

Unity	Character	Animation	with
Mecanim

Table	of	Contents

Unity	Character	Animation	with	Mecanim

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

The	context

What	this	book	covers

What	the	book	does	not	cover

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	The	Zombie	Attacks!

Setting	up	the	project

Importing	our	enemy

Organizing	the	material	and	textures

Adjusting	the	import	scale

Adjusting	the	rig	import	settings	and	creating	the	Avatar

Choosing	the	appropriate	rig	import	settings

Creating	the	Avatar

Adjusting	the	character’s	pose

Checking	the	bone	hierarchy	in	the	Avatar

Setting	up	the	animator	controller

Creating	states

Creating	a	parameter

Adding	transitions

Writing	the	script

Adjusting	the	scene	elements	to	preview	the	animation

Previewing	the	hit	animation	in	the	game	view

Summary

2.	Rigging	Characters	for	Unity	in	3ds	Max	and	Maya

Understanding	the	need	for	rigging

Minimum	requirements

Sourcing	models

Modeling	for	animation

Rigging	in	3ds	Max

Setting	up	the	scene

Importing	the	character	model

Creating	the	Biped	system

Adjusting	the	Biped’s	parameters

Adjusting	the	Biped	to	fit	the	character

Switching	to	X-ray	mode	and	freezing	the	character	mesh

Changing	bone	display	colors

Scaling	and	orienting	the	bones	to	match	the	character	model

Repositioning	the	joints	for	the	ponytail	and	jaw

Adjusting	limb	positions

Renaming	bones

Copying	and	pasting	the	position,	rotation,	and	scale	data	from	one	side	to	the
other

Skinning	the	character	using	the	skin	modifier

Creating	a	selection	set

Saving	the	default	pose

Creating	the	test	pose

Making	adjustments	to	the	Skin	modifier

Adjusting	envelopes

Adjusting	influence	on	the	head	vertices

Painting	skin	weights	for	the	jaw	bone

Exporting	the	rigged	character

Rigging	in	Maya

Setting	up	Maya	to	rig	our	character	model

Setting	system	units	to	meters

Changing	the	display	grid	size

Importing	the	model

Adjusting	the	model	scale

Adjusting	the	viewport	display	and	toolset	for	joint	creation

Creating	joints	for	the	back,	neck,	and	head

Renaming	and	repositioning	the	joints

Creating	the	leg	joints

Creating	the	arm	joints

Cloning	the	finger	joints

Mirroring	joints	for	the	leg	and	arm	chains

Connecting	the	arm	and	leg	chains

Creating	the	ponytail	and	jaw	joints

Aligning	joint	transforms

Creating	a	test	pose

Binding	the	character	mesh	to	the	skeleton

Painting	skin	weights

Exporting	for	unity

Summary

3.	Interacting	with	the	Environment

Importing	the	project	assets	package

Setting	up	the	player	character

Creating	a	new	scene

Adding	the	player	character	model	to	the	scene

Adding	the	character	controller

Adjusting	the	camera	height

Adding	the	shoot	idle	animation

Adding	and	parenting	the	gun

Saving	the	first-person	rig	as	a	prefab

Adding	the	office-level	scene

Completing	the	camera	setup

Modifying	the	animator	controller

Setting	the	transition

Creating	a	trigger	parameter	for	the	Shoot	state

Writing	and	implementing	the	character	animation	script

Adding	the	initial	code	to	the	FPSAnimation	script

Adding	the	script	to	the	player	character	game	object

Adding	and	implementing	collectable	objects

Instantiating	the	lunchBox	collectable	in	the	game	level

Inspecting	the	lunchBox	collectable’s	components

Looking	at	the	collectable	script

Implementing	self	destruction	in	the	collectable	script

Setting	up	the	player	character’s	response

Adding	the	Pickup	state	to	the	animator	controller

Setting	the	Pickup	state’s	transitions	and	parameter

Transitioning	between	the	ShootIdle	and	Pickup	states

Creating	and	adding	the	parameter

Creating	the	pickup	camera

Finalizing	the	pickup	camera	prefab

Looking	at	the	player	status	script

Adding	the	PlayerStatus	script	to	the	player	character	game	object

Updating	the	Collectable	script

Hooking	up	variables	in	the	collectable	script

Updating	the	FPSAnimation	script

Modifying	the	pickup	script

Testing	the	lunchBox	collectable

Summary

4.	Working	with	Motion	Capture	Data

Introduction	to	motion	capture	sequences	and	their	characteristics

Using	a	motion	capture	sequence	with	a	pre-rigged	model

Getting	started

Importing	the	motion	capture	sequence

Adjusting	the	import	settings

Adjusting	the	rig	import	settings

Adjusting	the	sequence	in	the	Animations	tab

Creating	the	second	walk	cycle

Adding	the	new	motion	clips	to	the	animation	controller

Creating	a	script	to	see	both	animation	loops	in	action

Adding	the	script	and	previewing	the	animation	switch

Summary

5.	Retargeting	Animation

Loading	the	scene

Adding	and	previewing	the	animation

Adjusting	import	settings	to	get	a	better	fit

Creating	a	duplicate	walk	cycle

Adjusting	the	motion	parameters

Adjusting	the	muscle	limits

Working	with	Avatar	Body	Masks

Opening	the	new	scene

Creating	a	second	layer	in	the	animator	controller

Creating	states	in	the	mask	layer

Setting	the	parameter	and	transitions	in	the	mask	layer

Editing	the	script

Previewing	the	masked	animation

Creating	five	walk	variations	from	two	walk	cycles

Adding	more	Avatar	masks

Summary

6.	Talking	Heads

Adding	the	snarl	face	animation	to	the	female	zombie	character

Setting	the	scene	in	Unity

Adding	code	to	the	zombie_ready	script

Adding	the	TurnToPlayer	function

Connecting	the	variables	in	the	Inspector	panel

Updating	the	animator	controller	to	include	the	face	animation

Adding	the	Snarl	state

Creating	a	Null	state

Setting	transitions	between	the	Null	and	Snarl	states

Creating	the	IsSnarling	parameter

Editing	the	script	to	include	the	Face	layer

Smoothing	the	zombie’s	turn	rotation

Implementing	the	turn	animation

Adding	the	turning	state

Setting	up	the	IsTurning	parameter

Creating	the	transitions	to	connect	the	turning	state

Setting	the	transitions	for	the	Turn	state

Updating	the	zombie_ready	script	to	accommodate	the	Turn	state

Creating	the	Snarl	function

Synchronizing	the	snarl	sound

Driving	a	blendshape	animation	with	the	animator	controller

Viewing	the	blendshape	in	Unity

Keyframing	the	face	blendshape

Updating	the	animator	to	handle	the	blendshape	animation

Summary

7.	Controlling	Player	Animation	with	Blend	Trees

Adding	a	Blend	Tree	to	the	player’s	existing	animator	controller

Adding	strafing	animation	to	the	player	character	with	a	Blend	Tree

Using	Blend	Tree	properties

Adding	the	motion	clips	to	the	Blend	Tree

Adding	and	adjusting	the	Blend	Tree	parameters	and	thresholds

Updating	the	character	script	to	use	the	Blend	Tree

Testing	the	Blend	Tree	in	the	Game	View

Varying	the	pickup	animation	with	a	Blend	Tree

Viewing	the	pickup_heavy	animation	sequence

Creating	a	Blend	Tree	in	the	Pickup	state

Setting	the	pickup	Blend	Tree	parameter

Setting	the	threshold	for	the	pickup	Blend	Tree

Editing	the	character	animation	script	to	accommodate	the	pickup	Blend	Tree

Updating	the	Collectable	script	to	include	a	weight	variable

Sending	the	objectWeight	variable

Updating	the	Pick	function	in	the	character	animation	script

Testing	the	blended	animation	in	the	game

Instancing	the	collectable	prefabs

Previewing	the	blended	animation

Summary

8.	Implementing	Ragdoll	Physics

Introduction	to	joints	in	Unity

Creating	a	test	scene

Adding	a	hinge	joint

Creating	the	ragdoll	object

Assigning	the	material

Generating	the	initial	ragdoll

Assigning	bones	to	the	ragdoll	list

Assigning	mass

Previewing	the	default	ragdoll

Adjusting	collision	objects

Adjusting	the	radius	of	the	capsule	collider	to	fit	the	leg

Adjusting	the	head’s	collider

Fine-tuning	the	character	joints

Adjusting	the	rotational	limits	of	the	upper	arm

Adjusting	the	rotational	limits	of	the	forearm

Adjusting	the	rotational	limits	of	the	head

Previewing	the	adjusted	ragdoll

Adding	a	custom	joint	to	the	ragdoll

Adding	a	capsule	collider	to	the	ponytail

Adding	a	Rigidbody	component

Adding	the	character	joint

Saving	the	ragdoll	as	a	prefab

Summary

9.	Controlling	Enemy	Animation	with	AI	and	Triggers

Implementing	range	detection

Looking	at	the	scene

Adding	the	initial	AI	script

Adding	proximity	detection	to	the	enemy	AI	script

Setting	up	the	patrol	behavior

Adding	variables	for	the	patrol

Adding	the	initial	patrol	code	to	the	Update	function

Defining	patrol	points

Modifying	the	animator

Adding	and	accessing	an	animation	curve

Accessing	the	animation	curve	in	Mecanim	and	using	it	in	the	script

Adding	the	attack

Adding	the	Attack	state

Associating	tags	with	the	enemy	and	player	game	objects

Allowing	the	zombie	to	hurt	the	player

Damaging	and	killing	the	zombie

Allowing	the	player	to	fire

Pathfinding	and	obstacle	detection	with	navMesh

Suspending	navigation	during	the	turn

Adjusting	navigation	during	the	attack

Modifying	the	Attack	function

Timing	out	the	zombie’s	pursuit

Summary

Index

Unity	Character	Animation	with
Mecanim

Unity	Character	Animation	with
Mecanim
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2015

Production	reference:	1230915

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-84969-636-4

www.packtpub.com

Cover	image	by	Suresh	Mogre	(<suresh.mogre.99@gmail.com>)

http://www.packtpub.com
mailto:suresh.mogre.99@gmail.com

Credits
Author

Jamie	Dean

Reviewers

Shaad	Boochoon

Ashley	Egan

Brian	Gatt

Adam	Ormsby

Acquisition	Editor

Aaron	Lazar

Content	Development	Editor

Athira	Laji

Technical	Editor

Prajakta	Mhatre

Copy	Editor

Charlotte	Carneiro

Project	Coordinator

Harshal	Ved

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Jamie	Dean	is	a	game	artist,	developer,	instructor,	and	freelancer,	with	over	7	years	of
teaching	experience	in	higher	education	and	developing	3D	content	for	game	projects.

About	the	Reviewers
Shaad	Boochoon	was	born	and	raised	in	Trinidad	and	Tobago.	He	studied	systems
engineering	at	the	Southern	Alberta	Institute	of	Technology	in	Calgary,	Canada.	After
working	in	software	development,	he	decided	to	enter	the	video	game	industry	and	did
visual	and	creative	arts.	He	is	a	post-graduate	in	game	level	design	at	Sheridan	College	in
Toronto,	Canada.	Shaad	is	currently	a	lead	game	designer	at	Vertical	Depth	Studios	in
Toronto.

Ashley	Egan	is	an	animation	artist	living	in	Chicago,	Illinois	with	her	cat,	Charlie.	She
attended	Columbia	College	Chicago	and	received	her	bachelors	of	arts	in	game	design
with	a	specialization	in	game	art.	From	motion	capture	to	game	engines,	Ashley	strives	to
learn	about	different	animation	software	and	tools.

I’d	like	to	thank	Adam	Ormsby,	who	went	on	a	journey	with	me	into	the	world	of
Mecanim,	and	now	I	don’t	want	to	leave.

Brian	Gatt	is	a	software	developer	who	holds	a	bachelor’s	degree	in	computer	science
and	artificial	intelligence	from	the	University	of	Malta	and	a	master’s	degree	in	computer
games	and	entertainment	from	Goldsmiths,	University	of	London.	Having	initially
dabbled	with	OpenGL	at	university,	he	has	since	developed	an	interest	in	graphics
programming.	In	his	spare	time,	he	likes	to	keep	up	with	the	latest	graphic	APIs,	native
C++	programming,	and	game	development	techniques.

Adam	Ormsby	is	a	technical	game	designer	currently	developing	games	for	PC	and
mobile	platforms	using	the	Unity	engine.	His	main	work	is	designing	and	implementing
gameplay	systems,	and	he	has	developed	a	special	love	for	scripting	character	and
environment	animation	behaviors	using	Mecanim.

Adam	is	a	member	of	The	MecWarriors,	a	group	of	talented	developers	whose	goal	is	to
build	time-saving	plugins	and	packages	for	Mecanim.	They	write	Mecanim	tutorials	on
their	blog	at	www.mecwarriors.com,	and	they’d	love	for	you	to	visit.

I’d	like	to	thank	Jason	Parks	for	inspiring	me	to	start	The	MecWarriors	group	and	Ashley
Egan	for	jumping	down	that	rabbit	hole	with	me.

http://www.mecwarriors.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
In	the	past	few	years,	Unity	has	proved	itself	to	be	a	versatile,	user-friendly	platform	for
game	production	and	other	interactive	applications.	With	it,	developers	can	rapidly
assemble	game	menus	and	interfaces,	build	levels,	animate	characters,	and	define	how
these	elements	interact	with	each	other.

Compared	to	other	development	tools,	Unity	is	artist-friendly,	centering	on	a	Scene
viewport	window	and	controls	that	will	be	familiar	to	anyone	who	has	worked	with	3D
software.	Like	all	game	engines,	it	requires	scripting	to	enable	any	complex	functionality,
but	coding	can	quickly	be	tested	and	adjusted	making	for	a	less-frustrating	experience	for
anyone	from	a	non-programming	background.

Unity’s	easy-to-learn	drag	and	drop	functionality	has	endeared	it	to	enthusiasts	and
professionals	alike.	Its	multiplatform	publishing	capabilities	streamlined	the	creation	of	all
sorts	of	games	played	on	PC,	Mac,	iOS,	Android	and	consoles.

The	personal	edition	of	Unity	can	be	downloaded	for	free,	making	it	suitable	for	entry-
level	game	developers.	The	online	manual	and	scripting	reference,	in	addition	to	the
thriving	developer	community,	make	it	easy	to	find	support	and	get	queries	answered.

The	addition	of	Mecanim	to	Unity	gives	the	independent	game	developer	an	even	more
expansive	toolset,	making	it	possible	to	handle	a	significant	part	of	the	character
animation	process	without	the	use	of	additional	software.	It	makes	retargeting,	retiming,
and	adjusting	existing	animations	a	simple	task	without	the	usual	problems	that
accompany	importing	and	exporting	data	between	applications.

The	modeling	toolset	within	Unity	is	extremely	limited—primitive	objects	such	as
spheres,	cubes,	and	planes	can	be	assembled—but	if	it	is	the	actual	modeling	and	texturing
of	characters	and	levels	that	you	are	most	interested	in,	you	will	need	a	general	3D
package	such	as	3ds	Max,	Maya,	or	blender.	These	aspects	of	building	a	game	are	well
addressed	in	other	publications.

The	context
In	order	to	closely	correspond	to	the	development	of	a	real	game,	the	projects	in	this	book
follow	a	theme	of	a	typical	first-person	action	game—the	sort	that	is	often	found	to	be
played	on	PC,	console,	and	mobile	platforms—the	context	is	the	zombie	apocalypse.
During	the	game,	our	player	must	negotiate	his	or	her	way	out	of	an	office	complex	full	of
zombies.	In	terms	of	character	animation,	this	will	offer	us	plenty	of	variety	in	the	type	of
movement	required	by	the	player	and	enemies.

What	this	book	covers
This	book	will	take	the	reader	through	the	different	processes	involved	in	the	character
animation	aspect	of	game	development.	It	will	explain	the	basic	animation	tools	within
Unity,	as	well	as	the	dynamic	Mecanim	toolset	and	how	it	can	be	used	in	the	game
animation	context.

Chapter	1,	The	Zombie	Attacks!,	introduces	the	Mecanim	interface	and	explains	how
rigged	characters	can	be	imported	to	Unity	and	quickly	set	up	with	animation.

Chapter	2,	Rigging	Characters	for	Unity	in	3ds	Max	and	Maya,	explains	the	relationship
between	the	Unity	engine	and	commonly	used	3D	software	and	how	characters	can	be
prepared	within	external	software	to	function	smoothly	once	imported	to	Unity.

Chapter	3,	Interacting	with	the	Environment,	compares	a	few	different	strategies	for
making	a	character	interact	convincingly	with	the	environment.

Chapter	4,	Working	with	Motion	Capture	Data,	walks	you	through	the	process	of	adapting
motion	capture	files	to	animate	your	character	with	Mecanim’s	toolset.

Chapter	5,	Retargeting	Animation,	considers	the	reuse	of	animation	clips	and	how
animation	can	be	adapted	within	Unity	to	suit	different	character	types.

Chapter	6,	Talking	Heads,	demonstrates	Mecanim’s	facial	animation	capabilities	and	the
scripting	necessary	to	get	these	working	in	a	game.

Chapter	7,	Controlling	Player	Animation	with	Blend	Trees,	explores	more	of	the	advanced
features	of	the	Animator	panel,	defining	smooth	blending	between	different	animation
clips	with	a	limited	implementation	of	scripting.

Chapter	8,	Implementing	Ragdoll	Physics,	compares	the	use	of	real-world	physics	with	the
character	controller	component	and	how	these	can	both	be	implemented	in	a	character
setup.

Chapter	9,	Controlling	Enemy	Animation	with	AI	and	Triggers,	demonstrates	how	scripted
behavior	and	Unity’s	navMesh	navigation	system	can	be	used	to	control	enemy	character
animations	within	a	game.

What	the	book	does	not	cover
Modeling,	texturing	of	assets	in	3D	software,	scripting	game	states,	and	GUI	within	Unity.
These	aspects	of	game	development	are	beyond	the	scope	of	this	book.

What	you	need	for	this	book
Understanding	key	animation	concepts	is	necessary	to	complete	the	chapters	in	this	book.
In	addition,	you	will	need	the	following:

Unity	5	installed	on	your	machine	(Mac	or	PC).	The	free	personal	version	of	the
software	is	sufficient	for	all	of	the	project	content	in	this	book.	This	can	be
downloaded	from	the	Unity	webpage.
A	little	understanding	of	3D	software,	x,	y,	and	z	coordinates,	translating,	rotating,
and	scaling	elements	within	the	Unity	viewer	interface.
A	basic	understanding	of	Unityscript	or	C#	will	be	helpful	to	complete	the	projects,
though	the	code	that	is	included	is	clearly	explained.
Additional	3D	software	is	useful,	but	not	required.	The	industry	standards	Autodesk
Maya	and	3ds	Max	both	have	free	30-day	trials,	which	can	be	downloaded	from	the
main	Autodesk	website.	Blender	is	a	free	alternative.

Who	this	book	is	for
This	book	focuses	on	the	character	animation	aspect	of	game	production	in	Unity.

If	you	are	completely	new	to	Unity,	it	is	recommended	to	read	through	some	of	the	basic
introductory	material	documentation	on	the	official	site.	If	you	have	experience	working
with	an	older	version	of	the	software,	then	this	book	should	give	you	a	good	idea	of	how
Mecanim	can	be	used	in	your	pipeline.

If	you	are	new	to	animation,	this	book	uses	some	character	animation	terminology	that
you	may	not	be	familiar	with.	Where	possible,	I	have	explained	these	terms.

My	approach	to	writing	this	book	comes	from	an	artist,	rather	than	coder	background.	If
your	motivation	for	understanding	character	animation	in	Unity	is	to	showcase	your
artwork	in	a	demo	or	even	a	full-scale	game,	you	have	come	to	the	right	place!

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Choose
an	appropriate	file	name	for	the	scene,	such	as	Chapter1_1.”

A	block	of	code	is	set	as	follows:

var	health	:	int	=	10;

var	healthLimit	:	int	=	10;

function	AddHealth	(increase	:	int)

{

				health	+=	increase;

				if	(health	>	healthLimit)

{

								health	=	healthLimit;	

			}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Click	on	the	Model
tab.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from:

https://www.packtpub.com/sites/default/files/downloads/B03192_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/B03192_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	The	Zombie	Attacks!
In	this	chapter,	we	will	demonstrate	the	process	of	importing	and	animating	a	rigged
character	in	Unity.	After	making	sure	the	character	is	being	imported	correctly,	we	will
work	through	the	necessary	steps	to	get	the	character	animated	in	the	game	view	using	the
Mecanim	toolset	and	a	little	code.

In	this	chapter	we	will	cover:

Starting	a	blank	Unity	project	and	importing	the	necessary	packages
Importing	a	rigged	character	model	in	the	FBX	format	and	adjusting	import	settings
Organizing	materials	and	textures	within	the	project	hierarchy
Setting	up	the	Avatar	using	the	Avatar	Definition	Mapping	panel
Creating	a	simple	state	machine	in	the	animator	controller	panel
The	basics	of	scripting	for	Mecanim

Typically,	an	enemy	character	such	as	this	will	have	a	series	of	different	animation
sequences,	which	will	be	imported	separately	or	together	from	a	3D	package.	In	this	case,
our	animation	sequences	are	included	in	separate	files.

We	will	begin,	by	creating	the	Unity	project.

Setting	up	the	project
Before	we	start	exploring	the	animation	workflow	with	Mecanim’s	tools,	we	need	to	set
up	the	Unity	project:

1.	 Create	a	new	project	within	Unity	by	navigating	to	File	|	New	Project….
2.	 When	prompted,	choose	an	appropriate	name	and	location	for	the	project.
3.	 In	the	Unity	-	Project	Wizard	dialog	that	appears,	check	the	relevant	boxes	for	the

Character	Controller.unityPackage	and	Scripts.unityPackage	packages.
4.	 Click	on	the	Create	button.	It	may	take	a	few	minutes	for	Unity	to	initialize.
5.	 Download	the	project	ZIP	file	for	this	book	from	the	Packt	website.	The	file	contains

a	Unity	assets	package	with	the	content	necessary	for	the	projects	in	this	book.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at
http://www.packtpub.com	for	all	the	Packt	Publishing	books	you	have	purchased.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support
and	register	to	have	the	files	e-mailed	directly	to	you.

6.	 When	the	Unity	interface	appears,	import	the	PACKT_CAWM	package	by	navigating	to
Assets	|	Import	Package	|	Custom	Package….

7.	 The	Import	package…	window	will	appear.
8.	 Navigate	to	the	location	where	you	unzipped	the	project	files,	select	the	unity

package,	and	click	on	Open.

The	assets	package	will	take	a	little	time	to	decompress.

9.	 When	the	Importing	Package	checklist	appears,	click	on	the	Import	button	in	the
bottom-right	of	the	window.

Once	the	assets	have	finished	importing,	you	will	start	with	a	default	blank	scene.

http://www.packtpub.com
http://www.packtpub.com/support

Importing	our	enemy
Now,	it	is	time	to	import	our	character	model:

1.	 Minimize	Unity.
2.	 Navigate	to	the	location	where	you	unzipped	the	project	files.
3.	 Double-click	on	the	Models	folder	to	view	its	contents.
4.	 Double-click	on	the	zombie_m	subfolder	to	view	its	contents.

The	folder	contains	an	FBX	file	containing	the	rigged	male	zombie	model	and	a
separate	subfolder	containing	the	associated	textures.

5.	 Open	Unity	and	resize	the	window	so	that	both	Unity	and	the	zombie_m	folder
contents	are	visible.

6.	 In	Unity,	click	on	the	Assets	folder	in	the	Project	panel.
7.	 Drag	the	zombie_m	FBX	asset	into	the	Assets	panel	to	import	it.

Because	the	FBX	file	contains	a	normal	map,	a	window	will	pop	up	asking	if	you
want	to	set	this	file’s	import	settings	to	read	it	correctly.

8.	 Click	on	the	Fix	Now	button.

Note
FBX	files	can	contain	embedded	bitmap	textures,	which	can	be	imported	with	the
model.	This	will	create	subfolders	containing	the	materials	and	textures	within	the
folder	where	the	model	has	been	imported.	Leaving	the	materials	and	textures	as
subfolders	of	the	model	will	make	them	difficult	to	find	within	the	project.

The	zombie	model	and	two	folders	should	now	be	visible	in	the	FBX_Imports	folder	in	the
Assets	panel.

In	the	next	step,	we	will	move	the	imported	material	and	texture	assets	into	the	appropriate
folders	in	the	Unity	project.

Organizing	the	material	and	textures
The	material	and	textures	associated	with	the	zombie_m	model	are	currently	located	within
the	FBX_Imports	folder.	We	will	move	these	into	different	folders	to	organize	them	within
the	hierarchy	of	our	project:

1.	 Double-click	on	the	Materials	folder	and	drag	the	material	asset	contained	within	it
into	the	PACKT_Materials	folder	in	the	Project	panel.

2.	 Return	to	the	FBX_Imports	folder	by	clicking	on	its	title	at	the	top	of	the	Assets	panel
interface.

3.	 Double-click	on	the	textures	folder.	This	will	be	named	to	be	consistent	with	the
model.

4.	 Drag	the	two	bitmap	textures	into	the	PACKT_Textures	folder	in	the	Project	panel.
5.	 Return	to	the	FBX_Imports	folder	and	delete	the	two	empty	subfolders.

The	moved	material	and	textures	will	still	be	linked	to	the	model.	We	will	make	sure

of	this	by	instancing	it	in	the	current	empty	scene.

6.	 Drag	the	zombie_m	asset	into	the	Hierarchy	panel.

It	may	not	be	immediately	visible	within	the	Scene	view	due	to	the	default	import	scale
settings.

We	will	take	care	of	this	in	the	next	step.

Adjusting	the	import	scale
Unity’s	import	settings	can	be	adjusted	to	account	for	the	different	tools	commonly	used	to
create	2D	and	3D	assets.	Import	settings	are	adjusted	in	the	Inspector	panel,	which	will
appear	on	the	right	of	the	unity	interface	by	default:

1.	 Click	on	the	zombie_m	game	object	within	the	Hierarchy	panel.

This	will	bring	up	the	file’s	import	settings	in	the	Inspector	panel.

2.	 Click	on	the	Model	tab.
3.	 In	the	Scale	Factor	field,	highlight	the	current	number	and	type	1.

Note
The	character	model	has	been	modeled	to	scale	in	meters	to	make	it	compatible	with
Unity’s	units.	All	3D	software	applications	have	their	own	native	scale.	Unity	does	a
pretty	good	job	at	accommodating	all	of	them,	but	it	often	helps	to	know	which
software	was	used	to	create	them.

4.	 Scroll	down	until	the	Materials	settings	are	visible.
5.	 Uncheck	the	Import	Materials	checkbox.

Now	that	we	have	got	our	textures	and	materials	organized	within	the	project,	we
want	to	make	sure	they	are	not	continuously	imported	into	the	same	folder	as	the
model.

6.	 Leave	the	remaining	Model	Import	settings	at	their	default	values.

We	will	be	discussing	these	later	on	in	the	book,	when	we	demonstrate	the	animation
import.

7.	 Click	on	the	Apply	button.	You	may	need	to	scroll	down	within	the	Inspector	panel
to	see	this:

The	zombie_m	character	should	now	be	visible	in	the	Scene	view:

This	character	model	is	a	medium	resolution	model—4410	triangles	and	has	a	single	1024

x	1024	albedo	texture	and	separate	1024	x	1024	specular	and	normal	maps.

The	character	has	been	rigged	with	a	basic	skeleton.	Creating	a	skeletal	rig	will	be
discussed	in	detail	in	the	next	chapter.	The	rigging	process	is	essential	if	the	model	is	to	be
animated.

We	need	to	save	our	progress,	before	we	get	any	further:

1.	 Save	the	scene	by	navigating	to	File	|	Save	Scene	as….
2.	 Choose	an	appropriate	filename	for	the	scene,	such	as	Chapter1_1.
3.	 Click	on	the	Apply	button.

Despite	the	fact	that	we	have	only	added	a	single	game	object	to	the	default	scene,	there
are	more	steps	that	we	will	need	to	take	to	set	up	the	character	and	it	will	be	convenient
for	us	to	save	the	current	set	up	in	case	anything	goes	wrong.

In	the	character	animation,	there	are	looping	and	single-shot	animation	sequences.	Some
animation	sequences	such	as	walk,	run,	idle	are	usually	seamless	loops	designed	to	play
back-to-back	without	the	player	being	aware	of	where	they	start	and	end.

Other	sequences,	typically,	shooting,	hitting,	being	injured	or	dying	are	often	single-shot
animations,	which	do	not	need	to	loop.	We	will	start	with	this	kind,	and	discuss	looping
animation	sequences	later	in	the	book.

In	order	to	use	Mecanim’s	animation	tools,	we	need	to	set	up	the	character’s	Avatar	so	that
the	character’s	hierarchy	of	bones	is	recognized	and	can	be	used	correctly	within	Unity.

Adjusting	the	rig	import	settings	and	creating	the	Avatar
Now	that	we	have	imported	the	model,	we	will	need	to	adjust	the	import	settings	so	that
the	character	functions	correctly	within	our	scene:

1.	 Select	zombie_m	in	the	Assets	panel.
2.	 The	asset’s	import	settings	should	become	visible	within	the	Inspector	panel.
3.	 This	settings	rollout	contains	three	tabs:	Model,	Rig,	and	Animations.
4.	 Since	we	have	already	adjusted	the	Scale	Factor	within	the	Model	Import	settings,

we	will	move	on	to	the	Rig	import	settings	where	we	can	define	what	kind	of
skeleton	our	character	has.

Choosing	the	appropriate	rig	import	settings

Mecanim	has	three	options	for	importing	rigged	models:	Legacy,	Generic,	and
Humanoid.	It	also	has	a	none	option	that	should	be	applied	to	models	that	are	not
intended	to	be	animated.

Legacy	format	was	previously	the	only	option	for	importing	skeletal	animation	in	Unity.	It
is	not	possible	to	retarget	animation	sequences	between	models	using	Legacy,	and	setting
up	functioning	state	machines	requires	quite	a	bit	of	scripting.	It	is	still	a	useful	tool	for
importing	models	with	fewer	animation	sequences	and	for	simple	mechanical	animations.
Legacy	format	animations	are	not	compatible	with	Mecanim.

Generic	is	one	of	the	new	animation	formats	that	are	compatible	with	Mecanim’s	animator
controllers.	It	does	not	have	the	full	functionality	of	Mecanim’s	character	animation	tools.
Animations	sequences	imported	with	the	generic	format	cannot	be	retargeted	and	are	best
used	for	quadrupeds,	mechanical	devices,	pretty	much	anything	except	a	character	with
two	arms	and	two	legs.

The	Humanoid	animation	type	allows	the	full	use	of	Mecanim’s	powerful	toolset.	It
requires	a	minimum	of	15	bones,	and	assumes	that	your	rig	is	roughly	human	shaped	with
a	pair	of	arms	and	legs.	It	can	accommodate	many	more	intermediary	joints	and	some
basic	facial	animation.

One	of	the	greatest	benefits	of	using	the	Humanoid	type	is	that	it	allows	animation
sequences	to	be	retargeted	or	adapted	to	work	with	different	rigs.	For	instance,	you	may
have	a	detailed	player	character	model	with	a	full	skeletal	rig	(including	fingers	and	toes
joints),	maybe	you	want	to	reuse	this	character’s	idle	sequence	with	a	background
character	that	is	much	less	detailed,	and	has	a	simpler	arrangement	of	bones.

Mecanim	makes	it	possible	reuse	purpose	built	motion	sequences	and	even	create	useable
sequences	from	motion	capture	data.

Now	that	we	have	introduced	these	three	rig	types,	we	need	to	choose	the	appropriate
setting	for	our	imported	zombie	character,	which	in	this	case	is	Humanoid:

1.	 In	the	Inspector	panel,	click	on	the	Rig	tab.
2.	 Set	the	Animation	Type	field	to	Humanoid	to	suit	our	character	skeleton	type.
3.	 Leave	Avatar	Definition	set	to	Create	From	This	Model.
4.	 Optimize	Game	Objects	can	be	left	checked.
5.	 Click	on	the	Apply	button	to	save	the	settings	and	transfer	all	of	the	changes	that	you

have	made	to	the	instance	in	the	scene.

This	is	how	the	screenshot	will	look	like:

Tip

The	Humanoid	animation	type	is	the	only	one	that	supports	retargeting.	So	if	you	are
importing	animations	that	are	not	unique	and	will	be	used	for	multiple	characters,	it	is	a
good	idea	to	use	this	setting.

In	the	next	step,	we	will	define	the	hierarchy	of	the	joints	in	the	Avatar.

Creating	the	Avatar

The	Avatar	Mapping	settings	allow	you	to	specify	how	the	bones	relate	to	the	model.
You	can	think	of	the	Avatar	as	an	intermediary	device	that	translates	between	the	character
model	and	the	animations.	It	will	dictate	how	motion	will	be	transferred	to	the	model,	so	it
is	important	that	all	of	the	models	bones	are	correctly	identified	within	the	hierarchy.

1.	 In	the	Inspector	panel,	click	on	the	Configure…	button	to	bring	up	the	Avatar
Mapping	settings.

Unity	will	prompt	you	to	save	your	scene,	which	is	necessary	because	the	Avatar
definition	is	actually	done	in	a	separate,	temporary	scene.

2.	 Click	on	the	Save	Scene	button.

The	Avatar	Definition	panel	will	become	active	in	the	Inspector	panel.

The	Mapping	tab	should	be	active	by	default.	This	shows	a	simplified	diagram	of	a
humanoid	bone	hierarchy.	Beneath	the	diagram	is	a	list	where	bones	are	selected.

3.	 Choose	the	Mapping	rollout	in	the	bottom	left	of	the	panel.
4.	 Click	on	Automap,	Unity	will	attempt	to	assign	the	bones	to	the	slots	in	the	Avatar

based	on	their	names	and	position	within	the	hierarchy.

Because	our	character’s	skeleton	uses	recognized	naming	conventions,	Unity	should	have
automatically	put	each	bone	into	the	right	slot	within	the	mapping	definition.	Any
unidentified	positions	will	show	up	in	red,	and	any	non-essential	or	optional	bones	that
have	not	been	identified	will	be	displayed	in	gray.

Above	the	actual	bone	definition	slots,	there	are	alternate	tabs	for	the	body,	head,	left
hand,	and	right	hand,	where	more	joints	can	be	defined	for	more	detailed	rigs.	With	the
exception	of	the	head	and	neck,	the	bones	covered	under	the	Head	tab	are	not	that
important	right	now.	Facial	animation	will	be	covered	later,	in	Chapter	6,	Talking	Heads.

The	rest	of	the	bones	in	the	list	for	body,	left	hand,	and	right	hand	will	need	to	be
allocated.	You	can	scroll	down	in	the	panel	to	see	the	names	of	the	bones	from	your
hierarchy	and	which	position	they	have	been	placed	in	within	the	Avatar.

Tip
Note	that	the	Avatar	mapping	definition	only	has	two	positions	available	for	spine	bones,
if	the	character	you	are	mapping	has	more	than	two	bones	in	its	spine	(like	this	example),
you	can	decide	which	of	them	to	use.

I	usually	leave	out	the	upper-spine	bone,	as	it	typically	contains	very	little	data	in
animation	sequences,	and	because	of	its	proximity	to	the	neck	and	shoulders,	which

usually	have	more	influence	on	the	vertices	of	the	model.

A	common	occurrence	at	this	point	of	the	process	is	a	red	warning	display	in	your	Scene

view	notifying	you	that	the	character	is	not	in	T-pose:

This	is	a	simple	fix,	as	we	will	demonstrate	in	the	next	step.
Adjusting	the	character’s	pose

Mecanim	requires	character	models	to	be	in	a	T-pose	for	them	to	be	properly	processed.
The	true	T-pose	is	not	a	universal	default	pose	for	character	models,	and	luckily	Mecanim
has	a	way	to	accommodate	this:

1.	 Click	on	the	Pose	rollout	at	the	bottom	of	the	Avatar	Mapping	tab	within	the
Inspector	panel.

2.	 Choose	Enforce	T-pose.	This	will	force	your	characters	arms	into	a	true	T-pose	so
that	they	are	Mecanim	compatible.

Note
You	may	wonder	why	we	don’t	just	model	a	character	in	a	T-pose	rather	than
something	more	like	an	M.	The	main	reason	is	that,	while	it	is	on	the	screen,	the
character’s	arms	will	usually	be	down	by	its	side,	modeling	the	arms	at	45	degrees
rather	than	90	will	minimize	the	amount	of	stretching	of	the	mesh	and	textures.

Dedicated	motion	editing	packages,	such	as	Autodesk	MotionBuilder,	also	require	a	true
T-pose,	so	the	Enforce	T-Pose	option	within	Mecanim	is	a	good	compromise	and	a	nice
touch,	which	saves	us	having	to	remodel	or	rerig	a	character	in	order	to	use	these	tools.

Checking	the	bone	hierarchy	in	the	Avatar

Mecanim’s	Avatar	definition	tools	are	responsive	to	bone	hierarchy	and	naming
conventions.	If	you	are	working	with	several	character	rigs	that	have	the	same	bone
names,	it	is	likely	you	will	only	need	to	tweak	the	settings	the	first	time.

The	tool	sometimes	goes	wrong.	When	this	is	the	case,	make	sure	you	follow	these	steps:

1.	 Once	you	initiate	the	mapping	process,	the	skeleton	in	your	Hierarchy	panel	is
expanded	to	make	it	easy	to	drag	and	drop.	All	you	have	to	do	is	drag	the	bones	from
the	Hierarchy	panel	into	the	appropriate	slot	in	the	list.

2.	 Take	the	time	to	check	the	bones	in	the	list	to	make	sure	that	there	are	no	mistakes.
3.	 Optional	bones,	such	as	the	neck	and	toes,	are	quite	often	left	out	by	the	automatic

mapping,	so	it	is	a	good	idea	to	add	them	(in	the	appropriate	definition	slots),	at	this
stage,	before	you	apply	the	settings.

Note
If	you	make	a	mistake,	just	drag	the	correct	bone	onto	the	field	in	the	list	to	replace	it.

4.	 When	you	are	finished,	click	on	Done.	This	will	save	the	settings	of	the	Avatar	and
apply	them	to	the	instance	of	the	model	in	the	scene.

The	Avatar	asset	will	now	be	referenced	in	the	Animator	component	of	the	character
game	object,	which	can	be	viewed	in	the	Inspector	panel:

At	this	point,	our	Avatar	is	configured,	creating	a	link	to	our	character’s	skeleton	hierarchy
that	Unity	can	use.

Next,	we	will	lay	the	ground	work	to	add	a	simple	animation	that	will	run	in	the	game.

Setting	up	the	animator	controller
Mecanim	requires	an	animator	controller	to	connect	compatible	animation	clips	with	the
character	model.	This	is	displayed	as	a	node-based	interface,	which	shows	the
relationships	between	different	animation	clips	and	the	parameters	that	trigger	them.

We	can	continue	with	the	scene,	or	if	you	have	closed	Unity	since	working	on	the	last
section,	re-open	the	scene	that	you	saved.	You	can	open	the	scene	by	navigating	to	File	|
Open	Scene	|	PACKT_Scenes	|	Chapter1_1.

Assets	imported	with	animation	will	have	space	for	an	animator	controller	to	be	added	to
them.	Follow	these	steps	to	create	the	controller:

1.	 Click	on	the	PACKT_Controllers	folder	in	the	Project	panel.
2.	 Navigate	to	Create	|	Animator	Controller.
3.	 The	Animator	Controller	icon	will	appear	in	the	Assets	panel	in	the	lower-center	of

the	interface.
4.	 Rename	this	zombieControl.
5.	 Click	on	the	Animator	tab	to	open	the	Animator	panel.	If	this	is	not	visible,	add	it	in

the	menu	bar	by	navigating	to	Window	|	Animator.
6.	 Drag	the	Animator	tab	above	its	current	position	to	undock	it	as	a	window.

Note
Undocking	the	Animator	panel	is	not	strictly	necessary,	especially	if	you	are
working	with	on	a	large	monitor,	but	it	will	give	you	more	space	to	view	the	whole
state	machine	as	it	is	created.

In	the	newly	created	animator	controller,	there	are	two	visible	states,	labeled	Entry	and
Any	State:

The	Entry	state	will	usually	be	the	starting	point	when	the	game	starts	or	when	the

character	is	instantiated.	We	can	use	Any	State	to	override	states,	which	are	currently
running	if	we	want	something	else	to	take	priority.

Setting	up	a	number	of	states	for	animation	clips	will	enable	greater	control	over	the
implementation	of	the	animated	sequences.	We	will	add	more	states	in	the	next	step.

Creating	states
States	are	the	building	blocks	of	the	animator	controller.	Each	state	includes	one	or	more
motion	clip.	States	are	linked	using	Transitions,	visually	presenting	the	order	in	which
states	will	become	active:

1.	 Create	a	new	state	by	right-clicking	on	the	empty	part	of	the	animator	graph.
2.	 Navigate	to	Create	State	|	Empty.
3.	 Select	the	state	by	clicking	on	it.	Rename	it	Idle	in	the	Inspector	panel.
4.	 Create	a	second	state	in	the	same	way.	Name	this	Hit	in	the	Inspector	panel.

Next,	we	will	add	the	appropriate	animation	clips	to	the	states:

1.	 Click	on	the	PACKT_Animations	folder	within	the	Project	panel.
2.	 In	the	Assets	panel,	expand	both	the	zombie_idle	and	zombie_attack	animation

assets	by	clicking	on	the	small	arrow	on	the	right	side	of	their	icons.
3.	 Select	the	Idle	state	in	the	Animator	window.
4.	 Drag	the	zombie_idle	animation	to	the	Motion	slot	in	the	Inspector	panel:

5.	 Select	the	Hit	state	and	drag	the	hit	animation	from	the	expanded	zombie_attack
asset	into	the	Motion	slot	in	the	Inspector	panel:

These	animations	are	now	tied	to	the	states	that	we	have	set	up.

At	the	moment,	the	states	are	unconnected.	To	connect	them,	you	need	to	create	a
parameter	that	will	define	the	conditions	that	cause	the	character	to	switch	to	another	state.

Creating	a	parameter
In	the	Animator	interface,	parameters	are	used	to	specify	when	states	will	run.	They	are
similar	to	variables	in	Unity	scripts	and	can	take	the	form	of	integers,	floats,	and	booleans.
To	create	a	parameter	follow	these	steps:

1.	 In	the	upper-left	of	the	Animator	window,	click	on	the	Parameters	tab	and	the	+
symbol	to	create	a	new	parameter.

2.	 Choose	Trigger	from	the	list.

In	Mecanim,	a	trigger	parameter	allows	you	to	allow	a	quick	action.	It	is	ideal	for
attack	states	because	it	is	reset	each	time	it	is	fired	off.

3.	 Name	the	parameter	Hits

This	trigger	parameter	will	determine	when	the	zombie’s	attack	animation	will	play.

Adding	transitions
The	next	stage	is	to	create	transitions	between	your	two	states.	Transitions	show	how
states	are	connected	in	the	Animator	window:

1.	 Right	click	on	the	Idle	state	in	the	Animator	window.
2.	 Select	Make	Transition.
3.	 Click	once	on	the	Hit	state.

The	transition	is	displayed	as	a	white	line	with	an	arrow	indicating	its	direction:

We	also	need	to	create	a	transition	from	Hit	back	to	Idle,	so	the	character	will	stop	playing
this	animation:

1.	 Right	click	on	Hit	and	click	once	on	Idle	to	create	the	return	transition.

In	the	animator	controller,	it	is	the	transitions	that	contain	the	parameters.

2.	 Click	once	on	the	transition	pointing	from	Idle	to	Hit.	Its	setting	will	appear	in	the
Inspector	panel.

The	only	change	that	needs	to	be	made	to	the	default	settings,	at	this	stage,	is	to
change	the	drop	down	in	the	Conditions	box	at	the	bottom	of	the	panel.

3.	 Click	on	the	arrow	and	select	the	Hits	parameter	from	the	list.

As	we	want	the	full	attack	animation	to	play	out,	we	will	leave	the	Conditions	box	in	the
return	transition	with	its	default	setting	Exit	Time.	This	will	set	the	state	to	transition	out
once	the	animation	has	played	through:

The	Animation	controller	is	now	complete.	We	will	add	it	to	the	male	zombie	character	in
the	next	step:

1.	 Select	the	zombie_m	game	object	in	the	Hierarchy	panel.
2.	 Drag	the	zombie_control	animator	controller	onto	the	Controller	slot	in	the

character’s	Animator	component.

At	this	stage,	when	we	test	the	game,	the	zombie	will	run	its	idle	animation,	as	its	Idle
state	is	currently	specified	as	the	default	state	(marked	in	orange	in	the	Animator
window).

In	order	to	enable	the	Hit	state	to	take	over,	we	will	need	to	do	a	little	scripting.

Writing	the	script
The	character	requires	a	small	amount	of	code	to	enable	it	to	switch	to	its	Hit	state	and

play	the	zombie_hit	animation:

1.	 Select	the	PACKT_Scripts	folder	in	the	Project	panel.
2.	 Create	a	new	Javascript	file	by	navigating	to	Create	|	Javascript.
3.	 Rename	the	file	zombie_attack.
4.	 Double-click	on	the	file	to	open	it	in	MonoDevelop.
5.	 At	the	top	of	the	script,	add	the	following	code:

var	thisAnimator	:	Animator;

This	is	a	variable,	which	is	used	to	keep	track	of	the	character’s	animator	controller
that	is	attached	as	a	component	to	the	same	game	object	that	we	will	attach	this	script
to.

Note
If	you	are	coding	in	C#,	rather	than	Javascript,	the	syntax	is	a	little	different.
Functions	are	defined	with	the	prefix	void	rather	than	function	and	variables	are
defined	without	the	var	prefix	and	with	their	type	before	their	name,	without	the
separating	colon,	such	as	this:

Animator	thisAnimator;

You	will	find	the	completed	code	(in	both	languages),	in	the	project	files.

By	default,	unity-created	Javascript	files	contain	two	functions:	Start	and	Update.
We	will	initialize	the	connection	to	the	zombie’s	animator	controller	in	the	Start
function.

6.	 Within	the	curly	brackets	of	the	Start	function,	add	the	following	line	of	code:

thisAnimator	=	GetComponent(Animator);

Because	this	code	is	in	Start,	as	soon	as	the	script	runs,	it	will	gain	access	to	the
animator	component	and	store	this	in	the	thisAnimator	variable	for	future	use.

Next,	we	will	add	some	code	to	the	Update	function.	Unlike	Start,	which	runs	only
once,	when	the	script	is	first	activated,	Update	runs	every	frame,	so	it	is	usually	the
best	place	to	check	for	input.

7.	 Add	the	following	code	within	the	curly	brackets	of	the	Update	function:

if(Input.GetButton("Fire1"))

{

				thisAnimator.SetTrigger("Hits");

}

In	the	first	line	of	code,	we	check	for	input	from	the	Fire1	button	(set	up	by	default
for	the	left-mouse	button).	When	this	condition	is	met,	we	trigger	the	Hits	parameter
inside	the	animator	controller,	enabling	the	transition	to	the	Hit	state	and	playing	the
zombie_hit	animation.

8.	 Save	the	script	in	MonoDevelop	by	navigating	to	File	|	Save.

If	any	errors	appear	in	the	console,	be	careful	that	you	have	not	left	out	any	semicolons
(that	should	end	all	operations	and	variables)	or	curly	brackets	(that	should	start	and	end
all	functions	and	statements).

Tip
If	you	are	including	any	comments	for	your	own	references,	make	sure	that	single-line
comments	are	preceded	with	two	forward	slashes	//	and	block	comments	are	encapsulated
by	/*	and	*/.

This	is	a	pretty	short,	simple	script.	We	will	be	elaborating	on	this	later	in	the	book.

We	need	to	add	the	script	to	the	zombie	character.	This	can	be	done	by	dragging	the	script
from	the	Project	panel	onto	the	zombie_m	game	object	in	the	Hierarchy	panel	to	attach	it
as	a	component.

Next,	we	will	make	a	few	small	adjustments	to	the	scene,	to	make	it	easier	to	view	our
animation.

Adjusting	the	scene	elements	to	preview	the
animation
Changing	the	position	and	orientation	of	the	camera	will	make	it	easier	to	view	the
zombie’s	animation:

1.	 In	the	Hierarchy	panel,	select	the	default	Main	Camera	and	move	it	to	a	position
where	it	is	pointing	at	the	zombie.

Note
A	quick	way	to	set	the	position	of	the	camera	in	the	scene	is	by	performing	the
following	steps:

1.	 Navigate	the	Scene	view	so	that	a	chosen	object	is	framed.
2.	 Select	the	Main	Camera	game	object	by	clicking	on	it	in	the	Hierarchy	panel.
3.	 In	the	menu	bar,	navigate	to	GameObject	|	Align	with	View.

Note
The	camera	will	be	repositioned	to	match	the	current	Scene	view	navigation.

2.	 Add	a	plane	to	represent	the	ground	in	the	scene	by	navigating	to	GameObject	|
Create	Other	|	Plane.

The	plane	should	be	centered	to	the	scene	by	default.

The	directional	light	that	is	already	in	the	scene	should	be	sufficient	to	light	the
character.

3.	 If	necessary	rotate	the	light	so	that	the	character	is	clearly	lit.

The	light	should	clearly	illuminate	the	character’s	face	in	the	scene.

Previewing	the	hit	animation	in	the	game	view
Now	that	we	can	clearly	see	the	character	within	the	view,	we	can	test	the	animation:

1.	 Press	the	Play	button	in	the	top-center	of	the	Unity	interface.

The	zombie	will	cycle	through	its	idle	animation.

2.	 Click	on	the	left-mouse	button.

This	will	cause	the	hit	animation	to	play	once	before	transitioning	back	to	the	Idle	state.

Summary
In	this	chapter,	we	covered	the	major	steps	involved	in	animating	a	premade	character
using	the	Mecanim	system	in	Unity.

We	started	with	FBX	import	settings	for	the	model	and	the	rig.

Then	we	covered	the	creation	of	the	Avatar	by	defining	the	bones	in	the	Avatar	Definition
settings.

After	that	we	created	a	simple	example	of	an	animator	controller,	added	it	to	the	character,
and	added	some	prepared	motion	clips.

Finally,	we	got	our	male	zombie	character	up	and	attacking,	by	writing	and	implementing
a	simple	control	script.

In	the	next	chapter,	we	will	demonstrate	the	process	of	rigging	a	character	in	3ds	Max	and
Maya	for	use	in	Unity	and	Mecanim.	This	time	we	will	start	with	the	male	zombie’s
female	counterpart.

Chapter	2.	Rigging	Characters	for	Unity
in	3ds	Max	and	Maya
We	have	already	got	into	some	of	the	major	character	animation	tools	that	Unity	has	to
offer,	but	if	you	have	experience	modeling	and	a	character	that	you	would	like	to	bring
into	Unity,	this	chapter	will	explain	how	to	get	your	model	rigged	and	ready.

We	will	cover	typical	rigging	workflows	for	3ds	Max	and	Maya,	and	illuminate	a	couple
of	the	pitfalls	that	you	may	run	into	along	the	way.

We	will	cover:

Basic	rigging	objectives
Rigging	with	Biped	in	3ds	Max
Rigging	with	joints	in	Maya
Exporting	in	Unity	compatible	formats

Understanding	the	need	for	rigging
The	rigging	portion	of	the	character	animation	process	is	essential	to	ready	the	character	to
be	animated.	When	rigged,	a	character	will	have	defined	joints,	which	will	allow	it	to
articulate	in	a	realistic	way.

A	key	difference	between	rigging	for	a	game	engine	like	Unity	and	rigging	for	a	non	real-
time	animation	is	that	we	do	not	need	to	set	up	full	character	controls	in	our	3D	software.

On	export,	controls	and	other	helpers	will	typically	be	deleted	leaving	just	the	mesh,
bones,	and	animation	(if	there	is	any).	This	makes	rigging	a	model	for	Unity	a	little	easier.

Minimum	requirements
As	we	mentioned	briefly	in	Chapter	1,	The	Zombie	Attacks!,	there	are	certain	requirements
that	we	need	to	consider	if	we	want	to	create	a	rigged	character	that	is	fully	compatible
with	Mecanim’s	tools.	In	order	to	make	use	of	the	Humanoid	Avatar	preset	in	Mecanim,
we	need	a	minimum	of	15	bones,	typically:

Hips	or	root	joint
Spine1
Spine2
Neck
Head
Thigh_R
Calf_R
Foot_R
Thigh_L
Calf_L
Foot_L
UpperArm_R
ForeArm_R
UpperArm_L
ForeArm_L

The	skeletons	that	we	will	create	in	3ds	Max	and	Maya	will	have	quite	a	few	more	bones
than	these—supporting	full	hand	articulation,	but	this	is	not	strictly	necessary	to	make	use
of	the	animation	and	retargeting	tools	that	Mecanim	offers.

Your	bones	do	not	have	to	be	named	this	way,	though	it	is	a	good	idea	to	adopt	consistent
naming	conventions	between	your	characters.	The	Avatar	in	Mecanim	acts	as	an
intermediary	between	the	animation	and	the	skeleton,	which	helps	when	retargeting
animations	between	different	characters.

Mecanim	has	support	for	hands,	fingers,	extra	spine	links,	and	a	few	other	bones.	The	rigs
we	will	set	up	will	exceed	the	minimum	requirement	of	bones	in	order	to	accommodate
more	detailed	animations.	We	will	explore	the	possibilities	of	using	additional	bones	later
in	the	project.

Sourcing	models
If	you	are	not	a	modeler,	suitable	characters	are	easy	to	find	in	the	Unity	Asset	Store	and
other	commercial	sites.	It	is	possible	to	find	rigged	models	without	having	to	pay	a	lot	of
money,	but	if	you	are	planning	on	using	them	in	a	commercial	project,	always	check	the
licensing—typically	a	small	word	or	text	file	is	included	in	the	zipped	folder	when	you
download	a	model.

The	models	used	in	this	book	are	provided	by	Atelier	Sphynx,	more	are	available	in	the
Unity	Asset	Store	at	https://www.assetstore.unity3d.com.

https://www.assetstore.unity3d.com

Modeling	for	animation
Though	an	explanation	of	the	full	modeling	process	is	beyond	the	scope	of	this	book,	there
are	a	few	considerations	that	you	need	to	be	aware	of	if	you	have	a	model	that	you	want	to
rig	for	use	in	Unity:

Polycount:	Think	about	how	many	times	the	model	is	likely	to	be	shown	on	screen
and	how	big	it	will	be.	Typically,	characters	that	are	only	present	in	the	background
or	those	that	are	repeated	multiple	times,	would	contain	less	polygons	to	free	up
system	resources,	and	maintain	a	consistent	frame	rate.	The	polycount	is	the	amount
of	triangles,	which	the	character	is	made	up	of.	This	can	often	be	kept	to	a	minimum
by	deleting	unseen	parts	of	a	model	and	reducing	the	complexity	of	less	important
areas.
Mesh	density:	In	order	to	maintain	the	semblance	of	a	smooth,	continuous	surface,
modelers	often	organize	their	character’s	topology	by	the	direction	and	flow	of	edges.
A	ring	of	edges	is	called	an	Edge	Loop.	Typically,	more	edge	loops	will	be	necessary
on	the	parts	of	the	mesh	that	deform.	Shoulders,	knees,	and	elbows	need	to	be
reinforced	to	support	the	deformation	caused	by	joints.	Similarly,	areas	that	do	not
bend	or	deform	can	have	less	edge	loops,	as	the	mesh	only	needs	to	support	the	static
shape.
Quads	and	triangles:	The	3D	applications	(including	game	engines	such	as	Unity)
render	triangles.	Most	modeling	workflows	use	quadrangles	(or	quads),	which
subdivide	more	evenly	and	are	easier	to	UV	map	and	animate.	If	your	model	contains
anything	other	than	quads	or	triangles,	such	as	pentagons	or	hexagons	or	higher
(generally	termed	ngons),	you	will	risk	unpredictable	results	when	you	try	to	rig	and
animate.	It	is	advised	to	stick	to	triangles	and	quads	when	you	are	modeling	your
characters.

Rigging	in	3ds	Max
In	this	section,	we	will	demonstrate	the	rigging	process	in	3ds	Max	using	Biped.

Biped	is	a	set	of	tools	developed	as	part	of	the	character	studio	in	3ds	Max	and	is	basically
a	prefabricated	skeleton	that	can	be	fully	adjusted	to	fit	most	bipedal	(and	also	some
quadrupedal	characters).	The	main	advantage	of	using	this	is	speed.	It	will	enable	you	to
create	a	usable	character	skeleton	in	a	very	short	span	of	time.	Biped	also	has	inverse
kinematics	(IK)	by	default.	IK	can	be	set	up	from	scratch	using	the	max	bones	system,
but	it	takes	quite	a	bit	more	time.

Setting	up	the	scene
Before	we	get	to	work,	there	are	a	few	things	we	need	to	do	to	prepare	for	rigging:

1.	 Download	the	project	files	from	the	Packt	website	if	you	have	not	already	done	so.
2.	 Start	3ds	Max.
3.	 Set	the	units	to	meters	by	navigating	to	Customize	|	Units	Setup.
4.	 When	the	Units	Setup	window	appears	in	the	max	interface,	click	on	the	Metric

radio	button	near	the	top	of	the	Display	Unit	Scale	group.
5.	 Choose	Meters	from	the	drop-down	list.
6.	 Click	on	OK	to	save	the	changes	and	close	the	window.

Next,	we	will	adjust	the	Home	Grid	size	to	show	meters,	which	is	the	unit	used	in
Unity.

7.	 Right-click	on	Snaps	Toggle.	This	is	the	button	in	the	top	center	of	the	3ds	Max
interface,	which	contains	the	image	of	a	magnet	with	the	number	2,	2.5,	or	3.	This
will	open	up	the	Grid	and	Snap	Settings	window.

8.	 Click	on	the	Home	Grid	tab.
9.	 In	the	Grid	Spacing	field,	within	the	Grid	Dimensions	group,	type	1.0	m.	This	will

create	major	grid	lines	at	one	meter	intervals.

10.	 Close	the	Grid	and	Snap	Settings	window.

Now	that	we	have	prepared	3ds	Max,	we	can	import	the	character	model	into	the	scene.

Importing	the	character	model
The	character	model	is	a	female	counterpart	to	the	zombie	character	we	animated	in
Chapter	1,	The	Zombie	Attacks!.	It	has	been	saved	in	the	Wavefront	OBJ	format,	one	of
the	more	widely	used	3D	mesh	formats.	Our	next	step	is	to	import	the	model:

1.	 Click	on	the	3ds	Max	icon	in	the	top-left	corner	of	the	3ds	Max	interface.
2.	 Click	on	Import	from	the	drop-down	command	list.
3.	 In	the	Select	File	to	Import	dialog	that	appears,	navigate	to	the	project	files	and

double-click	on	the	Rigging_Assets	folder.
4.	 Double-click	on	the	Models	subfolder,	and	then	the	zombie_f	subfolder	to	view	its

contents.
5.	 Select	the	zombie_f.obj	file	and	click	on	Open	to	close	the	import	dialog.
6.	 The	OBJ	File	Import	Options	window	will	appear.
7.	 Near	the	bottom	of	the	window,	choose	None	as	the	Preset.	Leave	all	of	the	other

settings	at	their	default	values.
8.	 Click	on	Import	to	close	the	window	and	import	the	model.

The	female	zombie	character	model	should	appear	in	your	quad	viewports.	The	character
is	approximately	the	same	polycount	the	male	zombie.	It	has	textures	applied	and	is	ready
to	be	rigged:

Creating	the	Biped	system
Biped	is	a	customizable	character	skeleton	that	can	accommodate	most	two-legged	and
two-armed	characters.	It	is	often	used	as	a	quick	method	for	getting	character	models
ready	to	animate.	In	this	section,	we	will	add	and	configure	the	Biped	system	for	use	with
our	character	model:

1.	 Maximize	the	Perspective	viewport	by	right-clicking	within	the	viewport	to	select	it,
and	then	clicking	on	the	Maximize	Viewport	Toggle	in	the	lower-right	corner	of	the
max	interface.

2.	 Click	on	the	Create	tab	on	the	command	panel	(located	on	the	right	side	of	the
interface).

3.	 From	the	sub	menu,	select	the	Systems	tab	on	the	far	right.
4.	 Click	on	the	Biped	button	and	drag	out	the	Biped	rig	onto	the	grid.

Rather	than	trying	to	match	the	full	height	of	the	character,	try	to	line	up	the	shoulder
joints	with	the	shoulders	of	the	character	mesh.

Adjusting	the	Biped’s	parameters
Before	deselecting	the	Biped	system,	adjust	the	parameters	in	the	Modify	panel	(the	icon
next	to	that	for	the	Create	panel),	we	need	to	change	a	few	more	parameters	in	command
panel:

1.	 Change	Body	Type	to	Female.	This	will	change	the	skeleton	to	one	that	better
matches	the	female	physiology.

2.	 Change	Root	Name	to	zombie_f_,	this	name	will	add	this	as	a	prefix	to	all	of	the
bones	in	the	new	skeleton,	making	them	easier	to	identify.

3.	 Adjust	the	bone	parameters	to	match	the	following	illustration:

This	will	give	you	the	right	number	of	bones	for	the	character	rig.

Do	not	worry	about	the	Twist	Links	and	Xtras	parameters	at	the	bottom—these	are
advanced	options	that	are	not	necessary	for	this	character.

Next,	we	will	adjust	the	size	and	rotation	of	the	individual	bones	to	better	match	our
female	zombie.

Adjusting	the	Biped	to	fit	the	character
As	a	prefabricated	rig,	Biped	is	designed	to	be	adapted	to	various	character	types.	We	can

scale	and	rotate	all	of	the	bones	to	fit	our	character’s	design:

1.	 Click	on	the	Motion	tab	in	command	panel	and	then	activate	Figure	Mode	by
clicking	on	the	figure	icon	under	the	Biped	rollout.	This	will	allow	you	to	edit	the
scale	and	rotation	of	individual	bones:

Importantly,	we	need	to	make	sure	that	the	root	bone	is	centered	to	the	world.

2.	 Click	on	the	Select	By	Name	icon	in	the	main	tool	bar	or	use	the	H	key.
3.	 Select	the	zombie_f_	bone	from	the	list	and	click	on	OK	to	close	the	Select	By

Name	window.
4.	 In	command	panel,	rename	the	bone	zombie_f_root	by	typing	this	in	the	Name

field.
5.	 Activate	the	Select	and	Move	tool	(or	press	W	key)	and	zero	out	the	X	and	Z	fields

in	the	bottom	center	of	the	screen	by	selecting	the	number	in	the	field	and	typing	0.

This	will	ensure	that	the	skeleton	is	lined	up	accurately	with	the	model	and	help	you	rig
the	character	effectively	using	the	symmetry	shortcuts	that	Biped	offers.

Switching	to	X-ray	mode	and	freezing	the	character	mesh
To	make	it	easier	to	see	the	bones	underneath	your	model,	you	can	use	X-ray	mode:

1.	 With	the	Select	Object	tool	active,	click	on	the	zombie_f	mesh	in	the	viewport.
2.	 Press	Alt	+	X	to	display	the	current	selection	in	X-ray,	making	it	semi-transparent.

If	you	now	freeze	the	selection,	you	can	make	sure	the	character	mesh	does	not
accidentally	get	selected	during	the	rigging	process.

3.	 Right-click	on	anywhere	in	the	viewport	and	choose	Freeze	Selection	from	the
Display	menu:

The	selected	character	mesh	will	become	grayed-out,	indicating	that	it	is	now	frozen,
though	you	should	still	be	able	to	see	the	Biped	bones	clearly	through	the	mesh	because	it
is	set	to	X-ray.

Note
You	can	unfreeze	frozen	objects	at	any	time	by	right-clicking	on	and	choosing	Unfreeze
All	from	the	Selection	menu.

Changing	bone	display	colors

By	default,	all	three	of	the	spine	bones	that	were	created	are	displayed	in	the	same	color.
To	make	it	easier	to	differentiate	them,	the	colors	should	be	changed:

1.	 In	the	perspective	viewport,	select	zombie_f_Spine1.
2.	 Change	the	display	color	by	clicking	on	the	colored	square	in	the	right	of	command

panel	(it	will	be	displayed	if	you	have	the	Modify,	Hierarchy,	or	Motion	tabs
active).

3.	 Choose	a	different	color	from	the	swatch	that	appears.
4.	 Repeat	this	process	for	zombie_f_Spine2.

Note
The	colors	that	you	assign	to	individual	bones	will	help	you	to	differentiate	them	in
the	viewport—the	skeleton	will	never	be	visible	in	the	game.

Scaling	and	orienting	the	bones	to	match	the	character	model

The	next	part	of	the	process	will	be	unique	to	the	character	that	you	are	rigging.	Follow
these	steps	to	adjust	the	bones	to	align	with	the	character:

1.	 Activate	the	Select	and	Scale	tool	(or	press	the	R	key).
2.	 Set	Reference	Coordinate	System,	the	white	drop-down	list	in	the	top,	center-

middle	of	the	interface,	from	View	to	Local.	This	will	ensure	that	the	rotation	and
scale	gizmos	used	to	modify	the	bone	are	aligned	to	the	bone.	This	will	make	it	easier
to	adjust	them:

Note
The	Reference	Coordinate	System	is	specific	to	the	tool	that	you	are	using,	so	you
will	have	to	set	it	to	Local	for	the	Select	and	Rotate	tool	as	well.

Scale	each	of	the	spine	bones	to	better	approximate	the	proportions	of	the	character’s

torso:

1.	 Start	by	scaling	zombie_f_Spine.
2.	 Continue	with	the	next	two	spine	bones.
3.	 Scale	and	rotate	the	zombie_f_Neck	joint.
4.	 Repeat	this	process	for	the	head.	Try	to	scale	the	head	bone	so	that	the	approximate

eye	position	indicated	by	the	Biped	head	joint	line	up	with	that	of	the	character	mesh.

Note
When	you	are	scaling	and	rotating	bones,	try	to	follow	the	hierarchical	order	of	the
skeleton,	so	that	the	bones	closest	to	the	root	are	adjusted	first.	This	will	reduce	the
possibility	of	changing	the	size	and	orientation	of	bones	that	you	previously	adjusted.

The	core	of	the	character	skeleton	should	be	a	pretty	good	fit	before	we	move	on	to	the
peripheral	joints	and	the	limbs.
Repositioning	the	joints	for	the	ponytail	and	jaw

We	created	the	Biped	with	two	chains	of	ponytail	links.	The	first	set	will	be	used	for	the
character’s	hair,	and	the	second,	which	is	a	single	joint,	will	be	used	for	the	character’s
jaw	animation:

1.	 Activate	the	Select	and	Move	tool	(or	press	the	W	key).
2.	 Select	zombie_f_Ponytail1	and	move	it	to	the	area	in	the	back	of	the	character’s

head	where	the	ponytail	starts.
3.	 Switch	to	the	Select	and	Scale	tool	(or	press	the	R	key),	scale	the	joint	down	so	it	fits

neatly	inside	of	the	mesh.
4.	 Select	the	next	joint	in	the	chain	and	rotate	and	scale	the	joint	down	until	it

terminates	at	the	widest	part	of	the	ponytail.
5.	 The	last	joint	should	be	rotated	and	scaled	so	that	it	reaches	the	end	of	the	ponytail

portion	of	the	character	mesh.
6.	 For	the	jaw,	select	a	single-joint	ponytail	chain	in	the	viewport	or	from	the	Select	by

Name	list.
7.	 Rename	it	zombie_f_Jaw.
8.	 Reposition	the	joint	so	that	it	starts	just	beneath	the	ear	in	the	Right	or	Left	viewport.
9.	 Rotate	and	scale	the	joint	so	that	it	reaches	the	character’s	chin.

The	result	should	appear	similar	to	the	following	illustration:

Note
Ponytail	links	can	be	moved	to	any	position	on	the	head	and	used	to	support	anything	else
that	needs	to	animate	such	as	a	nose,	hat,	jaw,	or	antennae.

Do	not	worry	about	scaling	the	bones	to	exactly	fit	the	character	mesh,	if	they	poke
through	the	surface	in	places	this	is	fine.	It	is	more	important	that	you	place	the	joints
correctly	within	the	mesh,	as	individual	vertices	will	be	influenced	by	the	bones’
respective	rotations.

Adjusting	limb	positions
Assuming	that	your	character	is	symmetrical	like	this	one,	you	will	only	need	to	rotate	and
scale	the	bones	on	one	side	of	the	character.

Bones	are	color	coded.	The	character’s	right-side	bones	are	displayed	in	green	and	the
left-side	bones	are	displayed	in	blue.

1.	 Adjust	the	bones	of	the	left	arm,	starting	with	zombie_f_L_UpperArm.
2.	 Move	down	through	the	hierarchy	to	correct	the	scale	and	rotation	of	the	lower	arm,

hand,	and	finger	bones	making	sure	that	the	joints	fit	appropriately	within	the	mesh.
3.	 Repeat	this	process	for	the	bones	of	the	left	leg,	starting	with	zombie_f_L_Thigh.

In	the	Biped	system,	certain	bones	such	as	the	neck	and	finger	roots	can	also	be
moved	allowing	greater	flexibility.

4.	 Switch	to	the	Select	and	Move	tool	and	drag	the	finger	root	joints	into	the	correct
positions	indicated	by	the	character	model.

Note
Lining	up	the	finger	and	toe	bones	can	be	tricky.	Hopefully	you	will	be	working	with
a	character	in	which	these	joints	will	be	suggested	in	the	modeling.	Often,	characters
are	created	with	this	in	mind—knee,	elbow,	and	finger	joints	will	be	slightly	bent	to
facilitate	faster	and	more	accurate	rigging.

Rather	than	having	to	repeat	this	process	for	the	character’s	right	side,	we	will	be	making
use	of	some	of	Biped’s	additional	features	to	copy	and	paste	scale	and	rotation	data	from
one	side	to	the	other.	First,	we	need	to	take	care	of	a	few	issues	with	the	bone	names.

As	you	are	rotating	and	scaling	the	finger	joints,	it	should	become	evident	that	these	joints
are	identified	by	number	only.	It	would	be	more	useful	if	they	were	given	unique	names
before	we	get	too	much	further	with	the	rigging	process.

Renaming	bones
Renaming	bones	will	allow	them	to	be	selected	more	easily	in	a	list,	for	situations	when	it
is	difficult	to	select	them	in	a	viewport.	We	will	assign	the	finger	bones	unique	names:

1.	 In	the	viewport,	select	the	first	bone	in	the	left	index	finger.
2.	 In	the	Modify	panel,	rename	it	zombie_f_L	Index1.
3.	 Select	the	second	bone	in	the	index	finger,	and	name	it	zombie_f_L	Index2.
4.	 Continue	this	process	to	rename	the	remaining	joint	and	assign	the	appropriate	names

to	the	bones	of	the	Middle,	Ring,	Little,	and	Thumb	of	both	hand.
5.	 Select	the	left	toe	bone	zombie_f_L	Toe0	and	remove	the	number	0	from	the	end	of

the	name.	Repeat	this	with	the	right	toe	bone.

Now	that	we	made	our	bone	names	consistent,	we	will	copy	the	rotation	and	scale	data
from	the	left	side	to	the	right.

Copying	and	pasting	the	position,	rotation,	and	scale	data	from	one	side
to	the	other
One	of	the	benefits	of	using	the	Biped	system	is	that	it	includes	various	shortcuts	to	speed
up	the	rigging	process,	especially	when	working	with	a	symmetrical	character:

1.	 Activate	the	Select	Object	tool	(or	press	the	Q	key)	and	reselect	all	of	the	left	side
limb	bones	by	dragging	a	marquee	around	them	within	the	viewport.	Alternatively,
you	can	use	the	Select	By	Name	tool	(or	press	the	H	key).

2.	 In	the	command	panel,	select	the	Motion	tab.
3.	 Scroll	down	to	locate	the	Copy/Paste	rollout	and	make	sure	that	the	Posture	button

is	activated:

4.	 Click	on	the	Create	Collection	button.	This	stores	the	group	of	the	bones	that	you
selected.

5.	 Click	on	the	Copy	Posture	button.
6.	 Click	on	the	Paste	Posture	Opposite	button.

The	scaling	and	rotation	of	the	limb	should	be	transferred	correctly	to	the	other	side.

If	there	is	any	offset	resulting	in	the	bones	not	fitting	within	the	mesh	on	the	pasted	side,
check	that	the	root	bone	and	the	character	mesh	have	both	been	centered	to	the	world	and
try	again:

Once	the	individual	bone	orientations	have	been	set,	the	next	stage	of	the	rigging	process
will	involve	creating	a	relationship	between	the	character	mesh	and	its	skeleton.	This	is
referred	to	as	the	skinning	process.

Skinning	the	character	using	the	skin	modifier
At	the	time	of	writing,	the	best	tool	to	set	up	the	relationship	between	the	character	model
and	the	skeleton	in	3ds	Max	is	the	Skin	modifier.	We	will	be	adding	this	to	the	modifier
stack	and	configuring	it	to	work	with	our	skeleton	in	this	step:

1.	 Select	the	character	model	in	the	viewport.
2.	 In	the	Modify	panel,	click	on	the	small	arrow	next	to	Modifier	List	to	expand	the

list.
3.	 Navigate	to	the	Object	|	Space	Modifiers	section	and	choose	Skin.

The	Skin	modifier	will	be	added	to	the	character	model’s	modifier	stack.	The
modifier’s	Parameters	rollout	will	appear	lower	down	in	the	Modify	panel.

Within	the	Parameters	rollout,	the	Bones	group	contains	a	list	of	the	bones	currently
used	in	the	Skin	modifier.	This	is	empty	by	default.

4.	 Click	on	the	Add	button.

The	Select	Bones	window	will	appear.	This	is	essentially	the	same	as	the	Select	by
Name	tool	that	we	used	previously.

5.	 In	the	Selection	Set	option,	at	the	top	of	the	window,	click	on	the	arrow	and	select
zombie_skeleton	from	the	drop-down	list.

6.	 Holding	Ctrl,	click	on	zombie_f_Root	and	zombie_f_Footsteps	at	the	top	of	the	list
to	deselect	them.

We	are	deselecting	these	two	items.	The	root	bone	is	used	to	move	the	whole	rig
around	and	does	not	directly	influence	any	vertices.	The	footsteps	object	is	used	in
the	creation	of	walk	cycles	and	is	not	really	a	bone.

7.	 Click	on	the	Select	button	at	the	bottom	of	the	Select	Bones	window.

The	window	will	close,	and	the	selected	bones	will	be	displayed	in	the	skin
modifier’s	Bones	list:

The	scrollbar	on	the	right	of	the	list	will	allow	you	to	view	all	of	the	selected	bones.

8.	 We	need	to	see	the	bones	to	animate	them,	so	if	you	have	hidden	them,	you	can
unhide	them	by	right-clicking	on	and	selecting	Unhide	by	Name	from	the	Display
menu.

Before	we	start	rotating	the	bones,	we	will	make	a	selection	set,	which	will	help	us	to
quickly	reselect	the	bones	that	make	up	the	skeleton.

Creating	a	selection	set
In	3ds	Max,	a	selection	set	is	a	stored	group	of	objects	or	subobjects	that	can	be	stored
and	then	quickly	accessed	via	the	Named	Selection	Sets	box.	Using	selection	sets	during
animation	can	save	you	a	lot	of	time,	because	you	will	not	have	to	manually	select	all	of
the	bones,	which	make	up	the	skeleton	repetitively:

1.	 Select	all	the	bones	in	the	skeleton	using	the	Select	By	Name	tool.
2.	 Locate	the	Named	Selection	Sets	box	just	below	the	main	toolbar	in	the	top	center	of

the	max	interface.
3.	 Click	on	once	in	the	field	and	type	zombie_skeleton	to	name	the	set.
4.	 Tap	Enter	to	confirm	the	creation	of	the	new	selection	set.

The	selection	set	is	now	stored.

You	can	now	quickly	select	all	of	the	bones	at	once	by	choosing	zombie_skeleton	from
the	drop-down	list	accessed	by	the	small	arrow.

Note
When	you	choose	a	selection	set	containing	items	which	are	hidden	or	frozen,	you	will	be
given	the	option	to	unhide	and	unfreeze.	This	is	quicker	than	having	to	select	all	of	the
objects	from	the	Unhide	by	Name	dialog.

Saving	the	default	pose
Before	we	start	rotating	any	bones,	we	will	save	the	default	bone	orientation	and	position,
to	make	it	easier	to	return	to	if	we	accidentally	overwrite	the	initial	pose:

1.	 Reselect	the	root	bone	zombie_f_Root.
2.	 Exit	the	figure	mode	by	clicking	on	the	Figure	icon	in	the	Motion	panel.
3.	 Click	on	to	select	the	Pose	tab	in	the	Copy/Paste	rollout.
4.	 Click	on	the	Copy	Pose	icon,	and	in	the	Copied	Poses	field,	rename	it	as	default.

You	should	see	a	thumbnail	image	of	the	pose	appear	in	the	Copied	Poses	preview	panel:

The	default	pose	will	now	be	saved	to	the	collection.

Creating	the	test	pose
The	test	pose	that	we	create	is	used	to	check	the	quality	of	the	joint	deformations.	Rather
than	spending	a	great	deal	of	time	creating	an	interesting	or	balanced	pose,	we	are
primarily	testing	the	character	skinning.

As	the	character	will	be	required	to	use	a	number	of	different	animation	sequences	in	a
game,	it	makes	sense	to	try	out	different	joint	rotations.	Therefore,	the	most	appropriate
kind	of	pose	to	test	with	is	an	asymmetrical	pose	such	as	a	walking	stance.

We	can	start	by	hiding	the	character	model:

1.	 Select	the	character	in	the	viewport	by	clicking	on	it.
2.	 Right-click	on	and	choose	Hide	Selected	from	the	Display	menu.

This	will	make	it	easier	to	select	and	adjust	individual	bones.

3.	 At	the	bottom	of	the	main	interface,	drag	the	Track	Bar	to	frame	30.	This	is	where
we	will	key	the	pose.

4.	 Back	in	the	Motion	panel,	expand	the	Key	Info	rollout.
5.	 Start	rotating	the	bones	to	create	the	pose.	Start	with	the	spine	bones.
6.	 Each	time	you	pose	a	bone,	click	on	the	red	Set	Key	button.

When	you	set	a	key,	a	dark	square	will	appear	in	the	frames	position	on	the	track	bar
to	indicate	that	there	is	animation	data	associated	with	the	currently	selected	joint.

Note
If	you	make	a	mistake,	you	can	click	on	the	Delete	Key	button	which	will	reset	the
rotation	or	position	of	the	currently	selected	bone.	The	square	defining	the	frame	on
the	track	bar	will	also	disappear.

Note
If	you	forget	to	set	the	key	when	you	have	rotated	a	bone,	your	changes	will	be	lost
when	you	move	the	track	bar	or	deselect	the	bone.

You	can	reset	all	of	the	bones	by	choosing	the	zombie	skeleton	selection	set	from	the
drop-down	at	the	top	of	the	interface,	and	then	clicking	on	Delete	Key.

The	Biped	skeleton	is	set	up	with	Inverse	Kinematics	(IK),	so	rather	than	having	to
adjust	each	of	the	bones	down	through	the	hierarchy,	you	can	select	the	hands	and
feet	and	move	them	to	a	precise	position.

Creating	a	test	pose	is	much	quicker	and	easier	using	this	method.	It	is	also	useful	for
creating	interactions,	such	as	foot	contacts.

In	some	situations,	you	will	also	want	to	use	Forward	Kinematics	(FK),	which	is
the	strictly	hierarchical	positioning	of	joints.	Parent	joints,	such	as	the	clavicle,	upper
arm,	and	forearm	are	rotated	in	order	to	position	the	hand.

With	Biped,	you	can	use	a	mixture	of	IK	and	FK	to	create	your	test	pose:

Make	sure	not	to	forget	the	extra	bones	we	added	for	the	ponytail	and	jaw
The	bones	for	at	least	one	of	the	hands	should	also	be	posed

When	all	of	the	bones	have	been	posed	and	keyframed,	we	will	store	the	test	pose	as
we	did	with	the	default	pose:

7.	 Copy	the	pose	and	rename	it	in	the	same	way	you	did	for	the	default	pose.	Name	it
testPose01.

The	pose	has	now	been	saved	to	the	Collection,	and	can	be	applied	to	the	character
whenever	it	is	needed.

8.	 Unhide	the	character	by	right-clicking	on	and	selecting	Unhide	By	Name	from	the
Display	menu.

9.	 Choose	the	female_zombie	object	from	the	list.
10.	 If	X-ray	mode	is	active,	switch	it	off	by	pressing	Alt	+	X.
11.	 Look	closely	at	the	joints—shoulders,	elbows,	hips,	and	knees—to	make	sure	that	the

surface	of	the	mesh	deforms	smoothly.

Hiding	the	Biped	bones	will	make	it	easier	to	see	the	deformation	of	the	model:

There	should	be	some	smooth	deformation	in	these	areas,	probably	a	few	problems	too.
We	can	correct	these	when	we	adjust	the	envelopes	in	the	next	step.

Making	adjustments	to	the	Skin	modifier
The	Skin	modifier	does	a	reasonably	good	job	at	setting	up	smooth	deformations	between
most	of	the	bones.	There	are	some	areas	such	as	the	head,	torso,	and	feet,	which	need
further	adjustment.

When	initiated,	the	Skin	modifier	creates	envelopes	for	each	of	the	bones	added	to	the	list.
These	envelopes	can	be	adjusted	by	changing	their	size	and	position	relative	to	the	bones.
We	can	also	adjust	the	influence	on	individual	vertices.

We	will	start	by	taking	a	look	at	the	envelope	adjustment.

Adjusting	envelopes

In	the	Skin	modifier,	the	Envelope	is	a	grouping	of	vertices	influenced	by	a	specific	bone.
Adjustments	to	a	character’s	skinning	should	usually	start	with	these.	Envelopes	enable
broad	changes	to	be	quickly	made	to	the	skin	by	adjusting	a	gizmo	capsule	rather	than
adjusting	vertices	one	at	a	time:

1.	 Under	the	Modify	panel,	click	on	the	+	symbol	next	to	the	Skin	modifier	to	expand

its	sub-object	levels.
2.	 Select	Envelope.
3.	 In	the	Bones	list,	lower	down	in	the	panel	and	select	zombie_f_Spine2.

The	bone’s	envelope	gizmos	will	appear	and	a	color	gradient	will	be	projected	on	top
of	the	character’s	texture:

The	selected	bone’s	influence	is	displayed	in	color	temperature,	with	the	strongest
influence	displayed	in	red,	the	least	influence	is	displayed	in	blue.

The	two	capsule	shaped	gizmos	define	this	influence	on	the	vertices.	The	distance
between	these	two	capsules	defines	how	smooth	the	deformation	is.

With	the	default	settings,	the	character’s	upper	arms	appear	to	be	squeezed	and
pushed	too	far	from	the	torso.

4.	 Activate	the	Select	and	Move	tool	and	drag	on	one	of	the	control	points	of	the	larger
capsule.

The	gizmo	will	rescale	as	the	control	point	is	dragged,	resulting	in	a	change	in	the
vertices	which	are	influenced.	You	will	see	the	gradient	change	to	reflect	this.

The	rings	that	define	the	size	of	the	envelopes	are	called	cross	sections.	There	are
two	of	these	for	each	outer	and	inner	envelope.

5.	 Reduce	the	size	of	the	outer	envelope	to	include	only	the	vertices	in	the	upper	part	of
the	torso:

Dragging	the	control	points	of	the	cross	sections	only	allows	the	rescaling	of
envelope	on	one	axis.	The	envelopes	can	also	be	shortened	and	lengthened	by
moving	the	two	control	points	connected	by	the	yellow	line	in	the	center	of	the
envelope.

These	control	points	can	also	be	moved	around	to	change	the	actual	position	of	the
envelope	and	therefore	the	influence	of	the	bone	can	be	offset	from	the	bone’s	actual
position.

Select	the	core	control	points	one	at	a	time,	and	move	them	in	toward	the	center	of
the	character	until	the	shoulders	of	the	character	are	no	longer	contained	within	the
inner	envelope:

The	character’s	arms	should	appear	fuller	and	more	cylindrical,	as	they	are	receiving
less	influence	from	the	upper	spine	bone.

6.	 Select	other	spine,	arm,	and	leg	bones	from	the	list	and	adjust	the	envelopes	to
include	just	the	vertices	that	you	wish	the	selected	bone	to	influence.

Sometimes	the	character	model’s	form	is	complex	enough	to	demand	a	closer	level	of
adjustment.	We	will	demonstrate	this	with	the	head.

Adjusting	influence	on	the	head	vertices

The	vertices	in	the	head	are	currently	influenced	by	the	head,	neck,	jaw,	and	ponytail
bones,	so	the	results	will	be	pretty	messy.	Most	of	the	vertices	in	the	head	should	not
deform,	so	this	area	requires	a	different	technique	to	skin	successfully:

1.	 Maximize	the	Left	viewport.
2.	 Return	the	Track	Bar	to	Frame	0.
3.	 Select	the	zombie_f_Head	bone	from	the	list	in	the	Modify	panel:

The	head	envelope	is	displayed	as	a	capsule	gizmo	arranged	horizontally	from	front
to	back.	The	inner	envelope	currently	includes	most	of	the	upper	face.	The	outer
envelope	includes	the	whole	head	and	some	of	the	upper	torso.

We	will	start	by	reorienting	and	rescaling	the	envelope	to	better	fit	the	head	and
reduce	the	influence	on	the	vertices	of	the	torso.

4.	 Select	one	of	the	core	control	points	within	the	head	envelope	and	position	it	at	the
top	of	the	ear	and	level	with	the	eye.

5.	 Select	the	other	core	control	point	and	move	it	below	the	ear	and	level	with	the	lower
lip.

6.	 Drag	the	inner	envelope	control	points	to	rescale	the	envelope	to	include	all	of	the
vertices	of	the	head.

Make	sure	to	include	the	nose,	but	do	not	try	to	include	the	ponytail	or	chin	as	these
will	fall	under	the	influence	of	other	bones.

7.	 Rescale	the	head’s	outer	envelope	by	dragging	the	control	points.

The	outer	envelope	should	be	only	slightly	bigger	than	the	inner	envelope	resulting	in
a	very	steep	blend	between	the	bone	influences:

At	this	point,	we	removed	the	head’s	influence	from	the	adjacent	areas	of	the
character.	We	need	to	do	some	finer	work	with	the	jaw	to	get	it	to	influence	the	right
vertices.

8.	 Select	zombie_f_Jaw	from	the	Bones	list	in	the	Modify	panel.
9.	 Use	the	control	points	to	rescale	the	jaw’s	envelope	to	influence	only	the	vertices	in

the	lower	jaw	area.

This	time,	we	want	to	leave	some	space	between	the	outer	and	inner	envelopes	so
that	the	deformation	is	smooth.

10.	 Maximize	the	Perspective	viewport	and	slide	the	track	bar	to	frame	30	to	view	the
results:

The	deformation	in	the	cheeks	is	smooth	as	we	would	expect,	but	the	jaw	bone’s	envelope
is	influencing	too	many	of	the	vertices	in	the	upper	lip	causing	it	to	be	stretched.

Beneath	the	chin,	not	enough	vertices	are	being	influenced	as	the	envelope	falls	off	too
sharply.	We	can	fix	these	problems	by	painting	the	skin	weights	manually.

Painting	skin	weights	for	the	jaw	bone

There	are	certain	situations	for	a	character	where	we	have	a	mixture	of	hard	(rigid)	and
soft	(deformable)	surfaces	exceed	what	we	can	achieve	with	skin	envelopes	on	their	own.
The	Paint	Weights	tool	in	Max	allows	us	to	paint	bone	influence	directly	onto	the	mesh:

1.	 With	zombie_f_Jaw	still	selected	in	the	Bones	list,	scroll	down	to	the	Weight
Properties	group	in	the	Modify	panel.

2.	 Click	on	the	Painter	Options	button:

The	Painter	Options	window	will	appear	over	the	main	interface.	This	is	where	we
will	set	the	size	and	strength	of	the	weighting	brush.

3.	 In	the	viewport,	make	sure	you	have	a	clear	view	of	the	character’s	jaw	area.
4.	 Back	in	the	Modify	panel,	uncheck	the	Paint	Blend	Weights	checkbox.
5.	 Click	on	the	Paint	Weights	button.

A	gizmo	will	appear	when	you	move	the	cursor	over	the	character	mesh	showing	the
size	of	the	brush.

6.	 In	the	Painter	Options	window,	set	the	Max.	Size	to	0.03m.

The	painting	gizmo	will	change	size	to	reflect	this.

7.	 Set	the	Max.	Strength	to	-1.0.
8.	 Paint	over	the	character’s	top	lip	to	remove	the	influence	from	the	jaw	bone.

The	color	will	disappear	from	the	mesh.

9.	 Set	the	Max.	Strength	to	0.25.
10.	 Paint	the	area	under	the	chin	to	add	influence	from	the	jaw	bone:

11.	 Continue	painting	the	skin	weights	for	the	back	of	the	neck,	hands,	feet,	and	any
other	areas	where	the	deformation	of	the	mesh	needs	a	tighter	definition.

The	Paint	Weights	tool	will	allow	you	to	fine	tune	each	bone’s	influence	on	the	vertices
of	the	mesh.	When	the	skinning	has	been	completed,	we	can	export	the	character	for	use
in	Unity.

Exporting	the	rigged	character
The	final	step	to	complete	in	3ds	Max	is	the	character	export.	We	will	use	FBX	format,
which	supports	skeletal	animation	and	is	recognized	by	a	broad	range	of	software
applications	including	Unity:

1.	 Uncheck	the	Hide	Attached	Nodes	checkbox	to	unhide	the	Biped.
2.	 Make	sure	to	save	your	max	scene	by	clicking	on	the	3ds	Max	icon	in	the	top-left

corner	of	the	interface	and	choosing	Save	As...
3.	 Specify	a	filename	and	location,	and	then	click	on	Save.
4.	 Select	the	skeleton	and	the	character	mesh	and	export	it.
5.	 Click	on	the	Max	icon	and	navigate	to	Export	|	Export	Selected.

In	the	FBX	Export	window,	which	appears,	there	are	a	few	settings	that	we	need	to
make	sure	are	enabled.

6.	 In	the	Geometry	group,	check	the	boxes	next	to	Smoothing	Groups	and
Triangulate:

7.	 We	can	leave	the	Animation	box	unchecked,	as	we	no	longer	need	our	test	pose.	The
rest	of	the	settings	can	be	left	with	their	default	values.

Note
In	the	Embed	Media	group,	checking	the	Embed	Media	checkbox	is	optional,	as
importing	an	FBX	file	with	embedded	textures	will	create	a	textures	subfolder	within
the	folder	that	the	model	is	imported	to.	You	can	keep	your	project	more	organized
by	creating	your	own	Textures	folder	directly	within	the	Assets	folder	in	Unity.

8.	 Click	on	to	expand	the	Advanced	Options	rollout.
9.	 Click	on	to	expand	Units.

Our	model	has	been	built	to	scale,	but	we	need	to	make	sure	that	it	is	not	rescaled	in
the	FBX	settings.

10.	 Uncheck	the	Automatic	checkbox.

11.	 From	the	Scene	units	converted	to	drop-down	list,	select	Meters.	This	is	the	unit	of
measurement	used	in	Unity:

12.	 Save	the	FBX	file	as	zombie_female.FBX.

The	character	can	now	be	imported	into	Unity	as	detailed	in	Chapter	1,	The	Zombie
Attacks!

The	next	section	details	the	process	of	rigging	a	character	model	in	Maya.

Rigging	in	Maya
Like	3ds	Max,	Maya	is	a	major	software	application	used	in	game	asset	creation.	One	of
its	major	advantages	is	that	unlike	3ds	Max,	it	is	compatible	with	Mac	operating	systems.
Its	dependence	on	key	combinations	rather	than	point	and	click	icons	arguably	makes	the
modeling	and	rigging	process	faster.

Though	Maya	has	fewer	options	for	rigging	than	3ds	Max,	its	rigging	and	animation
toolset	is	known	for	being	easy	to	access	and	use.

Setting	up	Maya	to	rig	our	character	model
Before	we	import	the	model	and	start	adding	the	joints,	we	will	spend	a	little	time	setting
up	Maya	to	ensure	our	rigged	model	is	compatible	with	Unity.

These	next	steps	are	optional,	but	will	make	for	a	smoother	workflow	and	more
predictable	result,	particularly	if	you	are	working	with	a	sourced	model	that	you	did	not
create	yourself.

Setting	system	units	to	meters
Unity	uses	meters	as	its	default	unit,	so	it	makes	sense	to	adopt	this	unit	for	our	rigging
work:

1.	 Start	Maya.
2.	 Open	the	Preferences	tab	by	navigating	to	Window	|	Settings/Preferences	|

Preferences.
3.	 When	the	window	pops	up,	click	on	Settings	in	the	Categories	column	on	the	left

side	of	the	window.
4.	 In	the	Working	Units	group,	change	Linear	units	to	Meters.
5.	 Click	on	the	Save	button	to	store	the	settings.

Changing	the	display	grid	size
Typically,	the	default	grid	display	will	not	be	a	good	size	for	work	in	meters,	but	this	can
be	easily	adjusted:

1.	 In	the	main	toolbar,	click	on	the	box	next	to	Display	–	Grid	to	open	the	Grid
Options	window.

2.	 In	the	Gridlines	Every	field,	type	0.1.

This	will	divide	every	meter	with	10	gridlines,	spaced	10	centimeters	apart.

Importing	the	model
Now	that	we	have	got	Maya	set	up,	we	can	import	out	model,	which	is	formatted	as	a
Wavefront	OBJ	file.	This	is	one	of	the	more	common	3D	model	formats:

1.	 Download	and	unzip	the	project	files	from	the	Packt	website	if	you	have	not	already
done	so.

2.	 Import	the	zombie	character	model	into	the	new	scene	by	navigating	to	File	|
Import….

3.	 In	the	Import	window,	navigate	to	the	project	files.
4.	 Double-click	on	the	Rigging	Assets	folder	and	then	the	Models	subfolder.
5.	 The	female	zombie	model	and	texture	are	in	the	zombie_f	folder.
6.	 Open	the	folder	and	select	zombie_f.obj.
7.	 Click	on	the	Import	button.

The	character	should	appear	in	the	main	viewport.	The	model	will	appear	face	down,

and	by	default,	the	Wireframe	viewport	display	is	enabled.

8.	 Select	the	character	mesh	by	clicking	on	it	in	the	viewport.
9.	 In	Attribute	Editor	on	the	right	side	of	the	Maya	interface,	select	the	zombie_f:

zombie_f	node.
10.	 In	the	first	Rotate	field,	click	on	and	drag	to	select	the	value.
11.	 Enter	the	value	90	and	tap	Enter.

The	character	should	now	be	rotated	correctly	in	the	viewport.

12.	 Activate	the	Smooth	Shade	All	and	Textured	viewport	display	buttons	to	make	sure
that	the	textures	are	visible	on	the	character	model.

The	character	should	now	appear	textured	within	the	viewport:

Adjusting	the	model	scale
In	terms	of	real-world	scale,	we	can	see	that	the	zombie	character	model	is	not	the	right
size	for	a	typical	human.

Maya	imported	the	obj	file	at	a	half	scale	making	the	zombie	character	less	than	one
meter	tall!	This	is	something	that	you	need	to	watch	out	for	when	working	with	sourced
models,	as	different	3D	applications	read	model	scale	differently.

It	is	best	to	fix	this	issue	now,	before	we	start	creating	the	joint	hierarchy.	We	can	also	fix
this	issue	within	Unity,	by	adjusting	the	Scale	Factor	option	within	the	Model	Import
settings	as	demonstrated	in	Chapter	1,	The	Zombie	Attacks!:

1.	 Click	on	the	Select	Tool	(or	press	the	Q	key).
2.	 Select	the	zombie	character’s	mesh	in	the	viewport.
3.	 Switch	to	the	Scale	Tool	(or	press	the	R	key).
4.	 In	the	Channel	Box	list	on	the	right	side	of	the	Maya	interface,	locate	the	Scale

fields.
5.	 Type	2.54	into	the	Scale	X,	Scale	Y,	and	Scale	Z	fields	to	scale	the	model	uniformly.

The	grid	lines	should	show	that	the	zombie	character	is	now	around	1.75	meters	tall,
which	is	a	reasonable	height	for	a	human	female.

6.	 Freeze	the	transform	data	to	store	the	new	scale	by	navigating	to	Modify	|	Freeze
Transformations.

In	the	next	step,	we	will	optimize	the	view	to	make	the	creation	and	adjustment	of	the	rig
easier.

Adjusting	the	viewport	display	and	toolset	for	joint	creation
We	will	switch	to	an	orthographic	view	to	make	sure	our	joints	are	positioned	accurately
within	the	character	model:

1.	 Tap	space	to	activate	the	Quad	view.
2.	 Select	the	Front	viewport	by	right-clicking	within	it.
3.	 Tap	space	once	more	to	maximize	the	front	view.
4.	 Use	the	navigations	hotkeys	to	zoom	in	on	the	upper	half	of	the	character’s	body.	Use
Alt	+	right-click	onto	zoom,	Alt	+	middle-click	to	pan.

5.	 Switch	back	to	the	Wireframe	viewport	display	by	clicking	on	the	button	at	the	top
of	the	viewport	or	by	tapping	4	on	the	keyboard.

6.	 Choose	the	Front	viewport,	and	zoom	out	far	enough	that	you	can	see	the	torso	and
head	of	the	character.

7.	 If	it	is	not	already	active,	switch	to	the	Animation	menu	set,	by	clicking	on	the	small
arrow	within	the	rectangular	gray	box	in	the	top	left	of	the	interface:

Now,	it	is	time	to	start	creating	the	joint	hierarchy.

Creating	joints	for	the	back,	neck,	and	head
In	Maya,	the	vertices	that	make	up	a	model	are	influenced	by	joints,	rather	than	bones	as
in	3ds	Max.	Actually,	this	distinction	doesn’t	make	a	lot	of	difference	in	the	rigging	and
animation	of	a	character.

The	zombie’s	skeleton	will	be	built	using	the	joint	tool:

1.	 Enable	the	Animation	toolset	by	clicking	on	the	tab	near	the	top	middle	of	the
interface.

2.	 Click	on	the	Joint	Tool	icon	from	the	tool	shelf	near	the	top	of	the	interface.
3.	 Click	on	the	model	at	the	pelvis	to	create	the	first	joint.
4.	 Click	it	to	add	three	more	joints	for	the	spine,	one	for	the	neck	and	the	other	one	for

the	head.
5.	 When	you	are	finished,	exit	the	joint	tool	by	clicking	on	the	Select	tool	from	the	main

toolbar	on	the	right	of	the	interface.

By	default,	the	joints	are	a	little	too	small	to	be	seen	clearly	in	the	viewport.

6.	 Navigate	to	Display	|	Animation	|	Joint	Size.
7.	 In	the	Joint	Display	Scale	window,	change	the	scale	from	1.00	to	2.00.
8.	 Tap	Enter	to	save	the	change	before	closing	the	window.

You	will	get	the	following	output:

Next,	we	will	implement	our	joint	naming	conventions.

Renaming	and	repositioning	the	joints
By	default,	Maya	names	each	joint	with	a	number	according	to	the	order	in	which	it	was
created.	Giving	them	more	specific	names	will	make	the	resulting	skeleton	much	more
user	friendly:

1.	 Click	on	each	joint	in	turn,	using	Channel	Box	or	Attribute	Editor	to	rename	it:

Joint1:	zombie_f_root
Joint2:	zombie_f_spine
Joint3:	zombie_f_spine1
Joint4:	zombie_f_spine2
Joint5:	zombie_f_neck
Joint6:	zombie_f_head

2.	 Switch	to	the	Right	viewport.
3.	 Activate	the	Move	tool.
4.	 Drag	each	of	the	joints	into	position	to	follow	the	curve	of	the	character’s	spine,

starting	with	zombie_f_root.
5.	 You	can	cycle	down	through	the	hierarchy	using	the	down	cursor	key:

Creating	the	leg	joints
Usually	while	rigging	a	symmetrical	character	like	this,	we	can	use	the	symmetry	tools	to
copy	joint	chains	from	one	side	of	the	character	to	the	other.

It	makes	sense	to	finish	naming	and	positioning	each	joint	before	you	copy	the	chain:

1.	 In	the	Right	viewport,	activate	the	Joint	Tool	and	create	a	joint	for	the	upper	leg.
2.	 Create	further	joints	at	the	knee,	ankle,	ball	of	foot,	and	toe.
3.	 Rename	the	joints:

Joint1:	zombie_f_thigh_L
Joint2:	zombie_f_calf_L
Joint3:	zombie_f_foot_L
Joint4:	zombie_f_toe_L

4.	 In	the	Front	viewport,	move	the	joints	to	fit	within	the	character	mesh:

Creating	the	arm	joints
We	will	start	the	arm	the	same	way	that	we	created	the	joint	chains	for	the	leg.	Because
there	are	so	many	more	joints	in	the	hand,	we	will	switch	to	using	some	different
techniques	to	speed	up	the	process:

1.	 Switch	to	the	Top	view.
2.	 Reactivate	the	Joint	tool.
3.	 Create	a	single	joint	chain	from	the	shoulder	to	the	end	of	the	index	finger,	clicking

on	to	create	a	joint	at	each	juncture.
4.	 Rename	the	joints:

Joint1:	zombie_f_arm_L
Joint2:	zombie_f_foreArm_L
Joint3:	zombie_f_hand_L
Joint4:	zombie_f_index_L
Joint5:	zombie_f_index1_L
Joint6:	zombie_f_index2_L
Joint7:	zombie_f_index_NUB

5.	 Center	the	Arm	joint	within	the	shoulder.
6.	 Position	the	foreArm	joint	a	little	further	back	to	make	sure	the	elbow	bends

correctly.
7.	 Switch	between	the	Front,	Top,	Right,	and	Perspective	viewports	to	arrange	the

remaining	joints	to	fit	the	character	mesh:

Getting	the	finger	joints	to	line	up	correctly	can	be	a	little	tricky.	It	helps	to	orbit	around
the	hand	in	the	perspective	view.

Cloning	the	finger	joints
For	the	remaining	thumb	and	finger	joints,	you	can	clone	those	that	you	initially	created
for	the	index	finger:

To	do	this:

1.	 Switch	to	and	maximize	the	Perspective	viewport.
2.	 Use	the	keyboard	combination	Alt	+	click	to	navigate	the	view	until	you	are	looking

down	at	the	hand.
3.	 Activate	the	Smooth	shade	all,	Textured,	and	XRay	joints	viewport	displays	by

clicking	on	the	small	buttons	at	the	top	of	the	viewport.

This	should	make	it	easier	to	see	the	joints	within	the	mesh.

4.	 Select	the	joint	at	the	root	of	the	index	finger:	zombie_f_index.
5.	 Use	the	keyboard	combination	Ctrl	+	D	to	duplicate	the	joints.

The	whole	chain	will	be	duplicated	and	become	selected.

6.	 Use	the	Move	tool	to	drag	the	root	of	the	new	finger	chain	so	that	it	fits	within	the
middle	finger.

7.	 Rename	the	new	joints	and	fine	tune	their	positions	before	you	do	the	same	for	the
ring	finger,	little	finger,	and	the	thumb.

Positioning	these	bones	one	at	a	time	will	make	this	process	easier.	The	result	should	look
like	this:

Mirroring	joints	for	the	leg	and	arm	chains
The	left	side	of	the	zombie	character’s	skeleton	has	been	completed—it	is	a	simple	task	to
duplicate	the	limb	joints	for	the	right	side:

1.	 Switch	to	the	Front	viewport	and	select	zombie_f_thigh_L.

This	will	select	the	whole	chain	of	joints	for	the	left	leg.

2.	 From	the	menu	at	the	top	of	the	interface,	click	on	the	Skeleton	tab	and	then	the
options	box	next	to	Mirror	Joint.

3.	 In	the	Mirror	Joint	Options	window	that	appears,	set	the	Mirror	across	axis	to	YZ.
4.	 In	the	Replacement	names	for	duplicated	joints	group,	enter	L	in	the	Search	for:

field	and	enter	R	in	the	Replace	with:	field:

5.	 Click	Apply.

This	will	recreate	the	joint	chain	on	the	right	side	of	the	character.

Maya	will	replace	the	L	(for	left)	markers	with	R	(for	right)	in	the	joint	names.
However,	it	is	always	a	good	idea	to	go	through	and	check	each	joint	to	make	sure
that	the	names	are	correct.

6.	 Use	the	same	process	to	mirror	the	joints	of	the	left	arm.

Next,	we	will	attach	the	limb	joint	chains	to	the	spine	chain.

Connecting	the	arm	and	leg	chains
Keeping	the	limb	chains	separate	from	the	main	body	joints	is	a	good	idea,	while	you	are

tweaking	the	positions	within	the	character	mesh.

Now,	it	is	time	to	connect	them:

1.	 Activate	the	Select	Tool	by	pressing	the	Q	key.
2.	 Click	on	zombie_f_thigh_L.
3.	 Shift	+	click	on	zombie_f_root	to	add	it	to	the	selection.
4.	 From	the	main	toolbar,	click	on	Skeleton	and	then	select	the	options	box	next	to

Connect	Joints.
5.	 In	the	Connect	Joint	Options	window	that	pops	up,	click	on	the	Parent	Joint	radio

button.

The	joints	will	be	connected.

6.	 Repeat	this	operation	for	the	right	leg	chain	and	both	arm	chains.

It	is	usually	a	good	idea	to	wait	until	the	end	to	add	any	unique	joints.	In	this	case,	the
character	has	a	ponytail	which	will	be	animated.	We	still	need	to	add	a	joint	for	the	lower
jaw.

Creating	the	ponytail	and	jaw	joints
These	additional	joints	will	be	used	to	add	a	little	character	to	the	animation	sequences
later	in	the	book.	They	will	be	set	up	quite	simply:

1.	 Switch	to	the	Right	viewport.
2.	 Activate	the	Joint	Tool	and	click	on	zombie_f_head	(making	it	the	parent).
3.	 Add	a	joint	at	the	portion	of	the	mesh	where	the	ponytail	is	connected	to	the	back	of

the	head.
4.	 Click	within	the	geometry	of	the	ponytail	to	create	three	additional	joints.	Try	to

position	a	joint	where	the	hair	starts	to	turn	down,	another	in	the	widest	part	of	the
tail	and	the	last	where	it	terminates.

5.	 Click	on	the	Select	Tool	to	exit	Joint	Tool.
6.	 To	create	the	jaw,	activate	Joint	Tool.
7.	 Click	on	zombie_f_head.
8.	 Create	a	joint,	just	beneath	the	character’s	ear.
9.	 Click	on	near	the	character’s	chin	to	create	the	second	and	last	jaw	joint.
10.	 Rename	the	additional	joints	using	Channel	Box	or	Attribute	Editor,	being	careful

to	follow	the	character’s	naming	conventions.

This	will	result	in	a	skeleton	comprised	of	69	joints,	quite	a	few	more	than	the	minimum
required	by	Mecanim:

Aligning	joint	transforms
You	may	note	that	when	you	activate	Rotate	Tool,	the	rotation	axis	for	some	of	the	joints
is	pointing	in	the	wrong	direction—this	will	cause	a	few	problems	when	animating,	or
even	testing	the	skin	binding	within	Maya:

1.	 Select	zombie_f_root.
2.	 From	the	menu	bar,	click	on	Skeleton	and	then	the	options	box	next	to	Orient	Joint.

The	Orient	Joint	Options	window	should	appear.

3.	 Check	the	boxes	for	Orient	Joint	to	World	and	Orient	children	of	selected	joints.
4.	 Click	on	Apply:

All	joints	should	now	face	forward.	The	actual	position	of	the	joint	chains	should	remain
the	same.

Creating	a	test	pose
Now	that	we	have	a	symmetrical	skeleton,	we	will	go	through	the	binding	process	and	test
this	with	a	simple	pose:

1.	 Hide	the	character	mesh	by	selecting	it	in	the	viewport	and	navigating	to	Display	|
Hide	|	Hide	Selection	from	the	menu	bar.

2.	 Activate	the	Auto	Keyframe	toggle,	by	clicking	on	the	key	button	in	the	lower-right
corner	of	the	Maya	interface.	It	will	turn	red	when	enabled.

Note
If	the	Auto	Keyframe	toggle	is	not	visible	in	the	Maya	interface,	it	can	be	made
visible	in	the	menu	bar.	Navigate	to	Display	|	UI	Elements	and	check	the	box	next	to
Range	Slider.

3.	 Make	sure	Time	Slider	is	located	at	frame	1.
4.	 Select	zombie_f_root	in	the	viewport.
5.	 Tap	S	on	the	keyboard	to	create	the	first	keyframe.
6.	 Drag	the	Time	Slider	to	frame	10.
7.	 Rotate	zombie_f_root	a	few	degrees	to	the	right	or	left.

When	you	return	the	Time	Slider	to	its	default	position	at	frame	1,	the	joint	should
return	to	its	original	rotation.

8.	 Continue	this	process	with	the	rest	of	the	joints	to	create	a	simple	test	pose:

You	can	use	the	down	cursor	key	to	navigate	down	through	the	hierarchy	of	joints.	This
comes	in	particularly	useful	when	there	is	a	high	density	of	joints	like	the	fingers	where
selecting	individual	bones	one	at	a	time	can	be	problematic.

Try	not	to	make	the	pose	too	extreme.	The	binding	only	needs	to	be	good	enough	to
support	the	typical	poses	that	your	character	will	be	in.	If	you	set	the	bar	too	high	by
creating	poses	which	are	too	gymnastic,	you	will	have	a	hard	time	adjusting	the	skin
weights	to	deform	the	character’s	topology	in	a	realistic	way.

Binding	the	character	mesh	to	the	skeleton
The	binding	process	involves	associating	the	character	mesh	with	the	hierarchy	of	joints,
which	make	up	the	skeleton.

For	organic-type	characters,	the	smooth	bind	method	is	usually	the	best	choice.	Using	a
smooth	bind	each	vertex	in	the	character	mesh	can	receive	influence	from	more	than	one
joint.

Typically,	vertices	near	a	joint	will	receive	influence	from	this	joint	and	the	joint’s	parent
in	the	hierarchy,	creating	the	appearance	of	smooth	bending	in	an	elbow,	shoulder,	or
knee:

1.	 Unhide	the	character	mesh	by	navigating	to	Display	|	Show	|	All	in	the	menu	bar.
2.	 Make	sure	Time	Slider	is	located	at	frame	1.
3.	 Open	the	Outliner	tab	and	click	on	zombie_f_root	to	select	it.
4.	 Hold	Shift	and	click	on	the	character	mesh	to	add	it	to	the	selection.
5.	 From	the	menu	bar	click	on	Skin.
6.	 Select	Bind	Skin	and	then	click	on	the	options	box	next	to	Smooth	Bind.
7.	 In	the	Smooth	Bind	Options	window	which	pops	up,	change	the	Max	Influences	to

4	(the	maximum	allowed	by	Unity).
8.	 Click	on	Apply.

Now,	when	you	drag	the	Time	Slider	to	the	test	pose	on	frame	10,	the	character	mesh	will
deform	to	follow	the	joints:

The	default	settings	are	a	good	start,	but	you	will	usually	need	to	fine	tune	these	to	get	a
smooth	and	lifelike	result.

Maya	will	try	to	blend	between	the	different	joint	influences,	sometimes	it	will	get	it
wrong.	Quite	often	if	the	arms	are	close	to	the	torso,	the	arm	joints	may	influence	the
vertices	in	the	torso	or	vice	versa,	as	is	the	case	here.

With	the	head	of	the	character,	sometimes	too	much	influence	is	drawn	from	the	neck
bone,	causing	the	lower	part	of	the	head	to	become	distorted.	This	can	be	corrected	by
painting	the	skin	weights	to	reduce	the	influence	from	the	neck	joint.

Painting	skin	weights
To	adjust	the	skin	weights:

1.	 Select	the	character	mesh.
2.	 Choose	the	Wireframe	On	Shaded	and	Smooth	Shade	All	viewport	display	icons

from	the	top	of	the	viewport.
3.	 From	the	menu	bar,	click	on	Skin	and	then	select	Edit	Smooth	Skin.	Click	on	the

options	box	next	to	Paint	Skin	Weights	Tool.
4.	 From	the	Tool	Settings	dialog	that	appears,	select	the	joint	whose	influence	you	want

to	edit	with	the	paintbrush	cursor	that	appears	in	the	viewport.
5.	 Begin	painting	the	mesh	to	increase	the	joint’s	influence.

Tip
You	can	change	the	size	and	softness	of	the	brush	and	adjust	the	value	as	necessary	in
the	Tool	Settings	window.

As	you	paint	the	weight	for	each	joint,	the	mesh	will	appear	white	where	there	is	the
most	influence	and	black	where	there	is	no	influence:

In	this	case,	too	much	of	the	character’s	mesh	is	being	influenced	by	the	arm.

6.	 We	can	fix	this	by	lowering	the	brush	Value	field	in	the	Skin	Weights	window	to	0,
by	dragging	it	to	the	left,	and	then	painting	over	the	affected	area.

7.	 We	will	also	need	to	repaint	the	weights	for	the	spine	joints	so	that	they	exert	more
influence	over	this	area.	Set	the	Value	field	to	1.0,	and	repaint	the	areas	of	the	torso
for	each	spine	joint:

8.	 Repeat	this	process	for	the	rest	of	the	character,	working	from	the	root	joint	down
through	the	hierarchy	and	defining	the	influence	from	the	parent	joints	before	the
child	joints.

9.	 Terminal	joints	such	as	the	end	ponytail	and	jaw	joints,	and	the	last	finger	joints
should	not	have	any	influence	on	the	mesh,	so	assign	all	of	the	weight	for	these	areas
to	the	preceding	joint.

You	may	find	it	necessary	to	adjust	the	test	pose	in	order	to	test	the	mesh	deformation	at
all	of	the	joints.

When	the	skin	weight	adjustments	are	complete,	the	last	step	is	to	export	the	skinned
character	in	FBX	format.

Exporting	for	unity
Once	we	made	sure	to	save	our	progress,	we	will	clean	up	the	scene	a	little	before
exporting	for	Unity:

1.	 First,	we	will	delete	the	history	by	navigating	to	Edit	|	Delete	By	Type	|	History.

This	will	make	sure	that	no	unwanted	data	is	exported	that	may	bloat	our	FBX	file
and	cause	problems	in	Unity.

2.	 Next,	we	will	show	everything	within	the	viewport	by	navigating	to	Display	|	Show	|
All.

3.	 Select	the	root	joint	zombie_f_root.
4.	 Activate	Outliner	by	navigating	to	Window	|	Outliner.
5.	 When	the	Outliner	window	opens,	Shift	+	click	on	the	+	symbol	next	to

zombie_f_root	in	the	list.

This	will	expand	the	joint	hierarchy,	allowing	you	to	see	all	of	the	joints.

6.	 Add	to	the	selection	by	holding	Ctrl	(Cmd	on	a	Mac)	and	clicking	on	each	of	the
joints	in	the	Outliner	window.	Ignore	all	terminal	joints	such	as	the	last	numbered
joint	from	each	finger,	the	ponytail,	jaw,	and	the	toe	joints.

These	joints	have	no	actual	influence	on	the	character	mesh,	so	they	are	redundant
and	are	not	needed	in	Unity.

7.	 When	the	remaining	joints	have	been	selected,	add	the	character	mesh	to	the
selection	before	closing	the	Outliner.

8.	 Export	the	selection	by	navigating	to	File	|	Export	Selection.
9.	 When	the	Export	Selection	window	opens,	make	sure	that	FBX	export	is	defined	in

the	Files	of	type	drop-down	list	at	the	bottom	of	the	window.
10.	 In	the	Options	panel	on	the	right	of	the	window,	expand	the	File	Type	Specific

Options	list.
11.	 In	the	Units	rollout,	make	sure	that	File	units	converted	to	is	set	to	Centimeters	and

the	Automatic	checkbox	is	unchecked:

12.	 Leave	the	remaining	parameters	at	their	default	settings.
13.	 Designate	a	save	location	by	navigating	to	an	appropriate	folder	in	the	main	area	of

the	window.

Note
It	is	not	recommended	to	save	FBX	files	directly	to	your	Unity	project.	It	is	usually

safer	to	create	a	folder	somewhere	on	your	hard	drive,	where	you	can	output	your
FBX	files	before	dragging	them	into	Unity	to	import	them.

14.	 Type	zombie_f	into	the	File	name	field	near	the	bottom	of	the	interface.
15.	 Click	on	the	Export	Selection	button.

The	skinned	zombie_f	character	has	been	exported,	and	it	can	be	brought	into	Unity	as
demonstrated	in	Chapter	1,	The	Zombie	Attacks!.

Summary
In	this	chapter,	we	explored	character	rigging	techniques	in	3ds	Max	and	Maya.

Starting	with	the	creation	of	skeletons	and	the	arrangement	of	bones	(or	joints)	to	fit	a
modeled	character	mesh,	we	explored	the	crucial	relationship	between	the	character	and
its	skeleton.

In	3ds	Max,	we	adapted	a	Biped	rig	to	fit	our	female	zombie	character	by	scaling	and
rotating	the	default	joints	to	fit	the	character’s	initial	pose.	We	then	used	the	skin	modifier
to	connect	the	rig	to	the	character	model,	fine	tuning	the	envelope	settings	to	correct	the
range	of	influence	from	each	bone	until	the	character	deformed	smoothly	in	the	test	pose
that	we	created.

Working	in	Maya,	we	created	a	full	hierarchy	of	joints	from	scratch,	by	assembling
individual	chains	of	joints	for	the	spine,	leg,	and	arm.	We	implemented	workable	naming
conventions,	before	mirroring	our	joint	chains	to	complete	the	main	skeleton.	After	adding
additional	joints	for	the	ponytail	and	jaw,	we	used	smooth	bind	to	define	the	relationship
between	the	rig	and	the	character	model	and	fine	tuned	this	with	the	Paint	Weights	tool
until	the	characters	vertices	appeared	to	be	appropriately	influenced	by	the	joints	in	our
test	pose.

At	this	point,	you	should	be	ready	to	dive	into	Unity	and	bring	a	character	to	life,
exploring	environmental	interaction	in	Chapter	3,	Interacting	with	the	Environment.	This
time,	we	will	be	using	the	Mecanim	tools	to	set	up	an	initial	state	machine	for	our	first
person	character	model.

Chapter	3.	Interacting	with	the
Environment
In	this	chapter	we	will	explore	several	different	kinds	of	interaction	within	Unity.

When	we	focus	on	the	player	and	environment,	interaction	is	based	on	a	visual	response	to
the	player’s	input,	and	in	a	game,	this	usually	takes	the	form	of	animation.

In	this	case,	our	game	is	played	from	a	first-person	perspective—we	will	not	see	the	full
character	on	screen,	so	what	the	player	experiences,	needs	to	concisely	convey	the	state	of
the	game.

Some	first-person	games	display	a	weapon	or	just	a	crosshair.	Our	game	will	involve	more
than	just	shooting,	so	we	will	see	the	character’s	hands	and	arms—this	will	allow	us	to
demonstrate	different	kinds	of	animation	within	Unity.

Mecanim	will	allow	us	to	trigger	animations	according	to	player	input	and	other
conditions—try	to	think	beyond	the	simple	playing	of	an	animation	sequence	when	a
button	is	pushed—Mecanim	is	capable	of	more	than	this	and	can	bring	about	a	richer	user
experience.

The	interactive	aspect	of	the	game	also	necessitates	setting	up	ready	made	objects	called
prefabs	that	our	player	can	collect	during	the	game.

We	will	cover:

The	player	character	game	object	and	its	components
First-person	camera	adjustment
Adding	animation	sequences
Adding	a	weapon
Importing,	previewing,	and	implementing	animation	sequences
The	animator	controller	–	player	state	machine
Mecanim-friendly	animation	scripting
Creating	and	using	prefabs
Scripting	animation	responses	for	collectables

Working	through	this	chapter	will	give	you	an	understanding	of	how	player	interaction	can
be	achieved	and	how	animation	can	be	used	to	present	the	player’s	connection	to	the
space.

Importing	the	project	assets	package
The	asset	package	that	you	need	to	follow	the	chapters	of	this	book	is	included	in	the
project	file.	If	you	have	not	already	downloaded	this,	you	will	need	to	get	it	from	the	Packt
website.

Once	unzipped,	you	will	find	the	PACKT_CAWM.unitypackage	which	contains	the	project
hierarchy	and	sample	content	and	code.	After	that	follow	these	steps:

1.	 Launch	Unity.
2.	 Open	your	Unity	project	if	it	does	not	launch	by	default,	or	create	a	new	one	if	you

have	not	already	done	so.
3.	 Import	the	package	by	navigating	to	Assets	|	Import	Package	|	Custom	Package….
4.	 In	the	window	that	appears,	navigate	to	the	location	where	you	unzipped	the	project

files	and	choose	PACKT_CAWM.unitypackage.
5.	 In	the	Importing	Package	dialog	that	appears	over	the	main	interface,	make	sure

that	all	assets	are	checked	before	pressing	the	Import	button.

It	may	take	a	short	time	for	all	of	the	assets	to	finish	loading.

Setting	up	the	player	character
Just	like	the	enemy	characters	from	the	previous	chapters,	the	player	character	has	been
exported	from	external	software	as	an	FBX	file.	This	file	contains	the	rigged	model.	The
player’s	material	is	already	set	up	and	will	be	applied	to	the	model	in	this	section.

The	import	settings	will	need	to	be	adjusted	and	components	added	before	we	save	the
game	object	as	a	prefab.	From	that	point,	the	player	character	can	be	instanced	in	any
number	of	game	levels.

Creating	a	new	scene
We	will	start	with	a	fresh	scene	so	we	can	set	up	the	character	without	the	distractions	of
scenery.	This	can	be	done	by	creating	a	blank	scene,	using	the	menu	bar	and	navigating	to
File	|	New	Scene.

In	the	next	step	we	will	be	adding	the	player	model.

Adding	the	player	character	model	to	the	scene
The	player	character	model	has	been	stored	as	a	Prefab,	enabling	it	to	be	instantiated
quickly	in	any	level.	The	player	model’s	material	has	already	been	set	up:

1.	 In	the	Project	panel,	navigate	to	the	PACKT_Prefabs	folder.
2.	 Locate	player_m	and	drag	it	into	the	Hierarchy	panel	to	instance	it.

The	model	only	extends	as	far	as	the	player	can	see	in	the	first-person	camera,	though
it	has	a	full	skeletal	rig,	allowing	us	to	maintain	compatibility	with	the	animation
sequences	we	are	using	for	the	zombie	characters.

Our	player	character	is	Wayne,	the	janitor	in	the	office	building	where	the	zombie
outbreak	has	taken	place.	It	is	his	responsibility	to	“clean	up”	the	mess.

3.	 Double-click	player_m	within	the	Hierarchy	panel	to	zoom	in	on	the	game	object.

The	next	step	will	get	the	player	character	model	moving.

Adding	the	character	controller
Unity	comes	with	a	prefabricated	First-Person	Shooter	(FPS)	Controller,	which	will	help
us	get	up	and	running	with	our	player.	The	FPS	Controller	is	included	in	the	character’s
controller	assets	package,	which	we	need	to	import:

1.	 Import	the	character’s	asset	package	by	navigating	to	Assets	|	Import	Package	|
Characters.

2.	 In	the	Importing	Package	dialogue	which	appears	over	the	main	Unity	interface.
Check	the	None	button	at	the	bottom.

3.	 Then	check	the	checkboxes	next	to	Editor,	FirstPersonCharacter
CrossPlatFormInput,	and	Utility.

All	of	the	associated	components	will	also	become	checked.

4.	 Click	the	Import	button.

You	may	have	to	wait	for	a	short	time	while	the	assets	are	loaded.

5.	 In	the	Project	panel,	expand	the	Standard	Assets	folder	and	then	the	Character
Controllers	subfolder	and	then	finally	the	Prefabs	subfolder.

6.	 Drag	the	FPSController.prefab	into	the	Scene	view	or	Hierarchy	panel.
7.	 In	the	Inspector	panel,	zero	out	the	prefab’s	Position	coordinates,	so	it	is	centered

within	the	world.	Do	this	by	typing	0	into	the	Position	fields	for	X,	Y,	and	Z.

The	controller	should	appear	as	a	capsule	shape,	with	a	number	of	gizmos	and	a
camera	icon.

8.	 In	the	Hierarchy	panel	select	and	delete	the	Main	Camera	object.

The	Main	Camera	is	added	with	a	default	scene	in	Unity,	and	as	FPSController
contains	a	camera,	we	no	longer	need	this.

9.	 If	you	cannot	see	the	controller	within	your	Scene	view,	click	the	FPSController
object	twice	within	the	Hierarchy	panel	to	zoom	in	on	it.

10.	 Click	the	small	arrow	next	to	its	name	to	expand	its	hierarchy.
11.	 Drag	the	player_m	game	object	onto	FirstPersonCharacter,	making	the	camera	the

model’s	parent.

Next,	we	will	add	some	basic	geometry	for	the	floor	so	we	can	test	the	controller:

1.	 Add	a	plane	game	object	by	navigating	to	Game	Object	|	3D	Object	|	Plane.
2.	 Rename	the	plane	floorObject.
3.	 In	the	Inspector	panel,	zero	out	floorObject	plane’s	position	by	entering	0	in	the

Position	fields	for	X,	Y,	and	Z.
4.	 Set	its	scale	to	5	in	the	X	and	Z	fields.

At	this	point	if	we	select	the	FPSController	game	object,	we	should	see	its	capsule
collider	intersecting	with	the	floorObject.

5.	 In	the	Inspector,	enter	1	in	the	Position	Y	field	to	move	the	FPSController	up	so
that	it	sits	on	top	of	the	floorObject.

We	will	get	the	following	output:

At	this	point,	the	FPSController	with	its	attached	camera	and	player	model	can	be
navigated	around	the	empty	scene.	However,	the	default	pose	will	not	allow	us	to	see	any
part	of	the	model	from	the	camera	view,	so	we	will	need	to	import	an	animation	clip	to
fine	tune	the	player’s	position.	Before	we	do	this,	we	will	adjust	the	camera	settings	a	little
to	better	suit	our	player.

Adjusting	the	camera	height
The	FPSController	object’s	child	object	FirstPersonCharacter	contains	the	camera
component	that	defines	the	first-person	view.	By	default,	this	object	is	positioned	around
0.8	meters	up	from	the	center	of	the	character	controller,	which	is	1.8	meters	high.	We
want	to	move	this	down	to	eye	level,	which	is	more	natural	and	consistent	with	the	height
of	the	enemies	and	scenery	within	the	game.

We	will	use	a	height	of	1.67	meters,	which	is	5′6″,	a	good	average	eye	level	for	a	human.
We	need	to	take	into	account	that	our	camera	is	already	1	meter	off	the	ground	as	it	is
parented	to	the	character	controller.	In	the	Inspector	panel,	set	FirstPersonCharacter
object’s	Position	Y	value	to	0.67	to	correct	the	height.

You	should	see	the	object	move	within	the	Scene	view.	To	finalize	the	adjustment	of	the
FirstPersonCharacter,	we	will	add	an	animation	sequence	for	our	character.

Adding	the	shoot	idle	animation
The	shoot	idle	sequence	will	show	the	character	in	a	typical	shooting	stance,	ready	to	fire.

At	the	moment,	our	player	does	not	have	an	animator	controller,	which	is	necessary	to
preview	animation.	We	will	add	a	temporary	controller	so	we	can	view	the	player
character	model	in	its	ShootIdle	pose	and	conclude	the	camera	adjustment:

1.	 In	the	Project	panel,	click	the	PACKT_Controllers	folder	to	view	its	contents	in	the
Assets	panel.

2.	 Drag	ch3_1	into	player_m	object’s	empty	Controller	slot,	located	within	the
Animator	component	in	the	Inspector	panel.

The	ch3_1	animator	controller	will	become	active	in	the	Animator	panel.

3.	 If	the	Animator	tab	is	not	visible	at	the	top	of	the	main	view	panel,	activate	it	from
the	main	menu	by	navigating	to	Window	|	Animator:

Aside	from	the	defaults	Any	State	and	Entry	the	controller	only	contains	a	single
state:	ShootIdle.	This	is	displayed	in	orange,	indicating	that	it	is	the	default	state	and
will	become	active	when	the	scene	starts:

4.	 In	the	Animator	panel,	click	the	ShootIdle	state	to	view	its	parameters	in	the
Inspector	panel.	It	does	not	currently	contain	an	animation	clip.

5.	 In	the	Project	panel,	locate	the	PACKT_Animations	folder.
6.	 Click	it	to	view	its	contents	in	the	Assets	panel.
7.	 Click	the	pistol_idle	animation	folder	to	view	the	animation	clips	contained	within

it.
8.	 Drag	the	pistol_idle	animation	into	the	ShootIdle	state’s	motion	field	to	add	it.
9.	 Test	the	game	by	pressing	the	Play	button	in	the	top	center	of	the	Unity	interface.

The	default	camera	settings	will	clip	the	first-person	model	a	little	too	much.	We	can

fix	this	by	adjusting	the	Clipping	Planes	value.

10.	 Select	FirstPersonCharacter	in	the	Hierarchy	panel.
11.	 In	the	Inspector	panel,	locate	the	Clipping	Planes	values	under	the	Camera

component.
12.	 Set	the	Near	value	to	0.05.

The	player’s	arms	should	now	extend	all	the	way	under	the	camera	without	a	gap.

Next,	we	will	add	the	player’s	gun	and	fine	tune	the	position	coordinates	of	the	player
character	mesh.

Adding	and	parenting	the	gun
The	player	character’s	gun	has	been	saved	as	a	Prefab.	Adding	it	to	the	player	will	allow
us	to	fine	tune	the	model’s	position	in	the	first-person	view:

1.	 In	the	Hierarchy	panel,	Alt	+	click	the	small	arrow	next	to	player_m	to	fully	expand
its	hierarchy.

2.	 Locate	the	zombie_m_HandR	bone:

Note
You	can	also	type	the	bone’s	name	into	the	search	field	at	the	top	of	the	Hierarchy
panel	and	then	select	it	when	it	appears	in	the	search	list.

3.	 In	the	Project	panel,	click	the	PACKT_Prefabs	folder	to	view	its	contents	in	the
Assets	panel.

4.	 Locate	the	Gun	prefab	and	drag	it	into	the	Hierarchy	panel	to	create	an	instance	of	it
in	the	scene.

5.	 Drag	it	onto	the	zombie_m_HandR	bone	in	the	Inspector	panel	to	make	it	a	child	of
that	object.

Because	the	gun	has	been	parented	to	the	character’s	right	hand,	we	now	need	to	offset	it
slightly	so	that	it	lines	up	correctly:

1.	 In	the	Inspector	panel,	set	the	transform	Position	values	to	-5.35,	-1.08,	and	-2	in
the	X,	Y,	and	Z	fields.

2.	 Set	the	Rotation	values	to	355,	180,	and	74	in	the	X,	Y,	and	Z	fields.
3.	 Click	the	Play	button.
4.	 Move	the	controller	with	the	W,	A,	S,	D,	or	the	cursor	keys.

You	should	see	the	hands	and	the	gun	move	with	the	camera.

Saving	the	first-person	rig	as	a	prefab
We	have	a	few	more	changes	to	make	to	our	first-person	rig,	but	before	we	get	too	far
ahead	it	would	be	useful	to	be	able	to	see	the	level	that	the	player	will	interact	with.

To	use	our	first-person	controller	in	a	new	scene	we	need	to	save	it	as	a	prefab:

1.	 In	the	Project	panel,	click	the	PACKT_Prefabs	folder.	Its	contents	should	become
visible	in	the	Assets	panel.

2.	 Select	the	FPSController	parent	game	object	in	the	Hierarchy	panel	and	drag	it	into
an	empty	space	in	the	Assets	panel.

This	will	store	it	as	a	prefab,	allowing	us	to	use	it	again	and	again.

Tip
Dragging	a	game	object	onto	another	prefab	in	the	Assets	panel	will	replace	the	prefab,	so
be	careful	about	where	you	drag.	A	dialog	will	pop	up	to	warn	you	if	you	are	in	danger	of
doing	this.

Adding	the	office-level	scene
The	level	geometry	that	we	will	add	has	been	saved	as	a	prefab.

1.	 In	the	Project	panel,	locate	the	PACKT_Prefabs	folder	and	click	it	to	view	its	contents
in	the	Assets	panel.

2.	 In	the	Assets	panel,	locate	LevelGeometry	and	drag	it	into	the	Hierarchy	panel.

The	level	geometry	will	appear	in	the	scene.	It	contains	lights	and	colliders:

We	can	now	delete	the	temporary	floor	object	used	to	test	the	FPSController:

1.	 In	the	Hierarchy	panel,	select	floorObject.
2.	 Press	Delete	on	the	keyboard	(Cmd	+	Delete	if	you	are	working	on	a	Mac).
3.	 Select	and	deactivate	the	default	Directional	Light	object	by	selecting	it	in	the

Hierarchy	panel	and	then	unchecking	the	checkbox	next	to	its	name	in	the	Inspector
panel.

Next,	we	need	to	move	the	FPSController	to	a	convenient	position	so	we	can	see	the
level	geometry:

1.	 In	the	Hierarchy	panel,	select	the	FPSController	game	object.
2.	 Use	the	Move	tool	to	position	the	FPSController	so	that	it	is	near	the	entrance	to	the

office.
3.	 Switch	to	the	Rotate	tool	and	turn	the	FPSController	so	that	it	faces	towards	the

space	between	the	rows	of	office	cubes:

If	we	switch	to	Play	mode	at	this	point,	we	should	be	able	to	clearly	see	the	level	and
move	around	it	using	the	W,	A,	S,	and	D	keys.

Completing	the	camera	setup
We	still	need	to	complete	our	camera	setup	before	we	do	anything	else:

1.	 In	the	Hierarchy	panel,	select	FirstPersonCharacter.	If	this	is	not	visible,	expand
the	hierarchy	of	its	parent	object	FPSController	by	clicking	the	small	arrow	next	to
its	name.

2.	 In	the	Inspector	panel,	change	the	Field	of	View	to	45	degrees	under	the	Camera
component	parameters.

Based	on	this	setup,	we	can	move	the	player_m	game	object	forward,	along	the	z	axis,
until	we	can	see	enough	of	the	arms	within	the	view.

The	exact	position	is	personal	preference,	but	your	limitations	are	also	based	on	where	the
arm	model	ends:

1.	 Select	the	player_m	game	object	in	the	Hierarchy	panel.
2.	 Set	the	Z	position	to	0.25.

Now	we	need	to	save	our	prefab	so	that	our	changes	are	stored:

1.	 Select	FPSController	in	the	Hierarchy	panel.
2.	 In	the	Inspector	panel,	click	the	Apply	button	near	the	top	of	the	panel.

The	prefab	has	been	saved.

Our	next	task	is	to	create	an	additional	state	for	the	character	to	allow	us	to	shoot.

Modifying	the	animator	controller
When	we	started	the	section,	we	used	an	existing	animator	controller	setup	with	an	idle
animation	so	we	could	see	our	character’s	arms	move.

Now	we	will	add	an	additional	animation	sequence	so	we	can	get	some	action	into	the
game:

1.	 In	the	Hierarchy	panel,	click	the	player_m	game	object.
2.	 Click	the	Animator	tab	in	the	main	Unity	interface.

The	animator	controller	named	ch3_1	should	be	visible	in	the	window.	Its	name
should	be	visible	in	the	bottom	right	of	the	interface.

3.	 Create	a	new	state	in	the	animator	graph	by	right-clicking	and	selecting	Create	State
|	Empty	from	the	dropdown	list.

4.	 Click	the	new	state	and	rename	it	Shoot	in	the	Inspector	panel.

The	shoot	animation	has	already	been	prepared.

5.	 In	the	Project	panel,	select	the	PACKT_Animations	folder	and	locate	shoot.
6.	 In	the	Assets	panel,	click	the	shoot	subfolder	to	expand	its	contents.
7.	 Drag	the	shoot	animation	file	into	the	Shoot	state’s	motion	field	in	the	Inspector

panel.

Having	added	the	motion	clip,	we	still	need	to	create	and	set	the	transition.

Setting	the	transition
The	transition	will	connect	our	two	states	and	determine	when	to	switch	between	them:

1.	 Right-click	the	Shoot	Idle	state	and	choose	Make	Transition.

An	arrow	will	appear.

2.	 Drag	the	transition	line	to	the	Idle	state	and	click	it	to	complete	the	transition.

Next	we	need	to	choose	a	parameter	that	the	transition	will	operate	with.

Creating	a	trigger	parameter	for	the	Shoot	state

For	this	transition	we	will	use	a	Trigger	parameter,	which	we	previously	used	in	Chapter
1,	The	Zombie	Attacks!,	when	we	set	up	the	zombie’s	attack:

1.	 Click	the	Parameters	tab	in	the	upper-right	of	the	Animator	window	if	it	is	not
already	active.

2.	 Click	the	+	symbol	to	create	a	new	parameter	and	choose	Trigger.
3.	 Name	this	parameter	Shooting.
4.	 Select	the	transition	between	ShootIdle	and	Shoot	by	clicking	on	the	arrow

connecting	them	in	the	Animator	panel.

This	will	bring	up	the	transition’s	settings	within	the	Inspector	panel.

5.	 Select	the	Shooting	parameter	from	the	Conditions	group	near	the	bottom	of	the
Inspector	panel.

6.	 Check	that	the	Has	Exit	Time	checkbox	is	checked.

This	will	ensure	that	the	player	character	will	return	to	its	ShootIdle	state	after	Shoot	has
been	triggered	at	this	point,	our	animator	controller	has	got	two	complete	states,	linked
together	with	a	transition:

Preview	the	game,	by	pressing	the	Play	button.

In	the	Scene	view	you	should	see	the	Shoot	state	looping	constantly.	In	the	Animator
window	this	will	be	visualized	as	a	blue	progress	bar.	Pressing	the	Fire1	button	will	not
activate	the	Shooting	state	until	we	define	this	in	a	script.

Writing	and	implementing	the	character	animation
script
At	this	point,	we	have	our	basic	state	machine	ready	to	go,	but	we	still	need	to	send	a
message	to	the	animator	controller	to	trigger	the	Shoot	state.

We	will	do	this	in	a	short	script.	I	am	using	Javascript	here,	but	you	will	also	find	the
completed	code	in	C#	in	the	project	files:

1.	 In	the	Project	panel,	locate	the	PACKT_Scripts	folder	and	click	it	to	select	it.
2.	 Create	a	new	Javascript	file	in	the	folder	by	navigating	to	Create	|	Javascript.
3.	 When	the	file	appears	in	the	folder,	click	on	it	twice	and	rename	it	FPSAnimation.
4.	 Double-click	on	the	file	to	open	it	in	MonoDevelop.

This	time	we	will	build	the	code	step-by-step,	resulting	in	an	animation	state	switch
affected	by	the	fire	button.

Adding	the	initial	code	to	the	FPSAnimation	script
The	player	animation	script	is	only	used	in	the	player	game	object.	It	will	connect	directly
with	the	animator	controller	that	we	just	set	up:

1.	 At	the	top	of	the	script,	add	the	following	line	code:

var	thisAnimator	:	Animator;

The	variable	thisAnimator	is	defined	as	a	type	animator.	This	will	keep	track	of	the
animator	controller	that	this	script	will	use.

2.	 Between	the	opening	and	closing	brackets	of	the	Start	function,	add	the	following
code:

thisAnimator	=	GetComponent(Animator);

Here	we	define	the	thisAnimator	variable	as	the	animator	component	attached	to	the
same	game	object	as	this	script.

3.	 Add	the	following	code	to	the	Update	function	so	it	matches	the	following	code:

function	Update()

{

				if(Input.GetButton("Fire1"))

				{

								thisAnimator.SetBool("Shooting",true);

								Shoot();

				}

}

4.	 Save	the	script

Once	it	has	been	defined,	the	animator	controller’s	parameters	can	be	set	and	returned.

The	if	statement	checks	for	the	player	input.	In	this	case,	the	Fire1	button.	This	is	defined
as	the	left-mouse	button	in	the	Unity	Input	Manager	by	default.

Tip
Player	input	such	as	this	is	often	checked	inside	of	the	Update	function,	mainly	because
Update	runs	every	frame,	making	it	highly	responsive	to	input.

Inside	the	if	statement,	we	use	the	variable	thisAnimator,	which	we	set	up	at	the	start	of
the	function,	setting	the	Trigger	parameter	Shooting	(inside	of	the	animator	controller)	to
true.	This	is	the	operative	part	of	the	script,	which	will	allow	our	shoot	animation	to	run.

The	Shoot	function	will	then	run,	we	will	add	this	next:

At	the	bottom	of	the	script,	add	the	following	code:

function	Shoot()

{

				yield	WaitForSeconds(0.5);

				thisAnimator.SetBool("Shooting",	false);

}

We	will	leave	this	blank	for	now,	but	this	is	where	we	will	define	what	happens	other	than
the	animation	when	the	fire	button	is	pressed.

Now	that	we	have	written	our	script,	we	need	to	add	it	to	the	player_m	game	object.

Adding	the	script	to	the	player	character	game
object
As	a	component,	our	script	needs	to	be	attached	to	the	game	object	to	work:

1.	 In	the	Hierarchy	panel,	select	the	player_m	game	object.
2.	 In	the	PACKT_Scripts	folder,	drag	FPSAnimation	onto	player_m	to	add	the	script	as	a

component.

It	is	important	that	we	are	adding	the	script	to	the	game	object	with	the	animator
component	attached.

3.	 Test	the	game	again	by	clicking	the	Play	button	in	the	top	center	of	the	Unity
interface.

Now	when	the	left	mouse	button	is	pressed,	the	Shoot	animation	will	play.

In	this	example	we	are	checking	to	see	whether	the	mouse	button	is	being	pressed,	and	if
so,	we	are	setting	the	Shooting	trigger	to	true,	which	initiates	the	Shoot	state	in	the
animator	controller.

Keep	your	Animator	window	visible	(and	undocked)	when	you	press	the	Play	button	and
you	will	see	a	blue	progress	bar	in	the	Idle	state,	and	then	in	the	Shoot	state	as	you	press
the	button.

Next	we	will	save	our	changes	to	the	FPSController	prefab:

1.	 In	the	Hierarchy	panel,	select	the	FPSController	game	object	by	clicking	it	once.
2.	 In	the	Inspector	panel	click	the	Apply	button	near	the	top	right.

This	will	save	the	prefab	and	all	its	components	and	children.

This	extra	set	of	buttons	in	the	Inspector	panel	is	only	available	for	prefab	objects,	it
allows	us	to	make	changes	and	either	keep	or	discard	them.

In	the	next	step	we	will	allow	the	player	to	collect	items.

Adding	and	implementing	collectable
objects
Typically,	in	a	game,	the	player	will	be	able	to	collect	power-ups	to	increase	their
effectiveness,	or	to	replace	depleted	life	or	energy.

In	this	game,	our	player	will	collect	food	to	boost	his	health.	This	stage	will	involve
adding	a	collectable	and	making	the	player	react	with	a	suitable	animation	sequence.

Instantiating	the	lunchBox	collectable	in	the	game
level
Our	first	collectable	is	already	set	up	as	a	prefab	in	the	project	files,	making	it	easy	to	drag
and	drop	into	our	game	level	without	having	to	add	components	and	set	variables:

1.	 In	the	Project	panel,	locate	the	PACKT_Prefabs	folder.
2.	 Click	to	expand	the	Pickups	subfolder	and	locate	the	lunchBox	prefab.
3.	 Drag	lunchBox	into	the	Hierarchy	panel	to	instantiate	it.
4.	 Position	the	prefab	and	navigate	within	the	Scene	view	until	it	is	clearly	visible:

Inspecting	the	lunchBox	collectable’s	components
The	lunchBox	prefab	is	a	game	object	with	a	few	components	attached.	We	will	take	a
look	and	see	how	it	has	been	assembled.	For	doing	so	click	the	instantiated	lunchBox	in
the	Hierarchy	panel	to	examine	it	a	little	more	closely.

The	prefab	consists	of	the	actual	geometry,	along	with	a	point	light	to	make	it	more	visible
within	the	game	level.	It	also	has	a	simple	script	which	will	allow	us	to	add	some
functionality	when	it	is	collected.

Looking	at	the	collectable	script

We	already	made	a	start	on	the	player	animation	script.	The	code	that	we	need	for	the

collectable	is	also	quite	simple.	The	basic	script	has	already	been	set	up,	but	we	will	need
to	add	to	it,	to	get	the	lunchBox	game	object	to	function	properly	in	the	level:

1.	 In	the	Project	panel,	click	the	PACKT_Scripts	folder	to	view	its	contents	in	the
Assets	panel.

2.	 Double-click	Collectable	to	open	it	in	MonoDevelop.	The	script	will	appear	as
follows:

var	sound	:	AudioClip;

function	OnTriggerEnter	(other	:	Collider)

{

				if	(sound)

				{

				AudioSource.PlayClipAtPoint(sound,	transform.position);

				}

}

This	script	is	a	typical	definition	of	a	power-up	or	a	booby	trap,	which	affects	the	player’s
status	or	score	in	some	way.

It	uses	the	OnTriggerEnter	built-in	function	to	set	trigger	code	to	run	when	the	player
enters	its	collider.	The	script	is	currently	set	up	to	play	a	sound	effect.

Next	we	will	add	more	code	to	ensure	that	the	collectable	game	object	destroys	itself,
preventing	the	player	from	triggering	it	(and	receiving	its	benefits)	again.

Implementing	self	destruction	in	the	collectable	script

Code	placed	in	the	Update	function	runs	every	frame,	so	ideally	we	want	to	set	up	new
functions	for	code	that	is	to	run	only	once:

1.	 Add	the	following	lines	of	code	to	the	bottom	of	the	script:

function	Remove()

				{

								Destroy(gameObject);

				}

Remove	is	a	new	custom	function.	It	removes	the	instanced	prefab	from	the	game.	It
happens	instantly,	so	any	particle	or	sound	effects	should	be	added	to	the	preceding
function.

We	still	need	to	run	this	function	at	the	end	of	OnTriggerEnter.

2.	 Before	the	last	curly	bracket	in	the	OnTriggerEnter	function,	add	the	following	line:

Remove();

3.	 Save	the	script	and	add	it	to	the	lunchBox	prefab	by	dragging	it	onto	the	instance	in
the	Hierarchy	panel	or	the	Inspector	panel.

4.	 Test	the	script	by	positioning	the	instantiated	lunchBox	a	few	meters	from	the	player
character	game	object.

5.	 Click	the	Game	view	tab	in	the	top	center	of	the	Unity	interface	and	deselect	the
Maximize	on	Play	button	by	clicking	it.

6.	 Press	the	Play	button.
7.	 Move	the	player	character	towards	the	lunchBox	collectable.

The	lunchbox	will	disappear	(from	the	Scene	view	and	the	Hierarchy	panel)	when
contact	is	made:

In	the	next	section	we	will	be	setting	up	the	player	character’s	response	when	the
lunchBox	is	collected.

Setting	up	the	player	character’s	response
We	will	start	by	adding	an	additional	state	to	the	player	character’s	animator	controller.

Unlike	with	the	shoot	animation,	the	pickup	animation	will	only	run	when	the	character	is
in	collision	with	the	lunchBox.	We	will	need	to	stop	other	animations	playing	to	enable	the
pickup	animation	to	play	through.

In	order	to	view	this	animation,	we	will	create	an	additional	camera	and	set	it	up	to
become	active	for	the	duration	of	the	animation	sequence.	Lastly,	we	will	implement	a
very	simple	player	status	script	so	that	we	can	see	the	character’s	health	value	increase
when	he	collects	the	lunchBox.

Adding	the	Pickup	state	to	the	animator	controller
As	we	are	adding	a	new	animation	sequence,	we	need	to	add	a	new	state	to	contain	this:

1.	 In	the	Hierarchy	panel,	click	to	select	player_m.
2.	 Click	the	Animator	tab	in	the	top	center	of	the	Unity	interface	to	view	the	selected

object’s	animator	controller.
3.	 Right-click	somewhere	in	the	empty	space	to	create	a	new	state	by	navigating	to

Create	State	|	Empty.
4.	 In	the	Inspector	panel,	rename	this	state	Pickup.
5.	 In	the	Project	panel,	click	the	PACKT_Animations	folder	to	expose	its	contents	in	the

Assets	panel.
6.	 Locate	the	pickup	subfolder	and	click	it	to	view	its	contents.
7.	 Drag	the	pickup	animation	(identified	by	the	gray	play	button	icon)	into	the	Pickup

state’s	motion	field	in	the	Inspector	panel.

Having	specified	the	animation	sequence	used	in	the	state,	we	need	to	set	the	transitions
and	parameter	that	will	activate	this	state.

Setting	the	Pickup	state’s	transitions	and	parameter

Importantly,	the	new	Pickup	state	will	only	be	connected	by	transitions	to	the	ShootIdle
state,	otherwise	we	risk	overriding	the	player’s	attack.

Imagine	that	the	player	character	is	backing	away	from	a	horde	of	zombies	rushing
towards	him,	when	he	stumbles	over	lunchBox	and	has	to	stop	shooting	to	pick	it	up!

Prioritizing	player	states	is	an	important	factor	when	considering	game	play.	Mecanim
makes	this	really	easy	because	it	shows	us	exactly	how	the	character’s	states	connect.
Transitioning	between	the	ShootIdle	and	Pickup	states

States	can	have	multiple	transitions	connecting	them	to	other	states.	For	the	moment,	our
Pickup	state	only	needs	to	be	connected	to	the	ShootIdle	state:

1.	 In	the	Animator	window,	right-click	the	ShootIdle	state	and	choose	Make
Transition.

2.	 Drag	the	transition	line	to	the	Pickup	state	and	click	on	it	to	complete	the	transition.

3.	 Create	the	return	transition	in	the	same	way	from	the	Pickup	state	to	the	ShootIdle
state.

The	new	transitions	are	connecting	the	states,	but	currently	have	default	settings.	Next	we
need	to	add	an	appropriate	parameter.
Creating	and	adding	the	parameter

Like	variables	in	a	script,	parameters	created	in	the	animator	controller	can	be	used
multiple	times.	Here	we	will	create	another	Trigger	parameter	that	will	switch	the	Pickup
state	on:

1.	 In	the	Parameters	box,	click	the	+	symbol	to	create	a	new	parameter.
2.	 Choose	Trigger.
3.	 Name	the	new	parameter	Picking	and	leave	its	radio	button	deactivated.
4.	 Click	the	Idle	to	Pickup	transition.
5.	 In	the	Inspector	panel,	scroll	down	until	you	see	the	Conditions	box.
6.	 Set	the	condition	to	Picking,	and	make	sure	that	the	Boolean	marker	is	set	to	True.

This	will	ensure	that	the	Pickup	state	is	only	activated	when	the	Picking	is	triggered:

The	next	step	will	involve	creating	the	new	camera	that	we	will	use	during	the	pickup
animation.

Creating	the	pickup	camera
We	will	add	a	new	camera	to	view	the	player	character’s	pickup	animation	sequence	more
clearly.	Briefly	switching	cameras	will	make	it	unnecessary	for	us	to	alter	the	main	camera
script,	which	is	used	throughout	the	majority	of	the	game	level.	It	will	also	make	it

obvious	to	the	player	that	the	character	is	picking	up	an	item:

1.	 Create	a	Camera	game	object	by	navigating	to	Game	Object	|	Create	Other	|
Camera.

2.	 In	the	Inspector	panel,	rename	the	game	object	pickupCamera.
3.	 Delete	all	of	the	game	object’s	components	except	Camera.

When	we	setup	the	first-person	camera,	we	reduced	the	near	clipping	planes	so	that
the	player	geometry	would	not	be	clipped	out.	We	need	to	do	the	same	thing	for	the
pickupCamera.

4.	 In	the	Camera	component’s	settings	in	the	Inspector	panel,	set	the	Near	clipping
plane	value	to	0.05.

As	we	want	this	camera	to	render	on	top	of	the	first-person	camera	we	need	to	give	it
a	higher	priority.

5.	 Further	down	in	the	Inspector	panel,	set	the	Camera	component’s	Depth	value	to	1.

This	makes	it	unnecessary	to	deactivate	the	first-person	camera	when	we	temporarily
switch	to	the	pickup	camera.	This	also	means	that	we	do	not	need	an	additional	audio
listener	component	to	hear	any	sounds	which	are	played.

6.	 In	the	Project	panel,	locate	the	PACKT_Scripts	folder	and	click	it,	to	view	its
contents	in	the	Assets	panel.

7.	 Drag	the	pickupCamera	script	onto	the	pickupCamera	game	object	that	we	just
created.

There	are	a	few	more	steps	to	take	to	complete	the	pickup	camera.

Finalizing	the	pickup	camera	prefab
We	will	be	changing	the	position	and	rotation	of	the	camera	in	our	script,	but	we	need	a
default	target	that	the	camera	can	point	at:

1.	 Create	a	sphere	game	object	in	the	scene	by	navigating	to	Game	Object	|	3D	Object
|	Sphere.

2.	 In	the	Inspector	panel	rename	it	defaultTarget.
3.	 Set	the	game	object’s	scale	X,	Y,	and	Z	values	to	0.1.
4.	 Delete	the	Sphere	Collider	component	by	right-clicking	on	the	settings	icon	in	the

top-right	corner	of	the	component’s	parameter	list	and	choosing	Remove
Component.

We	will	keep	the	Mesh	Renderer	component	for	now	so	we	can	make	sure	the	target
is	lined	up	correctly.

We	need	to	group	the	pickupCamera	and	defaultTarget	together	so	they	can	be
instantiated	in	the	game.

5.	 Create	a	new	empty	game	object	by	navigating	to	Game	Object	|	Create	Empty.
6.	 Rename	the	empty	object	camParent.

7.	 In	the	Hierarchy	panel,	drag	pickupCamera	and	then	defaultTarget	onto
camParent	to	make	them	children	of	this	game	object.

8.	 Select	each	of	the	game	objects	and	zero	out	their	position	and	rotation	values	in	the
Inspector	panel.

9.	 Select	defaultTarget	and	set	its	Position	Z	value	to	2.
10.	 Check	that	it	is	positioned	directly	in	front	of	the	camera	by	selecting	the	camera	in

the	Hierarchy	panel.

The	camera’s	view	will	be	displayed	as	an	inset	in	the	corner	of	the	main	Scene	view.

The	defaultTarget	should	appear	as	a	small	sphere	in	the	center	of	the	view.

11.	 When	you	have	verified	where	it	should	be,	select	it	in	the	Hierarchy	and	deactivate
its	mesh	renderer	by	checking	the	box	next	to	the	Mesh	Renderer	component.

Finally,	we	will	save	the	whole	hierarchy	as	a	prefab,	allowing	it	to	be	instantiated	in
the	game	when	we	need	it.

12.	 In	the	Project	panel,	click	to	select	the	PACKT_Prefabs	folder.
13.	 Select	the	camParent	game	object	in	the	Hierarchy	panel	and	drag	it	into	an	empty

area	of	the	Assets	panel.

The	game	object	name	will	turn	blue	in	the	Hierarchy	panel,	indicating	that	it	is	now
an	instance	of	a	prefab.	Delete	the	instance	from	the	scene	by	selecting	it	and	hitting
Delete	(or	Cmd	+	Delete	on	a	Mac).

Next	we	will	create	a	simple	player	status	script	to	enable	the	player	to	get	something
from	the	pickup.

Looking	at	the	player	status	script
The	player	status	script	keeps	track	of	the	player’s	current	condition	in	the	game.	This
often	includes	health	and	other	numerical	values	that	change	during	gameplay:

1.	 In	the	Project	panel,	click	to	expand	the	PACKT_Scripts	folder	in	the	Assets	panel.
2.	 Locate	PlayerStatus	and	double-click	to	open	it	in	MonoDevelop.

This	is	what	we	currently	have	in	the	PlayerStatus	script:

var	health	:	int	=	10;

var	healthLimit	:	int	=	10;

function	AddHealth	(increase	:	int)

{

				health	+=	increase;

				if	(health	>	healthLimit)

{

								health	=	healthLimit;	

			}

}

function	AddDamage	(damage	:	int)

{

				health-=damage;

				if	(health	<=	0)

				{

								Die();

				}

}

function	Die()

{

				Debug.Log("You	Died");

}

The	first	variable,	health	sets	the	starting	health	value	as	an	integer	or	whole	number.
Next,	healthMax	sets	the	maximum	value	that	health	can	reach.

The	custom	function	AddHealth	increases	the	health	value	by	an	amount	specified	by	the
value	increase	which	will	be	sent	to	the	script.

The	if	statement	contained	within	the	function	will	capture	health	with	the	maxHealth
value	so	that	it	does	not	exceed	this	number	even	if	the	player	picks	up	lots	of	lunchBoxes
when	we	do	not	need	them.

The	custom	function	AddDamage	works	in	the	same	way,	but	decrements	health	rather	than
increasing	it	using	an	integer	value	called	damage.	When	health	reaches	zero	we	run	the
custom	function	Die.

No	fancy	effects	at	this	point,	just	a	message	appearing	in	the	console	informing	the	player
that	he	or	she	is	dead.	We	can	test	this	later	on,	but	for	now	we	will	get	back	to	the	pickup
interaction.

Adding	the	PlayerStatus	script	to	the	player	character	game	object

The	PlayerStatus	script	is	added	directly	to	the	player	character,	so	that	it	can	be
accessed	and	affected	by	other	scripts:

1.	 In	the	Hierarchy	panel,	select	the	player_m	game	object.
2.	 Drag	PlayerStatus	onto	player_m	to	add	it	as	a	component.

The	player	is	now	capable	of	losing	and	gaining	health.

Next,	we	will	make	the	necessary	changes	to	the	Collectable	and	FPSAnimation	scripts.

Updating	the	Collectable	script
We	need	to	add	some	extra	functions	to	our	scripts	in	order	to	facilitate	the	picking	up:

1.	 Open	the	Collectable	script	in	MonoDevelop.
2.	 At	the	top	of	the	script,	add	the	following	variables:

var	increase	:	int;

var	playerObj	:	GameObject;

var	pickingCamera	:	GameObject;

var	playerCamera	:	Transform;

var	headBone	:	Transform;

var	triggered	:	boolean	=	false;

The	value	increase	is	the	amount	of	health	that	the	collectable	will	give	the	player
when	he	picks	it	up.	We	are	setting	this	to	1	by	default.

The	variable	playerObj	will	store	the	player	game	object.	We	could	also	locate	the
player	with	its	tag	if	we	wanted	to.

Next,	pickingCamera	will	store	the	prefab	containing	the	camera	which	we	need	to
instantiate	when	the	player	picks	the	item	up.

We	also	store	a	reference	to	the	first-person	camera	with	playerCamera,	so	we	can
access	its	transform	data.

The	Boolean	variable	triggered	will	be	used	to	check	whether	the	collectable	is
currently	being	picked	up,	so	that	it	does	not	trigger	multiple	times.

Lastly,	headBone	will	store	the	transform	of	the	bone	in	the	character’s	hierarchy	that
we	will	parent	the	pickup	camera	to.

3.	 Add	the	following	code	to	the	top	of	the	OnTriggerEnter	before	the	if	(sound)
statement	that	we	already	added:

if(triggered	==	false)

{

				triggered	=	true;

				var	playerState	=	playerObj.GetComponent(PlayerStatus);

				var	playerAnim	=	playerObj.GetComponent(FPSAnimation);

				playerState.AddHealth(increase);

				playerAnim.Pick();

				RunCam();

At	the	bottom	of	the	function	delete	the	Remove();	line	and	add	another	closing	curly
bracket	to	complete	our	if(triggered)	statement.

Here	we	check	to	make	sure	that	the	collectable	is	not	already	being	triggered.	If
triggered	is	not	true,	we	run	the	contained	code	by	setting	triggered	to	true.

We	add	two	new	local	variables	to	access	the	PlayerStatus	and	FPSAnimation
scripts	and	then	run	functions	in	each	of	these	to	add	to	the	health	value	and	run	an
animation	respectively.	Lastly	we	run	the	RunCam	function.	This	will	contain	the	code
that	operates	the	pickup	camera.

4.	 Add	the	following	code	to	the	bottom	of	the	script:

function	RunCam()

{

				var	pickTrans	=	transform;

				var	addCamObj	:	GameObject	=	Instantiate(pickingCamera,	

headBone.position,	playerCamera.rotation);

				addCamObj.transform.parent	=	headBone;

				addCamObj.transform.GetChild(0).SendMessage	("SentTarget",	

pickTrans);

				yield	WaitForSeconds(0.5);

				Remove();

}

We	start	by	creating	two	local	variables.	The	first,	pickTrans	is	set	as	the	transform
that	this	script	is	attached	to.

Secondly,	addCamObj	is	defined	as	type	gameObject,	this	will	store	the	instantiated
object	so	we	can	further	modify	its	position	and	rotation.	In	the	next	line	we
instantiate	the	prefab,	setting	its	position	to	match	headBone	and	its	rotation	to	match
the	existing	player	camera.

We	make	addCamObj	the	child	of	headBone.	As	a	bone	in	the	player_m	hierarchy,
headBone	already	animates	when	the	pickup	animation	plays.

In	the	next	line	we	locate	the	first	child	object	within	AddCamObj,	which	is	the
pickupCamera.	This	is	sent	the	message	"SentTarget",	with	the	variable	pickTrans
which	we	just	defined.	This	effectively	sends	the	collectable’s	transform	as	the
camera’s	target.

We	add	a	short	pause	with	the	yield	WaitForSeconds	method,	before	running	the
Remove	function	which	destroys	the	collectable	game	object,	and	which	already	exists
at	the	bottom	of	our	script.

5.	 Save	the	script.

The	pause	is	handled	differently	in	C#.	Take	a	look	at	the	final	commented	code	in	the
project	files	for	details.

Our	next	step	will	involve	hooking	up	variables,	before	we	move	on	to	updating	the	other
scripts.

Hooking	up	variables	in	the	collectable	script

The	script	now	accesses	plenty	of	other	game	objects.	We	need	to	connect	these	in	the
main	unity	interface:

1.	 In	the	Hierarchy	panel,	Alt	+	click	the	small	arrow	next	to	the	FPSController	game
object	to	fully	expand	its	hierarchy.

2.	 Select	lunchBox.

Its	components	will	become	visible	in	the	Inspector	panel.

3.	 Drag	player_m	from	the	Hierarchy	panel	into	the	Player	Obj	slot	under	the
Collectable	(Script)	component	in	the	Inspector	panel.

4.	 Drag	the	FirstPersonCharacter	game	object	onto	the	Player	Camera	slot.
5.	 Scroll	down	in	the	Hierarchy	panel	until	you	find	zombie_m_Head.
6.	 Drag	this	onto	the	headBone	slot	in	the	Inspector	panel.
7.	 In	the	Project	panel,	click	the	PACKT_Prefabs	folder	to	view	its	contents	in	the

Assets	panel.

8.	 Locate	camParent	and	drag	this	onto	the	Picking	Camera	slot	in	the	Inspector
panel.

In	the	next	section,	we	will	make	some	changes	to	the	FPSAnimation	script.

Updating	the	FPSAnimation	script
We	created	the	FPSAnimation	script	and	attached	it	to	the	player_m	game	object	earlier	in
this	chapter.

Currently	it	is	used	to	set	the	trigger,	transitioning	to	the	Shoot	state	in	the	player’s
animator	controller.	Here	we	will	update	it	to	trigger	the	Pickup	state:

1.	 Locate	the	FPSAnimation	script	in	the	PACKT_Animations	folder.
2.	 Double-click	on	it,	to	open	it	in	MonoDevelop.
3.	 At	the	bottom	of	the	script,	add	the	following	functions:

function	Pick()

{

				thisAnimator.SetTrigger("Picking");	

}

The	Pick	function	accesses	animator	controller	and	uses	the	same	SetTrigger
function	to	set	the	Mecanim	trigger	Picking.

Unlike	Fire,	Pick	does	not	use	input	but	is	run	from	another	script—the
Collectable	script	that	we	just	updated.

4.	 Save	the	script.

The	last	script	we	need	to	update	is	pickup,	the	script	attached	to	pickupCamera.

Modifying	the	pickup	script
The	bare	bones	pickup	script	was	already	included	in	the	project	files.	It	was	attached	to
pickupCamera	when	we	setup	the	camParent	prefab	earlier	in	this	chapter.

We	can	start	by	taking	a	look	at	the	current	code:

1.	 In	the	Project	panel,	click	the	PACKT_Scripts	folder	to	view	its	contents	in	the
Assets	panel.

2.	 Locate	the	pickup	script	and	double-click	it	to	open	it	in	MonoDevelop:

var	life	:	float	=	1.5;

function	SentTarget(pickTrans	:	Transform)

{

				transform.LookAt(pickTrans);

				yield	WaitForSeconds(life);

				ReturnTarget();

}

function	ReturnTarget()

{

				Destroy(transform.parent.gameObject);

}

The	script	contains	single	variable,	life,	which	defines	the	duration	that	the	prefab	is
created	before	it	is	destroyed.	During	this	time	the	pickup	camera	is	active.

The	custom	function	SentTarget	is	run	from	the	Collectable	script	when	the	player
enters	its	trigger.	It	is	sent	the	collectable	object’s	transform	to	use	as	a	target.	This
is	currently	set	up	using	the	transform.LookAt	method.

When	the	life	duration	is	up,	the	ReturnTarget	function	runs,	destroying	the	parent
game	object—the	object	which	pickupCamera	is	a	child	of.

If	we	test	the	game	at	this	point,	the	camera	switch	will	work,	but	the	transition	is	a
little	jarring.	We	need	to	smooth	the	transition	between	the	first-person	camera	and
the	pickup	camera.

We	will	start	by	adding	some	more	variables.	Near	the	top	of	the	script	add	the
following	code	just	below	the	existing	variable:

var	origTarget	:	Transform;

var	pickTarget	:	Transform;

var	damping	:	float	=	5.0;

var	camOffset	:	Vector3;

The	variable	origTarget	will	be	used	to	store	the	pickupCamera	object’s	original
rotation	so	we	can	transition	back	to	it.

The	next	variable,	pickTarget	will	store	the	new	target	sent	to	the	script	from	the
collectable.

Lastly,	damping	is	used	to	delay	the	transition	so	the	camera	does	not	snap	back	quite
so	quickly.

3.	 Now	replace	the	code	inside	of	the	SentTarget	function	with	the	following	code:

pickTarget	=	pickTrans;

var	lookAtPosition	:	Vector3	=	pickTarget.position;

				lookAtPosition.y	=	transform.position.y;

				lookAtPosition.z	=	transform.position.z;

				var	rotation	=	Quaternion.LookRotation(lookAtPosition	-	

transform.position);

				transform.rotation	=	Quaternion.Slerp(transform.rotation,	rotation,	

Time.deltaTime	*	damping);				

				yield	WaitForSeconds(life);

				ReturnTarget();

We	define	pickTarget	as	equal	to	pickTrans,	the	transform	variable	is	sent	from
collectable.

Next	we	replace	the	transform.LookAt	method	with	some	more	specialized	code
that	will	allow	us	to	transition	between	the	camera	targets	smoothly.	This	starts	with
the	definition	of	a	new	local	Vector3	variable,	lookAtPosition.

In	the	next	two	lines	we	override	the	sent	transform’s	Y	and	Z	values	with	the

pickCamera	object’s	existing	transform	data,	so	we	end	up	only	using	the	X	value.
This	will	allow	the	camera	to	dip	rather	than	twisting	towards	the	target.

Next	we	define	another	local	variable,	rotation	using	the
Quaternion.LookRotation	method.	This	allows	us	to	measure	the	difference	in
rotation	between	the	current	target	position	and	new	target	position.

The	next	line	of	code	causes	the	camera	to	rotate	from	the	current	rotation	to	the	new
rotation	value	over	time	and	with	damping.

Next	we	put	in	our	pause	using	the	yield	WaitForSeconds	method	and	using	our
life	float	variable.	This	value	needs	to	be	sufficiently	long	to	allow	the	pickup
animation	to	play.

Finally	we	run	our	ReturnTarget	function	to	get	the	camera	back	to	where	it	was.

4.	 Add	the	following	code	to	the	Return	Target	function	before	the	existing	line	of
code:

var	origPosition	:	Vector3	=	origTarget.position;

				origPosition.y	=	transform.position.y;

				origPosition.z	=	transform.position.z;

				var	rotation	=	Quaternion.LookRotation(origPosition	-	

transform.position);

				transform.rotation	=	Quaternion.Slerp(transform.rotation,	rotation,	

Time.deltaTime	*	damping);

Here	we	reverse	the	procedure,	transitioning	in	the	same	way	from	the	current
rotation	to	a	new	rotation	defined	in	the	variable	origTarget.

5.	 Now,	save	the	script.

Lastly,	we	need	to	hook	up	a	single	variable	and	adjust	the	transform	values	of	the
pickCamera	object:

1.	 Minimize	MonoDevelop.
2.	 In	the	Project	panel,	click	the	PACKT_Prefabs	folder	to	view	its	contents	in	the

Assets	panel.
3.	 Locate	the	camParent	prefab	and	click	the	small	arrow	to	expand	its	hierarchy	within

the	Assets	panel.
4.	 Click	the	pickupCamera	child	object	which	appears	beside	it.

The	Pickup	(Script)	components	variables	will	become	visible	in	the	Inspector
panel.

We	need	to	leave	the	Pick	Target	variable	slot	empty	as	this	is	sent	from
collectable	at	runtime.

5.	 Drag	the	defaultTarget	child	game	object	from	the	Assets	panel	onto	the	Orig
Target	slot	to	define	it.

6.	 In	the	pickupCamera	object’s	Transform	Position	fields	at	the	top	of	the	Inspector,
enter	-0.25	in	the	Y	field	and	0.25	in	the	Z	field.

These	values	will	move	the	camera	slightly	closer	to	the	collectable,	minimizing	the
chance	of	seeing	the	ends	of	the	player	arms.	If	you	adjusted	the	player_m	position
differently	you	may	want	to	experiment	with	the	values.

Changes	made	directly	to	prefabs	like	this	will	be	effected	instantly.	We	can	now	test	the
lunchBox	collectable.

Testing	the	lunchBox	collectable
We	will	test	the	effects	of	the	collectable	and	the	pickup	animation	by	adding	a	few	more
instances	of	the	lunchBox	game	objects	to	our	level:

1.	 In	the	Hierarchy	panel,	select	the	lunchBox	game	object.
2.	 Hit	Ctrl	+	D	three	times	to	duplicate	the	game	object	(use	Cmd	+	D	if	you	are

working	on	a	Mac).
3.	 Use	the	Move	tool	to	reposition	the	new	instances	of	the	lunchBox	so	they	are	spaced

out	within	the	environment.
4.	 Click	to	select	the	player_m	game	object.
5.	 In	the	Inspector	panel,	scroll	down	until	you	can	clearly	see	the	health	variable	in

the	Player	Status	component.
6.	 Set	the	health	value	to	7.
7.	 Click	the	Game	view	tab.
8.	 If	it	is	active,	click	to	deactivate	the	Maximize	on	Play	button	near	the	top	of	the

interface.
9.	 Press	the	Play	button	to	preview	the	game.
10.	 Navigate	the	player	towards	the	lunchBox	collectables.

We	will	get	something	like	this:

When	the	player	collides	with	each	of	the	collectables,	the	Pickup	animation	will	play	and
the	collectable	will	disappear.

The	health	value	in	the	Inspector	panel	will	increase	up	to	the	maximum	amount.

The	last	lunchBox	collectible	will	still	disappear,	but	the	health	value	will	not	exceed	the
number	defined	in	the	healthLimit.

Summary
In	this	chapter,	we	explored	various	aspects	of	environmental	interaction.	We	started	by
setting	up	a	first-person	controller	to	work	with	our	player	character	model.	We	then
created	a	state	machine	in	the	Animator	window	for	our	player	and	added	the	appropriate
motion	clips.	We	set	up	the	switch	between	states	using	a	player	animation	script.

Finally,	we	added	health	power-ups	for	the	player	to	collect	in	the	level,	and	scripted	a
player	response	with	the	use	of	an	additional	camera	and	the	player	status	script.

In	the	next	chapter,	we	will	return	to	our	enemy	characters	and	demonstrate	how	motion
capture	data	can	be	implemented	within	a	Mecanim-ready	character.

We	will	define	frame	ranges	in	a	source	file	to	create	useable	loops,	which	can	then	be	set
up	in	the	zombie	character’s	state	machine.

Chapter	4.	Working	with	Motion	Capture
Data
As	a	method	of	translating	real-world	movement	into	a	usable	digital	file,	motion	capture
crosses	a	major	boundary	in	computer	graphics.	In	more	complex	animation	sequences,
traditional	keyframe	animation	techniques	are	sometimes	too	time	consuming.	With
motion	capture	processes	becoming	more	affordable	and	available,	many	independent
game	developers	are	exploiting	this	technology	to	add	a	dynamic	edge	to	their	projects.

In	this	chapter	we	will:

Explain	the	characteristics	of	motion	capture	files
Demonstrate	the	creation	of	two	distinct	walk	cycles	from	one	motion	capture	file
Set	up	a	simple	scene,	animator	controller,	and	script	to	test	the	resulting	motion	clips

This	chapter	will	feature	the	male	zombie	character	that	was	imported	and	prepared	in
Chapter	1,	The	Zombie	Attacks!.	If	you	worked	through	this	chapter,	you	can	proceed	with
the	same	file,	or	use	the	readied	model	provided	in	the	project	files.

Introduction	to	motion	capture	sequences
and	their	characteristics
In	short,	motion	capture	is	an	attempt	to	record	the	simultaneous	movement	of	items
(usually	the	joints	or	bones	of	the	human	body).

Motion	capture	sequences	have	been	successfully	created	in	a	number	of	ways:

Motion	capture	suits	contain	a	number	of	sensors	that	return	the	actual	joint	rotations
as	an	actor	is	performing	an	action
Optical	motion	capture	often	uses	cameras	to	pinpoint	the	position	of	key	markers
within	three-dimensional	space.

In	the	past,	both	of	these	methods	required	special	equipment	and,	consequently,	were
very	expensive.	Advances	in	movement	control	in	game	consoles	such	as	Wii,	Playstation,
and	Xbox	have	made	simple	motion	capture	using	markerless	motion	capture	more
affordable	and	accessible.

The	motion	capture	sequences	provided	as	examples	with	this	book	were	captured	with	a
Kinect	sensor	connected	to	a	PC.	Motion	capture	is	used	in	video	games	for	the	same
reasons	that	it	is	used	in	visual	effects	in	the	movie	industry.

The	convincing	movement	of	the	human	form	is	sufficiently	complex	to	take	a	long	time
to	perfect	using	traditional	keyframe	animation.	Rather	than	just	animate	a	series	of	joints
or	bones,	you	have	to	consider	how	these	joints	and	bones	move	together.	Secondary
animation	effects,	such	as	balance	and	counterweight,	are	vitally	important	for	the	human
motion	to	look	real.	In	fast	or	particularly	energetic	sequences,	these	can	be	very	difficult
to	achieve.

Like	traditional	animation,	motion	capture	is	done	with	a	target	frame	rate	in	order	to
optimize	quality	and	keep	the	resulting	file	sizes	within	useable	boundaries.	Using	the
economical	methods	available,	the	number	of	bones	or	joints	that	can	be	captured	is
limited,	and	there	is	very	little	support	for	the	capture	of	facial	expression	and	complex
hand	animation.	Neither	of	these	are	substantially	supported	in	the	current	version	of
Unity	anyway.

Because	of	the	amount	of	data	captured,	it	is	a	good	idea	to	limit	the	length	of	each	motion
capture	take.	Trimming	and	cleaning	up	motion	capture	sequences	is	also	an	important
step	in	using	this	technology	efficiently	within	the	parameters	of	game	development.

Using	a	motion	capture	sequence	with	a
pre-rigged	model
To	demonstrate	the	use	of	motion	capture	data	in	Mecanim	we	will	continue	with	the	male
zombie	character	that	we	worked	with	in	Chapter	1,	The	Zombie	Attacks!.

Getting	started
We	will	begin	this	demonstration	with	the	basic	scene	we	assembled	in	the	first	chapter.

1.	 Open	the	scene	by	navidating	to	File	|	Open	Scene.
2.	 In	the	scene	file	dialog	that	opens	up,	select	Chapter4_Start	from	the	PACKT_Scenes

folder.

The	scene	contains	our	zombie_m	character	and	a	ground	plane,	and	is	lit	with	the
default	directional	light	and	skybox.

The	character	already	has	an	animator	controller	attached	to	it,	though	it	only	has	the
idle	and	attack	animation	sequences	that	we	added	in	Chapter	1,	The	Zombie
Attacks!.

3.	 Move	the	default	camera	to	a	position	where	it	clearly	shows	the	zombie_m	character
and	the	extent	of	the	groundPlane	in	front	of	it:

Setting	up	the	scene	in	this	way	will	make	it	easier	to	clearly	see	our	motion	sequences.

Importing	the	motion	capture	sequence
The	motion	capture	sequence	contains	the	animated	bones	or	markers	that	are	stored	in	the
file	when	the	motion	is	captured.	Mecanim	allows	us	to	transfer	this	data	to	our	character’s
rig,	which	will	usually	have	a	different	hierarchy	of	bones	or	joints	than	the	source	FBX.

When	we	import	the	motion	capture	file,	Unity	will	set	up	the	asset	with	an	Avatar,	which
will	make	it	compatible	with	our	existing	character:

1.	 In	the	unzipped	project	files	that	you	downloaded	for	this	book,	locate	the	folder
named	motionCapture.

2.	 Open	the	folder	to	locate	zombie_walk.FBX.

This	file	contains	the	motion	capture	sequence	that	we	will	be	using	in	this	chapter.

3.	 Back	in	Unity,	locate	the	PACKT_Animations	folder	in	the	Project	panel.
4.	 Click	it	once	to	display	its	contents	in	the	Assets	panel.
5.	 Drag	zombie_walk.FBX	into	the	Assets	panel.
6.	 Now	that	it	has	been	imported,	click	zombie_walk	to	select	it.

Next,	we	will	need	to	make	some	changes	to	the	import	settings.

Adjusting	the	import	settings
The	Inspector	panel	will	display	the	FBX	file’s	import	settings,	allowing	us	to	adjust
them.

Under	the	Model	tab,	make	sure	that	the	scale	is	consistent	with	your	model.	In	this	case,
the	scale	should	be	set	to	1	by	default.

We	are	only	importing	the	animation	here,	so	many	of	the	checkboxes	that	deal	with	the
mesh	can	be	ignored:

Adjusting	the	rig	import	settings

As	we	demonstrated	earlier,	the	Model	import	settings	are	where	we	specify	the	scale	and
format	of	the	data	that	we	are	bringing	in	to	Unity.	We	still	need	to	adjust	the	Rig	settings
to	define	how	the	skeleton	is	processed	into	an	Avatar	that	Mecanim	can	use:

1.	 In	the	Inspector	panel,	click	the	Rig	tab.
2.	 Set	the	Animation	Type	to	Humanoid.

3.	 Click	the	Configure…	button.	This	will	initialize	the	Avatar	mapping	diagram.

Often,	Mecanim	will	do	most	of	the	work	for	you,	but	it	is	always	a	good	idea	to
double	check	the	mapping	of	the	bones	to	make	sure	that	the	right	bones	have	been
assigned	to	the	right	slots	within	the	character’s	Avatar.

If	you	are	using	models	and	animations	from	different	sources	(as	is	the	case	here),
this	will	be	a	crucial	step,	as	the	skeletons	will	not	have	the	same	naming
conventions.

Sometimes	there	are	additional	bones	in	the	arms,	spine,	and	legs	and	we	need	to
make	sure	that	the	bones	we	assign	are	in	the	same	position	in	both	rigs.	If	there	are
any	compatibility	issues,	we	can	usually	fix	these	within	Mecanim.

Any	errors	in	the	mapping	will	be	displayed	with	red	warning	labels	in	the	viewport.

4.	 Once	you	are	happy	with	the	mapping,	click	Done	to	save	the	changes	to	the	Avatar.

Next	we	will	define	the	range	of	the	sequence	in	the	Animations	import	tab.

Adjusting	the	sequence	in	the	Animations	tab
The	Animations	import	settings	are	where	we	specify	the	range	of	the	animation	and
whether	it	is	a	loop	or	a	single-shot	sequence:

1.	 Click	the	Animations	tab	in	the	Inspector	panel.
2.	 Make	sure	that	the	Import	Animation	checkbox	is	checked.	This	should	be	the	case

by	default.
3.	 Click	the	Story	anim	stack	clip	in	the	Clips	list	to	access	the	additional	animation

settings.

When	we	imported	the	animation	sequences	in	the	last	chapter,	they	were	already
prepared	for	us,	but	in	this	case	we	have	a	long	animation	sequence	that	needs	to	be
trimmed	to	create	a	proper	looping	walk	sequence	for	our	zombie.

By	default,	all	frames	of	the	sequence	are	used	in	the	current	animation	clip.

The	Animation	Preview	panel	at	the	bottom	of	the	Inspector	panel	currently	shows
a	default	humanoid	character.	Let’s	preview	the	animation	sequence	on	the	zombie_m
character	instead.

4.	 Drag	the	zombie_m	game	object	from	the	Hierarchy	panel	onto	the	Animation
Preview	panel.

The	display	should	update	to	show	the	male	zombie.

5.	 In	the	Preview	panel,	click	the	Play	button	to	preview	the	sequence.
6.	 The	animation	sequence	shows	the	zombie’s	walk.	Importantly,	in	this	motion

capture	file,	there	are	several	full	cycles.

The	walk	sequence	is	not	completely	regular,	and	there	are	variations	consistent	with
what	we	would	expect	for	a	zombie’s	walk.

7.	 Rename	the	sequence	zwalk01	by	typing	this	into	the	name	field	just	below	the	Clips
list.

8.	 Hit	Enter	to	store	the	name	change.

Next	we	will	specify	the	start	and	end	frames	of	the	sequence.

9.	 Click	the	Clamp	Range	button,	to	allow	you	to	specify	the	start	and	end	of	the	new
cycle	within	the	source	sequence.

10.	 Preview	the	animation	and	find	the	point	in	the	walk	sequence	where	the	left	foot
comes	to	its	full	forward	extent	for	the	first	time.

11.	 Drag	the	Start	frame	tag	to	this	point	or	type	the	number	of	the	frame	into	the	Start
field.

Frame	180	should	be	about	right,	but	if	you	have	chosen	a	different	frame,	this	is	also
okay.

12.	 Drag	the	End	frame	tag	to	the	point	in	the	sequence	where	the	first	cycle	ends.

This	will	be	where	the	left	foot	comes	to	its	full	forward	extent	for	the	second	time.

Frame	225	should	be	about	right.	This	number	could	also	be	typed	into	the	End	field.

Note
When	you	choose	the	end	frame	of	a	cycle,	keep	an	eye	on	the	colored	circles	on	the

right	of	the	Inspector	panel.	These	help	you	to	locate	an	appropriate	start	and	end	of
a	loop.	All	circles	will	turn	green	if	you	have	a	perfect	match.

These	circles	represent	the	Local	Bone	Rotations,	Root	Transform	Rotation,	Root
Transform	Position	(Y),	and	Root	Transform	Position	(XZ).

It	is	okay	if	not	all	of	these	are	displayed	in	green.	At	the	moment,	the	first	of	these	is
the	one	that	you	should	be	the	most	concerned	about.	A	green	circle	is	the	best	match;
yellow	is	the	next	best.

13.	 Check	the	Loop	Time	and	Loop	Pose	checkboxes	to	make	sure	that	the	sequence	is
interpreted	as	a	cycle.

Note
Animation	sequences	always	loop	in	the	preview	panel,	but	you	will	need	to	specify
that	they	are	loops	in	the	Animations	import	settings	for	them	to	actually	loop	when
they	run	in	the	game.

14.	 In	the	Root	Transform	Position	(Y)	group,	set	the	Based	Upon	(at	Start)	value	to
Feet	using	the	drop-down	list.

15.	 Check	the	Bake	into	Pose	checkbox	for	this	group	to	make	sure	that	the	position	of
the	feet	in	the	pose	are	identified.

This	will	help	to	make	sure	that	the	feet	do	not	penetrate	the	ground	plane	as	the
character	walks.

16.	 Leave	the	remaining	parameters	with	their	default	values.
17.	 Click	the	Apply	button	to	store	the	changes.
18.	 Preview	the	animation	again,	it	should	now	start	with	the	frame	that	you	selected:

Creating	the	second	walk	cycle
We	will	get	a	little	more	mileage	out	of	this	motion	capture	sequence	by	creating	another
walk	cycle	that	uses	a	different	portion	of	the	original	animation	clip.

As	our	game	will	involve	multiple	zombies	walking	around	in	our	scene	at	any	given	time,
this	will	help	to	add	some	variety.	We	could	even	set	up	these	animation	clips	to	play
randomly:

1.	 Click	on	the	+	symbol	in	the	Clips	list	to	add	another	animation	clip.	The	start	and
end	tags	will	be	reset	to	their	original	positions	at	the	beginning	and	end	of	the
original	animation	clip.

2.	 Rename	the	new	clip	zwalk02.
3.	 Again	click	the	Clamp	Range	button.
4.	 Making	sure	that	the	new	clip	is	selected,	move	the	Start	frame	tag	to	the	second

instance	in	which	the	left	foot	has	reached	its	forward	extent,	around	frame	225.

This	is	the	same	frame	as	the	end	frame	of	the	first	walk	cycle.

5.	 Move	the	End	frame	tag	to	the	next	instance	in	which	the	left	foot	has	reached	its
extent.	Frame	264	should	be	a	good	end	frame.

6.	 Make	sure	to	check	Loop	Time	and	Loop	Pose,	and	check	the	colored	circles	for	a
good	match.

7.	 As	before,	select	Feet	as	the	value	in	the	Based	Upon	(at	Start)	drop-down	list	in
the	Root	Transform	Position	(Y)	group,	and	check	the	Bake	into	Pose	checkbox.

8.	 Click	the	Apply	button	to	save	the	changes	made	to	zwalk02.
9.	 Preview	the	animation.

Despite	being	derived	from	the	same	motion	capture	sequence,	the	two	sequences	should
appear	distinctly	different.

In	order	to	play	the	animations	in	the	scene,	we	will	need	to	add	them	to	the	animator
controller	and	reference	them	in	a	short	script	to	determine	when	each	will	play.

Adding	the	new	motion	clips	to	the	animation	controller
In	the	game,	we	would	probably	want	a	single	zombie	to	use	only	one	walk	sequence,	but
for	testing	purposes	we	will	set	up	a	script	to	switch	between	the	two	prepared	cycles.

We	will	have	our	zombie	walk	automatically	when	we	start	the	game,	and	have	him	switch
animations	when	the	B	key	is	pressed:

1.	 In	the	Project	panel,	navigate	to	the	PACKT_Controllers	folder.
2.	 Drag	walkTest	onto	the	Controller	slot	in	the	zombie’s	animator	component	in	the

Inspector	panel.
3.	 Activate	the	Animator	tab,	next	to	Scene	and	Game	views	in	the	center	panel,	by

clicking	it.

Note

If	the	Animator	tab	is	not	visible,	it	can	be	activated	from	the	Menu	tab	by
navigating	to	Windows	|	Animator.

If	you	expand	or	Alt	+	drag	the	Animator	window,	you	will	see	that	it	contains	only
two	additional	states:	Walk01	and	Walk02:

The	transitions	between	these	two	states	are	set	up	with	a	boolean	parameter	called
SwitchWalk,	which	is	set	to	false	(off)	by	default,	shown	in	the	Parameters	box
with	an	unchecked	checkbox.

4.	 Click	the	Walk01	state	and	drag	the	zwalk01	animation	clip	into	the	first	motion
field.

5.	 Do	the	same	for	Walk02,	assigning	zwalk02	to	the	second	motion	field.

The	next	step	will	involve	triggering	the	transition	between	the	states	in	a	short	script.

Creating	a	script	to	see	both	animation	loops	in	action
In	order	to	see	the	difference	between	our	two	walk	animation	loops,	we	will	set	up	a
simple	script	to	enable	them	to	play	in	turn:

1.	 In	the	Project	panel,	select	the	PACKT_Scripts	folder	and	create	a	new	Javascript	file
within	it	by	navigating	to	Create	|	Javascript.

2.	 Name	the	script	zombieWalkTest01.
3.	 Double-click	on	the	file	to	open	it	in	MonoDevelop.
4.	 Replace	the	default	code	in	the	script	with	the	following	code:

var	zombieControl	:	Animator;

var	walkBool	:	boolean	=	false;

function	Start	()	

{

				zombieControl	=	GetComponent(Animator);

}

function	Update	()	

{

				if(Input.GetKeyDown("b"))

				{

								walkBool	=	!walkBool;

								zombieControl.SetBool("SwitchWalk",	walkBool);

				}

}

At	the	top	of	the	script,	we	create	the	variable	zombieControl	to	maintain	a	connection
between	the	character	game	object’s	animator	component.

We	create	a	boolean	named	walkBool	that	will	be	used	within	this	script	to	determine
when	to	switch	between	our	two	animation	states.	This	is	set	to	false	by	default.

Within	the	Start	function,	we	define	the	first	variable	as	the	animator	component	attached
to	the	same	game	object	as	the	script	using	the	GetComponent	method.	We	also	set	the
Mecanim	boolean	SwitchWalk	to	walkBool,	which	has	already	been	set	to	false	as	its
default	state.

In	the	Update	function,	we	check	for	down	input	from	the	B	key.	When	this	condition	is
met,	we	switch	the	walkBool	boolean.	We	also	set	the	Mecanim	boolean	SwitchWalk	to
the	value	returned	by	walkBool.

This	is	a	very	simple	example	of	how	to	set	up	a	two-state	behavior	controlled	with	user
input.	The	script	could	easily	be	adapted	to	respond	to	environmental	triggers.

We	will	go	into	more	detail	with	this	in	Chapter	9,	Controlling	Enemy	Animation	with	AI
and	Triggers,	which	deals	with	enemy	behavior.

Adding	the	script	and	previewing	the	animation	switch

We	have	set	up	the	zombie’s	animator	controller	but	we	still	need	to	attach	the	script
before	we	can	test	the	animation	loops:

1.	 Select	the	zombie_m	game	object	in	the	Hierarchy	panel	to	expose	its	properties	in
the	Inspector	panel.

2.	 Add	the	script	by	dragging	it	onto	the	game	object	in	the	Hierarchy	panel.
zombieWalkTest01	will	show	up	as	a	script	component	in	the	Inspector	panel.

3.	 Press	Play	to	preview	the	animation.
4.	 Once	the	zombie	has	cycled	through	his	first	animation	a	couple	of	times,	press	B	on

the	keyboard	and	see	the	second	walk	cycle	run.

This	will	continue	until	you	hit	the	B	key	again:

There	should	be	some	noticeable	differences	between	the	two	walk	cycles.	Small
variations	in	the	pose	and	movement	of	the	joints	will	give	each	walk	cycle	its	own
distinct	character.

Summary
In	this	chapter,	we	introduced	the	key	characteristics	of	motion	capture	data	and	showed
the	advantages	of	using	it	in	a	project.	We	introduced	the	Animation	import	settings,
demonstrated	how	seamless	loops	can	be	created,	and	how	a	number	of	unique	walk
cycles	could	be	derived	from	a	single	motion	capture	sequence.

In	the	next	chapter,	we	will	look	at	animation	retargeting	and	how	an	animation	clip	can
be	used	for	characters	of	different	types.	We	will	look	at	how	optional	bones	come	into
play	and	how	variations	in	characters	can	be	accommodated	within	Mecanim’s	toolset.

Chapter	5.	Retargeting	Animation
In	Chapter	4,	Working	with	Motion	Capture	Data,	we	used	Mecanim	to	create	two	unique
walk	cycles	from	an	imported	motion	capture	file.	This	chapter	will	demonstrate	how
motion	sequences	such	as	these	can	be	reused	for	different	characters.

Mecanim’s	robust	animation	toolset	allows	users	to	reuse	animation	sequences	in	different
characters.	Provided	that	both	characters	use	the	Humanoid	animation	type	(specified	in
the	Import	settings),	a	great	deal	of	variation	within	skeletons	is	possible.	Mecanim	will
identify	and	convert	animation	sequences	based	on	the	bone’s	position	in	the	skeletal
hierarchy,	eliminating	the	necessity	of	identical	(and	identically	named)	rigs.

If	you	are	creating	animation	sequences	from	scratch	using	traditional	keyframe	animation
techniques,	it	does	not	take	much	extra	time	to	animate	extra	bones,	such	as	ponytails	and
accessories	in	a	character’s	rig.	However,	when	it	becomes	necessary	to	use	pre-made
animations	and	incorporate	motion	capture	data,	it	can	be	a	time-consuming	process	to
adapt	and	refine	a	generic	animation	to	fit	a	key	character	within	the	game.

In	this	chapter,	we	will	demonstrate	Mecanim’s	animation	retargeting	capacity	with	the
following	objectives:

Copying	and	modifying	an	animation	sequence	for	a	different	character
Adjusting	animation	import	settings	to	get	a	better	fit
Modifying	muscle	parameters	to	limit	a	character’s	range	of	movement
Using	animation	masks	and	layers	and	accommodating	these	in	the	script
Varying	a	walk	sequence	using	animation	masks
Retargeting	the	male	walk	animation	for	the	female	zombie	character

To	demonstrate	the	retargeting	capabilities	of	Mecanim,	we	will	continue	with	the	walk
sequences	created	for	the	male	zombie	in	the	previous	chapter,	this	time	adapting	one	of
the	walk	cycles	for	his	female	counterpart.

Loading	the	scene
This	time,	the	starting	scene	has	been	prepared.	It	includes	a	basic	environment,	lighting
and	the	zombie_f	prefab	already	set	up	to	work	with	Mecanim.

In	the	Unity	project,	open	the	scene	Chapter5_Start.	The	scene	will	load.	The	female
zombie	already	has	an	Avatar,	and	has	an	animator	component	attached	to	it,	containing	a
single,	idling	animation	unique	to	the	character.

The	zombie_f	prefab	also	has	a	short	script,	which	is	set	up	ready	to	play	the	idle	and	walk
sequences:

Adding	and	previewing	the	animation
At	this	point	we	will	add	one	of	the	walk	sequences	to	the	zombie’s	animator	controller:

1.	 Click	the	Animator	tab	to	view	the	character’s	animator	controller.
2.	 In	the	Animator	window,	click	the	Walk	state	to	view	its	parameters	in	the

Inspector	panel.
3.	 In	the	Project	panel,	click	the	PACKT_Animations	folder	to	view	its	contents	in	the

Assets	panel.
4.	 Locate	the	zombie_walk	asset	and	click	the	small	arrow	to	the	right	of	its	icon	to

view	its	contents.
5.	 Drag	zWalk01	from	the	Assets	panel	into	the	Walk	state’s	Motion	field	in	the

Inspector	panel	to	add	it	to	the	state	machine.
6.	 Press	the	Play	button	in	the	top-center	of	the	Unity	interface	to	preview	the	game:

The	female	zombie	character	will	idle	for	a	short	time	before	launching	into	the	walk
sequence.	It	should	be	obvious	that	there	are	a	few	issues	with	the	walk	sequence:

When	the	character	starts	walking,	she	floats	to	a	position	above	the	ground
During	the	walk	cycle,	the	character’s	arms	intersect	with	her	torso
The	ponytail	does	not	move	along	with	the	rest	of	the	character:

These	issues	will	be	fixed	in	the	animation	import	settings.

Adjusting	import	settings	to	get	a	better	fit
In	order	to	adjust	the	import	settings	for	the	motion	clip,	we	need	to	locate	the	original
FBX	file	that	contains	the	motion	capture	data	for	the	walk	cycle:

1.	 In	the	Project	panel,	expand	the	PACKT_Animations	folder.
2.	 Select	the	zombie_walk	asset	in	the	Assets	panel.

Its	import	settings	will	be	displayed	in	the	Inspector	panel.

3.	 Click	the	Animations	tab	to	view	the	current	import	settings.

The	initial	zwalk01	clip	works	fine	for	the	male	zombie,	so	we	do	not	want	to	make	any
changes	directly	to	this,	so	instead,	we	will	create	a	new	clip.	This	will	allow	us	to	tailor
the	sequence	to	the	zombie_f	character.

Creating	a	duplicate	walk	cycle
If	we	simply	duplicate	the	animation	asset	in	the	Assets	panel,	we	would	lose	the	ability	to
adjust	the	motion	clip’s	parameters.	Making	these	changes	in	the	root	asset	from	which	the
clip	is	derived	gives	us	much	more	control	over	the	resulting	clip:

1.	 In	the	Inspector	panel,	click	the	+	symbol	at	the	bottom	of	the	Clips	group	to	create
a	new	clip.

2.	 Name	the	clip	zwalk01f	in	the	name	field.
3.	 Click	the	Clamp	Range	button	to	limit	the	frame	range	that	the	new	clip	will	use.
4.	 Set	the	Start	and	End	frames	of	the	clip	to	180	and	225	to	match	the	parameters	of

zwalk01.
5.	 Click	the	Apply	button	to	save	the	changes	to	the	asset.
6.	 Switch	to	the	Animator	tab	and	replace	the	walk	cycle	in	the	state	machine	by

clicking	the	Walk	state	and	dragging	the	zwalk01f	clip	into	the	motion	clip	field	in
the	Inspector	panel.

At	this	point	there	should	not	be	any	noticeable	changes,	but	replacing	the	clip	in	the	state
machine	will	allow	us	to	visualize	the	new	clip	in	the	scene.

The	next	step	will	be	to	adjust	the	animation’s	height	so	that	the	character	appears	to	walk
on	the	floor.

Adjusting	the	motion	parameters
The	animation	import	settings	will	allow	us	to	make	changes	to	the	way	the	animation
data	is	interpreted	to	better	suit	the	target	character:

1.	 In	the	Assets	panel,	click	zombie_walk	to	view	the	parameters	in	the	Inspector
panel.

2.	 Make	sure	that	the	Animations	tab	is	selected	and	zwalk01f	is	highlighted	in	the
Clips	box.

3.	 Check	the	checkboxes	for	Loop	Time	and	then	Loop	Pose	to	make	sure	the

sequence	cycles	smoothly.
4.	 Scroll	down	to	the	Root	Transform	Position	(Y)	group.	This	is	used	to	adjust	the

root	height	of	the	model	when	the	motion	clip	is	played.
5.	 Check	the	Bake	into	Pose	checkbox.
6.	 Set	the	Offset	value	to	0.08.
7.	 Scroll	to	the	bottom	of	the	Inspector	panel	and	click	the	Apply	button.

You	should	notice	the	character	drop	slightly	in	the	Animation	Preview	panel	at	the
bottom	of	the	Inspector	panel.

Tip

To	get	a	better	visualization	of	the	offset,	you	can	orbit	the	character	in	the
Animation	Preview	panel	by	dragging	within	it.

If	you	need	to	scale	up	the	panel,	drag	the	gray	title	bar	of	the	Animation	Preview	up
to	increase	the	panel’s	height	within	the	Inspector	panel,	or	drag	the	entire	Inspector
panel	into	the	center	of	the	interface	to	undock	it.

8.	 Preview	the	adjusted	motion	clip	by	clicking	the	Play	button	in	the	main	Unity
interface:

9.	 Check	the	position	of	the	feet	at	various	stages	of	the	walk	cycle	using	the	Pause
button	and	adjust	the	Offset	value	if	necessary.

Note
To	fix	the	relative	height	of	the	motion	clip,	we	adjusted	the	Root	Transform
Position	(Y)	import	setting.

There	are	also	options	to	fix	the	XZ	position	and	the	rotation	of	the	animation.	In	this
case,	we	did	not	need	to	adjust	these	parameters,	but	they	are	useful	when	the	root
joint	has	not	been	centered	to	the	world	or	faces	a	different	direction	than	the	rigged
character	model	that	it	is	being	applied	to.

In	the	Root	Transform	Position	(Y)	group,	we	left	Bake	Into	Pose	unchecked.
Checking	this	will	apply	the	offset	to	the	animation’s	root	joint	in	its	starting	pose
rather	than	recalculating	it	throughout	the	sequence.

We	left	Based	Upon	(at	Start)	to	its	default	value	of	Original.	This	applies	Offset	to

the	position	of	the	root	joint	at	the	start	of	the	whole	imported	sequence.	Setting	this
to	Center	of	Mass	or	Feet	using	the	dropdown	will	have	different	effects.	Center	of
Mass	will	apply	the	offset	to	a	point	equal	to	half	the	height	of	the	animation	rig.

These	parameters	are	useful	when	we	are	working	with	animation	from	multiple
sources.

Our	next	objective	is	to	adjust	the	joint	rotation	limits	to	prevent	the	character’s	arms	from
intersecting	with	her	torso.	We	will	achieve	this	in	the	next	step	by	adjusting	the	muscle
limits.

Adjusting	the	muscle	limits
With	muscle	limits,	we	can	define	a	joint’s	range	of	movement	and	therefore	how	the
character	will	interpret	the	animation:

Note
We	are	covering	muscle	limits	in	this	chapter	because	of	their	relevance	to	motion	capture
and	retargeting.	If	you	are	creating	animation	sequences	specifically	for	a	single	character,
adjusting	muscle	limits	is	as	unnecessary	as	retargeting.

1.	 In	the	Project	panel,	locate	the	FBX_Imports	folder	and	click	it	to	view	its	contents	in
the	Assets	panel.

2.	 Click	the	zombie_f	asset.

This	is	the	asset	used	in	the	zombie_f	prefab	in	our	scene.	Making	changes	to	the
original	item	will	automatically	be	transferred	to	the	prefab.

The	zombie_f	asset’s	parameters	should	now	be	visible	in	the	Inspector	panel.

3.	 Click	to	select	the	Rig	tab.
4.	 Click	the	Configure	button.

At	this	point,	you	may	be	prompted	to	save	the	scene.	In	this	case,	it	is	an
unnecessary	step,	as	all	of	the	changes	so	far	have	been	made	to	prefabs	and	are
already	saved	at	the	project	level.

The	Inspector	panel	will	now	display	the	Avatar	Mapping	Definition	panel,	where
we	defined	the	hierarchy	of	bones	that	make	up	the	character’s	skeleton	previously.

5.	 Click	the	Muscles	tab.

A	number	of	muscle	limit	sliders	will	appear	in	the	Inspector	panel,	and	the	character	will
snap	into	a	test	pose	in	the	Scene	view:

The	sliders	in	the	Muscle	Group	Preview	box	are	for	testing.	Dragging	sliders	will
preview	the	character	Avatar’s	current	muscle	limits	in	the	Scene	view.	We	will	be	making
changes	to	the	character’s	muscle	limits	in	the	second	box,	which	defines	the	Per-Muscle
Settings.

We	will	start	with	the	right	arm,	which	intersects	with	the	torso	during	the	walk	cycle:

1.	 Click	Right	Arm	in	the	Per-Muscle	Settings	list	to	view	its	muscle	limit	parameters.
2.	 In	the	list	of	parameters	that	appear	beneath	Right	Arm,	click	Arm	Down-Up	to

view	its	limits	slider:

The	range	of	Arm	Down-Up	is	currently	set	with	a	lower	limit	of	-60	degrees	and	an
upper	limit	of	100	degrees.

3.	 Drag	the	Preview	slider	on	the	left	to	visualize	this	with	the	character	in	the	Scene
view.

It	should	be	apparent	that	the	upper	arm	is	rotating	much	further	than	it	should.

4.	 Drag	the	Preview	slider	all	the	way	to	the	right	and	adjust	the	upper	limit	to	restrict
the	movement	of	the	joint.	A	value	of	around	80	should	allow	enough	movement.

5.	 Drag	the	Preview	slider	all	the	way	to	the	left	and	adjust	the	muscle’s	lower	limit.
The	joint	should	stop	rotating	when	it	starts	to	intersect	with	the	torso.	A	value	of	-41
should	work	for	this.

6.	 Click	the	Apply	button	to	store	the	changes:

7.	 Repeat	this	process	for	the	muscle	limits	in	the	Left	Arm.
8.	 Make	sure	to	click	the	Apply	button	to	save	your	changes.
9.	 In	the	Right	Arm	list,	select	Forearm	Stretch.

Dragging	the	Preview	slider	for	this	muscle	limit	should	show	that	the	forearm
intersects	with	the	upper	arm	at	its	lower	limit.

10.	 Move	the	lower	limit	further	towards	the	center	of	the	scale,	or	type	in	a	new	number
so	that	the	forearm	no	longer	intersects	with	the	upper	arm.	A	value	of	-65	should
work	pretty	well.

In	this	case,	it	is	not	necessary	to	adjust	the	upper	limit	as	the	rotation	comes	to	an
end	when	the	arm	is	straight.

11.	 Repeat	these	changes	in	the	Forearm	Stretch	parameter	for	the	Left	Arm.

Test	more	of	the	Preview	sliders	to	see	whether	it	is	necessary	to	make	more	changes	to
the	muscle	limits.	Remember	this	is	only	necessary	if	there	is	a	conflict	in	the	rotation	of
the	joints	in	the	animation	sequence	we	are	using,	or	if	you	want	to	add	distinct
characteristics	to	the	animation	when	played	with	a	particular	character.

Different	clothing,	such	as	the	female	zombie’s	skirt	and	heels,	could	be	factors	that	would
limit	the	rotation	of	joints	and	ultimately	how	the	character	moves.

Another	Mecanim	tool	that	can	be	used	to	adapt	motion	sequences	in	Unity	is	the	body
mask.	We	will	demonstrate	this	next	with	the	male	zombie	character.

Working	with	Avatar	Body	Masks
As	well	as	adapting	motion	sequences	to	specific	character	types	with	muscle	limit
definitions,	Mecanim	has	the	ability	to	blend	together	parts	of	different	sequences	using
Avatar	Body	Masks.

Much	like	masks	used	to	hide	portions	of	still	images	in	image-editing	software	such	as
Photoshop,	Mecanim’s	body	masks	can	be	used	to	hide	parts	of	a	character	animation
allowing	motion	in	an	underlying	layer	to	become	visible.

This	can	be	useful	when	it	is	necessary	to	add	subtle	differences	to	recurring	animation
sequences	such	as	those	used	by	the	zombie	enemies	in	this	example.

In	this	section	we	will	add	an	Avatar	Body	Mask	and	use	it	on	the	prefab	male	zombie
character	to	vary	his	animation.

Opening	the	new	scene
The	assets	needed	to	demonstrate	body	masks	have	been	put	together	in	a	scene.

Open	the	scene	Chapter5_2.	This	scene	contains	the	conference	room	environment,	along
with	the	zombie_m	character	already	set	up	with	an	animator	controller	and	a	script	to
enable	him	to	switch	between	states.

If	you	test	the	game	at	this	point,	by	pressing	the	Play	button,	you	will	see	the	zombie	idle
for	a	while	before	starting	his	walk	animation:

In	the	next	step	we	will	create	our	first	mask:

1.	 In	the	Project	panel,	select	and	expand	the	PACKT_Masks	folder.
2.	 To	create	the	new	mask	asset,	right-click	in	the	Assets	panel	and	choose	Create	|

Avatar	Mask.
3.	 When	the	icon	for	the	mask	appears	in	the	folder,	rename	this	z_Legs.
4.	 Click	to	expand	the	Humanoid	parameter	in	the	Inspector	panel.

The	mask	diagram	will	appear	in	the	Inspector	panel.

The	mask	diagram	is	similar	to	the	Avatar	Definition	map	in	which	we	defined	the
bone	positions	within	the	rigged	character	model	in	the	Import	settings.

In	this	case,	the	diagram	is	used	to	specify	which	parts	of	the	animation	will	be
masked.	By	default	nothing	is	masked.	You	can	click	on	each	part	of	the	body	to
remove	it	(or	mask	it	out).

Avatar	mask	options	are:

Head
Right	Arm
Left	Arm
Right	Hand
Left	Hand
Torso
Right	Leg
Left	Leg

Root
Right	Arm	IK
Left	Arm	IK
Right	Leg	IK
Left	Leg	IK

The	root	is	denoted	by	the	circle	at	the	feet	of	the	character	in	the	diagram.	The	IK
masks	will	cause	the	arm	or	leg’s	motion	to	be	driven	by	the	hand	or	foot
respectively.

5.	 Now,	click	on	all	of	the	areas	except	for	the	right	and	left	legs.

The	areas	that	you	have	clicked	will	turn	red	in	the	diagram:

In	the	next	stage	we	will	be	creating	a	new	animation	layer	within	the	character’s	animator
controller.	Only	the	areas	that	are	green	in	the	diagram	will	run	the	new	animation,	the	rest
of	the	areas	will	use	the	controller’s	base	layer	of	animation.

Using	this	technique,	parts	of	different	animation	sequences	can	be	put	together	to	create
composite	motion	clips.	The	animator	needs	more	than	one	layer	to	use	a	mask.	We	will
create	this	in	the	next	step.

Creating	a	second	layer	in	the	animator	controller
Multiple	layers	can	be	added	to	an	animator	controller,	enabling	parts	of	different	motion
clips	to	be	masked	together.	In	this	step	we	will	add	a	second	layer	to	the	controller:

1.	 If	it	is	not	already	selected,	use	the	Hierarchy	panel	to	select	the	zombie_m	game
object.

2.	 In	the	top-center	of	the	Unity	interface,	click	the	Animator	tab	to	open	the	Animator
panel.

By	default,	the	controller’s	states	and	transitions	are	grouped	in	the	base	layer,	but	we
will	create	a	new	layer	to	house	the	masking	to	enable	the	animation	to	happen	at	the
same	time	without	affecting	the	other	parts	of	the	skeleton.

3.	 Create	the	new	layer	by	clicking	on	the	+	symbol	in	the	Layers	tab	in	the	top-left
corner	of	the	Animator	panel.

4.	 Rename	the	new	layer	Legs.
5.	 Click	on	the	Legs	layer	in	the	Animator	window.	It	will	replace	the	base	layer	within

the	interface	and	appear	as	a	default	animation	controller	window	with	the	two
default	states—Any	State	and	Entry.

6.	 Click	the	settings	icon	on	the	right	of	the	Legs	layer	tab.

This	will	allow	you	to	adjust	settings	associated	with	the	layer.

7.	 Drag	the	Weight	slider	to	its	maximum	value,	1.

This	value	defines	the	strength	of	the	animation	that	will	mask	the	original.

8.	 Click	the	radio	button	next	to	the	Mask	field	and	choose	the	z_Legs	mask	in	the
dialogue	that	appears.

In	the	Legs	layer	we	will	define	the	motion	sequence	that	will	replace	that	in	the	base
layer:

We	next	need	to	define	the	states	and	transitions	as	we	would	usually	do	in	an	animator
controller.

Creating	states	in	the	mask	layer

States	in	a	mask	layer	typically	define	when	the	layer	is	used:

1.	 Create	a	new	state	within	the	Animator	panel	by	right-clicking	and	selecting	Create
State	|	Empty.

2.	 Click	on	the	new	state	to	open	its	properties	within	the	Inspector	panel.
3.	 Rename	the	new	state	null	state.

The	null	state	is	the	default	state	for	the	layer.	It	does	not	need	a	motion	added	to	it
because	the	base	layer’s	animation	will	be	visible	when	the	null	state	is	active.

4.	 Create	a	second	state.
5.	 Rename	the	new	state	AltWalk.
6.	 In	the	Project	panel,	open	the	PACKT_Animations	folder.
7.	 Drag	the	z_walk02	animation	into	the	motion	slot	in	the	Inspector	panel,	this	will

define	the	replacement	animation	that	will	be	used	just	for	the	legs.

Setting	the	parameter	and	transitions	in	the	mask	layer
Just	like	the	base	layer,	the	Leg	layer	needs	a	parameter	and	transitions	to	effect	its	states:

1.	 Create	a	new	parameter	by	clicking	the	+	symbol	in	the	Parameters	box	in	the	lower
left	of	the	Animator	window.

2.	 Choose	Bool	as	the	parameter	type.
3.	 Rename	the	parameter	AltWalking.	Leave	its	checkbox	unchecked.
4.	 Click	null	State	and	select	Make	Transition.
5.	 Click	AltWalk	to	select	it	as	the	target	state	for	the	transition.
6.	 Click	the	transition	to	expose	its	properties	within	the	Inspector	panel.
7.	 In	the	Conditions	group,	choose	AltWalking	from	the	drop-down	list.
8.	 Its	case	should	be	left	to	true.
9.	 Create	a	second	transition	to	link	the	AltWalk	state	back	to	the	null	State.
10.	 Once	again	choose	AltWalking	as	the	condition,	but	this	time	choose	false	as	the

case.

That	is	it	for	the	animator,	but	by	default	the	secondary	layer	will	not	come	into	play,	it
needs	to	be	set	up	within	the	character’s	animation	script.

Editing	the	script
Now	we	will	edit	the	script	to	activate	the	mask	layer:

1.	 In	the	Project	panel,	click	the	PACKT_Scripts	folder	to	view	its	contents	in	the
Assets	panel.

2.	 Double-click	zombie_m_idleWalk	to	open	it	in	MonoDevelop.
3.	 Add	the	following	variable	to	the	others	near	the	top	of	the	script:

var	changeWalk	:	boolean	=	false;

This	boolean	will	allow	us	to	change	the	Mecanim	parameter	in	the	script.

4.	 Add	the	following	code	to	the	top	of	the	Update	function:

theAnimator.SetBool("AltWalking",changeWalk);

if(Input.GetKeyDown("b"))

{

				changeWalk	=	!changeWalk;

}

Firstly,	we	tie	the	script	boolean	changeWalk	to	the	Mecanim	boolean	AltWalking	in	our
animator	controller.

Next	we	check	for	input	from	the	B	key	to	switch	the	boolean	case	of	the	AltWalk	state	to
true,	and	play	the	replacement	walk	animation	in	the	legs.

Previewing	the	masked	animation
We	can	stop	at	this	point	and	see	what	the	masked	animation	currently	looks	like:

1.	 Preview	the	game	by	pressing	the	Play	button	in	the	top	center	of	the	interface.
2.	 After	idling	for	a	short	time,	the	character	will	go	into	a	walk.
3.	 Press	the	B	key	to	activate	the	masked	layer.

The	animation	will	switch	to	the	alternate	clip:

The	resulting	composite	animation	uses	the	zwalk01	motion	derived	from	the	motion

capture	file,	but	augments	it	with	the	leg	animation	from	zwalk02.

Considering	that	our	game	will	feature	a	number	of	enemy	characters	on	the	screen	at	the
same	time,	this	technique	could	be	used	effectively	to	give	the	impression	of	individuality:
making	our	zombies	move	differently	without	the	memory	overhead	involved	with
creating	a	different	set	of	animation	sequences	for	each	enemy.

In	the	next	section	we	will	further	demonstrate	these	possibilities	by	creating	variations
with	the	two	walk	cycles.

Creating	five	walk	variations	from	two
walk	cycles
As	well	as	correcting	motion	sequences	to	get	them	to	fit	different	characters,	Avatar	Body
Masks	can	be	used	to	add	variety	to	multiple	characters	that	use	the	same	initial	model.

In	Chapter	4,	Working	with	Motion	Capture	Data,	we	created	two	unique	walk	cycles	from
a	single	motion	capture	sequence.	In	the	next	step	we	will	further	vary	these	by	masking
the	head,	arms,	and	legs	from	each	sequence:

1.	 In	the	Unity	project,	open	the	scene	Chapter5_3.

The	scene	is	the	same	simple	room	interior,	but	this	time	containing	five	identical
male	zombies.

Currently	each	of	the	zombie	characters	shares	the	same	animator	controller.	It	is	set
up	to	play	the	same	walk	sequence	after	idling	for	a	short	time.

2.	 In	the	top-center	of	the	Unity	interface,	press	the	Play	button	to	preview	the	walk
animation:

As	the	zombie	characters	all	begin	walking	at	the	same	time,	the	uniformity	of	their
animation	sequence	is	quite	obvious.

Mecanim’s	animation	masking	tools	give	us	some	more	options.

Adding	more	Avatar	masks
In	the	last	section,	we	used	a	mask	to	blend	in	a	different	leg	animation.	Here	we	will
create	more	Avatar	masks	to	use	the	two	walk	sequences	together	to	create	more
variations:

1.	 In	the	Project	panel,	click	the	PACKT_Masks	folder	to	view	its	contents	in	the	Assets
panel.

The	folder	contains	two	additional	Avatar	Masks:	z_Arms	and	z_HeadChestHands.

2.	 Select	the	new	masks	one	at	a	time	by	clicking	them	in	the	Assets	panel	to	see	how
they	are	set	up:

For	z_Arms	only,	the	arms	and	hands	are	highlighted	in	green
For	z_HeadChestHands,	everything	except	the	head,	chest,	and	hands	are
masked

In	order	to	vary	the	animation	masking	for	each	zombie,	we	need	to	set	each	one	up
with	its	own	animator	controller.

3.	 Click	the	PACKT_Controllers	folder	in	the	Project	panel.
4.	 Select	the	asset	ch5_3_1	and	duplicate	it	using	the	keyboard	shortcut	Ctrl	+	D	(Cmd

+	D	if	working	on	a	Mac).
5.	 Select	zombie_m2	in	the	Hierarchy	panel.

6.	 Drag	the	controller	ch5_3_2	into	the	Controller	field	beneath	the	Animator
component	in	the	Inspector	panel.

7.	 Repeat	this	process	for	the	remaining	three	instances	of	the	male	zombie,	giving	each
a	unique	animator	controller.

8.	 Select	zombie_m1	in	the	Hierarchy	panel.
9.	 Click	the	Animator	tab	to	view	its	animator	controller.
10.	 In	the	Animator	panel,	remove	the	Legs	layer	by	right-clicking	it	and	selecting

Delete.
11.	 Select	zombie_m2.
12.	 Remove	the	Legs	layer	in	this	controller,	and	replace	the	motion	contained	in	the

Walk	state,	in	the	character’s	base	layer	with	zwalk02.
13.	 Select	zombie_m3.
14.	 Rename	the	second	layer	Arms	and	use	the	radio	button	to	replace	the	z_Legs	mask

with	z_Arms	from	the	selection	list.
15.	 Select	zombie_m4	and	rename	the	second	layer	within	its	controller	HeadChestHands.
16.	 Use	the	radio	button	to	select	the	appropriate	Avatar	mask	asset.

We	can	leave	the	fifth	zombie	as	it	is	already	set	up	with	the	z_Legs	mask.

17.	 When	you	have	finished	configuring	the	controllers,	preview	the	game	by	pressing
the	Play	button.

18.	 Once	the	zombies	start	walking,	press	B	to	trigger	the	masked	layers.

The	result	should	be	five	unique	walk	cycles	using	just	two	animation	sequences:

Summary
In	this	chapter,	we	demonstrated	key	animation	retargeting	using	some	of	the	more
advanced	settings	within	Mecanim.

We	started	by	demonstrating	some	of	the	adjustments	that	can	be	made	to	an	animation
clip	using	the	import	settings.

Next,	we	looked	at	the	Muscle	tab,	showing	the	limits	that	can	be	adjusted	to	adapt
animation	sequences	to	different	character	types.

We	introduced	the	Avatar	Body	Mask	as	a	technique	to	correct	and	combine	different
animations	and	make	them	more	appropriate	for	individual	characters.

Finally,	we	used	this	process	to	add	variety	to	our	male	zombie	character	model	by
creating	composite	walk	cycles	from	the	two	sequences	created	from	motion	capture	data
in	Chapter	4,	Working	with	Motion	Capture	Data.

In	the	next	chapter,	we	will	take	a	closer	look	at	Mecanim’s	support	for	facial	animation,
and	how	a	simple	face	motion	clip	can	be	used	with	audio	to	create	a	dramatic	moment	in
our	game.

Chapter	6.	Talking	Heads
In	this	chapter,	we	will	demonstrate	the	implementation	of	basic	facial	animation	with
Mecanim.	Mecanim’s	Humanoid	animation	type	has	a	small	predefined	set	of	bones	that
will	accommodate	face	animation.	This	can	be	layered	within	the	animator	controller,
effectively	separating	body	and	face	animation	to	be	triggered	under	different	conditions.

There	are	several	valid	reasons	due	to	which	we	may	want	to	separate	out	face	and	body
animations—we	want	the	player	to	be	given	a	sign	that	the	enemy	has	spotted	them.	We
do	not	have	a	way	of	determining	what	state	the	enemy	character	is	in	when	they	spot	the
player.	We	do	not	want	them	to	immediately	attack,	however,	we	want	to	give	the	player
an	opportunity	to	react	before	the	enemy.	After	all,	the	enemy	is	a	slow	moving	zombie.

In	this	chapter,	you	will	be:

Preparing	conditions	in	the	scene	to	allow	a	triggered	response
Updating	the	zombie’s	script	to	allow	it	to	target	and	move	toward	the	player
Implementing	an	audio	asset	using	a	component	and	the	script
Adding	the	face	skeletal	animation	to	the	animator	in	its	own	masked	layer
Controlling	a	blendshape	animation	in	the	animator
Controlling	the	zombie’s	turn	and	add	further	animation
Splitting	behavior	into	self-contained	functions	within	the	script
Accurately	synchronizing	the	sound	using	an	animation	event

We	will	start	by	demonstrating	the	existing	simple	behavior	with	the	female	zombie
character	and	simple	room	environment	both	introduced	previously.

Adding	the	snarl	face	animation	to	the
female	zombie	character
Before	we	get	to	grips	with	the	animator	controller	and	the	script,	let’s	take	a	look	at	the
scene	and	run	through	the	zombie’s	current	behavior.	The	environment	is	the	simple
conference	room	used	in	Chapter	5,	Retargeting	Animation.

Setting	the	scene	in	Unity
Our	starting	scene	includes	the	conference	room	environment,	the	first	person	controller
and	a	single	enemy—the	female	zombie	introduced	in	Chapter	2,	Rigging	Characters	for
Unity	in	3ds	Max	and	Maya.

1.	 Open	the	scene	Chapter6_Start	within	the	Unity	project.
2.	 Preview	the	scene	by	pressing	the	Play	button	in	the	top	center	of	the	Unity	interface.

With	the	first-person	controller,	we	can	navigate	through	the	space	toward	the	enemy.

The	female	zombie	idles	for	a	while	before	walking	forward.	At	the	moment,	we	can	get
close	to	the	zombie	without	seeing	any	kind	of	change	in	its	behavior.

We	will	add	some	basic	functionality	to	the	script	to	lay	the	groundwork	for	our	snarl
animation	as	a	response	to	the	player’s	movement.

Adding	code	to	the	zombie_ready	script
The	script	currently	attached	to	the	female	zombie,	adequately	handles	its	current	states:
Idle	and	Walk.	We	need	to	add	a	few	lines	of	code	to	the	script	to	trigger	the	face
animation:

1.	 In	the	Project	panel,	scroll	down	until	the	PACKT_Scripts	folder	is	visible.
2.	 Double-click	on	it	to	make	its	contents	visible	in	the	Assets	panel.
3.	 Locate	zombie_ready	and	double-click	on	it	to	open	the	script	in	MonoDevelop.

We	will	start	by	adding	a	few	variables.	At	the	top	of	the	script,	add	the	following	lines	of
code:

var	target	:	Transform;

var	alerted	:	boolean	=	false;

var	snarlSound	:	AudioClip;

var	soundReady	:	boolean	=	true;

The	target	variable	will	store	the	player	character’s	position.	The	next	variable,	alerted	is
a	boolean.	It	is	basically	an	on/off	switch	that	will	allow	the	zombie	to	go	into	a	new
routine.

The	next	two	variables	deal	with	the	sound	that	we	will	be	using	to	make	it	clear	that	the
zombie	has	been	alerted.

The	snarlSound	variable	is	an	audio	clip	that	will	store	the	actual	sound,	and	soundReady
is	a	boolean	that	will	be	used	to	prevent	the	sound	playing	more	than	once.

By	default	alerted	is	set	to	false,	but	we	will	switch	it	to	true	in	the	next	few	lines	of
code.

Add	the	following	code	within	the	Update	function:

if(Input.GetButton("Fire1")	&&	alerted	==	false)

{

				alerted	=	true;

}

if(alerted)

{

				TurnToPlayer();

}

Here,	we	use	the	player	input	(in	this	case,	the	Fire1	button)	to	trigger	the	boolean	switch.
This	is	a	temporary	measure—triggers	and	ranges	are	covered	fully	in	Chapter	9,
Controlling	Enemy	Animation	with	AI	and	Triggers.

The	advantage	in	testing	the	boolean	switch	with	player	input,	at	this	stage,	is	that	it
allows	us	to	make	sure	that	the	boolean	is	working	before	we	further	complicate	the	script.

We	also	have	an	if	statement	to	check	whether	the	boolean	has	been	switched	on,	this	in
turn	runs	the	TurnToPlayer	function,	which	we	will	look	at	next.

Adding	the	TurnToPlayer	function
Instead	of	continuing	to	add	code	in	the	Update	function,	we	separate	out	the	actual
behavior	into	a	new	custom	function	named	TurnToPlayer.

Separating	these	commands	makes	our	script	easier	to	read,	it	also	allows	for	a	variety	of
ways	to	call	the	function—imagine	that	our	player	character	has	triggered	an	alarm,	which
causes	all	of	the	enemies	in	the	level	to	become	aware	of	him	and	turn	toward	him.

Add	the	following	code	to	the	bottom	of	the	script:

function	TurnToPlayer()

{

				transform.LookAt(target);

				yield	WaitForSeconds(2);

				

				if(soundReady)

				{

								GetComponent.<AudioSource>().PlayOneShot(snarlSound);

								soundReady	=	false;

				}				

				Walks();

}

The	first	command	makes	the	zombie	turn	to	face	the	player.	We	create	a	short	pause	with
the	yield	WaitForSeconds	method,	we	then	check	to	see	if	the	soundReady	boolean
variable	is	true	and	then	play	our	audio.	The	zombie	will	then	go	into	the	Walks	function,
which	has	already	been	defined	in	the	script.

Save	the	script	and	minimize	MonoDevelop.	If	you	preview	the	scene	in	the	Game	view,
there	will	not	be	any	noticeable	change	to	the	zombie’s	behavior.

Despite	the	fact	that	you	can	switch	the	alerted	boolean	on	(it	will	be	visible	in	the
Inspector	panel)	by	pressing	the	Fire1	button	(set	by	default	to	the	left	mouse	button),	the
zombie	will	not	turn	toward	the	player	as	the	player’s	Transform	has	not	yet	been	defined
as	the	target.

We	can	take	care	of	that	next.

Connecting	the	variables	in	the	Inspector	panel
Variables	can	often	be	defined	completely	within	the	script,	but	Unity’s	drag-and-drop
functionality	makes	connecting	variables	extremely	quick	and	easy.

First,	we	will	define	the	player	as	the	target:

1.	 Make	sure	that	the	zombie_f	game	object	is	selected	in	the	Hierarchy	panel—its
components	should	appear	in	the	Inspector	panel.	If	necessary,	scroll	down	until	all
of	the	zombie_ready	script’s	variables	are	visible.

2.	 Drag	the	FPSController	game	object	from	the	Hierarchy	panel	into	the	target
variable	slot.

3.	 In	the	Project	panel,	click	on	the	PACKT_Sounds	folder	to	view	its	contents	in	the
Assets	panel.

4.	 Drag	zombie_growl	into	the	snarlSound	slot	in	the	Inspector	panel.

In	order	to	play	sound,	game	objects	need	to	have	an	audio	source	component
attached	to	them.

5.	 Add	the	Audio	Source	component	from	the	Component	tab	in	the	menu	bar	at	the
top	of	the	Unity	interface	by	navigating	to	Component	|	Audio	|	Audio	Source.

It	is	not	necessary	to	specify	the	file	within	the	Audio	Source	component,	as	we	have
already	taken	care	of	that	in	the	script.

Additionally,	when	game	objects	have	more	than	one	sound	to	play,	it	is	preferable	to
define	the	audio	clip	in	the	script	rather	than	the	component.

Both	the	target	and	sound	variables	have	now	been	defined,	and	there	should	be	some
noticeable	changes	when	the	game	is	previewed:

The	zombie	will	idle	for	a	short	time	before	starting	her	walk	cycle	as	before.	This	time,
when	the	fire	button	is	pressed,	she	will	walk	toward	the	player	and	the	snarl	sound	should

play.

Now	that	we	have	set	up	some	basic	behavior,	we	just	need	to	make	a	few	changes	to	the
animator	controller	in	order	to	see	our	face	animation	in	the	game.

Updating	the	animator	controller	to
include	the	face	animation
In	the	previous	chapter,	we	created	masks	for	various	parts	of	the	body	to	add	variation	to
our	stock	animation	sequences.	The	animator	controller	connected	to	the	zombie	in	our
current	scene	is	set	up	the	same	way,	there	are	just	a	few	changes	that	need	to	be	made:

1.	 Click	on	the	zombie_f	game	object	in	the	Hierarchy	panel	to	select	it.
2.	 Click	on	the	Animator	tab	in	the	top	center	of	the	Unity	interface	to	switch	to	the

Animator	panel.
3.	 In	the	top	left	of	the	Animator	panel,	click	on	the	Layers	tab	to	activate	it.

The	zombie’s	animator	controller	consists	of	a	base	layer	containing	two	states:	Idle	and
Walk.	We	need	to	create	a	new	layer	for	the	face	animation:

1.	 In	the	top	left	of	the	Animator	panel,	click	on	the	+	symbol	in	the	Layers	tab	to
create	a	new	layer.

2.	 Rename	the	layer	Face.
3.	 Set	the	layer’s	Weight	field	to	1.
4.	 In	the	new	Face	layer,	click	on	the	radio	button	next	to	the	Mask	field	and	select

z_Head	from	the	list.
5.	 Leave	the	Blending	type	set	to	its	default	value	of	Override.

Refer	to	the	following	screenshot:

Next,	we	need	to	create	a	new	state	to	contain	our	snarl	animation.

Adding	the	Snarl	state
We	have	set	up	states	manually	in	previous	chapters,	but	if	you	know	exactly	which
animation	you	want	a	state	to	use,	you	can	also	just	drag	the	motion	clip	into	the
Animator	panel:

1.	 In	the	Project	panel,	select	the	PACKT_Animations	folder.
2.	 When	its	contents	appear	in	the	Assets	panel,	scroll	down	to	locate	zombie_snarl.
3.	 Click	on	the	small	arrow	next	to	its	name	to	view	the	contained	assets.
4.	 Drag	the	animation	file	named	snarl	into	an	empty	area	of	the	Animator	panel.

A	new	state	will	be	created	with	the	same	name	as	the	motion	clip	that	it	contains.

5.	 In	the	Inspector	panel,	capitalize	the	first	letter	of	the	state’s	name	to	keep	it
consistent	with	the	other	states	on	the	animator	controller’s	base	layer.

Unless	we	want	the	Snarl	state	to	be	constantly	active,	we	will	need	to	set	up	a	Null	state
in	the	same	layer.

Creating	a	Null	state
As	the	Face	layer	is	constantly	active,	we	need	to	create	a	blank	state	that	will	be	in	effect
whenever	we	do	not	want	to	see	the	zombie’s	snarl:

1.	 Right-click	on	a	blank	area	of	the	Animator	panel.
2.	 Navigate	to	Create	State	|	Empty.
3.	 In	the	Inspector	panel,	rename	the	state	Null.

Leaving	the	state’s	motion	field	empty	will	ensure	that	the	base	layer’s	current
motion	clip	will	be	fully	visible.

Because	we	created	the	Snarl	layer	first,	it	is	automatically	the	default	layer	and	will
run	without	being	prompted.	We	can	fix	this	by	making	Null	the	default	state.

4.	 Right-click	on	Null	in	the	Animator	window.
5.	 Choose	Set	As	Layer	Default	State	from	the	list.

The	Null	state	will	turn	orange,	indicating	that	it	is	now	the	default:

Next,	we	need	to	connect	the	layer’s	two	states	with	transitions.

Setting	transitions	between	the	Null	and	Snarl
states
In	real-world	terms,	we	want	the	snarl	to	happen	regardless	of	whether	the	zombie	is
idling,	walking,	or	lying	on	the	ground.	Having	created	the	two	states,	we	connect	them
with	to	and	return	transitions:

1.	 Create	a	transition	by	right-clicking	on	Null	and	choosing	Make	Transition.
2.	 Click	on	the	Snarl	state	to	terminate	the	transition.
3.	 Use	the	same	process	to	create	the	return	transition	from	Snarl	to	Null.

Next,	we	will	create	a	parameter	for	the	Snarl	state	that	will	allow	it	to	run.

Creating	the	IsSnarling	parameter
The	parameter	required	by	the	transition	will	be	set	within	our	zombie_ready	script:

1.	 Click	on	the	+	symbol	in	the	Parameters	box	in	the	lower	left	of	the	Animator
panel.

2.	 Choose	a	Trigger	type	parameter	and	rename	it	IsSnarling.
3.	 Leave	the	new	parameter’s	radio	button	in	its	deactivated	state,	so	the	snarl	animation

does	not	override	the	original	head	animation	by	default.
4.	 Click	on	the	transition	to	select	it.
5.	 In	the	Inspector	panel,	locate	the	Conditions	box	and	click	on	the	drop	down.
6.	 Choose	IsSnarling	as	the	condition.

We	can	leave	the	return	transition	with	its	default	settings.	The	Exit	Time	condition	will
wait	for	the	snarling	motion	to	play	through	before	returning	to	the	Null	state.

At	this	point,	we	will	want	to	make	a	few	small	edits	to	our	script	to	make	sure	that	the
Face	layer	works	correctly.

Editing	the	script	to	include	the	Face	layer
Next,	we	will	make	some	additions	to	the	existing	functions	to	make	sure	that	the	Face
layer	becomes	active	during	gameplay:

1.	 Edit	the	TurnToPlayer	function	to	set	the	IsSnarling	trigger:

function	TurnToPlayer()

{

				transform.LookAt(target);

				yield	WaitForSeconds(2);

				if(soundReady)

				{

								theAnimator.SetTrigger("IsSnarling");

				GetComponent.<AudioSource>().PlayOneShot(snarlSound);

								soundReady	=	false;

				}

				Walks();

}

Here,	we	tie	the	IsSnarling	Mecanim	trigger	to	the	soundReady	boolean	that	already
exists	within	this	script.

The	soundReady	variable	is	set	up	to	only	be	active	once,	so	this	is	a	great	way	to
ensure	that	our	animation	only	plays	one	time	as	well.

2.	 Save	the	script.
3.	 Preview	the	game	by	pressing	the	Play	button	in	the	top	center	of	the	Unity	interface.
4.	 Move	the	FPSController	game	object	close	to	the	female	zombie.
5.	 Click	on	the	left	mouse	button	to	switch	the	zombie’s	behavior.

The	female	zombie	should	turn	toward	the	player	and	the	snarl	animation	will	play:

Next,	we	will	make	some	further	improvements	to	the	zombie’s	behavior	by	smoothing	its
rotation.

Smoothing	the	zombie’s	turn	rotation
The	zombie	is	currently	set	up	to	turn	to	face	the	player	once	they	have	been	alerted.	The
script	uses	the	transform.LookAt	method,	which	has	an	instantaneous	effect.	We	need	to
adjust	the	script	so	that	the	zombie	gradually	and	naturalistically	turns:

1.	 Back	in	MonoDevelop,	add	the	following	variables	near	the	top	of	the	zombie_ready
script:

var	turnSpeed	:	float	=	60.0;

var	turning	:	boolean	=	false;

var	angle	:	float;

Here	we	are	defining	turnSpeed,	which	is	the	rate	of	the	zombie’s	turn.	The	boolean
variable	turning	will	be	used	to	play	a	turning	animation	while	she	rotates.

Lastly,	the	variable	angle	is	used	to	determine	the	amount	of	rotation	that	the	zombie

needs	to	execute.

2.	 Scroll	down	to	the	TurnToPlayer	function.
3.	 Replace	the	function’s	entire	content	with	the	following	code:

var	localRotate	=	transform.InverseTransformPoint(target.position);

angle	=	Mathf.Atan2	(localRotate.x,	localRotate.z)	*	Mathf.Rad2Deg;

var	maxRotation	=	turnSpeed	*	Time.deltaTime;

var	turnAngle	=	Mathf.Clamp(angle,	-maxRotation,	maxRotation);

transform.Rotate(0,	turnAngle,	0);

return	angle;

The	first	line	of	the	function	calculates	the	relative	angle	difference	between	the
zombie	game	object’s	transform	and	the	target’s	position,	storing	this	as	a	local
Vector3	variable	called	localRotate.

The	variable	angle,	defined	at	the	top	of	the	script	is	defined	as	the	sum	of
Mathf.Atan2,	which	is	a	calculation	along	the	same	lines	as	transform.LookAt.

The	next	line	defines	a	local	variable	named	maxRotation,	which	is	equal	to
turnSpeed	multiplied	by	Time.deltaTime.	The	deltaTime	object	is	time	in	seconds
rather	than	elapsed	frames.

A	third	local	variable,	called	turnAngle,	clamps	the	angle	variable,	keeping	it	within
the	value	of	maxRotation	so	that	the	zombie	does	not	rotate	faster	than	turnSpeed.

The	next	line	of	code	actually	rotates	the	zombie’s	transform	by	the	value	defined
by	turnAngle.	The	rotation	only	happens	on	the	y	axis.	The	Rotate	values	of	X	and
Z	are	set	to	0.

Finally,	the	variable	angle	is	returned,	allowing	us	to	use	it	elsewhere	in	the	script.

4.	 Save	the	script.
5.	 Preview	the	result	by	pressing	the	Play	button.

When	the	Fire1	button	is	pressed,	the	zombie	will	now	rotate	smoothly	toward	the	player
before	walking	toward	him.

At	the	moment,	the	Snarl	animation	will	not	play,	nor	does	the	audio,	because	we	deleted
the	code	when	we	updated	the	TurnToPlayer	function.

Before	we	add	this	back	in,	we	will	add	some	animation	for	the	zombie’s	turn.

Implementing	the	turn	animation
In	this	case,	there	is	a	single	animation	sequence	that	will	be	played	when	the	zombie	is
turning	to	the	right	or	left.

The	FBX	file	containing	the	animation	has	already	been	imported.	The	next	step	is	to	add
the	resulting	motion	clip	to	the	animator	controller	in	its	own	state.

Adding	the	turning	state
The	turn	animation	is	a	single	looping	sequence	used	for	a	left	or	right	turn:

1.	 Make	sure	that	the	Animator	panel	is	visible	and	the	base	layer	is	active.
2.	 In	the	Project	panel,	locate	the	PACKT_Animations	folder	and	click	on	it	once	to	view

its	contents	in	the	Assets	panel.
3.	 Locate	the	zombie_turn	asset	and	expand	its	hierarchy	by	clicking	on	the	arrow	next

to	its	name.
4.	 Drag	the	zombie_turn	animation	into	a	blank	area	of	the	Animator	panel	to	create	a

new	state	containing	the	clip.
5.	 In	the	Inspector	panel,	rename	the	state	Turn:

Next,	we	will	set	up	an	appropriate	parameter	and	create	transitions	to	and	from	our
existing	states.

Setting	up	the	IsTurning	parameter
We	want	the	zombie_turn01	animation	to	play	only	when	the	zombie	is	turning	toward
the	player,	so	we	can	use	a	boolean	parameter	which	can	be	easily	switched	on	and	off	in
the	script:

1.	 In	the	Parameters	box,	click	on	the	+	symbol	to	create	a	new	parameter	and	choose
Bool	as	the	type.

2.	 Rename	the	parameter	IsTurning	and	leave	it	unchecked.

We	will	use	this	parameter	as	a	condition	to	allow	us	to	transition	to	the	Turn	state.

Creating	the	transitions	to	connect	the	turning	state
The	transitions	will	connect	Turn	to	our	existing	states	using	the	IsTurning	parameter	as
the	condition:

1.	 Right-click	on	the	Idle	state.
2.	 Choose	Make	Transition	and	click	on	the	Turn	state	to	complete	the	transition.
3.	 Create	the	return	transition	by	right-clicking	on	Turn	and	then	clicking	on	Idle	to

specify	it	as	the	end	state.

The	last	step	will	complete	our	turn	state	in	the	animator	controller.

Setting	the	transitions	for	the	Turn	state
The	transitions	that	we	have	just	set	up	require	Conditions	to	enable	the	state	change:

1.	 Click	on	the	transition	connecting	Idle	to	Turn	to	view	its	properties	in	the	Inspector
panel.

2.	 In	the	Conditions	box,	set	the	parameter	to	IsTurning	by	selecting	it	from	the	drop-
down	list.

3.	 Make	sure	that	the	conditional	is	set	to	true.
4.	 For	the	return	transition,	choose	the	IsTurning	parameter	once	again,	but	this	time,

set	its	conditional	to	False.
5.	 Repeat	this	process	for	both	of	the	transitions	linking	Turn	to	Walk	state.
6.	 Add	an	extra	condition	for	the	return	transition	to	Walk	specifying	IsWalking	as	the

parameter	and	True	as	the	conditional.
7.	 Add	a	condition	for	the	Walk	to	Turn	transition,	choosing	IsWalking	as	the

parameter	and	false	as	the	conditional.

This	will	ensure	that	the	zombie	is	not	trying	to	walk	and	turn	at	the	same	time.

Next,	we	will	return	to	MonoDevelop	to	update	our	script	to	accommodate	the	state.

Updating	the	zombie_ready	script	to	accommodate	the	Turn	state
The	script	currently	allows	the	zombie	to	rotate	smoothly	toward	the	player	when	he	is
targeted,	but	switching	the	animation	states	appropriately	necessitates	just	a	little	more
code:

1.	 If	it	is	not	already	open,	double-click	on	zombie_ready	in	the	Assets	panel	to
initialize	it	in	MonoDevelop.

2.	 At	the	top	of	the	Update	function,	add	the	following	line	of	code:

theAnimator.SetBool("IsTurning",	turning);

This	ties	our	Mecanim	Bool	parameter	IsTurning	to	the	boolean	variable	turning
that	we	just	added.

When	we	updated	this	script	previously,	we	made	the	TurnToPlayer	function	return	a
variable	named	angle	that	is	stored	as	a	public	variable	in	the	script.

We	will	make	use	of	this	variable	to	get	our	turn	animation	playing.

3.	 In	MonoDevelop,	locate	the	second	if	statement	in	the	Update	function.

It	should	currently	look	like	this:

if(alerted)

{

				TurnToPlayer();

}

As	soon	as	the	zombie	is	alerted	(by	the	Fire1	button),	the	TurnToPlayer	function	is
run.

4.	 Add	the	following	code	inside	the	if(alerted)	statement:

if(angle	>	5	||angle	<	-5)

{

				turning	=	true;

}

This	further	nested	if	statement	checks	whether	the	angle	variable	is	greater	than	5
or	less	than	-5.	When	one	of	these	conditions	is	met,	then	we	will	allow	the	turning
animation	to	play.

With	less	of	an	angle,	the	rotation	time	would	be	too	short	resulting	in	a	jumpy	and
incomplete	animated	transition.

We	can	define	what	happens	in	this	case	in	the	next	statement.

5.	 Add	the	following	code	within	the	if	statement:

else	if(angle	<	5	&&	angle	>	-5)

{

				if(soundReady)

				{

								Snarl();

				}

}

If	angle	is	sufficiently	low,	we	check	to	see	if	the	soundReady	variable	is	true.	This
boolean	is	a	one	shot	deal,	it	never	gets	reset	to	true,	ensuring	that	our	zombie	will
only	snarl	once,	when	it	is	first	alerted	by	the	player.

The	snarl	animation	and	sound	will	be	taken	care	of	in	the	Snarl	function	a	little	later
on.

Note
Containing	pieces	of	behavior	in	their	own	functions	like	this	makes	it	possible	to
trigger	them	with	external	events.	We	will	cover	some	examples	of	this	in	Chapter	9,
Controlling	Enemy	Animation	with	AI	and	Triggers.

So,	what	happens	if	the	snarl	animation	has	already	been	played?	It	seems	natural	for
the	zombie	to	move	toward	the	player	to	attack.

6.	 Add	the	following	code	directly	beneath	the	else	if	statement:

else

{

				turning	=	false;

				WalkTowards();

}

The	else	statement	directly	follows	an	if	statement	and	acts	as	a	catch	all.

The	finished	Update	function	should	look	like	this:

function	Update()

{

				theAnimator.SetBool("IsTurning",	turning);

				if(Input.GetButton("Fire1")	&&	alerted	==	false)

				{

								alerted	=	true;

				}				

				if(alerted)

				{

								TurnToPlayer();

								if(angle	>	5	||angle	<	-5)

								{

												turning	=	true;

								}

								else	if(angle	<	5	&&	angle	>	-5)

								{

												if(soundReady)

												{

																Snarl();

												}

												else

												{

																turning	=	false;

																WalkTowards();

												}

								}

				}

}

Our	next	step	is	to	add	the	WalkTowards	and	Snarl	functions	that	we	already	run	in
this	code.

7.	 Add	the	following	code	at	the	bottom	of	the	script:

function	WalkTowards()

{

				var	direction	=	transform.TransformDirection(Vector3.forward	*	

walkSpeed);

				charControl.SimpleMove(direction);

				theAnimator.SetBool("IsWalking",	true);

}

With	our	TurnToPlayer	function,	we	have	already	turned	the	zombie	toward	the
player,	so	all	that	is	left	is	to	move	her	forward.

Here,	we	define	a	Vector3	variable	named	direction	as	Vector3.forward	(or
positive	Z)	multiplied	by	walkSpeed.	As	the	zombie	has	a	character	controller
component,	we	use	the	SimpleMove	method.

We	also	set	the	Mecanim	variable	IsWalking	to	true,	which	will	transition	into	the
Walk	state	allowing	the	appropriate	animation	to	play.

Next,	we	will	get	the	snarl	working	again	and	finish	up	the	script.

Creating	the	Snarl	function

We	previously	tested	the	snarl	animation,	but	removed	the	code	when	we	added

complexity	to	the	script.	Grouping	commands	together	in	a	custom	function	often	makes
for	a	cleaner	and	easier	to	read	script,	it	also	makes	it	much	easier	to	add	further	effects.

1.	 At	the	end	of	the	script,	add	the	following	code:

function	Snarl()

{

				GetComponent.<AudioSource>().PlayOneShot(snarlSound);

				theAnimator.SetTrigger("IsSnarling");

				soundReady	=	false;

}

2.	 Save	the	script.

After	we	put	the	audio	back	in,	all	we	are	doing	here	is	setting	the	Mecanim	trigger
IsSnarling	and	switching	off	the	soundReady	boolean	to	ensure	that	the	animation	will
not	be	triggered	again.

If	we	test	the	game	at	this	point,	we	should	see	the	zombie	transition	from	the	turn
animation	back	into	walk	whenever	the	player	stays	in	the	same	place.

The	snarl	animation	will	play	once,	when	the	zombie	is	alerted.	Our	next	objective	is	to
synchronize	and	adjust	the	audio	to	improve	the	effect	in	the	game.

Synchronizing	the	snarl	sound

Currently,	we	have	the	audio	set	up	to	play	after	a	certain	amount	of	time,	but	Unity	will
allow	us	to	queue	it	up	with	our	animation	sequence	more	precisely	using	animation
events.

In	Unity,	an	event	is	a	marker	set	at	a	point	within	an	animation	sequence	that	can	send	a
message	to	a	game	object	to	make	something	else	happen.

For	imported	animation,	like	we	are	using	for	the	characters,	events	are	added	to	clips
when	they	are	defined	in	the	Import	settings.

1.	 In	the	Project	panel,	locate	the	PACKT_Animations	folder	and	click	on	it	to	view	its
contents	in	the	Assets	panel.

2.	 Click	on	the	zombie_snarl	asset	to	view	its	parameters	in	the	Inspector	panel.

When	the	Animation	import	tab	is	active,	you	will	see	a	single	clip	named	Snarl.

3.	 Scroll	to	the	bottom	of	the	clip’s	parameters,	and	the	click	on	the	small	arrow	next	to
Events	to	view	the	hidden	parameters.

4.	 Click	on	the	Add	Event	icon.

A	marker	will	appear	on	the	timeline,	and	the	Edit	Animation	Event	dialog	will
appear	over	the	main	Unity	interface.

You	can	usually	drag	the	time	slider	in	the	Animation	Preview	panel	to	match	a
specific	action	in	the	animation,	but	as	the	animation	is	restricted	to	the	face,	we	will
need	to	know	when	the	sound	should	start	to	play.	For	this	clip,	the	sound	needs	to
start	on	frame	10.

Unfortunately,	the	events	time	slider	is	proportionate,	rather	than	giving	us	specific
frame	numbers.	However,	we	can	scroll	up	to	the	clip	time	slider,	which	will	let’s
define	the	duration	in	frames.

5.	 Move	the	event	marker	to	the	appropriate	position	on	the	time	slider.

The	event	can	send	variables	to	a	game	object’s	script	or	run	a	function.	In	this	case,
we	will	set	up	our	audio	in	its	own	function	named	SnarlSound.

6.	 In	the	Edit	Animation	Event	dialog,	enter	SnarlSound	in	the	Function	field.
7.	 Select	the	name	of	the	game	object	that	this	should	be	sent	to	in	the	Object	field,	by

clicking	on	the	radio	button	and	selecting	zombie_f	from	the	drop-down	list:

8.	 Make	sure	to	save	the	changes	to	the	Import	settings,	by	clicking	on	the	Apply
button	located	above	the	Animation	Preview	panel.

Lastly,	we	need	to	add	the	SnarlSound	function	to	our	script.

9.	 At	the	bottom	of	the	script,	add	the	new	function:

function	SnarlSound()

{

				GetComponent.<AudioSource>().PlayOneShot(snarlSound);

				theAnimator.SetBool("IsSnarling",false);

				return;

}

10.	 Delete	the	GetComponent.<AudioSource>()	line	from	the	previous	function.
11.	 Save	the	script.

When	the	game	is	previewed,	the	snarl	animation	will	begin	to	play,	triggering	the	snarl
sound	at	the	correct	point.	The	SnarlSound	function	is	triggered	externally,	from	the	tag	in
the	motion	file.	This	is	an	accurate	way	to	sync	sounds	and	other	functions.

We	can	take	this	a	step	further	by	adding	a	different	type	of	animation	to	the	face.

Driving	a	blendshape	animation	with	the
animator	controller
The	zombie’s	face	animation	is	a	nice	touch,	to	make	it	clear	to	the	player	that	something
is	happening	in	the	game.	The	effect	is	quite	subtle;	due	to	the	limited	number	of	face
bones	that	we	can	retarget	in	the	Humanoid	rig	type,	we	are	not	able	to	get	a	full	range	of
expression	across	in	the	zombie’s	face.

One	way	to	get	around	this	is	to	use	a	different	kind	of	animation.	Blendshape	or	Morph
Target	animation	types	do	not	use	bones	or	joints	to	deform	the	model,	but	use	a	second,
altered	version	of	the	mesh.	Blendshape	animation	sequences	can	be	driven	in	the
animator	the	same	way	that	skeletal	animation	can.

Blendshape	animation	sequences	are	usually	unique	to	a	model.	They	are	created	by
making	a	copy	of	the	whole	or	part	of	a	mesh	and	then	moving,	scaling,	and	rotating
vertices	to	change	the	shape—creating	a	facial	expression	or	some	other	kind	of
deformation.

After	the	blendshape	has	been	linked	to	the	model,	it	can	be	exported	in	the	usual	way	as
an	FBX	file.	The	FBX	exporter	has	a	Deformation	section	with	a	checkbox	for	Morphs
that	needs	to	be	checked	to	export	this	feature.

We	have	a	model	in	the	project	that	has	already	been	set	up	like	this	with	a	blendshape.

Viewing	the	blendshape	in	Unity
In	this	section,	we	will	look	at	the	model	and	preview	the	blendshape:

1.	 In	the	Project	panel,	select	the	FBX_Imports	folder	to	view	its	contents	in	the	Assets
panel.

2.	 Locate	zombie_f_blend	and	click	on	it	to	view	its	Import	settings	in	the	Inspector
panel.

3.	 In	the	Model	tab,	verify	that	the	Import	BlendShapes	checkbox	is	checked.

This	should	be	checked	by	default.

Unlike	skeletal	animation,	blendshapes	cannot	be	previewed	in	the	Inspector	panel.
We	need	to	do	this	in	the	scene.

4.	 Drag	zombie_f_blend	into	the	Hierarchy	panel	to	instance	it	in	the	scene.

The	zombie	will	instantiate	with	a	blank	material.	We	can	add	the	correct	material
next.

5.	 In	the	Project	panel,	select	the	PACKT_Materials	folder	to	view	its	contents	in	the
Assets	panel.

6.	 Locate	the	zombie_f	material	and	drag	this	onto	the	model	in	the	scene	view:

Apart	from	the	addition	of	the	blendshape,	this	character	is	identical	to	the	model	that
we	have	been	working	with	previously.	It	too	has	a	skeleton	that	has	already	been
setup	to	work	with	Mecanim.

7.	 In	the	Hierarchy	panel,	click	on	the	small	arrow	next	to	zombie_f_blend,	to	expand
its	hierarchy.

8.	 Click	on	the	zombie_f	child	object	to	select	it.

Its	settings	will	appear	in	the	Inspector	panel.

At	the	top	of	the	Skinned	Mesh	Renderer	component,	there	is	an	expandable	section
for	blendshapes.

9.	 Click	on	the	small	arrow	next	to	BlendShapes	to	expand	its	parameters.

The	value	for	zombie_f_snarl	is	set	to	0	by	default.

10.	 Drag	on	zombie_f_snarl	to	increase	the	value.

You	should	see	the	zombie’s	expression	change	in	the	Scene	view.

The	zombie’s	eyes	will	close	slightly	and	her	face	will	contract	into	an	expression.
There	is	little	movement	in	the	mouth,	as	this	is	still	going	to	be	handled	by	the
skeletal	animation.

11.	 Return	the	zombie_f_snarl	blendshape	value	to	0.

Our	next	step	will	help	us	get	the	blendshape	into	the	animator.

Keyframing	the	face	blendshape
We	have	got	the	face	blendshape	working,	but	we	still	need	to	set	up	the	timing.

1.	 In	the	Hierarchy	panel,	click	on	the	zombie_f_blend	parent	object	to	select	it.
2.	 At	the	top	of	the	Inspector	panel,	you	should	see	that	the	game	object’s	animator

component	is	currently	empty.
3.	 Open	the	Animation	window	by	navigating	to	Window	|	Animation.

In	the	center	of	the	Animation	window,	you	will	see	a	prompt	to	create	an	animation
clip	for	the	currently	selected	object.

We	need	to	set	up	an	animation	sequence	for	the	blendshape	to	tie	the	value	to	a	time
line.

4.	 Click	on	the	Create	button	to	create	an	animation	clip.

Another	dialog	will	appear	prompting	you	to	select	a	name	and	save	the	location	for
the	new	clip.

5.	 Name	the	clip	zombie_f_snarlBlend	and	save	it	in	the	PACKT_Animations	folder.

The	empty	timeline	will	appear	in	the	Animation	window.	The	play/pause	control	in
the	main	Unity	interface	will	be	displayed	in	red	to	indicate	we	are	in	Record	mode.

At	the	moment,	our	zombie	is	half-embedded	in	the	floor.	Do	not	worry	about	this	at
the	moment.

Before	we	start	creating	keyframes	in	the	timeline,	we	need	to	specify	a	property.

6.	 Click	on	the	Add	Property	button	and	select	zombie_f	-	Skinned	Mesh	Renderer	-
BlendShape.zombie_f_snarl	from	the	expandable	list.

7.	 Click	on	the	small	+	symbol	next	to	this	line	to	select	the	blendshape	as	the	property
we	want	to	animate.

The	start	and	end	keyframes	will	be	created	automatically	in	the	timeline:

The	blendshape	value	is	set	to	0	in	both	keyframes	and	the	animation	is	1	second
long.

8.	 Drag	the	playhead—the	red	line	on	the	animation	timeline,	to	frame	30	and	create	a
new	keyframe	by	clicking	on	the	diamond	shaped	Add	Keyframe	button.

9.	 Still	in	the	Animation	window,	increase	the	horizontal	size	of	the	Properties	list	by
dragging	it	to	the	right,	so	you	can	see	the	full	name	of	the	blendshape	property	and
the	value	0	displayed.

10.	 Click	on	the	0	to	enter	the	value	field	and	enter	the	number	100.
11.	 Click	on	the	Play	button	in	the	top	left	of	the	animation	window	to	play	back	the

resulting	animation.

The	zombie	will	cycle	in	and	out	of	the	blendshape	expression.

The	animation	has	automatically	been	saved	with	the	name	and	location	that	we
already	specified.	At	the	moment,	the	clip	does	not	quite	sync	up	with	our	skeletal
animation.

The	snarl	skeletal	animation	is	45	frames	long.	At	30	frames	a	second,	this	equals	one
and	a	half	seconds.

12.	 In	the	Animation	window,	enter	the	value	90	in	the	Samples	field	to	increase	the
timeline.

13.	 Drag	the	end	keyframe	to	frame	90.
14.	 Drag	the	midpoint	keyframe—the	point	where	our	blendshape	is	at	its	maximum

value	to	frame	45.
15.	 Create	another	keyframe	at	frame	75	and	set	the	blendshape	value	to	60.

This	will	slow	down	the	return	to	the	default	facial	expression.

16.	 Click	on	the	Curves	tab	at	the	bottom	of	the	Animation	window	to	see	the	full	curve
of	the	animation:

Next,	we	will	set	the	animation	up	in	the	animator	controller	so	that	we	can	view	it
with	the	skeletal	animation.

17.	 Add	a	character	controller	component	and	the	zombie_ready	script	to	the
zombie_f_blend	game	object.

Tip
A	quick	way	to	copy	components	between	game	objects	while	retaining	parameters	is
by	right-clicking	on	the	source	game	object’s	component.	Then,	choose	Copy
Component	from	the	drop-down	list.

Select	the	target	game	object,	right-click	on	the	Inspector	panel	and	choose	Paste
Component	as	New	from	the	list.

18.	 Add	the	ch6_Start	animator	controller	by	dragging	it	into	the	slot	near	the	top	of	the
Inspector	panel.

In	the	next	step,	we	will	update	the	animator	and	add	the	new	blendshape	animation.

Updating	the	animator	to	handle	the	blendshape
animation
When	we	added	the	snarl	skeletal	animation,	we	set	up	a	new	layer	in	the	animator.	We
will	do	something	similar	for	the	blendshape	animation:

1.	 In	the	Hierarchy	panel,	select	zombie_f_blend.
2.	 In	the	Animator	window,	click	on	the	Layers	tab	near	the	top-left	corner.
3.	 Click	on	the	small	+	symbol	to	create	a	new	layer.
4.	 Name	the	new	layer	SnarlBlend.
5.	 Click	on	the	small	gear	icon	next	to	the	layer’s	name	to	open	its	properties.
6.	 Drag	the	Weight	value	to	1	and	set	the	Blending	type	to	Additive.

Using	Additive	will	allow	the	blendshape	to	be	used	with	the	skeletal	face
animation.

7.	 Making	sure	that	the	SnarlBlend	layer	is	active,	create	a	new	state	by	right-clicking
on	an	empty	area	of	the	graph	and	navigating	to	Choose	Create	State	|	Empty.

8.	 Select	the	new	state	and	rename	it	Null	in	the	Inspector	panel.

This	is	the	state	that	will	run	when	we	do	not	want	the	blendshape	to	be	in	effect.

9.	 Create	a	second	state	and	rename	it	FaceBlend.
10.	 In	the	Project	panel,	select	the	PACKT_Animations	folder	to	view	its	contents	in	the

Inspector	panel.
11.	 Locate	the	zombie_f_snarlBlend	animation	clip	and	drag	it	into	FaceBlend	state’s

motion	field	in	the	Inspector	panel.
12.	 Create	transitions	between	the	two	states.
13.	 Assign	IsSnarling	as	the	condition	for	the	Null	to	FaceBlend	transition.
14.	 Leave	the	condition	blank	for	the	return	transition,	to	allow	it	to	just	use	Exit	Time.

Our	state	machine	is	finished	and	because	we	are	using	an	existing	parameter,	the
blendshape	will	run	without	any	additional	code.

15.	 Preview	the	composite	animation	by	pressing	the	Play	button	in	the	main	Unity
interface.

16.	 Walk	close	to	the	female	zombie	character	before	pressing	the	fire	button:

If	you	completed	these	steps,	the	zombie	will	become	alerted,	snarl	at	the	player,	and	walk
toward	the	first-person	controller.

At	this	stage,	the	zombie	does	not	hurt	the	player	when	she	reaches	them.	The	zombie’s
actual	attack	is	covered	in	depth	in	Chapter	9,	Controlling	Enemy	Animation	with	AI	and
Triggers.

Summary
In	this	chapter,	we	implemented	a	layered	face	animation	and	added	this	to	the	female
zombie	character’s	behavior	using	a	script.

We	added	further	animation	to	the	scripted	sequence	by	adding	a	Turn	state	to	better
showcase	the	face	animation.

Next,	we	integrated	audio	and	demonstrated	methods	of	syncing	a	sound	effect	with
animation	using	an	animation	event.	We	wrapped	things	up	by	implementing	a	blendshape
animation	in	our	existing	state	machine.

In	the	next	chapter,	we	will	delve	into	the	more	complex	functionality	of	the	animator
controller,	the	seamless	blending	between	the	player	character	animations	that	is	possible
with	Blend	Trees.

Chapter	7.	Controlling	Player	Animation
with	Blend	Trees
In	Chapter	3,	Interacting	with	the	Environment,	we	introduced	the	player	character	model
and	set	up	the	player’s	animator	controller	with	a	few	basic	animation	sequences.	The
player	can	walk,	shoot,	and	pick	up	items.

The	motion	sequences	were	set	up	in	separate	states	in	the	controller’s	base	layer	to	define
how	the	character	would	transition	through	its	motion	sequences.	In	the	transitions	that
link	the	states	together,	we	used	a	Boolean	operator	to	determine	when	the	player	would
shoot	or	pick	up	an	item.

In	this	chapter,	we	will	explore	a	further	level	of	animation	blending	within	Mecanim.
Blend	Trees	are	specialized	states	that	can	contain	many	motion	sequences.

The	use	of	Blend	Trees	will	add	a	further	level	of	realism	to	the	game,	by	blending	in
subtle	animation	variations	based	on	the	player’s	input.

In	this	chapter,	you	will	learn	to:

Implement	a	Blend	Tree	to	add	strafe	animation	to	the	existing	player	character
Demonstrate	the	use	of	parameters,	thresholds,	and	other	Blend	Tree	properties
Demonstrate	the	blending	of	animation	sequences	driven	by	player	input
Updating	the	existing	character	animation	script	to	be	compatible	with	the	Blend	Tree
Use	external	variables,	such	as	object	weight	to	drive	animation	blending
View	the	Blend	Tree	in	action	during	play	mode

We	will	start	with	a	simple	implementation	of	a	Blend	Tree	to	include	variations	to	the
player’s	idle	animation.

Adding	a	Blend	Tree	to	the	player’s
existing	animator	controller
We	will	begin	with	the	player	character,	which	we	previously	worked	with	in	Chapter	3,
Interacting	with	the	Environment:

1.	 Open	the	Chapter7_Start	scene	in	the	Unity	project.

The	scene	contains	the	FPSController	prefab,	which	already	has	a	character
controller,	animator	controller,	and	a	control	script	attached.

We	will	start	by	testing	the	controller	setup	to	determine	the	modifications	we	are
going	to	make.

2.	 Preview	the	game	by	pressing	the	Play	button	in	the	top-center	of	the	unity	interface.

When	moving	from	side	to	side	(by	pressing	the	A	and	S	or	the	cursor	keys),	there	is	no
apparent	change	in	the	animation.

We	will	improve	this	in	the	next	few	steps	by	adding	strafing	animation,	which	will	add
some	subtle	variation	to	the	character	animation	when	the	player	moves	to	the	left	and
right.

Adding	strafing	animation	to	the	player	character
with	a	Blend	Tree
We	will	start	by	implementing	the	Blend	Tree	in	the	animator	controller	and	making	some
other	small	adjustments:

1.	 In	the	Unity	interface,	drag	the	Animator	tab	toward	the	top	of	the	screen	and
release,	undocking	it	from	the	main	interface	as	a	window.

2.	 Resize	the	window	by	dragging	the	corners	until	you	can	comfortably	see	the	current
states.

3.	 Select	the	ShootIdle	state.
4.	 Right-click	on	and	choose	Create	new	BlendTree	in	State.

In	the	Inspector	panel,	the	existing	motion	clip	will	be	replaced	by	the	Blend	Tree.

We	could	also	make	a	Blend	Tree	as	a	new	state,	but	we	would	lose	all	of	our
transitions	to	the	other	states	and	have	to	start	from	scratch.	Converting	a	state	to	a
Blend	Tree	will	preserve	its	transitions	within	the	state	machine.

5.	 Double-click	on	the	ShootIdle	state	in	the	Animator	window.

The	properties	of	the	Blend	Tree	will	become	visible	in	the	Inspector	panel.

Currently,	the	Blend	Tree	does	not	contain	any	motion	clips.	We	will	explain	the
properties	associated	with	the	Blend	Tree	before	we	add	the	motion	clips.

Using	Blend	Tree	properties
The	Blend	Tree	properties	in	the	Inspector	panel	define	which	motion	clips	are	used	and
how	they	are	blended	together:

Let’s	see	how	to	use	these	properties:

1.	 In	the	field	at	the	top	is	the	Blend	Tree’s	name.	We	will	leave	it	named	Blend	Tree
for	this	example.

2.	 The	parameter	is	chosen	from	the	parameters	that	you	created	in	the	Animator
window.	Only	float	parameters	will	show	up	in	the	drop-down	list,	as	this	is	the
only	kind	of	parameter	that	the	Blend	Tree	can	use.

3.	 The	blending	graph	is	a	graphic	visualization	of	how	the	motion	clips	blend
together.	Each	motion	clip	is	represented	as	a	blue	triangle,	with	the	peak
representative	of	the	full	use	of	the	clip.	The	blending	graph	will	not	be	visible	until
at	least	two	motion	fields	have	been	added	to	the	Blend	Tree.

4.	 The	motions	group,	contains	the	motion	clips	that	are	usually	dragged	into	the	Blend
Tree	properties	from	the	Assets	panel.

Numerous	motion	clips	can	be	added	to	each	Blend	Tree	in	this	way.	Alternatively,
you	can	click	on	the	radio	button	beside	the	motion	field	to	select	a	file	from	a	list.
You	can	also	add	a	Blend	Tree	to	a	motion	field,	effectively	nesting	the	Blend	Trees.

5.	 Beside	the	Motion	field	is	the	Threshold	field,	which	defines	where	the	blended
motion	fits	within	the	whole	motion.	By	default,	these	fields	are	grayed	out	and
inaccessible:

Automate	Thresholds:	This	is	checked	by	default.	Unchecking	this	will	allow
us	to	access	each	of	the	motion	field’s	thresholds.
Compute	Thresholds:	This	is	visible	only	when	Automate	Thresholds	is
unchecked.	It	allows	the	computation	of	the	blended	clip	speeds	by	average	or
angular	speeds.

In	the	next	step,	we	will	add	the	motion	sequences	to	the	Blend	Tree	and	test	it	in	the
game.

Adding	the	motion	clips	to	the	Blend	Tree
Blend	Trees	are	specialized	kinds	of	state.	Like	ordinary	states,	they	contain	motion	clips
that	are	played	during	the	game:

1.	 In	the	Inspector	panel,	click	on	the	+	symbol	in	the	Motion	group.

This	will	add	a	motion	slot	to	the	list.

2.	 Repeat	this	twice	to	create	three	motion	fields.
3.	 In	the	Project	panel,	navigate	to	the	PACKT_Animations	folder	and	locate	the

pistolIdles	asset.
4.	 Click	on	the	gray	arrow	next	to	the	asset’s	icon	to	view	its	contents.

Three	animation	files	have	already	been	created	from	the	PistolIdles.FBX	file.

5.	 Locate	shootIdle_left	and	drag	this	into	the	first	motion	field.
6.	 Drag	shootIdle	into	the	second	motion	field.
7.	 Drag	shootIdle_right	into	the	third	motion	field.

In	the	Animator	window,	you	will	see	the	diagram	update	to	display	the	Blend	Tree’s
three	child	nodes:

Next,	we	will	set	up	the	parameters	that	will	allow	the	blending	to	be	implemented.

Adding	and	adjusting	the	Blend	Tree	parameters	and	thresholds
There	are	a	few	more	steps	that	we	need	to	take	in	order	to	get	the	motion	clips	to	play.

Importantly,	we	have	to	define	a	parameter	which	will	enable	the	blending:

1.	 Click	on	the	Parameters	tab	in	the	upper-left	of	the	Animator	window.
2.	 Click	on	the	+	symbol	to	create	a	new	parameter.
3.	 Choose	Float	to	create	a	floating	point	parameter.

Blend	Trees	can	only	use	float	parameters	to	blend	between	motions.

4.	 Rename	the	parameter	HSpeed.
5.	 Back	in	the	Inspector	panel,	designate	the	new	parameter	for	the	Blend	Tree	by

clicking	on	the	arrow	next	to	the	Parameter	field	and	choosing	HSpeed.

Next,	we	need	to	set	the	thresholds	for	the	motion	clips	to	tell	Unity	when	each
should	be	played.

6.	 Uncheck	the	Automate	Thresholds	checkbox.

This	will	allow	us	to	manually	set	the	thresholds	of	the	three	blending	motion	clips.

7.	 In	the	Threshold	field,	next	to	the	ShootIdle_left	clip,	type	-1.0.
8.	 The	shootIdle	state’s	threshold	should	be	set	to	0.0.
9.	 Leave	shootIdle_right	clip’s	threshold	at	its	default	value	of	1.0.

The	HSpeed	parameter	will	be	driven	by	the	player’s	horizontal	movement	input,	which	we
will	need	to	implement	in	the	character	script.	In	Unity,	right	is	positive	on	the	x	axis,	so
we	define	right	as	1.0	and	left	as	-1.0.

We	still	need	to	check	for	the	player’s	input	to	blend	the	animation.	We	will	make	some
adjustments	to	our	character	animation	script	next.

Updating	the	character	script	to	use	the	Blend	Tree
Now	that	we	have	updated	the	animator	controller,	it	is	necessary	to	add	some	code	to	the
script	to	accommodate	the	Blend	Tree:

1.	 In	the	Project	panel,	navigate	to	the	PACKT_Scripts	folder.
2.	 Locate	FPSAnimation	and	double-click	on	it	to	open	it	in	MonoDevelop.
3.	 When	the	script	opens,	add	the	following	line	of	code,	following	the	other	variables

at	the	top	of	the	script:

var	horizontalSpeed	:	float	=	0.0;

This	float	value	will	be	determined	by	the	player’s	input.	In	turn,	this	will	be	used	to
control	the	blending	in	the	animator	controller.	Setting	its	value	to	zero	at	the	start
will	ensure	that	this	does	not	happen	automatically.

4.	 Within	the	Update	function	add	the	following	lines	of	code:

horizontalSpeed	=	Input.GetAxis("Horizontal");

thisAnimator.SetFloat("HSpeed",horizontalSpeed);

As	we	demonstrated	previously,	the	Update	function	is	checked	every	frame,	so	it	is
the	ideal	place	to	check	for	input.

Note
The	same	input	axis	is	used	to	control	the	player’s	movement.	This	is	handled	in	the
FPSInputController	script	that	is	attached	to	the	FPSController	prefab	by	default.

Input.GetAxis	returns	a	value	between	-1	and	1	in	float	form,	based	on	the	left	and
right	movement	of	the	player.	By	default,	the	player	is	moved	horizontally	with	the	A
and	D	keys	(also	the	left	and	right	cursor	keys).

We	can	simply	set	our	HSpeed	Mecanim	parameter	using	this	value.

Now	it	is	time	to	save	our	progress	and	check	the	results.

5.	 Save	the	script	and	minimize	MonoDevelop.

Now	that	we	have	set	up	the	float	variable	and	used	it	to	drive	a	value	in	the	animator
controller,	we	should	be	able	to	see	a	change	in	the	animation	states	in	the	game.

Testing	the	Blend	Tree	in	the	Game	View
Our	Blend	Tree	should	now	be	implemented	in	the	character.	We	will	test	it	in	the	game
and	make	any	necessary	adjustments:

1.	 Undock	the	Animator	panel	or	rescale	it	so	that	its	contents	are	visible	while	you	test
the	game.

2.	 Double-click	on	the	Idle	state	to	view	the	Blend	Tree	contained	within	it.
3.	 Click	on	the	Game	View	tab	in	the	top-center	of	the	main	view	panel,	and	make	sure

the	Maximize	on	Play	button	is	not	active.
4.	 Press	the	Play	button	in	the	top-center	of	the	Unity	interface	to	preview	the	game.
5.	 When	A	or	D	or	left	and	right	cursor	keys	are	pressed,	there	should	be	a	noticeable

change	in	the	animation:

Take	a	look	at	the	Blend	Tree	state	in	the	Animator	window	as	you	move	the	player
character	from	side	to	side.	The	key	input	smoothly	transitions	between	the	three	animated
sequences:

In	the	next	example,	we	will	demonstrate	how	this	technique	can	be	used	to	vary	the
Pickup	animation	based	on	the	weight	of	the	object.

Varying	the	pickup	animation	with	a
Blend	Tree
Back	in	Chapter	3,	Interacting	with	the	Environment,	we	created	character	interaction	with
the	environment	by	allowing	the	player	character	to	pick	up	objects.	A	single	animation
sequence	was	used	for	this.

In	the	game,	the	character	will	need	to	pick	up	collectables	of	various	sizes	and	weights.
In	order	to	visualize	this	variation	in	the	game,	we	will	be	demonstrating	a	different	use	of
Blend	Trees.

In	order	to	use	a	Blend	Tree,	a	minimum	of	two	motion	clips	is	necessary.	We
supplemented	the	original	pickup	motion	with	another	pickup	animation	to	suit	a	heavier
object.

Next,	we	will	take	a	look	at	the	differences	between	the	two	animation	clips.

Viewing	the	pickup_heavy	animation	sequence
Once	again,	we	will	make	use	of	the	zombie_m	character	to	preview	the	whole	animation:

1.	 In	the	Project	panel,	click	on	the	PACKT_Animations	folder.
2.	 Locate	the	pickups	asset.
3.	 Click	on	it	to	view	its	import	settings	in	the	Inspector	panel.

The	two	animation	clips	contained	in	this	FBX	file	have	already	been	set	up.	The	FBX	file
does	not	contain	a	model,	so	we	will	need	another	rigged	model	to	preview	the	animation:

1.	 In	the	Project	panel,	click	on	the	PACKT_Prefabs	folder.
2.	 Drag	the	zombie_m	prefab	from	the	Assets	panel	into	the	animation	preview	panel	at

the	bottom	of	the	Inspector	panel.
3.	 Take	a	look	at	the	two	motion	clips	to	compare	them:

The	illustration	compares	the	contact	point	in	both	animation	sequences.	The	left	panel
shows	the	original	pickup	animation	and	the	right	panel	shows	the	heavier	variation.

We	can	see	some	subtle	differences	in	the	pose,	with	the	character’s	hips	placed	lower	and
feet	spread	further	apart.	In	the	context	of	the	animation,	this	lower	pose	will	convey	more
weight	in	the	character’s	lift.

Note	that	the	sequences	are	the	same	length.

Here	we	are	only	making	minor	changes	that	will	blend	together	in	the	Blend	Tree.	If	we
wanted	anything	as	extreme	as	a	two-handed	lift,	it	would	be	best	to	set	this	up	in	its	own
state.

The	next	stage	will	involve	setting	up	the	two	animation	sequences	in	a	Blend	Tree.

Creating	a	Blend	Tree	in	the	Pickup	state
We	will	return	to	the	animator	controller	to	set	up	the	Blend	Tree	for	the	pickup:

1.	 In	the	Animator	window,	right-click	on	the	Pickup	state	and	select	Create	New
Blend	Tree	in	State.

2.	 Double-click	on	the	Pickup	state	to	open	the	Blend	Tree	properties	in	the	Inspector
panel.

3.	 In	the	Inspector	panel,	rename	the	Blend	Tree	Pickup_Blend_Tree.
4.	 Click	on	the	+	symbol	and	select	Add	Motion	Field.
5.	 Repeat	this	process	to	add	a	second	motion	field.
6.	 In	the	Project	panel,	navigate	to	the	PACKT_Animations	folder	and	locate	the

Pickups	subfolder.
7.	 Click	to	expand	Pickups	and	drag	the	pickup	motion	(indicated	by	the	gray	play

button)	into	the	first	motion	field	in	the	Inspector	panel.
8.	 Drag	the	pickup_heavy	motion	into	the	second	motion	field.

Now	that	we	have	added	our	motion	clips,	we	can	define	the	transition	between	them.	We
do	this	by	first	setting	a	parameter.

Setting	the	pickup	Blend	Tree	parameter
Defining	the	blend	requires	a	parameter	which	will	tell	the	state	machine	when	one	motion
sequence	should	stop	and	the	other	should	start:

1.	 Locate	the	Parameters	box	in	the	lower-left	of	the	Animator	panel.
2.	 Click	on	the	+	symbol	to	create	a	new	parameter.
3.	 Set	the	type	to	Float.
4.	 Rename	the	parameter	Weighting.
5.	 Back	in	the	Inspector	panel,	set	the	Blend	Tree	parameter	to	Weighting.

We	are	going	to	use	the	weight	of	the	object	(which	will	be	contained	in	a	variable)	to
determine	the	proportion	of	blend	between	the	light	pickup	animation	and	the	heavy
pickup	animation.

In	theory,	the	value	that	is	used	to	blend	between	the	two	clips	can	be	anything	we	want,
but	we	will	do	our	best	to	use	real-world	values.

Unity	uses	kilos	for	its	physics	simulations,	so	we	will	try	to	stay	consistent	with	this	for
our	object	weight	values.

Let’s	assume	that	the	original	pickup	animation	will	be	used	for	anything	up	to	1	kilo	(just
over	2	pounds	in	imperial	weight).	This	would	cover	light	items	such	as	food	collectables
and	small	amounts	of	ammunition.

When	an	object’s	weight	exceeds	1	kilo,	we	start	blending	in	the	heavy	pickup	animation.

To	allow	the	pickup	Blend	Tree	to	process	this,	we	will	set	the	blending	threshold.

Setting	the	threshold	for	the	pickup	Blend	Tree
We	will	continue	adjusting	the	Pickup_Blend_Tree	tree’s	parameters	in	the	Inspector
panel:

1.	 Uncheck	the	Automate	Thresholds	checkbox.
2.	 For	the	pickup	clip,	set	the	threshold	to	1.0.
3.	 Set	the	threshold	for	pickup_heavy	to	4.0.

These	values	will	ensure	that	the	original	pickup	animation	is	used	for	everything	up	to
Weighting	value	of	1.0.

Once	Weighting	exceeds	this	value,	the	pickup_heavy	clip	is	gradually	blended	in	until	it
reaches	a	value	of	4.0.	At	this	point,	it	is	purely	the	pickup_heavy	animation	which	is
being	played:

The	next	stage	will	involve	storing	the	value	of	object	in	the	character	animation	script.

Editing	the	character	animation	script	to
accommodate	the	pickup	Blend	Tree
Now	that	we	have	updated	our	animator	controller,	we	will	need	to	make	a	few	changes	to
the	character	animation	script	to	accommodate	the	additions:

1.	 In	the	Project	panel,	navigate	to	the	PACKT_Scripts	folder.
2.	 Click	on	it	once,	to	view	its	contents	in	the	Assets	panel.
3.	 Locate	FPSAnimation	and	double-click	on	it	to	open	it	in	MonoDevelop.
4.	 At	the	top	of	the	script,	beneath	the	other	variables	add	the	following	line	of	code:

var	itemWeight	:	float;

As	our	blending	parameter	is	a	float,	we	set	up	the	same	kind	of	variable	within	the
script.	This	will	make	transferring	the	values	very	simple.

Next,	we	will	define	the	relationship	between	this	variable	and	our	animator
controller.

5.	 Near	the	top	of	the	Pick	function,	after	the	first	statement,	add	the	following	code:

				itemWeight	=	objectWeight;

				thisAnimator.SetFloat("Weighting",	objectWeight);

Here	we	tie	together	the	animator	parameter,	Weighting	with	the	script’s	variable
objectWeight.

6.	 Save	the	script.
7.	 Minimize	MonoDevelop.

At	this	point,	if	we	test	the	game,	the	pickup_heavy	animation	will	never	be	used,	as	there
is	nothing	to	tell	the	character	animation	script	to	set	the	objectWeight	variable	to	a	value
higher	than	1.0.

Including	this	as	a	variable	in	the	collectable	script	will	make	the	value	easy	to	adjust	on
individual	collectable	items.

Updating	the	Collectable	script	to	include	a	weight
variable
We	will	start	where	we	left	off	in	Chapter	3,	Interacting	with	the	Environment,	with	our
lunchBox	collectable	prefab:

1.	 In	the	Project	panel,	click	on	the	PACKT_Prefabs	folder	to	view	its	contents	in	the
Assets	panel.

2.	 Locate	the	lunchBox	prefab	and	drag	it	into	the	Hierarchy	panel	to	instance	it	in	the
scene.

3.	 Use	the	Move	tool	to	position	the	instanced	lunchBox	prefab	somewhere	in	front	of
the	player	game	object.

4.	 In	the	Inspector	panel,	click	on	the	Collectable	script,	inside	the	Collectable
component.

The	script	will	become	highlighted	in	the	Assets	panel.

5.	 Double-click	on	the	Collectable	script	in	the	Assets	panel	to	open	it	in
MonoDevelop.

6.	 Near	the	top	of	the	script	and	after	the	other	variables,	add	the	following	line	of	code:

var	objectWeight	=	0.25;

We	create	a	float	variable	with	the	default	value	of	1.0	kilos	(just	over	a	half	pound	in
imperial	weight).	This	value	seems	realistic	for	this	type	of	collectable.

As	an	exposed	variable,	the	value	of	objectWeight	will	be	visible	and	can	be	adjusted	in
the	Inspector	panel.

Our	Collectable	script	does	not	yet	pass	its	objectWeight	value	to	the	player	animation
script,	so	we	will	deal	with	that	next.

Sending	the	objectWeight	variable
The	Collectable	script	already	accesses	the	player	animation	script	in	order	to	tell	it	to
set	the	Picking	Boolean	to	true,	which	in	turn	causes	the	Pickup	state	to	run.

All	we	have	to	do	is	have	it	send	the	objectWeight	value	to	this	script:

1.	 In	MonoDevelop,	make	sure	that	the	Collectable	script	is	active	in	the	editing
window.

2.	 Scroll	down	until	you	can	see	all	of	the	OnTriggerEnter	function.
3.	 Locate	the	following	statement:

playerAnim.Pick();

4.	 Within	the	brackets,	type	the	name	of	the	variable	that	we	have	just	added	to	the
script.

The	completed	line	of	code	should	be:

playerAnim.Pick(objectWeight);

As	the	Collectable	script	already	triggers	the	players	Pick	function,	we	have	merely
added	the	variable.	Passing	variables	to	functions	in	this	way	is	often	done	when	applying
damage.	Sending	a	weight	value	is	much	the	same.

The	last	step	is	to	modify	the	Pick	statement	inside	the	character	animation	script	in	order
to	recognize	the	variable	that	is	being	sent	to	it.

Updating	the	Pick	function	in	the	character
animation	script
In	Chapter	3,	Interacting	with	the	Environment,	we	created	the	Pick	function	in	the
character	animation	script	to	enable	the	pickup	animation	to	be	played	when	the	character
comes	in	range	of	the	collectable	and	presses	a	designated	button.

Now	that	we	included	the	objectWeight	variable,	we	need	to	add	this	to	the	function	to
use	the	weight	and	blend	the	two	motion	clips	accordingly:

1.	 In	MonoDevelop,	select	FPSAnimation.
2.	 Scroll	down	until	the	Pick	function	is	visible.
3.	 Within	the	title	brackets	of	the	Pick	function,	add	the	following	code:

objectWeight	:	float

The	completed	function	should	look	like	this:

function	Pick(objectWeight	:	float)

{

				thisAnimator.SetTrigger("Picking");

}

4.	 Save	the	script.

Next,	we	will	add	a	few	more	items	to	the	scene	so	we	can	test	the	Blend	Tree.

Testing	the	blended	animation	in	the	game
To	check	whether	the	blended	animation	works	correctly,	we	will	instance	three	different
collectable	items	into	our	scene.	We	will	use	the	lunchBox	collectable	that	we	worked
with	in	Chapter	3,	Interacting	with	the	Environment,	along	with	two	heavier	collectables
—a	first	aid	kit	and	a	toolbox.

Instancing	the	collectable	prefabs
The	prefabs	have	already	been	set	up,	ready	to	be	instanced	in	the	game:

1.	 Navigate	to	the	PACKT_Prefabs	folder	and	locate	the	lunchBox,	firstAidKit,	and
toolBox	prefabs.

2.	 Create	instances	of	all	three	prefabs	by	dragging	them	from	the	Assets	panel	into	the
Hierarchy	panel.

3.	 In	the	Scene	view,	move	the	collectable	prefab	objects	so	they	are	placed	on	the	floor
and	located	around	2	meters	from	each	other.	Arrange	the	objects	in	the	order	of
weight,	with	the	lunchBox	collectible	first,	then	firstAidKit,	and	lastly	toolBox.

We	need	to	hook	up	the	variables.

4.	 Select	all	three	collectables	in	the	Hierarchy	panel.
5.	 Drag	the	player_m	game	object	from	the	Hierarchy	panel	into	the	Player	Obj	slot	in

the	Inspector	panel.
6.	 Drag	the	FirstPersonCharacter	game	object	into	the	Player	Camera	slot.
7.	 Expand	the	FPSController	game	object’s	hierarchy	if	necessary	and	drag	the

zombie_m_Head	game	object	into	the	Head	Bone	slot.
8.	 Select	the	firstAidBox	game	object	and	set	its	Object	Weight	variable	to	2.5	in	the

Inspector	panel.
9.	 Select	the	toolBox	game	object	and	set	its	Object	Weight	to	4.

The	collectable	prefabs	each	have	a	trigger	and	a	variable	assigned	for	the	weight,	which
will	be	interpreted	by	the	character	animation	script	that	we	just	edited:

Now	that	we	have	set	up	the	Blend	Tree,	character	animation	script,	and	added	the
collectable	prefabs	to	the	game,	we	can	preview	the	animation.

Previewing	the	blended	animation
To	make	sure	that	our	Blend	Tree	is	working	correctly,	we	will	need	to	view	the	animator
panel	when	we	are	previewing	the	game:

1.	 Drag	the	Animator	tab	to	the	space	beside	the	Game	view	panel	and	scale	it	so	that
the	Blend	Tree	is	clearly	visible.

2.	 Press	the	Play	button	in	the	top-center	of	the	Unity	interface.
3.	 Using	the	W,	A,	S,	D,	or	cursor	keys,	move	the	player	to	the	first	of	the	three

instanced	prefabs.
4.	 When	he	has	picked	up	the	lunchBox	collectible,	move	on	to	the	next	collectable.

Watch	the	animation	in	the	game	view,	there	should	be	a	noticeable	variation	in	the
character’s	movement	to	suggest	a	difference	in	the	weight	of	the	objects.

This	variation	should	also	be	evident	in	the	Blend	Tree	display	in	the	Animator	panel.

When	the	player	character	is	picking	up	the	lunchBox	collectible,	the	pickup_light	blend
field	is	active.	When	picking	up	the	toolBox	collectible,	the	pickup_heavy	blend	field	is
active,	and	when	picking	up	firstAidKit,	the	Blend	Tree	mixes	between	the	two	blend
fields:

Summary
In	this	chapter,	we	introduced	the	Blend	Tree	as	a	method	of	blending	similar	animations
to	create	more	realistic	animated	responses	during	the	game.

Our	exercises	demonstrated	two	different	implementations	of	this:

In	the	first	example,	we	added	strafe	animations	to	the	Idle	state	to	give	the	player
feedback	when	moving	from	side	to	side.

In	the	second	implementation,	we	created	variation	in	the	pickup	animation	by	blending
light	and	heavy	variations	of	the	motion	sequence	based	on	the	determined	weight	of	the
object	that	was	picked	up.

In	the	next	chapter,	we	will	return	to	the	enemies	to	demonstrate	ragdoll	effects.

As	a	physics	effect,	the	ragdoll	prefab	is	commonly	used	to	simulate	the	physical
properties	of	weight	and	force	resulting	in	more	convincing	death	sequences	for	player
and	non-player	character	objects.

Although	these	physics	effects	do	not	use	the	Mecanim	toolset,	they	will	complement	our
state	machine	by	adding	further	realism	to	our	enemy	and	environment	in	the	game.

Chapter	8.	Implementing	Ragdoll	Physics
In	this	chapter,	we	will	apply	physics	to	the	female	zombie	character,	creating	an
interesting	death	effect	that	can	be	used	in	the	game.

Ragdoll	physics	is	a	method	that	involves	a	system	of	joints	connecting	weighted	body
parts	used	to	create	a	real-time	animation	sequence.

Unlike,	traditional	keyframe	animation	that	is	created	in	external	3D	software	and
imported	to	Unity,	the	ragdoll	object	will	interact	with	forces	within	the	game.	This	means
that	the	enemy	will	fall	to	the	ground	in	different	ways	based	on	the	applied	force	and	the
scenery	that	it	collides	with.

In	this	chapter,	you	will	learn	to:

Demonstrate	the	use	of	Unity’s	Rigidbody	and	Joint	components
Demonstrate	the	creation	of	a	ragdoll	from	an	existing	character	with	the	Ragdoll
Wizard
Show	the	adjustment	of	collision	objects	to	fit	the	character	model
Add	custom	joints	for	parts	of	the	rig	not	covered	by	the	wizard
Set	limits	to	approximate	realistic	joint	rotation.

When	the	zombie	character	is	killed,	we	will	replace	the	animated	game	object	with	the
ragdoll	game	object,	allowing	it	to	fall	to	the	ground	and	react	with	other	physical	objects.

We	will	start	with	a	brief	overview	of	Unity’s	joints.

Introduction	to	joints	in	Unity
Creating	a	ragdoll	game	object	in	Unity	requires	some	basic	knowledge	of	the	different
joints	and	how	these	can	be	added	to	game	objects.

Unlike	the	joints	or	bones	that	are	imported	in	the	FBX	file	as	part	of	the	rigged	model,
Unity’s	joints	can	be	used	to	connect	game	objects	that	respond	to	physics	within	the
game.

There	are	several	different	joints	that	we	can	choose	from,	which	suit	different	situations
within	a	game,	and	different	joints	in	a	human	body.

Creating	a	test	scene
We	will	start	with	a	blank	scene	and	some	simple	geometry	to	test	our	physics	objects:

1.	 Create	a	new	scene	by	navigating	to	File	|	New	Scene….
2.	 Add	a	plane	game	object	using	the	menu	bar	by	navigating	to	GameObject	|	3D

Object	|	Plane.
3.	 Click	on	the	Plane	in	the	Scene	view	or	Project	panel	to	adjust	its	parameters	in	the

Inspector	panel.

The	plane	game	object	should	be	centered	within	the	scene	by	default.

4.	 Rename	the	plane	groundPlane	by	typing	this	into	the	field	at	the	top	of	the
Inspector	panel.

5.	 In	the	Transform	Scale	fields,	set	the	position	X	and	Z	values	both	to	0.25.

This	will	make	the	plane	large	enough	that	it	will	catch	the	ragdoll	as	it	falls,
allowing	us	to	test	the	effect	as	it	hits	the	ground.

Next,	we	will	create	two	more	game	objects	with	which	we	will	test	the	joints.

6.	 Create	a	sphere	game	object	from	the	menu	bar	by	navigating	to	GameObject	|	3D
Object	|	Sphere.

7.	 Select	the	object	to	access	its	parameters	in	the	Inspector	panel.
8.	 Set	its	Transform	Scale	values	to	0.5.
9.	 Create	a	cube	game	object	by	navigating	to	GameObject	|	3D	Object	|	Cube.
10.	 In	the	Inspector	panel,	set	its	Transform	Scale	values	to	0.5.
11.	 Position	the	cube	and	sphere	close	together	somewhere	above	the	groundPlane

object:

Our	test	objects	will	have	colliders	as	components	by	default,	but	we	will	need	to	add
a	Rigidbody	component	to	the	sphere	and	cube	to	allow	them	to	respond	to	physics.

12.	 From	the	menu	bar,	add	a	Rigidbody	component	to	the	cube	by	navigating	to
Components	|	Physics	|	Rigidbody.

13.	 Add	a	Rigidbody	component	to	the	sphere.

By	default	the	rigidbodies’	Use	Gravity	parameter	will	be	checked,	enabling	it,	and
Mass	will	be	set	to	1.

14.	 Point	the	default	scene	camera	at	the	group	of	objects,	so	we	can	see	them	in	the
Game	view.

15.	 Test	the	game	by	pressing	the	Play	button.

The	two	objects	should	fall	onto	groundPlane:

Our	next	step	will	involve	connecting	the	sphere	and	cube	with	a	joint.

The	objects	are	not	connected	at	this	point,	and	will	fall	at	the	same	rate.

Adding	a	hinge	joint
Now	that	we	have	a	scene	with	some	simple	geometry	set	up	with	Rigidbody
components,	we	can	test	one	of	Unity’s	joints	to	see	what	it	can	do:

1.	 Select	the	sphere.
2.	 Add	a	Hinge	Joint	component	from	the	menu	bar	by	navigating	to	Components	|

Physics	|	Hinge	Joint.

The	component’s	parameters	will	become	visible	in	the	Inspector	panel.

The	Hinge	Joint	component’s	first	parameter,	Connected	Body,	has	a	field	where
we	can	drag	another	object.

3.	 Drag	the	Cube	game	object	from	the	Hierarchy	panel	into	the	Connected	Body
field	in	the	Inspector	panel.

4.	 Set	the	Anchor	and	Axis	values	in	the	X	field	to	1.
5.	 Set	the	Anchor	and	Axis	values	in	the	Y	and	Z	fields	to	0.
6.	 Uncheck	the	Auto	Configure	Connected	checkbox.
7.	 Enter	the	value	2.5	for	X	in	the	Connected	Anchor	field.
8.	 Zero	out	the	other	Y	and	Z	for	Connected	Anchor	fields.
9.	 Check	the	Use	Spring	checkbox.
10.	 Set	the	Spring	value	to	0.4	and	the	Damper	value	to	0.25.

Note
Spring	effects	are	not	always	used	in	ragdoll	simulations,	but	adding	it	here	will	help
us	to	exaggerate	the	function	of	the	hinge.

The	resulting	Hinge	Joint	component	should	match	the	illustration	here:

In	order	to	properly	test	the	hinge,	we	will	need	to	ensure	that	the	objects	are

weighted	differently.

11.	 Select	the	cube	and	under	its	Rigidbody	component,	change	the	Mass	value	to	5.
12.	 Test	the	game	by	pressing	the	Play	button:

At	this	point,	the	cube	and	sphere	will	fall	at	different	rates,	because	they	are	connected
with	the	hinge	joint	the	heavier	cube	will	appear	to	drag	the	sphere	with	it.

When	it	contacts	the	groundPlane	object,	sphere	will	bounce	slightly	due	to	the	spring.

Now	that	we	have	demonstrated	the	basics	of	joint	components	in	Unity,	we	can	move	on
to	creating	the	ragdoll.

It	would	be	tedious	and	time	consuming	to	set	up	each	joint	connecting	each	of	the
character’s	bones,	but	luckily	Unity	has	a	tool,	the	Ragdoll	Wizard,	which	automates	the
process.

Creating	the	ragdoll	object
We	will	create	the	ragdoll	prefab	using	our	female	zombie	character.	We	need	to	make	a
few	changes	to	the	scene	before	we	add	the	character	model:

1.	 Delete	the	Sphere	and	Cube	objects.
2.	 In	the	Hierarchy	panel,	select	the	groundPlane	game	object.
3.	 In	the	Inspector	panel,	set	the	groundPlane	object’s	Transform	Scale	field’s	X	and

Z	values	to	0.5.
4.	 In	the	Project	panel,	click	on	the	FBX_Imports	folder	to	view	its	contents	in	the

Assets	panel.
5.	 In	the	Assets	panel,	locate	zombie_f	and	drag	it	into	the	Hierarchy	panel,	instancing

it	in	your	scene.

Note
In	previous	chapters,	we	have	already	created	an	enemy	character	prefab	from	this
model,	but	for	the	ragdoll	prefab	we	do	not	need	the	character	controller,	animator
controller,	or	behavior	script,	so	it	saves	time	to	just	create	the	ragdoll	from	the
source	model.

The	female	zombie	model	will	load	in	the	scene	with	the	default	material.	We	can	add	the
correct	material	next.

Assigning	the	material
Adding	the	right	material	will	make	it	easier	for	us	to	notice	any	stretching	on	the	surface
of	the	mesh	and	correct	the	joint	limits:

1.	 In	the	Project	panel,	click	on	the	PACKT_Materials	folder	to	view	its	contents	in	the
Assets	panel.

2.	 In	the	Assets	panel,	locate	zombie_f	and	drag	it	onto	the	character	model	in	the
Scene	view:

The	correct	material	will	appear	on	the	model.

Generating	the	initial	ragdoll
The	Ragdoll	Wizard	is	a	tool	within	Unity	designed	to	create	a	basic	ragdoll	from	a
jointed	and	skinned	character	model.	It	works	by	creating	a	relationship	between	each	of
the	major	bones	in	the	skeleton:

1.	 In	the	Hierarchy	panel,	select	the	zombie_f	game	object.

2.	 From	the	menu	bar,	navigate	to	GameObject	|	3D	Object	|	Ragdoll.

The	Create	Ragdoll	window	will	appear	in	the	interface	prompting	you	to	assign	the
bones	to	the	ragdoll	hierarchy.

Assigning	bones	to	the	ragdoll	list

The	Create	Ragdoll	window	consists	of	a	number	of	fields	in	which	we	must	specify	the
hierarchy	of	the	character	model	by	dragging	bones	into	the	appropriate	slots:

1.	 In	the	Hierarchy	panel,	Alt	+	click	the	small	arrow	next	to	zombie_f	to	fully	expand
its	hierarchy.

2.	 Drag	zombie_f_Pelvis	onto	the	Pelvis	slot	in	the	Create	Ragdoll	window.
3.	 Drag	the	appropriate	bones	into	the	fields	in	the	Create	Ragdoll	window:

For	the	hips	fields,	use	the	thigh	bones
For	the	knee	fields,	use	calf	bones
For	the	Middle	Spine	field,	use	spine2
Complete	the	list	by	dragging	the	rest	of	the	bones	to	fill	the	positions	in	the
window

Note
Note	that	not	all	bones	in	the	hierarchy	have	their	own	fields	in	the	list—just	the
major	joints	that	are	expected	to	articulate	during	the	ragdoll	animation.

When	all	the	fields	are	full,	the	warning	message	at	the	bottom	of	the	window	will
disappear.

Assigning	mass

For	the	different	bones	in	the	ragdoll	to	fall	and	collide	realistically,	we	need	to	assign
mass.	Unity	will	then	calculate	the	mass	of	each	individual	bone	and	assign	these	values	to
the	appropriate	Rigidbody	component:

1.	 In	the	field	for	Total	Mass,	enter	52.	This	is	the	weight	in	kilos	of	the	character.
2.	 Leave	Strength	at	its	default	setting	of	0	and	the	Flip	Forward	checkbox	unchecked.

We	will	be	applying	force	in	our	script.

The	Create	button	at	the	bottom	of	the	window	should	now	be	active.

3.	 Click	on	the	Create	button	to	set	up	the	ragdoll.

An	arrangement	of	collision	objects	and	gizmos	will	be	added	to	the	character	game
object:

Previewing	the	default	ragdoll

The	character	now	has	a	series	of	collision	objects,	rigidbodies,	and	joints	added	to	its
bones.	We	can	now	see	the	ragdoll	functioning.	To	preview	the	ragdoll	click	on	the	Play
button	in	the	top	center	of	the	Unity	interface.

The	character	should	drop	to	the	ground:

The	result	is	not	exactly	what	we	want,	but	this	is	actually	a	good	start.	We	can	get	better
results	with	a	few	adjustments.

Each	collision	object	has	a	default	size	and	each	joint	has	its	own	default	rotation	limits,
which	have	been	set	up	to	approximate	the	normal	rotation	of	human	joints.	In	the	next
step,	we	will	adjust	these.

Adjusting	collision	objects
In	video	games,	collision	objects	are	usually	simple	objects,	which	are	used	to
approximate	the	physical	boundaries	of	more	complex	forms.

In	the	humanoid	figure,	these	take	the	form	of	boxes,	cylinders,	and	spheres.

When	the	ragdoll	is	switched	on	(by	pressing	the	Play	to	run	the	game),	gravity	is	applied
to	the	character	and	each	connected	joint	will	drop	down	until	its	own	collision	object	hits
another.

From	looking	at	the	results,	we	can	see	that	there	are	some	problems:

Firstly,	the	leg	joints	get	stuck	leaving	the	character	arched	over	with	her	legs	still
placed	on	the	ground
Secondly,	the	head	intersects	with	the	ground

We	will	take	a	closer	look	at	the	collision	object	settings	to	solve	these	problems.

Adjusting	the	radius	of	the	capsule	collider	to	fit	the	leg

When	the	ragdoll	is	created,	Unity	assigns	collision	objects	to	different	joints	to
approximate	their	physical	volume.	Often	the	default	settings	for	each	collider	need	to	be
adjusted	to	ensure	that	this	volume	is	correct	for	the	part	of	the	character	model	that	it	is
applied	to.

1.	 In	the	Hierarchy	panel,	select	the	zombie_f_L_Thigh	object.

The	object’s	parameters	will	become	visible	in	the	Inspector	panel.	Its	components
are	a	Rigidbody,	Character	Joint,	and	Capsule	Collider.

We	will	adjust	the	capsule	collider’s	parameters	in	the	next	step.

2.	 In	the	Inspector	panel,	scroll	down	until	you	can	see	the	Capsule	Collider
properties.

3.	 Decrease	the	Radius	until	the	capsule	is	the	same	size	as	the	widest	part	of	the
character’s	thigh.	A	setting	of	3.09	should	be	pretty	close.

Leave	the	remaining	properties	at	their	default	settings:

4.	 Repeat	this	process	for	the	right	thigh.
5.	 Change	the	Radius	value	of	the	Capsule	Collider	attached	to	each	of	the	calves	to

2.29.

The	objective	is	to	make	the	collision	objects	match	the	size	of	the	body	part	as	close
as	possible,	ensuring	that	this	part	of	the	character	model	does	not	appear	to	float
above	or	intersect	with	the	ground	or	any	other	object.

6.	 Preview	the	ragdoll	a	second	time.

The	results	should	show	a	big	improvement—the	character	will	drop	all	the	way	to	the
ground	and	the	legs	will	collapse	naturalistically.

Our	next	step	is	to	fix	the	head.

Adjusting	the	head’s	collider

By	default,	the	head	will	have	a	sphere	collider	component	to	define	its	volume.	With	the
default	settings,	the	sphere	collider’s	small	size	is	causing	the	head	to	intersect	with	the
ground	plane.

In	this	step,	we	will	adjust	the	collider	to	fit	the	character’s	head:

1.	 In	the	Hierarchy	panel,	click	on	zombie_f_Head.

In	the	Inspector	panel,	we	can	see	that	the	head	has	Rigidbody,	Character	Joint,
and	Sphere	Collider	components.

By	default,	the	Radius	value	of	the	sphere	collider	is	too	low	for	it	to	adequately
collide	with	the	ground	object.	It	is	also	positioned	too	low	and	far	back	to
completely	surround	the	skull.

2.	 In	the	Inspector	panel,	rescale	the	sphere	collider’s	Radius	to	around	3.26.
3.	 Align	the	collider	within	the	head	by	adjusting	the	Center	values	in	the	X	and	Y

fields	until	the	collider	fits	just	around	the	head	in	the	side	view.
4.	 The	Center	Z	value	actually	controls	the	horizontal	position	of	the	collider,	so	this

can	be	left	at	0.

The	sphere	collider	will	not	be	a	perfect	fit	because	the	head	is	not	round,	but	try	to
fit	the	top	half	of	the	head	as	this	part	will	most	likely	be	colliding	with	other	objects
in	the	game.

Tip
If	you	are	working	with	a	model	that	has	a	particularly	long	head,	you	can	also
replace	the	sphere	with	a	capsule	collider	such	as	those	used	in	the	limbs.

We	need	to	scale	down	the	box	collider	attached	to	the	Spine2	object	so	that	the	arms
can	fall	more	closely	to	the	torso.

5.	 In	the	Hierarchy	panel,	select	zombie_f_Spine2.
6.	 Change	the	scale	and	position	of	the	box	to	better	approximate	the	hard,	bony	areas

of	the	torso:

Reducing	the	width	of	the	box	will	allow	the	arms	to	fall	across	the	body	more
naturally.

7.	 Preview	the	ragdoll	once	more,	by	clicking	on	the	Play	button.

The	results	should	show	improvement,	but	there	are	some	issues	with	the	arms	of	the
character	intersecting	with	the	torso	when	the	zombie	falls	to	the	ground.

This	problem	is	not	just	due	to	the	scale	of	the	colliders	but	rather	the	rotational	limits	of
the	character	joints,	which	we	will	adjust	next:

Fine-tuning	the	character	joints
Character	joints	are	fully	adjustable	joints	that	can	be	adjusted	to	suit	various	situations.
They	can	be	set	up	to	limit	the	range	of	motion	on	all	three	axes.

Rotational	limits	were	applied	to	all	of	the	joints	when	the	ragdoll	object	was	created.	We
will	need	to	adjust	these	settings	in	order	to	correct	the	range	of	rotation	for	the	arm.

Adjusting	the	rotational	limits	of	the	upper	arm

Limiting	the	range	of	movement	in	the	arm	joints	will	help	us	prevent	the	arms
intersecting	with	the	torso	when	the	character	drops	to	the	ground:

1.	 In	the	Hierarchy	panel,	select	zombie_f_R_UpperArm.
2.	 The	game	object’s	components	and	their	values	will	become	visible	in	the	Inspector

panel.

We	can	begin	to	adjust	the	settings	of	the	character	joint	starting	at	the	top	of	the	list
of	properties.

3.	 Connected	Body	is	the	parent	object	that	the	joint	(in	this	case	the	right	arm)	is
connected	to.	The	object	must	have	a	Rigidbody	component	attached	in	order	to

complete	the	chain	of	bones	and	for	the	ragdoll	to	function	correctly.
4.	 Anchor	is	the	point	of	origin	of	the	joint.	Values	of	0,	0,	0	inherit	the	exact	position

of	the	joint’s	game	object	parent—in	this	case,	the	zombie_f_Spine2	bone,	to	which
the	joint	is	attached.	Change	the	value	in	the	X	field	to	-1.5,	moving	the	anchor
further	from	the	center	of	the	character.

5.	 Axis	allows	you	to	set	the	direction	in	which	the	joint	is	allowed	to	twist.	Basically,
an	offset	from	the	orientation	of	the	parent	object.	By	default,	the	joint	is	set	up	to
twist	negatively	on	the	Z	axis.

6.	 Swing	Axis	allows	you	to	set	the	direction	which	the	joint	is	allowed	to	rotate.	By
default,	the	joint	is	set	up	to	swing	negatively	on	the	Y	axis.

7.	 Low	Twist	Limit	is	the	value	in	degrees	that	the	joint	can	twist	negatively	on	the
specified	axis.	By	default,	this	is	set	to	-70.	Change	this	to	-50.

8.	 High	Twist	Limit	is	the	value	in	degrees	that	the	joint	can	twist	positively	on	the
specified	axis.	By	default,	set	to	10.	Change	this	to	40.

9.	 Swing	1	Limit	is	the	value	in	degrees	that	the	joint	can	swing	negatively	on	the
specified	axis.	By	default,	set	to	50.	Change	this	to	70.

10.	 Swing	2	Limit	is	the	value	in	degrees	that	the	joint	can	swing	positively	on	the
specified	axis.	By	default,	set	to	0.	Change	this	to	50.

11.	 Break	Force	is	the	amount	of	force	that	needs	to	be	applied	in	order	to	break	the
joint,	separating	the	two	bones.

12.	 Break	Torque	is	the	amount	of	torque	that	needs	to	be	applied	in	order	to	break	the
joint.

These	last	two	properties	are	set	to	Infinity	by	default	ensuring	that	no	amount	of
force	will	separate	the	joints.

Before	moving	on	to	the	lower	arm	joint:

1.	 Scale	down	the	Radius	of	the	Capsule	Collider	component	in	the
zombie_f_R_UpperArm	object.	A	radius	of	1.45	should	work	well.

2.	 Adjust	the	left-upper	arm	with	similar	settings	to	definite	its	limits	and	collider
size.

Adjusting	the	rotational	limits	of	the	forearm

We	will	carry	on	and	adjust	the	forearm	joint	to	complete	the	right	arm.

1.	 In	the	Hierarchy	panel,	select	zombie_f_R_Forearm.	Its	properties	will	become
visible	in	the	Inspector	panel.

2.	 In	the	Character	Joint	component,	expand	and	look	at	the	settings	for	Axis,	Swing
Axis,	and	all	Limits:

The	Axis	is	set	up	to	twist	the	joint	negatively	on	the	Y	axis.
The	Swing	Axis	is	set	up	to	swing	on	the	Z	axis.	This	will	rotate	the	forearm
forward.
The	Low	Twist	Limit	has	been	set	to	-90,	which	twists	the	elbow.	Decrease	this
to	0.

The	High	Twist	Limit	has	been	set	by	default	to	0,	which	is	appropriate	for	an
elbow	joint	which	only	rotates	in	one	direction.
Set	the	Swing	1	Limit	value	to	30	to	allow	the	forearm	to	swing	backwards
slightly.
Set	the	Swing	2	Limit	value	to	100	to	allow	the	forearm	to	swing	forward.

We	can	leave	the	remaining	Character	Joint	settings	with	their	default	values.

3.	 In	the	Inspector	panel,	scale	down	the	capsule	collider’s	Radius	to	an	appropriate
value.	A	setting	of	1.6	should	ensure	that	it	tightly	fits	around	the	forearm.

4.	 Repeat	these	adjustments	to	the	Character	Joints	and	Capsule	Colliders	of	the	left
arm	before	moving	on	to	the	head.

Adjusting	the	rotational	limits	of	the	head
Earlier	in	this	chapter,	we	adjusted	the	Radius	and	Center	fields	of	the	head’s	sphere
collider	to	better	approximate	the	proportions	of	the	character	mesh.

Now,	we	need	to	adjust	its	rotational	limits	in	the	head’s	character	joint:

1.	 In	the	Hierarchy	panel,	select	zombie_f_Head.	Its	parameters	and	components	will
become	visible	in	the	Inspector	panel.

For	the	head,	the	Axis	value	represents	the	forward	and	back	movement	of	the	head.

2.	 The	Swing	Axis	value	represents	the	side-to-side	movement.	Set	the	Swing1	Limit
to	40.

Previewing	the	adjusted	ragdoll

Press	the	Play	button	again	to	view	the	result	of	the	adjustments	we	made	to	the	character
joints	and	colliders:

Once	again,	the	results	of	the	ragdoll	have	been	improved,	but	now	that	we	adjusted	the
components	in	the	head,	it	becomes	obvious	that	the	ponytail	is	pointing	upward,	not
hanging	down	toward	the	ground	as	we	would	expect	it	to.

When	we	initially	ran	the	Ragdoll	Wizard,	there	were	no	joints	assigned	to	the	ponytail.
We	will	fix	this	by	adding	our	own	character	joint	to	this	part	of	the	character.

Adding	a	custom	joint	to	the	ragdoll
Any	bone	can	have	a	character	joint	attached	to	it	and	be	added	to	the	ragdoll	animation,
but	it	is	important	to	respect	the	hierarchy	of	joints.	In	this	case,	it	means	maintaining	the
connection	between	the	ponytail	and	the	head.

After	following	through	the	previous	sections	in	this	chapter,	you	may	have	noticed	that	a
body	part	requires	three	components	to	be	included	in	a	ragdoll:	Collider,	Rigidbody,	and
Joint.

We	will	add	these	one	at	a	time	and	adjust	the	settings	to	make	the	ponytail	react	in	a
realistic	way.

Adding	a	capsule	collider	to	the	ponytail

Next,	we	will	add	the	necessary	components	to	make	the	ponytail	work	with	our	ragdoll:

1.	 In	the	Hierarchy	panel,	select	zombie_f_Ponytail1.
2.	 From	the	menu	bar,	navigate	to	Component	|	Physics	|	Capsule	Collider	to	add	the

collider	component	to	the	selected	game	object.

For	organic	or	cylindrical	organic	forms,	the	capsule	collider	is	a	good	choice
because	it	has	a	rounded	cross-section	and	a	rounded	end.	This	type	of	collider	has
already	been	used	in	the	arms	and	legs	of	the	character	ragdoll.

3.	 In	the	Inspector	panel,	set	the	value	in	the	Center	X	field	to	-0.91,	Y	to	-2.63,	and
leave	Z	at	its	default	0.

4.	 Increase	the	radius	to	1.03.
5.	 Increase	the	height	to	6.58.

The	new	capsule	collider	should	fit	neatly	around	the	character’s	ponytail.

Adding	a	Rigidbody	component

The	capsule	collider	defines	the	physical	volume	of	the	ponytail,	but	we	need	to	add	a
Rigidbody	component	for	it	to	respond	to	physics:

1.	 From	the	menu	bar,	navigate	to	Component	|	Physics	|	Rigidbody.

When	we	initially	created	the	ragdoll,	we	specified	Total	Mass	of	52	kilos	for	the
whole	character.	The	Ragdoll	Wizard	divided	up	this	weight	proportionately	among
the	various	rigidbodies	attached	to	the	bones.

Here,	we	must	manually	add	a	mass	for	the	ponytail.

2.	 In	Inspector,	enter	the	value	0.125	in	the	Mass	field	of	the	ponytail1	object’s
Rigidbody	component.

3.	 Leave	the	remaining	properties	at	their	default	values.

Adding	the	character	joint

At	this	point,	the	ponytail	will	be	affected	by	physics	in	our	Unity	scene,	but	it	needs	to	be
properly	connected	to	the	head	using	a	Joint	component:

1.	 From	the	menu	bar,	navigate	to	Component	|	Physics	|	Character	Joint.

2.	 In	the	Hierarchy	panel,	drag	zombie_f_Head	onto	the	Connected	Body	field	in	the
Inspector	panel.

This	will	ensure	that	the	ponytail	follows	the	rotation	of	the	head.

3.	 In	the	Anchor	group,	decrease	the	X	value	to	-0.48	and	increase	the	Y	value	to
0.08.	Leave	Z	at	its	default	0.

4.	 Leave	the	remaining	settings	at	their	default	values.

When	the	animation	is	previewed,	the	ponytail	will	now	respond	to	fall	and	collide	along
with	the	other	jointed	body	parts:

Unity’s	Ragdoll	Wizard	is	a	very	fast	way	to	set	up	a	basic	humanoid	ragdoll,	but	when	we
need	to	accommodate	extra	character	features	such	as	a	ponytail,	large	nose,	or	an	extra
limb,	the	necessary	components	can	be	quickly	added	to	really	make	the	ragdoll	fit	the
character	model.

Saving	the	ragdoll	as	a	prefab
To	be	able	to	instantiate	the	ragdoll	during	our	game	with	a	script	it	needs	to	be	saved	as	a
prefab:

1.	 In	the	Hierarchy	panel,	select	the	zombie_f	game	object.
2.	 In	the	Inspector	panel,	rename	the	game	object	zombie_f	_ragdoll.
3.	 Select	and	delete	the	animator	component.
4.	 In	the	Project	panel,	click	on	the	PACKT_Prefabs	folder	to	view	its	contents	in	the

Assets	panel.
5.	 Drag	the	game	object	into	an	empty	area	of	the	Assets	panel	to	create	the	prefab.

In	the	Hierarchy	panel,	the	game	object	will	turn	blue,	indicating	that	it	is	an	instance	of	a
prefab.	We	can	instantiate	the	ragdoll	in	a	number	of	scenes.

Summary
In	this	chapter,	we	demonstrated	the	creation	of	a	ragdoll	proxy	for	our	female	zombie
character.

Starting	with	the	default	settings	initiated	in	the	Ragdoll	Wizard,	we	made	small
adjustments	to	the	physics	components:	Colliders	and	Joints,	tailoring	the	ragdoll	rig	to
better	fit	our	character.

Finally,	we	customized	the	ragdoll,	adding	the	necessary	components	to	incorporate	a
unique	part	of	our	character	with	the	physics	simulation.

In	Chapter	9,	Controlling	Enemy	Animation	with	AI	and	Triggers,	we	will	demonstrate	the
finalized	enemy	character	scripts,	which	will	explain	scripted	behavior	and	character	state,
including	the	instantiation	of	our	ragdoll	object	in	the	game.

Chapter	9.	Controlling	Enemy	Animation
with	AI	and	Triggers
In	the	last	chapter,	we	looked	at	using	ragdoll	physics	to	add	some	realistic	effects	to	our
enemy	death	sequence.

In	this	chapter,	we	will	build	on	the	enemy	AI	that	we	began	in	Chapter	6,	Talking	Heads,
creating	three	different	behaviors	for	the	enemy	character	within	the	game.

We	will	tackle	the	following	aspects	of	the	enemy	AI:

Targeting	the	player	with	range	detection
Making	the	enemy	patrol
Controlling	root	movement	curves
Attacking	the	player
Injuring	the	enemy	and	implementing	the	ragdoll	effect
Obstacle	detection	and	reaction
Implementing	pathfinding	with	navMesh

Implementing	range	detection
Our	work	in	Chapter	6,	Talking	Heads,	left	us	with	an	enemy	that	becomes	aware	of	the
player	on	a	button	click.	Let’s	begin	where	we	left	off	and	improve	this	to	make	a	smarter
enemy	that	automatically	attacks	the	player	when	he	comes	within	a	certain	range.

Looking	at	the	scene
We	will	start	by	opening	our	scene:

1.	 In	the	Unity	project,	open	Chapter9_Start	by	navigating	to	File	|	Open	Scene…	|
Chapter9_Start.

The	scene	consists	of	the	main	office	geometry	and	a	single	female	zombie	character.
The	FPSController	prefab	will	allow	us	to	navigate	the	scene.

2.	 Press	the	Play	button	in	the	top	center	of	the	Unity	interface.

The	female	zombie	is	currently	set	up	to	idle	in	place.	We	can	approach	and	nothing
happens	at	this	point:

In	the	next	step,	we	will	add	the	zombie’s	AI	script	and	allow	her	to	detect	the	player.

Adding	the	initial	AI	script
We	are	starting	with	the	zombie’s	script	that	we	completed	in	Chapter	6,	Talking	Heads.
The	enemy	is	able	to	target	the	player,	but	we	need	to	add	some	more	code	for	anything
exciting	to	happen:

1.	 In	the	Project	panel,	locate	the	PACKT_Scripts	folder.
2.	 Click	on	it	to	view	its	contents	it	in	the	Assets	panel.
3.	 Locate	zombie_chapter9_Start.
4.	 Drag	the	script	onto	the	zombie_f	game	object	in	the	Inspector	panel.

We	now	need	to	hook	up	some	variables.

5.	 Drag	the	FPSController	game	object	from	the	Hierarchy	panel	onto	the	Target	slot
under	the	zombie_Chapter9	(script)	component	in	the	Inspector	panel.

This	will	allow	the	zombie	to	find	the	player.

6.	 In	the	Project	panel,	locate	PACKT_Sounds	and	click	on	it	once	to	view	its	contents	in
the	Inspector	panel.

7.	 Drag	zombie_growl	onto	the	Snarl	Sound	slot	in	the	Inspector	panel.

This	will	allow	us	to	hear	the	zombie’s	growl	when	she	is	alerted.

If	we	preview	the	game	at	this	point,	we	will	have	the	same	kind	of	setup	as	the	end	of
Chapter	6,	Talking	Heads.	The	zombie	will	not	notice	the	player	until	the	fire	button	is
pressed.	In	the	next	section,	we	will	make	the	zombie	respond	to	the	player	getting	close.

Adding	proximity	detection	to	the	enemy	AI	script
The	zombie	currently	becomes	aware	of	the	player	only	when	the	fire	button	is	pressed.
We	need	to	add	the	necessary	code	for	the	zombie	to	detect	the	player:

1.	 In	the	Project	panel,	locate	the	PACKT_Scripts	folder	and	click	on	it	to	view	its
contents	in	the	Assets	panel.

2.	 Locate	zombie_chapter9_Start	in	the	Assets	panel.
3.	 Double-click	on	the	script	to	open	it	in	MonoDevelop.

We	will	start	by	adding	some	variables.

4.	 Add	the	following	line	of	code	to	the	end	of	the	list	of	variables	at	the	top	of	the
script:

var	distance	:	float;

var	awareRange	:	float	=	4.0;

The	first	variable	that	we	add	is	a	float	variable	that	will	be	used	to	store	the	current
distance	between	the	zombie	and	her	target.	The	second,	also	a	float	variable	that
defines	the	range	within	which	the	zombie	will	become	aware	of	the	player.

5.	 In	the	Update	function,	locate	the	following	code:

if(Input.GetButton("Fire1")	&&	alerted	==	false)

{

				alerted	=	true;

}

6.	 Replace	it	with	the	following:

distance	=	Vector3.Distance(target.position,	transform.position);

if(distance	<=	awareRange)

{

				alerted	=	true;

}

The	distance	variable	keeps	track	of	the	actual	distance	between	the	zombie	and	the
target	using	the	Vector3.Distance	method.

In	the	if	statement,	we	check	to	see	if	distance	is	less	than	the	awareRange	value,
which	we	defined	at	the	top	of	the	script	as	a	value	of	4.0.	When	this	is	the	case	we
set	the	alerted	boolean	to	true.

7.	 Save	the	behavior	script	and	test	the	game	by	pressing	the	Play	button.

The	zombie	will	idle	for	a	while	before	walking	forward.	Once	she	comes	within	4	meters
of	the	player,	she	will	become	alerted	to	the	player’s	presence	and	walk	toward	him:

This	small	addition	to	the	script	makes	for	a	slightly	more	intelligent	AI,	but	it	has	limited
uses	in	the	game.

The	current	animator	controller	contains	three	states:	Idle,	Turn,	and	Walk.	The	script
switches	between	these	states	by	setting	triggers	in	the	controller.

In	the	next	section,	we	will	set	up	a	patrol	behavior	for	the	enemy,	so	the	player	can	use
good	timing	to	avoid	being	detected.

Setting	up	the	patrol	behavior
We	already	have	a	zombie	that	will	move	toward	the	player	when	he	comes	within	range,
but	a	room	full	of	zombies	doing	the	same	thing	will	not	make	the	game	particularly	fun.

When	our	player	has	run	out	of	bullets,	we	still	want	to	give	them	the	opportunity	to
survive	the	game	using	stealth.	We	can	do	this	by	giving	enemies	fixed	patrol	patterns,
which	the	player	must	identify	in	order	to	bide	his	time	and	sneak	through	the	level.

Adding	variables	for	the	patrol
We	will	prepare	the	script	by	defining	a	few	more	variables	to	our	current	enemy	script:

1.	 Open	or	maximize	MonoDevelop	and	make	sure	that	the	zombie_Chapter9_Start
script	is	active	in	the	editing	window.

2.	 Add	the	following	code	to	the	bottom	of	the	list	of	variables	near	the	top	of	the	script:

var	patrolPts	:	Transform[];

var	currPt	:	int;

var	targetedPt	:	Transform;

var	ptDistance	:	float;

var	changeDistance	:	float	=	0.5;

var	turnTime	:	float	=	5.0;

var	moving	:	boolean	=	true;

var	speed	:	float;

var	alertDistance	:	float	=	3.0;

Here,	we	are	defining	patrolPts	as	an	array	of	transforms.	This	will	store	the	positions	of
a	number	of	patrol	points	(or	waypoints)	in	the	game	level.

The	next	variable,	currPt	will	keep	track	of	which	patrolPt	the	zombie	is	currently
targeting.	Next,	targetedPt	maintains	a	connection	to	the	current	point’s	transform.

The	ptDistance	float	variable	will	keep	track	of	how	far	the	zombie	is	from	the	targeted
point.

The	next	variable,	changeDistance	will	define	the	distance	which	causes	the	zombie	to
target	the	next	point,	here	we	are	defining	it	with	the	value	0.5.

We	added	turnTime	temporarily	to	determine	how	long	it	will	take	the	zombie	to	turn	to
face	the	next	point.

After	this,	we	have	a	boolean	named	moving	that	will	let	us	determine	when	the	zombie
should	be	moving	forward.

We	already	have	a	float	parameter	to	determine	the	zombie’s	walkSpeed,	but	we	add	a
float	named	speed	to	keep	track	of	the	current	value	and	help	us	decide	which	animation
to	play.

Finally,	alertDistance	will	determine	when	the	zombie	can	see	the	player.

Adding	the	initial	patrol	code	to	the	Update	function

We	will	use	the	variables	that	we	just	added	in	the	next	lines	of	code:

1.	 Near	the	top	of	the	Update	function,	add	the	following	code:

targetedPt	=	patrolPts[currPt];

var	patrolPtDistance	:	float	=	Vector3.Distance(targetedPt.position,	

transform.position);

var	playerDistance	=	Vector3.Distance(target.position,	

transform.position);

if(playerDistance	<=	alertDistance)

{

				alerted	=	true;

}

Here,	we	define	the	targetedPt	variable	as	the	transform	current	in	the	patrolPt
array.

We	define	a	new	local	float	variable	named	patrolPtDistance,	which	keeps	track	of
the	distance	between	the	targetedPt	variable’s	position	and	the	game	object’s
position.

Variables	that	are	only	used	within	a	single	function	can	be	kept	as	local	variables
like	this	to	reduce	clutter	in	the	Inspector	panel.

Another	local	variable,	playerDistance,	uses	the	same	method,	Vector3.Distance
to	keep	track	of	the	distance	between	the	player	and	the	enemy.	This	one	will	be	used
to	tell	the	zombie	when	to	leave	her	idling	routine	and	go	into	attack	mode.

Following	this	variable	definition,	we	add	an	if	statement	to	check	whether
playerDistance	is	less	than	or	equal	to	alertDistance.	When	this	is	the	case,	we
switch	the	alerted	boolean	to	true.

We	are	prioritizing	functionality	here,	the	zombie’s	reaction	to	the	player	is	more
important	than	the	patrol.

2.	 Locate	the	if(alerted)	statement	and	add	the	following	line	of	code	at	the	start:

targetedPt	=	target;

This	will	override	our	patrol	point	targeting	and	allow	the	zombie	to	chase	after	the
player	rather	than	the	point.

The	next	line	of	code	in	the	script	calls	the	function	TurnToPlayer.	We	will
repurpose	this	function	to	also	turn	the	zombie	toward	the	current	patrol	point.

3.	 Replace	TurnToPlayer()	with	TurnToPoint().
4.	 Right	after	the	closing	bracket	of	the	if(alerted)	statement,	further	down	in	the

Update	function,	enter	the	following	code:

else

{

				if(patrolPtDistance	<=	changeDistance)

				{

								ChangePt();

								turning	=	true;

				}

}

Here,	we	check	to	see	if	the	zombie	has	come	within	range	of	the	patrol	point.	We
want	her	to	start	her	turn	a	little	way	before	she	gets	to	the	actual	point.

We	run	a	new	custom	function	called	ChangePt,	which	will	update	the	patrol	point	in
the	array	so	the	zombie	has	something	to	turn	toward.

5.	 Add	the	following	code	right	after	the	last	statement:

if(turning)

{

				TurnToPoint();

								

				if(angle	<	2	&&	angle	>	-2)

				{

								WalkTowards();

				}

}

Here	we	check	for	the	boolean	turning	to	be	true,	which	is	also	set	up	to	run	the
Turn	state	in	our	animator	controller.

If	the	current	angle	that	we	need	to	turn	to	face	toward	the	patrol	point	is	less	than	2
degrees	difference	in	the	positive	or	negative	direction,	we	run	the	WalkTowards
function	which	we	have	already	defined.

6.	 After	the	Update	function	add	the	following	code:

function	ChangePt()

{

				currPt++;

}

This	is	a	very	short	function.	All	we	are	doing	here	is	increasing	the	currPt	variable,
which	will	move	on	to	the	next	patrol	point	in	the	array.	This	code	needs	to	be
outside	the	Update	function,	otherwise	the	number	will	continuously	increase	when
turning	is	true.

If	we	play	the	game	at	this	point,	we	will	very	quickly	get	an	index	out	of	range	error.
The	currPt	variable	will	increase	way	beyond	the	number	of	items	we	have	in	our
array,	so	we	need	to	limit	it.

7.	 To	fix	this,	we	will	add	the	following	code	to	the	very	end	of	the	Update	function:

if(currPt	>	patrolPts.Length-1)

{

				currPt	=	0;

}

Here,	we	are	ensuring	that	whenever	currPt	is	greater	than	the	length	of	the
patrolPts	array	(-1,	because	we	count	from	0),	currPt	is	equal	to	0.

The	value	of	CurrPt	will	never	be	greater	than	the	number	of	items	we	have	in	our

array.

We	now	run	the	TurnToPoint	function	in	two	situations	in	our	script,	but	the	point
that	we	turn	to	is	target,	which	will	be	set	up	to	use	the	player’s	transform.	We	need
to	edit	this	function	to	use	our	new	variable.

8.	 Locate	the	TurnToPlayer	function	and	rename	it	TurnToPoint.
9.	 Within	the	function,	replace	the	second	line	of	code	with	the	following:

var	localRotate	=	transform.InverseTransformPoint(targetedPt.position);

All	we	need	to	do	here	is	replace	the	variable	target	with	the	new	targetedPt
variable,	which	is	set	to	the	player	or	the	current	patrol	point	in	the	main	part	of	our
script.

We	created	the	WalkTowards	function	back	in	Chapter	6,	Talking	Heads.	It	basically
allows	the	zombie	to	move	forward	on	her	local	axis	while	running	the	walk
animation.

We	should	ensure	that	the	zombie	is	not	turning	when	this	happens.

10.	 Locate	the	WalkTowards	function	and	add	the	following	code	right	at	the	top:

turning	=	false;

11.	 Save	the	script.

In	order	to	see	if	this	code	works,	we	need	to	set	up	some	patrol	points	for	the	zombie	to
use	in	the	level.	We	will	do	this	next.

Defining	patrol	points
We	will	start	by	creating	two	patrol	points	(or	waypoints)	in	the	scene,	though	the	script
that	we	created	will	accept	more	than	this.

The	script	defines	the	patrol	points	as	Transforms.	We	could	use	empty	game	objects	or
pretty	much	anything	we	want.

We	will	use	cubes	here,	because	you	can	see	them	clearly	in	the	scene.	We	can	delete	the
mesh	renderers	or	just	turn	them	off	before	we	build	the	game	so	that	we	do	not	see	them:

1.	 Create	a	cube	game	object	using	the	menu	bar	by	navigating	to	Game	Object	|	3D
Object	|	Cube.

2.	 At	the	top	of	the	Inspector	panel,	change	the	name	of	the	game	object	to
wayPoint01.

3.	 Decrease	the	Transform	-	Scale	values	for	X,	Y,	and	Z	to	0.5.
4.	 Deactivate	the	Box	Collider	component	by	unchecking	the	box	next	to	this

component’s	name.
5.	 Duplicate	the	waypoint	by	selecting	it	and	using	the	Ctrl	+	D	shortcut	(Cmd	+	D	on	a

Mac).
6.	 In	Inspector	panel,	rename	the	second	box	wayPoint02.
7.	 In	the	scene,	position	wayPoint01	so	that	it	is	between	the	first	set	of	office	cube

partitions	and	wayPoint02	so	that	it	is	between	the	third	set.
8.	 Move	both	waypoints	so	that	they	are	resting	on	the	ground.

You	can	set	the	Position	Y	value	to	0.25	in	the	Transform	settings	at	the	top	of	the
Inspector	panel	if	you	want	to	be	exact.

9.	 If	necessary,	reposition	the	zombie_f	game	object	so	that	the	zombie	is	facing	toward
wayPoint01,	with	her	back	to	wayPoint02	a	short	distance	away:

Now	that	we	have	all	of	our	game	objects	repositioned,	we	can	add	the	two
waypoints	to	the	array	in	the	behavior	script.

10.	 Select	the	zombie_f	game	object	in	the	Hierarchy	panel.

The	script	component	should	now	be	visible	in	the	Inspector	panel.

11.	 In	the	Inspector	panel,	click	on	the	small	arrow	next	to	the	Patrol	Pts	variable
under	the	script	component.

This	will	expose	the	Size	variable,	which	sets	the	size	of	the	array.

12.	 Set	the	Size	value	to	2.

This	will	create	two	new	Element	fields,	which	will	accept	any	transforms	that	are
dragged	onto	them.

13.	 Drag	wayPoint01	from	the	Hierarchy	panel	onto	the	Element	0	field	and
wayPoint02	onto	the	Element	1	field.

If	you	press	the	Play	button	at	this	point,	you	should	see	the	zombie	move	between	the
two	points.

Next,	we	will	make	the	necessary	changes	to	the	animator	controller	and	implement	the
zombie’s	animation.

Modifying	the	animator
The	current	animator	controller	is	set	up	the	same	as	we	left	it	at	the	end	of	Chapter	6,
Talking	Heads.	We	need	to	make	a	few	changes	to	get	the	animation	running	a	little	more
smoothly:

1.	 In	the	Hierarchy	panel,	select	the	zombie_f	game	object.
2.	 Click	on	the	Animator	tab	in	the	top	center	of	the	main	Unity	interface	to	open	the

Animator	window.

The	currently	selected	game	object’s	animator	controller	should	be	displayed	in	the
window.

3.	 Drag	the	Animator	tab	toward	the	top	of	the	Unity	interface	to	undock	it.
4.	 Position	it	so	that	it	can	be	viewed	at	the	same	time	as	the	Game	view.
5.	 Press	the	Play	button	to	preview	the	game.

The	zombie	walks	to	the	patrol	point	and	idles	briefly	before	beginning	her	turn
animation:

We	can	see	in	the	Animator	window	that	the	zombie	is	in	her	Idle	state	even	though
she	is	turning	toward	the	next	patrol	point	in	the	Game	view.

This	would	look	better	if	we	reduced	the	amount	of	idle	and	got	straight	to	the	turn.

6.	 Press	the	Play	button	again	to	exit	play	mode.
7.	 In	the	Animator	window,	click	on	the	Idle	|	Turn	transition	to	view	its	settings	in	the

Inspector	panel.
8.	 Uncheck	the	Has	Exit	Time	checkbox.

This	will	interrupt	the	Idle	animation	and	transition	straight	to	Turn	before	the	Idle
cycle	has	finished	playing.

9.	 Press	the	Play	button	again	to	view	the	result.

At	the	moment	when	the	zombie	walks	forward,	she	does	so	at	a	constant	rate.	In	the	next
step,	we	will	integrate	this	forward	movement	better	with	the	animation	using	an

animation	curve.

Adding	and	accessing	an	animation	curve
When	the	zombie	walks	forward,	the	forward	movement	is	defined	by	a	fixed	value	in	the
walkSpeed	variable.

We	can	also	create	a	variable	tied	to	the	animation	frames	in	the	animation’s	Import
settings.

Start	by	locating	the	walk	animation	clip	in	the	project:

1.	 In	the	Project	panel,	click	on	the	PACKT_Animation	folder	to	view	its	contents	in	the
Assets	panel.

2.	 Locate	the	zombie_walk	asset	and	click	on	it	once	to	view	its	properties	in	the
Inspector	panel.

3.	 In	the	Inspector	panel,	click	on	the	Animation	tab,	if	it	is	not	already	active.
4.	 In	the	list	of	clips,	select	zwalk01f.

The	selected	animation	can	be	viewed	in	the	Animation	Preview	panel	at	the
bottom.

5.	 If	this	panel	appears	empty,	drag	the	zombie_f	game	object	from	the	Hierarchy
panel	onto	this	panel	to	preview	the	animation	with	this	character.

6.	 Scroll	to	the	bottom	of	the	Inspector	panel	and	click	on	the	small	arrow	next	to
Curves.

By	default,	there	are	no	curves	associated	with	the	animation.

7.	 Click	on	the	+	symbol	to	create	a	curve.

You	should	see	an	empty	timeline	proportionately	representing	the	selected	motion
clip.

8.	 Rename	the	new	curve	ForwardMovement.
9.	 Click	on	the	curve	graph.

This	will	open	the	new	curve	in	the	Curve	window	so	that	it	can	be	edited.

In	the	Curve	window,	you	can	create	keyframes	by	right-clicking	on	anywhere	on
the	curve	and	selecting	Add	Key	from	the	pop-up	menu.

10.	 Using	the	Animation	Preview	panel	as	a	guide,	define	positive	values	in	the	curve,
where	the	zombie	should	be	moving	forward.

The	value	scale	on	the	left	will	define	the	actual	forward	movement	of	the	zombie	per
second,	so	keyframe	your	maximum	value	at	1.0.

Tip
Remember	that	the	curve	represents	the	root	movement—the	whole	body,	not	the
feet.

11.	 When	you	are	finished	defining	the	curve,	set	the	start	and	end	tangents	to	Loop	by
clicking	on	the	tangent	mode	(set	by	default	to	Clamp)	in	the	Curve	window	and

defining	Loop	from	the	drop-down	list.

This	will	ensure	that	the	sequence	blends	together	smoothly	as	the	walk	cycles.

12.	 Save	the	Import	settings	and	store	the	new	animation	curve	by	clicking	on	the	Apply
button	at	the	bottom	of	the	Inspector	panel:

In	this	curve,	I	have	defined	the	peaks,	where	the	zombie	is	propelled	forward,	and	a	slight
dip	at	the	mid,	crossing	point	of	the	walk	cycle.

Accessing	the	animation	curve	in	Mecanim	and	using	it	in	the	script
Now	that	we	have	added	the	animation	curve	to	the	motion	clip,	we	can	make	use	of	it	in
our	Mecanim	setup.

We	will	start	by	storing	the	curve’s	value	in	the	animator	controller:

1.	 In	Unity,	click	on	the	Animator	tab	to	view	the	zombie’s	controller.
2.	 At	the	top	right	of	the	Animator	panel,	click	on	the	Parameter	tab	to	activate	it.
3.	 At	the	moment,	we	have	boolean	parameters	to	trigger	the	Walk	and	Turn	states.

4.	 Create	a	new	parameter	by	clicking	on	the	+	symbol.
5.	 Choose	Float	from	the	drop-down	selection	list	that	appears.
6.	 Rename	the	new	float	parameter	ForwardMovement.

It	is	important	that	we	give	it	the	same	name	as	the	animation	curve	we	created	in	the
Import	settings,	for	Mecanim	to	make	a	connection	between	them.

We	can	test	this,	by	running	the	game	at	this	point.

7.	 Press	the	Play	button.
8.	 Switch	to	the	Animator	tab,	while	Play	mode	is	still	running.

While	the	zombie	is	in	her	Walk	state,	you	should	see	the	value	of	ForwardMovement
change.

The	value	is	grayed	out,	indicating	that	it	is	a	read	only	parameter—it	is	being	driven
by	the	animation	curve:

At	the	moment,	this	parameter	is	not	affecting	the	zombie’s	movement.	We	need	to
make	another	change	to	the	script	to	effect	this.

9.	 Maximize	MonoDevelop	and	make	sure	that	zombie_chapter9_Start	is	the	active
script.

10.	 Add	the	following	code	to	the	top	of	the	Update	function:

var	speedFactor	=	theAnimator.GetFloat("ForwardMovement");

speed	=	walkSpeed	*	speedFactor;

Here,	we	create	a	new	local	variable	to	handle	the	animator	parameter,	which	we	are
driving	with	the	animation	curve.	We	multiply	walkSpeed	by	this	value.

We	put	this	in	Update	so	that	it	stays	current	with	the	value	in	the	controller.

11.	 Scroll	down	to	the	WalkTowards	function.
12.	 Replace	the	definition	of	the	direction	variable	with	the	following	line	of	code:

var	direction	=	transform.TransformDirection(Vector3.forward	*	speed);

Here,	we	replace	walkSpeed	with	our	new	adjusted	speed	value.

13.	 Save	the	script.
14.	 Press	the	Play	button	to	preview	the	game.

Our	zombie	should	now	lurch	forward	unevenly.	Her	forward	movement	is	driven	by	the
animation	curve	and	should	appear	to	be	in	sync	with	her	walk	animation.

Adding	the	attack
Back	in	Chapter	1,	The	Zombie	Attacks!,	we	set	up	the	male	zombie	character	to	attack	the
player	on	a	key	press.	To	allow	our	current	zombie	to	attack,	we	need	to	be	able	to	target
the	player	and	create	a	new	state	to	handle	the	attack	animation.

The	zombie	can	already	locate	the	player	when	he	comes	within	a	defined	range	and	move
toward	him.	We	need	to	add	some	more	variables	to	define	when	the	zombie	can	attack
and	for	how	long:

1.	 Near	the	top	of	the	script	add	the	following	variables:

var	attackRange	:	float	=	1.5;

var	attacking	:	boolean	=	false;

var	attackDuration	:	float	=	2.0;

var	attackTimer	:	float;

The	attackRange	float	is	like	the	changeDistance	variable	we	are	already	using	for
our	patrol	points.	It	defines	a	specific	range	that	will	be	used	to	trigger	the	attack.

We	add	a	boolean,	attacking	that	will	allow	us	to	sync	up	the	state	change	and	other
implications.	The	attackDuration	and	attackTimer	floats	will	allow	us	to	time	out
the	attack	and	give	the	player	a	chance	to	respond.

2.	 Locate	the	if(alerted)	statement	near	the	top	of	the	Update	function.
3.	 Within	this,	add	the	following	line	before	the	other	if	statements:

if(playerDistance	<=	attackRange	&&	!attacking)

{

				Attack();

}

This	will	run	the	Attack	function.	Importantly,	we	make	this	dependent	on	two
conditions,	the	player	must	be	within	the	range	and	the	boolean	attacking	is
currently	false.	This	will	make	sure	that	we	do	not	trigger	an	attack	when	we	are
already	attacking.

4.	 Add	the	following	code	next:

if(attacking)

{

								attackTimer	-=	Time.deltaTime;

								if(attackTimer	<=	0.0)

								{

												attacking	=	false;

								}

}

Our	condition	here	is	that	the	attacking	boolean	should	be	true.	When	this	is	the
case,	we	reduce	attackTimer	by	real	time.	When	this	reaches	zero	or	below,	we	set
the	attacking	boolean	to	false,	timing	out	the	attack.

5.	 Scroll	to	the	bottom	of	the	script	and	add	the	following	code:

function	Attack()

{

				theAnimator.SetTrigger("IsAttacking");				

				attackTimer	=	attackDuration;

				attacking	=	true;

}

Within	the	actual	Attack	function,	we	first	set	a	IsAttacking	trigger	to	transition
into	the	Attack	state.

We	reset	attackTimer	to	the	same	value	as	attackDuration.	If	the	Attack	function
has	already	run,	this	value	will	be	at	zero.

We	also	set	the	boolean	attacking	to	true,	which	will	allow	us	to	run	some	other
code	to	damage	the	player.

6.	 Save	the	script	and	return	to	the	main	Unity	interface.

At	this	point,	we	need	to	add	the	state	to	handle	the	attack	animation.

Adding	the	Attack	state
We	want	the	Attack	state	to	take	priority	over	the	others	and	to	be	triggered	from	any
state.	Rather	than	setting	up	three	different	transitions,	we	can	just	use	the	Any	State:

1.	 Locate	Any	State,	in	the	Animator	graph.
2.	 Right-click	on	an	empty	part	of	the	graph	close	to	this	and	choose	Create	State	|

Empty.
3.	 Click	on	the	new	state	and	rename	it	Attack	in	the	Inspector	panel.
4.	 In	the	Project	panel,	click	on	the	PACKT_Animations	folder	to	view	its	contents	in	the

Assets	panel.
5.	 Locate	the	zombie_attack	asset	and	click	on	the	small	arrow	next	to	its	icon	to

expand	it.
6.	 Drag	the	hit	animation	clip	into	the	motion	field	of	the	Attack	state.
7.	 Create	a	transition	from	the	Any	State	box	to	the	new	Attack	state.

We	need	to	create	the	new	parameter	in	order	to	complete	this	transition.

8.	 In	the	top	left	of	the	Animator	panel,	click	on	the	Parameters	tab	if	it	is	not	already
active.

9.	 Click	on	the	+	symbol	to	create	a	new	parameter	and	choose	Trigger	from	the	drop-
down	list.

10.	 Rename	the	new	parameter	IsAttacking.
11.	 Select	the	transition	between	Any	State	and	Attack	and	set	its	condition	to

IsAttacking.
12.	 Create	a	transition	between	Attack	and	Idle.
13.	 Leave	its	Condition	empty,	it	will	default	to	Exit	Time	so	that	the	zombie	will	begin

idling	once	it	has	attacked	once.

Refer	to	the	following	screenshot:

If	we	test	the	game	at	this	point,	we	should	see	the	zombie	attack	when	it	is	approached.	If
the	player	moves	away,	the	zombie	will	follow	the	player	and	try	to	attack.	Before	we	can
allow	the	zombie	to	actually	harm	the	player	we	will	assign	some	tags.

Associating	tags	with	the	enemy	and	player	game	objects
Now	that	we	have	our	state	machine	up	and	running,	it	seems	like	a	good	time	for	some
consequences.

We	can	start	this	using	Unity’s	tags	to	define	the	zombie_f	game	object	as	an	enemy	and
FPSController	as	a	player.

Tags	allow	us	to	define	how	specific	objects	or	groups	of	objects	are	treated.	In	this	case,
we	want	the	zombie	to	send	a	message	to	the	player	to	deduct	damage	when	he	is	hit.	If
the	zombie	hits	another	collider	or	misses	the	player,	we	do	not	want	to	send	the	same
message:

1.	 In	the	Hierarchy	panel,	click	on	the	FPSController	game	object	to	select	it.
2.	 In	the	Inspector	panel,	click	on	the	Tag	drop-down	list	in	the	upper	left	of	the	panel.
3.	 Select	Player	from	the	list.
4.	 Back	in	the	Hierarchy	panel,	select	the	zombie_f	game	object.
5.	 In	the	Inspector	panel,	assign	the	Enemy	tag	to	this	object.

We	are	assigning	the	player	as	the	zombie’s	target	by	dragging	the	game	object	into
the	variable	slot	in	the	game	scene.

It	seems	reasonable	to	do	this	for	one	or	two	enemies	in	a	single	level,	but	for	more
than	this,	it	would	be	handy	if	the	enemy	could	find	the	player	automatically.	We	can
do	this	with	the	tags.

6.	 Open	the	zombie_chapter9_Start	script	in	MonoDevelop.
7.	 At	the	top	of	the	Start	function,	add	the	following	line	of	code:

target	=	GameObject.FindWithTag	("Player").transform;

We	use	the	GameObject.FindWithTag	method	to	locate	a	game	object	in	the	scene
with	the	tag	Player.	We	then	return	its	transform.

8.	 Save	the	script.
9.	 Back	in	the	main	Unity	interface,	select	the	zombie_f	game	object	in	the	Hierarchy

panel.
10.	 In	the	Inspector	panel,	click	on	the	radio	button	next	to	the	Target	variable	slot

under	the	script	component.
11.	 When	the	Select	Transform	window	appears,	scroll	to	the	top	and	select	None.

The	target	variable	will	now	be	defined	at	runtime.

12.	 Press	the	Play	button	to	preview	the	game	at	this	point	and	check	that	this	works.

The	tags	are	now	setup	and	the	zombie	targets	the	player	in	the	scene	automatically.

Allowing	the	zombie	to	hurt	the	player
Now	that	we	have	set	up	the	tags,	we	will	continue	adding	code	to	the	script	in
MonoDevelop.

1.	 Add	the	following	variable	to	the	others	near	the	top	of	the	zombie_chapter9_Start
script:

var	damage:	int	=	2;

This	variable	will	be	used	to	set	the	amount	of	damage	caused	to	the	player	in	each
attack.

2.	 Scroll	down	to	the	Attack	function	and	add	the	following	lines	of	code:

var	playerStatus	=	target.Find("FirstPersonCharacter/player_m");

				playerStatus.SendMessage("AddDamage",	damage);

Note
The	SendMessage	method	is	a	typical	way	to	hurt	a	player	or	an	enemy	and	relies	on
the	game	object	containing	a	function	named	AddDamage	in	one	of	its	scripts.

Back	in	Chapter	3,	Interacting	with	the	Environment,	we	added	a	simple	player	status
script	that	allowed	our	player	to	receive	health	power	ups.	We	are	accessing	this
script	to	damage	the	player.

Here,	we	send	the	AddDamage	message	with	the	integer	variable	damage	to	the	game
object	player_m,	which	the	playerStatus	script	is	attached	to.	The	AddDamage
function	is	run	in	the	script,	decreasing	the	damage.

3.	 Save	the	script.
4.	 In	the	Hierarchy	panel,	select	the	player_m	game	object.
5.	 In	the	main	unity	interface,	press	the	Play	button	to	preview	the	game.
6.	 Walk	toward	the	zombie	and	allow	her	to	attack	the	player.

In	the	Inspector	panel,	we	should	see	the	player’s	health	reduced	by	2	each	time	the
zombie	attacks.

When	the	player’s	health	is	reduced	to	0,	a	message	will	appear	in	the	console	to	inform
you	that	the	player	is	dead.

Now	that	the	zombie	can	attack	and	hurt	the	player,	we	will	add	the	equivalent	code	to	the
zombie’s	script	to	allow	her	to	be	damaged	and	killed.

Damaging	and	killing	the	zombie
In	order	for	our	zombie	enemy	to	take	damage	and	ultimately	be	killed,	we	need	to	add	a
variable	that	can	be	decreased	when	they	are	struck	by	the	player’s	bullets:

1.	 In	MonoDevelop,	add	the	following	variables	to	the	others,	near	the	top	of	the
zombie_chapter9_Start	script:

var	zombieHealth	:	int	=	5;

var	deadPrefab	:	Transform;

This	first	new	variable	stores	the	current	health	value.	This	will	decrease	when	the
zombie	is	hit.	We	will	use	deadPrefab	to	store	the	ragdoll	prefab	that	we	created
previously	in	Chapter	8,	Implementing	Ragdoll	Physics.

2.	 At	the	bottom	of	the	script,	add	the	following	code:

function	AddDamage(damage	:	int)

{

				zombieHealth	-=	damage;

				if(zombieHealth	<=	0)

				{

								zombieHealth	=	0;

								Dead();

				}

}

This	function	is	almost	identical	to	the	function	handling	the	player’s	health.	When
the	zombie’s	health	value	drops	below	zero,	we	call	the	Dead	function,	which	we	will
write	next.

3.	 Next,	add	the	following	code:

function	Dead()

{

				Destroy(gameObject);

				if(deadPrefab)

				{

								var	dead	:	Transform	=	Instantiate(deadPrefab,	

transform.position,	transform.rotation);

								CopyTransformsRecurse(transform,	dead);

				}

}

static	function	CopyTransformsRecurse	(src	:	Transform,	dst	:	

Transform)

{

				dst.position	=	src.position;

				dst.rotation	=	src.rotation;

				for(var	child	:	Transform	in	dst)

				{

								var	curSrc	=	src.Find(child.name);

								if(curSrc)

												CopyTransformsRecurse(curSrc,	child);

				}

}

In	the	Dead	function,	we	destroy	the	game	object—the	zombie	and	all	of	her	components.

We	then	instantiate	the	ragdoll,	and	store	this	as	a	local	variable	named	dead.	We	then	feed
the	dead	prefab	and	the	original	transform	into	a	static	function	named
CopyTransformsRecurse.	This	goes	through	all	the	child	Transforms	in	our	original	game
object	and	applies	their	rotation	and	position	to	those	of	the	ragdoll,	giving	us	a	seamless
transition.

To	see	the	result,	we	need	to	hook	up	the	ragdoll	prefab	with	the	script:

1.	 Save	the	script.
2.	 Select	the	zombie_f	game	object	by	clicking	on	it	in	the	Hierarchy	panel,	if	it	is	not

already	selected.
3.	 In	the	Inspector	panel,	scroll	down	until	you	can	see	the	Zombie

chapter9_Start(script)	component.
4.	 In	the	Project	panel,	click	on	the	PACKT_Prefabs	folder	to	view	its	contents	in	the

Assets	panel.
5.	 Locate	the	zombie_f_ragdoll	prefab	and	drag	it	into	the	Dead	Prefab	slot	in	the

Zombie_chapter9_Start(script).

To	damage	the	zombie,	we	need	to	fire	some	bullets,	so	we	will	make	a	small	update	to	the
player’s	script	in	the	next	step.

Allowing	the	player	to	fire
When	the	fire	button	is	pressed,	a	message	appears	in	the	console,	but	the	player’s	weapon
does	not	actually	fire	any	bullets.	We	will	add	the	necessary	code	and	connect	variables	to
make	this	happen:

1.	 In	the	Assets	panel,	locate	FPSAnimation.
2.	 Double-click	on	it	to	open	it	in	MonoDevelop.
3.	 Add	the	following	variables	to	the	top	of	the	script:

var	bulletPrefab	:	GameObject;

var	muzzle	:	Transform;

Like	the	ragdoll,	the	bullet	is	a	prefab	that	we	are	instantiating	at	runtime.	This	has
already	been	setup.

The	next	variable,	muzzle,	defines	the	transform	position	where	the	bullet	will	be
instantiated.

4.	 In	MonoDevelop,	scroll	down	until	you	find	the	Shoot	function.
5.	 Add	the	following	code	within	its	opening	and	closing	brackets:

var	theBullet	=	Instantiate(bulletPrefab,	muzzle.position,	

muzzle.rotation);

theBullet.GetComponent.<Rigidbody>().AddRelativeForce(0,	0,	3000);

Here,	we	assign	a	new	local	variable	named	theBullet.	We	instantiate	bulletPrefab
with	the	position	and	rotation	of	the	muzzle	transform,	within	it.

We	then	add	relative	force	to	the	object’s	rigidbody	component	so	that	it	travels	in
the	direction	that	we	fire.

6.	 Save	the	script.
7.	 Minimize	MonoDevelop.
8.	 In	the	Project	panel,	click	on	the	PACKT_Prefabs	folder	to	view	its	contents	in	the

Assets	panel.
9.	 In	the	Hierarchy	panel,	select	the	player_m	game	object.
10.	 Locate	bulletCube	in	the	Assets	panel	and	drag	it	into	the	bulletPrefab	slot	under

the	FPSAnimation	(Script)	component	in	the	Inspector	panel.
11.	 In	the	Hierarchy	panel,	fully	expand	player_m	game	object’s	hierarchy	by	Alt	+

clicking	on	the	small	arrow	next	to	its	name.
12.	 Locate	the	muzzle	game	object	(a	child	of	Gun)	within	the	player_m	hierarchy	and

drag	it	into	the	Muzzle	slot	under	the	FPSAnimation	(Script)	component	in	the
Inspector	panel.

The	bulletCube	prefab	already	has	a	small	script	attached	to	allow	it	to	cause
damage	with	the	items	it	hits.

To	decrease	the	clutter	in	our	Scene	view,	we	can	also	make	the	waypoints	invisible
now	that	we	do	not	need	to	see	them	anymore.

13.	 Select	both	waypoint	objects	in	the	Hierarchy	panel.
14.	 In	the	Inspector	panel,	uncheck	their	Mesh	Renderer	components.

They	should	become	invisible	in	the	Scene	view,	though	they	can	still	be	selected	in	the
hierarchy	panel.	If	we	test	the	game	at	this	point,	when	we	shoot	the	patrolling	zombie,
she	will	drop	to	the	ground	lifelessly.

With	the	values	we	have	set	up,	it	should	take	three	shots	to	kill	a	zombie:

In	the	next	section,	we	will	demonstrate	how	we	can	use	our	Mecanim	animation	setup
with	navMesh.

Pathfinding	and	obstacle	detection	with
navMesh
NavMesh	is	Unity’s	pathfinding	system.	It	works	by	defining	the	navigable	areas	of	the
game	level,	storing	this	as	a	simple	mesh.	Once	areas	that	can	be	accessed	are	defined,	the
navMesh	is	baked	like	a	lightmap.

This	system	offers	numerous	advantages	over	waypoint	systems.	Firstly,	it	allows	an	AI
character	to	roam	freely	within	a	level.

1.	 Open	the	scene	Chapter9_nav_Start.

The	scene	contains	the	office	environment	with	a	navMesh	already	baked.	The	steps
taken	to	set	this	up	are	well	documented	on	the	Unity	website.

We	can	view	the	generated	navMesh	by	activating	the	Navigation	panel.

2.	 From	the	menu	bar,	choose	Window	|	Navigation.

The	Navmesh	Display	box	will	appear	in	the	lower	right	of	the	Scene	view.

By	default,	the	Show	NavMesh	checkbox	should	be	checked	and	the	walkable	areas	of
the	game	level	will	be	displayed	in	blue:

In	the	scene,	the	patrol	points	have	been	placed	to	make	a	more	complex	route	for	the
zombie.	If	you	press	the	Play	button	at	this	point,	you	will	see	the	zombie	walk	toward	the
first	point	as	before.

When	she	walks	toward	the	second	point,	she	will	get	stuck	as	it	is	not	directly	in	view.

We	can	solve	this	using	Unity’s	navigation.

Next,	we	will	add	the	component	that	will	allow	the	zombie	to	use	the	navMesh:

1.	 In	the	Hierarchy	panel,	select	the	zombie_f_nav	game	object.
2.	 Add	a	navMesh	agent	component	from	the	menu	bar	by	navigating	to	Component	|

Navigation	|	Nav	Mesh	Agent.

The	navMesh	agent	defines	how	the	character	moves	around	the	space.	It	has	a
radius	variable,	which	controls	how	close	the	zombie	will	get	to	scenery.	It	also	has
speed	and	turning	variables	that	we	will	need	to	set	in	our	script.

If	we	test	the	game	at	this	point,	there	will	be	no	apparent	change,	as	the	navMesh
agent	requires	a	goal	(or	destination)	to	be	set	in	a	script	so	that	a	route	can	be
calculated.

3.	 In	the	Project	panel,	locate	the	PACKT_Scripts	folder	and	click	on	it	once	to	view	its
contents	in	the	Assets	panel.

4.	 Open	the	zombie_nav_Start	script	in	MonoDevelop	by	double-clicking	on	it	in	the
Assets	panel.

5.	 Add	the	following	variables	to	the	others,	near	the	top	of	the	script:

var	zAgent	:	NavMeshAgent;

var	navSpeed	:	float	=	1.0;

In	the	zAgent	variable,	we	will	be	storing	the	navMesh	agent	so	that	we	can	send	it
other	variables.	We	will	use	navSpeed	to	keep	the	speed	of	the	navigation	updated.

In	the	Start	function,	we	will	initialize	NavMeshAgent	the	same	way	that	we	have
done	with	the	character	controller	and	animator.

6.	 Add	the	following	lines	of	code	inside	the	Start	function:

zAgent	=	GetComponent(NavMeshAgent);

The	navMesh	agent	needs	an	initial	target	position	to	be	able	to	run.

7.	 Add	the	following	code	to	the	bottom	of	the	function:

targetedPt	=	patrolPts[currPt];

zAgent.destination	=	targetedPt.position;

Here,	we	designate	the	targetedPt	as	the	current	patrol	point.	We	then	define	the
navMesh	agent’s	destination	variable	as	the	targetedPt	variable’s	position.

We	also	need	to	make	sure	that	the	destination	changes	when	the	zombie	reaches	the
patrol	point.

8.	 Add	the	following	line	to	the	top	of	the	Update	function:

zAgent.destination	=	targetedPt.position;

This	will	be	sufficient	for	the	zombie	to	use	the	navigation.	If	you	press	Play	at	this
point,	you	will	see	the	zombie	move	rapidly	between	the	two	points.

The	navMesh	agent	has	its	own	internal	speed	variable.	We	can	keep	this	the	same	as
the	zombie’s	adjusted	walk	speed.

9.	 Add	the	following	code	to	the	Start	function,	directly	after	the	last	line	that	we
added:

zAgent.speed	=	navSpeed;

We	initialize	the	navMesh	agent’s	speed	variable,	setting	it	to	the	value	of	navSpeed.
Next,	we	need	to	keep	this	the	same	as	the	zombie’s	adjusted	speed	value,	which
changes	with	the	animation.

10.	 Add	the	following	code	to	the	Update	function,	directly	after	the	last	line	that	we
added:

navSpeed	=	speed;

The	zombie	will	now	walk	between	the	patrol	points	with	the	corrected	speed,	but	it	is	not
currently	being	adjusted	when	she	is	idling	or	turning.

The	solution	is	to	temporarily	suspend	the	navigation	while	the	zombie	is	turning.

Suspending	navigation	during	the	turn
At	this	point,	we	need	to	slow	the	zombie	down	so	that	she	can	turn.	The	best	way	to	do
this	is	to	temporarily	switch	off	the	navigation.

1.	 In	the	Update	function,	locate	the	if(ptDistance	<=	changeDistance)	statement.

The	code	contained	within	this	statement	will	run	whenever	the	zombie	comes	within
the	defined	range	of	the	patrol	point.

2.	 Add	the	following	code	inside	the	statement’s	curly	brackets:

zAgent.Stop();

The	navMesh	agent’s	Stop	function	will	suspend	the	navigation.	We	need	to	resume
navigation	once	the	zombie	has	turned	toward	the	next	point.

3.	 Scroll	down	to	the	WalkTowards	function	and	add	the	following	code	at	the	start:

zAgent.Resume();

4.	 Save	the	script.

If	we	test	the	game	at	this	point,	we	should	see	the	zombie’s	speed	slow	long	enough	for
her	to	execute	the	turn.	If	the	player	comes	within	range,	her	attack	is	relentless	and	she
will	pursue	the	player	until	she	is	dead.

In	the	next	step,	we	will	temporarily	suspend	the	navigation	while	the	attack	takes	place
and	give	the	player	a	chance	to	escape.

Adjusting	navigation	during	the	attack
Currently,	when	the	zombie’s	attack	is	initiated,	she	continues	to	move	toward	the	player.
We	can	suspend	this	in	the	same	way	that	we	did	for	the	turn:

1.	 In	the	Update	function,	locate	the	if(attacking)	statement.
2.	 Add	the	following	code	inside	the	statement’s	curly	brackets	and	before	the	other

code:

zAgent.Stop();

The	WalkTowards	function,	which	runs	following	the	attack,	is	already	setup	to	resume
navigation.	If	we	test	the	game	at	this	point,	the	zombie	will	stop	chasing	the	player	when
she	starts	the	attack.

The	code	is	currently	set	up	to	damage	the	player	whether	he	is	close	to	the	zombie	or	far
away,	so	we	need	to	add	another	condition	to	make	sure	that	the	player	is	close	enough	to
be	hurt.

Modifying	the	Attack	function
Here,	we	will	modify	the	attack	to	ensure	the	player	is	only	hurt	when	he	is	close	enough
for	the	zombie	to	reach	him:

1.	 Near	the	top	of	the	script,	add	the	following	variable:

var	playerDamaged	:	boolean	=	false;

The	boolean	variable	playerDamaged	will	be	used	as	a	flag	to	see	if	the	player	is
currently	being	hurt	in	the	attack.

We	only	want	the	player	to	lose	2	points	of	health	per	attack,	not	to	be	hurt
continuously	during	the	time	the	attack	takes	place.

2.	 In	the	Update	function,	locate	the	following	if	statement:

if(attackTimer	<=	0.0)

3.	 Add	the	following	code	inside	the	curly	brackets	of	the	statement:

playerDamaged	=	false;

4.	 Directly	after	the	if	statement,	add	the	following	code:

if(attackTimer	>	0.7	&&	playerDistance	<=	attackRange	&&	

!playerDamaged)

{

				DamagePlayer();

}

Here	we	check	that	the	attack	has	been	going	for	0.7	seconds,	the	playerDistance
object	is	within	attackRange,	and	the	player	is	not	already	being	damaged.

These	are	the	conditions	that	need	to	be	met	before	we	damage	the	player.	We	move

the	actual	damaging	into	its	own	function,	DamagePlayer.

5.	 Scroll	down	to	the	Attack	function	and	locate	the	last	two	lines	of	code:

var	playerStatus	=	target.Find("FirstPersonCharacter/player_m");

playerStatus.SendMessage("AddDamage",	damage);

6.	 Select	the	lines	and	delete	them	from	the	function.
7.	 After	the	closing	curly	bracket	of	the	function,	add	the	following	code:

function	DamagePlayer()

{

				playerDamaged	=	true;

				var	playerStatus	=	target.Find("FirstPersonCharacter/player_m");

				playerStatus.SendMessage("AddDamage",	damage);

}

Here,	we	set	the	boolean	playerDamaged	to	true.

Next,	we	add	the	lines	that	we	deleted	from	the	Attack	function,	connecting	to	the
player	status	script	and	applying	the	damage.

8.	 Save	the	script.

If	we	test	the	game	at	this	point,	we	should	be	able	to	slip	away	from	the	zombie	without
being	damaged	after	she	starts	the	attack:

Zombies	are	forgetful	creatures;	it	would	be	good	to	allow	a	zombie	to	forget	about	the
player	after	he	has	been	out	of	range	for	long	enough.	We	can	add	this	feature	to	the	AI
script	next.

Timing	out	the	zombie’s	pursuit
By	adding	the	time	out,	we	allow	the	zombie	to	forget	about	the	player	after	enough	time
has	been	spent	out	of	range:

1.	 Add	the	following	code	to	the	list	of	variables	at	the	top	of	the	zombie_nav_Start
script:

var	alertTimeOut	:	float	=	5.0;

var	alertTimer	:	float;

The	variable	alertTimeOut	defines	the	time	in	seconds	that	it	will	take	the	zombie	to
forget	about	the	player.	Keeping	this	variable	exposed,	makes	it	easy	to	adjust	in	the
Inspector	panel.

The	next	variable,	alertTimer,	keeps	track	of	the	time	that	has	passed.

2.	 In	the	Update	function,	locate	the	following	if	statement:

if(playerDistance	<=	attackRange	&&	!attacking)

{

	Attack();

}

3.	 Add	the	following	line	of	code	after	Attack():

alertTimer	=	0.0;

4.	 After	the	closing	curly	bracket	of	the	statement,	add	the	following	code:

else	if(playerDistance	>	alertDistance)

{

				alertTimer	+=	Time.deltaTime;

				if(alertTimer	>	alertTimeOut)

				{

								alerted	=	false;

				}

}

The	else	if	statement	comes	into	play	when	alerted	is	true	and	the	distance
between	the	zombie	and	the	player	is	greater	than	the	alertDistance	value.

When	this	is	the	case,	we	increase	the	alertTimer	by	time	in	seconds,	and	when	this
value	reaches	the	alertTimeOut	value,	we	set	alerted	to	false,	returning	our
zombie	to	her	waypoint	behavior.

For	cleanliness,	we	zero	out	the	alertTimer	in	the	original	if	statement,	so	that	the
increase	does	not	accumulate.

5.	 Save	the	script.
6.	 Test	the	game	by	pressing	the	Play	button.

The	zombie	will	move	between	the	waypoints	and	then	chase	the	player	when	he	comes
within	range.	If	we	are	able	to	get	away	far	enough,	the	zombie	will	lose	interest	in	the

player	and	return	to	her	patrol:

There	are	lots	more	things	we	can	do	here	with	navMesh	and	Mecanim.	For	instance,	we
can	set	up	a	complex	level	in	which	multiple	zombies	have	overlapping	patrols.	The
player	needs	to	negotiate	to	get	through	the	game	level.

In	Unity,	the	navMesh	toolset	has	many	capabilities	for	triggering	behavior	and	giving	the
appearance	of	intelligence.	The	pathfinding	happens	behind	the	scenes,	allowing	us	to
create	more	realistic	and	challenging	enemy	behaviors.

Summary
In	this	chapter,	we	developed	animation-triggering	techniques	introduced	previously	with
the	objective	of	creating	an	enemy	that	is	both	responsive	and	realistic.

We	started	by	implementing	range	detection	in	an	existing	script	to	give	the	appearance	of
the	enemy’s	response	to	the	player.

We	set	up	a	simple	waypoint	system	to	allow	the	enemy	to	patrol	the	level.

By	driving	root	motion	with	an	animation	curve,	we	connected	to	Mecanim	on	a	deeper
level	and	were	able	to	better	synchronize	movement	and	animation.

Next,	we	elaborated	on	the	enemy’s	attack	and	added	the	necessary	code	for	it	to	be
injured	and	killed,	implementing	the	ragdoll	effects	that	we	created	in	Chapter	8,
Implementing	Ragdoll	Physics.

Finally,	we	dealt	with	obstacle	avoidance	with	Unity’s	potent	navMesh	system	and
coordinated	the	zombie’s	attack	duration	and	time	out.

In	this	book,	we	covered	a	few	different	techniques	which	Mecanim	can	be	harnessed	to
create	powerful	and	engaging	character	animation	in	Unity	5.	I	hope	to	have	demonstrated
that	Mecanim	is	a	powerful	and	dynamic	toolset	for	character	animation.

Its	visual	representation	of	state	machines,	and	its	ability	to	create	complex	animation
routines,	even	with	very	little	code	make	it	an	essential	tool	for	anyone	interested	in
animation	in	games.

The	potential	uses	of	this	toolset	are	expanding	every	day	with	a	very	large	and	active	user
base	sharing	problems	and	solutions	on	Unity’s	community	forums.

Index
A

animation
previewing,	by	adjusting	scene	elements	/	Adjusting	the	scene	elements	to
preview	the	animation
previewing,	in	game	view	/	Previewing	the	hit	animation	in	the	game	view

animation	curve
adding	/	Adding	and	accessing	an	animation	curve
accessing	/	Adding	and	accessing	an	animation	curve,	Accessing	the	animation
curve	in	Mecanim	and	using	it	in	the	script
using,	in	script	/	Accessing	the	animation	curve	in	Mecanim	and	using	it	in	the
script

animator	controller
setting	up	/	Setting	up	the	animator	controller
second	layer,	creating	/	Creating	a	second	layer	in	the	animator	controller
updating,	for	including	face	animation	/	Updating	the	animator	controller	to
include	the	face	animation
Snarl	state,	adding	/	Adding	the	Snarl	state
Null	state,	creating	/	Creating	a	Null	state
transitions,	setting	between	Null	and	Snarl	states	/	Setting	transitions	between
the	Null	and	Snarl	states
used,	for	driving	blendshape	animation	/	Driving	a	blendshape	animation	with
the	animator	controller
updating,	to	handle	blendshape	animation	/	Updating	the	animator	to	handle	the
blendshape	animation

animator	controller,	setting	up
steps	/	Setting	up	the	animator	controller
states,	creating	/	Creating	states
parameter,	creating	/	Creating	a	parameter
transitions,	adding	/	Adding	transitions
script,	writing	/	Writing	the	script

arm	joints,	rigging	process
creating	/	Creating	the	arm	joints
finger	joints,	cloning	/	Cloning	the	finger	joints

Avatar
creating	/	Adjusting	the	rig	import	settings	and	creating	the	Avatar,	Creating	the
Avatar
character’s	pose,	adjusting	/	Adjusting	the	character’s	pose
bone	hierarchy,	checking	/	Checking	the	bone	hierarchy	in	the	Avatar

Avatar	Body	Masks
working	with	/	Working	with	Avatar	Body	Masks
new	scene,	opening	/	Opening	the	new	scene

Avatar	masks
adding	/	Adding	more	Avatar	masks

B
biped’s	parameters

adjusting	/	Adjusting	the	Biped’s	parameters
adjusting,	to	fit	character	/	Adjusting	the	Biped	to	fit	the	character
X-ray	mode,	switching	to	/	Switching	to	X-ray	mode	and	freezing	the	character
mesh
character	mesh,	freezing	/	Switching	to	X-ray	mode	and	freezing	the	character
mesh
bone	display	colors,	changing	/	Changing	bone	display	colors
bones,	scaling	to	match	character	model	/	Scaling	and	orienting	the	bones	to
match	the	character	model
bones,	orienting	to	match	character	model	/	Scaling	and	orienting	the	bones	to
match	the	character	model
joints,	repositioning	for	pony	tail	/	Repositioning	the	joints	for	the	ponytail	and
jaw
joints,	repositioning	for	jaw	/	Repositioning	the	joints	for	the	ponytail	and	jaw
limb	positions,	adjusting	/	Adjusting	limb	positions
bones,	renaming	/	Renaming	bones
shortcuts,	using	/	Copying	and	pasting	the	position,	rotation,	and	scale	data	from
one	side	to	the	other

blended	animation
testing,	in	game	/	Testing	the	blended	animation	in	the	game
collectable	prefabs,	instancing	/	Instancing	the	collectable	prefabs
previewing	/	Previewing	the	blended	animation

blendshape	animation
driving,	with	animator	controller	/	Driving	a	blendshape	animation	with	the
animator	controller
viewing,	in	Unity	/	Viewing	the	blendshape	in	Unity
face	blendshape,	keyframing	/	Keyframing	the	face	blendshape
handling,	by	updating	animator	controller	/	Updating	the	animator	to	handle	the
blendshape	animation

Blendshape	or	Morph	Target	/	Driving	a	blendshape	animation	with	the	animator
controller
Blend	Tree

adding,	to	player’s	existing	animator	controller	/	Adding	a	Blend	Tree	to	the
player’s	existing	animator	controller
used,	for	adding	strafing	animation	to	player	character	/	Adding	strafing
animation	to	the	player	character	with	a	Blend	Tree
properties,	using	/	Using	Blend	Tree	properties
parameter	/	Using	Blend	Tree	properties
blending	graph	/	Using	Blend	Tree	properties
motions	group	/	Using	Blend	Tree	properties
motion	clips,	adding	/	Adding	the	motion	clips	to	the	Blend	Tree

parameters,	adding	/	Adding	and	adjusting	the	Blend	Tree	parameters	and
thresholds
thresholds,	adding	/	Adding	and	adjusting	the	Blend	Tree	parameters	and
thresholds
thresholds,	adjusting	/	Adding	and	adjusting	the	Blend	Tree	parameters	and
thresholds
parameters,	adjusting	/	Adding	and	adjusting	the	Blend	Tree	parameters	and
thresholds
accommodating,	by	updating	character	script	/	Updating	the	character	script	to
use	the	Blend	Tree
testing,	in	game	view	/	Testing	the	Blend	Tree	in	the	Game	View
used,	for	varying	pickup	animation	/	Varying	the	pickup	animation	with	a	Blend
Tree
creating,	in	Pickup	state	/	Creating	a	Blend	Tree	in	the	Pickup	state
pickup	Blend	Tree	parameter,	setting	up	/	Setting	the	pickup	Blend	Tree
parameter
threshold,	setting	for	pickup	Blend	Tree	/	Setting	the	threshold	for	the	pickup
Blend	Tree
character	animation	script,	editing	/	Editing	the	character	animation	script	to
accommodate	the	pickup	Blend	Tree
Collectable	script,	updating	/	Updating	the	Collectable	script	to	include	a	weight
variable
objectWeight	variable,	sending	/	Sending	the	objectWeight	variable
blended	animation,	testing	/	Testing	the	blended	animation	in	the	game

C
character

skinning,	with	skin	modifier	/	Skinning	the	character	using	the	skin	modifier
character,	skinning

skin	modifier,	using	/	Skinning	the	character	using	the	skin	modifier
selection	set,	creating	/	Creating	a	selection	set
default	pose,	saving	/	Saving	the	default	pose
test	pose,	creating	/	Creating	the	test	pose

character	animation	script
Pick	function,	updating	/	Updating	the	Pick	function	in	the	character	animation
script

character	joints
fine	tuning	/	Fine-tuning	the	character	joints
rotational	limits	of	upper	arm,	adjusting	/	Adjusting	the	rotational	limits	of	the
upper	arm
rotational	limits	of	forearm,	adjusting	/	Adjusting	the	rotational	limits	of	the
forearm
rotational	limits	of	head,	adjusting	/	Adjusting	the	rotational	limits	of	the	head

character	script
updating,	for	using	Blend	Tree	/	Updating	the	character	script	to	use	the	Blend
Tree

collectable	objects
adding	/	Adding	and	implementing	collectable	objects
implementing	/	Adding	and	implementing	collectable	objects
lunchbox	collectable,	instantiating	into	game	level	/	Instantiating	the	lunchBox
collectable	in	the	game	level
lunchbox	collectable’s	components,	inspecting	/	Inspecting	the	lunchBox
collectable’s	components
player	character’s	response,	setting	up	/	Setting	up	the	player	character’s
response
lunchbox	collectable,	testing	/	Testing	the	lunchBox	collectable

Collectable	script
updating,	for	including	weight	variable	/	Updating	the	Collectable	script	to
include	a	weight	variable

collision	objects
adjusting	/	Adjusting	collision	objects
capsule	collider	radius,	adjusting	/	Adjusting	the	radius	of	the	capsule	collider	to
fit	the	leg
head’s	collider,	adjusting	/	Adjusting	the	head’s	collider

considerations,	modeling
polycount	/	Modeling	for	animation
mesh	density	/	Modeling	for	animation
Quads	and	Triangles	/	Modeling	for	animation

cross	sections	/	Adjusting	envelopes
custom	joint,	adding	to	ragdoll	object

about	/	Adding	a	custom	joint	to	the	ragdoll
capsule	collider,	adding	to	ponytail	/	Adding	a	capsule	collider	to	the	ponytail
Rigidbody	component,	adding	/	Adding	a	Rigidbody	component
character	joint,	adding	/	Adding	the	character	joint

D
3ds	Max

rigging	process	/	Rigging	in	3ds	Max

E
Edge	Loop	/	Modeling	for	animation
enemy

importing	/	Importing	our	enemy
material,	organizing	/	Organizing	the	material	and	textures
textures,	organizing	/	Organizing	the	material	and	textures
import	scale,	adjusting	/	Adjusting	the	import	scale
rig	import	settings,	adjusting	/	Adjusting	the	rig	import	settings	and	creating	the
Avatar
Avatar,	creating	/	Adjusting	the	rig	import	settings	and	creating	the	Avatar

F
FBX	files	/	Importing	our	enemy
female	zombie	character

snarl	face	animation,	adding	/	Adding	the	snarl	face	animation	to	the	female
zombie	character

First-Person	Shooter	(FPS)	/	Adding	the	character	controller
five	walk	variations

creating,	from	walk	cycles	/	Creating	five	walk	variations	from	two	walk	cycles
Forward	Kinematics	(FK)	/	Creating	the	test	pose

G
GameObject.FindWithTag	method	/	Associating	tags	with	the	enemy	and	player
game	objects
Generic	format	/	Choosing	the	appropriate	rig	import	settings
GetComponent	method	/	Creating	a	script	to	see	both	animation	loops	in	action

H
hinge	joint

adding	/	Adding	a	hinge	joint
Humanoid	animation	/	Choosing	the	appropriate	rig	import	settings
Humanoid	Avatar	/	Minimum	requirements
Humanoid	format	/	Choosing	the	appropriate	rig	import	settings

I
import	settings

adjusting	/	Adjusting	import	settings	to	get	a	better	fit
duplicate	walk	cycle,	creating	/	Creating	a	duplicate	walk	cycle
motion	parameters,	adjusting	/	Adjusting	the	motion	parameters
muscle	limits,	adjusting	/	Adjusting	the	muscle	limits

initial	ragdoll
generating	/	Generating	the	initial	ragdoll
bones,	assigning	to	list	/	Assigning	bones	to	the	ragdoll	list
mass,	assigning	/	Assigning	mass
default	ragdoll,	previewing	/	Previewing	the	default	ragdoll

Inverse	Kinematics	(IK)	/	Rigging	in	3ds	Max,	Creating	the	test	pose
IsSnarling	parameter

creating	/	Creating	the	IsSnarling	parameter
isTurning	parameter

setting	/	Setting	up	the	IsTurning	parameter
transitions,	creating	to	connect	turning	state	/	Creating	the	transitions	to	connect
the	turning	state

J
joints,	Unity

about	/	Introduction	to	joints	in	Unity
test	scene,	creating	/	Creating	a	test	scene
hinge	joint,	adding	/	Adding	a	hinge	joint

L
Legacy	format	/	Choosing	the	appropriate	rig	import	settings
leg	and	arm	chains,	rigging	process

mirroring	/	Mirroring	joints	for	the	leg	and	arm	chains
connecting	/	Connecting	the	arm	and	leg	chains
ponytail,	creating	/	Creating	the	ponytail	and	jaw	joints
jaw	joints,	creating	/	Creating	the	ponytail	and	jaw	joints
joint	transforms,	aligning	/	Aligning	joint	transforms
test	pose,	creating	/	Creating	a	test	pose

lunchbox	collectable’s	components
inspecting	/	Inspecting	the	lunchBox	collectable’s	components
collectable	script,	viewing	/	Looking	at	the	collectable	script
self	destruction,	implementing	/	Implementing	self	destruction	in	the	collectable
script

M
material,	ragdoll	object

assigning	/	Assigning	the	material
initial	ragdoll,	generating	/	Generating	the	initial	ragdoll
collision	objects,	adjusting	/	Adjusting	collision	objects
character	joints,	fine	tuning	/	Fine-tuning	the	character	joints
rotational	head	limits,	adjusting	/	Adjusting	the	rotational	limits	of	the	head
custom	joint,	adding	/	Adding	a	custom	joint	to	the	ragdoll
ragdoll,	saving	as	prefab	/	Saving	the	ragdoll	as	a	prefab

Maya
rigging	process	/	Rigging	in	Maya

Mecanim	/	Choosing	the	appropriate	rig	import	settings
modeling

for	animation	/	Modeling	for	animation
considerations	/	Modeling	for	animation

motion	capture
characteristics	/	Introduction	to	motion	capture	sequences	and	their
characteristics
sequences,	creating	/	Introduction	to	motion	capture	sequences	and	their
characteristics

motion	capture	sequence
creating	/	Introduction	to	motion	capture	sequences	and	their	characteristics
using,	with	pre-rigged	model	/	Using	a	motion	capture	sequence	with	a	pre-
rigged	model,	Getting	started
importing	/	Importing	the	motion	capture	sequence
import	settings,	adjustiing	/	Adjusting	the	import	settings
rig	import	settings,	adjustiing	/	Adjusting	the	rig	import	settings
adjusting,	in	Animations	tab	/	Adjusting	the	sequence	in	the	Animations	tab
second	walk	cycle,	creating	/	Creating	the	second	walk	cycle

N
navMesh

used,	for	pathfinding	/	Pathfinding	and	obstacle	detection	with	navMesh
used,	for	obstacle	detection	/	Pathfinding	and	obstacle	detection	with	navMesh
navigation,	suspending	during	turn	/	Suspending	navigation	during	the	turn
navigation,	adjusting	/	Adjusting	navigation	during	the	attack
Attack	function,	modifying	/	Modifying	the	Attack	function

ngons	/	Modeling	for	animation

O
objectWeight	variable

sending	/	Sending	the	objectWeight	variable

P
patrol	behavior

setting	up	/	Setting	up	the	patrol	behavior
variables,	adding	/	Adding	variables	for	the	patrol
initial	patrol	point	code,	adding	for	function	updation	/	Adding	the	initial	patrol
code	to	the	Update	function

Pick	function	/	Updating	the	FPSAnimation	script
updating,	in	character	animation	script	/	Updating	the	Pick	function	in	the
character	animation	script

pickup	animation
varying,	with	Blend	Tree	/	Varying	the	pickup	animation	with	a	Blend	Tree
pickup_heavy	animation	sequence,	viewing	/	Viewing	the	pickup_heavy
animation	sequence

pickup	Blend	Tree	parameter
setting	/	Setting	the	pickup	Blend	Tree	parameter

Pickup	state
adding,	to	animator	controller	/	Adding	the	Pickup	state	to	the	animator
controller
transitions	and	parameter,	setting	/	Setting	the	Pickup	state’s	transitions	and
parameter
shoot	Idle	and	Pickup	states,	transitioning	/	Transitioning	between	the	ShootIdle
and	Pickup	states
parameter,	creating	/	Creating	and	adding	the	parameter
parameter,	adding	/	Creating	and	adding	the	parameter
Blend	Tree,	creating	/	Creating	a	Blend	Tree	in	the	Pickup	state

player’s	character	response
setting	up	/	Setting	up	the	player	character’s	response,	Updating	the	Collectable
script
Pickup	state,	adding	to	animator	controller	/	Adding	the	Pickup	state	to	the
animator	controller
pickup	camera,	creating	/	Creating	the	pickup	camera
pickup	camera	prefab,	finalizing	/	Finalizing	the	pickup	camera	prefab
player	status	script,	viewing	/	Looking	at	the	player	status	script
player	status	script,	adding	to	game	object	/	Adding	the	PlayerStatus	script	to	the
player	character	game	object
Collectable	script,	updating	/	Updating	the	Collectable	script
variables,	hooking	up	in	collectable	script	/	Hooking	up	variables	in	the
collectable	script
FPSAnimation	script,	updating	/	Updating	the	FPSAnimation	script
pickup	script,	modifying	/	Modifying	the	pickup	script

pre-rigged	model
motion	capture	sequence,	using	with	/	Using	a	motion	capture	sequence	with	a
pre-rigged	model,	Getting	started

project	assets	package
importing	/	Importing	the	project	assets	package
player	character,	setting	up	/	Setting	up	the	player	character
new	scene,	creating	/	Creating	a	new	scene
player	character	model,	adding	to	scene	/	Adding	the	player	character	model	to
the	scene
character	controller,	adding	/	Adding	the	character	controller
camera	height,	adjusting	/	Adjusting	the	camera	height
shoot	idle	animation,	adding	/	Adding	the	shoot	idle	animation
gun,	parenting	/	Adding	and	parenting	the	gun
gun,	adding	/	Adding	and	parenting	the	gun
first	person	rig,	saving	as	prefab	/	Saving	the	first-person	rig	as	a	prefab
office-level	scene,	adding	/	Adding	the	office-level	scene
camera	setup,	completing	/	Completing	the	camera	setup
animator	controller,	modifying	/	Modifying	the	animator	controller
transition,	setting	/	Setting	the	transition
trigger	parameter,	creating	for	Shoot	state	/	Creating	a	trigger	parameter	for	the
Shoot	state
character	animation	script,	writing	/	Writing	and	implementing	the	character
animation	script
character	animation	script,	implementing	/	Writing	and	implementing	the
character	animation	script
initial	code,	adding	to	FPSAnimation	script	/	Adding	the	initial	code	to	the
FPSAnimation	script
script,	adding	to	player	character	game	object	/	Adding	the	script	to	the	player
character	game	object

R
ragdoll	object

creating	/	Creating	the	ragdoll	object
material,	assigning	/	Assigning	the	material
adjusted	ragdoll,	previewing	/	Previewing	the	adjusted	ragdoll

Ragdoll	Wizard	/	Generating	the	initial	ragdoll
range	detection

implementing	/	Implementing	range	detection
scene,	opening	/	Looking	at	the	scene
initial	AI	script,	adding	/	Adding	the	initial	AI	script
proximity	detection,	adding	to	enemy	AI	script	/	Adding	proximity	detection	to
the	enemy	AI	script
patrol	behavior,	setting	up	/	Setting	up	the	patrol	behavior
patrol	points,	defining	/	Defining	patrol	points
animator,	modifying	/	Modifying	the	animator
animation	curve,	adding	/	Adding	and	accessing	an	animation	curve
animation	curve,	accessing	/	Adding	and	accessing	an	animation	curve
zombie	attack,	adding	/	Adding	the	attack
attack,	adding	/	Adding	the	attack
zombie,	damaging	/	Damaging	and	killing	the	zombie
zombie,	killing	/	Damaging	and	killing	the	zombie
fire	button,	using	by	player	/	Allowing	the	player	to	fire

Reference	Coordinate	System	/	Scaling	and	orienting	the	bones	to	match	the
character	model
rigging	process

need	for	/	Understanding	the	need	for	rigging
requisites	/	Minimum	requirements
in	3ds	Max	/	Rigging	in	3ds	Max
in	Maya	/	Rigging	in	Maya

rigging	process,	3ds	Max
about	/	Rigging	in	3ds	Max
scene,	setting	up	/	Setting	up	the	scene
character	model,	importing	/	Importing	the	character	model
biped	system,	creating	/	Creating	the	Biped	system
biped’s	parameters,	adjusting	/	Adjusting	the	Biped’s	parameters
character,	skinning	with	skin	modifier	/	Skinning	the	character	using	the	skin
modifier
character,	exporting	/	Exporting	the	rigged	character

rigging	process,	Maya
about	/	Rigging	in	Maya
setting	up	/	Setting	up	Maya	to	rig	our	character	model
system	units,	setting	to	meters	/	Setting	system	units	to	meters
display	grid	size,	modifying	/	Changing	the	display	grid	size

model,	importing	/	Importing	the	model
model	scale,	adjusting	/	Adjusting	the	model	scale
viewport	display,	adjusting	for	joint	creation	/	Adjusting	the	viewport	display
and	toolset	for	joint	creation
toolset,	adjusting	for	joint	creation	/	Adjusting	the	viewport	display	and	toolset
for	joint	creation
joints,	creating	for	back	/	Creating	joints	for	the	back,	neck,	and	head
joints,	creating	for	neck	/	Creating	joints	for	the	back,	neck,	and	head
joints,	creating	for	head	/	Creating	joints	for	the	back,	neck,	and	head
joints,	renaming	/	Renaming	and	repositioning	the	joints
joints,	repositioning	/	Renaming	and	repositioning	the	joints
leg	joints,	creating	/	Creating	the	leg	joints
arm	joints,	creating	/	Creating	the	arm	joints
joints,	mirroring	for	arm	chains	/	Mirroring	joints	for	the	leg	and	arm	chains
joints,	mirroring	for	leg	/	Mirroring	joints	for	the	leg	and	arm	chains
character	mesh,	binding	to	skeleton	/	Binding	the	character	mesh	to	the	skeleton
skin	weights,	painting	/	Painting	skin	weights
exporting,	for	Unity	/	Exporting	for	unity

rig	import	settings
adjusting	/	Adjusting	the	rig	import	settings	and	creating	the	Avatar
appropriate	rig	import	settings,	selecting	/	Choosing	the	appropriate	rig	import
settings
Legacy	/	Choosing	the	appropriate	rig	import	settings
Humanoid	/	Choosing	the	appropriate	rig	import	settings
Generic	/	Choosing	the	appropriate	rig	import	settings

root	movement	/	Adding	and	accessing	an	animation	curve

S
scene

loading	/	Loading	the	scene
animation,	adding	/	Adding	and	previewing	the	animation
animation,	previewing	/	Adding	and	previewing	the	animation
import	settings,	adjusting	/	Adjusting	import	settings	to	get	a	better	fit
Avatar	Body	Masks,	working	/	Working	with	Avatar	Body	Masks
second	layer,	creating	in	animation	controller	/	Creating	a	second	layer	in	the
animator	controller

scene	elements
adjusting,	for	animation	preview	/	Adjusting	the	scene	elements	to	preview	the
animation

second	layer,	animator	controller
creating	/	Creating	a	second	layer	in	the	animator	controller
states,	creating	in	mask	layer	/	Creating	states	in	the	mask	layer
parameter,	setting	in	mask	layer	/	Setting	the	parameter	and	transitions	in	the
mask	layer
transitions,	setting	in	mask	layer	/	Setting	the	parameter	and	transitions	in	the
mask	layer
script,	editing	/	Editing	the	script
masked	animation,	previewing	/	Previewing	the	masked	animation

second	walk	cycle
creating	/	Creating	the	second	walk	cycle
new	motion	clips,	adding	to	animation	controller	/	Adding	the	new	motion	clips
to	the	animation	controller
walk	animation	loops	difference,	checking	with	script	/	Creating	a	script	to	see
both	animation	loops	in	action
script,	adding	/	Adding	the	script	and	previewing	the	animation	switch
animation	switch,	previewing	/	Adding	the	script	and	previewing	the	animation
switch

selection	set,	3ds	Max
creating	/	Creating	a	selection	set

SendMessage	method	/	Allowing	the	zombie	to	hurt	the	player
shoot	idle	sequence	/	Adding	the	shoot	idle	animation
skin	modifier

used,	for	skinning	character	/	Skinning	the	character	using	the	skin	modifier
adjustments,	making	/	Making	adjustments	to	the	Skin	modifier
Envelopes,	adjusting	/	Adjusting	envelopes
influence,	adjusting	on	head	vertices	/	Adjusting	influence	on	the	head	vertices
skin	weights,	painting	for	jaw	bone	/	Painting	skin	weights	for	the	jaw	bone

skinning	process	/	Copying	and	pasting	the	position,	rotation,	and	scale	data	from	one
side	to	the	other
snarl	face	animation

adding,	to	female	zombie	character	/	Adding	the	snarl	face	animation	to	the
female	zombie	character
scene,	adding	/	Setting	the	scene	in	Unity

Snarl	function
creating	/	Creating	the	Snarl	function

sourcing	models	/	Sourcing	models
Start	function	/	Creating	a	script	to	see	both	animation	loops	in	action

T
time	out

adding,	to	zombie	attack	/	Timing	out	the	zombie’s	pursuit
transform.LookAt	method	/	Smoothing	the	zombie’s	turn	rotation
Transforms	/	Defining	patrol	points
Transitions	/	Creating	states
transitions,	setting	between	Null	and	Snarl	states

about	/	Setting	transitions	between	the	Null	and	Snarl	states
IsSnarling	parameter,	creating	/	Creating	the	IsSnarling	parameter
script,	editing	for	including	Face	layer	/	Editing	the	script	to	include	the	Face
layer
zombie’s	turn	rotation,	smoothing	/	Smoothing	the	zombie’s	turn	rotation

turn	animation
implementing	/	Implementing	the	turn	animation
state,	adding	/	Adding	the	turning	state
isTurning	parameter,	setting	/	Setting	up	the	IsTurning	parameter
transitions,	setting	for	turn	state	/	Setting	the	transitions	for	the	Turn	state

TurnToPlayer	function
adding	/	Adding	the	TurnToPlayer	function

U
Unity

joints	/	Introduction	to	joints	in	Unity
Unity	Asset	Store

about	/	Sourcing	models
URL	/	Sourcing	models

Unity	Input	Manager	/	Adding	the	initial	code	to	the	FPSAnimation	script
Unity	project

setting	up	/	Setting	up	the	project
enemy,	importing	/	Importing	our	enemy
animator	controller,	setting	up	/	Setting	up	the	animator	controller
animation,	previewing	by	adjusting	scene	elements	/	Adjusting	the	scene
elements	to	preview	the	animation

Update	function	/	Writing	the	script,	Editing	the	script

V
Vector3.Distance	method	/	Adding	proximity	detection	to	the	enemy	AI	script,
Adding	the	initial	patrol	code	to	the	Update	function

W
WaitForSeconds	method	/	Updating	the	Collectable	script
Wavefront	OBJ	format	/	Importing	the	character	model

Y
yield	WaitForSeconds	method	/	Adding	the	TurnToPlayer	function

Z
zombie	attack

adding	/	Adding	the	attack
Attack	state,	adding	/	Adding	the	Attack	state
tags,	associating	with	enemy	/	Associating	tags	with	the	enemy	and	player	game
objects
tags,	associating	with	player	game	objects	/	Associating	tags	with	the	enemy	and
player	game	objects
code,	adding	to	MonoDevelop	script	/	Allowing	the	zombie	to	hurt	the	player

zombie_ready	script
code,	adding	/	Adding	code	to	the	zombie_ready	script
TurnToPlayer	function,	adding	/	Adding	the	TurnToPlayer	function
variables,	connecting,	in	Inspector	panel	/	Connecting	the	variables	in	the
Inspector	panel
updating,	for	accommodating	turn	state	/	Updating	the	zombie_ready	script	to
accommodate	the	Turn	state
Snarl	function,	creating	/	Creating	the	Snarl	function
snarl	sound,	synchronizing	/	Synchronizing	the	snarl	sound

	Unity Character Animation with Mecanim
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	The context
	What this book covers
	What the book does not cover
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. The Zombie Attacks!
	Setting up the project
	Importing our enemy
	Organizing the material and textures
	Adjusting the import scale
	Adjusting the rig import settings and creating the Avatar
	Choosing the appropriate rig import settings
	Creating the Avatar
	Adjusting the character's pose
	Checking the bone hierarchy in the Avatar
	Setting up the animator controller
	Creating states
	Creating a parameter
	Adding transitions
	Writing the script
	Adjusting the scene elements to preview the animation
	Previewing the hit animation in the game view
	Summary
	2. Rigging Characters for Unity in 3ds Max and Maya
	Understanding the need for rigging
	Minimum requirements
	Sourcing models
	Modeling for animation
	Rigging in 3ds Max
	Setting up the scene
	Importing the character model
	Creating the Biped system
	Adjusting the Biped's parameters
	Adjusting the Biped to fit the character
	Switching to X-ray mode and freezing the character mesh
	Changing bone display colors
	Scaling and orienting the bones to match the character model
	Repositioning the joints for the ponytail and jaw
	Adjusting limb positions
	Renaming bones
	Copying and pasting the position, rotation, and scale data from one side to the other
	Skinning the character using the skin modifier
	Creating a selection set
	Saving the default pose
	Creating the test pose
	Making adjustments to the Skin modifier
	Adjusting envelopes
	Adjusting influence on the head vertices
	Painting skin weights for the jaw bone
	Exporting the rigged character
	Rigging in Maya
	Setting up Maya to rig our character model
	Setting system units to meters
	Changing the display grid size
	Importing the model
	Adjusting the model scale
	Adjusting the viewport display and toolset for joint creation
	Creating joints for the back, neck, and head
	Renaming and repositioning the joints
	Creating the leg joints
	Creating the arm joints
	Cloning the finger joints
	Mirroring joints for the leg and arm chains
	Connecting the arm and leg chains
	Creating the ponytail and jaw joints
	Aligning joint transforms
	Creating a test pose
	Binding the character mesh to the skeleton
	Painting skin weights
	Exporting for unity
	Summary
	3. Interacting with the Environment
	Importing the project assets package
	Setting up the player character
	Creating a new scene
	Adding the player character model to the scene
	Adding the character controller
	Adjusting the camera height
	Adding the shoot idle animation
	Adding and parenting the gun
	Saving the first-person rig as a prefab
	Adding the office-level scene
	Completing the camera setup
	Modifying the animator controller
	Setting the transition
	Creating a trigger parameter for the Shoot state
	Writing and implementing the character animation script
	Adding the initial code to the FPSAnimation script
	Adding the script to the player character game object
	Adding and implementing collectable objects
	Instantiating the lunchBox collectable in the game level
	Inspecting the lunchBox collectable's components
	Looking at the collectable script
	Implementing self destruction in the collectable script
	Setting up the player character's response
	Adding the Pickup state to the animator controller
	Setting the Pickup state's transitions and parameter
	Transitioning between the ShootIdle and Pickup states
	Creating and adding the parameter
	Creating the pickup camera
	Finalizing the pickup camera prefab
	Looking at the player status script
	Adding the PlayerStatus script to the player character game object
	Updating the Collectable script
	Hooking up variables in the collectable script
	Updating the FPSAnimation script
	Modifying the pickup script
	Testing the lunchBox collectable
	Summary
	4. Working with Motion Capture Data
	Introduction to motion capture sequences and their characteristics
	Using a motion capture sequence with a pre-rigged model
	Getting started
	Importing the motion capture sequence
	Adjusting the import settings
	Adjusting the rig import settings
	Adjusting the sequence in the Animations tab
	Creating the second walk cycle
	Adding the new motion clips to the animation controller
	Creating a script to see both animation loops in action
	Adding the script and previewing the animation switch
	Summary
	5. Retargeting Animation
	Loading the scene
	Adding and previewing the animation
	Adjusting import settings to get a better fit
	Creating a duplicate walk cycle
	Adjusting the motion parameters
	Adjusting the muscle limits
	Working with Avatar Body Masks
	Opening the new scene
	Creating a second layer in the animator controller
	Creating states in the mask layer
	Setting the parameter and transitions in the mask layer
	Editing the script
	Previewing the masked animation
	Creating five walk variations from two walk cycles
	Adding more Avatar masks
	Summary
	6. Talking Heads
	Adding the snarl face animation to the female zombie character
	Setting the scene in Unity
	Adding code to the zombie_ready script
	Adding the TurnToPlayer function
	Connecting the variables in the Inspector panel
	Updating the animator controller to include the face animation
	Adding the Snarl state
	Creating a Null state
	Setting transitions between the Null and Snarl states
	Creating the IsSnarling parameter
	Editing the script to include the Face layer
	Smoothing the zombie's turn rotation
	Implementing the turn animation
	Adding the turning state
	Setting up the IsTurning parameter
	Creating the transitions to connect the turning state
	Setting the transitions for the Turn state
	Updating the zombie_ready script to accommodate the Turn state
	Creating the Snarl function
	Synchronizing the snarl sound
	Driving a blendshape animation with the animator controller
	Viewing the blendshape in Unity
	Keyframing the face blendshape
	Updating the animator to handle the blendshape animation
	Summary
	7. Controlling Player Animation with Blend Trees
	Adding a Blend Tree to the player's existing animator controller
	Adding strafing animation to the player character with a Blend Tree
	Using Blend Tree properties
	Adding the motion clips to the Blend Tree
	Adding and adjusting the Blend Tree parameters and thresholds
	Updating the character script to use the Blend Tree
	Testing the Blend Tree in the Game View
	Varying the pickup animation with a Blend Tree
	Viewing the pickup_heavy animation sequence
	Creating a Blend Tree in the Pickup state
	Setting the pickup Blend Tree parameter
	Setting the threshold for the pickup Blend Tree
	Editing the character animation script to accommodate the pickup Blend Tree
	Updating the Collectable script to include a weight variable
	Sending the objectWeight variable
	Updating the Pick function in the character animation script
	Testing the blended animation in the game
	Instancing the collectable prefabs
	Previewing the blended animation
	Summary
	8. Implementing Ragdoll Physics
	Introduction to joints in Unity
	Creating a test scene
	Adding a hinge joint
	Creating the ragdoll object
	Assigning the material
	Generating the initial ragdoll
	Assigning bones to the ragdoll list
	Assigning mass
	Previewing the default ragdoll
	Adjusting collision objects
	Adjusting the radius of the capsule collider to fit the leg
	Adjusting the head's collider
	Fine-tuning the character joints
	Adjusting the rotational limits of the upper arm
	Adjusting the rotational limits of the forearm
	Adjusting the rotational limits of the head
	Previewing the adjusted ragdoll
	Adding a custom joint to the ragdoll
	Adding a capsule collider to the ponytail
	Adding a Rigidbody component
	Adding the character joint
	Saving the ragdoll as a prefab
	Summary
	9. Controlling Enemy Animation with AI and Triggers
	Implementing range detection
	Looking at the scene
	Adding the initial AI script
	Adding proximity detection to the enemy AI script
	Setting up the patrol behavior
	Adding variables for the patrol
	Adding the initial patrol code to the Update function
	Defining patrol points
	Modifying the animator
	Adding and accessing an animation curve
	Accessing the animation curve in Mecanim and using it in the script
	Adding the attack
	Adding the Attack state
	Associating tags with the enemy and player game objects
	Allowing the zombie to hurt the player
	Damaging and killing the zombie
	Allowing the player to fire
	Pathfinding and obstacle detection with navMesh
	Suspending navigation during the turn
	Adjusting navigation during the attack
	Modifying the Attack function
	Timing out the zombie's pursuit
	Summary
	Index

