses time series data and why?

Stock Trading and Time Series Data
Time series data has long been important in the financial sector. The
exact timing of events is a critical factor in the transactions made by
banks and stock exchanges. We don’t have to look to the future to see
very large data volumes in stock and commodity trading and the need
for new solutions. Right now the extreme volume and rapid flow of

14 | Chapter 2: A New World for Time Series Databases



data relating to bid and ask prices for stocks and commodities defines
a new world for time series databases. Use cases from this sector make
prime examples of the benefits of using non-relational time series da‐
tabases.

What levels of data flow are we talking about? The Chicago Mercantile
Exchange in the US has around 100 million live contracts and handles
roughly 14 million contracts per day. This level of business results in
an estimated 1.5 to 2 million messages per second. This level of volume
and velocity potentially produces that many time series points as well.
And there is an expected annual growth of around 33% in this market.
Similarly, the New York Stock Exchange (NYSE) has over 4,000 stocks
registered, but if you count related financial instruments, there are
1,000 times as many things to track. Each of these can have up to
hundreds of quotes per second, and that’s just at this one exchange.
Think of the combined volume of sequential time-related trade data
globally each day. To save the associated time series is a daunting task,
but with modern technologies and techniques, such as those described
in this book, to do so becomes feasible.

Trade data arrives so quickly that even very short time frames can show
a lot of activity. Figure 2-1 visualizes the pattern of price and volume
fluctuations of a single stock during just one minute of trading.
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Figure 2-1. Data for the price of trades of IBM stock during the last
minute of trading on one day of the NYSE. Each trade is marked with
a semi-transparent dot. Darker dots represent multiple trades at the
same time and price. This one stock traded more than once per second
during this particular minute.

It may seem surprising to look at a very short time range in such detail,
but with this high-frequency data, it is possible to see very short-term
price fluctuations and to compare them to the behavior of other stocks
or composite indexes. This fine-grained view becomes very important,
especially in light of some computerized techniques in trading in‐
cluded broadly under the term “algorithmic trading.” Processes such
as algorithmic trading and high-frequency trading by institutions,
hedge funds, and mutual funds can carry out large-volume trades in
seconds without human intervention. The visualization in Figure 2-1
is limited to one-second resolution, but the programs handling trading
for many hedge funds respond on a millisecond time scale. During
any single second of trading, these programs can engage each other in
an elaborate back-and-forth game of bluff and call as they make bids
and offers.

Some such trades are triggered by changes in trading volumes over
recent time intervals. Forms of program trading represent a sizable
percentage of the total volume of modern exchanges. Computer-
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driven high-frequency trading is estimated to account for over 50% of
all trades.

The velocity of trades and therefore the collection of trading data and
the need in many cases for extremely small latency make the use of
very high-performing time series databases extremely important. The
time ranges of interest are extending in both directions. In addition
to the very short time-range queries, long-term histories for time series
data are needed, especially to discover complex trends or test strate‐
gies. Figure 2-2 shows the volume in millions of trades over a range
of several years of activity at the NYSE and clearly reveals the unusual
spike in volume during the financial crisis of late 2008 and 2009.

Figure 2-2. Long-term trends such as the sharp increase in activity
leading up to and during the 2008–2009 economic crisis become ap‐
parent by visualizing the trade volume data for the New York Stock
Exchange over a 10-year period.

Keeping long-term histories for trades of individual stocks and for
total trading volume as a function of time is very different from the
old-fashioned ticker tape reporting. A ticker tape did not record the
absolute timing of trades, although the order of trades was preserved.
It served as a moving current window of knowledge about a stock’s
price, but not as a long-term history of its behavior. In contrast, the
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long-term archives of trading data stored in modern TSDBs let you
know exactly what happened and exactly when. This fine-grained view
is important to meet government regulations for financial institutions
and to be able to correlate trading behavior to other factors, including
news events and sentiment analytics signals extracted from social me‐
dia. These new kinds of inputs can be very valuable in predictive an‐
alytics.

Making Sense of Sensors
It’s easy to see why the availability of new and affordable technologies
to store, access, and analyze time series databases expands the possi‐
bilities in many sectors for measuring a wide variety of physical pa‐
rameters. One of the fastest growing areas for generating large-scale
time series data is in the use of sensors, both in familiar applications
and in some new and somewhat surprising uses.

In Chapter 1 we considered the wide variety of sensor measurements
collected on aircraft throughout a flight. Trucking is another area in
which the use of time series data from sensors is expanding. Engine
parameters, speed or acceleration, and location of the truck are among
the variables being recorded as a function of time for each individual
truck throughout its daily run. The data collected from these meas‐
urements can be used to address some very practical and profitable
questions. For example, there are potentially very large tax savings
when these data are analyzed to document actual road usage by each
truck in a fleet. Trucking companies generally are required to pay taxes
according to how much they drive on public roads. It’s not just a matter
of how many miles a truck drives; if it were, just using the record on
the odometer would be sufficient. Instead, it’s a matter of knowing
which miles the truck drives—in other words, how much each truck
is driven on the taxable roads. Trucks actually cover many miles off of
these public roads, including moving through the large loading areas
of supply warehouses or traveling through the roads that run through
large landfills, in the case of waste-management vehicles.

If the trucking company is able to document their analysis of the po‐
sition of each truck by time as well as to the location relative to specific
roads, it’s possible for the road taxes for each truck to be based on
actual taxable road usage. Without this data and analysis, the taxes will
be based on odometer readings, which may be much higher. Being
able to accurately monitor overall engine performance is also a key
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economic issue in areas like Europe where vehicles may be subject to
a carbon tax that varies in different jurisdictions. Without accurate
records of location and engine operation, companies have to pay fees
based on how much carbon they may have emitted instead of how
much they actually did emit.

It’s not just trucking companies who have gotten “smart” in terms of
sensor measurements. Logistics are an important aspect of running a
successful retail business, so knowing exactly what is happening to
each pallet of goods at different points in time is useful for tracking
goods, scheduling deliveries, and monitoring warehouse status. A
smart pallet can be a source of time series data that might record events
of interest such as when the pallet was filled with goods, when it was
loaded or unloaded from a truck, when it was transferred into storage
in a warehouse, or even the environmental parameters involved, such
as temperature.

Similarly, it would be possible to equip commercial waste containers,
called dumpsters in the US, with sensors to report on how full they are
at different points in time. Why not just peek into the dumpster to see
if it needs to be emptied? That might be sufficient if it’s just a case of
following the life of one dumpster, but waste-management companies
in large cities must consider what is happening with hundreds of
thousands of dumpsters. For shared housing such as apartments or
condominiums, some cities recommend providing one dumpster for
every four families, and there are dumpsters at commercial establish‐
ments such as restaurants, service stations, and shops. Periodically, the
number of dumpsters at particular locations changes, such as in the
case of construction sites. Seasonal fluctuations occur for both resi‐
dential and commercial waste containers—think of the extra levels of
trash after holidays for example.

Keeping a history of the rate of fill for individual dumpsters (a time
series) can be useful in scheduling pickup routes for the large waste-
management trucks that empty dumpsters. This level of management
not only could improve customer service, but it also could result in
fuel savings by optimizing the pattern for truck operations.

Manufacturing is another sector in which time series data from sensor
measurements is extremely valuable. Quality control is a matter of
constant concern in manufacturing as much today as it was in the past.
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“Uncontrolled variation is the enemy of quality.”

— Attributed to Edward Deming—engineer and management guru
in the late 20th century

In the quest for controlling variation, it’s a natural fit to take advantage
of new capabilities to collect many sensor measurements from the
equipment used in manufacturing and store them in a time series da‐
tabase. The exact range of movement for a mechanical arm, the tem‐
perature of an extrusion tip for a polymer flow, vibrations in an engine
—the variety of measurements is very broad in this use case. One of
the many goals for saving this data as a time series is to be able to
correlate conditions precisely to the quality of the product being made
at specific points in time.

Talking to Towers: Time Series and Telecom
Mobile cell phone usage is now ubiquitous globally, and usage levels
are increasing. In many parts of the world, for example, there’s a grow‐
ing dependency on mobile phones for financial transactions that take
place constantly. While overall usage is increasing, there are big var‐
iations in the traffic loads on networks depending on residential pop‐
ulation densities at different times of the day, on temporary crowds,
and on special events that encourage phone use. Some of these special
events are scheduled, such as the individual matches during the World
Cup competition. Other special events that result in a spike in cell
phone usage are not scheduled. These include earthquakes and fires
or sudden political upheavals. Life events happen, and people use their
phones to investigate or comment on them.

All of these situations that mean an increase in business are great news
for telecommunication companies, but they also present some huge
challenges in maintaining good customer service through reliable
performance of the mobile networks. When in use, each mobile phone
is constantly “talking” to the nearest cell phone tower, sending and
receiving data. Now multiply that level of data exchange by the millions
of phones in use, and you begin to see the size of the problem. Mon‐
itoring the data rates to and from cell towers is important in being able
to recognize what constitutes a normal pattern of usage versus unusual
fluctuations that could impair quality of service for some customers
trying to share a tower. A situation that could cause this type of surge
in cell phone traffic is shown in the illustration in Figure 2-3. A tem‐
porary influx of extra cell phone usage at key points during a sports
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event could overwhelm a network and cause poor connectivity for
regular residential or commercial customers in the neighborhood. To
accommodate this short-term swell in traffic, the telecom provider
may be able to activate mini-towers installed near the stadium to han‐
dle the extra load. This activation can take time, and it is likely not
cost-effective to use these micro-towers at low-traffic loads. Careful
monitoring of the moment-to-moment patterns of usage is the basis
for developing adaptive systems that respond appropriately to
changes.

In order to monitor usage patterns, consider the traffic for each small
geographical region nearby to a cell tower to be a separate time series.
There are strong correlations between different time series during
normal operation and specific patterns of correlation that arise during
these flash crowd events that can be used to provide early warning.
Not surprisingly, this analysis requires some pretty heavy time series
lifting.

Figure 2-3. Time series databases provide an important tool in man‐
aging cell tower resources to provide consistent service for mobile
phone customers despite shifting loads, such as those caused by a sta‐
dium full of people excitedly tweeting in response to a key play. Ser‐
vice to other customers in the area could be impaired if the large tow‐
er in this illustration is overwhelmed. When needed, auxiliary towers
can be activated to accommodate the extra traffic.

Similarly, public utilities now use smart meters to report frequent
measurements of energy usage at specific locations. These time series
datasets can help the utility companies not only with billing, such as
monitoring peak time of day usage levels, but also to redirect energy
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delivery relative to fluctuations in need or in response to energy gen‐
eration by private solar arrays at residences or businesses. Water sup‐
ply companies can also use detailed measurements of flow and pres‐
sure as a function of time to better manage their resources and cus‐
tomer experience.

Data Center Monitoring
Modern data centers are complex systems with a variety of operations
and analytics taking place around the clock. Multiple teams need ac‐
cess at the same time, which requires coordination. In order to opti‐
mize resource use and manage workloads, system administrators
monitor a huge number of parameters with frequent measurements
for a fine-grained view. For example, data on CPU usage, memory
residency, IO activity, levels of disk storage, and many other parame‐
ters are all useful to collect as time series.

Once these datasets are recorded as time series, data center operations
teams can reconstruct the circumstances that lead to outages, plan
upgrades by looking at trends, or even detect many kinds of security
intrusion by noticing changes in the volume and patterns of data
transfer between servers and the outside world.

Environmental Monitoring: Satellites,
Robots, and More
The historic time series dataset for measurements of atmospheric
CO2 concentrations described in Chapter 1 is just one part of the very

large field of environmental monitoring that makes use of time series
data. Not only do the CO2 studies continue, but similar types of long-

term observations are used in various studies of meteorology and at‐
mospheric conditions, in oceanography, and in monitoring seismic
changes on land and under the ocean. Remote sensors from satellites
collect huge amounts of data globally related to atmospheric humidity,
wind direction, ocean currents, and temperatures, ozone concentra‐
tions in the atmosphere, and more. Satellite sensors can help scientists
determine the amounts of photosynthesis taking place in the upper
waters of the oceans by measuring concentrations of the light-
collecting pigments such as chlorophyll.

For ocean conditions, additional readings are made from ships and
from new technologies such as ocean-going robots. For example, the
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company Liquid Robotics headquartered in Sunnyvale, California,
makes ocean-going robots known as wave gliders. There are several
models, but the wave glider is basically an unmanned platform that
carries a wide variety of equipment for measuring various ocean con‐
ditions. The ocean data collectors are powered by solar panels on the
wave gliders, but the wave gliders themselves are propelled by wave
energy. These self-propelled robotic sensors are not much bigger than
a surfboard, and yet they have been able to travel from San Francisco
to Hawaii and on to Japan and Australia, making measurements all
along the way. They have even survived tropical storms and shark
attacks. The amount of data they collect is staggering, and more and
more of them are being launched.

Another new company involved in environmental monitoring also
headquartered in Sunnyvale is Planet OS. They are a data aggregation
company that uses data from satellites, in-situ instruments, HF radar,
sonar, and more. Their sophisticated data handling includes very
complicated time series databases related to a wide range of sensor
data. These examples are just a few among the many projects involved
in collecting environmental data to build highly detailed, global, long-
term views of our planet.

The Questions to Be Asked
The time series data use cases described in this chapter just touch on
a few key areas in which time series databases are important solutions.
The best description of where time series data is of use is practically
everywhere measurements are made. Thanks to new technologies to
store and access large-scale time series data in a cost-effective way,
time series data is becoming ubiquitous. The volume of data from use
cases in which time series data has traditionally been important is ex‐
panding, and as people learn about the new tools available to handle
data at scale, they are also considering the value of collecting data as a
function of time in new situations as well.

With these changes in mind, it’s helpful to step back and look in a more
general way at some of the types of questions being addressed effec‐
tively by time series data. Here’s a short list of some of the categories:

1. What are the short- and long-term trends for some measurement
or ensemble of measurements? (prognostication)
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2. How do several measurements correlate over a period of time?
(introspection)

3. How do I build a machine-learning model based on the temporal
behavior of many measurements correlated to externally known
facts? (prediction)

4. Have similar patterns of measurements preceded similar events?
(introspection)

5. What measurements might indicate the cause of some event, such
as a failure? (diagnosis)

Now that you have an idea of some of the ways in which people are
using large-scale time series data, we will turn to the details of how
best to store and access it.
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CHAPTER 3

Storing and Processing
Time Series Data

As we mentioned in previous chapters, a time series is a sequence of
values, each with a time value indicating when the value was recorded.
Time series data entries are rarely amended, and time series data is
often retrieved by reading a contiguous sequence of samples, possibly
after summarizing or aggregating the retrieved samples as they are
retrieved. A time series database is a way to store multiple time series
such that queries to retrieve data from one or a few time series for a
particular time range are particularly efficient. As such, applications
for which time range queries predominate are often good candidates
for implementation using a time series database. As previously ex‐
plained, the main topic of this book is the storage and processing of
large-scale time series data, and for this purpose, the preferred tech‐
nologies are NoSQL non-relational databases such as Apache HBase
or MapR-DB.

Pragmatic advice for practical implementations of large-scale time
series databases is the goal of this book, so we need to focus in on some
basic steps that simplify and strengthen the process for real-world ap‐
plications. We will look briefly at approaches that may be useful for
small or medium-sized datasets and then delve more deeply into our
main concern: how to implement large-scale TSDBs.

To get to a solid implementation, there are a number of design deci‐
sions to make. The drivers for these decisions are the parameters that
define the data. How many distinct time series are there? What kind
of data is being acquired? At what rate is the data being acquired? For
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how long must the data be kept? The answers to these questions help
determine the best implementation strategy.

Roadmap to Key Ideas in This Chapter
Although we’ve already mentioned some central aspects to handling
time series data, the current chapter goes into the most important
ideas underlying methods to store and access time series in more
detail and more deeply than previously. Chapter 4 then provides tips
for how best to implement these concepts using existing open source
software. There’s a lot to absorb in these two chapters. So that you can
better keep in mind how the key ideas fit together without getting lost
in the details, here’s a brief roadmap of this chapter:

• Flat files

— Limited utility for time series; data will outgrow them, and
access is inefficient

• True database: relational (RDBMS)

— Will not scale well; familiar star schema inappropriate

• True database: NoSQL non-relational database

— Preferred because it scales well; efficient and rapid queries
based on time range

— Basic design

— Unique row keys with time series IDs; column is a time
offset

— Stores more than one time series

— Design choices

— Wide table stores data point-by-point

— Hybrid design mixes wide table and blob styles

— Direct blob insertion from memory cache

Now that we’ve walked through the main ideas, let’s revisit them in
some detail to explain their significance.
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Simplest Data Store: Flat Files
You can extend this very simple design a bit to something slightly more
advanced by using a more clever file format, such as the columnar file
format Parquet, for organization. Parquet is an effective and simple,
modern format that can store the time and a number of optional val‐
ues. Figure 3-1 shows two possible Parquet schemas for recording time
series. The schema on the left is suitable for special-purpose storage
of time series data where you know what measurements are plausible.
In the example on the left, only the four time series that are explicitly
shown can be stored (tempIn, pressureIn, tempOut, pressureOut).
Adding another time series would require changing the schema. The
more abstract Parquet schema on the right in Figure 3-1 is much better
for cases where you may want to embed more metadata about the time
series into the data file itself. Also, there is no a priori limit on the
number or names of different time series that can be stored in this
format. The format on the right would be much more appropriate if
you were building a time series library for use by other people.

Figure 3-1. Two possible schemas for storing time series data in Par‐
quet. The schema on the left embeds knowledge about the problem
domain in the names of values. Only the four time series shown can
be stored without changing the schema. In contrast, the schema on the
right is more flexible; you could add additional time series. It is also a
bit more abstract, grouping many samples for a single time series into
a single block.

Such a simple implementation of a time series—especially if you use
a file format like Parquet—can be remarkably serviceable as long as
the number of time series being analyzed is relatively small and as long
as the time ranges of interest are large with respect to the partitioning
time for the flat files holding the data.

While it is fairly common for systems to start out with a flat file im‐
plementation, it is also common for the system to outgrow such a
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simple implementation before long. The basic problem is that as the
number of time series in a single file increases, the fraction of usable
data for any particular query decreases, because most of the data being
read belongs to other time series.

Likewise, when the partition time is long with respect to the average
query, the fraction of usable data decreases again since most of the data
in a file is outside the time range of interest. Efforts to remedy these
problems typically lead to other problems. Using lots of files to keep
the number of series per file small multiplies the number of files. Like‐
wise, shortening the partition time will multiply the number of files
as well. When storing data on a system such as Apache Hadoop using
HDFS, having a large number of files can cause serious stability prob‐
lems. Advanced Hadoop-based systems like MapR can easily handle
the number of files involved, but retrieving and managing large num‐
bers of very small files can be inefficient due to the increased seek time
required.

To avoid these problems, a natural step is to move to some form of a
real database to store the data. The best way to do this is not entirely
obvious, however, as you have several choices about the type of data‐
base and its design. We will examine the issues to help you decide.

Moving Up to a Real Database: But Will
RDBMS Suffice?
Even well-partitioned flat files will fail you in handling your large-scale
time series data, so you will want to consider some type of true data‐
base. When first storing time series data in a database, it is tempting
to use a so-called star schema design and to store the data in a relational
database (RDBMS). In such a database design, the core data is stored
in a fact table that looks something like what is shown in Figure 3-2.
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Figure 3-2. A fact table design for a time series to be stored in a rela‐
tional database. The time, a series ID, and a value are stored. Details
of the series are stored in a dimension table.

In a star schema, one table stores most of the data with references to
other tables known as dimensions. A core design assumption is that
the dimension tables are relatively small and unchanging. In the time
series fact table shown in Figure 3-2, the only dimension being refer‐
enced is the one that gives the details about the time series themselves,
including what measured the value being stored. For instance, if our
time series is coming from a factory with pumps and other equipment,
we might expect that several values would be measured on each pump
such as inlet and outlet pressures and temperatures, pump vibration
in different frequency bands, and pump temperature. Each of these
measurements for each pump would constitute a separate time series,
and each time series would have information such as the pump serial
number, location, brand, model number, and so on stored in a di‐
mension table.

A star schema design like this is actually used to store time series in
some applications. We can also use a design like this in most NoSQL
databases as well. A star schema addresses the problem of having lots
of different time series and can work reasonably well up to levels of
hundreds of millions or billions of data points. As we saw in Chap‐
ter 1, however, even 19th century shipping data produced roughly a
billion data points. As of 2014, the NASDAQ stock exchange handles
a billion trades in just over three months. Recording the operating
conditions on a moderate-sized cluster of computers can produce half
a billion data points in a day.

Moreover, simply storing the data is one thing; retrieving it and pro‐
cessing it is quite another. Modern applications such as machine
learning systems or even status displays may need to retrieve and pro‐
cess as many as a million data points in a second or more.
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While relational systems can scale into the lower end of these size and
speed ranges, the costs and complexity involved grows very fast. As
data scales continue to grow, a larger and larger percentage of time
series applications just don’t fit very well into relational databases. Us‐
ing the star schema but changing to a NoSQL database doesn’t par‐
ticularly help, either, because the core of the problem is in the use of
a star schema in the first place, not just the amount of data.

NoSQL Database with Wide Tables
The core problem with the star schema approach is that it uses one
row per measurement. One technique for increasing the rate at which
data can be retrieved from a time series database is to store many values
in each row. With some NoSQL databases such as Apache HBase or
MapR-DB, the number of columns in a database is nearly unbounded
as long as the number of columns with active data in any particular
row is kept to a few hundred thousand. This capability can be exploited
to store multiple values per row. Doing this allows data points to be
retrieved at a higher speed because the maximum rate at which data
can be scanned is partially dependent on the number of rows scanned,
partially on the total number of values retrieved, and partially on the
total volume of data retrieved. By decreasing the number of rows, that
part of the retrieval overhead is substantially cut down, and retrieval
rate is increased. Figure 3-3 shows one way of using wide tables to
decrease the number of rows used to store time series data. This tech‐
nique is similar to the default table structure used in OpenTSDB, an
open source database that will be described in more detail in Chap‐
ter 4. Note that such a table design is very different from one that you
might expect to use in a system that requires a detailed schema be
defined ahead of time. For one thing, the number of possible columns
is absurdly large if you need to actually write down the schema.

30 | Chapter 3: Storing and Processing Time Series Data



Figure 3-3. Use of a wide table for NoSQL time series data. The key
structure is illustrative; in real applications, a binary format might be
used, but the ordering properties would be the same.

Because both HBase and MapR-DB store data ordered by the primary
key, the key design shown in Figure 3-3 will cause rows containing
data from a single time series to wind up near one another on disk.
This design means that retrieving data from a particular time series
for a time range will involve largely sequential disk operations and
therefore will be much faster than would be the case if the rows were
widely scattered. In order to gain the performance benefits of this table
structure, the number of samples in each time window should be sub‐
stantial enough to cause a significant decrease in the number of rows
that need to be retrieved. Typically, the time window is adjusted so that
100–1,000 samples are in each row.

NoSQL Database with Hybrid Design
The table design shown in Figure 3-3 can be improved by collapsing
all of the data for a row into a single data structure known as a blob.
This blob can be highly compressed so that less data needs to be read
from disk. Also, if HBase is used to store the time series, having a single
column per row decreases the per-column overhead incurred by the
on-disk format that HBase uses, which further increases performance.
The hybrid-style table structure is shown in Figure 3-4, where some
rows have been collapsed using blob structures and some have not.
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Figure 3-4. In the hybrid design, rows can be stored as a single data
structure (blob). Note that the actual compressed data would likely be
in a binary, compressed format. The compressed data are shown here
in JSON format for ease of understanding.

Data in the wide table format shown in Figure 3-3 can be progressively
converted to the compressed format (blob style) shown in Figure 3-4
as soon as it is known that little or no new data is likely to arrive for
that time series and time window. Commonly, once the time window
ends, new data will only arrive for a few more seconds, and the com‐
pression of the data can begin. Since compressed and uncompressed
data can coexist in the same row, if a few samples arrive after the row
is compressed, the row can simply be compressed again to merge the
blob and the late-arriving samples.

The conceptual data flow for this hybrid-style time series database
system is shown in Figure 3-5.

Converting older data to blob format in the background allows a sub‐
stantial increase in the rate at which the renderer depicted in Figure 3-5
can retrieve data for presentation. On a 4-node MapR cluster, for in‐
stance, 30 million data points can be retrieved, aggregated and plotted
in about 20 seconds when data is in the compressed form.
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Figure 3-5. Data flow for the hybrid style of time series database. Da‐
ta arrives at the catcher from the sources and is inserted into the
NoSQL database. In the background, the blob maker rewrites the da‐
ta later in compressed blob form. Data is retrieved and reformatted by
the renderer.

Going One Step Further: The Direct Blob
Insertion Design
Compression of old data still leaves one performance bottleneck in
place. Since data is inserted in the uncompressed format, the arrival
of each data point requires a row update operation to insert the value
into the database. This row update can limit the insertion rate for data
to as little as 20,000 data points per second per node in the cluster.

On the other hand, the direct blob insertion data flow diagrammed in
Figure 3-6 allows the insertion rate to be increased by as much as
roughly 1,000-fold. How does the direct blob approach get this bump
in performance? The essential difference is that the blob maker has
been moved into the data flow between the catcher and the NoSQL
time series database. This way, the blob maker can use incoming data
from a memory cache rather than extracting its input from wide table
rows already stored in the storage tier.

The basic idea is that data is kept in memory as samples arrive. These
samples are also written to log files. These log files are the “restart logs”
shown in Figure 3-6 and are flat files that are stored on the Hadoop
system but not as part of the storage tier itself. The restart logs allow
the in-memory cache to be repopulated if the data ingestion pipeline
has to be restarted.
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In normal operations, at the end of a time window, new in-memory
structures are created, and the now static old in-memory structures
are used to create compressed data blobs to write to the database. Once
the data blobs have been written, the log files are discarded. Compare
the point in the data flow at which writes occur in the two scenarios.
In the hybrid approach shown in Figure 3-5, the entire incoming data
stream is written point-by-point to the storage tier, then read again by
the blob maker. Reads are approximately equal to writes. Once data is
compressed to blobs, it is again written to the database. In contrast, in
the main data flow of the direct blob insertion approach shown in
Figure 3-6, the full data stream is only written to the memory cache,
which is fast, rather than to the database. Data is not written to the
storage tier until it’s compressed into blobs, so writing can be much
faster. The number of database operations is decreased by the average
number of data points in each of the compressed data blobs. This de‐
crease can easily be a factor in the thousands.

Figure 3-6. Data flow for the direct blob insertion approach. The
catcher stores data in the cache and writes it to the restart logs. The
blob maker periodically reads from the cache and directly inserts
compressed blobs into the database. The performance advantage of
this design comes at the cost of requiring access by the renderer to da‐
ta buffered in the cache as well as to data already stored in the time
series database.

What are the advantages of this direct blobbing approach? A real-
world example shows what it can do. This architecture has been used
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to insert in excess of 100 million data points per second into a MapR-
DB table using just 4 active nodes in a 10-node MapR cluster. These
nodes are fairly high-performance nodes, with 16 cores, lots of RAM,
and 12 well-configured disk drives per node, but you should be able
to achieve performance within a factor of 2–5 of this level using most
hardware.

This level of performance sounds like a lot of data, possibly more than
most of us would need to handle, but in Chapter 5 we will show why
ingest rates on that level can be very useful even for relatively modest
applications.

Why Relational Databases Aren’t Quite Right
At this point, it is fair to ask why a relational database couldn’t handle
nearly the same ingest and analysis load as is possible by using a hybrid
schema with MapR-DB or HBase. This question is of particular inter‐
est when only blob data is inserted and no wide table data is used,
because modern relational databases often have blob or array types.

The answer to this question is that a relational database running this
way will provide reasonable, but not stellar, ingestion and retrieval
rates. The real problem with using a relational database for a system
like this is not performance, per se. Instead, the problem is that by
moving to a blob style of data storage, you are giving up almost all of
the virtues of a relational system. Additionally, SQL doesn’t provide a
good abstraction method to hide the details of accessing of a blob-
based storage format. SQL also won’t be able to process the data in any
reasonable way, and special features like multirow transactions won’t
be used at all. Transactions, in particular, are a problem here because
even though they wouldn’t be used, this feature remains, at a cost. The
requirement that a relational database support multirow transactions
makes these databases much more difficult to scale to multinode con‐
figurations. Even getting really high performance out of a single node
can require using a high-cost system like Oracle. With a NoSQL system
like Apache HBase or MapR-DB instead, you can simply add addi‐
tional hardware to get more performance.

This pattern of paying a penalty for unused features that get in the way
of scaling a system happens in a number of high-performance systems.
It is common that the measures that must be taken to scale a system
inherently negate the virtues of a conventional relational database, and
if you attempt to apply them to a relational database, you still do not
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get the scaling you desire. In such cases, moving to an alternative da‐
tabase like HBase or MapR-DB can have substantial benefits because
you gain both performance and scalability.

Hybrid Design: Where Can I Get One?
These hybrid wide/blob table designs can be very alluring. Their
promise of enormous performance levels is exciting, and the possi‐
bility that they can run on fault-tolerant, Hadoop-based systems such
as the MapR distribution make them attractive from an operational
point of view as well. These new approaches are not speculation; they
have been built and they do provide stunning results. The description
we’ve presented here so far, however, is largely conceptual. What about
real implementations? The next chapter addresses exactly how you can
realize these new designs by describing how you can use OpenTSDB,
an open source time series database tool, along with special open
source MapR extensions. The result is a practical implementation able
to take advantage of the concepts described in this chapter to achieve
high performance with a large-scale time series database as is needed
for modern use cases.
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“In theory, theory and practice are the
same. In practice, they are not.”

—Albert Einstein

CHAPTER 4

Practical Time Series Tools

As valuable as theory is, practice matters more. Chapter 3 described
the theory behind high-performance time series databases leading up
to the hybrid and direct-insertion blob architecture that allows very
high ingest and analysis rates. This chapter describes how that theory
can be implemented using open source software. The open source
tools described in this chapter mainly comprise those listed in
Table 4-1.

Table 4-1. Open source tools useful for preparing, loading, and access‐
ing data in high-performance NoSQL time series databases.

Open Source Tool Author Purpose

Open TSDB Benoit Sigoure (originally) Collect, process, and load time series data
into storage tier

Extensions to Open TSDB MapR Technologies Enable direct blog insertion

Grafana Torkel Ödegaard and Coding
Instinct AB

User interface for accessing and visualizing
time series data

We also show how to analyze Open TSDB time series data using open
source tools such as R and Apache Spark. At the end of this chapter,
we describe how you can attach Grafana, an open source dashboarding
tool, to Open TSDB to make it much more useful.
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Introduction to Open TSDB: Benefits
and Limitations
Originally just for systems monitoring, Open TSDB has proved far
more versatile and useful than might have been imagined originally.
Part of this versatility and longevity is due to the fact that the under‐
lying storage engine, based on either Apache HBase or MapR-DB, al‐
lows a high degree of schema flexibility. The Open TSDB developers
have used this to their advantage by starting with something like a star
schema design, moving almost immediately to a wide table design,
and later extending it with a compressor function to convert wide rows
into blobs. (The concepts behind these approaches was explained in
Chapter 3.) As the blob architecture was introduced, the default time
window was increased from the original 60 seconds to a more blob-
friendly one hour in length.

As it stands, however, Open TSDB also suffers a bit from its history
and will not support extremely high data rates. This limitation is
largely caused by the fact that data is only compacted into the
performance-friendly blob format after it has already been inserted
into the database in the performance-unfriendly wide table format.

The default user interface of Open TSDB is also not suitable for most
users, especially those whose expectations have been raised by com‐
mercial quality dashboarding and reporting products. Happily, the
open source Grafana project described later in this chapter now pro‐
vides a user interface with a much higher level of polish. Notably, Gra‐
fana can display data from, among other things, an Open TSDB in‐
stance.

Overall, Open TSDB plus HBase or MapR-DB make an interesting
core storage engine. Adding on Grafana gives users the necessary user
interface with a bit of sizzle. All that is further needed to bring the
system up to top performance is to add a high-speed turbo-mode data
ingestion framework and the ability to script analyses of data stored
in the database. We also show how to do both of these things in this
chapter.

We focus on Open TSDB in this chapter because it has an internal data
architecture that supports very high-performance data recording. If
you don’t need high data rates, the InfluxDB project may be a good
alternative for your needs. InfluxDB provides a very nice query lan‐
guage, the ability to have standing queries, and a nice out-of-the-box
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interface. Grafana can interface with either Influx DB or Open TSDB.
Let’s take a look in more detail about how native Open TSDB works
before introducing the high-performance, direct blob extensions con‐
tributed by MapR.

Architecture of Open TSDB
In Chapter 3 we described the options to build a time series database
with a wide table design based on loading data point by point or by
pulling data from the table and using a background blob maker to
compress data and reload blobs to the storage tier, resulting in hybrid
style tables (wide row + blob). These two options are what basic Open
TSDB provides. The architecture of Open TSDB is shown in
Figure 4-1. This figure is taken with minor modifications from the
Open TSDB documentation.

Figure 4-1. Open TSDB consists of a number of cooperating compo‐
nents to load and access data from the storage tier of a time series da‐
tabase. These include data collectors, time-series daemons (TSD), and
various user interface functions. Open TSDB components are colored
gray.
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On servers where measurements are made, there is a collector process
that sends data to the time series daemon (TSD) using the TSD RPC
protocol. The time series daemons are responsible for looking up the
time series to which the data is being appended and inserting each data
point as it is received into the storage tier. A secondary thread in the
TSD later replaces old rows with blob-formatted versions in a process
known as row compaction. Because the TSD stores data into the stor‐
age tier immediately and doesn’t keep any important state in memory,
you can run multiple TSD processes without worrying about them
stepping on each other. The TSD architecture shown here corresponds
to the data flow depicted in the previous chapter in Figure 3-5 to pro‐
duce hybrid-style tables. Note that the data catcher and the back‐
ground blob maker of that figure are contained within the TSD com‐
ponent shown here in Figure 4-1.

User interface components such as the original Open TSDB user in‐
terface communicate directly with the TSD to retrieve data. The TSD
retrieves the requested data from the storage tier, summarizes and
aggregates it as requested, and returns the result. In the native Open
TSDB user interface, the data is returned directly to the user’s browser
in the form of a PNG plot generated by the Gnuplot program. External
interfaces and analysis scripts can use the PNG interface, but they
more commonly use the REST interface of Open TSDB to read ag‐
gregated data in JSON form and generate their own visualizations.

Open TSDB suffers a bit in terms of ingestion performance by having
collectors to send just a few data points at a time (typically just one
point at a time) and by inserting data in the wide table format before
later reformatting the data into blob format (this is the standard hybrid
table data flow). Typically, it is unusual to be able to insert data into
the wide table format at higher than about 10,000 data points per sec‐
ond per storage tier node. Getting ingestion rates up to or above a
million data points per second therefore requires a large number of
nodes in the storage tier. Wanting faster ingestion is not just a matter
of better performance always being attractive; many modern situa‐
tions produce data at such volume and velocity that in order be able
to store and analyze it as a time series, it’s necessary to increase the
data load rates for the time series database in order to the do the
projects at all.
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This limitation on bulk ingestion speed can be massively improved by
using an alternative ingestion program to directly write data into the
storage tier in blob format. We will describe how this works in the next
section.

Value Added: Direct Blob Loading for
High Performance
An alternative to inserting each data point one by one is to buffer data
in memory and insert a blob containing the entire batch. The trick is
to move the blob maker upstream of insertion into the storage tier as
described in Chapter 3 and Figure 3-6. The first time the data hits the
table, it is already compressed as a blob. Inserting entire blobs of data
this way will help if the time windows can be sized so that a large
number of data points are included in each blob. Grouping data like
this improves ingestion performance because the number of rows that
need to be written to the storage tier is decreased by a factor equal to
the average number of points in each blob. The total number of bytes
may also be decreased if you compress the data being inserted. If you
can arrange to have 1,000 data points or more per blob, ingest rates
can be very high. As mentioned in Chapter 3, in one test with one data
point per second and one-hour time windows, ingestion into a 4-node
storage tier in a 10-node MapR cluster exceeded 100 million data
points per second. This rate is more than 1,000 times faster than the
system was able to ingest data without direct blob insertion.

To accomplish this high-performance style of data insertion with live
data arriving at high velocity as opposed to historical data, it is nec‐
essary to augment the native Open TSDB with capabilities such as
those provided by the open source extensions developed by MapR and
described in more detail in the following section. Figure 4-2 gives us
a look inside the modified time series daemon (TSD) as modified for
direct blob insertion. These open source modifications will work on
databases built with Apache HBase or with MapR-DB.
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Figure 4-2. Changes inside the TSD when using extensions to Open
TSDB that enable high-speed ingestion of rapid streaming data. Data
is ingested initially to the storage tier in the blob-oriented format that
stores many data points per row.

A New Twist: Rapid Loading of Historical Data
Using the extensions to Open TSDB, it is also possible to set up a
separate data flow that loads data in blob-style format directly to the
storage tier independently of the TSD. The separate blob loader is
particularly useful with historical data for which there is no need to
access recent data prior to its insertion into the storage tier. This design
can be used at the same time as either a native or a modified TSD is in
use for other data sources such as streaming data. The use of the sep‐
arate blob loader for historical data is shown in Figure 4-3.
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Figure 4-3. Historical data can be ingested at high speed through di‐
rect blob ingenstion by using the blob loader alongside Open TSDB,
without needing an in-memory cache. Additional architectural com‐
ponents are shown grayed out here for context.

When using this blob loader, no changes are needed to the TSD sys‐
tems or to the UI components since the blob loader is simply loading
data in a format that Open TSDB already uses. In fact, you can be
ingesting data in the normal fashion at the same time that you are
loading historical data using the blob loader.

The blob loader accelerates data ingestion by short-circuiting the nor‐
mal load path of Open TSDB. The effect is that data can be loaded at
an enormous rate because the number of database operations is de‐
creased by a large factor for data that has a sufficiently large number
of samples in each time window.

Since unmodified Open TSDB can only retrieve data from the Apache
HBase or MapR-DB storage tier, using the direct bulk loader of the
extension means that any data buffered in the blob loader’s memory
and not yet written to the data tier cannot be seen by Open TSDB. This
is fine for test or historical data, but is often not acceptable for live data
ingestion. For test and historical ingestion, it is desirable to have much
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higher data rates than for production use, so it may be acceptable to
use conventional ingestion for current data and use direct bulk only
for other testing and backfill.

Summary of Open Source Extensions to Open
TSDB for Direct Blob Loading
The performance acceleration available with open source MapR ex‐
tensions to TSDB can be used in several ways. These general modes
of using the extensions include:

Direct bulk loader
The direct bulk loader loads data directly into storage tier in the
Open TSDB blob format. This is the highest-performance load
path and is suitable for loading historical data while the TSD is
loading current data.

File loader
The file loader loads files via the new TSD bulk API. Loading via
the bulk API decreases performance somewhat but improves iso‐
lation between components since the file loader doesn’t need to
know about internal Open TSDB data formats.

TSD API for bulk loading
This bulk load API is an entry point in the REST API exposed by
the TSD component of Open TSDB. The bulk load API can be
used in any collector instead of the point-by-point insertion API.
The advantage of using the bulk API is that if the collector falls
behind for any reason, it will be able to load many data points in
each call to the API, which will help it catch up.

In-memory buffering for TSD
The bulk load API is supported by in-memory buffering of data
in the TSD. As data arrives, it is inserted into a buffer in the TSD.
When a time window ends, the TSD will write the contents of the
buffers into the storage tier in already blobbed format. Data buf‐
fered in memory is combined with data from the storage tier to
satisfy any queries that require data from the time period that the
buffer covers.

The current primary use of the direct bulk loader is to load large
amounts of historical data in a short amount of time. Going forward,
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the direct bulk loader may be deprecated in favor of the file loader to
isolate knowledge of the internal file formats.

The file loader has the advantage that it uses the REST API for bulk
loading and therefore, data being loaded by the file loader will be visi‐
ble by queries as it is loaded.

These enhancements to Open TSDB are available on github. Over
time, it is expected that they will be integrated into the upstream Open
TSDB project.

Accessing Data with Open TSDB
Open TSDB has a built-in user interface, but it also allows direct access
to time series data via a REST interface. In a few cases, the original data
is useful, but most applications are better off with some sort of sum‐
mary of the original data. This summary might have multiple data
streams combined into one or it might have samples for a time period
aggregated together. Open TSDB allows reduction of data in this fash‐
ion by allowing a fixed query structure.

In addition to data access, Open TSDB provides introspection capa‐
bilities that allow you to determine all of the time series that have data
in the database and several other minor administrative capabilities.

The steps that Open TSDB performs to transform the raw data into
the processed data it returns include:

Selection
The time series that you want are selected from others by giving
the metric name and some number of tag/value pairs.

Grouping
The selected data can be grouped together. These groups deter‐
mine the number of time series that are returned in the end.
Grouping is optional.

Down-sampling
It is common for the time series data retrieved by a query to have
been sampled at a much higher rate than is desired for display. For
instance, you might want to display a full year of data that was
sampled every second. Display limitations mean that it is impos‐
sible to see anything more than about 1–10,000 data points. Open
TSDB can downsample the retrieved data to match this limit. This
makes plotting much faster as well.
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Aggregation
Data for particular time windows are aggregated using any of a
number of pre-specified functions such as average, sum, or min‐
imum.

Interpolation
The time scale of the final results regularized at the end by inter‐
polating as desired to particular standard intervals. This also en‐
sures that all the data returned have samples at all of the same
points.

Rate conversion
The last step is the optional conversion from counts to rates.

Each of these steps can be controlled via parameters in the URLs of
the REST request that you need to send to the time series daemon
(TSD) that is part of Open TSDB.

Working on a Higher Level
While you can use the REST interface directly to access data from
Open TSDB, there are packages in a variety of languages that hide most
of the details. Packages are available in R, Go, and Ruby for accessing
data and more languages for pushing data into Open TSDB. A com‐
plete list of packages known to the Open TSDB developers can be
found in the Open TSDB documentation in Appendix A.

As an example of how easy this can make access to Open TSDB data,
here is a snippet of code in R that gets data from a set of metrics and
plots them

result <- tsd_get(metric, start, tags=c(site="*"),

downsample="10m-avg")

library(zoo)

z <- with(result, zoo(value, timestamp))

filtered <- rollapply(z, width=7, FUN=median)

plot(merge(z, filtered))

This snippet is taken from the README for the github project. The
first line reads the data, grouping by site and downsampling to 10-
minute intervals using an arithmetic average. The second line converts
to a time series data type and computes a rolling median version of
the data. The last line plots the data.
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Using a library like this is an excellent way to get the benefits of the
simple conceptual interface that Open TSDB provides combined with
whatever your favorite language might be.

Using a package like this to access data stored in Open TSDB works
relatively well for moderate volumes of data (up to a few hundred
thousand data points, say), but it becomes increasingly sluggish as data
volumes increase. Downsampling is a good approach to manage this,
but downsampling discards information that you may need in your
analysis. At some point, you may find that the amount of data that you
are trying to retrieve from your database is simply too large either
because downloading the data takes too long or because analysis in
tools like R or Go becomes too slow.

If and when this happens, you will need to move to a more scalable
analysis tool that can process the data in parallel.

Accessing Open TSDB Data Using
SQL-on-Hadoop Tools
If you need to analyze large volumes of time series data beyond what
works with the REST interface and downsampling, you probably also
need to move to parallel execution of your analysis. At this point, it is
usually best to access the contents of the Open TSDB data directly via
the HBase API rather than depending on the REST interface that the
TSD process provides.

You might expect to use SQL or the new SQL-on-Hadoop tools for
this type of parallel access and analysis. Unfortunately, the wide table
and blob formats that Open TSDB uses in order to get high perfor‐
mance can make it more difficult to access this data using SQL-based
tools than you might expect. SQL as a language is not a great choice
for actually analyzing time series data. When it comes to simply ac‐
cessing data from Open TSDB, the usefulness of SQL depends strongly
on which tool you select, as elaborated in the following sections. For
some tools, the non-relational data formats used in Open TSDB can
be difficult to access without substantial code development. In any
case, special techniques that vary by tool are required to analyze time
series data from Open TSDB. New SQL-on-Hadoop tools are being
developed. In the next sections, we compare some of the currently
available tools with regard to how well they let you access your time
series database and Open TSDB.

Accessing Open TSDB Data Using SQL-on-Hadoop Tools | 47



Using Apache Spark SQL
Apache Spark SQL has some advantages in working with time series
databases. Spark SQL is very different from Apache Hive in that it is
embedded in and directly accessible from a full programming lan‐
guage. The first-class presence of Scala in Spark SQL programs makes
it much easier to manipulate time series data from Open TSDB.

In particular, with Spark SQL, you can use an RDD (resilient dis‐
tributed dataset) directly as an input, and that RDD can be populated
by any convenient method. That means that you can use a range scan
to read a number of rows from the Open TSDB data tier in either HBase
or MapR-DB into memory in the form of an RDD. This leaves you
with an RDD where the keys are row keys and the values are HBase

Result structures. The getFamilyMap method can then be used to get
all columns and cell values for that row. These, in turn, can be emitted

as tuples that contain metric, timestamp, and value. The flatmap
method is useful here because it allows each data row to be transformed
into multiple time series samples.

You can then use any SQL query that you like directly on these tuples
as stored in the resulting RDD. Because all processing after reading
rows from HBase is done in memory and in parallel, the processing
speed will likely be dominated by the cost of reading the rows of data
from the data tier. Furthermore, in Spark, you aren’t limited by lan‐
guage. If SQL isn’t convenient, you can do any kind of Spark compu‐
tation just as easily.

A particularly nice feature of using Spark to analyze metric data is that
the framework already handles most of what you need to do in a fairly
natural way. You need to write code to transform OpenTSDB rows into
samples, but this is fairly straightforward compared to actually ex‐
tending the platform by writing an input format or data storage mod‐
ule from scratch.

Why Not Apache Hive?
Analyzing time series data from OpenTSDB using Hive is much more
difficult than it is with Spark. The core of the problem is that the HBase
storage engine for Hive requires that data be stored using a very stan‐
dard, predefined schema. With Open TSDB, the names of the columns
actually contain the time portion of the data, and it isn’t possible to
write a fully defined schema to describe the tables. Not only are there
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a large number of possible columns (more than 101000), but the names
of the columns are part of the data. Hive doesn’t like that, so this fact
has to be hidden from it.

The assumptions of Hive’s design are baked in at a pretty basic level
in the Hive storage engine, particularly with regard to the assumption
that each column in the database represents a single column in the
result. The only way to have Hive understand OpenTSDB is to clone
and rewrite the entire HBase storage engine that is part of Hive. At
that point, each row of data from the OpenTSDB table can be returned
as an array of tuples containing one element for time and one for value.
Each such row can be exploded using a lateral view join.

While it is possible to use Hive to analyze Open TSDB data, it is cur‐
rently quite difficult. Spark is likely a better option.

Adding Grafana or Metrilyx for Nicer
Dashboards
The default user interface for Open TSDB is very basic and not suitable
for building embedded dashboards; it definitely is a bit too prickly for
most ordinary users. In addition, the plots are produced using a tool
called Gnuplot, whose default plot format looks very dated. A more
convenient visualization interface is desirable.

One good solution is the open source dashboard editor known as
Grafana. The Open TSDB REST API can provide access to data, and
the team behind the Grafana project has used that access to build a
high-quality data visualization interface for Open TSDB and other
time series databases such as InfluxDB. A sample result is shown in
Figure 4-4.
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Figure 4-4. A sample plot from Grafana. This plot is taken from the
sample instance that can be accessed from the project home page.

Installation of Grafana is quite simple because it runs entirely on the
client side using JavaScript. All you need to run Grafana is a web server
that can serve static files such as Twistd or nginx. You will also have to
make sure that your users’ browsers can access the Open TSDB REST
interface either directly or through a proxy. Using a proxy is a good
idea if you want to ensure that users see data but can’t modify it. If you
want to allow users to define new dashboards, you will need to install
and run an Elasticsearch instance as well. Grafana is available at http://
grafana.org/.

Another option for nicer dashboards with Open TSDB is Metrilyx, a
package recently open sourced by Ticketmaster. Installing Metrilyx is
a bit more involved than installing Grafana because there are addi‐
tional dependencies (on nginx, Elasticsearch, Mongo and, optionally,
Postgres), but there are some benefits such as the use of websockets in
order to improve the responsiveness of the display. Keep in mind that
while Metrilyx has been in use inside Ticketmaster for some time, it
has only recently been released as open source. There may be some
teething issues as a result due to the change in environment. Metrilyx
is available at https://github.com/Ticketmaster/metrilyx-2.0.

Possible Future Extensions to Open TSDB
The bulk API extension to Open TSDB’s REST interface assumes that
data can be buffered in memory by the TSD. This violates the design
assumptions of Open TSDB by making the TSD keep significant
amounts of state information in memory. This has several negative
effects, the most notable being that a failure of the TSD will likely cause
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data loss. Even just restarting a TSD process means that there is a short
moment in time when there is no process to handle incoming data.

In the original Open TSDB design, this was never a problem because
TSD processes are stateless by design. This means that you can run
several such processes simultaneously and simply pick one at random
to handle each API request. Each request that delivers data to the TSD
will cause an immediate update of the storage tier, and all requests that
ask the TSD are satisfied by reference to the database.

With in-memory buffering, the TSD is no longer stateless, and we
therefore lose the benefits of that design. These issues do not affect the
use of the bulk API for loading historical or test data because we can
simply dedicate a TSD for bulk loading, restarting loading if the TSD
fails or needs to be restarted. Similarly, the direct bulk loader is not
affected by these considerations.

At this time, the in-memory caching that has been implemented in
association with the bulk API has no provisions to allow restarts or
multiple TSD processes. The next section describes one design that
will support these capabilities safely.

Cache Coherency Through Restart Logs
Ultimately, it is likely to be desirable to allow multiple TSDs to be run
at the same time and still use the in-memory caching for performance.
This however, leads to a situation where new data points and requests
for existing data could go to any TSD at all. In order to ensure that all
TSDs have consistent views of all data, we need to have a cache co‐
herency protocol where all new data accepted by any TSD has a very
high likelihood of being present on every TSD very shortly after it
arrives.

In order to do this simply, we require all TSDs to write restart logs that
contain a record of all the transactions that they have received as well
as a record of exactly when blobs are written to the storage tier. All
TSDs can then read the restart logs of all of the other TSDs. This will
help in two ways. First, all TSDs, including those recently started, will
have very nearly identical memory states. Secondly, only one TSD will
actually write each row to the database. Such a design avoids nearly all
coordination at the cost of requiring that all recent data points be kept
in multiple TSD memory spaces.
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This design requires that a TSD be able to read restart logs and modify
its in-memory representation at the full production data rate, possibly
using several hardware threads. Since restart logs are kept in conven‐
tional flat files, reading the data in a binary format at high rates is not
a problem. Likewise, since the cache is kept in memory, updating the
cache at more than a million updates per second is likewise not a major
problem.

The only remaining issue is to arrange for only one TSD to write each
row to the database. This can be done by having each TSD pick a
random time to wait before writing an idle dirty row back to the da‐
tabase. When the TSD starts the write, it will write a start transaction
to the log, and when it completes the write, it will write a finish trans‐
action to the log. When other TSDs read the finish transaction from
the first TSD’s restart log, they will silently discard the dirty row if their
last update time matches the update time that was written to the da‐
tabase. Any TSD that reads a start transaction will delay its own write
time for that row by a few seconds to allow the finish operation to
arrive. By setting the range of the random times large with respect to
the time required to propagate the start transaction, the probability
that two TSDs will start a write on the same row can be made very,
very small. Even if two TSDs do decide to write the same row to the
database, row updates are atomic, so the two processes will write the
same data (since the row is idle at this point). The net effect is that each
row will almost always be written to the database only once, on average.

With an understanding of basic concepts related to building a large
scale, NoSQL time series database provided by Chapter 3 and the ex‐
ploration of open source tools to implement those ideas, as described
here in Chapter 4, you should now be well prepared to tackle your own
project with time series data. But before you do, consider how one of
the options described here can fix a problem you might not yet know
exists. Chapter 5 shows you how.
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CHAPTER 5

Solving a Problem You Didn’t
Know You Had

Whenever you build a system, it’s good practice to do testing before
you begin using it, especially before it goes into production. If your
system is designed to store huge amounts of time series data—such as
two years’ worth of sensor data—for critical operations or analysis, it’s
particularly important to test it. The failure of a monitoring system
for drilling or pump equipment on an oil rig, for manufacturing
equipment, medical equipment, or an airplane, can have dire conse‐
quences in terms financial loss and physical damage, so it is essential
that your time series data storage engine is not only high performance,
but also robust. Sometimes people do advance testing on a small data
sample, but tests at this small scale are not necessarily reliable predic‐
tors of how your system will function at scale. For serious work, you
want a serious test, using full-scale data. But how can you do that?

The Need for Rapid Loading of Test Data
Perhaps you have preexisting data for a long time range that could be
used for testing, and at least you can fairly easily build a program to
generate synthetic data to simulate your two years of information. Ei‐
ther way, now you’re faced with a problem you may not have realized
you have: if your system design was already pushing the limits on data
ingestion to handle the high-velocity data expected in production, how
will you deal with loading two years’ worth of such data in a reasonable
time? If you don’t want to have to wait two years to perform the test,
you must either give up having a full-scale test by downsampling or
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you must find a clever way to speed up test data ingestion rates enor‐
mously compared with normal production rates. For this example, to
ingest two years of data in a day or two, you will need to ingest test
data 100–1,000 times faster than your production rate. Even if your
production data ingestion rate is only moderately high, your test data
ingestion rate is liable to need to be outrageous. We choose the option
to speed up the ingestion rate for test data. That’s where the open
source code extensions developed by MapR (described in Chapter 4)
come to the rescue.

Using Blob Loader for Direct Insertion into
the Storage Tier
The separate blob loader described in Chapter 4 (see Figure 4-3) is
ideal for ingesting data to set up a test at scale. The blob loader design
has been shown to provide more than 1,000-fold acceleration of data
loading over the rate achieved by unmodified Open TSDB’s hybrid
wide table/blob design as shown in Figure 4-1. The advantages of this
direct-insertion approach are especially apparent when you imagine
plotting the load times for the different approaches, as shown in
Figure 5-1.
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Figure 5-1. Load times for large-scale test data can be prohibitive with
the hybrid-style format (point-by-point + blob) produced by ordinary
Open TSDB (left), but this problem is solved with rapid ingestion
rates obtained by using the open source code extensions to do direct
blob insertion (right).

There are other situations in which direct blob insertion can be ben‐
eficial as well, but even by just making it practical to do realistic testing
at scale of a critical time series database, this approach can have wide
impact.
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CHAPTER 6

Time Series Data in Practical
Machine Learning

With the increasing availability of large-scale data, machine learning
is becoming a common tool that businesses use to unlock the potential
value in their data. There are several factors at work to make machine
learning more accessible, including the development of new technol‐
ogies and practical approaches.

Many machine-learning approaches are available for application to
time series data. We’ve already alluded to some in this book and in
Practical Machine Learning: A New Look at Anomaly Detection, an
earlier short book published by O’Reilly. In that book, we talked about
how to address basic questions in anomaly detection, especially how
determine what normal looks like, and how to detect deviations from
normal.

Keep in mind that with anomaly detection, the machine-learning
model is trained offline to learn what normal is and to set an adaptive
threshold for anomaly alerts. Then new data, such as sensor data, can
be assessed to determine how similar the new data is to what the model
expects. The degree of mismatch to the model expectations can be used
to trigger an alert that signals apparent faults or discrepancies as they
occur. Sensor data is a natural fit to be collected and stored as a time
series database. Sensors on equipment or system logs for servers can
generate an enormous amount of time-based data, and with new tech‐
nologies such as the Apache Hadoop–based NoSQL systems described
in this book, it is now feasible to save months or even years of such
data in time series databases.
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But is it worthwhile to do so?

Predictive Maintenance Scheduling
Let’s consider a straightforward but very important example to answer
this question. Suppose a particular piece of critically important equip‐
ment is about to fail. You would like to be able to replace the part before
a costly disaster.

Failure Prediction at Work in the Movie
“2001, A Space Odyssey”

Hal Sorry to interrupt the festivities, Dave, but I think we’ve got a problem.

Bowman What is it, Hal?

Hal MY F.P.C. shows an impending failure of the antenna orientation unit.

Hal The A.O. unit should be replaced within the next 72 hours.

It would be good if you could see signs leading up to the failure so that
you could do preventive maintenance. If the piece is something such
as a wind turbine, a pump in a drilling rig, or a component of a jet
engine such as the one shown in Figure 6-1, the consequences of the
failure can be dire. Part of the problem is that you may not know what
to watch for. That’s where a retrospective study can help.
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Figure 6-1. Predictive maintenance scheduling—replacing parts be‐
fore a serious problem occurs—is a huge benefit in systems with ex‐
pensive and highly critical equipment such as this turbine inside a jet
engine.

If you keep good, detailed long-term histories of maintenance on es‐
sential components of equipment down to the level of the part number,
location, dates it went into use, notes on wear, and the dates of any
failures, you may be able to reconstruct the events or conditions that
led up to failures and thus build a model for how products wear out,
or you may find predictive signs or even the cause of impending trou‐
ble. This type of precise, long-term maintenance history is not a time
series, but coupled with a time series database of sensor data that re‐
cords operating conditions, you have a powerful combination to un‐
lock the insights you need. You can correlate the observations your
sensors have made for a variety of parameters during the days, weeks,
or months leading up to the part failure or up to an observed level of
wear that is disturbing. This pattern of retrospective machine learning
analysis on the combination of a detailed maintenance history and a
long-term time series database has widespread applicability in trans‐
portation, manufacturing, health care, and more.
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Why do you need to go to the trouble of saving the huge amount of
time series sensor data for long time ranges, such as years, rather than
perhaps just a month? It depends of course on your particular situation
and what the opportunity cost of not being able to do this style of
predictive maintenance may be. But part of the question to ask yourself
is: what happens if you only save a month of sensor data at a time, but
the critical events leading up to a catastrophic part failure happened
six weeks or more before the event? Maybe temperatures exceeded a
safe range or an outside situation caused an unusual level of vibration
in the component for a short time two months earlier. When you try
to reconstruct events before the failure or accident, you may not have
the relevant data available any more. This situation is especially true
if you need to look back over years of performance records to under‐
stand what happened in similar situations in the past.

The better alternative is to make use of the tools described in this report
so that it is practical to keep much longer time spans for your sensor
data along with careful maintenance histories. In the case of equip‐
ment used in jet aircraft, for instance, it is not only the airline that cares
about a how equipment performs at different points in time and what
the signs of wear or damage are. Some manufacturers of important
equipment also monitor ongoing life histories of the parts they pro‐
duce in order to improve their own design choices and to maintain
quality.

Manufacturers are not only concerned with collecting sensor data to
monitor how their equipment performs in factories during produc‐
tion; they also want to manufacture smart equipment that reports on
its own condition as it is being used by the customer. The manufacturer
can include a service to monitor and report on the status of a compo‐
nent in order to help the customer optimize function through tuning.
This might involve better fuel consumption, for example. These “smart
parts” are of more value than mute equipment, so they may give the
manufacturer a competitive edge in the marketplace, not to mention
the benefits they provide the customer who purchases them.

The benefits of this powerful combination of detailed maintenance
histories plus long-term time series databases of sensor data for ma‐
chine learning models can, in certain, industries, be enormous.
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CHAPTER 7

Advanced Topics for
Time Series Databases

So far, we have considered how time series can be stored in databases
where each time series is easily identified: possibly by name, possibly
by a combination of tagged values. The applications of such time series
databases are broad and cover many needs.

There are situations, however, where the time series databases that we
have described so far fall short. One such situation is where we need
to have a sense of location in addition to time. An ordinary time series
database makes the assumption that essentially all queries will have
results filtered primarily based on time. Put another way, time series
databases require to you specify which metric and when the data was
recorded. Sometimes, however, we need to include the concept of
where. We may want to specify only where and when without specify‐
ing which. When we make this change to the queries that we want to
use, we move from having a time series database to having a geo-
temporal database.

Note that it isn’t the inclusion of locational data into a time series da‐
tabase per se that makes it into a geo-temporal database. Any or all of
latitude, longitude, x, y, or z could be included in an ordinary time
series database without any problem. As long as we know which time
series we want and what time range we want, this locational data is just
like any other used to identify the time series. It is the requirement that
location data be a primary part of querying the database that makes all
the difference.
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Suppose, for instance, that we have a large number of data-collecting
robots wandering the ocean recording surface temperature (and a few
other parameters) at various locations as they move around. A natural
query for this data is to retrieve all temperature measurements that
have been made within a specified distance of a particular point in the
ocean. With an ordinary time series database, however, we are only
able to scan by a particular robot for a particular time range, yet we
cannot know which time to search for to find the measurements for a
robot at a particular location—we don’t have any way to build an ef‐
ficient query to get the data we need, and it’s not practical to scan the
entire database. Also, because the location of each robot changes over
time, we cannot store the location in the tags for the entire time series.
We can, however, solve this problem by creating a geo-temporal da‐
tabase, and here’s how.

Somewhat surprisingly, it is possible to implement a geo-temporal da‐
tabase using an ordinary time series database together with just a little
bit of additional machinery called a geo-index. That is, we can do this
if the data we collect and the queries we need to do satisfy a few simple
assumptions. This chapter describes these assumptions, gives exam‐
ples of when these assumptions hold, and describes how to implement
this kind of geo-temporal database.

Stationary Data
In the special case where each time series is gathered in a single location
that does not change, we do not actually need a geo-temporal database.
Since the location doesn’t change, the location does not need to be
recorded more than once and can instead be recorded as an attribute
of the time series itself, just like any other attribute. This means that
querying such a database with a region of interest and a time range
involves nothing more than finding the time series that are in the re‐
gion and then issuing a normal time-based query for those time series.

Wandering Sources
The case of time series whose data source location changes over time
is much more interesting than the case where location doesn’t change.
The exciting news is that if the data source location changes relatively
slowly, such as with the ocean robots, there are a variety of methods
to make location searches as efficient as time scans. We describe only
one method here.
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To start with, we assume that all the locations are on a plane that is
divided into squares. For an ocean robot, imagine its path mapped out
as a curve, and we’ve covered the map with squares. The robot’s path
will pass through some of the squares. Where the path crosses a square
is what we call an intersection.

We also assume that consecutive points in a time series are collected
near one another geographically because the data sources move slowly
with respect to how often they collect data. As data is ingested, we can
examine the location data for each time series and mark down in a
separate table (the geo-index) exactly when the time series path in‐
tersects each square and which squares it intersects. These intersec‐
tions of time series and squares can be stored and indexed by the ID
of the square so that we can search the geo-index using the square and
get a list of all intersections with that square. That list of intersections
tells us which robots have crossed the square and when they crossed
it. We can then use that information to query the time series database
portion of our geo-temporal database because we now know which
and when.

Figure 7-1 shows how this might work with relatively coarse parti‐
tioning of spatial data. Two time series that wander around are shown.
If we want to find which time series might intersect the shaded circle
and when, we can retrieve intersection information for squares A, B,
C, D, E, and F. To get the actual time series data that overlaps with the
circle, we will have to scan each segment of the time series to find out
if they actually do intersect with the circle, but we only have to scan
the segments that overlapped with one of these six squares.
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Figure 7-1. To find time windows of series that might intersect with
the shaded circle, we only have to check segments that intersect with
the six squares A–F. These squares involve considerably more area
than we need to search, but in this case, only three segments having
no intersection with the circle would have to be scanned because they
intersect squares A–F. This means that we need only scan a small part
of the total data in the time series database.

If we make the squares smaller like in Figure 7-2, we will have a more
precise search that forces us to scan less data that doesn’t actually
overlap with the circle. This is good, but as the squares get smaller, the
number of data points in the time series during the overlap with each
square becomes smaller and smaller. This makes the spatial index big‐
ger and ultimately decreases efficiency.

64 | Chapter 7: Advanced Topics for Time Series Databases



Figure 7-2. With smaller squares, we have more squares to check, but
they have an area closer to that of the circle of interest. The circle now
intersects 13 squares, but only 2 segments with no intersection will be
scanned, and those segments are shorter than before because the
squares are smaller.

It is sometimes not possible to find a universal size of square that works
well for all of the time series in the database. To avoid that problem,
you can create an adaptive spatial index in which intersections are
recorded at the smallest scale square possible that still gives enough
samples in the time series segment to be efficient. If a time series in‐
volves slow motion, a very fine grid will be used. If the time series
involves faster motion, a coarser grid will be used. A time series that
moves quickly sometimes and more slowly at other times will have a
mix of fine and coarse squares. In a database using a blobbed storage
format, a good rule of thumb is to record intersections at whichever
size square roughly corresponds a single blob of data.

Space-Filling Curves
As a small optimization, you can label the squares in the spatial index
according to a pattern known as a Hilbert curve, as shown in
Figure 7-3. This labeling is recursively defined so that finer squares
share the prefix of their label with overlapping coarser squares. An‐
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other nice property of Hilbert labeling is that roughly round or square
regions will overlap squares with large runs of sequential labels. This
can mean that a database such as Apache HBase that orders items
according to their key may need to do fewer disk seeks when finding
the content associated with these squares.

Figure 7-3. A square can be recursively divided into quarters and la‐
beled in such a way that the roughly round regions will overlap
squares that are nearly contiguous. This ordering can make retrieving
the contents associated with each square fast in a database like HBase
or MapR-DB because it results in more streaming I/O. This labeling is
recursively defined and is closely related to the Hilbert curve.

Whether or not this is an important optimization will depend on how
large your geo-index of squares is. Note that Hilbert labeling of squares
does not change how the time series themselves are stored, only how
the index of squares that is used to find intersections is stored. In many
modern systems, the square index will be small enough to fit in mem‐
ory. If so, Hilbert labeling of the squares will be an unnecessary in‐
convenience.
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CHAPTER 8

What’s Next?

The shape of the data landscape has changed, and it’s about to undergo
an even bigger upheaval. New technologies have made it reasonable
and cost effective to collect and analyze much larger amounts of data,
including time series data. That change, in turn, has enticed people to
greatly expand where, how, and how much data they want to collect.
It isn’t just about having data at a much larger scale to do the things
we used to do at higher frequency, such as tracking stock trades in
fractions of seconds or measuring residential energy usage every few
minutes instead of once a month. The combination of greatly increas‐
ing scale plus emerging technologies to collect and analyze data for
valuable insights is creating the desire and ability to do new things.

This ability to try something new raises the question: what’s next? Be‐
fore we take a look forward, let’s review the key ideas we have covered
so far.

A New Frontier: TSDBs, Internet of Things, and
More
The way we watch the world is new. Machine sensors “talk to” servers
and machines talk to each other. Analysts collect data from social me‐
dia for sentiment analysis to find trends and see if they correlate to the
behavior of stock trading. Robots wander across the surface of the
oceans, taking repeated measurements of a variety of parameters as
they go. Manufacturers not only monitor manufacturing processes for
fine-tuning of quality control, they also produce “smart parts” as com‐
ponents of high-tech equipment to report back on their function from
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the field. The already widespread use of sensor data is about to vastly
expand as creative companies find new ways to deploy sensors, such
as embedding them into fabric to make “smart clothes” to monitor
parameters including heart function. There are also many wearable
devices for reporting on a person’s health and activity. One of the most
widespread sources of machine data already in action is from system
logs in data center monitoring. As techniques such as those described
in this report become widely known, more and more people are
choosing to collect data as time series. Going forward, where will you
find time series data? The answer is: essentially everywhere.

These types of sensors take an enormous number of measurements,
which raises the issue of how to make use of the enormous influx of
data they produce. New methods are needed to deal with the entire
time series pipeline from sensor to insight. Sensor data must be col‐
lected at the site of measurement and communicated. Transport tech‐
nologies are needed to carry this information to the platform used for
central storage and analysis. That’s where the methods for scalable time
series databases come in. These new TSDB technologies lie at the heart
of the IoT and more.

This evolution is natural—doing new things calls for new tools, and
time series databases for very large-scale datasets are important tools.
Services are emerging to provide technology that is custom designed
to handle large-scale time series data typical of sensor data. In this
book, however, we have focused on how to build your own time series
database, one that is cost effective and provides excellent performance
at high data rates and very large volume.

We recommend using Apache Hadoop–based NoSQL platforms—
such as Apache HBase or MapR-DB—for building large-scale, non-
relational time series databases because of their scalability and the ef‐
ficiency of data retrieval they provide for time series data. When is that
the right solution? In simple terms, a time series database is the right
choice when you have a very large amount of data that requires a scal‐
able technology and when the queries you want to make are mainly
based on a time span.
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New Options for Very High-Performance
TSDBs
We’ve described some open source tools and new approaches to build
large-scale time series databases. These include open source tools such
as Open TSDB, code extensions to modify Open TSDB that were de‐
veloped by MapR, and a convenient user interface called Grafana that
works with Open TSDB.

The design of the data workflow, data format, and table organization
all affect performance of a time series database. Data can be loaded
into wide tables in a point-by-point manner in a NoSQL-style, non-
relational storage tier for better performance and scalability as com‐
pared to a traditional relational database schema with one row per data
point. For even faster retrieval, a hybrid table design can be achieved
with a data flow that retrieves data from wide table for compression
into blobs and reloads the table with row compaction. Unmodified
Open TSDB produces this hybrid-style storage tier. To greatly improve
the rate of ingestion, you can make use of the new open source exten‐
sions developed by MapR to enable direct blob insertion. This style
also solves the problem of how to quickly ingest sufficient data to carry
out a test of a very large volume database. This novel design has
achieved rates as high as 100 million data points a second, a stunning
advancement.

We’ve also described some of the ways in which time series data is
useful in practical machine learning. For example, models based on
the combination of a time series database for sensor measurements
and long-term, detailed maintenance histories make it possible to do
predictive maintenance scheduling. This book also looked at the ad‐
vanced topic of building a geo-temporal database.

Looking to the Future
What’s next? The sky’s the limit…and so is the ocean, the farm, your
cell phone, the stock market, medical nano-sensors implanted in your
body, and possibly the clothes you are wearing. We started our dis‐
cussion with some pioneering examples of extremely valuable insights
discovered through patterns and trends in time series data. From the
Winds and Current Charts of Maury and the long-term environmental
monitoring started by Keeling with his CO2 measurements to the

modern exploration of our planet by remote sensors, time series data
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has been shown to be a rich resource. And now, as we move into un‐
charted waters of new invention, who knows where the journey will
take us?

The exciting thing is that by building the fundamental tools and ap‐
proaches described here, the foundation is in place to support inno‐
vations with time series data. The rest is up to your imagination.

Figure 8-1. An excerpt from Maury’s Wind and Current Charts that
were based on time series data. These charts were used by ship cap‐
tains to optimize their routes.
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APPENDIX A

Resources

Tools for Working with NoSQL Time Series
Databases

1. Open TSDB

2. Open source MapR extensions

3. Grafana

4. Apache HBase

5. MapR DB

6. Blog on very high-performance test with Open TSDB and MapR
extensions

More Information About Use Cases Mentioned
in This Book

1. Maury’s Wind and Current Charts

2. Old Weather project

3. Keeling CO2 Curve

4. Liquid Robotics

5. Planet OS
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Additional O’Reilly Publications by Dunning
and Friedman

1. Practical Machine Learning: Innovations in Recommendation
(February 2014)

2. Practical Machine Learning: A New Look at Anomaly Detection
(June 2014)
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