
Troubleshooting Ubuntu Server

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Troubleshooting Ubuntu Server
Credits
About the Author
About the Reviewer
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?
Free access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Errata
Piracy
Questions

1. Package Management
Getting started with packages

Package
Repository
The .deb packages
Dependency
Open source

Using dpkg for package management
Understanding the apt-get package management tool

Updating the repository list with the apt-get update command
Installing a package with the apt-get install command
Upgrading a package with the apt-get upgrade command
Cleaning with the apt-get clean command
Purging a package with the apt-get purge command
Fixing unsuccessful installations with the apt-get –f command
Checking for broken dependencies with the apt-get check command

The apt-cache tool
Searching for a package with the apt-cache search command

Package management with aptitude
Configuration and extra repositories

Resolving the "failed to get" error
Downloading software from an outside repository

Automatic updates
Security updates
Kernel updates
Application updates

www.allitebooks.com

part0003.xhtml#aid-2RHM1
part0004.xhtml#aid-3Q281
part0005.xhtml#aid-4OIQ1
part0006.xhtml#aid-5N3C1
part0007.xhtml#aid-6LJU1
part0007.xhtml#ch00lvl1sec01
part0007.xhtml#ch00lvl2sec01
part0007.xhtml#ch00lvl2sec02
part0008.xhtml#aid-7K4G1
part0008.xhtml#ch00lvl1sec02
part0009.xhtml#aid-8IL21
part0010.xhtml#aid-9H5K1
part0011.xhtml#aid-AFM61
part0012.xhtml#aid-BE6O1
part0013.xhtml#aid-CCNA1
part0013.xhtml#ch00lvl2sec03
part0013.xhtml#ch00lvl2sec04
part0013.xhtml#ch00lvl2sec05
part0014.xhtml#aid-DB7S1
part0014.xhtml#ch01lvl1sec08
part0014.xhtml#ch01lvl2sec06
part0014.xhtml#ch01lvl2sec07
part0014.xhtml#ch01lvl2sec08
part0014.xhtml#ch01lvl2sec09
part0014.xhtml#ch01lvl2sec10
part0015.xhtml#aid-E9OE2
part0016.xhtml#aid-F8902
part0016.xhtml#ch01lvl2sec11
part0016.xhtml#ch01lvl2sec12
part0016.xhtml#ch01lvl2sec13
part0016.xhtml#ch01lvl2sec14
part0016.xhtml#ch01lvl2sec15
part0016.xhtml#ch01lvl2sec16
part0016.xhtml#ch01lvl2sec17
part0017.xhtml#aid-G6PI1
part0017.xhtml#ch01lvl2sec18
part0018.xhtml#aid-H5A41
part0019.xhtml#aid-I3QM1
part0019.xhtml#ch01lvl2sec19
part0019.xhtml#ch01lvl2sec20
part0020.xhtml#aid-J2B81
part0020.xhtml#ch01lvl2sec21
part0020.xhtml#ch01lvl2sec22
part0020.xhtml#ch01lvl2sec23
http://www.allitebooks.org

The unattended-upgrades package
Creating a repository mirror

Setting up a mirror machine
Configuring the /etc/apt/mirror.list file
Using the local mirror

Summary
2. Networking and DNS

Networking concepts
IP addressing
DHCP client for dynamic addresses
Assigning a static IP address

DHCP
Installation
Configuration

Network sniffing with tcpdump
Capturing packets from eth0
Saving the tcpdump results in a file
Reading packets saved in a file by tcpdump
Readable timestamps in packets
Reading packets of a specific protocol
Reading packets on a specific port
Reading TCP packets between two hosts

Binding and bonding
Binding
Bonding

DNS
Setting up DNS
Setting up primary and secondary DNS servers

The hints file – zone "."
The local host file – zone "0.0.127.in-addr.arpa"
The reverse zone file – zone "24.126.10.in-addr.arpa"
The primary zone file – zone "ubuntuserver.org"

The primary zone file
The reverse zone file

PTR records
Summary

3. Network Authentication
OpenLDAP

Installation
Populating the database
Logging
Access control

Kerberos
Installation
Database setup
Setting up the Kerberos client
Kerberos SSH and logon

Integrating LDAP with Kerberos

www.allitebooks.com

part0020.xhtml#ch01lvl2sec24
part0021.xhtml#aid-K0RQ1
part0021.xhtml#ch01lvl2sec25
part0021.xhtml#ch01lvl2sec26
part0021.xhtml#ch01lvl2sec27
part0022.xhtml#aid-KVCC1
part0023.xhtml#aid-LTSU1
part0023.xhtml#ch02lvl1sec17
part0023.xhtml#ch02lvl2sec28
part0023.xhtml#ch02lvl2sec29
part0023.xhtml#ch02lvl2sec30
part0024.xhtml#aid-MSDG1
part0024.xhtml#ch02lvl2sec31
part0024.xhtml#ch02lvl2sec32
part0025.xhtml#aid-NQU22
part0025.xhtml#ch02lvl2sec33
part0025.xhtml#ch02lvl2sec34
part0025.xhtml#ch02lvl2sec35
part0025.xhtml#ch02lvl2sec36
part0025.xhtml#ch02lvl2sec37
part0025.xhtml#ch02lvl2sec38
part0025.xhtml#ch02lvl2sec39
part0026.xhtml#aid-OPEK1
part0026.xhtml#ch02lvl2sec40
part0026.xhtml#ch02lvl2sec41
part0027.xhtml#aid-PNV61
part0027.xhtml#ch02lvl2sec42
part0027.xhtml#ch02lvl2sec43
part0027.xhtml#ch02lvl3sec01
part0027.xhtml#ch02lvl3sec02
part0027.xhtml#ch02lvl3sec03
part0027.xhtml#ch02lvl3sec04
part0028.xhtml#aid-QMFO1
part0029.xhtml#aid-RL0A1
part0029.xhtml#ch02lvl2sec44
part0030.xhtml#aid-SJGS1
part0031.xhtml#aid-TI1E2
part0031.xhtml#ch03lvl1sec25
part0031.xhtml#ch03lvl2sec45
part0031.xhtml#ch03lvl2sec46
part0031.xhtml#ch03lvl2sec47
part0031.xhtml#ch03lvl2sec48
part0032.xhtml#aid-UGI02
part0032.xhtml#ch03lvl2sec49
part0032.xhtml#ch03lvl2sec50
part0032.xhtml#ch03lvl2sec51
part0032.xhtml#ch03lvl2sec52
part0033.xhtml#aid-VF2I1
http://www.allitebooks.org

Installation
Database setup

OpenSSH, public, and private keys – passwordless SSH
The SSH client and the server
Setting up passwordless SSH
Disabling password authentication

Allowing or denying users to SSH
Greeting users with a banner

Summary
4. Monitoring and Optimization

Nagios
The Nagios setup
Adding another host in Nagios
Nagios templates
Nagios hostgroups and services
Nagios setup alerts
Writing a Nagios plugin
The NRPE plugin
Enabling external commands

Puppet
Installing Puppet
Setting up the client
Setting up the manifest

ClusterSSH
Summary

5. Process Management
The basics of process management

$$ and $PPID
pidof
Parent and child
fork() and exec()
exec
ps

pstree
ps fx
ps -C and pgrep

top
Signaling processes

kill
Listing all signals
kill -1 or SIGHUP
kill -15 or SIGTERM
kill -9 or SIGKILL
SIGSTOP and SIGCONT
pkill
killall

Process priorities
renice

www.allitebooks.com

part0033.xhtml#ch03lvl2sec53
part0033.xhtml#ch03lvl2sec54
part0034.xhtml#aid-10DJ41
part0034.xhtml#ch03lvl2sec55
part0034.xhtml#ch03lvl2sec56
part0034.xhtml#ch03lvl2sec57
part0035.xhtml#aid-11C3M1
part0035.xhtml#ch03lvl2sec58
part0036.xhtml#aid-12AK81
part0037.xhtml#aid-1394Q2
part0037.xhtml#ch04lvl1sec31
part0037.xhtml#ch04lvl2sec59
part0037.xhtml#ch04lvl2sec60
part0037.xhtml#ch04lvl2sec61
part0037.xhtml#ch04lvl2sec62
part0037.xhtml#ch04lvl2sec63
part0037.xhtml#ch04lvl2sec64
part0037.xhtml#ch04lvl2sec65
part0037.xhtml#ch04lvl2sec66
part0038.xhtml#aid-147LC1
part0038.xhtml#ch04lvl2sec67
part0038.xhtml#ch04lvl2sec68
part0038.xhtml#ch04lvl2sec69
part0039.xhtml#aid-1565U1
part0040.xhtml#aid-164MG1
part0041.xhtml#aid-173722
part0041.xhtml#ch05lvl1sec35
part0041.xhtml#ch05lvl2sec70
part0041.xhtml#ch05lvl2sec71
part0041.xhtml#ch05lvl2sec72
part0041.xhtml#ch05lvl2sec73
part0041.xhtml#ch05lvl2sec74
part0041.xhtml#ch05lvl2sec75
part0041.xhtml#ch05lvl3sec05
part0041.xhtml#ch05lvl3sec06
part0041.xhtml#ch05lvl3sec07
part0041.xhtml#ch05lvl2sec76
part0042.xhtml#aid-181NK2
part0042.xhtml#ch05lvl2sec77
part0042.xhtml#ch05lvl2sec78
part0042.xhtml#ch05lvl2sec79
part0042.xhtml#ch05lvl2sec80
part0042.xhtml#ch05lvl2sec81
part0042.xhtml#ch05lvl2sec82
part0042.xhtml#ch05lvl2sec83
part0042.xhtml#ch05lvl2sec84
part0043.xhtml#aid-190861
part0043.xhtml#ch05lvl2sec85
http://www.allitebooks.org

nice
Background processes

jobs
& (ampersand)
jobs -p
Suspended state with Ctrl + Z
bg
fg

Summary
6. Shell Management, Tools, and User Management

The Secure Shell server
Installing the SSH server
Configuration

Default settings for the SSH server
The SSH configuration file

Using passphrases
Scheduling jobs with cron

Scheduling user cron jobs
Configuring jobs using at
Job schedule security

Optimizing the shell
Bash profiles

The /etc/bash.bashrc file
The /etc/profile file
Variables in bash

User management and file permissions
User management in Ubuntu

Adding and removing users
Managing file permissions

Understanding file permissions
Changing permissions with chmod
Modifying ownership using chown and chgrp
Setting default permissions with umask

Special file permissions
Summary

7. Virtualization
What is virtualization?
libvirt

Installation
virt-install
virt-clone

Managing the virtual machine
virsh
The virtual machine manager
The virtual machine viewer

JeOS and vmbuilder
JeOS
vmbuilder

www.allitebooks.com

part0043.xhtml#ch05lvl2sec86
part0044.xhtml#aid-19UOO1
part0044.xhtml#ch05lvl2sec87
part0044.xhtml#ch05lvl2sec88
part0044.xhtml#ch05lvl2sec89
part0044.xhtml#ch05lvl2sec90
part0044.xhtml#ch05lvl2sec91
part0044.xhtml#ch05lvl2sec92
part0045.xhtml#aid-1AT9A1
part0046.xhtml#aid-1BRPS2
part0046.xhtml#ch06lvl1sec40
part0046.xhtml#ch06lvl2sec93
part0046.xhtml#ch06lvl2sec94
part0046.xhtml#ch06lvl3sec08
part0046.xhtml#ch06lvl3sec09
part0046.xhtml#ch06lvl2sec95
part0047.xhtml#aid-1CQAE2
part0047.xhtml#ch06lvl2sec96
part0047.xhtml#ch06lvl2sec97
part0047.xhtml#ch06lvl2sec98
part0048.xhtml#aid-1DOR01
part0048.xhtml#ch06lvl2sec99
part0048.xhtml#ch06lvl3sec10
part0048.xhtml#ch06lvl3sec11
part0048.xhtml#ch06lvl3sec12
part0049.xhtml#aid-1ENBI2
part0049.xhtml#ch06lvl2sec100
part0049.xhtml#ch06lvl3sec13
part0049.xhtml#ch06lvl2sec101
part0049.xhtml#ch06lvl3sec14
part0049.xhtml#ch06lvl3sec15
part0049.xhtml#ch06lvl3sec16
part0049.xhtml#ch06lvl3sec17
part0049.xhtml#ch06lvl2sec102
part0050.xhtml#aid-1FLS41
part0051.xhtml#aid-1GKCM1
part0051.xhtml#ch07lvl1sec45
part0052.xhtml#aid-1HIT81
part0052.xhtml#ch07lvl2sec103
part0052.xhtml#ch07lvl3sec18
part0052.xhtml#ch07lvl3sec19
part0052.xhtml#ch07lvl2sec104
part0052.xhtml#ch07lvl3sec20
part0052.xhtml#ch07lvl3sec21
part0052.xhtml#ch07lvl3sec22
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#ch07lvl2sec105
part0053.xhtml#ch07lvl2sec106
http://www.allitebooks.org

Setup
Adding users to groups

Installing vmbuilder
Defining the virtual machine
JeOS installation

IP address
Enabling the bridge
Partitions
Setting the user and password
Final steps in the installation

First boot
First login
Auto updates
ACPI handling
The complete command

Summary
8. OpenStack with Ubuntu

The OpenStack architecture
The environment

Security
Networking

OpenStack networking
The controller node
The network node
The compute node
Verifying the network connectivity

Network Time Protocol
Configuring the controller node

Installing the NTP service
Configuring the NTP service

Configuring other nodes
Installing the NTP service
Configuring the NTP service

OpenStack packages
Enabling the OpenStack repository
Finalizing the installation

Database
Installing and configuring the database server
Finalizing the installation

The messaging server
Installing the RabbitMQ message broker service
Configuring the message broker service

The Identity service
Installing and configuring the Identity service

Configuring the prerequisites
Installing and configuring the components
Finalizing the installation
Tenants, users, and roles

www.allitebooks.com

part0053.xhtml#ch07lvl3sec23
part0053.xhtml#ch07lvl4sec01
part0053.xhtml#ch07lvl2sec107
part0053.xhtml#ch07lvl3sec24
part0053.xhtml#ch07lvl3sec25
part0053.xhtml#ch07lvl4sec02
part0053.xhtml#ch07lvl4sec03
part0053.xhtml#ch07lvl4sec04
part0053.xhtml#ch07lvl4sec05
part0053.xhtml#ch07lvl4sec06
part0053.xhtml#ch07lvl5sec01
part0053.xhtml#ch07lvl5sec02
part0053.xhtml#ch07lvl5sec03
part0053.xhtml#ch07lvl5sec04
part0053.xhtml#ch07lvl5sec05
part0054.xhtml#aid-1JFUC1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#ch08lvl1sec49
part0056.xhtml#aid-1LCVG2
part0056.xhtml#ch08lvl2sec108
part0056.xhtml#ch08lvl2sec109
part0056.xhtml#ch08lvl3sec26
part0056.xhtml#ch08lvl4sec07
part0056.xhtml#ch08lvl4sec08
part0056.xhtml#ch08lvl4sec09
part0056.xhtml#ch08lvl4sec10
part0056.xhtml#ch08lvl3sec29
part0056.xhtml#ch08lvl4sec11
part0056.xhtml#ch08lvl5sec06
part0056.xhtml#ch08lvl5sec07
part0056.xhtml#ch08lvl4sec12
part0056.xhtml#ch08lvl5sec08
part0056.xhtml#ch08lvl5sec09
part0056.xhtml#ch08lvl3sec30
part0056.xhtml#ch08lvl4sec13
part0056.xhtml#ch08lvl4sec14
part0056.xhtml#ch08lvl3sec31
part0056.xhtml#ch08lvl4sec15
part0056.xhtml#ch08lvl4sec16
part0056.xhtml#ch08lvl3sec32
part0056.xhtml#ch08lvl4sec17
part0056.xhtml#ch08lvl4sec18
part0057.xhtml#aid-1MBG22
part0057.xhtml#ch08lvl2sec110
part0057.xhtml#ch08lvl3sec33
part0057.xhtml#ch08lvl3sec34
part0057.xhtml#ch08lvl3sec35
part0057.xhtml#ch08lvl3sec36
http://www.allitebooks.org

Configuring prerequisites
Creating tenants, users, and roles

The service entity and API endpoint
Configuring the prerequisites
Creating the service entity and API endpoint

The Image service
Installing and configuring the Image service

Configuring the prerequisites
Installing and configuring the Image service components
Finalizing the installation

The Compute service
Installing and configuring the Compute service

Configuring the prerequisites
Installing and configuring the Compute service components
Finalizing the installation
Installing and configuring the compute node

Installing and configuring the compute hypervisor components
Finalizing the installation

OpenStack networking
Installing and configuring the controller node

Configuring the prerequisites
Installing the Networking components
Configuring the server components of Networking
Configuring the Modular Layer 2 plugin
Configuring Networking on the compute node
Finalizing the installation

Installing and configuring the network node
Configuring the prerequisites
Installing the Networking components
Configuring the Networking components
Configuring the Modular Layer 2 plugin
Configuring the Layer 3 agent
Configuring the DHCP agent
Configuring the metadata agent
Configuring the OVS service
Finalizing the installation

Installing and configuring the compute node
Configuring the prerequisites
Installing the Networking components
Configuring the Networking common components
Configuring the ML2 plugin
Configuring the OVS service
Configuring Compute to use Networking
Finalizing the installation

Creating initial networks
External networks

Creating an external network
Creating the subnet for the external network

www.allitebooks.com

part0057.xhtml#ch08lvl4sec19
part0057.xhtml#ch08lvl4sec20
part0057.xhtml#ch08lvl3sec37
part0057.xhtml#ch08lvl4sec21
part0057.xhtml#ch08lvl4sec22
part0058.xhtml#aid-1NA0K2
part0058.xhtml#ch08lvl2sec111
part0058.xhtml#ch08lvl3sec38
part0058.xhtml#ch08lvl3sec39
part0058.xhtml#ch08lvl3sec40
part0059.xhtml#aid-1O8H62
part0059.xhtml#ch08lvl2sec112
part0059.xhtml#ch08lvl3sec41
part0059.xhtml#ch08lvl3sec42
part0059.xhtml#ch08lvl3sec43
part0059.xhtml#ch08lvl3sec44
part0059.xhtml#ch08lvl4sec23
part0059.xhtml#ch08lvl4sec24
part0060.xhtml#aid-1P71O2
part0060.xhtml#ch08lvl2sec113
part0060.xhtml#ch08lvl3sec45
part0060.xhtml#ch08lvl3sec46
part0060.xhtml#ch08lvl3sec47
part0060.xhtml#ch08lvl3sec48
part0060.xhtml#ch08lvl3sec49
part0060.xhtml#ch08lvl3sec50
part0060.xhtml#ch08lvl2sec114
part0060.xhtml#ch08lvl3sec51
part0060.xhtml#ch08lvl3sec52
part0060.xhtml#ch08lvl3sec53
part0060.xhtml#ch08lvl3sec54
part0060.xhtml#ch08lvl3sec55
part0060.xhtml#ch08lvl3sec56
part0060.xhtml#ch08lvl3sec57
part0060.xhtml#ch08lvl3sec58
part0060.xhtml#ch08lvl3sec59
part0060.xhtml#ch08lvl2sec115
part0060.xhtml#ch08lvl3sec60
part0060.xhtml#ch08lvl3sec61
part0060.xhtml#ch08lvl3sec62
part0060.xhtml#ch08lvl3sec63
part0060.xhtml#ch08lvl3sec64
part0060.xhtml#ch08lvl3sec65
part0060.xhtml#ch08lvl3sec66
part0061.xhtml#aid-1Q5IA1
part0061.xhtml#ch08lvl2sec116
part0061.xhtml#ch08lvl3sec67
part0061.xhtml#ch08lvl4sec25
http://www.allitebooks.org

The tenant network
Creating a tenant network

Creating the subnet for the tenant network
Creating the router to attach the external and tenant networks

Dashboard
Prerequisites
Installing and configuring the dashboard

Installing the packages
Configuring the dashboard
Finalizing the installation

The Block Storage service
Installing and configuring the controller node

Configuring the prerequisites
Installing and configuring the Block Storage service components
Finalizing the installation

Installing and configuring the storage node
Configuring the prerequisites
Installing and configuring the Block Storage volume components
Finalizing the installation

The Object Storage service
Installing and configuring the controller node

Configuring the prerequisites
Installing and configuring the controller node components

Installing and configuring the storage node
Configuring the prerequisites
Installing and configuring the storage node components

Summary
9. OpenStack and Ubuntu Best Practices

Creating rings for Object Storage
Creating an account ring
Creating a container ring
Creating an object ring
Copying the configuration files for rings
Finalizing the installation

The Orchestration module
Installing and configuring

Configuring the prerequisites
Installing and configuring the Orchestration components
Finalizing the installation

The Telemetry module
Installing and configuring the controller node

Configuring the prerequisites
Installing and configuring the Telemetry components
Finalizing the installation

Installing and configuring the Compute agent
Configuring the prerequisites
Configuring the Compute agent for the Telemetry module
Finalizing the installation

www.allitebooks.com

part0061.xhtml#ch08lvl2sec117
part0061.xhtml#ch08lvl3sec68
part0061.xhtml#ch08lvl4sec26
part0061.xhtml#ch08lvl2sec118
part0062.xhtml#aid-1R42S1
part0062.xhtml#ch08lvl2sec119
part0062.xhtml#ch08lvl2sec120
part0062.xhtml#ch08lvl3sec69
part0062.xhtml#ch08lvl3sec70
part0062.xhtml#ch08lvl3sec71
part0063.xhtml#aid-1S2JE2
part0063.xhtml#ch08lvl2sec121
part0063.xhtml#ch08lvl3sec72
part0063.xhtml#ch08lvl3sec73
part0063.xhtml#ch08lvl3sec74
part0063.xhtml#ch08lvl2sec122
part0063.xhtml#ch08lvl3sec75
part0063.xhtml#ch08lvl3sec76
part0063.xhtml#ch08lvl3sec77
part0064.xhtml#aid-1T1402
part0064.xhtml#ch08lvl2sec123
part0064.xhtml#ch08lvl3sec78
part0064.xhtml#ch08lvl3sec79
part0064.xhtml#ch08lvl2sec124
part0064.xhtml#ch08lvl3sec80
part0064.xhtml#ch08lvl3sec81
part0065.xhtml#aid-1TVKI1
part0066.xhtml#aid-1UU542
part0066.xhtml#ch09lvl1sec60
part0066.xhtml#ch09lvl2sec125
part0066.xhtml#ch09lvl2sec126
part0066.xhtml#ch09lvl2sec127
part0066.xhtml#ch09lvl2sec128
part0066.xhtml#ch09lvl2sec129
part0067.xhtml#aid-1VSLM2
part0067.xhtml#ch09lvl2sec130
part0067.xhtml#ch09lvl3sec82
part0067.xhtml#ch09lvl3sec83
part0067.xhtml#ch09lvl3sec84
part0068.xhtml#aid-20R682
part0068.xhtml#ch09lvl2sec131
part0068.xhtml#ch09lvl3sec85
part0068.xhtml#ch09lvl3sec86
part0068.xhtml#ch09lvl3sec87
part0068.xhtml#ch09lvl2sec132
part0068.xhtml#ch09lvl3sec88
part0068.xhtml#ch09lvl3sec89
part0068.xhtml#ch09lvl3sec90
http://www.allitebooks.org

Configuring the Image service
Adding the Block Storage agent for Telemetry
Configuring Object Storage for Telemetry

The Database service
Installing the Database service

Taking care of the prerequisites
Installing the Database module

The Data Processing service
Installing the Data Processing service

OpenStack flashback
Best practices for Ubuntu Server
Summary

Index

www.allitebooks.com

part0068.xhtml#ch09lvl2sec133
part0068.xhtml#ch09lvl2sec134
part0068.xhtml#ch09lvl2sec135
part0069.xhtml#aid-21PMQ2
part0069.xhtml#ch09lvl2sec136
part0069.xhtml#ch09lvl3sec91
part0069.xhtml#ch09lvl3sec92
part0070.xhtml#aid-22O7C1
part0070.xhtml#ch09lvl2sec137
part0071.xhtml#aid-23MNU1
part0072.xhtml#aid-24L8G1
part0073.xhtml#aid-25JP21
part0074.xhtml
http://www.allitebooks.org

Troubleshooting Ubuntu Server

www.allitebooks.com

http://www.allitebooks.org

Troubleshooting Ubuntu Server
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1180915

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-414-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Skanda Bhargav

Reviewer

Keenan Payne

Commissioning Editor

Priya Singh

Acquisition Editors

Shaon Basu

Sonali Vernekar

Content Development Editor

Gaurav Sharma

Technical Editor

Taabish Khan

Copy Editor

Roshni Banerjee

Project Coordinator

Bijal Patel

Proofreader

Safis Editing

Indexer

Hemangini Bari

Graphics

Sheetal Aute

Production Coordinator

Nitesh Thakur

Cover Work

Nitesh Thakur

About the Author
Skanda Bhargav is an engineering graduate from Visvesvaraya Technological University
(VTU), Belgaum, Karnataka, India. He did his majors in Computer Science Engineering. He is
a Cloudera-certified developer in Apache Hadoop. His interests are Big Data and Hadoop. He
is currently pursuing his Master's in Computer Software Engineering from San Jose State
University, Silicon Valley, California.

He has been a reviewer for the following books and videos:

Building Hadoop Clusters, Sean Mikha, Packt Publishing
Hadoop Cluster Deployment, Danil Zburivsky, Packt Publishing
Instant MapReduce Patterns – Hadoop Essentials How-to, Srinath Perera, Packt
Publishing
Cloudera Administration Handbook, Rohit Menon, Packt Publishing
Hadoop Map Reduce v2 Cookbook – Second Edition, Thilina Gunarathne, Packt
Publishing
Data Analysis and Business Modeling with Excel 2013, David Rojas, Packt Publishing

I would like to thank my family for their immense support and faith in me throughout my
learning stage. My friends have brought the confidence in me to a level that makes me bring out
the best in me. I am happy that god has blessed me with such wonderful people around me,
without whom this success would not have been possible.

About the Reviewer
Keenan Payne is a frontend developer for a company called Asana in San Francisco, CA. He
has written for many online publications and built a CSS framework called Concise, and in his
spare time, he loves to surf and make music.

www.PacktPub.com
Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You
can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can
search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9
entirely free books. Simply use your login credentials for immediate access.

http://www.packtpub.com
http://www.packtpub.com
mailto:service@packtpub.com
http://www.packtpub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com

Preface
The mission of this book is to simplify the tasks of an administrator and equip them with the
tools to win the battle not once, not twice, but each time the server acts in a way that is not in
accordance with the usual behavior. This book will help administrators ensure that the servers
do not face even a nanosecond of outage as businesses in today's world are entirely dependent
on these machines.

After reading and following the guidelines carefully, you will be able to identify the problems in
Ubuntu Server, diagnose the causes, and rectify them. The areas this book intends to cover are
networks, CPU, memory, and handling cloud computing-related issues using OpenStack.

What this book covers
Chapter 1, Package Management, covers the different ways software can be installed,
configured, upgraded, and removed using package management tools. There are various ways
and tools to do this. Technical topics that are covered in this chapter are dpkg, aptitude, and
apt-get, which are the command-line utilities used to automate some of the package
management tasks. You will learn the various tools and methodologies to handle software,
such as the command-line tools, as well as GUI for the installation, mirroring, upgrade, and
removal of software along with their dependencies.

Chapter 2, Networking and DNS, deals with networking. This chapter covers how to
understand, configure, and troubleshoot network-related issues. This is a very brief
introduction to networking and handling wired and wireless networking. This chapter covers
DNS setup, networking concepts, interface configuration, DHCP, network sniffing, binding,
and bonding. Regarding DNS, the topics covered are forward zone, reverse zone, and
configuring the primary master and secondary master. You will learn the networking concepts,
which are key to diagnosing and rectifying networking issues in Ubuntu Server. It also covers
the configuration of DHCP, DNS, and interfaces.

Chapter 3, Network Authentication, deals with network authentication for managing users'
access to other systems in a secure way. It covers the different tools and methods for letting
users access systems and services with restricted authentication. The technical topics covered
are OpenLDAP, Kerberos, Kerberos with LDAP, NIS, Samba (optional), PAM, SSH, public
and private keys, the RSA and DSA algorithms, passwordless SSH, X forwarding, and sshd.
You will be able to set up and manage the users' access to systems and services as well as
install, configure, and troubleshoot the services and tools.

Chapter 4, Monitoring and Optimization, deals with monitoring various resources on the
server and load balancing with tools. This chapter also covers Nagios, Munin, Puppet, and
ClusterSSH. System monitoring, CPU load, storage, networks, memory, resource monitoring,
load balancing with IPVS, and ldirectord are also covered in this chapter. You will learn about
resource monitoring for CPU, memory, and networks.

Chapter 5, Process Management, covers all the processes, their states, and how to manage

part0014.xhtml#aid-DB7S1
part0023.xhtml#aid-LTSU1
part0031.xhtml#aid-TI1E2
part0037.xhtml#aid-1394Q2
part0041.xhtml#aid-173722

them by using the command-line tools. The topics that are covered are ps, top, renice, kill, $$
and $PPID, job, fg, queues, process switching, process priority, and background jobs. You
will learn how to handle process management using the command-line tools.

Chapter 6, Shell Management, Tools, and User Management, discusses shell, shell
management tools, and user management. Topics such as the Secure Shell server, scheduling
using cron, shell optimization, file management and permissions, bash functions, managing user
accounts, user properties, and temporary disabling are covered in this chapter. You will learn
how to use shell effectively, secure user management, and set user properties.

Chapter 7, Virtualization, explains how virtualization helps administrators separate the services
and keep the working environment safe from the development environment. Topics such as
KVM, Xen, and Qemu are addressed. You will learn about virtualization, its pros and cons,
setting up KVM, and Xen.

Chapter 8, OpenStack with Ubuntu, deals with using OpenStack with Ubuntu Server,
understanding the environment, architecture, and the host of services. The topics covered are
the OpenStack environment, OpenStack architecture, and a host of services, such as Image,
Identity, Networking components, Compute, Object Storage, Block Storage, and dashboard.
You will learn how to use OpenStack, its environment, and architecture, along with the Ubuntu
Server integration.

Chapter 9, OpenStack and Ubuntu Best Practices, discusses the various components of
OpenStack, such as Data Processing, Database, Telemetry, and Orchestration. Some of the
best practices for using Ubuntu Server are also discussed in this chapter.

part0046.xhtml#aid-1BRPS2
part0051.xhtml#aid-1GKCM1
part0055.xhtml#aid-1KEEU1
part0066.xhtml#aid-1UU542

What you need for this book
You will need an active Internet connection and a bootable image of Ubuntu Server 14.04. All
the required packages will be downloaded from the Internet.

Who this book is for
This book is aimed at making the life of server administrators easier by helping them solve the
various errors and issues encountered in Ubuntu Server and OpenStack. This book is intended
for the people who handle the critical tasks of administrating mission critical servers running on
Linux. In today's world of free and open source software (FOSS) technology, Ubuntu has
emerged as one of the favorite Linux flavors of both desktop users and administrators alike.
The easy-to-use GUI and the powerful built-in security features of Ubuntu are enough to
convince tech enthusiasts to adopt it. A large scale use and implementation of Ubuntu on
servers has given rise to a vast army of Linux administrators who battle day in and day out to
make sure that the systems are in the right frame of operation and preempt any untoward
incidents that may result in catastrophes for the businesses using them.

www.allitebooks.com

http://www.allitebooks.org

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "The apt-get check
command is a diagnostic tool for package management."

A block of code is set as follows:

zone "ubuntuserver.org" {
 type slave;
 file "sec.ubuntuserver.org";
 masters {10.200.12.68;};
};

Any command-line input or output is written as follows:

sudo apt-cache rdepends ssl-cert

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The second line, New
Packages, shows the number of packages that are new and can be installed on your Ubuntu
Server."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles that
you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would
be grateful if you could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. Package Management
This chapter deals with the various tools that will aid the user to install, configure, update, and
delete software, documentation, and system functionalities from the server machine. Software
in Ubuntu is organized in packages. Almost all of these are available online and also on CDs
and other media. In this chapter, we will look at the various command-line tools to handle
software and package management. GUI tools are also present, but they are seldom used by
server administrators. Command-line tools are faster and more secure, and we will be using
only a command-line-based terminal throughout the book.

The following topics will be covered in the chapter:

Using dpkg for package management
The apt-get package management tool
Package management with aptitude
Configuration of repositories and extra repositories
Automatic updates of software
Creating a repository mirror

Getting started with packages
Ubuntu gets its package management from the Debian Linux distribution under the GNU
license. A package usually has the following contents: the actual software files, its metadata,
and instructions for the user to install it on the Ubuntu machine. The file extension for Debian
packages is .deb. A collection of packages is called a repository and the repository list is
stored in the local system. Packages are in binary format and are usually precompiled so as to
enable faster installation and free the user from having to compile it.

Large and complex packages are built on the concept of dependencies. Dependencies are
additional packages that are required for the proper functioning of primary packages. The
package management tools in Ubuntu also handle the downloading and installing of these
dependencies.

Let's look at some terminologies that are used in package management.

Package
The software and documentation in Linux is organized in packages. These can be considered
to be a collection of components for a software or functionality.

Repository
A collection of packages is called a repository. Repositories are usually available in one or
more centrally distributed servers online. These are tested extensively and are easy to install to
or remove from your server machines.

The .deb packages
Derivatives of Debian such as Ubuntu, Linux Mint, and others use the .deb packages. To
install these .deb packages, the package management tools usually used are apt-get and
aptitude. Both of these are a frontend for the dpkg tool.

Dependency
A software or package that requires other software to function properly is said to be
dependent on the latter. Package management tools such as apt-get and aptitude in Ubuntu
handle the dependencies during installation and/or removal of packages. However, when using
dpkg, the user has to manage the dependencies as dpkg does not handle dependencies.

Open source
Many of the packages or software in the repositories are independent, open source software,
which means the software is freely available to use, modify, and distribute. These are often
compiled and fine-tuned for specific distributions. It is also possible that the source
repositories in your machine have the modified source code as packages.

Using dpkg for package management
Debian systems have dpkg as their underlying fundamental package management tool. dpkg can be used to install,
uninstall, and build packages. One of the important points we need to remember is dpkg cannot download packages
and its dependencies. The user has to take care of the dependencies and install them manually. dpkg can install the
locally available packages. Let's now see some of the operations that dpkg can perform on an Ubuntu Server
machine.

Use the following command to list the software already installed on your server machine:

dpkg –l
This command can generate a large output on your command line, depending upon the installed packages in the server
machine, as shown in the following screenshot:

To list out a specific package, use the following command:

dpkg –l | grep apt
This will list out the packages with the name apt occurring in any of the installed packages. A sample output is shown
here:

Here, we can see all of the installed packages in the server containing the word apt as whole or part of it in name of
the packages that are installed in this server machine.

Another alternative to check whether a specific package is installed or not is to use the dpkg command with the -l
option along with the package name. Let's check for the apt package:

dpkg -l apt
The output of this command is shown in the following screenshot. The letters ii at the start indicate the package is
installed. The first letter that you see in the output before the name of the package is the desired status: i stands for
installed and p stands for purged. The actual status is shown in the second letter. n stands for not installed and i in
second place tells us the package is installed. This command also displays the version, architecture, and description,
along with the name of the package.

Running dpkg without any arguments or parameters will show the error in the following screenshot. It requests the

user to enter any of the options as arguments with dpkg:

dpkg

If you want to check which files a particular package has installed, use the following command with parameter -L and
then the package name (here, apt-utils):

dpkg –L apt-utils
The output is shown in the following screenshot:

We listed all the files that the package apt-utils has installed in the machine. As you may see, it gives the absolute path
of each file associated with the apt-utils package.

If you are unsure which package a particular file belongs to, you can use the dpkg command along with the optional -
S parameter. The following command lists out the packages that are using this particular file:

dpkg -S /etc/logrotate.d
The output is as follows:

We see all the packages that are using /etc/logrotate.d in the preceding output. Let's crosscheck for one of the
packages:

dpkg -L apport
The output is as follows:

In some cases, running dpkg -S may not be able to get the package name that uses a particular file. This is because
many files are automatically generated during a package installation that dpkg may not be aware of.

To install a .deb package using dpkg, use the following command:

dpkg –i $package_name
Replace $package_name with the actual package you want to install. This will start the installation of the package.
Please note that installation of software requires administrative access. So, use the dpkg command with the prefix
sudo when installing or removing a package. Hence, this command will now become:

sudo dpkg –i $package_name
Let's now try to remove a package using the dpkg command. Use the option -r with the package name to remove a
package. Here, we are removing the byobu package. However, it is recommended you do not use the dpkg tool to
remove packages. It generally does not go well as dpkg does not handle dependencies, so it is possible that you may
remove a package that is a dependency for some other package and the latter will become unstable or unusable.
There are better alternative package management tools such as apt-get and aptitude that can be used for removal of
packages, as they handle the dependencies well. We will cover the apt-get and aptitude tools next. The command to
remove a package is as follows:

sudo dpkg –r byobu
As we can see in the following screenshot, when trying to remove a package without the sudo prefix, the system did
not allow. After prefacing the command with sudo, we were successfully able to remove the byobu package from the
server:

The command dpkg -P stands for purge. Configuration files are also removed along with the package when you run
this command.

To view all the options dpkg supports, use the following command:

man dpkg

www.allitebooks.com

http://www.allitebooks.org

Understanding the apt-get package management
tool
Ubuntu supports an Advanced Packaging Tool (APT) for package management: apt-get is one of the command-
line tools to aid the user in installing, removing, upgrading packages, updating package index, and also upgrading the
entire Ubuntu OS. Its simplicity is the reason behind its powerful features and why it is better than other GUI package
management tools. Server administrators can use it over SSH connections and also they can use it in scripts for
administrative purposes. Automation of scripts using cron scheduling is also an added advantage for server
administrators when it comes to dealing with package management using apt-get.

Let's first discuss about the apt-get package and its various uses. Later, we will look at other utilities under APT, such
as apt-cache, apt-file, apt-ftparchive, and so on.

Updating the repository list with the apt-get update command
It is recommended to always update the repository list in the local Ubuntu system before installing and/or removing the
packages. It is possible that the package could have been upgraded along with changes in the dependencies. To be
on the safe side, update the repository list with the following command:

sudo apt-get update
The preceding command will update the repository list and you will see an output similar to the following screenshot.
The repositories are defined in the /etc/apt/sources.list file and the /etc/apt/sources.list.d directory.
It is a database of all the packages available in the repositories. When you run the update command from the apt-get
tool, it updates the list in the files and directories discussed earlier.

The local package index is updated to the latest list available in the remote repository.

Installing a package with the apt-get install command
It is quite easy to install a package with the apt-get tool. To install the apache2 package, type the following command:

sudo apt-get install apache2
The output is shown in the following screenshot:

The install command will read the repository list and try downloading the package from the URL listed. Once
downloaded, the apt-get install tool will unpack and install the software. If there are additional packages required for
the proper functioning of this software, then apt-get will also download the additional dependencies and install them
too. This is one of the features that makes apt-get one of the desired package management tools for server
administrators working on Debian-based systems.

You will see the preceding output after you install apache2 using the apt-get install tool. The user will be prompted if
he approves the downloading of the package. Hit Y and Enter to proceed with download and install.

After successful installation, you will see an output similar to the following screenshot:

Now, let's try to remove this package using the apt-get tool. We will use the remove option. You need to specify the
package name that you wish to remove from the machine. If you wish to remove or install multiple packages at once,
you can mention them one after the other with a space as the separator. The following command will remove multiple
packages apache2, apache2-bin, and ssl-cert:

sudo apt-get remove apache2 apache2-bin ssl-cert
After running the preceding command, apt-get removes the packages. The following screenshot shows those
packages were removed. apt-get handles the dependencies, unlike the dpkg package management tool.

Upgrading a package with the apt-get upgrade command
Before we upgrade, we need to run the update command. The update command will update all packages to the
latest version, and the upgrade command actually downloads and installs the updated packages. The command for
updating a package is as follows:

sudo apt-get update
apt-get allows the software packages to be upgraded to newer versions with the upgrade option. Newer versions of
software become available with bug fixes or with additional functionalities on the remote repositories. Running the
following command will upgrade the installed packages already installed on your machine with newer versions. Be
sure to run the update command before you do an upgrade:

sudo apt-get upgrade
You will see an output similar to the following screenshot:

Here, we see that around 98 packages are ready to be upgraded. The server will get 49 MB of data downloaded
from the repositories and install them.

Cleaning with the apt-get clean command
Over a period of time, your system will accumulate loads of downloaded packages, copies of which are stored in
/var/cache/apt/archives. If you want to remove only the packages that are obsolete, then use the autoclean
option instead of clean with the apt-get tool. If you want to remove the .deb packages from the directory, run the
following command:

sudo apt-get clean
The content of the folder is shown in the following screenshot:

Purging a package with the apt-get purge command
If you wish to remove a package along with all its configuration files, use the following command:

sudo apt-get purge ssl-cert
You can remove and purge multiple packages too, as we did for the remove package command. Once you execute
the preceding command, you will be able to see the output similar to the following screenshot. Once you purge a
package, the dkpg tool will have no information about the package. All it will know is that the package was removed.

Fixing unsuccessful installations with the apt-get –f command
There are times when your package is not getting installed in spite of multiple tries. Sometimes, you might face a
dependency issue whilst you are installing a package using the apt-get install command. Even though the apt-get
package management tool is built to handle dependencies, this issue can pop up. To solve this issue, use the following
command:

sudo apt-get –f install
This command will try and repair the broken dependencies in your system and the installation of the package will be
successful. You might need to run this command when you are using the apt-get install command to install
anything for the first time on a new server.

The output is shown in the following screenshot:

Checking for broken dependencies with the apt-get check command
The apt-get check command is a diagnostic tool for package management. There can be instances where your
system has broken dependencies. To verify the broken dependency issues, you can use the following command:

sudo apt-get check
This will update the package lists and check for the broken dependencies. It also updates the package cache.

This brings us to the end of the apt-get tool. However, there are additional tools from the apt-* family. We will look
at apt-ftparchive in the Creating a repository mirror section where we will set up a repository mirror. Let's first look
at the apt-cache tool.

The apt-cache tool
The apt-cache tool is used to check for packages that are available in the local system. Search, dependency, and
reverse dependency can be checked with the help of the apt-cache tool.

Searching for a package with the apt-cache search command
Use the following command to search for a package. Here, we are searching for the apache2-bin package using the
apt-cache command with the search option:

sudo apt-cache search apache2-bin
As we can see in the following screenshot, the preceding command lists out the package and a short description:

If you want to check the dependencies for a particular package, then use the depends option with the apt-cache tool.
The command is as follows:

sudo apt-cache depends apache2
The output is shown in the following screenshot:

The other way is also supported. If you need to check what packages are dependent on a particular package, then
use the following command:

sudo apt-cache rdepends ssl-cert
The output is shown in the following screenshot:

An important point to remember is to run the apt-get update command before doing any of the dependency
checks. It's time we learn about another package management tool, aptitude.

Package management with aptitude
Type aptitude as shown here:

aptitude
The resulting screen is shown in the next screenshot. It is an interactive menu-driven frontend window for the APT to
perform numerous tasks related to package management on your Ubuntu Server. You can install, remove, and
upgrade packages with minimal operations from this window.

aptitude is best suited for a nongraphical environment, as it makes sure the command key operations are performed
properly. Some of the experts believe that aptitude is a better suited package management tool compared to apt-get
for dealing with packages that have dependencies. aptitude is the newer version and easier to use. Both aptitude and
apt are abstractions over dpkg. Press F10 to enable the menu at the top. apt and aptitude use the same configuration,
hence these are both interchangeable. aptitude has a menu-driven approach and supports all the apt-* commands.

aptitude presents the packages in categories as seen in the preceding screenshot. Use the navigation keys (Up and
Down arrows) to jump to the categories. Each category's brief description is given in the second half of the window.
The first category we see is Upgradable Packages, which shows the number of packages that are ready to be
upgraded. The second line, New Packages, shows the number of packages that are new and can be installed on
your Ubuntu Server. The next two are fairly simple to guess and understand. Virtual Packages gives an option to the
administrators to organize the packages as they feel appropriate. Tasks are the packages that aren't categorized into
any of these categories.

Some of the command keys to work with aptitude are as follows:

+: This adds a package to install
-: This removes a package
_: This purges a package
u: This updates a package
g: This performs the operation for which the packages are marked
?: This opens a help box and shows all the command keys and their operations

www.allitebooks.com

http://www.allitebooks.org

Ctrl + T: This is same as F10, and it accesses the top menu
q: This enables you to go one screen back
Q: This quits aptitude

Take a look at the following screenshot:

When you highlight a package, as shown in this screenshot, aptitude displays a character on the first column. These
are the descriptions of the state of the package in your local machine. The following are the letters you may encounter:

i: This means the package is installed
p: This means the package is purged
c: This means the configuration file is present but package is not installed
v: This means it is a virtual package
u: This means the package is not configured but the files are unpacked
B: This means the package is broken
C: This means the package is half-configured
H: This means the package is half-installed (may be due to removal failure)

Configuration and extra repositories
The APT configurations are stored in the /etc/apt/sources.list.d directory and the
/etc/apt/sources.list file in the server. An example of the file can be seen in the following screenshot. This will
vary from system to system based on the remote repositories configured. You can enable or disable repositories by
commenting the lines in the /etc/apt/sources.list file. To edit this file, you may require root permissions.

There are numerous repositories available other than the official Ubuntu one for installing packages on your server.
Two of the popular ones are Universe and Multiverse. Both are open source and are supported widely by the
community, and thus make it safe to use with your server. There are no security updates to these packages, but in
some countries there might be some issues with the Multiverse package. This is also one of the reasons why Ubuntu
does not have the Multiverse package support out of the box. If you take a look at the configuration files, you will
observe that these repositories are enabled by default. You can disable them by commenting it out. Comment these
lines to disable both the repositories:

deb http://archive.ubuntu.com/ubuntu precise universe multiverse deb-src
http://archive.ubuntu.com/ubuntu precise universe multiverse deb
http://us.archive.ubuntu.com/ubuntu/ precise universe deb-src
http://us.archive.ubuntu.com/ubuntu/ precise universe deb
http://us.archive.ubuntu.com/ubuntu/ precise-updates universe deb-src
http://us.archive.ubuntu.com/ubuntu/ precise-updates universe deb
http://us.archive.ubuntu.com/ubuntu/ precise multiverse deb-src
http://us.archive.ubuntu.com/ubuntu/ precise multiverse deb
http://us.archive.ubuntu.com/ubuntu/ precise-updates multiverse deb-src
http://us.archive.ubuntu.com/ubuntu/ precise-updates multiverse deb
http://security.ubuntu.com/ubuntu precise-security universe deb-src
http://security.ubuntu.com/ubuntu precise-security universe deb
http://security.ubuntu.com/ubuntu precise-security multiverse deb-src

http://security.ubuntu.com/ubuntu precise-security multiverse

To view the support status of your Ubuntu machine, run the following command:

ubuntu-support-status
To view all the packages that are supported or not supported run the same command with the --show-all option.

You will be able to see a summary of the package support and its expiry time. It will be something similar to the
following screenshot:

One of the cons of using third-party repositories is the chance of dependencies not being available or any package
conflicting with any Ubuntu package. This can be a cycle and is termed as dependency hell. Make sure you go
through other users' feedback on any issues with a particular package before installing it.

Finding the right mirror is crucial if you want to ensure a clean and fast installation. A mirror is a replica of the
repository at a different physical location. You will need to look at the following factors when selecting a mirror and
decide on it:

Distance: Try and use a mirror that is physically close to you.
Protocol: Your chosen mirror may not support all of the protocols such as HTTP,FTP, rsync, and so on.
Speed: Less number of people connecting to a mirror means more speed.

Visit https://launchpad.net/ubuntu/+archivemirrors for a list of mirrors and choose a mirror that best fits on the factors.

Resolving the "failed to get" error
It is often observed that when a user tries to install a package using apt-get install, they might get an error such
as the one shown here:

W: Failed to fetch
gzip:/var/lib/apt/lists/partial/us.archive.ubuntu.com_ubuntu_dists_natty_main_source_Sou
rces Hash Sum mismatch,
E: Some index files failed to download. They have been ignored, or old ones used
instead.
Fix your configuration list. Run the following commands to resolve this issue:

sudo rm /var/lib/apt/lists/*
sudo apt-get update

Downloading software from an outside repository
There may be some packages that you require that are not available in any of the repositories. Individuals may create
a package and make it available online for others to download and install it manually. The package may be in one of
the following formats: .tar.gz or .tgz. These packages always come with README files. Always make a point to
read this file before performing any operation related to installation. This file is self-explanatory and has the directions
to install the particular package onto your machine.

https://launchpad.net/ubuntu/+archivemirrors

Automatic updates
Let's discuss the three main categories of updates that determines how you keep your system up-to-date and working
in optimum conditions. The three broad categories we will discuss here are security updates, kernel updates, and
application updates.

Security updates
It is recommended that server administrators install the security patch updates as soon as it becomes available.
However, if a particular package isn't being used in the server, then you may skip the security update for that
particular package. Depending on your need, you may choose and install the security updates.

Administrators can refer to Ubuntu Security Notices (USN) to understand the security updates available and if they
should be installing a particular update. USN can be accessed at http://www.ubuntu.com/usn/. The admins can also
subscribe to RSS feeds for these security updates.

Kernel updates
It may seem like kernel updates are of the utmost importance and they should be applied as soon as the updates are
available. But it is tricky, as updates to kernel can actually cause some programs not to function in a proper way.
Kernel updates rectify the security issues but have to be updated only after considering and making sure that other
applications' behavior won't be hampered with it.

By default, the package management tools such as apt-get, aptitude, and synaptic enable the kernel updates. For
command-line tools, you can disable automatic kernel updates using the following command:

sudo aptitude hold linux-image-name

Application updates
Admins need to be careful when installing the application updates. A case may arise wherein some of the functionality
of other packages may not work after installing the update. Refer to USN and other Ubuntu related forums to keep
yourself updated about the possible application updates and the issues faced by other users.

The unattended-upgrades package
The unattended-upgrades package can be used to schedule and enforce rules on what packages to be updated and
what packages should be restricted from upgrading itself. To use this, install the unattended-upgrades package using
the following command:

sudo apt-get install unattended-upgrades
Once the package is installed, configure the unattended-upgrades package in the following file and make necessary
changes as per your needs. I am opening the file in the Nano editor:

nano /etc/apt/apt.conf.d/50unattended-upgrades
The output of this command is shown in the following screenshot:

http://www.ubuntu.com/usn/

The first section is for the packages where you want to allow automatic upgrades. Here, the first line for security is
enabled, so the security updates will be installed by default. The // symbol means the lines are commented and will
not be evaluated, as shown here:

Unattended-Upgrade::Allowed-Origins { "Ubuntu precise-security"; // "Ubuntu
precise-updates"; };

The second section is for the blacklisted packages. You put the package names here for which you want to disable
automatic updates. Again, // has the same meaning—those lines will not be evaluated. Add the packages in this
section to blacklist them and disallow automatic updates:

Unattended-Upgrade::Package-Blacklist { // "vim"; // "libc6"; // "libc6-
dev"; // "libc6-i686"; };

One last step is to enable the automatic updates by setting the appropriate configuration in the
/etc/apt/apt.conf.d/10periodic file, as shown in the following screenshot:

In this example, the interval is set to 1, which means the packages list will be updated, packages will be downloaded,
and they will be upgraded every day.

Creating a repository mirror
When there are multiple machines on your network, it makes sense to have local repository mirrored from the remote
repository. The main advantage is the reduced bandwidth usage by limiting the number of machines connecting to the
remote repositories and downloading huge files associated with packages. Only one system will connect to the remote
repository and mirror the contents to the local system. Another advantage is that when all the machines are pointed to
this repository the packages in each one of them will be of the same version.

There are three tasks that we will need to perform in order to get the local mirror repository working. First, set up the
mirror on one of the machines, and then configure the machine to mirror only certain repositories. This will limit the
amount of data downloaded and also keep the unwanted packages away. The third task is to point the local clients to
this newly created repository so that they use only this repository to upgrade the packages.

Setting up a mirror machine
You can set up the mirroring in two ways: rsync and apt-mirror. Traditionally, rsync was being used to synchronize
the local and remote files. Now, admins prefer the apt-mirror command, at least for the initial mirroring setup. First,
install the apt-mirror package using the following command:

sudo apt-get install apt-mirror
Now, try running the apt-mirror command. Don't be surprised by the sheer size of download data it asks to be
downloaded. Now, let's limit the repositories that we want and also set up other configuration for the mirror.

Configuring the /etc/apt/mirror.list file
You will be required to configure the /etc/apt/mirror.list file to set up the desired repositories you wish to
mirror. The file looks like this:

The first section has the default configuration related to the storage of downloaded files, base mirror path, cleanscript,
concurrent threads to be run when downloading, and others. By default, the files are copied to the
/var/spool/apt-mirror path. The admin should ensure there is enough disk space to store the files. If all the
systems are on the same architecture, then let defaultarch be same as default, which is set to <running host
architecture>. If you are mirroring the repositories for any other architecture, then you need to set it explicitly.
Next, comment out the lines related to the repositories in the second section. Have only those repositories active that
you need and comment out the others as keeping all active will mean you are downloading a very large amount of
data, somewhere close to 50 GB maybe.

After you have made the changes, run the apt-mirror command to mirror the remote repository to the local one.
Once completed, you can see the directory listing similar to the one you observe on the remote servers.

Using the local mirror
This is an important task if you want to make sure the local mirror is completely functional. In each of the client
machines on your network, change the repository URL to access the locally set up mirror. You will need to point to
the IP of the machine acting as the mirror. Open the /etc/apt/sources.list configuration file and make the
following changes:

deb http://192.168.1.8/mirror/ubuntu trusty main restricted

We are all set to use the mirror as the repository for all our local client machines.

Summary
In this chapter, we discussed various package management tools such as dpkg, apt-get, and
aptitude. You learned about the limitations of dpkg, how apt overcomes these limitations, and
the ease of using aptitude. You also learned about auto updates and configuring the
repositories as per your requirements. Later, we covered how to create, maintain, and use the
local mirrors for your cluster.

In the next chapter you will learn about the network and DNS, as well as how to set up and
maintain them.

Chapter 2. Networking and DNS
This chapter is about networking and DNS. We will discuss understanding, configuring, and troubleshooting DNS and
network issues pertaining to the Ubuntu Server. Topics covered in this chapter are networking concepts, interface
configuration, DHCP, network sniffing, binding, and bonding. We will discuss DNS topics such as forward zone,
reverse zone, and configuring primary and secondary masters.

By the end of this chapter, you will be able to set up your own DNS, diagnose and rectify network issues, and
configure DHCP on your server.

The following topics will be covered in this chapter:

Networking concepts
DHCP
Network sniffing
Binding and bonding
DNS
Primary and reverse zone files

Networking concepts
Let's take a look at some of the important networking concepts relevant to Ubuntu and how to troubleshoot issues
that may occur.

IP addressing
We will need to configure IP addresses and a default gateway for communications on local networks as well as the
Internet. If we need to assign IP addresses temporarily, we would use commands such as ifconfig, ip, and route.
These commands are found on most of the Linux systems, and change the network settings with immediate effect:

sudo ifconfig eth0 192.168.1.100 netmask 255.255.255.0
Remember that this setting is temporary and will be lost when we reboot the server machine. This will assign the IP on
eth0 to your server machine, so any other machines can talk to this server using the recently set IP. We can verify the
same using the following command:

ifconfig eth0
You will be able to see the following screen:

Use the route command to configure the default gateway. This will make sure all the network-related requests will
be sent via the default gateway only. The command is as follows:

sudo route add default gw 192.168.1.1 eth0
Verify the change with the route command, as shown here:

If you no longer require these temporary network configurations, you can remove or purge the settings using the
flush command:

sudo ip addr flush eth0

DHCP client for dynamic addresses
We will use the DHCP client for automatic dynamic address assignment. To do this, add the dhcp method as follows.
Open the /etc/network/interfaces file and add the following lines:

auto eth0
iface etho inet dhcp

The first line is to set the Ethernet connection to auto mode. The next line sets DHCP to eht0. This is shown in the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Once done, manually enable it using the ifup command:

sudo ifup etho0
The command to disable the DHCP interface is as follows:

sudo ifdown eth0
The preceding command will shut down the interface.

Assigning a static IP address
Many a times, we require the server machines to have a static IP every time they boot up. The reasons for this may be
plentiful, but it is always better to have static IPs for servers. We will discuss DNS in the later sections; maybe then
you'll be able to understand the importance of static IPs.

You will need to modify the /etc/network/interfaces file to configure the server to use a static IP address
assignment. Also, mention the IP that the server should be assigned. Let's set the values for address, netmask, and
gateway for etho0 now:

auto eth0
iface eth0 inet static #makes the IP address static
address 192.168.1.100 #set a static IP address
netmask 255.255.255.0 #set a netmask for the IP address above
gateway 192.168.1.1 #set the default gateway

This is shown in the following screenshot:

Remember to enable the interface manually after setting the values in the interfaces file. You might see the following
message:

ifup: interface etho0 already configured
You should first disable the interface and then enable it again.

DHCP
DHCP stands for Dynamic Host Configuration Protocol. It is a service that automatically assigns network settings
to the hosts from a server. There are two parts to DHCP, namely the server and the client. Server sends settings to
each client and assigns the following configuration properties:

Host name
Domain name
Default gateway
Time server
Print server

DHCP is useful in many ways to the server administrators. Firstly, settings need to be changed only at one place. The
settings will be updated automatically on other DHCP clients whenever they poll the DHCP server. Conflicts are
greatly reduced as the server handles all the IP address assignment. Also, it is easier to add new machines to the
network and assign IP addresses to them.

DHCP clients can be provided with configuration settings by the DHCP server in the following two methods:

MAC address: Each network has a unique number on its NIC known as the MAC address. The server has
the MAC addresses of each client and also the configuration settings to be supplied to the client. Each time a
client polls the DHCP server, it is served with the same configuration corresponding to the client, and the client
is identified by its MAC address.
Address pool: The DHCP server maintains a list or range of IP addresses called as the address pool. When a
client polls the server, it is served with configuration properties dynamically on a first come, first serve basis.
Every client is given an expiry time. When the client fails to poll the server within this time, its settings get
expired and the same is added back to the list in the pool.

Ubuntu has both the server and client parts of the DHCP. dhcpd is the server process and dhclient is the client.
You need to install the client part of DHCP on all the machines for which you want automatic configuration. Let's look
at the installation and configuration now.

Installation
Here's the command to install the DHCP server on your machine:

sudo apt-get install dhcp3-server
The output is shown in the following screenshot:

Once the DHCP server package is installed, go to /etc/default/isc-dhcp-server and specify the interface.
The default is eth0. The file will look similar to the one shown in the following screenshot:

Let's now take a look at the configuration of DHCP.

Configuration
Open the /etc/dhcp/dhcpd.conf file to configure the settings for the DHCP server that will be used to assign IP
addresses and serve other settings to the DHCP clients:

The following are the configuration settings:

default-lease-time 600;
max-lease-time 7200;
subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.10 192.168.1.100;
range 192.168.1.125 192.168.1.225;
}

Any client that polls the DHCP server for an IP address will be given one of the address from range 192.168.1.10
to 192.168.1.100 or 192.168.1.125 to 192.168.1.225. Also, the lease time will be 600 seconds by default.
The client can also mention the lease time while requesting for an IP; however, that cannot be more than the maximum
lease time defined in this configuration file, which we have set as 7200 seconds.

Network sniffing with tcpdump
Network administrators can use sniffers to discover network issues and to monitor the network traffic. This
information can be used to identify packets that are having errors, thereby getting to the root of problems and solving
it to have an efficient network.

A packet sniffer captures all the data that is being transmitted through a network interface. Let's use tcpdump, which
is a command-line tool for network sniffing.

Capturing packets from eth0
The tcpdump command can be used to capture packets from a particular interface. The following command will help
us capture the packets on the eth0 interface:

sudo tcpdump –i eth0
I initiated a ping from this machine (192.168.1.100) to another machine (192.168.1.8) in the same network. After
running the preceding command, you will see a screen similar to the one in the following screenshot:

Here, we see the ICMP requests and replies. We see the source and destination IPs, ID, sequence, and length of
each packet. These results of tcpdump were displayed on the terminal, but what if we wanted to save the results in a
file to analyze it later?

Saving the tcpdump results in a file
tcpdump provides us with an option –w to save the results of packet sniffing to a file. Use the following command to

save the results in a file:

tcpdump -w results11Mar.pcap -i eth0
Remember to save the file with extension .pcap so any network protocol analyzer can read the file. This is shown in
the following screenshot:

Reading packets saved in a file by tcpdump
Let's now read the file that we saved in the previous command. The file is not a plain text file but a .pcap file. Using
the tcpdump command with -r option will helps us read the file:

tcpdump –tttt –r results11Mar.pcap
You will see something similar to the following screenshot. It is the same data that we saw in the previous section, but
this time in a file.

Readable timestamps in packets
Use the parameter option –tttt to make the timestamp readable in plain text format for the tcpdump results. Here's
the command to do so:

sudo tcpdump -tttt -i etho0

Reading packets of a specific protocol
Suppose you are interested in only reading packing of a specific protocol. tcpdump supports the following protocols:
wlan, ip, ip6, tcp, udp, arp, rarp, fddi, tr, and decnet. To capture packets pertaining to the udp protocol, use
the following command:

sudo tcpdump -i eth0 udp

Reading packets on a specific port
Using the tcpdump port command, you can read all the packets that are received on a particular port on your
server machine. Here's the command to read packets received on port 22 on the eth0 interface:

sudo tcpdump -i eth0 port 22

Reading TCP packets between two hosts
We can capture all the packets between two hosts that are communicating over the TCP protocol using the following
tcpdump command:

sudo tcpdump -w tcp2hosts.pcap -i eth0 dst 192.168.1.5 and port 22
There are many more options for running tcpdump. Refer to the output of the man tcpdump command for more
information.

Binding and bonding
Let's now look at the concepts of binding and bonding.

Binding
The process of assigning a server more than one IP address on the same network card is known as binding. There
may be cases where the same server is hosting services, which are defined on separate IP addresses. Let's see how
we can bind multiple IP addresses to our Ubuntu Server.

Go to the /etc/network/interfaces file and add the following lines:

auto eth0:0
iface eth0:0 inet static
address 192.168.1.104
netmask 255.255.255.0

auto eth0:1
iface eth0:1 inet static
address 192.168.1.240
netmask 255.255.255.0

The first line in the code snippet is for adding a device. We then specify the address to be static and also mention the
IP address. Note you have to mention the netmask. It is mandatory. The file will look similar to the following
screenshot:

Now, we need to enable these addresses using the ifup command:

sudo ifup eth0:0
sudo ifuo eth0:1
To verify this, ping these IP addresses from external machines on the same network. Alternatively, you may also use
the ifconfig command, as shown here:

Bonding
Bonding can be considered as the reverse of binding. The process of assigning multiple network cards with same IP
address is called bonding. Let's see the process of bonding in our Ubuntu Server.

First, check for the available network cards on your server using the following command:

ifconfig | grep 'Ethernet'
An example output is shown in the following screenshot:

We see three Ethernet cards, but with same hardware addresses as these were the ones we performed the binding
operation on. However, your results will have different hardware addresses for each Ethernet card. We will bond

www.allitebooks.com

http://www.allitebooks.org

eth0 and eth1.

First, install the ifenslave package:

sudo apt-get install ifenslave
The output is shown in the following screenshot:

Once the package is installed, go to the /etc/network/interfaces file and update the following lines:

iface bond0 inet static
address 192.168.1.108
netmask 255.255.255.0
gateway 192.168.1.1
slaves eth0 eth1
bond-mode active backup
bond_primary eth1

Then, enable the interface using the ifup command:

sudo ifup bond0
Check for the status with the following command:

ifconfig bond0
The output is shown in the following screenshot:

DNS
We will set up the DNS server using Berkeley Internet Name Daemon (BIND). Most of you might be familiar
with DNS and its working. DNS is the largest distributed directory used for IP address lookup against domain names.
Most administrators use BIND to run the DNS server. The version we will be using is BIND9.

BIND comes with three components: named, resolver, and tools such as dig. The named (pronounced name-dee)
daemon does the job of answering. Resolver is the daemon that runs the queries to find IP addresses for domain
names. It uses the resolv.conf directory for this purpose. Network administrators configure the resolv.conf.d
folder. BIND provides tools such as dig to test DNS. We will look at more tools in a later section of this chapter.

Setting up DNS
Install BIND on your Ubuntu Server using the following command:

sudo apt-get install bind9
You will see a message similar to what is shown in the following screenshot:

For security reasons, it is recommended to run BIND as non-root user in isolation. This is called as chroot
environment. Create a directory to put the files required for BIND that only the root can access. Stop the BIND
service before making any changes:

sudo /etc/inti.d/bind9 stop
Once the service is stopped, go to the /etc/default/bind9 file and edit the following line:

OPTS=-u bind"

Change the preceding line to this:

OPTIONS="-u bind -t /var/lib/named"

Next, create the following directories under /var/lib for BIND to use:

/var/lib/named/etc
/var/lib/named/dev
/var/lib/named/var/cache/bind
/var/lib/named/var/run/bind/run

Now, execute the following commands:

sudo mkdir –p /var/lib/named/etc
sudo mkdir /var/lib/named/dev
sudo mkdir –p /var/lib/named/var/cache/bind
sudo mkdir –p /var/lib/named/var/cache/run
Move the config directory of BIND from /etc to /var/lib/named/etc using the following command:

sudo mv /etc/bind /var/lib/named/etc
This is shown in the following screenshot:

Create a symbolic link from the old to the new BIND location:

sudo ln -s /var/lib/named/etc/bin/ /etc/bind
Create new devices null and random and edit the permissions:

sudo mknod /var/lib/named/dev/null c 1 3
sudo mknod /var/lib/named/dev/random c 1 38
sudo chmod 666 /var/lib/named/dev/null /var/lib/named/dev/random
sudo chown -R bind:bind /var/lib/named/var/*
sudo chown -R bind:bind /var/lib/named/etc/bind
Finally, start BIND with the following command:

sudo /etc/init.d/bind9 start

Setting up primary and secondary DNS servers
Network administrators provide at least two DNS servers at the time of registration. You can make an exact
duplicate of one DNS server and put it on a second server. Ideally, you should make one machine as primary server

and the other as secondary server. Then, the secondary server can talk to primary server and update itself; this
process is known as zone transfer. Whatever changes are done in the primary server will get reflected in the
secondary server during the next poll. It is not a push process from primary, but rather a pull from secondary.

The following lines are for a secondary server in its named.conf file:

zone "ubuntuserver.org" {
 type slave;
 file "sec.ubuntuserver.org";
 masters {10.200.12.68;};
};

Pay close attention to the keyword slave. Also, a masters list is defined for the secondary slave. This has the IP
address of the primary server that needs to be polled for updating itself. The IP address should be the same that is
mentioned in the resolv.conf file of the primary server.

The resolv.conf file is used by clients to connect to DNS and named.conf is used by secondary servers to find
the primary server.

The named.conf file on the primary name server will look like the following screenshot. This file is referring to four
configuration files.

The hints file – zone "."

Hints file will have the names and address of root servers. named should know the address of these root servers as
this is the starting point of any query.

The local host file – zone "0.0.127.in-addr.arpa"

IP 127.0.0.1 is the address of the local system. DNS will get the address of the local system. It helps reduce the
traffic and allow software without wanting to know if it is running on local or remote network.

The reverse zone file – zone "24.126.10.in-addr.arpa"

The reverse zone file is like a mirror to the primary zone file. It has mappings of IP addresses to hostnames. Reverse
zone files have extension as in-addr.arpa.

The primary zone file – zone "ubuntuserver.org"

The primary zone files (primary zone is the same as forward zone) have mapping from hostnames to IP address. The
information required to resolve the queries are contained in this file. It also includes the services that a particular server
is offering to the Internet.

All these files are shown in the following screenshot:

The following record types can be seen in zone files:

SOA: This means start of authority
NS: This refers to the name server
MX: This refers to the mail exchanger
A: This refers to the hostname to address mapping
CNAME: This refers to the canonical name or alias
PTR: This is a pointer to map address to names

A typical named.conf file for a secondary name server will look like this:

Only the last part of the named.conf file differs from the one for the primary name server. The secondary name
server will zone-transfer the information from the primary name server. Whenever a new serial number is seen on the
primary name server, the secondary name server will update itself.

The primary zone file
Most of the information that the DNS needs is contained in the primary zone file. Let's name
our primary zone file as pri.ubuntuserver.org. Let's see what each part of the primary
zone file signifies.

The first lines have the information required by secondary or slave servers:

@ IN SOA server1.ubuntuserver.org. root.localhost. (
 2015031106; serial-no
 28800; refresh, seconds
 7200; retry, seconds
 608440; expiry, seconds
 86400); minimum-TTL, seconds
;

Let's examine the components of the primary zone file:

Name: This is the current name of the zone in /etc/named.conf and is referenced by
@. The sign is called origin.
Class: This is the DNS class. IN stands for Internet Class.
Type: This is the resource record type; here, it is SOA.
Name server: This is the fully qualified name for the primary name server. Pay close
attention to the dot at the end of the name.
E-mail address: Specify the e-mail address of the person who handles this domain. If
you recall, @ is already used for origin. So the e-mail parts are separated with a dot. Also,
an e-mail address must end with a dot.

SOA contains the following options which will help the slave server:

Serial number: This is the serial number for the current configuration. Every time you
change the configuration settings, you need to update this number. The format is usually
YYYYMMDDxx with xx being a two digit number. Each serial number is higher than the
previous one and usually the date is the date when it was changed. The secondary name
servers will check the serial number each time they poll, and if the number is updated,
they fetch the latest information and update themselves.
Refresh: This value in seconds tells how often the secondary name servers should poll
the primary name server to check for updates.
Retry: If there is a connection failure, this number tells the time interval to try again.
Expiry: This is the time that secondary servers need to contact the master before they
trash the data it has. If the secondary server is unable to contact the master for latest
information, it should direct its queries to the root. This value is specified in seconds.
Minimum Time to Live (TTL): This value is defined in seconds. This is the default
time-to-live for this specific domain.

After SOA, the primary zone file contains hostnames:

NS server1.ubuntuserver.org.;
NS server2.ubuntuserver.org.;

These are the name servers for the domain. The next line is the MX record, which is the mail
server for the domain:

MX 10 sever1.ubuntuserver.org.

The second word in the preceding line defines the priority of this particular server. Next, we
have the A records. A records are the actual mapping from hostnames to IP addresses:

ubuntuserver.org A 10.200.12.140
www A 10.200.12.140
server1 A 10.200.12.140
server2 A 10.200.12.160

Each hostname can have a maximum of one A record.

The reverse zone file
Reverse zone files have a mapping from IP address to hostnames. They can be considered as
mirrors to the primary zone files. The file lists the IP address first and then the name. This was
used in earlier days to reject a service to some clients if they were not able to ping the domain
in reverse. Now, this is used to stop e-mail spam by verifying the origins of an e-mail.

First, we create a reverse zone file for our server and put the entry into the named.conf file.

zone "162.240.10.in-addr.arpa" {
type master;
file "pri.162.240.10.in-addr.arpa";
};

The numbers in the IP address follow a pattern. They are in the reverse order. Our server
ubuntuserver.org is in the 10.240.162 net and it is reversed to get 162.240.10. Note
that the domain in-addr-arpa is used by all reverse lookups as the top-level domain. Let's
look at a sample reverse zone file now.

We name our file pri.162.240.10.in-addr.arpa and the file will be in the same directory
where our primary zone file was. Both the zone files look similar at the beginning:

@ IN SOA server1.ubuntuserver.org. root.localhost. (
 2015031117; serial-no
 28800; refresh, seconds
 7200; retry seconds
 604800; expiry, seconds
 86400); minimum-TTl, seconds
;
 NS server1.ubuntuserver.org;
 NS server2.ubuntuserver.org;

In the reverse zone file, there are no A, MX, or CNAME records. We have the PTR records.

PTR records
PTR are the pointers to a domain name. Now, we will create a PTR record with our
ubuntuserver.org address. The zone in primary section showed that the IP address for
our ubuntuserver.org server was 10.200.12.140. The PTR record specifies the last part
of the IP address; here, it is 140 and is defined as follows:

140 PTR ubuntuserver.org.

There should be exactly one PTR for every IP address in the domain. Place the PTR records
after the name servers in the reverse zone file.

Summary
In this chapter, we studied various networking concepts. We covered IP address allocation:
auto or static. Then, we discussed network sniffing with tcpdump. Next, we talked about
binding and bonding. DNS was one of the main topics of this chapter. Then, we saw how to
set up the primary and secondary name servers and discussed primary and reverse zone files.

In the next chapter, we will study network authentication, the SSH client, and the SSH server.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3. Network Authentication
In the previous chapter, you learned about setting up the network and topics such DHCP, DNS, and their
configuration. In this chapter, we will discuss setting up authentication for users over a network and how to allow
users to log in and work on remote servers, to avail of services offered by those servers. The topics covered in this
chapter are as follows:

OpenLDAP
Kerberos
Kerberos with LDAP
Public and private keys
Passwordless SSH and sshd

OpenLDAP
LDAP is the acronym for Lightweight Directory Access Protocol, which provides functionality for connecting to,
searching, and modifying the Internet directories. Ubuntu's implementation of LDAP is OpenLDAP, the protocol
used to access the LDAP directories. We will also discuss how to install OpenLDAP, how to enable logging, how to
modify the database and configuration, access control, user and group management, and TLS.

Installation
We need to install two packages, slapd and ldap-utilities, for OpenLDAP. slapd will also create a working
configuration. A database instance is created to store the configuration data. It will pick the suffix for DN from the
hostname domain. This can be changed by changing the /etc/hosts file.

For example, the suffix dc=myubuntu,dc=com will mean the hosts file looks similar to this:

The command to install the packages is as follows:

sudo apt-get install slapd ldap-utils
The configuration database should be visible now under the /etc/ldap/slapd.d folder; it's a collection of text-
based LDAP Data Interchange Format (LDIF) files. While installing, it will prompt for a new administrative
password for the rootDN of this database. You will see something similar to the following screenshot. This is the
directory information tree (DIT) that is set up during installation.

The slapd-config database should not be edited directly, as the changes there might corrupt and make the service
unusable; instead, use the LDAP utils. You will see something similar when you view the DIT for slapd-config using
the LDAP protocol. The command to do this is as follows:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=config dn
The resulting screen is shown here:

Let's understand the entries in the previous screenshot and their meanings:

Entry Description

cn=config Global settings

cn=module{0},cn=config A dynamically loaded module

cn=schema,cn=config Contains hardcoded system-level schema

cn={0}core,cn=schema,cn=config The hard coded core schema

cn={1}cosine,cn=schema,cn=config The cosine schema

cn={2}nis,cn=schema,cn=config The nis schema

cn={3}inetorgperson,cn=schema,cn=config The inetorgperson schema

olcBackend={0}hdb,cn=config The hdb backend storage

olcDatabase={-1}frontend,cn=config Frontend database and default settings for other databases

olcDatabase={0}config,con=config The slapd configuration database

olcDatabase={1}hdb,cn=config Users' database instance

Populating the database
Adding content to the database is fairly simple: first create a LDIF file and then use the LDAP utilities to add it.
Create a LDIF file similar to the following with the name new_content.ldif:

dn: ou=People,dc=myubuntu,dc=com
objectClass: organizationalUnit
ou: People
dn: ou=Groups,dc=myubuntu,dc=com
objectClass: organizationalUnit
ou: Groups
dn: cn=dev,ou=Groups,dc=myubuntu,dc=com
objectClass: posixGroup
cn: dev
gidNumber: 5500
dn: uid=skanda,ou=People,dc=myubuntu,dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: skanda
sn: Bhargav
givenName: skanda
cn: skanda Bhargav
displayName: skanda Bhargav
uidNumber: 10400
gidNumber: 5400

userPassword: skandapass
gecos: skanda Bhargav
loginShell: /bin/bash
homeDirectory: /home/skanda

The command to add this to the database is as follows:

ldapadd -x -D cn=admin,dc=myubuntu,dc=com -W -f new_content.ldif
Also, you can check if it was added correctly using the following command:

ldapsearch -x -LLL -b dc=myubuntu,dc=com
You will see something similar to the following screenshot:

Logging
You need to manually enable the logging for slapd to get more than just minimal logs. Out of the many logging levels
provided by slapd, we will try out stats.

First create the file logging.ldif:

dn: cn=config
changetype: modify
add: olcLogLevel
olcLogLevel: stats

Now, change it using the LDAP utility as follows:

sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// -f logging.ldif

Access control
Access control lists (ACL) define the configuration for the type of access the users should get. During the
installation of the slapd package, some of the ALC were automatically set up.

To view the current access, use the following command:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=config '(olcDatabase={1}hdb)'
The output is shown in the following screenshot:

The olcAccess line in the preceding output can be understood as follows:

to attrs=userPassword
 by selfwrite
 by anonymous auth
 by dn="cn=admin,dc=myubuntu,dc=com" write
 by *none
to attrs=shadowLastChange
 by self write
 by anonymous auth
 by dn="cn=admin,dc=example,dc=com" write
 by * none

The explanation for the preceding lines is as follows:

The userPassword attribute is provided with auth for anonymous users for the initial connection
The authentication is possible, as all users have read access
The rootDN has complete access to the userPassword attribute
If other users need to change their password, then shadowLastChange should be accessible to the users after

authentication

Now, let's check the frontend database access using the following command:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=config '(olcDatabase={-
1}frontend)'
The output should be similar to the one shown in the following screenshot:

To display the ACL of the slapd-config database, use the following command:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=config '(olcDatabase={0}config)'
The output is shown in the following screenshot:

To view all the ACLs, use the following command:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=config '(olcAccess=*)'
The output is shown in the following screenshot:

Kerberos
Kerberos is used to enable security for machines and users. Kerberos is easy to set up with LDAP. A user requests a
ticket-granting ticket (TGT) from the key distribution center (KDC) when they log in. The KDC checks for the
username in the database, fetches the key and returns TGT with the key. At the client machine, it is decrypted with the
help of user password. The password is never sent across the network. Once the system is authenticated, all the
services can use it and the user is not required to authenticate again until the TGT is expired.

Installation
Let's look at the installation and configuration of the Kerberos server. The command to install Kerberos on the
Ubuntu Server is as follows:

sudo apt-get install krb5-kdc krb5-admin-server libkrb5-dev krb5-config krb5-user krb5-
clients libkadm55
During the installation, the terminal will prompt for the hostname and the realm on which you wish to install the
Kerberos server. The last screen will look something similar to the one shown here:

Now, we need to edit the /etc/krb5.conf file and change the following settings:

MYUBUNTU.COM = {
kdc = UBUNTUSERVER.MYUBUNTU.CON:88
admin_server = UBUNTUSERVER.MYUBUNTU.CON:749
default_domain = MYUBUNTU.COM
}

This is shown in the following screenshot:

You need to specify the path for the logging and change the krb4_convert switch to false. The following
screenshot has the values:

It's time to start the server now. The command to start the KDC and Kerberos admin server is as follows:

sudo /etc/init.d/krb5-admin-server start; sudo /etc/init.d/krb5-kdc start
You may see the following error on the terminal:

kadmind: No such file or directory while initializing, aborting
We will now solve this issue. The first step is to create a new realm with the following command:

sudo krb5_newrealm
It should be run only once, and it will ask for a master password. Be sure to remember this password. You will see a

screen similar to the one shown here:

Create the following directories and change the permission:

sudo mkdir /var/log/kerberos
sudo touch /var/log/kerberos/{krb5kdc,kadmin,krb5lib}.log
sudo chmod -R 750 /var/log/kerberos
Change the authorization for the admin in the /etc/krb5kdc/kadm5.acl file:

Then, restart the services KDC and Kerberos admin server. The command to do this is as follows:

sudo /etc/init.d/krb5-admin-server restart; sudo /etc/init.d/krb5-kdc restart
If all goes well, you will see the following screen:

Database setup
For the initial setup, we have to authenticate and make the changes to the database locally as root. This is because
Kerberos is not yet available and we cannot populate the database using the Kerberos service. Once the initial setup
is done and the admin user is set up, all subsequent changes to the database will be handled via the Kerberos service
using the kadmin -p command.

Log in as root and execute the following commands to perform the initial setup using admin.local. The first
command is to create a database, and the next command is for admin changes and the last one is to add a new key to
the keytab:

kadmin.local -q "ktadd -k /etc/krb5kdc/kadm5.keytab kadmin/admin"

kadmin.local -q "ktadd -k /etc/krb5kdc/kadm5.keytab kadmin/changepw"
kadmin.local -q "addprinc krbadmin@MYUBUNTU.COM"
Once the commands are successful, you will see a screen similar to the one shown in the following screenshot. You
will be asked to enter a password for the new user krbadmin.

Make the appropriate changes in the /etc/krb5kdc/kadm5.acl file to allow the newly created admin to have all
the access. Refer to the following screenshot:

Edit the /etc/krb5kdc/kdc.conf file, set MYUBUNTU.COM as the realm, and ensure that the database, keytab,
stash, and ACL location match as per the database creation. The following screenshot can guide you:

Then, restart the Kerberos server to apply the new controls. The command to do so is as follows:

sudo /etc/init.d/krb5-admin-server restart; sudo /etc/init.d/krb5-kdc restart
Now, let's test and ensure our Kerberos server is up and running properly. We will no longer use kadmin.local; all
the changes will be via the krbadmin user we created:

kadmin -p krbadmin
kinit krbadmin
klist
You will be asked to enter password for the krbadmin user, and then you will see a list of authorized tickets. Here's
a screenshot of the kadmin console:

Setting up the Kerberos client
The following command will help you install the client and also the ntpdate packages. The latter package is to make
sure the time is synchronized for the client and server authentication to be successful.

sudo apt-get install krb5-user ntpdate
Once the packages are installed, you need to modify the /etc/krb5.conf file to match the configuration in your
server. For example, the following will be the contents of the configuration file for the client:

[libdefaults]
 default_realm = MYUBUNTU.COM
[realms]
 MYUBUNTU.COM = {
 kdc = ubuntuserver.myubuntu.com
 admin_server = ubuntuserver.myubuntu.com
 }
[domain_realm]
myubuntu.com = MYUBUNTU.COM
.myubuntu.com = MYUBUNTU.COM

Kerberos SSH and logon
In this section, we will set up both the client and server to use Kerberos for SSH logon. We will use PAM for local as
well as SSH logons. The command to install Kerberos is as follows:

sudo apt-get install libpam-krb5 openssh-server libsasl2-dev libsasl2-modules-gssapi-mit
Next, we need to edit the /etc/pam.d/common-auth and /etc/pam.d/common-session files as follows:

Now, let's set up SSH login to use Kerberos. Edit the /etc/ssh/ssh_config file:

Pay close attention to Kerberos options and GSSAPI options in this file. Next, edit the
/etc/ssh/ssh_config file (not the sshd_config file!) and set the following flags:

GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes

These changes need to be made in all the machines that you intend to use for SSH with Kerberos enabled. Then,
restart the SSH server in every machine that you have edited for the change to take effect:

sudo /etc/init.d/ssh restart
Next, you need to add the keytab on the client so that SSH transfers the credentials to Kerberos. Run the following
commands in the client machine:

kadmin -p krbadmin
kadmin: addprinc -randkey host/client.myubuntu.com
kadmin: ktadd host/client.myubuntu.com
kadmin: addprinc test@MYUBUNTU.com
You can test this setup by logging in with the new test user via SSH. The machine will be Kerberized on successful
login.

Integrating LDAP with Kerberos
In this section, we will discuss the process to integrate LDAP with Kerberos in the Ubuntu
Server.

Installation
In this section, we will discuss how to set up LDAP with Kerberos. First, add the LDAP
admin and LDAP server to the Kerberos server using the following command via kadmin:

kadmin - p kradmin

Inside kdamin, execute the following commands:

kadmin: add princ ldapadm@MYUBUNTU.COM
kadmin: add princ -randkey ldap/server.myubuntu.com
kadmin: ktadd -k /etc/ldap/ldap.keytab ldap/server.myubuntu.com

The first command will create the LDAP admin user, and you will be asked for a password.
We then create a separate keytab at the /etc/ldap/ldap.keytab location so as to keep
LDAP different from the system-specific keytab. Then, change the file permissions and owner
so that LDAP becomes the owner of this keytab:

chown openldap:openldap /etc/ldap/ldap.keytab

Ensure that the slapd process is looking for the right keytab, and add this line to the
/etc/default/slapd file:

export KRB5_KTNAME=/etc/ldap/ldap.keytab

Restart the slapd server to make sure the changes take effect:

sudo /etc/init.d/slapd restart

Database setup
We have seen the LDAP admin setup in the previous sections of this chapter. Now, we add the
ldapadm user into the database. First, create a file with the name setup.ldif. We will use
the base domain (here, dc=myubuntu).

Use the ldapadd command to add the setup.ldif file is as follows:

ldapadd -c -D "cn=admin,dc=myubuntu,dc=com" -W -f setup.ldif
setup.ldif

dn: dc=myubuntu,dc=com
objectclass: organization
objectclass: dcObject
objectclass: top
o: myubuntu Company
dc: myubuntu
description: root entry
dn: ou=people,dc=myubuntu,dc=com
objectclass: organizationalUnit
ou: people
description: Users
dn: uid=ldapadm,ou=people,dc=myubuntu,dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
cn: LDAP admin account
uid: ldapadm
uidNumber: 1002
gidNumber: 100
homeDirectory: /etc/ldap
loginShell: /bin/false

Restart the slapd process. From next time, you can use the kinit ldapadm command to
add, modify, or delete entries:

kinit username; ldapsearch -H ldaps://server.myubuntu.com

Test the setup using the preceding command. If it does not work, you may need to check for
any of these conditions to troubleshoot:

The /etc/ldap/cacert.pem file should be readable by all; change permissions if it is
not.
Check /etc/hosts to make sure the hostname is resolved correctly. The client will try
for server.myubuntu.com, so this should be present in the hosts file.
If you encounter the key version for principal in keytable is incorrect
error, it means the keytab at Kerberos server and master have a mismatch. Run the
following commands from the LDAP host:

kterm ldap/server.myubuntu.com
delprinc ldap/server.myubuntu.com
addprinc -randkey ldap/server.myubuntu.com
ktadd ldap/server.myubuntu.com

OpenSSH, public, and private keys –
passwordless SSH
It's time now to look at SSH and its usage.

The SSH client and the server
The SSH (acronym for secure shell) is made of a set of tools for secure and encrypted
connections between server and clients. The older tools such as telnet, rlogin, and rsh should
be discarded as they are prone to hacks as they do not encrypt the login session thereby
leaving your username and password vulnerable. SSH is different as it encrypts the connection
and also it authenticates both ways.

The transport layer in the network stack is encrypted with a cryptographic handshake and
hence the connection is secure. The authentication is via either user ID/password or a
public/private key between the server and client.

Install the client and server in your machines using the following commands:

sudo apt-get install openssh-client
sudo apt-get install openssh-server

The server package needs to be installed only on those machines to which you want to log in
to.

Setting up passwordless SSH
The normal practice among users is to SSH into a machine using the following command
syntax:

ssh user@192.168.1.6

Here, user is the user ID and after hitting the Enter key, the user is expected to enter the
password. We will now see how to log in to a machine using the public/private key pair. First,
generate the keys at the client machine. The command to generate both private and public keys
is the same. It will create the keys by default in the user's home directory under the .ssh
folder:

ssh-keygen -t rsa

So, for me, with username skanda, the private and public keys will be stored in the folder
/home/skanda/.ssh. If you list the directory, you will see two files: id_rsa and
id_rsa.pub. Here, the one with the .pub extension is the public key, which we will exchange
with other systems for authentication. The private key will stay within the system and will be

used to authenticate the incoming connections. The folder is hidden and hence is preceded
with a period(.). The permissions for the ./ssh folder should be 700.

Next, we need to copy this user's public key to the server to which we intend to establish a
secured passwordless connection. The preferred and recommended way is to use the ssh-
copyid command. You may use scp too, but then you need to be careful so as to append the
key to the file called authorized_keys at the server and not overwrite it. The command is as
follows:

ssh-copyid -i .ssh/id_rsa.pub server@192.168.1.5

Your client can now authenticate and log in to the server machine without the need of any
password. The same process needs to be followed for other machines as well.

To troubleshoot, use the following command to diagnose the errors:

ssh -v

The preceding command will present the debug information about the connection attempt.

Disabling password authentication
Many people use weak passwords. It is possible that a hacker may be able to get a password
by guessing when he gets hold of a SSH server. Also, if you want to make sure only the
systems you authorize should be used to connect to the server, disabling the password-based
authentication must be practiced. The user will be discouraged from using a password to log
in, thereby making your systems secure. It would be recommended to use SSH key-based
authentication.

To disable the password-based authentication, modify the /etc/ssh/ssh_config file as
follows:

PasswordAuthentication no

Now, only the system whose public key is shared with your server will be able to authenticate
from the authorized user ID.

Allowing or denying users to SSH
You can control which users or groups are allowed to SSH into your server. This will ensure
that people with weak security practices and people who do not need SSH access to the server
can be denied.

To allow a user be able to SSH, we need to change the following line in
/etc/ssh/ssh_config, with the following value:

AllowUsers Skanda Client

The preceding line means that users Skanda and Client are allowed to SSH into the server.
All other users will be denied. However, to deny a few users and allow all others, use the
following line:

DenyUsers Bhargav Guest

Greeting users with a banner
You can welcome and display server-specific information to the users with a banner. Each time
a user logs into the server, this message can be displayed. This is usually helpful when you
want to warn the user about a special server, such as the production server where the user
should not be modifying anything. First, change the line in the /etc/ssh/ssh_config file as
follows:

Banner /etc/issue.net

Next, go and edit the /etc/issue.net file and fill in the relevant information. That's it, all the
users logging in will get the message at the start of their session. This does not affect
connectivity or add additional security; it can be used for informational purpose only.

Summary
In this chapter, we discussed LDAP, Kerberos installation and configuration, setting up LDAP
with Kerberos. We used Kerberos security for SSH logins, discussed SSH server and
passwordless SSH setup between two machines, discussed how to disable password-based
authentication and limit the users who can SSH into the system. Finally, we saw how to greet
users with banners.

In the next chapter, we will study the monitoring and optimization of our Ubuntu Server. We
will discuss CPU load, storage, network, and monitoring with tools such as Nagios, Munin,
and more.

Chapter 4. Monitoring and Optimization
This chapter deals with centrally monitoring your set of systems and managing the individual machines. There are many
tools available, but we will discuss Nagios, Puppet, and ClusterSSH. We will see how we can centrally monitor using
Nagios, Puppet will help us to handle configuration management from a central location, and we will use ClusterSSH
to repeat commands over the network simultaneously.

Nagios
First, let's learn about Nagios. We will discuss setting up Nagios, how to add hosts to Nagios, how to make use of
templates in Nagios, and how to set up services using hostgroups. We will also see how to use Nagios for alerts,
write our own plugins to monitor, the NPRE plugin for Nagios, and how to execute Nagios from external machines.

The Nagios setup
Nagios provides you with a web-based interface and once it is set up correctly, you can monitor your system
centrally. It gives you information and you can control that as well. Nagios uses very less resources and hence it's low
on maintenance. Setting up Nagios is easy: install it on a server and add all the clients that you want to monitor.
Nagios service does the work of checking whether the clients are reachable using Ping or SSH, whether
HTTP/LDAP/NFS are working, and so on. The beauty of this is you need not install any special software or
packages on the client machines that are being monitored.

Let's see how we can install Nagios 3 on the Ubuntu Server. Execute the following command:

sudo apt-get install nagios3 nagios-plugins
In addition to the Nagios service, we are also installing the associated plugins here. We will discuss the plugins in the
later part of this chapter. The output of the preceding command is as follows:

Enter an admin password when prompted, as shown in the following screenshot. Also, you can choose No to answer
the question for backward compatibility with version 1 of Nagios.

You must have apache2 installed in your server to work along with Nagios. After installing Nagios, check for a

symlink from /etc/apache2/conf.d/nagios3.conf to /etc/nagios3/ apache2.conf. A letter l at the first
position depicts that it is a link. This means that the configuration from Nagios will be put along in your web server
config. You can confirm the same by referring to the next screenshot. First, run these commands:

cd /etc/apache2/conf-available/
ls –ltr
The result is shown here:

If the symbolic link is not visible, go ahead and create one using the following command:

ln -s /etc/apache2/conf.d/nagios3.conf /etc/nagios3/apache2.conf
Here are the default settings for the basic server setup, which will monitor the server itself (localhost). You can find the
defined contacts in the following directory: /etc/nagios3/conf.d/contacts_nagios2.cfg.

Change the e-mail from root@localhost.com to the e-mail address you want the alerts to be sent. The default
settings look as shown in the following screenshot:

After you have edited the file, check for the syntax in the config using the following command:

nagios3 -v /etc/nagios3/nagios.cfg
The output is as follows:

You should be able to see something similar to the preceding screenshot. The screenshot shows there are no warnings
and no errors, so we are good to go. Reload Nagios for the settings to take effect. The command to restart the
Nagios service is as follows:

/etc/init.d/nagios3 reload
Now, connect to the web page using the IP address of the server and nagios3 as the service. I connected to the
Nagios web with http://192.168.1.5/nagios3/. It will ask for the admin username and admin password that
you set while installation. Once logged in, click on Tactical Overview on the left-hand side menu. You should be
able to see something similar to the following screenshot:

In the Tactical Monitoring Overview screen, you will see the overview and states for hosts and services. The states
can be one of the following:

Pending: This means checking is going on
OK (green): This means all is well
Yellow: This means warning
Red: This means critical

Clicking on a link will open an expanded view and will show the additional details, as shown here:

Adding another host in Nagios
Till now, we were monitoring the server system itself. Now, we will see how to add another host (machine) to the
Nagios service and monitor it centrally. To do so, create a configuration file in the server machine and name it using
the hostname that you want to monitor. For example, if you want to add a machine with hostname myuser to be
monitored, the name of file will be host-myuser.cfg and the contents will be as follows:

define host{
 use generic-host
 host_name myuser
 address 192.168.1.8
 }

This is the bare minimum, as most of the information required for the configuration is taken from the host template. We
will discuss templates in Nagios in the next section. For Nagios to start monitoring this new host, you will have to
reload. The command to reload is as follows:

/etc/init.d/nagios3 reload
It may take a little longer to reload, as it is collecting statistics from the newly added host machine to show up on the
web page. You may add other machines in the same manner for monitoring under Nagios service.

Nagios templates
You can save a lot of effort by making use of templates provided by Nagios. Templates are a set of standard
configuration that you want to apply for a set of machines at once. The default host definition and service definition
can be found in the /etc/nagios3/conf.d/localhost_nagios2.cfg file. You can see something similar to the
following screenshot:

To refer to a template, you need to put it with the keyword use. Having templates is always a better idea, as you can
control the configuration from a central location rather than having to modify each and every host machine dependent
file when you are updating. It adds to the maintainability.

The generic-host template is located in the conf.d/gneric-host_nagios2.cfg file. As you can see in the
following screenshot, it has a set of defaults for notification enabling, events, and so on. All these can be overridden in
the host definitions if required.

Similarly, take a look at the host-service template. The template is defined in the conf.d/generic-
service_nagios2.cfg file. You will be able to see something similar to the following screenshot:

Nagios hostgroups and services
We had previously added a machine with the name myuser to our Nagios service for monitoring. We haven't added
any service check or status check. There are two ways to do this. One is by adding the services and status in the
individual configuration files. But this would mean a lot of effort, as you would be required to repeat the same across
all the configurations for corresponding host machines in your cluster.

Alternatively, you can take the advantage of templates and use hostgroups. Then, you can define a service for a set of
hosts rather than a single host. Modify the conf.d/hostgroups_nagios2.cfg file and add a name that you think
will best fit the group:

Also, you can create a new group altogether. When defining a new hostgroup, the only required fields are
hostgroup_name and alias. Every other field is optional. For example, the following code snippet will create a
new hostgroup:

define hostgroup {
 hostgroup_name debian-servers
 alias Debian GNU/Linux Servers
 members localhost,webserver,ldapserver
 }

Now, let's set up some services to be monitored for this hostgroup. You have to change the
conf.d/services_nagios2.cfg file and add the following service checks. All you are doing here is checking
whether the hosts will respond to pings and if SSH is working alright:

define service {
 hostgroup_name debian-servers

 service_description SSH
 check_command check_ssh
 use generic-service
 notification_interval 0
}
define service {
 hostgroup_name debian-servers
 service_description PING
 check_command check_ping!100.0,20%!500.0,60%
 use generic-service
 notification_interval 0
}

The Nagios service will monitor the machines in the groups for the services we defined in the check_command
statement with generic-service settings and fire an alert if it encounters an issue.

Nagios setup alerts
It isn't always possible to go and check the web page to identify any problems. It is advisable to set up alerts and
have it sent to your e-mail address whenever any problems are detected in any of the machines. We had set the
contacts earlier in the /etc/nagios3/conf.d/contacts_nagios2.cfg file. At the end of the file, you will see an
admin contact group (for easier maintainability).

Let's now see the default settings for a service to send e-mail for any errors encountered. You will appreciate the
usefulness of the generic-service definition. Edit the /etc/nagios3/conf.d/generic-service_nagios2.cfg file
and add the following lines there:

notification_interval 1440
is_volatile 0
check_period 24x7
normal_check_interval 5
retry_check_interval 1
max_check_attempts 5
notification_period 24x7
notification_options w,u,c,r
contact_groups admins

Note

The preceding code is not an exhaustive list. For more commands, refer to
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/objectdefinitions.html#service.

Save the file and reload the Nagios service. The generic-service file should be something similar to the following
screenshot:

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/objectdefinitions.html#service

Let's understand what each of the lines means:

notification_interval: This is a reminder. Here, 1440 means 24 hours.
check_period: This specifies when the services should be running. Here 24x7 means always.
normal_check_interval: This is the time period between each check in minutes.
retry_check_interval: In case of failure, this is the time to wait before checking again (in minutes).
max_check_attempts: This specifies how many times to retry before concluding something is wrong.
notification_period: This is the time period when alerts should be mailed. Here, it is set for all the time.
notification_options: This specifies for which states of the system an alert should be sent. The types are
as follows:

d: This means the host is down
u: This means the host is unreachable
r: This means the host is recovered
f: This means the host starts and stops flapping
w: This means the service is in the warning state
u: This means the service is in an unknown state
c: This means the service is in a critical state

contact_groups: This specifies which contacts are to be notified for alerts.

You can test the working of alerts by turning off any of the monitored services in any host; you will receive an alert.
Turn the service back on again, and you will get an e-mail alert saying the service is up.

Writing a Nagios plugin
There are a lot of plugins provided by Nagios to make it extensible in many ways. Check out http://nagios-plugins.org/
and you will be able to download and use the plugins. If you have downloaded the plugins, go and check for them in

http://nagios-plugins.org/

the /usr/lib/nagios/plugins folder. To check the help for a particular plugin, use the following command:

/usr/lib/nagios/plugins/plugin_name - h
Here's a screenshot of the plugins folder:

You can also write your own plugins. The /usr/lib/nagios/plugins/utils.sh file has few functions and
variables that you can use in your plugin. The following plugin will check if a process whose name is passed as
argument is running:

01 #! /bin/sh
02
03 PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
04
05 PROGNAME=`basename $0`
06 PROGPATH=`echo $0 | sed -e 's,[\\/][^\\/][^\\/]*$,,'`
07 REVISION=`echo '$Revision: 1 $' | sed -e 's/[^0-9.]//g'`
08
09 process=$1
10
11 . $PROGPATH/utils.sh
12
13 print_usage() {
14 echo "Usage: $PROGNAME process-to-check"
15 }
16
17 print_help() {
18 print_revision $PROGNAME $REVISION
19 echo ""
20 print_usage
21 echo ""
22 echo "This plugin checks if the given process is running, using ps and grep."
23 echo ""
24 support
25 exit 0
26 }
27
28 case "$process" in
29 --help)

30 print_help
31 exit 0
32 ;;
33 -h)
34 print_help
35 exit 0
36 ;;
37 --version)
38 print_revision $PROGNAME $REVISION
39 exit 0
40 ;;
41 -V)
42 print_revision $PROGNAME $REVISION
43 exit 0
44 ;;
45 *)
46 processdata=`ps -A | grep $process 2>&1`
47 status=$?
48 if test ${status} -ne 0 ; then
49 echo Process not found
50 exit 2
51 fi
52 else
53 echo Process running
54 exit 0
55 fi
56 ;;
57 esac

We are using the variables and subroutines from the utils.sh file by sourcing it. These actions are performed in lines
1 to 27. The lines 27 to 44 check for an argument and validate if the argument is correct. The actual work of checking
is done in lines 45 to 55, while line 46 checks the process and 47 returns the exit code. Exit codes are understood as
follows:

0: This means success
1: This means warning
2: This means alert

The NRPE plugin
By default, Nagios will monitor whether hosts are up and will check for the services that you define in the
configuration files. The NRPE plugin, short for Nagios remote plugin executor, will help you monitor resources in
remote machines. You can also monitor the CPU usage and disk space utilization. For NRPE, you should perform
two tasks. First, install the NRPE plugin on your server where the Nagios server is running. Then, install the NRPE
server on the remote machines you want to monitor.

Execute the following command on the Nagios server machine:

sudo apt-get install nagios-nrpe-plugin
Execute the following command on the remote machines:

sudo apt-get install nagios-nrpe-server
After installing the service on both the machines, we need to test out the connections. Run the following command
from the server where your Nagios server is running:

/usr/lib/nagios/plugins/checknrpe -H myuser -c check_users
The preceding plugin will check for the number of users logged in to the remote machine myuser. Check the

/etc/nagios-plugins/config/check_nrpe.cfg file on the server machine. Here's what it will look like:

If you want to monitor additional services running on the remote machines, then edit the
/etc/nagios3/conf.d/services_nagios2.cfg file in the remote machine and add the following lines:

SMTP doesn't need any arguments passed into the check_smtp
program, so we use check_nrpe_1arg
define service {
 service_description SMTP
 use generic-service
 hostgroup_name nrpe
 check_command check_nrpe_1arg!check_smtp
}
define service {
 service_description LOAD
 use generic-service
 hostgroup_name nrpe
 check_command check_nrpe_1arg!check_load
}
check_disk takes an argument, /, so we use check_nrpe
define service {
 service_description DISK
 use generic-service
 hostgroup_name nrpe
 check_command check_nrpe!check_disk!/
}

Restart the Nagios service and you will be able to monitor the additional services on the remote machine.

Enabling external commands
By default, Nagios will only let you monitor the services on a host from the web interface. If you want to do some
operations such as stop or start a service from a web interface, you first need to enable it. First, stop the Nagios
service on the server using the following command:

sudo /etc/init.d/nagios3 stop
Now, edit the nagios.cfg file and set the value to 1 where you see check_external_commands:

You will have to set permissions on /var/nagios3/rw for apache2 to read/write. Use the following commands:

sudo dpkg-statoverride --update --add nagios www-data 2710 /var/lib/nagios3/rw
sudo dpkg-statoverride --update --add nagios nagios 751 /var/lib/nagios3
You will have to restart the Nagios service for the changes to take effect. Log in to the Nagios web interface. Click
on the services in the Tactical Overview section. Select any of the services; here, I am selecting Current Users. On
the right-hand side, you will see the commands box. You can click on any of those and run the commands right from
the web interface. The following screenshot shows the Service Commands box on the right-hand side:

If you are logged in as an admin (nagiosadmin) to the web interface, you can also stop or restart the Nagios service
using the Process Information page. This is shown in the following screenshot:

Puppet
A challenge for most of the system administrators is having the config set up in all the machines in the same manner.
The installation can be central, but this does not guarantee the configurations will be consistent across all machines.
Over a period of time, some machine configuration files might have been changed or moved to a different location.
This is where Puppet comes to the rescue.

Puppet is a system that helps you centrally manage the configuration across machines and helps avoid problems of
locating the config files in each of the remote machines and then changing the configuration in each of them one by
one. Puppet master is a service set up on a server to centrally track and maintain the configuration files on all your
client nodes. Every client will have a daemon running, which periodically reports to the Puppet master and also makes
the changes in the client config files. Puppet is primarily an open source system; however, there is an enterprise
version available as well.

You need to be careful with one issue though. If you manually change the configuration files in any of the client
machines, Puppet master will change it to the settings it had previously set. For any changes that have to stay, you
need to centrally set the configuration. If you want to test a service on a client, then it is advisable to first turn off
Puppet monitoring on that host and carry out the testing.

Puppet identifies every entity that it monitors as a resource. The resources are put into following categories:

Files (ownership, mode, content, and existence can all be managed)
Users and groups
Packages
Services
Commands and scripts (Puppet can execute these under particular conditions)
Crontabs
Mounts

Installing Puppet
To install Puppet on your Ubuntu Server, use the following command:

sudo apt-get install puppetmaster
Puppet also installs a set of other packages. The following screenshot shows a set of dependent packages:

After installation is complete, you can find the main config for Puppet in the /etc/puppet/puppet.conf file:

The username for the Puppet service is puppet. The following directory's owner needs to be the user named
puppet. Use this command:

chown puppet { /var/log/puppet, /var/lib/puppet }
Let's set up a basic file server config file so that the service can store and access file content. The file will be located in
/etc/puppet/fileserver.conf:

The preceding settings say where the files will be stored on the Puppet master machine and which all machines have
access and which do not. IP addresses can also be specified. You will have to use the mkusers and nonodes flags
when you run the Puppet master daemon server for the first time. The command is as follows:

/usr/bin/puppetmasterd --mkusers --nonodes

Setting up the client
Install the Puppet client on client machines using the following command:

sudo apt-get install puppet
Then, you need to set the Puppet server in the /etc/puppet/puppetd.conf file:

server = puppetserver.myubuntu.com

However, you need to set up the manifest before you can run the client.

Setting up the manifest
The Puppet master gets all the information and the manifest file will be run on all the client machines. You can view the
file at /etc/puppet/manifests/site.pp. The following code snippet will enable properties specific to the
/etc/sudoers file specified here for all client machines:

file { "/etc/sudoers":
 owner => "root",
 group => "root",
 mode => "440"
}

It's time to test the setup and check whether Puppet master is performing well.

First, edit the /etc/sudoers file on any of the client machines. Change any attribute or value in the file and save it.
Just make sure it is different from what you have set in the server file site.pp. Run the following command on the
Puppet master server:

puppetmasterd --verbose
Now, run the client Puppet on the client machine:

puppetd --waitforcert 60 --test
Clients need to authenticate to the master using a certificate. You may encounter errors with the message related to
certificates. Run the following command on the Puppet master server to let the server sign the client's certificate:

puppetca --sign client.example.com
The client will pick the certificate and run after 60 seconds. Now, go to the /etc/sudoers file in the client machine.
You will notice that it has changed to the one defined in the Puppet master site.pp file. Puppet will manage
attributes as well.

ClusterSSH
Most system administrators would want to execute a set of commands over a large number of
client machines. With ClusterSSH (cssh), admins can set up cluster sets of hosts and log in to
all of them once using SSH. Once you log in to the cssh terminal, all the commands that you
type in your server window will be replicated across all the nodes. You can monitor this with
the help of xterm and see what's going on. If you want to run a specific command on any of
the connected machines via xterm, click on that window and only that host will run your
commands now.

To install ClusterSSH, use the following command:

sudo apt-get install clusterssh

Next, you need to generate a global configuration file. The command is as follows:

sudo cssh -u > /etc/csshrc

Now, set up a system-wide cluster definition. To do this, change the /etc/clusters file and
add the servers, as follows:

servers server1 server2 server3

The preceding line will create a server group with server1, server2, and server3 as
members. Next, start the ClusterSSH service using the following command:

cssh servers

You will see three windows open via SSH, one per server.

If you want to log in as a specific user in each of these machines, say root, then prefix each of
the machines with the username. For example, the following modification will let you log in as
root to each of the three servers:

servers root@server1 root@server2 root@server3

The best way to use ClusterSSH is to have the key-based SSH set up between the machines.

If you have categorized your machines in the /etc/clusters file and for some reason want
to connect to all the machines (maybe for a security patch update), then you can connect to all
machines using the following commands:

servers server1 server2 server3
desktops desktop4 desktop5
all servers desktops

Execute the following command to connect all of the five machines:

sudo cssh all

Summary
In this chapter, we discussed how to set up Nagios and monitor hosts from a central place.
We looked at using Nagios templates, hostgroups, and services for managing client machines.
We also discussed setting up Nagios alerts, controlling the Nagios process, and executing
commands from the web interface. We learned about writing Nagios plugins and working with
the NRPE plugin for CPU as well as disk usage monitoring. Then, we discussed Puppet,
which is used to centrally manage the configuration. We tested our Puppet setup. Then, we
saw how ClusterSSH can be used to replicate commands over a set of host machines and
monitor them using xterm.

In the next chapter, you will learn about process management. You will learn about running
processes, monitoring processes, and background processes.

Chapter 5. Process Management
So far in this book, we have discussed topics such as package management, networking and DNS, network
authentication, monitoring, and optimization. In this chapter, we will discuss process management, the various stages in
a process, process priorities, and background and foreground jobs.

Let's go through some terminologies related to process management:

Process: This is any piece of software that is currently in running state.
PID: This is the process ID, and every process has one.
PPID: This is the process ID of the parent that started this process. Parents normally start child processes.
init: This is the first process and has process ID 1. The kernel starts this process and init does not have a
parent process.
kill: This is the command used to stop a process forcefully.
daemon: These are the processes that usually start when system is started and are running forever.
zombie: This is a process that has been killed already, yet shows up in the list of processes in the system. Note
that zombie processes cannot be killed.

The basics of process management
Let's now look at some basic process management commands and tools.

$$ and $PPID
Let's look at some shell variables that carry information about processes. The $$ is a special variable in shell that
stores the process ID of the current process. The process ID of its parent is in the $PPID variable. Here's an example
to check $$ and $PPID:

Note that you cannot assign values to these special shell variables.

pidof
If you want to know the ID of a process but you have only its name, you can use the command shown in the following
screenshot:

Here, you can see we have listed out the process ID for the apache2 process. You can specify any process name and
will see the process IDs with the pidof command.

Parent and child
In the previous sections, we saw the terminologies and also brief information on parent process. Essentially, every
process is started by its parent; in UNIX, processes follow the parent-child relation. Let's now demonstrate this by

calling a new bash from bash. We will see the child now becomes parent for another process when it starts.

First, let's print the process ID of the current bash process and its parent's process ID. We use the same variables $$
and $PPID for this:

echo $$ $PPID
The output is shown in the following screenshot:

Next, we'll start a new bash. This will start a new child process. Here, the child and parent process names are same,
namely bash, but the process IDs will be different. After starting a new bash, let's print the $$ and $PPID values:

bash
echo $$ $PPID
The output is shown in the following screenshot:

As you can see in the preceding screenshot, the process ID and parent process ID are displayed. Go back one step
and check what the process ID was earlier. Yes, you will surely notice that the parent process ID of the current
process is same as the process ID of previous bash before starting a new bash process. This will be helpful when
debugging and diagnosing child and parent processes.

The following screenshot puts this together. We end the current bash process with the exit command and again
check the process ID.

As we can see in the preceding screenshot, the process ID for the first bash process is 1623. Then, we launch
another bash process from this current bash process. The new bash gets a different process ID; here, we see the

process ID assigned is 2019. Also, the parent process ID for this new bash process is 1623, which is nothing but the
process ID for the previous bash process. Again, we exit from child bash process and come back to parent bash
process. On checking the process ID, we can confirm that it is the same 1623, which we saw earlier.

fork() and exec()
A parent process starts a child process in the following two phases:

fork: In this phase, the parent process creates an identical copy of itself.
exec: In this phase, the child process replaces the forked process.

When fork is executed, the parent duplicates the following to its child process:

Environment
Controlling terminal
umask
Root directory
Signal mask
Resource limits
Current working directory

The fork() and exec() calls are used in cases when there is a need for one program to run another program in
parallel.

exec
You can skip the fork operation and directly start a process with exec command. Let's see this with an example.
First, let's get the process ID of the current bash process. Then, start a new shell process, the korn shell. The
command to start the korn shell is as follows:

ksh
Once the korn shell is started, we again get the process ID and parent process ID with the following command:

echo $$ $PPID
The output is shown in the following screenshot:

Now, we will start a new bash process but this time we will bypass fork, which means there is mirroring of the same
process. Instead, the bash process will use the same process ID as that of ksh. The screenshot shows the complete
picture. Note that the process ID of the korn shell process and the process ID of the new bash shell process are the

same. Hence, we can say that we successfully initiated a new process directly with exec and skipped the fork.

ps
The ps is the command to get information on the processes running on Linux systems. If you type ps without any
options, it will show you a small subset of the currently running process, namely shell and ps. You will see a screen
similar to the following screenshot when you run the ps command:

There are four items listed: PID is the process ID, TTY is the terminal from which user has logged in, TIME is the CPU
time taken by the current process and is shown in minutes and seconds, and CMD is the command name that was used
to launch this process.

If you want the complete information of all the currently running processes on your machine, you can use the following
command:

ps -aux | less
We use three options along with the ps command here: -a tells the ps command to display processes from all users
and -u stands for showing detailed process information. You may relate it to difference between ls and ls -l. The
-x option will show processes for which there is no controlling terminal. These are mainly the daemons that are
started at boot process and not launched by any user or event. We pipe the output through less, as the result of the
ps -aux command can be quite long. Keys to navigate the less command's output are Space and B. The output of
this command is shown in the following screenshot:

You will see a screen similar to the preceding screenshot. The output has the following columns:

USER: This is the user who started the process.
PID: This is the process ID.
%CPU: This is percentage of CPU used by this process.
%MEM: This is the percentage of RAM used by this process.
VSZ: This is the virtual size in KB units.
RSS: This is the resident set size in KB units.
TTY: This is the terminal type.
STAT: This is the state code for the process, that is, the current state of the process. Refer to the next bullet
points to understand what each code means.
START: This is the time when process started.
TIME: This is the active time of the process.
COMMAND: This is the command which started the process.

The following are the codes for process states that can be seen in the STAT column:

D: This means the process is in an uninterruptible sleep
N: This means the process has low priority
R: This means the process is runnable or waiting in the run queue
S: This means the process is sleeping
T: This means the process is stopped
Z: This means the process is a zombie

Now, let's see another command that can be used for a similar task, that is, viewing the process information:

ps -ef

The preceding command will show a listing of fewer items in columns:

UID is the username of the owner for that process. STIME shows the start time for the process; it shows only date if
process was started more than 24 hours ago. You can also use the -l option with the ps command to get a long
listing. You will see a screen similar to the following screenshot:

Here, you will see additional columns. You only need to pay attention to the NI and SZ columns. The NI column
depicts the nice value. We will discuss more on nice values in the later sections of this chapter. It is the priority of the
process— the lesser the number, the higher the priority. 0 is the default value for NI on most Linux systems. SZ shows
the size of process in memory. The unit of SZ is 4 KB.

pstree

A nice way to view the processes in a tree-like structure is by using the pstree command. The output will be similar
to the following screenshot:

ps fx

To view the parent-child relationship between processes, you can use the following command:

ps fx
In the following screenshot, you can see that we are starting bash process and checking their process IDs. Then, we
use the ps fx command to view the parent-child relationship:

ps -C and pgrep

Sometimes, you may want to know the PID for a process from its name. The following commands can be used to do
exactly the same:

ps -C <process name>
Alternatively, you can use the following command:

pgrep <process name>
In the following screenshot, you can see the process ID of the sleep process:

top
The top command is widely used in Linux machines to monitor the processes. The top command shows the
processor activity in real time. It orders the running processes by CPU time, memory, and run time. You can
manipulate the processes right from the top screen. To start top, use the following command:

top
The top screen looks like this:

If you need help with the functions available in the top process, type h from inside the process. You will see the
following screen:

The top process recognizes interactive commands and these are single key commands. Some of the important ones
are as follows:

Space: This updates the screen immediately
Ctrl + L: This redraws the screen
h or ?: This displays the help screen as shown in the previous screenshot
k: This kills a process
i: This is the key to ignore or show zombie and idle processes
n or #: This allows you to choose the number of processes to show on the top screen
q: This means quit
r: This means re-nice. This is used to change the priority of a process. Only root users can enter negative
values.

Signaling processes
It's time to look at some of the signaling processes in Ubuntu Server.

kill
The kill command is used to stop or kill a process. The command is used as follows:

kill <PID>
Here, PID is the process ID of the process running on the Linux machine.

Listing all signals
If you need to view all the available signals that can be passed to a process, use the following command:

kill -l
Please note that the option provided with kill is the letter l and not digit 1. You will see a screen similar to the
following screenshot:

Let's look at some of the important signals next. The processes can receive the signals from other processes or users.

kill -1 or SIGHUP
Users can use kill -1 with digit 1 to force a process to reload its configuration. For example, if you want bash to
reload its configuration, you can execute the following commands:

sudo su
ps -C init
kill -1 1
The output is shown in the following screenshot:

Here, we reinitialized the init process. Note that you need to be logged in as root user to kill the init process. The
init process always has PID value as 1.

kill -15 or SIGTERM
When you use kill without any options, it defaults to -15. The SIGTERM command is the standard kill command,
and it is same as providing -15 as option. Both the following commands are same:

kill -15 1555
kill 1555

kill -9 or SIGKILL
The kill -9 command is a special type of kill. The kill command with option -9 will never be sent to the
process. This is the same reason why developers can't intercept this kill in their processes. When you send kill
with this signal, it goes to the kernel directly. This is also called as secured kill. The kernel shoots down the process,
whose process ID was passed along with the kill command. This command can be used when the process isn't
responding to any commands or signals. But you should be careful, as forcefully killing a process may mean an abrupt
stop and also you may end up losing some work that was in progress.

The syntax for this command is as follows:

kill -9 1555

SIGSTOP and SIGCONT
The SIGSTOP and SIGCONT commands are used to pause and start a running process. The SIGSTOP command,
which is the kill -19 command, will make the process go into a suspended state. This process will no longer be
using the CPU cycles, but will be present in memory. When you want to start the process or get it out of suspended
state, the kill -18 command can be used. The kill -18 command is SIGCONT telling the process to continue.
The syntax to use these commands is as follows:

kill -19 <PID>
kill -18 <PID>

pkill
If you do not know the PID of a process and want to kill the process by its name, then pkill is the command that
you have been looking for.

Let's see this in action in the following screenshot:

In the preceding screenshot, we first start a process sleep and let it run in the background. Then, we check if it is
running. We issue the following command to kill the process by its name:

pkill sleep
Then, we go ahead and check the process using the ps command.

killall
Suppose there are multiple instances of the same process running, and you want to kill them all. Use the killall
command to issue a kill statement to all processes with same name as follows:

killall <process name>
This results in the following output:

Process priorities
We will look at setting and changing process priorities in this section. We will now look at the
renice and nice commands.

renice
We saw in the earlier section that processes have a priority and nice value associated with
them. The top command screen shows the nice value under NI column. You can change the
priority of an already running process using the renice command. This will change the CPU
resource cycles that the process uses. Here's the syntax to change the priority of an already
running process:

renice +5 1555

If you are running this command as a normal user, the values you can assign are 0 to 20. Only
root user can set a negative nice value. Lesser the number, higher the priority. But be very
careful while setting a negative value to any process, as it may affect your Linux system
seriously and it might then be impossible for you to use the keyboard or SSH into the system.
By default, the kernel attributes almost all processes with a nice value of 0.

nice
The renice and nice commands are very similar; the only difference is that the nice
command is used when starting a process for which you want to set a priority. The syntax to
set a nice value to a process while starting is as follows:

nice +2 <script file name>

Again, the same rules apply here as that of renice. Normal users cannot assign nice values
less than 0. You can verify values of the process for which you changed the nice values from
the top command screen.

Background processes
We will now look at background processes and discuss how to start, view, and stop them.

jobs
There are times when processes may be running in the background. To view the processes that are running in the
background, use the following command:

jobs
By default, this is blank as you might not have jobs running in the background.

& (ampersand)
You might want to start a process directly in background. To do so, suffix the ampersand (&) symbol after the
process name when starting it. You might have observed this in the earlier sections of this chapter. Let's start the
sleep process in the background now. The command to do so is as follows:

sleep 1000 &
Now, let's check whether the process was started successfully and is running in the background using the jobs
command:

Here, we first checked for any processes running in the background using the jobs command. Initially, it showed
nothing, which means no jobs are running in the background. Next, we start the sleep process twice, both running in
background. Then, we check for these background jobs if they are running using the jobs command. We see them in
the output, which confirms that they are running in the background.

jobs -p
Assume you have some jobs running in the background. You now want to know the process IDs of these
background-running jobs. The command to view them is as follows:

jobs -p
Let's check this for the jobs that we ran in background in the previous section:

You can see the process ID in the jobs -p command's output and the process ID when those sleep jobs were
started, and both are same.

Suspended state with Ctrl + Z
You can suspend some processes by hitting the key-combination Ctrl + Z while the process is running. In the
following screenshot, we can see the vi process in suspended state when we start it and suspend it:

You can see in the preceding screenshot that the state of the vi process is now stopped.

bg
In the previous section, we saw jobs being put in the suspended state. You can start the jobs that are suspended in
the background using the bg command. Let's see a small example. We will suspend a sleep job and check whether
we can start it again with the bg command. Take a look at the following screenshot:

As you can see in the preceding screenshot, we started a sleep job in background, then another sleep job
normally. Then, we hit Ctrl + Z and suspended the sleep job. We then checked the state of different background
jobs using the jobs command. Then, we used the bg command with the ID of the background job to reactivate it.
Again, we verified the state of jobs using the jobs command and saw the state of job with ID 3 change.

fg
The fg command is used to get background jobs to the foreground. We first check for the background job ID that
you want to bring to the foreground using the jobs command:

Taking the same example from previous section, we see two jobs running in background. These are sleep jobs with
ID 2 and 3. Next, we use the fg command with the parameter 3, which is the job ID and bring the job to foreground.
The command will run for that duration and you will see the blinking cursor. The procedure to bring any background
running job to foreground is the same.

Summary
In this chapter, you learned about process management. We studied the various stages in a
process, process priorities, and background and foreground jobs. We discussed many
commands associated with a process, such as ps, top, fg, bg, jobs, and more. We also
discussed how to change the process priorities with their nice values, both at start of the job
and also while the job is running.

In the next chapter, we will study shell management, tools, user management, and more.

Chapter 6. Shell Management, Tools, and User
Management
In this chapter, we will discuss shell management, tools, and user management. Shell management will help
administrators set up shell for remote access to server without monitors, schedule jobs on the server for their
condition maintenance, and also collect information in logs for any troubleshooting. We will also look at optimizing the
shell. Lastly, we will learn about user management, permissions, and file access.

The Secure Shell server
Systems talk to each other over a network. People use their machines to log in to remote terminals to access and/or
process information on those servers. In order for the communication to be safe, we require a security mechanism in
place. UNIX networking initially worked on clear text, and the information could be read if the transmission was not
encrypted. Now, SSH solves this by implementing encryption at both ends of the connection. SSH has strong
encryption, which makes it difficult for the people trying to crack in.

Installing the SSH server
When you install the server, the client for SSH is also installed. It is preferred to install the server package even if all
you need is client only. There are many benefits of having the server package of SSH installed. The command to
install the SSH server is as follows:

sudo apt-get install openssh-server
This is shown in the following screenshot:

After the SSH server package is installed, it is set to start by default. This will start at runlevel 2 instead of runlevel 1.
So, it will start in the single user mode. If the server were configured to boot into recovery mode, then SSH would not
be possible for administrating the remote server.

Configuration
By default, most of the configuration for basic operation is set automatically. You may be required to open the port 22
TCP/IP if firewall or security blocks are in place. The configuration files for the SSH server can be found in following
locations:

/etc/default/ssh
/etc/ssh/sshd_config

The first file is shown in the following screenshot:

Default settings for the SSH server

The SSH script in /etc/init.d/ssh is responsible for starting the SSH daemon located in /usr/sbin/sshd. It
reads the custom configuration, if any, from the configuration file /etc/default/ssh. You may limit access to IPv4
or IPv6 address, have your own configuration file, or even choose to use a different TCP/IP port address.

The SSH configuration file

The configuration file for the SSH server is located at /etc/ssh/sshd_config. We will look at the important
settings in this file and also look at their default values:

As you can see from the preceding screenshot, first we have the port number. The default TCP/IP port for the SSH
service is 22. Comment this line if you wish to use a different port address, and mention the new port address in the
/etc/default/ssh file.

Port 22

If this server is one of your gateways, then uncomment the following two settings and specify the address you want the
server to listen to. By default, it would listen to all addresses if not changed:

#ListenAddress ::
#ListenAddress 0.0.0.0

The next line tells which version of SSH to use. You should ideally be using version 2, which is lot more secure than
the previous version:

Protocol 2

The next two lines are for the host keys. These are created during installation and access for read/write is limited to
root alone. These names refer to encryption algorithms, RSA, and DSA:

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key

To minimize the risk due to unprivileged process access, keep the following setting to true:

UsePrivilegeSeparation yes

Enable logging to send all log messages corresponding to authentication to the location /var/log/secure. Each
successful login or failure event is logged in the log files:

SyslogFacility AUTH
LogLevel INFO

The next set of directives is for authentication. LoginGraceTime is measured in seconds. It is the time given for a
user to enter the password before closing the connection. By default, access to root administration is allowed.
However, it is a best practice to disable it. The next setting checks the user ownership over a directory and prevents
other users from accessing files of a user who has not set any permission:

LoginGraceTime 120
PermitRootLogin yes
StrictModes yes

You may ignore the RSAAuthentication line as it is required only for SSH protocol version 1. The next line,
PubkeyAuthentication, is for enabling or disabling the support of private/public authentication keys. We will
discuss this in the next stage. AuthorizedKeysFile specifies the location of authorized encryption login keys, which
is usually a user's home subdirectory. All these are default values:

RSAAuthentication yes
PubkeyAuthentication yes
#AuthorizedKeysFile %h/.ssh/authorized_keys

Have a look at the following screenshot:

Also, it is advisable not to allow users to use an empty password. So, you need to set the following settings:

PermitEmptyPasswords no
ChallengeResponseAuthentication no

The PasswordAuthentication setting will be commented, but it is definitely important. This is the default value.
You should disable it only if you do not want the SSH server to transmit passwords over network. Wondering how to
log in then? Wait for the key-based authentication section. The PasswordAuthentication setting specifies whether
local passwords can be used for authentication:

PasswordAuthentication yes
PasswordAuthentication = yes

The next set of flags will help you enable remote access on GUI based windows:

X11Forwarding yes
X11DisplayOffset 10

If you want the connection to the server to be restored in the event of an interruption in a wireless network, then set
the following setting as yes:

TCPKeepAlive yes

You can control the maximum number of SSH connections to the server with the following setting. The next line after
that is the message you want to display to the user at login. You may customize the message in the file specified as
part of value.

#MaxStartups 10:30:60
#Banner /etc/issue.net

SFTP is the encrypted and secure method of FTP over SSH connections. You should be enabling it and then setting it
as follows:

Subsystem sftp /usr/lib/openssh/sftp-server

The PAM utilities can be used if the following directive is set to yes:

UsePAM yes

These settings are shown in the following screenshot:

Using passphrases
You can strengthen your security by not allowing passwords to be transmitted over a network. For this, you will need
to set the password authentication to no in the preceding file (from previous section). We will change this at the last
step after setting up passphrases:

PasswordAuthentication no

Now, we will use a pair of keys to set up passphrases. A pair of public and private keys will do the authentication
work for you and passwords won't be required between two machines. The process is simple.

First, log in to the client machine. Next, generate the public/private key pair on client machine using the following
command:

ssh-keygen -t rsa
The preceding command will create two files in the user's home directory under the ./ssh folder. It will ask for a
location where you want to save the files. By default, it will show ./ssh under the user's home directory. Just press

Enter so that the default location is selected. Next, it will prompt you to enter a passphrase to your set of
public/private key pair. Enter a passphrase; if you leave it blank, it is possible that any person who gets a hold of the
client machine can get into the server, which may be problematic in some cases:

Enter file in which to save the key (/home/skanda/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/skanda/.ssh/id_rsa.
Your public key has been saved in /home/skanda/.ssh/id_rsa.pub.
The key fingerprint is:

This is shown in the following screenshot:

By default, it uses 1024-bit encryption that is good enough for most cases. However, if you feel the need for a
stronger encryption, you can specify the encryption strength as follows. Note that the higher the bits you ask for, the
more the amount of time taken will be. The command is as follows:

ssh-keygen -t rsa -b 4096
We have generated the key pair. The next step is to add the public key to the server for which you want access to.
This can be done in three ways. Use the following command to copy the public key to server's known hosts folder:

ssh-copy-id -i .ssh/id_rsa.pub 192.168.1.5
The option -i stands for identity file, that is, it specifies which public key file will be copied. The IP address is the
server's IP address to which you want to add the client's public key for pairing. You will be prompted for the server's
password. Once the pairing is done, you will be able to SSH into the server without the need for a password.

The second way is to copy it to the server machine over SFTP and then append the key into the authorized keys
file. Be careful here; do not erase the file contents already present in the file.

The last method is to copy your public key to a USB flash drive (pen drive) and then copy it into the server machine.
Append the public key file to the authorized keys file.

After you get your public key successfully added to the authorized keys file, you can try logging in to the server from
the client. If all goes well, you will not be prompted for a password. If it asks you to enter your password, it means
that the previous operation was not successful. Repeat the process again. If you were able to log in to the server
without password, then your passphrases setup is successful. Now, you can go ahead and set the following setting to
false, which will make sure that the server will accept connection only if private/public keys match and will not
authenticate on password:

PasswordAuthentication no

This has to be changed in the /etc/ssh/sshd_config file.

Scheduling jobs with cron
The cron system has brought relief to system administrators, without which they had to wake up and run jobs at
specified times in order to run a server smoothly. For example, if there is a requirement to clear the /tmp directory
every Sunday midnight before the business begins next day (Monday morning), it makes absolutely no sense for an
administrator to be awake and carry out the job manually at midnight. Thanks to cron, jobs can now be scheduled,
that is, they can start at scheduled times. cron and at are daemons that help achieve this. Linux's cron is a little
different compared to that of Unix, as cron in Unix wakes only at the time when it has to launch a program.

The cron and at daemons should be installed by default on your Ubuntu Server. Systems are designed to check for
user specified cron jobs in the /var/spool/cron directory, as shown in the following screenshot. Also, cron checks
the /etc/crontab and the /etc/cron.d directory for computer jobs.

Let's take a look at the /etc/crontab configuration file. Comments start with #. The SHELL and PATH are variables
that can be set. Time serves as an alarm for running the commands specified in the file.

Let's understand the following line from the /etc/crontab file:

m h dom mon dow user command

Here is the representation of each of the columns in the preceding line:

Column heading Description

m Minute

h Hour

dom Day of month

mon Calendar month

dow Day of week

user User running the job

command Command to run the job

A star or an asterisk (*) means the job will be run for all standard values for that particular column. For example, an *
under month will represent all values 1 to 12. The /etc/crontab is shown in the following screenshot:

Standard jobs in Linux are run from the /etc/crontab file on an hourly, daily, weekly, and monthly basis. The
scripts for these files are present in the corresponding folders /etc/cron.hourly, /etc/cron.daily,
/etc/cron.weekly, and /etc/cron.monthly, respectively. The schedule for jobs which do not fall under any of
these is put into the /etc/cron.d directory:

Scheduling user cron jobs
Normal users can make use of the cron daemons to schedule and run user specific jobs. Here are the four switches
that deal with crontab:

-u user: The root user can edit the crontab file of another user.
-l: This is used to list the entries in the crontab.
-r: This is used to remove cron entries.
-e: This is used to edit a crontab entry.

Users can configure account-specific cron jobs using the following command:

crontab -e
This will open the Nano editor, which is the default editor in Ubuntu for editing a crontab file. The format to be
followed for the user-specific cron file will be the same as that of the system-level /etc/crontab configuration file.
However, the username is not required:

You will see a window similar to the preceding screenshot when you edit a user-specific crontab configuration file.

Configuring jobs using at
We discussed cron in the previous section. It is used to schedule and run jobs at regular intervals. The at utility is used
to schedule jobs for one-time execution. An example of one-time scheduling may be formatting a media drive. The
jobs which are scheduled using the at daemon can be seen in the following directory /var/spool/cron/atspool.

The command to schedule a job using the at utility is as follows:

$ at now + 1 hour
at> touch report_file
at> Ctrl-D
Take a look at the following screenshot:

To come out of the at prompt, hit the Ctrl + D keys. If you want to view the list of jobs spooled for the at daemon,
use the command atq. To remove a job scheduled by at, use the command atrm with the queue number that you
viewed with the atq command. The preceding screenshot shows the same.

Some of the examples for the at schedule are listed in the following table:

Period Example Description

Minutes at now + 40 minutes Start the job in 40 minutes

Hours at now + 5 hours Start the job in 5 hours

Days at now + 3 days Start the job in 72 hours

Weeks at now + 2 weeks Start the job in 14 days

n/a at teatime Start the job at 4.00 p.m.

n/a at 2:00 06/22/15 Start the job at 2 a.m. on June 6, 2015

Job schedule security
System administrators can limit the user's access to cron and at daemons. For cron, the settings need to be
implemented in the /etc/cron.allow and /etc/cron.deny files. If these files are not present, then cron usage is
not restricted. If there are usernames present in the allow file, then only these users are allowed to use the cron
daemon to schedule jobs. Conversely, if the deny files has usernames, then all users expect the ones mentioned can
make use of the cron daemon. The right way to populate these files is to mention one username per line.

Similarly, access to the at daemon can be controlled. The configuration files for this are /etc/at.allow and
/etc/at.deny, as shown in the following screenshot:

By default, the configuration file /etc/at.deny has a standard list of services, as shown in the preceding screenshot.
If an unauthorized user breaks into any of these, they will not be able to run at jobs.

Optimizing the shell
By default, Ubuntu configures the root and the first user created to the bash shell. This is the traditional shell. Any
users created from this shell will also be given the same bash shell. We will discuss the configuration files and
commands related to the bash shell. The system-wide settings files can be located in the folder /etc. Some of the
most important ones are bash.bashrc, bash_completion, profile, and scripts stored in the
/etc/bash_completion.d folder:

The same files are supplemented and you can override them as hidden files in each users' home directory. The files are
.bashrc, .bash_history, .bash_logout, and .profile, as shown in the following screenshot:

Bash profiles
We will look at the two files that are the configuration files for the bash shell. They are stored in /etc and named
bash.bashrc and profile.

The /etc/bash.bashrc file

Ubuntu uses the /etc/bash.bashrc file for aliases and functions throughout the system. You can open the file and
view the contents to get an understanding of what parameters are set for the users of this system:

Some of the parameters we can see in the file are as follows:

Assigning a prompt using the PS1 variable. This appears at start of line before the cursor at command prompt.
The settings for automatic command completion from /etc/bash_completion
Message to be displayed when user is logging with sudo access.

The same settings are called in each user's home directory by .bashrc. There might be some additional settings in the
user's home directory files of .bash_history and .bash_logout.

The /etc/profile file

This file is used by Ubuntu for system-wide environment and startup files. Let's look at the /etc/profile file. You
will see a similar file in your Ubuntu Server:

We can see the profile sets a command prompt as the value for the PS variable.

Variables in bash

There are quite a few standard environment variables for bash. To check the default values for them, use the env
command. One of the most important variables in bash is the PATH. When you try to run a command, the directories
listed in $PATH will be automatically searched. So, you will not be required to include the complete path to the
command if the parent directories' path exists in the $PATH variable. Run the env command:

env
The output of this command is shown in the following screenshot:

You can add a new path for a directory to the path variable. If you want to add /etc into the $PATH variable, then
execute the following commands on the shell:

PATH=$PATH:/etc
export PATH
echo $PATH
However, if you want to set a user's path, then add the following line to that particular user's .profile file in the
home directory:

PATH=$PATH:/etc

User management and file permissions
We will discuss user management concepts such as creating a user, assigning permissions, and deleting a user in this
section. Then, we will discuss file permissions for user and groups.

User management in Ubuntu
In this section, we will discuss how to add users, delete users, give them permissions, and more.

Adding and removing users

To add a new user to your Ubuntu Server, use the following command:

sudo adduser user2
You will be asked to enter some details apart from the username and password for the new user. To delete a user,
use the following commands:

sudo deluser user2
sudo rm -r /home/user2
Pay attention here, this operation does not delete the home directory of the user. Adding and deleting groups is similar
to that of users. Here's the syntax to add and remove groups:

sudo addgroup groupname
sudo delgroup groupname
Now, to add a user to a group, execute the following command:

sudo adduser user2 groupname

Managing file permissions
Linux is known for its security offered on file access, with read, write, and execute. You can set the default
permissions using umask. A user who creates a file will become the owner initially, but this can be changed too. We
will look at different commands such as chmod, chown, and chgrp in the following sections in order to efficiently
manage the permissions for file access.

Understanding file permissions

File permissions in Linux are very easy to understand. Let's look at an example here:

ls -l /etc/ssh
The output of this command is shown in the following screenshot. The first 10 characters are of importance to us while
discussing permissions. The first character states this is a file or directory; d stands for directory, whereas a stands for
a regular file, b is for the block device, and c is the hardware. The next set of nine characters is for file permissions.
We will read those in sets of three. The first set of three bits is file owner's permission, next set of three bits is group
permissions, and the last set of three bits is access permissions for others. Here, r is read, w is write, and x is execute.

Changing permissions with chmod

The chmod command uses the numeric way of representation for permissions associated with file for owner, group,
and others. Octal base is used and the number 1 represents one set of 3 bits, so 3 Octal numbers with chmod will
define the 9 bits we saw in the preceding section. This is explained in the following table:

r, w, x Permissions Binary Octal

--- 000 0

--x 001 1

-w- 010 2

-wx 011 3

r-- 100 4

r-x 101 5

rw- 110 6

rwx 111 7

Here are the values for read, write, and execute: r is 4, w is 2, and x is 1. Let's create a new file in the home directory
and change the permissions using the chmod command:

touch test_file
ls -l test_file
chmod 755 test_file
ls -l test_file

This is shown in the following screenshot:

Here, we changed the access permissions for groups and others. We made the file executable. Only 3 Octal digits can
change the entire 9 bits of file permissions access.

One more method exists to change the file access permissions. Suppose you want to give group write permissions for
the preceding file. You can use the following command to change only write bits for users in the group:

chmod g+w test_file
The letters for user, group, and others are u, g, and o respectively. The access letters for read, write, and execute are
r, w, and x, respectively. The symbols + and - are used to add or remove an access permission. This method is used
in cases when you want to change only 1 access and for one user type only. Have a look at the following screenshot:

Modifying ownership using chown and chgrp

To change the user and group owner for a file, use the chown and chgrp commands, respectively. Let's try these two
commands. We will create a user named user2, a new group named testgroup, and change user and group owner
for the preceding file named test_file:

sudo adduser user2
sudo addgroup test_group
ls -ltr test_file
sudo chown user2 test_file
sudo chgrp test_group test_file
ls -ltr test_file
As we can see in the following screenshot, we first created a new user, user2. Then, we created a new group
test_group. Next, we changed the owner of the file to user2 using the chown command. Finally, we successfully
changed the group owner to test_group with the chgrp command. For verification, we executed the ls -ltr
command with the parameter test_file file name before and after executing the chown and chgrp commands. We
could clearly see the difference and hence our executions were successful.

Setting default permissions with umask

In Linux, whenever a new file is created, the execution permissions for it will be disabled by default. This is to ensure
security, as less executable files mean less chances of breaking through the system. Each time a new file is created, its
permissions are set based on the values specified in umask. For example, if the umask value is set to 133, then the
new file will have permission as 777 - 133 = 644. This means the user or owner has read/write permission, the group
owner has only read permission, and others have read permission only. Use the following command to see the umask
value in your Ubuntu Server:

umask
To change the value of umask, run the command with the value you want to set. If we want to change the umask
value to 022, we can run the command as follows:

umask 0022
The first bit, which is 0, is not used, so you can ignore it. One important point to remember is that even though you set
umask values to make a file executable at creation, Ubuntu no longer allows a file to have executable permissions at
the point of file creation. You will have to manually change the permission using the chmod command.

Special file permissions
Sometimes, it is imperative to provide all users in the system with access to some programs. But giving read, write,
and execute permissions to every user can be risky. One way is to set SUID and SGID permission for a file. SUID
stands for set user ID and SGID is short for set group ID. SUID, SGID and sticky bits are special permissions for
a file. Let's check how the permissions look for a file with SUID set:

ls -l /usr/bin/passwd
The output is shown in the following screenshot. You can see an s character instead of x for the user's execute
permission. Even though the user owner and group owner is root, all users in your system will have execute
permission for this file. The rules are similar for the SGID bit as well.

We can check for the sticky bit for a directory with the ls -l / command. If you observe carefully, you will see a
character t in place of x at the last permission bit for the /tmp directory. This means all users will have permission to
access the /tmp folder.

You can change the SUID bit for a file. Here's the command to add SUID to our test_file:

sudo chmod u+s test_file
For changing the SGID bit, use the command chmod with the g+s option along with file name as parameter:

sudo chmod g+s test_file
The sticky bit is normally applicable to folders. This ensures that users will have permissions to add or remove files
from the directory. You can set the sticky bit on a file with the following command:

sudo chmod o+t directory

Summary
In this chapter, we discussed how to create a Secure Shell server. Then, we discussed
scheduling jobs using cron, optimized the shell, and managed user profiles. In the end, we
studied file access, Octal, and special file permissions.

The next chapter deals with virtualization, how to implement virtualization, and the benefits of
virtualization. You will learn about KVM, Xen, and Qemu.

Chapter 7. Virtualization
This chapter deals with virtualization techniques—why virtualization is important and how
administrators can install and serve users with services via virtualization. We will learn about
KVM, Xen, and Qemu. So sit back and let's take a spin into the virtual world of Ubuntu.

What is virtualization?
Virtualization is a technique by which you can convert a set of files into a live running machine
with an OS. It is easy to set up one machine and much easier to clone and replicate the same
machine across hardware. Also, each of the clones can be customized based on requirements.
We will look at setting up a virtual machine using Kernel-based Virtual Machine, Xen, and
Qemu in the sections that follow.

Today, people are using the power of virtualization in different situations and environments.
Developers use virtualization in order to have an independent environment in which they safely
test and develop applications without affecting other working environments. Administrators are
using virtualization to separate services and also commission or decommission services as and
when required or requested.

By default, Ubuntu supports the Kernel-based Virtual Machine (KVM), which has built-in
extensions for AMD and Intel-based processors. Xen and Qemu are the options suggested
where you have hardware that does not have extensions for virtualization.

libvirt
The libvirt library is an open source library that is helpful for interfacing with different
virtualization technologies. One small task before starting with libvirt is to check your hardware
support extensions for KVM. The command to do so is as follows:

kvm-ok

You will see a message stating whether or not your CPU supports hardware virtualization. An
additional task would be to verify the BIOS settings for virtualization and activate it.

Installation
Use the following command to install the package for libvirt:

sudo apt-get install kvm libvirt-bin

Next, you will need to add the user to the group libvirt. This will ensure that user gets
additional options for networking. The command is as follows:

sudo adduser $USER libvirtd

We are now ready to install a guest OS. Its installation is very similar to that of installing a
normal OS on the hardware. If your virtual machine needs a graphical user interface (GUI),
you can make use of an application virt-viewer and connect using VNC to the virtual
machine's console. We will be discussing the virt-viewer and its uses in the later sections of
this chapter.

virt-install

virt-install is a part of the python-virtinst package. The command to install this package is as
follows:

sudo apt-get install python-virtinst

One of the ways of using virt-install is as follows:

sudo virt-install -n new_my_vm -r 256 -f new_my_vm.img \
-s 4 -c jeos.iso --accelerate \
--connect=qemu:///system --vnc \
--noautoconsole -v

Let's understand the preceding command part by part:

-n: This specifies the name of virtual machine that will be created
-r: This specifies the RAM amount in MBs
-f: This is the path for the virtual disk
-s: This specifies the size of the virtual disk
-c: This is the file to be used as virtual CD, but it can be an .iso file as well
--accelerate: This is used to make use of kernel acceleration technologies
--vnc: This exports the guest console via vnc
--noautoconsole: This disables autoconnect for the virtual machine console
-v: This creates a fully virtualized guest

Once virt-install is launched, you may connect to console with virt-viewer utility from remote
connections or locally using GUI.

Tip

Use \ to wrap long text to next line.

virt-clone

One of the applications to clone a virtual machine to another is virt-clone. Cloning is a process
of creating an exact replica of the virtual machine that you currently have. Cloning is helpful
when you need a lot of virtual machines with same configuration. Here is an example of cloning
a virtual machine:

sudo virt-clone -o my_vm -n new_vm_clone -f /path/to/ new_vm_clone.img --connect=qemu:///sys

Let's understand the preceding command part by part:

-o: This is the original virtual machine that you want to clone
-n: This is the new virtual machine name
-f: This is the new virtual machine's file path
--connect: This specifies the hypervisor to be used

Managing the virtual machine
Let's see how to manage the virtual machine we installed using virt.

virsh

Numerous utilities are available for managing virtual machines and libvirt; virsh is one such
utility that can be used via command line. Here are a few examples:

The following command lists the running virtual machines:

virsh -c qemu:///system list
The following command starts a virtual machine:

virsh -c qemu:///system start my_new_vm
The following command starts a virtual machine at boot:

 virsh -c qemu:///system autostart my_new_vm
The following command restarts a virtual machine:

virsh -c qemu:///system reboot my_new_vm
You can save the state of virtual machine in a file. It can be restored later. Note that once
you save the virtual machine, it will not be running anymore. The following command
saves the state of the virtual machine:

virsh -c qemu://system save my_new_vm my_new_vm-290615.state
The following command restores a virtual machine from saved state:

virsh -c qemu:///system restore my_new_vm-290615.state
The following command shuts down a virtual machine:

virsh -c qemu:///system shutdown my_new_vm
The following command mounts a CD-ROM in the virtual machine:

virsh -c qemu:///system attach-disk my_new_vm /dev/cdrom /media/cdrom

The virtual machine manager

A GUI-type utility for managing virtual machines is virt-manager. You can manage both local
and remote virtual machines. The command to install the package is as follows:

sudo apt-get install virt-manager

The virt-manager works on a GUI environment. Hence, it is advisable to install it on a remote
machine other than the production cluster, as production cluster should be used for doing the
main tasks. The command to connect the virt-manager to a local server running libvirt is as
follows:

virt-manager -c qemu:///system

If you want to connect the virt-manager from a different machine, then first you need to have
SSH connectivity. This is required as libvirt will ask for a password on the machine. Once you
have set up passwordless authentication, use the following command to connect manager to
server:

virt-manager -c qemu+ssh://virtnode1.ubuntuserver.com/system

Here, the virtualization server is identified with the hostname ubuntuserver.com.

The virtual machine viewer

A utility for connecting to your virtual machine's console is virt-viewer. This requires a GUI to
work with the virtual machine.

Use the following command to install virt-viewer:

sudo apt-get install virt-viewer

Now, connect to your virtual machine console from your workstation using the following
command:

virt-viewer -c qemu:///system my_new_vm

You may also connect to a remote host using SSH passwordless authentication by using the
following command:

virt-viewer -c qemu+ssh://virtnode4.ubuntuserver.com/system my_new_vm

JeOS and vmbuilder
Let's now look at JeOS and vmbuilder to build our own VM image.

JeOS
JeOS, short for Just Enough Operation System, is pronounced as "Juice" and is an operating system in the Ubuntu
flavor. It is specially built for running virtual applications. JeOS is no longer available as a downloadable ISO CD-
ROM. However, you can pick up any of the following approaches:

Get a server ISO of the Ubuntu OS. While installing, hit F4 on your keyboard. You will see a list of items and
select the one that reads Minimal installation. This will install the JeOS variant.
Build your own copy with vmbuilder from Ubuntu.

The kernel of JeOS is specifically tuned to run in virtual environments. It is stripped off of the unwanted packages and
has only the base ones. JeOS takes advantage of the technological advancement in VMware products. A powerful
combination of limited size with performance optimization is what makes JeOS a preferred OS over a full server OS
in a large virtual installation.

Also, with this OS being so light, the updates and security patches will be small and only limited to this variant. So, the
users who are running their virtual applications on the JeOS will have less maintenance to worry about compared to a
full server OS installation.

vmbuilder
The second way of getting the JeOS is by building your own copy of Ubuntu; you need not download any ISO from
the Internet. The beauty of vmbuilder is that it will get the packages and tools based on your requirements. Then, build
a virtual machine with these and the whole process is quick and easy. Essentially, vmbuilder is a script that will
automate the process of creating a virtual machine, which can be easily deployed. Currently, the virtual machines built
with vmbuilder are supported on KVM and Xen hypervisors.

Using command-line arguments, you can specify what additional packages you require, remove the ones that you feel
aren't necessary for your needs, select the Ubuntu version, and do much more. Some developers and admins
contributed to the vmbuilder and changed the design specifics, but kept the commands same. Some of the goals were
as follows:

Reusability by other distributions
Plugin feature added for interactions, so people can add logic for other environments
A web interface along with CLI for easy access and maintenance

Setup

Firstly, we will need to set up libvirt and KVM before we use vmbuilder. libvirt was covered in the previous section.
Let's now look at setting up KVM on your server.

We will install some additional packages along with the KVM package, and one of them is for enabling X server on
the machine. The command that you will need to run on your Ubuntu Server is as follows:

sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils
The output of this command will be as follows:

Let's look at what each of the packages mean:

libvirt-bin: This is used by libvirtd for administration of KVM and Qemu
qemu-kvm: This runs in the background
ubuntu-vm-builder: This is a tool for building virtual machines from the command line
bridge-utils: This enables networking for various virtual machines

Adding users to groups

You will have to add the user to the libvirtd command; this will enable them to run virtual machines. The command
to add the current user is as follows:

sudo adduser `id -un` libvirtd
The output is as follows:

Installing vmbuilder
Download the latest vmbuilder called python-vm-builder. You may also use the older ubuntu-vm-builder, but there
are slight differences in the syntax.

The command to install python-vm-builder is as follows:

sudo apt-get install python-vm-builder
The output will be as follows:

Defining the virtual machine

While defining the virtual machine that you want to build, you need to take care of the following two important points:

Do not assume that the enduser will know the technicalities of extending the disk size of virtual machine if the
need arises. Either have a large virtual disk so that the application can grow or document the process to do so.
However, it would be better to have your data stored in an external storage device.
Allocating RAM is fairly simple. But remember that you should allocate your virtual machine an amount of
RAM that is safe to run your application.

To check the list of parameters that vmbuilder provides, use the following command:

vmbuilder -h
The result is shown in the following screenshot:

The two main parameters are virtualization technology, also known as hypervisor, and targeted distribution.

The distribution we are using is Ubuntu 14.04, which is also known as trusty because of its codename. The
command to check the release version is as follows:

lsb_release -a
The output is as follows:

Let's build a virtual machine on the same version of Ubuntu. Here's an example of building a virtual machine with

vmbuilder:

sudo vmbuilder kvm ubuntu --suite trusty --flavour virtual --arch amd64 -o --libvirt
qemu:///system
Now, we will discuss what the parameters mean:

--suite: This specifies which Ubuntu release we want the virtual machine built on
--flavour: This specifies which virtual kernel to use to build the JeOS image
--arch: This specifies the processor architecture (64 bit or 32 bit)
-o: This overwrites the previous version of the virtual machine image
--libvirt: This adds the virtual machine to the list of available virtual machines

Now that we have created a virtual machine, let's look at the next steps.

JeOS installation

We will examine the settings that are required to get our virtual machine up and running.

IP address

A good practice for assigning IP address to the virtual machines is to set a fixed IP address, usually from the private
pool. Then, include this info as part of the documentation. We will define an IP address with following parameters:

--ip (address): This is the IP address in dotted form
--mask (value): This is the IP mask in dotted form (default is 255.255.255.0)
--net (value): This is the IP net address (default is X.X.X.0)
--bcast (value): This is the IP broadcast (default is X.X.X.255)
--gw (address): This is the gateway address (default is X.X.X.1)
--dns (address): This is the name server address (default is X.X.X.1)

Our command looks like this now:

sudo vmbuilder kvm ubuntu --suite trusty --flavour virtual --arch amd64 -o --libvirt
qemu:///system --ip 192.168.0.10
You may have noticed that we have assigned only the IP, and all others will take the default value.

Enabling the bridge

We will have to enable the bridge for our virtual machines, as various remote hosts will have to access the
applications. We will configure libvirt and modify the vmbuilder template to do so.

First, create the template hierarchy and copy the default template into this folder:

mkdir -p VMBuilder/plugins/libvirt/templates
cp /etc/vmbuilder/libvirt/* VMBuilder/plugins/libvirt/templates/
Use your favorite editor and modify the following lines in the
VMBuilder/plugins/libvirt/templates/libvirtxml.tmpl file:

<interface type='network'>
 <source network='default'/>
</interface>

Replace these lines with the following lines:

<interface type='bridge'>
 <source bridge='br0'/>
</interface>

Partitions

You have to allocate partitions to applications for their data storage and working. It is normal to have a separate
storage space for each application in /var.

The command provided by vmbuilder for this is --part:

--part PATH
vmbuilder will read the file from the PATH parameter and consider each line as a separate partition. Each line has two
entries, mountpoint and size, where size is defined in MBs and is the maximum limit defined for that
mountpoint.

For this particular exercise, we will create a new file with name vmbuilder.partition and enter the following lines
for creating partitions:

root 6000
swap 4000

/var 16000

Also, please note that different disks are identified by the delimiter ---.

Now, the command should be like this:

sudo vmbuilder kvm ubuntu --suite trusty --flavour virtual \
--arch amd64 -o --libvirt qemu:///system --ip 192.168.0.10 \
--part vmbuilder.partition
Tip

Use \ to wrap long text to the next line.

Setting the user and password

We have to define a user and a password in order for the user to log in to the virtual machine after startup. For now,
let's use a generic user identified as user and the password password. We can ask user to change the password
after first login.

The following parameters are used to set the username and password:

--user (username): This sets the username (default is ubuntu)
--name (fullname): This sets a name for the user (default is ubuntu)
--pass (password): This sets the password for the user (default is ubuntu)

So, now our command will be as follows:

sudo vmbuilder kvm ubuntu --suite trusty --flavour virtual \
--arch amd64 -o --libvirt qemu:///system --ip 192.168.0.10 \
--part vmbuilder.partition --user user --name user --pass password
Final steps in the installation

Our first VM image is almost done. Let's try booting it and see it live in action.
First boot

There are certain things that will need to be done at the first boot of a machine. We will install openssh-server at
first boot. This will ensure that each virtual machine has a key, which is unique. If we had done this earlier in the setup
phase, all virtual machines would have been given the same key; this might have posed a security issue.

Let's create a script called first_boot.sh and run it at the first boot of every new virtual machine:

This script will run the first time the virtual machine boots
It is run as root
apt-get update
apt-get install -qqy --force-yes openssh-server

Then, add the following line to the command line:

--firstboot first_boot.sh
First login

Remember we had specified a default password for the virtual machine. This means all the machines where this image
will be used for installation will have the same password. We will prompt the user to change the password at first
login. For this, we will use a shell script named first_login.sh. Add the following lines to the file:

This script is run the first time a user logs in.
echo "Almost at the end of setting up your machine"
echo "As a security precaution, please change your password"
passwd

Then, add the parameter to your command line:

--firstlogin first_login.sh
Auto updates

You can make your virtual machine update itself at regular intervals. To enable this feature, add a package named
unattended-upgrades to the command line:

--addpkg unattended-upgrades
ACPI handling

ACPI handling will enable your virtual machine to take care of shutdown and restart events that are received from a
remote machine. We will install the acipd package for the same:

--addpkg acipd
The complete command

So, the final command with the parameters that we discussed previously would look like this:

sudo vmbuilder kvm ubuntu --suite trusty --flavour virtual \
--arch amd64 -o --libvirt qemu:///system --ip 192.168.0.10 \
--part vmbuilder.partition --user user --name user --pass password \
--firstboot first_boot.sh --firstlogin first_login.sh \
--addpkg unattended-upgrades --addpkg acipd

Summary
In this chapter, we discussed various virtualization techniques. We discussed virtualization as
well as the tools and packages that help in creating and running a virtual machine. Also, you
learned about the ways we can view, manage, connect to, and make use of the applications
running on the virtual machine. Then, we saw the lightweight version of Ubuntu that is fine-
tuned to run virtualization and applications on a virtual platform. At the later stages of this
chapter, we covered how to build a virtual machine from a command line, how to add
packages, how to set up user profiles, and the steps for first boot and first login.

In the next chapter, we will study cloud and OpenStack, how to set up Ubuntu with
OpenStack, and more.

Chapter 8. OpenStack with Ubuntu
In the previous chapters, we discussed topics such as network authentication, monitoring and optimizing your Ubuntu
Server, process management, shell management, and user management. Then, we saw the virtualization techniques in
Ubuntu. In this chapter, we will study OpenStack, which is the open source solution for cloud computing. First, we
will look at the architecture of OpenStack and the different components that make up the complete system. Then, we
will look at an example environment that will help in installing the OpenStack components, networking them, and
setting up the security. In the later parts of this chapter, we will see how to install the different components that will
make up a complete OpenStack system. So let's begin the journey.

The OpenStack architecture
The following diagram shows the architecture of an OpenStack installation with the components. Let's take a look at
what each component does and what the services are called.

We see there are nine blocks with different names, each one for a different component and running different services:

Image source: http://docs.openstack.org/

The following table puts the information of these components together:

Service Project Description

Dashboard Horizon The Horizon project provides the user with a portal for interacting with the services.
Some of the examples are to launch an instance, assign IP addresses, and so on.

Compute Nova It is the responsibility of this service to manage the compute instances. They are related to
virtual machine spawning, scheduling, and decommissioning.

Networking Neutron This does the job of enabling network-connectivity-as-a-service for other components in
the OpenStack framework. Also, it has an API that can be used for defining networks.

Object
Storage

Swift Swift makes use of RESTful for storing and retrieving arbitrary unstructured data objects.
Restful is an HTTP-based API. It is fault tolerant owing to its replication and scaling out
architecture. It's nothing like a typical file server having mountable directories.

Block
Storage

Cinder This provides persistent block storage. Also, the driver is used for creating and managing
Block Storage devices.

Identity
Service

Keystone Authentication and authorization handling is taken up by Keystone. It also has a catalog
of all services.

Image
Service

Glance This stores and retrieves the images of virtual machine disks, which will be used during
instance provisioning.

http://docs.openstack.org/

Telemetry Ceilometer Ceilometer does the job of monitoring, metering, billing, benchmarking, and scalability for
statistical purposes.

Orchestration Heat The orchestration of various cloud applications using the HOT template from OpenStack
or the AWS CloudFormation template is handled by Heat.

Database
Service

Trove This is responsible for providing a scalable functionality for Cloud Database-as-a-
Service, and it is for both relational and nonrelational databases.

Service Project Description

The environment
For a basic setup, let's take a look at the basic environment required. We will need to make sure all our machines are
installed with the same version of Ubuntu Server 64 bit version. An example of this architecture is shown the following
diagram:

Image source: http://docs.openstack.org/

OpenStack will not necessarily need a large amount of resources, and you can refer to the following minimum
resource requirements:

The controller node should have at least one processor, 2 GB memory, and 5GB or more storage
The network node should have at least one processor, 512 MB memory, and 5 GB or more storage
The compute node should have at least one processor, 2 GB memory, and 10 GB or more storage

One suggestion would be to go with a minimal installation of Ubuntu and go for a 64 bit Ubuntu version. Alternatively,
you can build these on virtual machines (VMs). VMs have the added advantage that one physical server can be
used to create multiple nodes with as many network interfaces and they can capture snapshots to roll back, if
required.

http://docs.openstack.org/

The three node architecture in the previous diagram manages the components in the following manner. There are a
couple of optional nodes in the OpenStack setup, namely, Object Storage and Block Storage:

The following services are set to run on the controller node: Image, Identity, and Dashboard services, SQL
database, plugin for networking, Network Time Protocol, message queue, and Compute and Networking
management sections. Additionally, the controller node can run the following services optionally: a portion of
Block Storage, Object Storage, Orchestration, Telemetry, Database, and Data Processing.
The network node is responsible for running the Networking plugin and supporting agents that provision tenant
networks that provide switching, routing, and NAT and DHCP services. Also, it handles the Internet
connectivity for tenant virtual machines. Tenant virtual machines require Internet connectivity; this is provided
by the network node. It runs the services for DHCP, routing, and NAT using the Networking plugin for giving
services to the tenant machines.
The compute node has a running hypervisor, which belongs to the Compute service that operates tenant virtual
machines. KVM is the default hypervisor. Some parts of the Networking plugin and firewall services are also
run in the compute node. There can be more than one compute node. As an option, even Telemetry services
can be run in the compute node for collecting metrics.
The tenant virtual machines run on instances of stored images. These images are stored on disks, and the Block
Storage node is the one that saves these disks. Sometimes, for the purpose of collecting metrics, administrators
may also chose to run Telemetry services on the Block Storage node. You can run more than one Block
Storage node in an OpenStack setup.
The Object Storage nodes have the disks that are used by the Object Storage service to store accounts,
containers, and objects. You need at least two instances of Object Storage nodes running, but you may run
more than that.

Security
Various security measures such as passwords, policies, and encryption can be implemented for OpenStack services.
Also, supporting services support at least password security, for example, the database server and the message
broker.

This table has the list of services and the associated password description:

Password Name Description

Database password Database root password

RABBIT_PASS RabbitMQ user guest password

KEYSTONE_DBPASS Identity service database password

DEMO_PASS User demo password

ADMIN_PASS User admin password

GLANCE_DBPASS Image service database password

GLANCE_PASS Image service glance user password

NOVA_DBPASS Compute service database password

NOVA_PASS Compute service nova user password

DASH_DBPASS Dashboard database password

CINDER_DBPASS Block Storage service database password

CINDER_PASS Block Storage service cinder user password

NEUTRON_DBPASS Networking service database password

NEUTRON_PASS Networking service neutron user password

HEAT_DBPASS Orchestration service database password

HEAT_PASS Orchestration service heat user password

CEILOMETER_PASS Telemetry service database password

CEILOMETER_PASS Telemetry service ceilometer user password

TROVE_DBPASS Database service database password

TROVE_PASS Database service trove user password

Password Name Description

Please note that the services will require admin rights during installation and working.

Networking
We will have to configure the network interfaces after we have installed the Ubuntu operating system on each of the
nodes. It is recommended that you disable any automated network management tools and edit the configuration files
manually. Also, all nodes should have access to the Internet for installing OpenStack packages and periodic updates.

OpenStack networking

Let's consider the three nodes we talked about in the preceding sections: the controller node, network node, and
compute note. The controller node has a network interface on the management network. The network node has a
network interface on the management network, instance tunnels network, and an external network. The compute
node has a network interface on the management network and instance tunnels network. Have a look at the following
diagram:

Now, let's configure the different nodes that we saw in the preceding diagram.

The controller node

In the controller node, we do the following settings:

Configure the network:
1. First instance as the management interface:

IP address: 10.0.0.11
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. Reboot the system for the changes to take effect.

Configure name resolution:
1. Set controller as the hostname.
2. Edit the /etc/hosts file so that it has the following lines:

controller
10.0.0.11 controller
network
10.0.0.21 network
compute1
10.0.0.31 compute1

The network node

In the network node, we do the following settings:

Configure the network:
1. First instance as the management interface:

IP address: 10.0.0.21
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. Second interface as the instance tunnels interface:
IP address: 10.0.1.21
Network mask: 255.255.255.0 (or /24)

3. Third interface as the external interface. You will have to replace INTERFACE_NAME with an interface
name such as eth2.

4. Edit the /etc/network/interfaces file to match the following:

The external network interface
auto eth2
iface eth2 inet manual
up ip link set dev $IFACE up
down ip link set dev $IFACE down

5. Restart the system to activate the changes.

Configure name resolution:
1. Set network as the hostname.
2. Edit the /etc/hosts file to have the following content:

network
10.0.0.21 network
controller
10.0.0.11 controller
compute1
10.0.0.31 compute1

The compute node

In the compute node, we do the following settings:

Configure the network:
1. First instance as the management interface:

IP address: 10.0.0.31
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. Second interface as the instance tunnels interface:
IP address: 10.0.1.31
Network mask: 255.255.255.0 (or /24)

3. Restart the server for changes to take effect.

Configure name resolution:
1. Set compute1 as the hostname.
2. Edit the /etc/hosts file so that it has the following lines:

compute1
10.0.0.31 compute1
controller
10.0.0.11 controller
network
10.0.0.21 network

Verifying the network connectivity

It is recommended that you check the network connectivity among all nodes and also from all nodes to the Internet.
You can use the Ping tool to verify this.

Network Time Protocol

Network Time Protocol (NTP) has to be installed on all nodes so that the services are properly synchronized
among all nodes. It is recommended that you configure the controller node to reference the accurate server and all
other nodes in the OpenStack system to reference to this controller node.

Configuring the controller node

To do the configuring, we will follow the steps discussed next.
Installing the NTP service

Use the following command to install the NTP service on the controller node:

apt-get install ntp
Configuring the NTP service

The controller node will synchronize the time by default from public servers. Also, you can optionally edit the
/etc/ntp.conf file to configure alternate servers:

1. Edit the /etc/ntp.conf file and make the necessary modifications to have the contents similar to the
following:

server NTP_SERVER iburst
restrict -4 default kod notrap nomodify
restrict -6 default kod notrap nomodify

Make sure you replace NTP_SERVER with the hostname or IP address of a suitable and accurate NTP server.
Multiple server keys are supported.

2. Restart the NTP service:

service ntp restart

Configuring other nodes

To do the configuring, we will follow the steps discussed next.
Installing the NTP service

Use the following command to install the NTP service on the controller node:

apt-get install ntp
Configuring the NTP service

The steps are as follows:

1. Edit the /etc/ntp.conf file and make the following changes. Remove all keys except one server key and
change it so that it refers to the controller node:

server controller iburst
2. Restart the NTP service using the following command:

service ntp restart

OpenStack packages

OpenStack packages are a part of the Ubuntu distributions. You may use the ones bundled along with the release or
download a package from a different release. Carry out the operations on all nodes in your setup.

Enabling the OpenStack repository

Run the following command for installing the Ubuntu Cloud archive keyring and repository:

apt-get install ubuntu-cloud-keyring
echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu" \
"trusty-updates/juno main" > /etc/apt/sources.list.d/cloudarchive-juno.
list
Finalizing the installation

You should upgrade the packages on your system using the following command:

apt-get update && apt-get dist-upgrade
Database

SQL is used as the default system to store information. This database is usually running on the controller node. We
will use MariaDB and MySQL in this chapter. You can also use PostgreSQL.

Installing and configuring the database server

The steps are as follows:

1. Use the following command to install the packages:

apt-get install mariadb-server python-mysqldb

2. Set a password for root during installation.
3. Modify the /etc/mysql/my.cnf file and make the following changes:

1. In the section where you find [mysqld], change the bind address to match the one assigned to the
management IP address of the controller node. This will enable access for other nodes through the
management network:

[mysqld]
...
bind-address = 10.0.0.11

2. Also, in the same section, make the following changes along with setting the UTF-8 character set:

[mysqld]
...
default-storage-engine = innodb
innodb_file_per_table
collation-server = utf8_general_ci
init-connect = 'SET NAMES utf8'
character-set-server = utf8

Finalizing the installation

The steps are as follows:

1. Restart the database service using the following command:

service mysql restart
2. Run the following command to secure the database service:

mysql_secure_installation

The messaging server

Message brokers are the way in which OpenStack coordinates the operations between various services and updates
status information. This message broker server is usually run on the controller node. The popular message broker
servers supported by OpenStack are RabbitMQ, Qpid, and ZeroMQ. In this chapter, we will discuss RabbitMQ,
which is supported by most distributions.

Installing the RabbitMQ message broker service

Use the following command to install the message broker service:

apt-get install rabbitmq-server
Configuring the message broker service

By default, a user called guest is created for the message broker and its username and password are the same:
guest. It is recommended that you change the password for the user. The command to do so is as follows:

rabbitmqctl change_password guest NEW_PASS
Changing password for user "guest" ...
...done.
While executing this, replace the last term NEW_PASS to a password that is suitable for you. For every service that
uses message broker in the OpenStack system, you will need to configure the configuration file and set the
rabbit_password key.

We are all done with the initial setup and are ready to install the OpenStack services.

The Identity service
The Identity service is responsible for the following functions in an OpenStack setup:

Tracking users and their permissions
Providing a list of services with their API URLs

When we are installing the OpenStack Identity service, we must register all other services in our
OpenStack system. It helps the Identity service keep track of all services that are installed and
where they are present on the network.

Installing and configuring the Identity service
We will install the Identity service on the controller node in our setup.

Configuring the prerequisites

First, we have to create a database and an administrative token. Follow these steps to create a
database:

1. We have an access client for the database, so we will connect to the database server as
user root:

mysql –u root –p
2. Create a new database called keystone:

CREATE DATABASE keystone;
3. Give access to the keystone database:

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \
IDENTIFIED BY 'PASSWORD';
GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \
IDENTIFIED BY 'PASSWORD';

Make sure you replace PASSWORD with a proper password of your choice.

4. Exit the database client.
5. Now, we need to generate a random token to be used as the administration token for the

configuration. The command to do the same is as follows:

openssl rand -hex 10

Make sure you note down this token, we will be making use of it soon.

Installing and configuring the components

Install and configure the components using the following steps:

1. We will install the packages now using the following command:

apt-get install keystone python-keystoneclient
2. Make the following changes in the /etc/keystone/keystone.conf file:

1. Go to the [DEFAULT] section and assign the admin_token value that we generated
in the previous section:

[DEFAULT]
...
admin_token = TOKEN

Replace TOKEN with the random token generated from the previous section.

2. In the [database] section, configure the access for database access:

[database]
...
connection = mysql://keystone:PASSWORD@controller/keystone

Make sure you replace the PASSWORD term with the password you have set for the
database.

3. Set the SQL driver and UUID token in the [token] section:

[token]
...
provider = keystone.token.providers.uuid.Provider
driver = keystone.token.persistence.backends.sql.Token

3. Populate the database for the Identity service:

su -s /bin/sh -c "keystone-manage db_sync" keystone

Finalizing the installation

The steps are as follows:

1. We need to restart the Identity service using the following command:

service keystone restart
2. Remove the SQLite database that is embedded by default in the Ubuntu package. We are

already using a SQL database server. The command to remove the SQLite database file
is as follows:

rm -f /var/lib/keystone/keystone.db
3. The Identity service does not delete the expired tokens from the database. Over a period

of time, these get accumulated and might take up some space in the database. So, it is
recommended these expired tokens are deleted to keep your environment clean,
especially when there are limited resources.

The following cron command deletes the expired tokens at an hourly rate:

(crontab -l -u keystone 2>&1 | grep -q token_flush) || \
echo '@hourly /usr/bin/keystone-manage token_flush >/var/log/keystone/
keystone-tokenflush.log 2>&1' \
>> /var/spool/cron/crontabs/keystone

Tenants, users, and roles

We have to create the tenants, users, and roles for the Identity service before we start making
use of the service. For this, we will need the administration token that we generated in the
previous section, and use this token to manually set the endpoint of the Identity service before
running keystone commands.

Here, we are setting the temporary environment variable OS_SERVICE_TOKEN to assign the
administration token. Next, we set the endpoint to a temporary environment variable named
OS_SERVICE_ENDPOINT.

Configuring prerequisites

The steps are as follows:

1. First, we will configure the administration token:

export OS_SERVICE_TOKEN=ADMIN_TOKEN

Make sure you replace the term ADMIN_TOKEN with the actual token value. Pass on the
value of the administration token to keystone in the preceding command.

2. Then, we set the endpoint value to a variable:

export OS_SERVICE_ENDPOINT=http://controller:35357/v2.0

Creating tenants, users, and roles

The steps are as follows:

1. Let's create an administrative tenant, user, and role. These will be used for all the
administration-related operations in the environment.

1. Create the admin tenant using the following command:

keystone tenant-create --name admin --description "Admin Tenant"
2. Create the admin user. Make sure you replace the words ADMIN_PASS with an

appropriate password of your choice and EMAIL_ADDRESS with an appropriate e-
mail address:

keystone user-create --name admin --pass ADMIN_PASS --
email EMAIL_ADDRESS

3. Create the admin role using the following command:

keystone role-create --name admin
4. Add the admin role to the admin tenant and user:

keystone user-role-add --user admin --tenant admin --role admin

2. Create a demo tenant and user. These will be used for the normal operations.
1. Create the demo tenant using the following command:

keystone tenant-create --name demo --description "Demo Tenant"
2. Create the demo user under the demo tenant:

keystone user-create --name demo --tenant demo --pass DEMO_PASS --
email EMAIL_ADDRESS

Make sure you replace the terms DEMO_PASS with an appropriate password of your
choice and EMAIL_ADDRESS with an appropriate e-mail address.

3. OpenStack requires a set of tenants, users, and roles to interact with other services in the
setup. Every service needs to have at least one user with at least one admin role user
which comes under the service tenant.

4. Create the service tenant using the following command:

keystone tenant-create --name service --description "Service Tenant"

The service entity and API endpoint

We have already created the tenants, users, and roles. Next, we should create the service entity
and API endpoint for the Identity service.

Configuring the prerequisites

We have to set the environment variables OS_SERVICE_TOKEN and OS_SERVICE_ENDPOINT.
We have already done it in the previous sections, but repeat the same.

Creating the service entity and API endpoint

The steps are as follows:

1. The Identity service in your OpenStack environment has a list of all the available services.
All services use this list to locate other services in your system:

keystone service-create --name keystone --type identity \
--description "OpenStack Identity"

2. For each service that is present in the list maintained by the Identity service, there is a
corresponding list of API endpoints associated. These help other services with possible
means of communication. Use the following command to create the service API
endpoints:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ identity / {print $2}') \
--publicurl http://controller:5000/v2.0 \
--internalurl http://controller:5000/v2.0 \
--adminurl http://controller:35357/v2.0 \
--region regionOne

The Image service
The Image service in the OpenStack environment is responsible for helping users discover,
register, and retrieve images of virtual machines. A REST API is provided for users to query
the metadata of virtual machines so as to retrieve the actual image. Virtual machine images can
be stored in various locations, from filesystems to the Object Storage service offered by
OpenStack.

Installing and configuring the Image service
We will discuss how to install and configure the Image service on the controller node. As part
of this exercise, we will store the images of the virtual machine on local filesystem storage.

Configuring the prerequisites

We need to create database, credentials, and API endpoints so that we can install and
configure the Image service.

1. Here are the steps to create a database:
1. Connect to the database server as root user:

mysql -u root –p
2. Create a new database named glance using the following command:

CREATE DATABASE glance;
3. Grant all the required access to the newly created database glance using the

following command:

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \
IDENTIFIED BY 'GLANCE_DBPASS';
GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' \
IDENTIFIED BY 'GLANCE_DBPASS';

Make sure you replace the term GLANCE_DBPASS with an appropriate password of
your choice.

4. Exit the database client connection.

2. Next, for gaining access to the admin-only CLI commands, source the admin credentials:

source admin-openrc.sh
3. Carry on the following steps to create service credentials:

1. Create new user glance using the following command:

keystone user-create --name glance --pass GLANCE_PASS

Make sure you replace the term GLANCE_PASS with an appropriate password of
your choice.

2. Add admin role to user glance using the following command:

keystone user-role-add --user glance --tenant service --role admin
3. Create a new service entry for glance using the following command:

keystone service-create --name glance --type image \
--description "OpenStack Image Service"

4. Create an API endpoint for the Image service using the following commands:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ image / {print $2}') \
--publicurl http://controller:9292 \
--internalurl http://controller:9292 \
--adminurl http://controller:9292 \
--region regionOne

Installing and configuring the Image service components

The steps are as follows:

1. Install the packages using the following command:

apt-get install glance python-glanceclient
2. Make the following changes in the /etc/glance/glance-api.conf file:

1. Go to the [database] section and configure the database access:

[database]
...
connection = mysql://glance:GLANCE_DBPASS@controller/glance

Make sure you replace the term GLANCE_DBPASS with an appropriate password of
your choice.

2. Configure the Identity service access in the sections [keystone_authtoken] and
[paste_deploy]:

[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357

admin_tenant_name = service
admin_user = glance
admin_password = GLANCE_PASS
[paste_deploy]
...
flavor = keystone

Make sure you replace the term GLANCE_PASS with an appropriate password of
your choice.

3. In the [glance_store] section, make the configuration changes for local
filesystem storage and the location of image files:

[glance_store]
...
default_store = file
filesystem_store_datadir = /var/lib/glance/images/

3. Then, edit the /etc/glance/glance-registry.conf file and make the following
changes:

1. Configure database access in the [database] section:

[database]
...
connection = mysql://glance:GLANCE_DBPASS@controller/glance

Make sure you replace the term GLANCE_DBPASS with an appropriate password of
your choice.

2. Go to the sections [keystone_authtoken] and [paste_deploy], and
configure the Identity service access:

[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = glance
admin_password = GLANCE_PASS
[paste_deploy]
...
flavor = keystone

Make sure you replace the term GLANCE_PASS with an appropriate password of
your choice.

4. Populate the Image service database using the following command:

su -s /bin/sh -c "glance-manage db_sync" glance

Finalizing the installation

The steps are as follows:

1. Restart the service using the following command:

service glance-registry restart
service glance-api restart

2. Next, as we did in the previous section, remove the SQLite database file using the
following command:

rm -f /var/lib/glance/glance.sqlite

The Compute service
The cloud computing systems in OpenStack are hosted and managed by the Compute service.
This service is one of the dominant parts of the Infrastructure-as-a-Service (IaaS) system.
The Compute service refers to the Identity service for authentication, the Image service for
disk and server images, and the dashboard for the user and administrative interface. The
Compute service can scale horizontally and it launches instances from the downloaded images.

Installing and configuring the Compute service
We will look at installing and configuring the Compute service on the controller node.

Configuring the prerequisites

We need to create database, credentials, and API endpoints so that we can install and
configure the Compute service. The steps are as follows:

1. Here are the steps to create a database:
1. Connect to the database server as root user using the following command:

mysql -u root –p
2. Create a new database named nova using the following command:

CREATE DATABASE nova;
3. Grant all the required access to the newly created database nova using the following

command:

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';
GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \
IDENTIFIED BY 'NOVA_DBPASS';

Make sure you replace the term NOVA_DBPASS with an appropriate password of
your choice.

4. Exit the database client connection.

2. To gain access to the admin-only CLI commands, source the admin credentials using the
following command:

source admin-openrc.sh
3. Carry on the following steps to create the service credentials:

1. Create new user nova using the following command:

keystone user-create --name nova --pass NOVA_PASS

Make sure you replace the term NOVA_PASS with an appropriate password of your
choice.

2. Add admin role to user nova using the following command:

keystone user-role-add --user nova --tenant service --role admin
3. Create a new service entry for nova using the following command:

keystone service-create --name nova --type compute \
--description "OpenStack Compute"

4. Create an API endpoint for the Compute service using the following command:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ compute / {print $2}') \
--publicurl http://controller:8774/v2/%\(tenant_id\)s \
--internalurl http://controller:8774/v2/%\(tenant_id\)s \
--adminurl http://controller:8774/v2/%\(tenant_id\)s \
--region regionOne

Installing and configuring the Compute service components

We will now install and configure the components for the Compute service. Complete the
following steps:

1. Install the packages using the following command:

apt-get install glance nova-api nova-cert nova-conductor nova-consoleauth \
nova-novncproxy nova-scheduler python-novaclient

2. Make the following changes in the /etc/nova/nova.conf file:
1. Go to the [database] section and configure the database access:

[database]
...
connection = mysql://nova:NOVA_DBPASS@controller/nova

Make sure you replace the term NOVA_DBPASS with an appropriate password of
your choice.

2. Next, go to the [DEFAULT] section and configure the RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit

rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure you replace the term RABBIT_DBPASS with an appropriate password of
your choice.

3. Next, go to the [keystone_authtoken] and [DEFAULT] sections, and configure
the Identity service access:

[DEFAULT]
...
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = nova
admin_password = NOVA_PASS

Make sure you replace the term NOVA_PASS with an appropriate password of your
choice.

4. Set the my_ip option in the [DEFAULT] section so that the management interface IP
address is used on the controller node:

[DEFAULT]
...
my_ip = 10.0.0.11

5. Now we will configure the VNC proxy so that it uses the IP address of the
management interface on the controller node in the same [DEFAULT] section:

[DEFAULT]
...
vncserver_listen = 10.0.0.11
vncserver_proxyclient_address = 10.0.0.11

6. Next, configure the location of the Image service in the [glance] section:

[glance]
...
host = controller

3. Populate the Compute service database using the following command:

su -s /bin/sh -c "nova-manage db sync" nova

Finalizing the installation

The final steps for finishing the installation of the Compute service components are as follows:

1. First, we will restart the service using the following commands:

service nova-api restart
service nova-cert restart
service nova-consoleauth restart
service nova-scheduler restart
service nova-conductor restart
service nova-novncproxy restart

2. Next, as we did in the previous section, remove the SQLite database file using the
following command:

rm -f /var/lib/nova/nova.sqlite

Installing and configuring the compute node

Now, we will discuss installing and configuring the Compute service on the compute node.
The compute node has built-in support for hypervisors for deploying instances and virtual
machines. In this section, we will use the Qemu hypervisor that we discussed in the previous
chapter.

Installing and configuring the compute hypervisor components

We will now install and configure the hypervisor components. Complete the following steps:

1. Install the packages using the following command:

apt-get install nova-compute sysfsutils
2. Make the following changes in the /etc/nova/nova.conf file:

1. Go to the [DEFAULT] section and configure the RabbitMQ message broker:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure you replace the term RABBIT_PASS with an appropriate password of
your choice.

2. Next, go to the sections [keystone_authtoken] and [DEFAULT] and configure
the Identity service access:

[DEFAULT]
...
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357

admin_tenant_name = service
admin_user = nova
admin_password = NOVA_PASS

Make sure you replace the term NOVA_PASS with an appropriate password of your
choice.

3. Set the my_ip option in the [DEFAULT] section so that the management interface IP
address is used on the compute node:

[DEFAULT]
...
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

Make sure you replace the term MANAGEMENT_INTERFACE_IP_ADDRESS with the
appropriate IP address on the management network interface on the compute node.

4. Now, we will enable and configure remote console access in the same [DEFAULT]
section:

[DEFAULT]
...
vnc_enabled = True
vncserver_listen = 0.0.0.0
vncserver_proxyclient_address = MANAGEMENT_INTERFACE_IP_ADDRESS
novncproxy_base_url = http://controller:6080/vnc_auto.html

Make sure you replace the term MANAGEMENT_INTERFACE_IP_ADDRESS with the
appropriate IP address on the management network interface on the compute node.

5. Next, configure the location of the Image service in the [glance] section using the
following commands:

[glance]
...
host = controller

Finalizing the installation

The final steps for finishing the installation of the Compute service components are as follows:

1. Check whether the compute node supports the virtual machines' hardware acceleration:

egrep -c '(vmx|svm)' /proc/cpuinfo

If the preceding command returns any non-zero value, then the compute node supports
hardware acceleration. If it returns a zero value, then you might have to do some
additional settings. To configure libvirt to use Qemu, make the following changes in the
/etc/nova/nova-compute.conf file in the [libvirt] section:

[libvirt]
...
virt_type = qemu

2. Restart the compute service using the following command:

service nova-compute restart
3. Next, as we did in the previous section, remove the SQLite database file using the

following command:

rm -f /var/lib/nova/nova.sqlite

OpenStack networking
Networking in OpenStack lets users create and attach devices that are managed by other
services to networks. Also, users can implement plugins in order to get different types of
networking equipment. OpenStack networking is responsible for managing the virtual
network infrastructure (VNI) and access layers of physical network infrastructure
(PNI). Tenants in OpenStack Networking can create various topologies, such as firewalls, load
balancers, and VPNs in the virtual network.

Installing and configuring the controller node
In this section, we will discuss installing and configuring the Compute service on the controller
node.

Configuring the prerequisites

We need to create database, credentials, and API endpoints so that we can install and
configure the OpenStack Networking service. The steps are as follows:

1. Here are the steps to create a database.
1. Connect to the database server as root user using the following command:

mysql -u root –p
2. Create a new database named neutron using the following command:

CREATE DATABASE neutron;
3. Grant all the required access to the newly created database neutron using the

following commands:

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' \
IDENTIFIED BY 'NEUTRON_DBPASS';
GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'%' \
IDENTIFIED BY 'NEUTRON_DBPASS';

Make sure you replace the term NEUTRON_DBPASS with an appropriate password of
your choice.

4. Exit the database client connection.

2. For gaining access to the admin-only CLI commands, source the admin credentials using
the following command:

source admin-openrc.sh
3. Carry out the following steps to create the service credentials:

1. Create a new user neutron using the following command:

keystone user-create --name neutron --pass NEUTRON _PASS

Make sure you replace the term NEUTRON_PASS with an appropriate password of
your choice.

2. Add the admin role to user neutron using the following command:

keystone user-role-add --user neutron --tenant service --role admin
3. Create a new service entry for neutron using the following command:

keystone service-create --name neutron --type network \
--description "OpenStack Networking"

4. Create an API endpoint for the Compute service using the following commands:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ network / {print $2}') \
--publicurl http://controller:9696 \
--adminurl http://controller:9696 \
--internalurl http://controller:9696 \
--region regionOne

Installing the Networking components

Use the following command to install the Networking components:

apt-get install neutron-server neutron-plugin-ml2 python-neutronclient

Configuring the server components of Networking

Networking server components consists of the following: database, authentication, message
broker, notification about topology change, and plugins.

1. Make the following changes in the /etc/neutron/neutron.conf file:
1. Go to the [database] section and configure the database access:

[database]
...
connection = mysql://neutron:NEUTRON_DBPASS@controller/neutron

Make sure you replace the term NEUTRON_DBPASS with an appropriate password of
your choice.

2. Next, go to the [DEFAULT] section and configure the RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure you replace the term RABBIT_PASS with an appropriate password of
your choice.

3. Go to the sections [keystone_authtoken] and [DEFAULT], and configure the
Identity service access:

[DEFAULT]
...
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS

Make sure you replace the term NEUTRON_PASS with an appropriate password of
your choice.

4. Enable the ML2 plugin in the [DEFAULT] section, and enable the router service and
overlapping IP address:

[DEFAULT]
...
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True

5. Now, configure Networking so that it notifies the compute node of any change in
network topology in the same [DEFAULT] section:

[DEFAULT]
...
notify_nova_on_port_status_changes = True
notify_nova_on_port_data_changes = True
nova_url = http://controller:8774/v2
nova_admin_auth_url = http://controller:35357/v2.0
nova_region_name = regionOne
nova_admin_username = nova
nova_admin_tenant_id = SERVICE_TENANT_ID
nova_admin_password = NOVA_PASS

Here, you will have to replace SERVICE_TENANT_ID with the value the service
tenant identifies from the Identity service, and replace the term NOVA_PASS with
password you had chosen earlier for the nova user.

2. Next, get the service tenant ID:

source admin-openrc.sh
keystone tenant-get service

Configuring the Modular Layer 2 plugin

Make the following changes in the /etc/neutron/plugins/ml2/ml2_conf.ini file:

1. Go to the [ml2] section and configure the following: the generic network
encapsulation (GRE) driver, tenant networks for GRE, and the driver for Open
vSwitch (OVS) mechanism. The code is as follows:

[ml2]
...
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = openvswitch

2. Next, go to the [securitygroup] section, configure the OVS iptables firewall, and
enable security group ipset:

[securitygroup]
...
enable_security_group = True
enable_ipset = True
firewall_driver = neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver

Configuring Networking on the compute node

Make the following changes in the /etc/nova/nova.conf file:

1. Go to the [database] section and configure the database access:

[DEFAULT]
...
network_api_class = nova.network.neutronv2.api.API
security_group_api = neutron
linuxnet_interface_driver = nova.network.linux_net.
LinuxOVSInterfaceDriver
firewall_driver = nova.virt.firewall.NoopFirewallDriver

2. Next, go to the [neutron] section and configure the access parameters:

[neutron]
...
url = http://controller:9696
auth_strategy = keystone
admin_auth_url = http://controller:35357/v2.0
admin_tenant_name = service
admin_username = neutron
admin_password = NEUTRON_PASS

Make sure you replace the term NEUTRON_PASS with an appropriate password of your
choice.

Finalizing the installation

The steps are as follows:

1. First, populate the database using the following commands:

su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/neutron.
conf \
--config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade juno"
neutron

2. Restart the Compute service using the following commands:

service nova-api restart
service nova-scheduler restart
service nova-conductor restart

3. Restart the Networking service using the following command:

service neutron-server restart

Installing and configuring the network node
There are some prerequisites that we will need to take care of before we can start installing and
configuring the network node.

Configuring the prerequisites

We have to configure some kernel network parameters before installing and configuring
OpenStack Networking. The steps are as follows:

1. First, edit the /etc/sysctl.conf file and make the following changes:

net.ipv4.ip_forward=1
net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

2. Run the following command:

sysctl –p

Installing the Networking components

Run the following command:

apt-get install neutron-plugin-ml2 neutron-plugin-openvswitch-agent \
neutron-l3-agent neutron-dhcp-agent

Configuring the Networking components

The Networking component configuration has the following: an authentication mechanism,
message broker, and plugin. Make the following changes in the
/etc/neutron/neutron.conf file:

1. Go to the [database] section and comment the lines for the connection option, as
network nodes will not be accessing the database directly.

2. Next, go to section [DEFAULT] and configure RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure you replace the term RABBIT_PASS with an appropriate password of your
choice.

3. Next, go to sections [keystone_authtoken] and [DEFAULT], and configure the
Identity service access:

[DEFAULT]
...
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS

Make sure you replace the term NEUTRON_PASS with an appropriate password of your
choice.

4. Enable the ML2 plugin, router service, and overlapping IP address in the [DEFAULT]
section:

[DEFAULT]
...
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True

Configuring the Modular Layer 2 plugin

The Modular Layer 2 (ML2) plugin makes use of the OVS agent for building a virtual
networking framework for instances. We have to make the following changes in the
/etc/neutron/plugins/ml2/ml2_conf.ini file:

1. Go to the [ml2] section and configure the following: the GRE driver, tenant networks
for GRE, and driver for the OVS mechanism. The code is as follows:

[ml2]
...
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = openvswitch

2. Go to the [ml2_type_flat] section and set the external flat provider network:

[ml2_type_flat]
...
flat_networks = external

3. In the [ml2_type_gre] section, set the tunnel ID range:

[ml2_type_gre]
...
tunnel_id_ranges = 1:1000

4. Now, enable groups, enable ipset, and configure the OVS iptables firewall driver.
This is done in the [securitygroup] section:

[securitygroup]
...
enable_security_group = True
enable_ipset = True
firewall_driver = neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

5. Go to the [ovs] section and set the tunnels, local tunnel endpoint, and external flat
provider network:

[ovs]
...
local_ip = INSTANCE_TUNNELS_INTERFACE_IP_ADDRESS
enable_tunneling = True
bridge_mappings = external:br-ex

Make sure you replace the term INSTANCE_TUNNELS_INTERFACE_IP_ADDRESS with
the appropriate IP address in the instance tunnel network in your network node.

6. Enable GRE tunnels in the [agent] section:

[agent]
...
tunnel_types = gre

Configuring the Layer 3 agent

The Layer 3 (L3) layer is responsible for routing services for virtual networks. Let's make the
changes in the /etc/neutron.13_agent.ini file.

Go to the [DEFAULT] section and set the driver, network namespace, and external network
bridge:

[DEFAULT]
...
interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
use_namespaces = True
external_network_bridge = br-ex

Configuring the DHCP agent

The DHCP agent is responsible for the DHCP services for virtual networks. Let's edit the
/etc/neutron/dhcp_agent.ini file to make some changes.

Go to the [DEFAULT] section, set the drivers, and turn on namespaces:

[DEFAULT]
...
interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq
use_namespaces = True

Configuring the metadata agent

The metadata agent provides information to instances, for example, credentials. The steps to
configure the metadata agent are as follows:

1. Make the following changes in the /etc/neutron/metadata_agent.ini file:
1. Go to the [DEFAULT] section and configure the parameters for access:

[DEFAULT]
...
auth_url = http://controller:5000/v2.0
auth_region = regionOne
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS

Make sure you replace the term NEUTRON_PASS with an appropriate password of
your choice.

2. In the same [DEFAULT] section, set the metadata host using the following code:

[DEFAULT]
...
nova_metadata_ip = controller

3. Next, configure the metadata proxy shared secret using the following code:

[DEFAULT]
...
metadata_proxy_shared_secret = METADATA_SECRET

Make sure you replace the term METADATA_SECRET with an appropriate password
of your choice.

2. Go to the controller node and make the following changes in the
/etc/nova/nova.conf file. Navigate to the [neutron] section and set metadata
proxy and secret:

[neutron]
...
service_metadata_proxy = True
metadata_proxy_shared_secret = METADATA_SECRET

Make sure you replace the term METADATA_SECRET with an appropriate password of
your choice.

3. From the controller node, restart the Compute API service using the following command:

service nova-api restart

Configuring the OVS service

The OVS is responsible for providing the virtual networking framework for the instances. br-
int is for the internal traffic in OVS and br-ext is for the external traffic. There should be a
port that connects the virtual and physical networks. The steps to configure the OVS service
are as follows:

1. First, let's restart the OVS service using the following command:

service openvswitch-switch restart
2. Next, add the external bridge using the following command:

ovs-vsctl add-br br-ex
3. Now, add a port to the external bridge for connecting to the physical network:

ovs-vsctl add-port br-ex INTERFACE_NAME

Make sure you replace the term INTERFACE_NAME with an appropriate port.

Finalizing the installation

We will restart all the networking services using the following commands:

service neutron-plugin-openvswitch-agent restart
service neutron-l3-agent restart
service neutron-dhcp-agent restart
service neutron-metadata-agent restart

Installing and configuring the compute node
The compute node is responsible for the connectivity and security groups for instances.

Configuring the prerequisites

It is necessary to set some kernel networking parameters before we install and configure
OpenStack Networking:

1. Edit the /etc/sysctl.conf file and make the following changes:

net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

2. Run the following command so that the changes take effect:

sysctl –p

Installing the Networking components

Run the following command to install the packages for the Networking components:

apt-get install neutron-plugin-ml2 neutron-plugin-openvswitch-agent

Configuring the Networking common components

The Networking component configuration has the following: an authentication mechanism,
message broker, and plugin. Make the following changes in the
/etc/neutron/neutron.conf file:

1. Go to the [database] section and comment the lines for the connection option, as
network nodes will not be accessing the database directly.

2. Next, go to the [DEFAULT] section and configure RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure you replace the term RABBIT_PASS with an appropriate password of your
choice.

3. Go to the [keystone_authtoken] and [DEFAULT] sections, and configure the
Identity service access using the following code:

[DEFAULT]
...
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS

Make sure you replace the term NEUTRON_PASS with an appropriate password of your
choice.

4. Enable the ML2 plugin in the [DEFAULT] section, and also the router service and
overlapping IP address:

[DEFAULT]
...
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True

Configuring the ML2 plugin

The ML2 plugin makes use of the OVS agent for building virtual networking framework for
instances. We will have to make the following changes in the
/etc/neutron/plugins/ml2/ml2_conf.ini file:

1. Go to the [ml2] section and configure the following: the GRE driver, tenant networks
for GRE, and the driver for the OVS mechanism. The code is as follows:

[ml2]
...
type_drivers = flat,gre
tenant_network_types = gre
mechanism_drivers = openvswitch

2. In the [ml2_type_gre] section, set the tunnel ID range:

[ml2_type_gre]
...
tunnel_id_ranges = 1:1000

3. Now, let's enable groups, enable ipset, and configure the OVS iptables firewall
driver. This is done in the [securitygroup] section:

[securitygroup]

...
enable_security_group = True
enable_ipset = True
firewall_driver = neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

4. Go to the [ovs] section and set the tunnels, local tunnel endpoint, and the external flat
provider network:

[ovs]
...
local_ip = INSTANCE_TUNNELS_INTERFACE_IP_ADDRESS
enable_tunneling = True
bridge_mappings = external:br-ex

Make sure you replace the term INSTANCE_TUNNELS_INTERFACE_IP_ADDRESS with
the appropriate IP address in the instance tunnel network in your network node.

5. Lastly, enable the GRE tunnels in the [agent] section:

[agent]
...
tunnel_types = gre

Configuring the OVS service

OVS is responsible for providing the virtual networking framework for the instances.

Let's restart the OVS service using the following command:

service openvswitch-switch restart

Configuring Compute to use Networking

It is necessary to reconfigure Compute to use Networking. Make the following changes in the
/etc/nova/nova.conf file:

1. First, set the APIs and drivers in the [DEFAULT] section:

[DEFAULT]
...
network_api_class = nova.network.neutronv2.api.API
security_group_api = neutron
linuxnet_interface_driver = nova.network.linux_net.
LinuxOVSInterfaceDriver
firewall_driver = nova.virt.firewall.NoopFirewallDriver

2. Go to the [neutron] section and set access parameters:

[neutron]
...
url = http://controller:9696
auth_strategy = keystone
admin_auth_url = http://controller:35357/v2.0

admin_tenant_name = service
admin_username = neutron
admin_password = NEUTRON_PASS

Make sure you replace the term NEUTRON_PASS with an appropriate password of your
choice for the neutron user from the Identity service.

Finalizing the installation

The steps are as follows:

1. We will restart the Compute service using the following command:

service nova-compute restart
2. Next, restart the OVS agent using the following command:

service nova-compute restart

Creating initial networks
There are some final steps to be taken care of before launching the first instance. We should create the required virtual
network infrastructure for instances to connect to, along with the external network and the tenant network. Have a
look at the following diagram:

External networks
The purpose of external networks is to provide access to the Internet for the instances. It uses network address
translation (NAT) underneath for Internet access to the instances.

Creating an external network

The steps are as follows:

1. For gaining access to the admin-only CLI commands, source the admin credentials using the following
command:

source admin-openrc.sh
2. Use the following command to create the network:

neutron net-create ext-net --router:external True \
--provider:physical_network external --provider:network_type flat

Creating the subnet for the external network

Run the following command to create the subnet:

neutron subnet-create ext-net --name ext-subnet \
--allocation-pool start=FLOATING_IP_START,end=FLOATING_IP_END \
--disable-dhcp --gateway EXTERNAL_NETWORK_GATEWAY EXTERNAL_NETWORK_CIDR
Make sure you replace the terms FLOATING_IP_START and FLOATING_IP_END with IP addresses for the range of
IP addresses you want. Also, replace EXTERNAL_NETWORK_CIDR with the subnet of physical network. Replace
EXTERNAL_NETWORK_GATEWAY with the value of physical network gateway.

The tenant network
The tenant network is responsible for providing internal network access to the instances.

Creating a tenant network

The steps are as follows:

1. For gaining access to the admin-only CLI commands, source the admin credentials using the following
command:

source admin-openrc.sh
2. Use the following command to create the network:

neutron net-create demo-net

Creating the subnet for the tenant network

Run the following command to create the subnet:

neutron subnet-create demo-net --name demo-subnet \
--gateway TENANT_NETWORK_GATEWAY TENANT_NETWORK_CIDR
Make sure you replace the term EXTERNAL_NETWORK_CIDR with the subnet of the physical network. Also, replace
EXTERNAL_NETWORK_GATEWAY with value of the physical network gateway.

Creating the router to attach the external and tenant networks
The steps are as follows:

1. Run the following command to create the router:

neutron router-create demo-router
2. Next, use the following command for attaching the router to the tenant subnet. The name of the subnet here is

demo:

neutron router-interface-add demo-router demo-subnet
3. Lastly, let's attach the router to the external network by setting the gateway:

neutron router-gateway-set demo-router ext-net

Dashboard
Dashboard is a web interface that helps administrators and users manage and access
OpenStack services. It uses the OpenStack API for providing these services. In this chapter,
we will use the Apache server for deployment.

Prerequisites
We need to take care of some prerequisites before installing the dashboard as part of our
OpenStack setup. Make sure the following requirements are met:

OpenStack Compute is already installed and the Identity service is enabled
The user for Identity service has sudo access enabled
Python version 2.6 or 2.7 is installed, and it should support Django

Installing and configuring the dashboard
Now, we will install and configure the packages for the dashboard component.

Installing the packages

The command to install the packages is as follows:

apt-get install openstack-dashboard apache2 libapache2-mod-wsgi
memcached python-memcache

Configuring the dashboard

Edit the /etc/openstack-dashboard/local_settings.py file and make the following
changes:

1. Set the dashboard to run on the controller node using the following code:

OPENSTACK_HOST = "controller"

2. Allow all hosts access to the dashboard using the following code:

ALLOWED_HOSTS = ['*']

3. Lastly, configure the memcached session storage:

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.
MemcachedCache',
'LOCATION': '127.0.0.1:11211',
 }
}

Finalizing the installation

Restart the web server and session storage using the following commands:

service apache2 restart
service memcached restart

The Block Storage service
The Block Storage service is responsible for providing block storage devices to various
instances. The API and scheduler services run on the controller node, whereas the services for
storing volumes run on the storage node.

Block Storage helps with adding persistent storage to virtual machines, and also manages
volume snapshots and volume types.

Installing and configuring the controller node
In this section, we will discuss installing the Block Storage service on the controller node. The
Block Storage service needs an additional storage node running, which helps with volumes for
the instances.

Configuring the prerequisites

We need to create database, credentials, and the API endpoints so that we can install and
configure the Block Storage service. The steps are as follows:

1. Here are the steps to create a database:
1. Connect to the database server as root user using the following command:

mysql -u root –p
2. Create a new database named cinder using the following command:

CREATE DATABASE cinder;
3. Grant all the required access to the newly created database cinder using the

following commands:

GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'localhost' \
IDENTIFIED BY 'CINDER_DBPASS';
GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' \
IDENTIFIED BY 'CINDER_DBPASS';

Make sure you replace the term CINDER_DBPASS with an appropriate password of
your choice.

4. Exit the database client connection.

2. For gaining access to the admin-only CLI commands, source the admin credentials:

source admin-openrc.sh
3. Carry on the following steps for creating the service credentials:

1. Create a new user cinder using the following command:

keystone user-create --name cinder --pass CINDER_PASS

Make sure you replace the term CINDER_PASS with an appropriate password of
your choice.

2. Add the admin role to the user cinder using the following command:

keystone user-role-add --user cinder --tenant service --role admin
3. Create a new service entry for cinder using the following command:

keystone service-create --name cinder --type image \
--description "OpenStack Block Service"

4. Create an API endpoint for the Image service using the following commands:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ volume / {print $2}') \
--publicurl http://controller:8776/v1/%\(tenant_id\)s \
--internalurl http://controller:8776/v1/%\(tenant_id\)s \
--adminurl http://controller:8776/v1/%\(tenant_id\)s \
--region regionOne

Installing and configuring the Block Storage service components

The steps are as follows:

1. Install the packages using the following command:

apt-get install cinder-api cinder-scheduler python-cinderclient
2. Make the following changes in the /etc/cinder/cinder.conf file:

1. Go to the [database] section and configure the database access:

[database]
...
connection = mysql://cinder:CINDER_DBPASS@controller/cinder

Make sure you replace the term CINDER_DBPASS with an appropriate password of
your choice.

2. Next, go to the [DEFAULT] section and configure the RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller

rabbit_password = RABBIT_PASS

Make sure you replace the term RABBIT_PASS with an appropriate password of
your choice.

3. Next, go to the sections [keystone_authtoken] and [DEFAULT], and configure
the Identity service access:

[DEFAULT]
...
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = cinder
admin_password = CINDER_PASS

Make sure you replace the term CINDER_PASS with an appropriate password of
your choice.

4. Set the my_ip option in the [DEFAULT] section so that the management interface IP
address is used on the controller node:

[DEFAULT]
...
my_ip = 10.0.0.11

3. Lastly, populate the Block Storage database using the following command:

su -s /bin/sh -c "cinder-manage db sync" cinder

Finalizing the installation

The steps are as follows:

1. Restart the Block Storage service using the following command:

service cinder-scheduler restart
service cinder-api restart

2. Next, as we did in the previous section, remove the SQLite database file:

rm -f /var/lib/cinder/cinder.sqlite

Installing and configuring the storage node

Before we start with the installation of the Storage node, we need to take care of some
prerequisites.

Configuring the prerequisites

Before we can start to configure the storage node, we must install and configure the volume
service. Create an interface for the storage node on the management network. Also, the storage
node will require an empty block storage device. The steps are as follows:

1. Set the following values while configuring the management interface:
IP address: 10.0.0.41
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. Change the hostname to block1:
3. Copy the file contents of /etc/hosts from the controller node to the storage node and

append the following:

block1
10.0.0.41 block1

4. We have installed NTP in a previous section. Follow the same steps and install it in here.
5. Next, install the LVM package using the following command:

apt-get install lvm2
6. Create a new physical volume in LVM named /dev/sdb1 using the following command:

pvcreate /dev/sdb1
7. Create a new volume group named cinder-volumes using the following command:

vgcreate cinder-volumes /dev/sdb1
8. Restrict the LVM for the Block Storage service to access and cache only the cinder-

volume volume group by editing the /etc/lvm/lvm.conf file and making the following
changes:

devices {
...
filter = ["a/sdb/", "r/.*/"]
}

Installing and configuring the Block Storage volume components

The steps are as follows:

1. Install the packages using the following command:

apt-get install cinder-volume python-mysqldb
2. Make the following changes in the /etc/cinder/cinder.conf file:

1. Go to the [database] section and configure the database access:

[database]
...
connection = mysql://cinder:CINDER_DBPASS@controller/cinder

Make sure you replace the term CINDER_DBPASS with an appropriate password of
your choice.

2. Next, go to the [DEFAULT] section and configure the RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure you replace the term RABBIT_PASS with an appropriate password of
your choice.

3. Next, go to the [keystone_authtoken] and [DEFAULT] sections, and configure
the Identity service access:

[DEFAULT]
...
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = cinder
admin_password = CINDER_PASS

Make sure you replace the term CINDER_PASS with an appropriate password of
your choice.

4. Set the my_ip option in the [DEFAULT] section so that the management interface IP
address is used on the controller node:

[DEFAULT]
...
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

Make sure you replace the term MANAGEMENT_INTERFACE_IP_ADDRESS with the
appropriate IP address on the management network interface on the storage node.

5. In the [DEFAULT] section, set the location of the Image service:

[DEFAULT]
...
glance_host = controller

Finalizing the installation

The steps are as follows:

1. Restart the Block Storage volume service using the following commands:

service tgt restart
service cinder-volume restart

2. Next, as we did in the previous section, remove the SQLite database file:

rm -f /var/lib/cinder/cinder.sqlite

The Object Storage service
The Object Storage service makes use of the REST API for providing object storage and
retrieval. The minimum requirement is the Identity service. It can be scaled to handle a vast
amount of unstructured data.

Installing and configuring the controller node
In this chapter, we will install the Object Service storage on the controller node. However, you
can install the service on any node.

Configuring the prerequisites

The steps are as follows:

1. Create the Identity service credentials as follows:
1. Using the following command, create a user named swift:

keystone user-create --name swift --pass SWIFT_PASS

Make sure you replace the term SWIFT_PASS with an appropriate password of your
choice.

2. Next, add the admin role to the swift user using the following command:

keystone user-role-add --user swift --tenant service --role admin
3. Lastly, create a swift entity using the following command:

keystone service-create --name swift --type object-store \
--description "OpenStack Object Storage"

2. Create an API endpoint for the Object Storage service using the following commands:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ object-store / {print
$2}') \
--publicurl 'http://controller:8080/v1/AUTH_%(tenant_id)s' \
--internalurl 'http://controller:8080/v1/AUTH_%(tenant_id)s' \
--adminurl http://controller:8080 \
--region regionOne

Installing and configuring the controller node components

The steps are as follows:

1. Install the packages using the following command:

apt-get install swift swift-proxy python-swiftclient pythonkeystoneclient
\ python-keystonemiddleware memcached

2. Create a new directory /etc/swift using the following command:

mkdir /etc/swift
3. Get the configuration file for the proxy service from the Object Storage repository:

curl -o /etc/swift/proxy-server.conf \
https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/proxyserver.
conf-sample

4. Make the following changes in the /etc/swift/proxy-server/conf file:
1. Go to the [DEFAULT] section and get the bind port, user, and configuration

directory:

[DEFAULT]
...
bind_port = 8080
user = swift
swift_dir = /etc/swift

2. In the [pipeline:mail] section, turn on the required modules:

[pipeline:main]
pipeline = authtoken cache healthcheck keystoneauth proxy-logging
proxy-server

3. Enable account management in the [app:proxy-server] section:

[app:proxy-server]
...
allow_account_management = true
account_autocreate = true

4. Next, set the operator rules in the [filter:keystoneauth] section:

[filter:keystoneauth]
use = egg:swift#keystoneauth
...
operator_roles = admin,_member_

5. Configure the Identity service access in the [filter:authtoken] section:

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_factory
...auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = swift
admin_password = SWIFT_PASS
delay_auth_decision = true

Make sure you replace the term SWIFT_PASS with the password you had previously
set for the swift user in the Identity service.

6. Lastly, set the memcached location in the [filter:cache] section:

[filter:cache]
...
memcache_servers = 127.0.0.1:11211

Installing and configuring the storage node
We will first configure some prerequisites and then install the storage node.

Configuring the prerequisites

It is necessary to configure the storage nodes before we can go ahead and install the
OpenStack Object Storage service on it. Also, they should contain the network interface on the
management network. We will configure two storage nodes as part of this exercise:

1. Configure the first storage node as follows:
1. Configure the management network:

IP address: 10.0.0.51
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. Change the hostname to object1.

2. Configure the second storage node as follows:
1. Configure the management network:

IP address: 10.0.0.52
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. Change the hostname to object2.

3. Configure the items shared between both storage nodes as follows:
1. Copy the file contents of /etc/hosts from the controller node to the storage node

and append the following:

object1
10.0.0.51 object1
object2
10.0.0.52 object2

Add the same contents to file /etc/hosts in all nodes.

2. We have installed NTP in a previous section, follow the same steps and install it
here.

3. Install the utility packages using the following command:

apt-get install xfsprogs rsync
4. Prepare new partitions with XFS partition using the following commands:

mkfs.xfs /dev/sdb1
mkfs.xfs /dev/sdc1

5. Create a mount point for these partitions using the following commands:

mkdir -p /srv/node/sdb1
mkdir -p /srv/node/sdc1

6. Edit the /etc/fstabd file and make the following changes:

/dev/sdb1 /srv/node/sdb1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 2
/dev/sdc1 /srv/node/sdc1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 2

7. Lastly, mount the devices using the following commands:

mount /srv/node/sdb1
mount /srv/node/sdc1

4. Edit the /etc/rsyncd.conf file and make the following changes:

uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = MANAGEMENT_INTERFACE_IP_ADDRESS
[account]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/account.lock
[container]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/container.lock
[object]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/object.lock

Make sure you replace the term MANAGEMENT_INTERFACE_IP_ADDRESS with the IP
address of the storage node management network.

5. Turn on rsync in the /etc/default/rsync file using the following code:

RSYNC_ENABLE=true

6. Start the rsync service using the following command:

service rsync start

Installing and configuring the storage node components

We have to do the following operations on all storage nodes:

1. Install the packages using the following command:

apt-get install swift swift-account swift-container swift-object
2. Get the accounting, container, and object service configuration files from the Object

Storage source repository:

curl -o /etc/swift/account-server.conf \
https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/account-server.conf-sample
curl -o /etc/swift/container-server.conf \
https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/container-server.conf-sample
curl -o /etc/swift/object-server.conf \
https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/object-server.conf-sample

3. Edit the /etc/swift/account-server.conf file and make the following changes:
1. Go to the [DEFAULT] section and get the bind port, user, and configuration

directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6002
user = swift
swift_dir = /etc/swift
devices = /srv/node

Make sure you replace the term MANAGEMENT_INTERFACE_IP_ADDRESS with the
IP address of the storage node management network.

2. In the [pipeline:mail] section, turn on the required modules using the following
code:

[[pipeline:main]
pipeline = healthcheck recon account-server

3. Enable the recon cache directory in the [filter:recon] section using the
following code:

[filter:recon]
...
recon_cache_path = /var/cache/swift

4. Edit the /etc/swift/container-server.conf file and make the following changes:

1. Go to the [DEFAULT] section and get the bind port, user, and configuration
directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6001
user = swift
swift_dir = /etc/swift
devices = /srv/node

Make sure you replace the term MANAGEMENT_INTERFACE_IP_ADDRESS with the
IP address of the storage node management network.

2. In the [pipeline:mail] section, turn on the required modules using the following
code:

[[pipeline:main]
pipeline = healthcheck recon container-server

3. Enable the recon cache directory in the [filter:recon] section using the
following command:

[filter:recon]
...
recon_cache_path = /var/cache/swift

5. Edit the /etc/swift/object-server.conf file and make the following changes:
1. Go to the [DEFAULT] section and get the bind port, user, and configuration

directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6000
user = swift
swift_dir = /etc/swift
devices = /srv/node

Make sure you replace the term MANAGEMENT_INTERFACE_IP_ADDRESS with the
IP address of the storage node management network.

2. In the [pipeline:mail] section, turn on the required modules:

[[pipeline:main]
pipeline = healthcheck recon object-server

3. Enable the recon cache directory in the [filter:recon] section using the
following code:

[filter:recon]
...
recon_cache_path = /var/cache/swift

6. Change the owner of the mount point directory using the following command:

chown -R swift:swift /srv/node
7. Create a new directory recon and change the owner for it:

mkdir -p /var/cache/swift
chown -R swift:swift /var/cache/swift

Summary
So far, we have discussed so many components of the OpenStack system. In the next chapter,
we will look at the remaining components, such as creating rings and launching an instance.
Also, we will study some of the best practices of the Ubuntu Server OS. The topics we will
study in the next chapter will be creating the initial rings, the Orchestration module, the
Telemetry module, the Database service and lastly, the Data Processing service. The next
chapter will be the concluding chapter of this book.

Chapter 9. OpenStack and Ubuntu Best
Practices
In the previous chapter, we started with OpenStack with Ubuntu and we saw the architecture,
environment, and various components of the OpenStack setup. We talked about services such
as Identity service, Image service, Compute service, Dashboard, Networking, Block Storage,
and Object Storage. In this chapter, we will cover the remaining components, namely,
Orchestration, Telemetry, Database, and Data Processing services. Also, we will look at some
of the best practices for the Ubuntu OS.

Creating rings for Object Storage
Object Storage requires three types of rings set to start functioning. These rings are named
account, container, and object rings. The configurations created for the rings are used by the
nodes for setting up the storage architecture. Let's create these rings now.

Creating an account ring
Complete the following steps to install the account ring. The commands are to be run on the
controller node:

1. Navigate to the /etc/swift folder:

cd /etc/swift
2. With the following command, create a new file base account.builder:

swift-ring-builder account.builder create 10 3 1
3. Add storage nodes to the ring:

swift-ring-builder account.builder add
r1z1-STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS:6002/DEVICE_NAME DEVICE_WEIGT

Make sure that you replace STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS
with the IP address of storage node's management network. DEVICE_NAME should be
replaced with a storage name (for example, sda1) in the preceding command. We should
run the same command on all the storage nodes and for every storage device on each
node. DEVICE_WEIGHT should be replaced with the number of partitions assigned in this
storage. This weight is relative to the other storage nodes and partitions assigned in them.

4. Run the following command to check whether the previous commands were successful:

swift-ring-builder account.builder

5. Run the following command to rebalance the ring:

swift-ring-builder account.builder rebalance

Creating a container ring
The container server has to maintain a list of objects. For this purpose, it makes use of the
container ring. Run the following commands on the controller node to create the container ring:

1. Navigate to the /etc/swift folder:

cd /etc/swift
2. With the following command, create a new file base container.builder:

swift-ring-builder container.builder create 10 3 1
3. Add storage nodes to the ring:

swift-ring-builder container.builder add
r1z1-STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS:6001/DEVICE_NAME DEVICE_WEIGT

Make sure that you replace STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS
with the IP address of storage node's management network. DEVICE_NAME should be
replaced with a storage name (for example, sda1) in the preceding command. We should
run the same command on the storage node and for every storage device on each node.

4. Run the following command to check if the previous commands were successful:

swift-ring-builder container.builder
5. Run the following command to rebalance the ring:

swift-ring-builder container.builder rebalance

Creating an object ring
The object server has the responsibility of maintaining a list of object locations present on the
local device. For this, the object server makes use of the object ring. Follow these steps to
create the object ring:

1. Navigate to the /etc/swift folder:

cd /etc/swift
2. With the following command, create a new file base object.builder:

swift-ring-builder object.builder create 10 3 1
3. Add storage nodes to the ring:

swift-ring-builder object.builder add
r1z1-STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS:6000/DEVICE_NAME DEVICE_WEIGT

Make sure that you replace STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS
with the IP address of storage node's management network. DEVICE_NAME should be
replaced with a storage name (for example, sda1) in the preceding command. We should
run the same command on the storage node and for every storage device on each node.

4. Run the following command to check if the previous commands were successful:

swift-ring-builder object.builder
5. Run the following command to rebalance the ring.

swift-ring-builder object.builder rebalance

Copying the configuration files for rings
After completing the previous steps, we will have to copy the three files, namely,
account.ring.gz, container.ring.gz, and object.ring.gz on all the storage nodes
in the OpenStack setup. The folder to copy these files to is /etc/swift.

Finalizing the installation
The final stage of ring installation involves configuring hash and setting the default storage
policy. The steps are as follows:

1. Get the /etc/swift/swift.conf file from the repository for Object Storage:

curl -o /etc/swift/swift.conf \
https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/swift.
conf-sample

2. Edit the same file /etc/swift/swift.conf and make the following changes:
1. Go to the [swift-hash] section and set the prefix and suffix for the hash path:

[swift-hash]
...
swift_hash_path_suffix = HASH_PATH_PREFIX

swift_hash_path_prefix = HASH_PATH_SUFFIX

Make sure that you assign some secret values to both HASH_PATH_PREFIX and
HASH_PATH_SUFFIX and keep them safe like a password.

2. Next, go to the [storage-policy:0] section and set the storage policy default
value:

[storage-policy:0]
...
name = Policy-0
default = yes

3. Now, get the swift.conf file and copy this to all storage nodes in the /etc/swift/
folder.

4. Change the ownership of these files on all storage nodes and set to the swift user and
the swift group:

chown -R swift:swift /etc/swift
5. Then, on all the nodes where proxy services are running, restart the Object Storage

service:

service memcached restart
service swift-proxy restart

6. Lastly, start the Object Storage service on storage node:

swift-init all start

The Orchestration module
The Orchestration module can be termed as the one most useful for developers. It provides a
template to the users, so that user can describe the application. This module makes use of the
OpenStack API calls to generate the running cloud applications. The user is given a one-file
template, which can be used to create instances, security groups and users, and IP addresses.
This template is then used by deployers to deploy an application in OpenStack.

Installing and configuring
We will install and configure the Orchestration module on the controller node.

Configuring the prerequisites

We need to create database, credentials, and API endpoints so that we can install and
configure the Orchestration module. The steps are as follows:

1. The following are the steps to create a database:
1. Connect to the database server as root user:

mysql -u root –p
2. Create a new database named heat:

CREATE DATABASE heat;
3. Grant all the required access to the newly created database heat:

GRANT ALL PRIVILEGES ON glance.* TO heat@'localhost' \
IDENTIFIED BY 'HEAT_DBPASS';
GRANT ALL PRIVILEGES ON glance.* TO heat@'%' \
IDENTIFIED BY 'HEAT_DBPASS';

Make sure that you replace the term HEAT_DBPASS with an appropriate password of
your choice.

4. Exit the database client connection.

2. To gain access to admin-only CLI commands, source the admin credentials:

source admin-openrc.sh
3. Carry on the following steps to create the service credentials:

1. Create new user heat:

keystone user-create --name heat --pass HEAT_PASS

Make sure that you replace the term HEAT_PASS with an appropriate password of
your choice.

2. Add admin role to the user heat:

keystone user-role-add --user heat --tenant service --role admin
3. Create a new role named heat_stack_owner:

keystone role-create --name heat_stack_owner
4. Next, we will add this new role heat_stack_owner to the demo tenant and user:

keystone user-role-add --user demo --tenant demo --role \
heat_stack_owner

5. Create a new role named heat_stack_user:

keystone role-create --name heat_stack_user
6. Next, create service entities heat and heat-cfn:

keystone service-create --name heat --type orchestration \
--description "Orchestration"
keystone service-create --name heat-cfn --type cloudformation --description "Orchestration"

4. Create an API endpoint for the Image service:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ orchestration / {print
$2}') \
--publicurl http://controller:8004/v1/%\(tenant_id\)s \
--internalurl http://controller:8004/v1/%\(tenant_id\)s \
--adminurl http://controller:8004/v1/%\(tenant_id\)s \
--region regionOne

Installing and configuring the Orchestration components

The steps to install and configure the Orchestration components are as follows:

1. Install the packages:

apt-get install heat-api heat-api-cfn heat-engine python-heatclient
2. Make the following changes in the /etc/heat/heat.conf file:

1. Go to the [database] section and configure the database access:

[database]
...
connection = mysql://glance:HEAT_DBPASS@controller/glance

Make sure that you replace the term HEAT_DBPASS with an appropriate password of
your choice.

2. Next, go to the [DEFAULT] section and configure the RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure that you replace the term RABBIT_PASS with an appropriate password of
your choice.

3. Next, go to the [keystone_authtoken] and [ec2authtoken] sections and
configure the Identity service access:

[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = heat
admin_password = HEAT_PASS
[ec2authtoken]
...
auth_uri = http://controller:5000/v2.0

Make sure that you replace the term HEAT_PASS with password set in the Identity
service for the heat user.

4. Next, configure the metadata and URLs for the wait condition in the [DEFAULT]
section:

[DEFAULT]
...
heat_metadata_server_url = http://controller:8000
heat_waitcondition_server_url = http://controller:8000/v1/
waitcondition

Finalizing the installation

The following are the final steps for finishing the installation of the Image service components:

1. First, we will restart the services:

service heat-api restart

service heat-api-cfn restart
service heat-engine restart

2. Next, as we did in the previous section, we will remove the SQLite database file:

rm -f /var/lib/heat/heat.sqlite

The Telemetry module
The Telemetry module is similar to a stats collector. It collects various types of data from
different components and systems. The Telemetry module gets data about CPU and network
utilization, which in turn is helpful for fine-tuning the operating circumstances. It makes use of
the REST API for reading or writing these stats. Users can also create plugins for custom
collection of metered data.

Installing and configuring the controller node
In this section, we will see how to install the Telemetry module, known as ceilometer, on the
controller node.

Configuring the prerequisites

We will install MongoDB and create a database, and then we will create the service credentials
for it and the API endpoints, so that we can install the Telemetry module. The steps are as
follows:

1. Install the MongoDB package:

apt-get install mongodb-server
2. Edit the /etc/mongodb.conf file and make the following changes:

1. Set the bind_ip key to the IP address of the controller node management network:

bind_ip = 10.0.0.11

2. We can also reduce the size of journal files from the default 1 GB. To do so, we
have to set a flag in the configuration file as follows:

smallfiles = true

After this, we will need to stop MongoDB, remove the journal files that are already
present, and start the service again:

service mongodb stop
rm /var/lib/mongodb/journal/prealloc.*
service mongodb start

3. Next, we restart the MongoDB service:

service mongodb restart

3. Create a database named ceilometer in MongoDB:

mongo --host controller --eval '

db = db.getSiblingDB("ceilometer");
db.addUser({user: "ceilometer",
pwd: "CEILOMETER_DBPASS",
roles: ["readWrite", "dbAdmin"]})'

Make sure that you replace the term CEILOMETER_DBPASS with an appropriate password
of your choice.

4. Next, to gain access to the admin-only CLI commands, source the admin credentials:

source admin-openrc.sh
5. Carry on following these steps to create the service credentials:

1. Create new user ceilometer:

keystone user-create --name ceilometer --pass CEILOMETER_PASS

Make sure that you replace the term CEILOMETER_PASS with an appropriate
password of your choice.

2. Add admin role to the user ceilometer:

keystone user-role-add --user ceilometer –tenant service --role admin
3. Create a new service entry for ceilometer:

keystone service-create --name ceilometer –type metering --description "Telemetry"

6. Create an API endpoint for the Telemetry service:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ metering / {print $2}') \
--publicurl http://controller:8777 \
--internalurl http://controller:8777 \
--adminurl http://controller:8777 \
--region regionOne

Installing and configuring the Telemetry components

The steps to install and configure the Telemetry components are as follows:

1. Install the packages:

apt-get install ceilometer-api ceilometer-collector ceilometer-agentcentral
\
ceilometer-agent-notification ceilometer-alarm-evaluator ceilometeralarm-
notifier \

python-ceilometerclient
2. Next, we need a secret value. Let's generate one using the following command:

openssl rand -hex 10
3. Make the following changes in the /etc/ceilometer/ceilometer.conf file:

1. Go to the [database] section and configure the database access:

[database]
...
connection = mongodb://ceilometer:CEILOMETER_DBPASS@controller:27017/
ceilometer

Make sure that you replace the term CEILOMETER_DBPASS with an appropriate
password of your choice.

2. Next, go to the [DEFAULT] section and configure the RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure that you replace the term RABBIT_PASS with the password set
previously for RabbitMQ.

3. Next, go to the [keystone_authtoken] and [DEFAULT] sections and configure
the Identity service access:

[DEFAULT]
...
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = ceilometer
admin_password = CEILOMETER_PASS

Make sure that you replace the term CEILOMETER _PASS with the password you
set for ceilometer in Identity service.

4. Set the service credentials in the [service-credentials] section:

[service_credentials]
...
os_auth_url = http://controller:5000/v2.0
os_username = ceilometer
os_tenant_name = service
os_password = CEILOMETER_PASS

Make sure that you replace the term CEILOMETER _PASS with the password you

set for ceilometer in Identity service.

5. Set the metering secret value in the [publisher] section (we had generated this
secret in the previous section):

[publisher]
...
metering_secret = METERING_SECRET

6. Lastly, we configure the logging in the [DEFAULT] section:

[DEFAULT]
...
log_dir = /var/log/ceilometer

Finalizing the installation

Run the following commands to restart the services for Telemetry:

service ceilometer-agent-central restart
service ceilometer-agent-notification restart
service ceilometer-api restart
service ceilometer-collector restart
service ceilometer-alarm-evaluator restart
service ceilometer-alarm-notifier restart

Installing and configuring the Compute agent
In this section, we will cover how to install and configure the Telemetry agent on the Compute
node.

Configuring the prerequisites

The steps to configure the prerequisites are as follows:

1. Installing the package:

apt-get install ceilometer-agent-compute
2. Add the following in the [DEFAULT] section of the /etc/nova/nova.conf file:

[DEFAULT]
...
instance_usage_audit = True
instance_usage_audit_period = hour
notify_on_state_change = vm_and_task_state
notification_driver = nova.openstack.common.notifier.rpc_notifier
notification_driver = ceilometer.compute.nova_notifier

3. Lastly, restart the Compute service:

service nova-compute restart

Configuring the Compute agent for the Telemetry module

Edit the /etc/ceilometer/ceilometer.conf file and make the following changes:

1. Go to the [publisher] section, and set the secret token we created in the previous
section. The secret token comes in the place of the CEILOMETER_TOKEN term:

[publisher]
Secret value for signing metering messages (string value)
metering_secret = CEILOMETER_TOKEN

2. Next, go to the [DEFAULT] section and configure the RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Make sure that you replace the term RABBIT_PASS with the password set for RabbitMQ
previously.

3. Next, go to the [keystone_authtoken] and [DEFAULT] sections and configure
Identity service access:

[keystone_authtoken]
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_tenant_name = service
admin_user = ceilometer
admin_password = CEILOMETER_PASSS

Make sure that you replace the term CEILOMETER _PASS with the password you set for
the Telemetry module service.

4. Set the service credentials in the [service-credentials] section:

[service_credentials]
os_auth_url = http://controller:5000/v2.0
os_username = ceilometer
os_tenant_name = service
os_password = CEILOMETER_PASS
os_endpoint_type = internalURL

Make sure that you replace the term CEILOMETER _PASS with the password you set for
the ceilometer in Identity service.

5. Lastly, we configure the logging in the [DEFAULT] section:

[DEFAULT]
...
log_dir = /var/log/ceilometer

Finalizing the installation

Restart the service in order for the changes to take effect:

service ceilometer-agent-compute restart

Configuring the Image service
Edit the /etc/glance/glance-api.conf file and make the following changes in the
[DEFAULT] section:

notification_driver = messaging
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Next, we will restart the Image services in order for the settings to take effect:

service glance-registry restart
service glance-api restart

Adding the Block Storage agent for Telemetry
The steps to add the Block Storage agent for Telemetry are as follows:

1. Make the following edits to the /etc/cinder/cinder.conf file in the [DEFAULT]
section:

control_exchange = cinder
notification_driver = cinder.openstack.common.notifier.rpc_notifier

2. Next, restart the Image services in order for the settings to take effect:
1. Run the following commands on the controller node:

service cinder-api restart
service cinder-scheduler restart

2. Run the following command on the storage node:

service cinder-volume restart

Configuring Object Storage for Telemetry
The steps to configure Object Storage for Telemetry are as follows:

1. Run the following command on the Object Storage server:

apt-get install python-ceilometerclient
2. Add permissions to the roles for sufficient access to the Telemetry module:

keystone role-create --name ResellerAdmin
keystone user-role-add --tenant service --user ceilometer \
--role ID_VALUE

Make sure that you replace the term ID_VALUE with the ID value generated in the
preceding command.

3. Next, edit the /etc/swift/proxy-server.conf file and make the following changes:

[filter:ceilometer]
use = egg:ceilometer#swift

4. Go to the [pipeline:main] section and add the following lines:

[pipeline:main]
pipeline = healthcheck cache authtoken keystoneauth ceilometer proxy-server

5. Next, add the swift user to the ceilometer group:

usermod -a -G ceilometer swift
6. In the operator_roles section, add the following line:

operator_roles = Member,admin,swiftoperator,_member_,ResellerAdmin

7. Restart the service for the changes to take effect:

service swift-proxy restart

The Database service
Database service is a component of the OpenStack system that helps users with scalability and
provisioning of databases. Users can automate the administrative tasks related to cloud
configuration, deployment, monitoring, backup, restore and patching.

Installing the Database service
Complete the following steps to install Database service on the controller node.

Taking care of the prerequisites

The Compute, Image, and Identity services should be running. Object Storage and Block
Storage services are optional.

Installing the Database module

The steps to install the Database module are as follows:

1. Install the package:

apt-get install python-trove python-troveclient python-glanceclient \
trove-common trove-api trove-taskmanager

2. Prepare OpenStack:
1. Source the admin credentials:

source admin-openrc.sh
2. Create a user trove and give the user administrative rights:

keystone user-create --name trove --pass TROVE_PASS
keystone user-role-add --user trove --tenant service --role admin

Make sure that you replace the term TROVE_PASS with an appropriate password of
your choice.

3. Edit the following files and make the changes listed in each of the file:
trove.conf
trove-taskmanager.conf
trove-conductor.conf

The following are the changes:

1. Go to the [DEFAULT] section and set SQL connection, logging, and messaging
URLS for OpenStack services:

[DEFAULT]
log_dir = /var/log/trove
trove_auth_url = http://controller:5000/v2.0
nova_compute_url = http://controller:8774/v2
cinder_url = http://controller:8776/v1
swift_url = http://controller:8080/v1/AUTH_
sql_connection = mysql://trove:TROVE_DBPASS@controller/trove
notifier_queue_hostname = controller

2. Next, go to the [DEFAULT] section and configure the RabbitMQ broker access:

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

4. Edit the api-paste.ini file and make the following changes in the
[filter:authtoken] section:

[filter:authtoken]
auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357
admin_user = trove
admin_password = ADMIN_PASS
admin_tenant_name = service
signing_dir = /var/cache/trove

5. Make the following changes in the trove.conf file:

[DEFAULT]
default_datastore = mysql
....
Config option for showing the IP address that nova doles out
add_addresses = True
network_label_regex = ^NETWORK_LABEL$
....
api_paste_config = /etc/trove/api-paste.ini

6. Edit the trove-taskmanager.conf file and make the following changes:

[DEFAULT]
....
Configuration options for talking to nova via the novaclient.
These options are for an admin user in your keystone config.
It proxy's the token received from the user to send to nova via this
admin users creds,
basically acting like the client via that proxy token.
nova_proxy_admin_user = admin
nova_proxy_admin_pass = ADMIN_PASS
nova_proxy_admin_tenant_name = service
taskmanager_manager = trove.taskmanager.manager.Manager

7. Configure the trove database:

mysql -u root -p
mysql> CREATE DATABASE trove;

mysql> GRANT ALL PRIVILEGES ON trove.* TO trove@'localhost' \
IDENTIFIED BY 'TROVE_DBPASS';
mysql> GRANT ALL PRIVILEGES ON trove.* TO trove@'%' \
IDENTIFIED BY 'TROVE_DBPASS';

8. Configure the Database service:
1. Initialize the database:

su -s /bin/sh -c "trove-manage db_sync" trove
2. Create a new datastore for the MySQL database:

su -s /bin/sh -c "trove-manage datastore_update mysql ''" trove

9. Create a new image for trove in the MySQL database. Edit the trove-
guestagent.conf file and make the following changes:

rabbit_host = controller
rabbit_password = RABBIT_PASS
nova_proxy_admin_user = admin
nova_proxy_admin_pass = ADMIN_PASS
nova_proxy_admin_tenant_name = service
trove_auth_url = http://controller:35357/v2.0

10. Next, use the trove-manage command and execute the following commands to make
use of the new image:

trove-manage --config-file /etc/trove/trove.conf
datastore_version_update \
mysql mysql-5.5 mysql glance_image_ID mysql-server-5.5 1

11. Register the newly created Database service in the list with the Image service:

keystone service-create --name trove --type database \
--description "OpenStack Database Service"

Also, set the endpoint:

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ trove / {print $2}') \
--publicurl http://controller:8779/v1.0/%\(tenant_id\)s \
--internalurl http://controller:8779/v1.0/%\(tenant_id\)s \
--adminurl http://controller:8779/v1.0/%\(tenant_id\)s \
--region regionOne

12. Restart the service for the settings to take effect:

service trove-api restart
service trove-taskmanager restart
service trove-conductor restart

The Data Processing service
The OpenStack Data processing service is used by users for setting up clusters for data
processing. Some of the examples are Hadoop and Spark. Users need to specify the
configuration for the clusters, namely, version, topology, and nodes. With this information, the
Data Processing service will deploy the cluster in the cloud. This cluster is scalable and users
can add/remove nodes on demand.

Installing the Data Processing service
We will now discuss the procedure to install the Data Processing service known as sahara on
the controller node. The steps are as follows:

1. Install the package for the Data Processing service:

apt-get install python-pip
pip install sahara

2. Make the following changes to the /etc/sahara/sahara.conf configuration file:
1. Go to the [database] section and set the parameter connection to point it to a

database:

connection = mysql://sahara:SAHARA_DBPASS@controller/sahara

2. Next, in the [keystone_authtoken] section, set the auth_uri and
identity_uri parameters as follows:

auth_uri = http://controller:5000/v2.0
identity_uri = http://controller:35357

3. We should have a keystone user with administrative rights. Use the same user to set
the admin_user, admin_password, and admin_tenant_name parameters in the
same file.

4. In the [DEFAULT] section, set the following:

use_neutron=true

3. We had installed the MySQL database in the previous section. We will make use of the
same for storing job binaries belonging to Data Processing service. Make the following
changes to the my.cnf file and restart the MySQL server:

[mysqld]
max_allowed_packet = 256M

4. Next, we create a database schema:

sahara-db-manage --config-file /etc/sahara/sahara.conf upgrade head
5. Let's add the Data Processing service to the Identity service list, so that other services

can get to know about it:

keystone service-create --name sahara --type data_processing \
--description "Data processing service"

Also, set the API endpoint for sahara.

keystone endpoint-create \
--service-id $(keystone service-list | awk '/ sahara / {print $2}') \
--publicurl http://controller:8386/v1.1/%\(tenant_id\)s \
--internalurl http://controller:8386/v1.1/%\(tenant_id\)s \
--adminurl http://controller:8386/v1.1/%\(tenant_id\)s \
--region regionOne

6. Finally, we start the sahara service:

systemctl enable openstack-sahara-all

OpenStack flashback
We have installed, configured, and set up all of the core and optional components of the
OpenStack system. By now, we should have a complete setup of the OpenStack software on
our Ubuntu Server. Let's discuss some tips and best practices for working with the Ubuntu
Server.

Best practices for Ubuntu Server
Here are some of the best practices that we as Ubuntu Server administrators can follow to
keep the system safe and secure, and to avoid any issues that may occur due to users'
negligence and/or forceful attempts to access restricted areas. This list is a good starting point,
but not exhaustive:

Be sure to enable only SSH-based logins.
Provide users with limited access to files and software. Make sure that proper ownership
is applied everywhere.
Create a password policy and encourage users to change their passwords periodically.
Also, check whether your server needs a setup to lockdown users after a certain number
of failed login attempts.
Allow only certain ports that are in use by your applications. Make use of the UFW
features for this.
If you intend to use your server as a mail server as well, then it is best to enable TLS on
it.
Allowing access to MySQL from localhost can enforce security to a great level.
This goes without saying, but a reminder is always helpful. Make sure that no users have
write access to the configuration files for the packages.
Secure the shared memory.
Scan open ports from time to time and shut them off if not used by any service.
Use your best judgment when it comes to providing users with sudo access. Be
absolutely sure the user cannot misuse the sudo powers.
Make use of groups for handling access and security for a collection of users in a better
manageable way.
Secure the FTP access to your Ubuntu Server.

Summary
In this chapter, we set up and configured the remaining components of the OpenStack system
on our Ubuntu Server. Towards the end of this chapter, we saw some best practices for your
Ubuntu Server. Hope this journey has been enjoyable and helped you with information for your
work in the administration of systems.

Index
A

access control lists (ACL) / Access control
account ring

creating / Creating an account ring
Advanced Packaging Tool (APT)

about / Understanding the apt-get package management tool
application updates

about / Application updates
apt-cache tool

about / The apt-cache tool
package, searching with apt-cache search command / Searching for a package with
the apt-cache search command

apt-get package management tool
about / Understanding the apt-get package management tool
repository list, updating with apt-get update command / Updating the repository list
with the apt-get update command
package, installing with apt-get install command / Installing a package with the apt-
get install command
package, upgrading with apt-get upgrade command / Upgrading a package with the
apt-get upgrade command
cleaning, with apt-get clean command / Cleaning with the apt-get clean command
package, purging with apt-get purge command / Purging a package with the apt-get
purge command
unsuccessful installations, fixing with apt-get -f command / Fixing unsuccessful
installations with the apt-get –f command
broken dependencies, checking for with apt-get check command / Checking for
broken dependencies with the apt-get check command

aptitude
about / Package management with aptitude
command keys / Package management with aptitude

authorized keys file / Using passphrases
automatic updates

about / Automatic updates
security updates / Security updates
kernel updates / Kernel updates
application updates / Application updates
unattended-upgrades package / The unattended-upgrades package

B
background processes

about / Background processes
jobs / jobs

part0031.xhtml#aid-TI1E2
part0066.xhtml#aid-1UU542
part0016.xhtml#aid-F8902
part0020.xhtml#aid-J2B81
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0016.xhtml#aid-F8902
part0016.xhtml#aid-F8902
part0016.xhtml#aid-F8902
part0016.xhtml#aid-F8902
part0016.xhtml#aid-F8902
part0016.xhtml#aid-F8902
part0016.xhtml#aid-F8902
part0016.xhtml#aid-F8902
part0018.xhtml#aid-H5A41
part0018.xhtml#aid-H5A41
part0046.xhtml#aid-1BRPS2
part0020.xhtml#aid-J2B81
part0020.xhtml#aid-J2B81
part0020.xhtml#aid-J2B81
part0020.xhtml#aid-J2B81
part0020.xhtml#aid-J2B81
part0044.xhtml#aid-19UOO1
part0044.xhtml#aid-19UOO1
part0044.xhtml#aid-19UOO1

& (ampersand) /
jobs -p / jobs -p
suspended state, with Ctrl + Z / Suspended state with Ctrl + Z
bg command / bg
fg command / fg

bash profiles, shell optimization
/etc/bash.bashrc file / The /etc/bash.bashrc file
/etc/profile file / The /etc/profile file
variables in bash / Variables in bash

Berkeley Internet Name Daemon (BIND)
about / DNS
named / DNS
resolver / DNS
tools / DNS

binding
about / Binding

Block Storage service
about / The Block Storage service
controller node, installing / Installing and configuring the controller node
controller node, configuring / Installing and configuring the controller node
storage node, configuring / Configuring the prerequisites
storage node, installing / Configuring the prerequisites

bonding
about / Bonding

C
chmod command / Changing permissions with chmod
chroot environment

about / Setting up DNS
ClusterSSH (cssh)

about / ClusterSSH
installing / ClusterSSH

compute node, OpenStack networking
installing / Installing and configuring the compute node
configuring / Installing and configuring the compute node, Configuring Compute to
use Networking
prerequisites, configuring / Configuring the prerequisites
components, installing / Installing the Networking components
common components, configuring / Configuring the Networking common
components
ML2 plugin, configuring / Configuring the ML2 plugin
OVS service, configuring / Configuring the OVS service
installation, finalizing / Finalizing the installation

Compute service
about / The Compute service
installing / Installing and configuring the Compute service

part0044.xhtml#aid-19UOO1
part0044.xhtml#aid-19UOO1
part0044.xhtml#aid-19UOO1
part0044.xhtml#aid-19UOO1
part0048.xhtml#aid-1DOR01
part0048.xhtml#aid-1DOR01
part0048.xhtml#aid-1DOR01
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0026.xhtml#aid-OPEK1
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0026.xhtml#aid-OPEK1
part0049.xhtml#aid-1ENBI2
part0027.xhtml#aid-PNV61
part0039.xhtml#aid-1565U1
part0039.xhtml#aid-1565U1
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62

configuring / Installing and configuring the Compute service
prerequisites, configuring / Configuring the prerequisites
Image service components, installing / Installing and configuring the Compute
service components
Image service components, configuring / Installing and configuring the Compute
service components
installation, finalizing / Finalizing the installation, Finalizing the installation
compute node, installing / Installing and configuring the compute node
compute node, configuring / Installing and configuring the compute node
compute hypervisor component, configuring / Installing and configuring the
compute hypervisor components
compute hypervisor component, installing / Installing and configuring the compute
hypervisor components

container ring
creating / Creating a container ring

controller node, Block Storage service
installing / Installing and configuring the controller node
configuring / Installing and configuring the controller node
prerequisites, configuring / Configuring the prerequisites
components, configuring / Installing and configuring the Block Storage service
components
components, installing / Installing and configuring the Block Storage service
components

controller node, NTP
service, installing / Installing the NTP service
service, configuring / Configuring the NTP service

controller node, Object Storage service
installing / Installing and configuring the controller node
configuring / Installing and configuring the controller node
prerequisites, configuring / Configuring the prerequisites
components, configuring / Installing and configuring the controller node
components
components, installing / Installing and configuring the controller node components

controller node, OpenStack networking
installing / Installing and configuring the controller node
configuring / Installing and configuring the controller node
prerequisites, configuring / Configuring the prerequisites
components, installing / Installing the Networking components
server components, configuring / Configuring the server components of Networking
Modular Layer 2 plugin, configuring / Configuring the Modular Layer 2 plugin
configuring, on compute node / Configuring Networking on the compute node
installation, finalizing / Finalizing the installation

D
dashboard

about / Dashboard

part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0059.xhtml#aid-1O8H62
part0066.xhtml#aid-1UU542
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0062.xhtml#aid-1R42S1

prerequisites / Prerequisites
installing / Installing and configuring the dashboard
configuring / Installing and configuring the dashboard, Configuring the dashboard
packages, installing / Installing the packages
installation, finalizing / Finalizing the installation

database
about / Database
server, installing / Installing and configuring the database server
server, configuring / Installing and configuring the database server
installation, finalizing / Finalizing the installation

Database service
about / The Database service
installing / Installing the Database service
prerequisites / Taking care of the prerequisites
Database module, installing / Installing the Database module

Data Processing service
about / The Data Processing service
installing / Installing the Data Processing service

DHCP
about / DHCP
installing / Installation
configuring / Configuration

directory information tree (DIT) / Installation
DNS

about / DNS
setting up / Setting up DNS
primary server, setting up / Setting up primary and secondary DNS servers
secondary server, setting up / Setting up primary and secondary DNS servers
hints file / The hints file – zone "."
local host file / The local host file – zone "0.0.127.in-addr.arpa"
reverse zone file / The reverse zone file – zone "24.126.10.in-addr.arpa"
primary zone file / The primary zone file – zone "ubuntuserver.org"

dpkg
using, for package management / Using dpkg for package management

E
external networks

about / External networks
creating / Creating an external network
subnet, creating / Creating the subnet for the external network

F
file permissions

managing / Managing file permissions
about / Understanding file permissions

part0062.xhtml#aid-1R42S1
part0062.xhtml#aid-1R42S1
part0062.xhtml#aid-1R42S1
part0062.xhtml#aid-1R42S1
part0062.xhtml#aid-1R42S1
part0062.xhtml#aid-1R42S1
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0069.xhtml#aid-21PMQ2
part0069.xhtml#aid-21PMQ2
part0069.xhtml#aid-21PMQ2
part0069.xhtml#aid-21PMQ2
part0070.xhtml#aid-22O7C1
part0070.xhtml#aid-22O7C1
part0024.xhtml#aid-MSDG1
part0024.xhtml#aid-MSDG1
part0024.xhtml#aid-MSDG1
part0031.xhtml#aid-TI1E2
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0015.xhtml#aid-E9OE2
part0061.xhtml#aid-1Q5IA1
part0061.xhtml#aid-1Q5IA1
part0061.xhtml#aid-1Q5IA1
part0049.xhtml#aid-1ENBI2
part0049.xhtml#aid-1ENBI2

changing, with chmod / Changing permissions with chmod
ownership, modifying with chown and chgrp / Modifying ownership using chown
and chgrp
default permissions, setting with umask / Setting default permissions with umask
special file permissions / Special file permissions

G
graphical user interface (GUI) / Installation

I
Identity service

about / The Identity service
installing / Installing and configuring the Identity service
configuring / Installing and configuring the Identity service
installation prerequisites / Configuring the prerequisites
components, installing / Installing and configuring the components
components, configuring / Installing and configuring the components
installation, finalizing / Finalizing the installation
tenants, creating / Tenants, users, and roles, Creating tenants, users, and roles
roles, creating / Tenants, users, and roles, Creating tenants, users, and roles
prerequisites, configuring / Configuring prerequisites
users, creating / Creating tenants, users, and roles
service entity and API endpoint, creating / The service entity and API endpoint

Image service
about / The Image service
installing / Installing and configuring the Image service
configuring / Installing and configuring the Image service
prerequisites, configuring / Configuring the prerequisites
components, installing / Installing and configuring the Image service components
components, configuring / Installing and configuring the Image service components
installation, finalizing / Finalizing the installation

Infrastructure-as-a-Service (IaaS) / The Compute service
initial networks

creating / Creating initial networks
external networks / External networks
tenant network / The tenant network
router, creating for attaching external and internal network / Creating the router to
attach the external and tenant networks

installation, JeOS
about / JeOS installation
IP address / IP address
bridge, enabling / Enabling the bridge
partitions / Partitions
user and password, setting / Setting the user and password
final steps / First boot

part0049.xhtml#aid-1ENBI2
part0049.xhtml#aid-1ENBI2
part0049.xhtml#aid-1ENBI2
part0049.xhtml#aid-1ENBI2
part0052.xhtml#aid-1HIT81
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0059.xhtml#aid-1O8H62
part0061.xhtml#aid-1Q5IA1
part0061.xhtml#aid-1Q5IA1
part0061.xhtml#aid-1Q5IA1
part0061.xhtml#aid-1Q5IA1
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2

first boot / First boot
first login / First login
auto updates / Auto updates
ACPI handling / ACPI handling
final command / The complete command

installation, libvirt
about / Installation
virt-install / virt-install
virt-clone / virt-clone

J
JeOS

about / JeOS
installing / JeOS installation

jobs, scheduling with cron
about / Scheduling jobs with cron
user cron jobs, scheduling / Scheduling user cron jobs
jobs, configuring with at utility / Configuring jobs using at
job schedule security / Job schedule security

K
Kerberos

about / Kerberos
installing / Installation
database setup / Database setup
client, setting up / Setting up the Kerberos client
ssh logon / Kerberos SSH and logon

Kernel-based Virtual Machine (KVM)
about / What is virtualization?

kernel updates
about / Kernel updates

key distribution center (KDC) / Kerberos

L
Layer 3 (L3) agent

configuring / Configuring the Layer 3 agent
LDAP (Lightweight Directory Access Protocol)

about / OpenLDAP
LDAP Data Interchange Format (LDIF) / Installation
LDAP integration, with Kerberos

about / Integrating LDAP with Kerberos
LDAP installation / Installation
database setup / Database setup

part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0052.xhtml#aid-1HIT81
part0052.xhtml#aid-1HIT81
part0052.xhtml#aid-1HIT81
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0047.xhtml#aid-1CQAE2
part0047.xhtml#aid-1CQAE2
part0047.xhtml#aid-1CQAE2
part0047.xhtml#aid-1CQAE2
part0032.xhtml#aid-UGI02
part0032.xhtml#aid-UGI02
part0032.xhtml#aid-UGI02
part0032.xhtml#aid-UGI02
part0032.xhtml#aid-UGI02
part0051.xhtml#aid-1GKCM1
part0020.xhtml#aid-J2B81
part0032.xhtml#aid-UGI02
part0060.xhtml#aid-1P71O2
part0031.xhtml#aid-TI1E2
part0031.xhtml#aid-TI1E2
part0033.xhtml#aid-VF2I1
part0033.xhtml#aid-VF2I1
part0033.xhtml#aid-VF2I1

libvirt
about / libvirt
installing / Installation
virtual machine, managing / Managing the virtual machine

M
messaging server

about / The messaging server
RabbitMQ message broker service, installing / Installing the RabbitMQ message
broker service
RabbitMQ message broker service, configuring / Configuring the message broker
service

mirror
about / Configuration and extra repositories

Modular Layer 2 (ML2)
configuring / Configuring the Modular Layer 2 plugin

N
Nagios

about / Nagios
installing / The Nagios setup
host, adding / Adding another host in Nagios
templates / Nagios templates
hostgroups / Nagios hostgroups and services
services / Nagios hostgroups and services
setup alerts / Nagios setup alerts
plugin, writing / Writing a Nagios plugin
NRPE plugin / The NRPE plugin
external commands, enabling / Enabling external commands

nagios3 / The Nagios setup
Nagios plugin

URL / Writing a Nagios plugin
network address translation (NAT) / External networks
networking

OpenStack networking / OpenStack networking
NTP / Network Time Protocol
OpenStack packages / OpenStack packages
database / Database
messaging server / The messaging server

networking concepts
about / Networking concepts
IP addressing / IP addressing
DHCP client, for dynamic address / DHCP client for dynamic addresses
static IP address, assigning / Assigning a static IP address

network node, OpenStack networking

part0052.xhtml#aid-1HIT81
part0052.xhtml#aid-1HIT81
part0052.xhtml#aid-1HIT81
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0019.xhtml#aid-I3QM1
part0060.xhtml#aid-1P71O2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0061.xhtml#aid-1Q5IA1
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0023.xhtml#aid-LTSU1
part0023.xhtml#aid-LTSU1
part0023.xhtml#aid-LTSU1
part0023.xhtml#aid-LTSU1

installing / Installing and configuring the network node
configuring / Installing and configuring the network node
prerequisites, configuring / Configuring the prerequisites
components, installing / Installing the Networking components
components, configuring / Configuring the Networking components
Modular Layer 2 plugin, configuring / Configuring the Modular Layer 2 plugin
Layer 3 agent, configuring / Configuring the Layer 3 agent
DHCP agent, configuring / Configuring the DHCP agent
metadata agent, configuring / Configuring the metadata agent
OVS service, configuring / Configuring the OVS service
installation, finalizing / Finalizing the installation

network sniffing, with tcpdump
about / Network sniffing with tcpdump
packets, capturing from eth0 / Capturing packets from eth0
tcpdump results, saving in file / Saving the tcpdump results in a file
saved packet, reading / Reading packets saved in a file by tcpdump
timestamp, making readable / Readable timestamps in packets
packets of specific protocol, reading / Reading packets of a specific protocol
packets on specific port, reading / Reading packets on a specific port
TCP packets, reading, between two hosts / Reading TCP packets between two
hosts

nodes, NTP
configuring / Configuring other nodes
service, installing / Installing the NTP service
service, configuring / Configuring the NTP service

NRPE plugin
about / The NRPE plugin

NTP
controller node, configuring / Configuring the controller node

O
object ring

creating / Creating an object ring
Object Storage

about / Creating rings for Object Storage
rings, creating / Creating rings for Object Storage
account ring, creating / Creating an account ring
container ring, creating / Creating a container ring
object ring, creating / Creating an object ring
configuration files for rings, copying / Copying the configuration files for rings
ring installation, finalizing / Finalizing the installation

Object Storage service
about / The Object Storage service
controller node, configuring / Installing and configuring the controller node
controller node, installing / Installing and configuring the controller node
storage node, installing / Configuring the prerequisites

part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0025.xhtml#aid-NQU22
part0025.xhtml#aid-NQU22
part0025.xhtml#aid-NQU22
part0025.xhtml#aid-NQU22
part0025.xhtml#aid-NQU22
part0025.xhtml#aid-NQU22
part0025.xhtml#aid-NQU22
part0025.xhtml#aid-NQU22
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0037.xhtml#aid-1394Q2
part0056.xhtml#aid-1LCVG2
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402

storage node, configuring / Configuring the prerequisites
OpenLDAP

about / OpenLDAP
installing / Installation
database, populating / Populating the database
logging / Logging
access control / Access control

OpenStack
architecture / The OpenStack architecture

OpenStack architecture
about / The OpenStack architecture
dashboard / The OpenStack architecture
compute / The OpenStack architecture
networking / The OpenStack architecture
Object Storage / The OpenStack architecture
Block Storage / The OpenStack architecture
Identity Service / The OpenStack architecture
Image Service / The OpenStack architecture
Telemetry / The OpenStack architecture
orchestration / The OpenStack architecture
Database Service / The OpenStack architecture

OpenStack environment
about / The environment
resource requirements / The environment
Object Storage nodes / The environment
security / Security
security, password / Security
networking / Networking

OpenStack networking
about / OpenStack networking, OpenStack networking
controller node / The controller node
network node / The network node
compute node / The compute node
network connectivity, verifying / Verifying the network connectivity
controller node, installing / Installing and configuring the controller node
controller node, configuring / Installing and configuring the controller node
network node, configuring / Installing and configuring the network node
network node, installing / Installing and configuring the network node
compute node, installing / Installing and configuring the compute node

OpenStack packages
about / OpenStack packages
repository, enabling / Enabling the OpenStack repository
installation, finalizing / Finalizing the installation

OpenStack summary
about / OpenStack flashback

Orchestration module
about / The Orchestration module
installing / Installing and configuring

part0064.xhtml#aid-1T1402
part0031.xhtml#aid-TI1E2
part0031.xhtml#aid-TI1E2
part0031.xhtml#aid-TI1E2
part0031.xhtml#aid-TI1E2
part0031.xhtml#aid-TI1E2
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0055.xhtml#aid-1KEEU1
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0060.xhtml#aid-1P71O2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0071.xhtml#aid-23MNU1
part0067.xhtml#aid-1VSLM2
part0067.xhtml#aid-1VSLM2

configuring / Installing and configuring
prerequisites, configuring / Configuring the prerequisites
components, installing / Installing and configuring the Orchestration components
components, configuring / Installing and configuring the Orchestration components
installation, finalizing / Finalizing the installation

P
package

about / Getting started with packages
package management

about / Getting started with packages
package / Package
repository / Repository
.deb packages / The .deb packages
dependency / Dependency
open source / Open source
dpkg, using for / Using dpkg for package management
with aptitude / Package management with aptitude

packet sniffer
about / Network sniffing with tcpdump

password authentication
disabling / Disabling password authentication

passwordless ssh
setting up / Setting up passwordless SSH

physical network infrastructure (PNI) / OpenStack networking
primary zone file

about / The primary zone file
components / The primary zone file

process management
basics / The basics of process management
$$ / $$ and $PPID
$PPID / $$ and $PPID
pidof / pidof
parent and child / Parent and child
fork() / fork() and exec()
exec command / exec
ps command / ps

process priorities
about / Process priorities
renice command / renice
nice command / nice

ps command
about / ps
pstree / pstree
ps fx / ps fx
ps -C and pgrep / ps -C and pgrep

part0067.xhtml#aid-1VSLM2
part0067.xhtml#aid-1VSLM2
part0067.xhtml#aid-1VSLM2
part0067.xhtml#aid-1VSLM2
part0067.xhtml#aid-1VSLM2
part0014.xhtml#aid-DB7S1
part0014.xhtml#aid-DB7S1
part0014.xhtml#aid-DB7S1
part0014.xhtml#aid-DB7S1
part0014.xhtml#aid-DB7S1
part0014.xhtml#aid-DB7S1
part0014.xhtml#aid-DB7S1
part0015.xhtml#aid-E9OE2
part0018.xhtml#aid-H5A41
part0025.xhtml#aid-NQU22
part0034.xhtml#aid-10DJ41
part0034.xhtml#aid-10DJ41
part0060.xhtml#aid-1P71O2
part0028.xhtml#aid-QMFO1
part0028.xhtml#aid-QMFO1
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0043.xhtml#aid-190861
part0043.xhtml#aid-190861
part0043.xhtml#aid-190861
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722

PTR records
about / PTR records

Puppet
about / Puppet
resource categories / Puppet
installing / Installing Puppet
client, setting up / Setting up the client
manifest, setting up / Setting up the manifest

R
repositories

configuring / Configuration and extra repositories
failed to get error, resolving / Resolving the "failed to get" error
software, downloading from outside repository / Downloading software from an
outside repository

repository
about / Getting started with packages

repository mirror
creating / Creating a repository mirror
mirror machine, setting up / Setting up a mirror machine
/etc/apt/mirror.list file, configuring / Configuring the /etc/apt/mirror.list file
local mirror, using / Using the local mirror

reverse zone file
about / The reverse zone file

S
security updates

about / Security updates
users, allowing to / Allowing or denying users to SSH
users, denying to / Allowing or denying users to SSH

service entity and API endpoint
creating / The service entity and API endpoint
prerequisites, configuring / Configuring the prerequisites
service entity, creating / Creating the service entity and API endpoint
API endpoint, creating / Creating the service entity and API endpoint

shell optimization
about / Optimizing the shell
bash profiles / Bash profiles

signaling processes
about / Signaling processes
kill command / kill
signals, listing / Listing all signals
kill -1 or SIGHUP / kill -1 or SIGHUP
kill -15 or SIGTERM / kill -15 or SIGTERM
kill -9 or SIGKILL / kill -9 or SIGKILL

part0029.xhtml#aid-RL0A1
part0038.xhtml#aid-147LC1
part0038.xhtml#aid-147LC1
part0038.xhtml#aid-147LC1
part0038.xhtml#aid-147LC1
part0038.xhtml#aid-147LC1
part0019.xhtml#aid-I3QM1
part0019.xhtml#aid-I3QM1
part0019.xhtml#aid-I3QM1
part0014.xhtml#aid-DB7S1
part0021.xhtml#aid-K0RQ1
part0021.xhtml#aid-K0RQ1
part0021.xhtml#aid-K0RQ1
part0021.xhtml#aid-K0RQ1
part0029.xhtml#aid-RL0A1
part0020.xhtml#aid-J2B81
part0035.xhtml#aid-11C3M1
part0035.xhtml#aid-11C3M1
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0057.xhtml#aid-1MBG22
part0048.xhtml#aid-1DOR01
part0048.xhtml#aid-1DOR01
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2

SIGSTOP command / SIGSTOP and SIGCONT
SIGCONT command / SIGSTOP and SIGCONT
pkill / pkill
killall command / killall

Special file permissions
SGID (set group ID) / Special file permissions
SUID (set user ID) / Special file permissions

ssh
about / The SSH client and the server

SSH server
about / The Secure Shell server
installing / Installing the SSH server
configuration / Configuration
default settings / Default settings for the SSH server
configuration file / The SSH configuration file
passphrases, using / Using passphrases

storage node, Block Storage service
installing / Configuring the prerequisites
configuring / Configuring the prerequisites
prerequisites, configuring / Configuring the prerequisites
components, installing / Installing and configuring the Block Storage volume
components
components, configuring / Installing and configuring the Block Storage volume
components
installation, finalizing / Finalizing the installation

storage node, Object Storage service
configuring / Configuring the prerequisites
installing / Configuring the prerequisites
prerequisites, configuring / Configuring the prerequisites
components, configuring / Installing and configuring the storage node components
components, installing / Installing and configuring the storage node components

T
tcpdump

network sniffing with / Network sniffing with tcpdump
Telemetry module

about / The Telemetry module
controller node, configuring / Installing and configuring the controller node
controller node, installing / Installing and configuring the controller node
prerequisites, configuring / Configuring the prerequisites
components, installing / Installing and configuring the Telemetry components
components, configuring / Installing and configuring the Telemetry components
installation, finalizing / Finalizing the installation
Compute agent, installing / Installing and configuring the Compute agent
Compute agent, configuring / Installing and configuring the Compute agent,
Configuring the Compute agent for the Telemetry module

part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0049.xhtml#aid-1ENBI2
part0049.xhtml#aid-1ENBI2
part0034.xhtml#aid-10DJ41
part0046.xhtml#aid-1BRPS2
part0046.xhtml#aid-1BRPS2
part0046.xhtml#aid-1BRPS2
part0046.xhtml#aid-1BRPS2
part0046.xhtml#aid-1BRPS2
part0046.xhtml#aid-1BRPS2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0063.xhtml#aid-1S2JE2
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0064.xhtml#aid-1T1402
part0025.xhtml#aid-NQU22
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682

prerequisites, configuring for Compute agent / Configuring the prerequisites
Compute agent installation, finalizing / Finalizing the installation
Image service, configuring / Configuring the Image service
Block Storage agent, adding / Adding the Block Storage agent for Telemetry
Object Storage, configuring / Configuring Object Storage for Telemetry

tenant network
about / The tenant network
creating / Creating a tenant network
subnet, creating / Creating the subnet for the tenant network

ticket-granting ticket (TGT) / Kerberos
top command

about / top

U
Ubuntu Security Notices (USN)

reference / Security updates
Ubuntu Server

best practices / Best practices for Ubuntu Server
unattended-upgrades package

about / The unattended-upgrades package
user management

about / User management in Ubuntu
users, adding / Adding and removing users
users, removing / Adding and removing users

users
allowing, to ssh / Allowing or denying users to SSH
denying, to ssh / Allowing or denying users to SSH
greeting, with banner / Greeting users with a banner

V
virt-viewer / Installation
virtualization

about / What is virtualization?
virtual machine, libvirt

managing / Managing the virtual machine
virsh / virsh
virtual machine manager / The virtual machine manager
virtual machine viewer / The virtual machine viewer

virtual machines (VMs) / The environment
virtual network infrastructure (VNI) / OpenStack networking
vmbuilder

about / vmbuilder
setup / Setup
users, adding to groups / Adding users to groups
installing / Installing vmbuilder

part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0061.xhtml#aid-1Q5IA1
part0061.xhtml#aid-1Q5IA1
part0061.xhtml#aid-1Q5IA1
part0032.xhtml#aid-UGI02
part0041.xhtml#aid-173722
part0020.xhtml#aid-J2B81
part0072.xhtml#aid-24L8G1
part0020.xhtml#aid-J2B81
part0049.xhtml#aid-1ENBI2
part0049.xhtml#aid-1ENBI2
part0049.xhtml#aid-1ENBI2
part0035.xhtml#aid-11C3M1
part0035.xhtml#aid-11C3M1
part0035.xhtml#aid-11C3M1
part0052.xhtml#aid-1HIT81
part0051.xhtml#aid-1GKCM1
part0052.xhtml#aid-1HIT81
part0052.xhtml#aid-1HIT81
part0052.xhtml#aid-1HIT81
part0052.xhtml#aid-1HIT81
part0056.xhtml#aid-1LCVG2
part0060.xhtml#aid-1P71O2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2

virtual machine, defining / Defining the virtual machine

X
xterm / ClusterSSH

Z
zone transfer / Setting up primary and secondary DNS servers

part0053.xhtml#aid-1IHDQ2
part0039.xhtml#aid-1565U1
part0027.xhtml#aid-PNV61

	Troubleshooting Ubuntu Server
	Table of Contents
	Troubleshooting Ubuntu Server
	Troubleshooting Ubuntu Server
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Note
	Tip

	Reader feedback
	Customer support
	Errata
	Piracy
	Questions

	Chapter 1. Package Management
	Getting started with packages
	Package
	Repository
	The .deb packages
	Dependency
	Open source

	Using dpkg for package management
	Understanding the apt-get package management tool
	Updating the repository list with the apt-get update command
	Installing a package with the apt-get install command
	Upgrading a package with the apt-get upgrade command
	Cleaning with the apt-get clean command
	Purging a package with the apt-get purge command
	Fixing unsuccessful installations with the apt-get –f command
	Checking for broken dependencies with the apt-get check command

	The apt-cache tool
	Searching for a package with the apt-cache search command

	Package management with aptitude
	Configuration and extra repositories
	Resolving the "failed to get" error
	Downloading software from an outside repository

	Automatic updates
	Security updates
	Kernel updates
	Application updates
	The unattended-upgrades package

	Creating a repository mirror
	Setting up a mirror machine
	Configuring the /etc/apt/mirror.list file
	Using the local mirror

	Summary
	Chapter 2. Networking and DNS
	Networking concepts
	IP addressing
	DHCP client for dynamic addresses
	Assigning a static IP address

	DHCP
	Installation
	Configuration

	Network sniffing with tcpdump
	Capturing packets from eth0
	Saving the tcpdump results in a file
	Reading packets saved in a file by tcpdump
	Readable timestamps in packets
	Reading packets of a specific protocol
	Reading packets on a specific port
	Reading TCP packets between two hosts

	Binding and bonding
	Binding
	Bonding

	DNS
	Setting up DNS
	Setting up primary and secondary DNS servers
	The hints file – zone "."
	The local host file – zone "0.0.127.in-addr.arpa"
	The reverse zone file – zone "24.126.10.in-addr.arpa"
	The primary zone file – zone "ubuntuserver.org"

	The primary zone file
	The reverse zone file
	PTR records

	Summary
	Chapter 3. Network Authentication
	OpenLDAP
	Installation
	Populating the database
	Logging
	Access control

	Kerberos
	Installation
	Database setup
	Setting up the Kerberos client
	Kerberos SSH and logon

	Integrating LDAP with Kerberos
	Installation
	Database setup

	OpenSSH, public, and private keys – passwordless SSH
	The SSH client and the server
	Setting up passwordless SSH
	Disabling password authentication

	Allowing or denying users to SSH
	Greeting users with a banner

	Summary
	Chapter 4. Monitoring and Optimization
	Nagios
	The Nagios setup
	Adding another host in Nagios
	Nagios templates
	Nagios hostgroups and services
	Nagios setup alerts
	Note

	Writing a Nagios plugin
	The NRPE plugin
	Enabling external commands

	Puppet
	Installing Puppet
	Setting up the client
	Setting up the manifest

	ClusterSSH
	Summary
	Chapter 5. Process Management
	The basics of process management
	$$ and $PPID
	pidof
	Parent and child
	fork() and exec()
	exec
	ps
	pstree
	ps fx
	ps -C and pgrep

	top

	Signaling processes
	kill
	Listing all signals
	kill -1 or SIGHUP
	kill -15 or SIGTERM
	kill -9 or SIGKILL
	SIGSTOP and SIGCONT
	pkill
	killall

	Process priorities
	renice
	nice

	Background processes
	jobs
	& (ampersand)
	jobs -p
	Suspended state with Ctrl + Z
	bg
	fg

	Summary
	Chapter 6. Shell Management, Tools, and User Management
	The Secure Shell server
	Installing the SSH server
	Configuration
	Default settings for the SSH server
	The SSH configuration file

	Using passphrases

	Scheduling jobs with cron
	Scheduling user cron jobs
	Configuring jobs using at
	Job schedule security

	Optimizing the shell
	Bash profiles
	The /etc/bash.bashrc file
	The /etc/profile file
	Variables in bash

	User management and file permissions
	User management in Ubuntu
	Adding and removing users

	Managing file permissions
	Understanding file permissions
	Changing permissions with chmod
	Modifying ownership using chown and chgrp
	Setting default permissions with umask

	Special file permissions

	Summary
	Chapter 7. Virtualization
	What is virtualization?
	libvirt
	Installation
	virt-install
	Tip
	virt-clone

	Managing the virtual machine
	virsh
	The virtual machine manager
	The virtual machine viewer

	JeOS and vmbuilder
	JeOS
	vmbuilder
	Setup
	Adding users to groups

	Installing vmbuilder
	Defining the virtual machine
	JeOS installation
	IP address
	Enabling the bridge
	Partitions

	Tip
	Setting the user and password
	Final steps in the installation

	Summary
	Chapter 8. OpenStack with Ubuntu
	The OpenStack architecture
	The environment
	Security
	Networking
	OpenStack networking
	The controller node
	The network node
	The compute node
	Verifying the network connectivity

	Network Time Protocol
	Configuring the controller node
	Configuring other nodes

	OpenStack packages
	Enabling the OpenStack repository
	Finalizing the installation

	Database
	Installing and configuring the database server
	Finalizing the installation

	The messaging server
	Installing the RabbitMQ message broker service
	Configuring the message broker service

	The Identity service
	Installing and configuring the Identity service
	Configuring the prerequisites
	Installing and configuring the components
	Finalizing the installation
	Tenants, users, and roles
	Configuring prerequisites
	Creating tenants, users, and roles

	The service entity and API endpoint
	Configuring the prerequisites
	Creating the service entity and API endpoint

	The Image service
	Installing and configuring the Image service
	Configuring the prerequisites
	Installing and configuring the Image service components
	Finalizing the installation

	The Compute service
	Installing and configuring the Compute service
	Configuring the prerequisites
	Installing and configuring the Compute service components
	Finalizing the installation
	Installing and configuring the compute node
	Installing and configuring the compute hypervisor components
	Finalizing the installation

	OpenStack networking
	Installing and configuring the controller node
	Configuring the prerequisites
	Installing the Networking components
	Configuring the server components of Networking
	Configuring the Modular Layer 2 plugin
	Configuring Networking on the compute node
	Finalizing the installation

	Installing and configuring the network node
	Configuring the prerequisites
	Installing the Networking components
	Configuring the Networking components
	Configuring the Modular Layer 2 plugin
	Configuring the Layer 3 agent
	Configuring the DHCP agent
	Configuring the metadata agent
	Configuring the OVS service
	Finalizing the installation

	Installing and configuring the compute node
	Configuring the prerequisites
	Installing the Networking components
	Configuring the Networking common components
	Configuring the ML2 plugin
	Configuring the OVS service
	Configuring Compute to use Networking
	Finalizing the installation

	Creating initial networks
	External networks
	Creating an external network
	Creating the subnet for the external network

	The tenant network
	Creating a tenant network
	Creating the subnet for the tenant network

	Creating the router to attach the external and tenant networks

	Dashboard
	Prerequisites
	Installing and configuring the dashboard
	Installing the packages
	Configuring the dashboard
	Finalizing the installation

	The Block Storage service
	Installing and configuring the controller node
	Configuring the prerequisites
	Installing and configuring the Block Storage service components
	Finalizing the installation

	Installing and configuring the storage node
	Configuring the prerequisites
	Installing and configuring the Block Storage volume components
	Finalizing the installation

	The Object Storage service
	Installing and configuring the controller node
	Configuring the prerequisites
	Installing and configuring the controller node components

	Installing and configuring the storage node
	Configuring the prerequisites
	Installing and configuring the storage node components

	Summary
	Chapter 9. OpenStack and Ubuntu Best Practices
	Creating rings for Object Storage
	Creating an account ring
	Creating a container ring
	Creating an object ring
	Copying the configuration files for rings
	Finalizing the installation

	The Orchestration module
	Installing and configuring
	Configuring the prerequisites
	Installing and configuring the Orchestration components
	Finalizing the installation

	The Telemetry module
	Installing and configuring the controller node
	Configuring the prerequisites
	Installing and configuring the Telemetry components
	Finalizing the installation

	Installing and configuring the Compute agent
	Configuring the prerequisites
	Configuring the Compute agent for the Telemetry module
	Finalizing the installation

	Configuring the Image service
	Adding the Block Storage agent for Telemetry
	Configuring Object Storage for Telemetry

	The Database service
	Installing the Database service
	Taking care of the prerequisites
	Installing the Database module

	The Data Processing service
	Installing the Data Processing service

	OpenStack flashback
	Best practices for Ubuntu Server
	Summary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X
	Z

