

Unreal	Engine	Physics	Essentials

Table	of	Contents

Unreal	Engine	Physics	Essentials

Credits

About	the	Authors

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Math	and	Physics	Primer

Launching	Unreal	Engine	4

Units	of	measurement

What	is	an	Unreal	Unit?

Common	measurements	in	Unreal	Engine	4

Unit	snapping	in	Unreal	Engine	4

Changing	units	of	measurement	in	3ds	Max	and	Maya

Units	of	measurement	–	a	section	review

The	scientific	notation

How	to	use	scientific	notation?

The	scientific	notation	–	a	section	review

The	2D	and	3D	coordinate	systems

The	top	perspective

The	side	perspective

The	front	perspective

The	2D	and	3D	coordinate	systems	–	a	section	review

Scalars	and	vectors

Scalars	and	vectors	–	a	section	review

Newton’s	laws/Newtonian	physics	concepts

Newton’s	first	law	of	motion

Newton’s	second	law	of	motion

Newton’s	third	law	of	motion

Newton’s	laws	of	motion	–	a	section	review

Forces	and	energy

Forces	and	energy	–	a	section	review

Summary

2.	Physics	Asset	Tool

Navigating	to	PhAT

The	PhAT	environment

The	PhAT	example	and	experience

Deleting	current	assets

Adding	and	customizing	current	assets

Summary

3.	Collision

Collision	and	Trace	Responses	–	an	overview

Collision	and	Trace	Responses	–	a	section	review

Simple	versus	complex	collision

Simple	versus	complex	collision	–	a	section	review

Creating	simple	collisions

Creating	simple	collisions	–	a	section	review

Creating	complex	and	custom	collision	hulls

Creating	complex	and	custom	collision	hulls	–	a	section	review

Collision	interactions

Collision	interactions	–	a	section	review

Custom	object	and	trace	channel	responses

Custom	object	and	trace	channel	responses	–	a	section	review

In-depth	collision	presets

In-depth	collision	presets	–	a	section	review

Summary

4.	Constraints

What	are	constraints?

The	first	physics	constraint	actor	experience

Customizing	physics	constraint	actor

A	simple	game	with	Blueprint

Summary

5.	Physics	Damping,	Friction,	and	Physics	Bodies

Physics	Bodies	–	an	overview

Physics	Bodies	–	a	section	review

Angular	and	Linear	Damping

Angular	and	Linear	Damping	–	a	section	review

Physical	Materials	–	an	overview

Physical	Materials	–	a	section	review

Physics	Damping

Physics	Damping	–	a	section	review

Summary

6.	Materials

What	is	physical	material?

Creating	the	first	material

The	physics	of	materials

Summary

7.	Creating	a	Vehicle	Blueprint

Vehicle	Blueprint	–	a	content	overview

Vehicle	Blueprints	–	a	section	overview

Creating	the	Vehicle	Blueprints

Creating	the	Vehicle	Blueprints	–	a	section	review

Editing	the	Vehicle	Blueprints

Editing	the	Vehicle	Blueprints	–	a	section	review

Setting	up	user	controls

Setting	up	user	controls	–	a	section	review

Scripting	movement	behaviors

Scripting	movement	behaviors	–	a	section	review

Testing	the	vehicle

Summary

8.	Advanced	Topics

Simulating	complex	physics	–	destruction

Summary

Index

Unreal	Engine	Physics	Essentials

Unreal	Engine	Physics	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2015

Production	reference:	1230915

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-490-5

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Katax	Emperore

Devin	Sherry

Reviewer

Abdullah	Obaied

Commissioning	Editor

Edward	Bowkett

Acquisition	Editor

Indrajit	Das

Content	Development	Editor

Shubhangi	Dhamgaye

Technical	Editor

Siddhesh	Ghadi

Copy	Editor

Relin	Hedly

Project	Coordinator

Harshal	Ved

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Graphics

Disha	Haria

Production	Coordinator

Nilesh	R.	Mohite

Cover	Work

Nilesh	R.	Mohite

About	the	Authors
Katax	Emperore	was	born	in	January	1974.	Since	his	childhood	days,	he	has	loved	board
games,	science	magazines,	comic	books,	and	graffiti	painting.	Katax	was	introduced	to	the
IT	world	when	he	got	his	first	game	platform,	Fire	Attack	from	the	Game	&	Watch	series
by	Nintendo,	back	in	the	80’s.	While	spending	hours	on	it,	he	became	curious	about	the
process	of	creating	games.

As	a	teenager,	Katax	owned	Amiga	500	by	Commodore	on	which	he	played	hundreds	of
games.	However,	one	stuck	with	him:	Shadow	of	the	Beast	by	Psygnosis.	He	was
enamored	by	the	quality	of	the	graphics,	music,	and	FX	sounds	involved	in	the	game.
Katax	realized	that	he	would	like	to	learn	to	create	such	games,	and	this	was	the	first	step.
Today,	he	can	design	and	develop	any	game	on	various	web	pages	and	platforms	alike.

The	Amiga	platform	created	a	high-quality	gaming	experience	supported	by	an	advanced
hardware	architecture	that	was	way	ahead	of	its	time.	It	was	a	high-profile	computer	with
real	stereo	sound	supported	by	the	advanced	Direct	Memory	Access	technology	for
multiprocessing.	On	this	platform,	Katax	learned	many	aspects	of	programming,
multitasking,	DMA,	interactive	applications,	IO	port	mappings,	graphic	design,	and	3D.
When	Microsoft	introduced	Windows	98,	he	got	serious	about	programming,	3D,	and
graphic	design,	which	led	him	to	base	his	education,	and	later	his	career,	in	the	IT
industry.

Around	this	time,	Katax	experienced	a	live	performance	of	a	digital	visual	art
improvisation	over	music	known	as	a	VJ	performance.	He	was	influenced	by	Jimi
Hendrix,	and	he	adopted	his	style	of	improvising	each	track	on	a	live	stage.	His	style
involves	visualizing	forms,	colors,	and	brightness	of	images	and	videos	by	playing	live
visual	transitions	over	each	pixel	on	the	screen.	Katax	believes	that	it’s	necessary	for	each
game	designer/developer	to	be	a	part	of	some	art	movement	or	activity	because	it	helps
you	in	your	career,	both	technically	and	spiritually.

Katax’	favorite	bands/artists	include	Klaus	Schulze,	Tangerine	Dream,	Hawkwind,	and
Jimi	Hendrix.

I	am	grateful	to	John	Carmack	from	id	Software	for	his	efforts	and	great	work	on	3D
graphic	programming.	What	he	invented	and	developed	back	in	the	90’s	was	the
beginning	of	the	wonderful	genre	of	first-person	shooter	games,	which	is	my	personal
favorite.	Also,	I	would	like	to	thank	Westwood	Studios	for	introducing	the	Command	and
Conquer	(C&C)	series	to	the	gaming	world.	This	game	pioneered	many	aspects	of	the
modern	real-time	strategy	games,	which	later	powered	many	subgenres	in	this	area	as
well.	Great	job,	thank	you!

Devin	Sherry	is	originally	from	Levittown,	Long	Island	in	the	state	of	New	York,	USA.
He	studied	game	development	and	game	design	at	the	University	of	Advancing
Technology	where	he	obtained	a	bachelor’s	degree	of	arts	in	game	design	in	2012.

During	his	time	in	college,	Devin	worked	as	a	game	and	level	designer	with	a	group	of
students	called	Autonomous	Games	on	a	real-time,	strategy	style,	third-person	shooter

game	called	The	Afflicted	using	Unreal	Engine	3/UDK.	It	was	presented	at	the	Game
Developers	Conference	(GDC)	in	2013	in	the	the	GDC	Play	showcase.

Currently,	Devin	works	as	an	independent	game	developer	located	in	Tempe,	Arizona,
where	he	works	on	personal	and	contracted	projects.	His	achievements	include	the	title
Radial	Impact,	which	can	be	found	in	the	Community	Contributions	section	of	the	Learn
tab	of	Unreal	Engine	4’s	Launcher.	You	can	follow	Devin’s	work	on	his	YouTube	channel,
Devin	Level	Design,	where	he	educates	viewers	on	game	development	within	Unreal
Engine	3,	UDK,	and	Unreal	Engine	4.

About	the	Reviewer
Abdullah	Obaied	is	a	self-taught	software	engineer	with	a	long	history	of	expertise	in
game	programming.	He	has	professionally	worked	on	games	such	as	Artifice:	Faith	in
Chaos	as	well	as	on	engines	such	as	Unity	and	Unreal	Engine	4.	Furthermore,	using	the
DirectX	technology,	Abdullah	has	developed	his	own	engine	labeled	Nucleus	Engine.	He
was	also	one	of	the	developers	selected	to	beta-test	Unreal	Engine	4	back	in	its	early
development	stage.

Currently,	Abdullah	works	at	Mindvalley	in	Kuala	Lumpur,	Malaysia	in	the	mobile	app
development	team	as	an	Android	developer.	You	can	follow	him	on	his	blog,
http://damngoodcode.blogspot.com.

http://damngoodcode.blogspot.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Giving	readers	practical	insight	into	the	principles	of	mathematics	and	physics	necessary
to	properly	implement	physics	within	Unreal	Engine	4,	this	book	covers	everything	one
needs	to	know	in	order	to	create	a	game	world.

Discover	how	to	manipulate	physics	within	Unreal	Engine	4	by	learning	from	scratch	the
basic	real-world	concepts	in	mathematics	and	physics	that	assist	in	the	implementation	of
physics-based	objects	in	your	game	world.	Then,	be	introduced	to	PhAT	(Physics	Asset
Tool)	within	Unreal	Engine	4	to	learn	more	about	developing	physics	objects	for	your
game	world.	Next,	dive	into	Unreal	Engine	4’s	collision	generation,	physical	materials,
blueprints,	constraints,	and	more	to	get	hands-on	experience	with	the	tools	provided	by
Epic	Games	to	create	the	effect	of	the	real	physical	world	in	Unreal	Engine	4.	Lastly,	you
will	create	a	working	Vehicle	Blueprint	that	uses	all	the	concepts	covered	in	this	book,	and
also	cover	topics	related	to	advanced	physics.

What	this	book	covers
Chapter	1,	Math	and	Physics	Primer,	covers	basic	concepts	in	mathematics	and	physics
that	will	assist	your	understanding	of	how	the	real-world,	and	Unreal	Engine	4,	works.

Chapter	2,	Physics	Asset	Tool,	discusses	how	to	properly	utilize	the	Physics	Asset	Tool	to
create	physics	assets	to	use	with	Skeletal	Meshes.

Chapter	3,	Collision,	invites	readers	to	learn	and	apply	collisions	to	physics	assets	in	order
to	experiment	with	physics	simulations.

Chapter	4,	Constraints,	discusses	how	to	implement	constraints	onto	actors	and	blueprints
using	the	Physics	Asset	Tool.

Chapter	5,	Physics	Damping,	Friction,	and	Physics	Bodies,	defines	physics	damping,
friction,	and	physics	bodies	in	the	context	of	Unreal	Engine	4.

Chapter	6,	Materials,	discusses	physical	materials	and	how	to	utilize	them	to	create	a
realistic	game	world.

Chapter	7,	Creating	a	Vehicle	Blueprint,	takes	a	look	at	applying	the	skills	learned	in	the
previous	chapters	to	create	the	physical	body	and	blueprint	of	a	working	vehicle.

Chapter	8,	Advanced	Topics,	covers	advanced	topics	and	troubleshooting	techniques	in
physics.

What	you	need	for	this	book
This	book	assumes	that	readers	have	access	to	Unreal	Engine	4	and	can	utilize	version
4.7.0	or	higher.	If	you	do	not	have	Unreal	Engine	4,	you	can	visit
www.unrealengine.com/what-is-unreal-engine-4	to	download	the	engine.

Furthermore,	for	those	who	are	not	familiar	with	how	to	use	Unreal	Engine	4,	this	text	will
walk	you	through	some	of	the	basics,	but	also	assume	that	its	readers	have	at	least	some
experience	with	the	engine.

http://www.unrealengine.com/what-is-unreal-engine-4

Who	this	book	is	for
This	book	is	intended	for	beginner	to	intermediate	users	of	Epic	Games’	Unreal	Engine	4
who	want	to	learn	more	about	how	to	implement	physics	within	their	game	world.

No	matter	the	knowledge	base	of	Unreal	Engine	4,	this	book	contains	valuable
information	on	blueprint	scripting,	collision	generation,	materials,	and	the	Physical	Asset
Tool	(PhAT)	for	all	users	to	create	better	games.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
name	this	parameter	Material	Color.”

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	the	Next
button	moves	you	to	the	next	screen.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/4905OT_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/4905OT_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Math	and	Physics	Primer
In	this	chapter,	we	will	discuss	and	evaluate	the	basic	3D	physics	and	mathematics
concepts	in	an	effort	to	gain	a	basic	understanding	of	Unreal	Engine	4	physics	and	real-
world	physics.	To	start	with,	we	will	discuss	the	units	of	measurement,	what	they	are,	and
how	they	are	used	in	Unreal	Engine	4.	In	addition,	we	will	cover	the	following	topics:

The	scientific	notation
2D	and	3D	coordinate	systems
Scalars	and	vectors
Newton’s	laws	or	Newtonian	physics	concepts
Forces	and	energy

For	the	purpose	of	this	chapter,	we	will	want	to	open	Unreal	Engine	4	and	create	a	simple
project	using	the	First	Person	template	by	following	these	steps.

Launching	Unreal	Engine	4
When	we	first	open	Unreal	Engine	4,	we	will	see	the	Unreal	Engine	launcher,	which
contains	a	News	tab,	a	Learn	tab,	a	Marketplace	tab,	and	a	Library	tab.	As	the	first	title
suggests,	the	News	tab	provides	you	with	the	latest	news	from	Epic	Games,	ranging	from
Marketplace	Content	releases	to	Unreal	Dev	Grant	winners,	Twitch	Stream	Recaps,	and	so
on.	The	Learn	tab	provides	you	with	numerous	resources	to	learn	more	about	Unreal
Engine	4,	such	as	written	documentation,	video	tutorials,	community	wikis,	sample	game
projects,	and	community	contributions.	The	Marketplace	tab	allows	you	to	purchase
content,	such	as	FX,	weapons	packs,	blueprint	scripts,	environmental	assets,	and	so	on,
from	the	community	wikis	and	Epic	Games.	Lastly,	the	Library	tab	is	where	you	can
download	the	newest	versions	of	Unreal	Engine	4,	open	previously	created	projects,	and
manage	your	project	files.

Let’s	start	by	first	launching	the	Unreal	Engine	launcher	and	choosing	Launch	from	the
Library	tab,	as	seen	in	the	following	image:

For	the	sake	of	consistency,	we	will	use	the	latest	version	of	the	editor.	At	the	time	of
writing	this	book,	the	version	is	4.7.6.	Next,	we	will	select	the	New	Project	tab	that
appears	at	the	top	of	the	window,	select	the	First	Person	project	template	with	Starter
Content,	and	name	the	project	Unreal_PhyProject:

Now	that	we	have	the	game	engine	open,	we	can	now	continue	with	our	lesson.

Units	of	measurement
To	begin	this	section,	we	want	to	first	define	measurement	and	what	exactly	we	will
measure	in	the	context	of	Unreal	Engine	4.	In	a	general	sense,	the	definition	of
measurement	is	determining	the	size,	length,	or	the	amount	of	something	(such	as
distance),	the	length/width/height	of	an	object,	or	the	volume	of	a	particular	space.	In	the
context	of	Unreal	Engine	4,	we	will	measure	the	lengths	of	each	component	of	a	3D	vector
in	the	3D	space	and	the	X,	Y,	and	Z	dimensions.	For	the	2D	game	world,	we	will	measure
the	X	and	Y	axes.	In	the	real	world,	we	can	use	the	U.S.	Standard	and	the	European
Standard	units	of	measurement	to	measure	distance.

In	the	U.S.,	we	can	use	the	standard	of	lengths	that	involve	the	use	of	inches	(in),	feet	(ft),
yards	(yd),	and	miles,	whereas	in	Europe,	there	is	the	standard	of	lengths	in	place	that
includes	millimeters	(mm),	centimeters	(cm),	meters	(m),	and	kilometer	(km).	For	our
convenience	and	as	a	point	of	reference,	here	are	a	set	of	conversion	charts	between	the
U.S.	and	the	European	units	of	measurements.	For	more	conversions,	refer	to	this	free
conversion	website	at	http://converter.eu/length/.

The	following	table	shows	the	U.S.	Conversions:

1	ft 12	in

1	in 0.0833333	ft

1	yd 3	ft

1	yd 36	in

1	Mile 1,760	yd

1	Mile 5,280	ft

1	Mile 63359.999	in

The	following	table	shows	the	European	Conversions:

1	mm 0.1	cm

1	cm 10	mm

1	cm 0.0099999	m

1	m 100	cm

1	m 1000	mm

1	mm 0.000999999	m

1	km 1000000	mm

http://converter.eu/length/

1	km 100000	cm

1	km 1000	m

The	following	table	shows	U.S.	to	European	Conversions:

1	in 25.4	mm

1	in 2.54	cm

1	in 0.0254	m

1	in 0.0000254	km

1	ft 304.8	mm

1	ft 30.48	cm

1	ft 0.3048	m

1	ft 0.0003048	km

1	yd 914.4	mm

1	yd 91.44	cm

1	yd 0.9144	m

1	yd 0.0009144	km

1	Mile 1609344	mm

1	Mile 160934.4	cm

1	Mile 1609.3439999999998	m

1	Mile 1.609344	km

Now	that	we	have	a	strong	understanding	of	the	real-world	units	of	measurement,	we	are
now	ready	to	discuss	how	Unreal	Engine	4	uses	these	units	of	measurement	to	determine
distances	and	sizes	of	objects.

What	is	an	Unreal	Unit?
Back	in	the	days	of	the	UDK	or	Unreal	Engine	3,	the	units	of	measurement	were	based	on
what	was	called	Unreal	Units	(uu),	where	one	uu	equaled	0.75	in,	or	16	units	equaled	1
ft.	In	Unreal	Engine	4,	the	measurement	has	changed	to	where	1	uu	is	equal	to	1	cm	by
default,	but	the	engine	allows	you	to	change	the	conversion	ratio	between	an	Unreal	Unit
and	a	meter	in	its	World	settings,	as	shown	in	the	following	screenshot:

The	value	of	100.0	in	this	property	equates	an	Unreal	Unit	to	1	cm.	For	example,	by
changing	the	World	to	Meters	property	to	the	value	of	1	(as	shown	before),	it	will	equate
1	uu	to	1	m	and	a	value	of	1,000	will	result	in	1	uu	equaling	1	mm.	For	the	purposes	of
this	project,	we	will	leave	the	default	value	of	100	so	that	an	Unreal	Unit	will	equal	1	cm,
but	for	future	reference,	this	is	the	World	settings	property	you	would	want	to	alter	in
order	to	change	this	conversion	ratio.

Common	measurements	in	Unreal	Engine
4
When	you	work	on	any	game	engine,	it	is	very	important	and	useful	to	know	the	common
measurements	that	are	used	in	your	game	world.	Each	game	is	different,	and	the	scaling	of
that	game	world	will	be	different	depending	on	whether	or	not	the	developers	are	going
for	realistic	scaling	measurements,	but	for	the	purposes	of	this	book,	the	following
measurements	will	be	for	a	game	world	that	is	going	for	realism.	Remembering	that	by
default,	1	uu	is	equal	to	1	cm	in	Unreal	Engine	4,	here	are	some	of	the	common
measurements	that	you	can	implement	in	your	game	world.	An	additional	note	is	that	all
the	following	dimensions	are	set	under	the	assumption	that	your	player	character	is
roughly	6	ft	tall	or	180	uu.

The	dimensions	of	a	player	character	are	180(uu)H,	60(uu)W,	60(uu)D.	These	are
dimensions	for	a	larger	character	that	is	roughly	6	ft	tall,	so	you	may	need	to	adjust	these
values	accordingly	based	on	your	character’s	height.

The	wall	height	is	300(uu)H	to	400(uu)H.	A	value	of	400	uu	will	produce	a	slightly	taller
wall,	whereas	a	value	of	300	uu	will	result	in	a	slightly	shorter	wall,	but	any	value
between	300	uu	and	400	uu	will	work	just	fine.

The	wall	depth	(thickness)is	10(uu)D	to	20(uu)D.	The	value	of	the	wall	thickness	depends
greatly	on	the	material	that	the	wall	is	made	of.	For	example,	a	brick	wall	would	be	thicker
than	a	wall	made	of	plaster.

The	dimensions	of	doors	and	doorways	are	210(uu)H	–	230(uu)H	/	110(uu)W	–	140(uu)W.
The	value	of	the	door	and	the	doorway	depth	(thickness)	depends	on	the	value	of	the	wall
thickness.

Staircases

The	step	height	is	15(uu)H
The	step	length/depth	is	30(uu)D

The	value	of	the	staircase	width	will	depend	on	the	area	that	the	staircase	is	placed	in,	so
the	dimensional	measurement	of	width	will	vary.	The	following	image	has	a	step	length	of
30(uu)L,	a	step	height	of	15(uu)H,	a	step	width	of	200(uu)W,	and	20	steps	in	total:

Unit	snapping	in	Unreal	Engine	4
If	you	open	a	blank	map	in	Unreal	Engine	4	or	the	different	viewports	in	the	editor,	you
will	notice	a	grid.	This	grid	can	change	dynamically	depending	on	the	current	unit
snapping	measurement	applied	in	the	editor.	The	spacing	between	each	grid	square	will
determine	the	number	of	units	an	object	will	move	when	you	place	or	transform	objects	in
the	editor.	Back	in	Unreal	Engine	3	or	the	UDK,	the	grid	snapping	would	follow	the
power	of	2	(2/4/8/16/32/64/128/256/512/1024/2048),	but	in	Unreal	Engine	4,	the	grid
snapping	follows	these	values	(1/5/10/50/100/500/1000/5000/10000).	The	main	reason	for
this	change	is	due	to	the	fact	that	Unreal	Engine	4	uses	the	value	of	an	Unreal	Unit
equaling	1	cm	instead	of	1	uu	equaling	0.75	in.	This	is	similar	to	what	it	did	in	Unreal
Engine	3	or	the	UDK.

By	default,	the	unit	snapping	grid	follows	the	notion	that	1	uu	equals	1	cm,	but	if	we	were
to	follow	the	power	of	2	unit	snapping	scale,	we	have	this	option.	In	Editor	Preferences
under	the	Level	Editor	section,	there	is	an	option	for	Viewports.	Under	Viewports,	there
is	a	subsection	labeled	Grid	Snapping	and	an	option	to	enable/disable	the	Use	Power	of
Two	Snap	Size,	as	shown	in	the	following	screenshot:

When	it	comes	to	unit	snapping,	follow	the	measurement	that	works	best	for	you.	Unit
snapping	is	a	very	important	aspect	when	it	comes	to	placing	assets	in	your	game	world.	It
can	be	a	lifesaver	when	it	comes	to	avoiding	clipping	or	Z	fighting	between	two	objects.
Unit	snapping	is	also	crucial	when	it	comes	to	creating	proper	distances	between	objects,
such	as	creating	hallways	or	alleyways	between	buildings.	In	the	end,	it	will	save	a	lot	of
time	and	effort	to	take	unit	snapping	into	consideration	at	the	beginning	stages	of	level
development	and	particularly	during	the	white	box	stages	of	level	design.	There	will	also

be	specific	instances	when	placing	objects	in	our	game	world	where	unit	snapping	is	not
necessary,	such	as	placing	debris	on	the	ground,	placing	paper	on	a	desk,	or	any	other
objects	that	don’t	require	specific	distances	between	themselves	and	other	in-game
objects.	When	it	comes	to	these	instances,	Unreal	Engine	4	gives	us	the	ability	to	toggle
unit	snapping	on	and	off	by	clicking	on	the	grid	icon,	as	shown	in	the	following
screenshot.	Lastly,	we	can	also	snap	our	objects	to	the	grid	or	the	floor	of	our	environment
by	pressing	the	End	key.	Alternatively,	we	can	press	Ctrl	+	End	to	snap	an	actor	to	the
grid.	If	we	ever	need	to	change	the	key	bindings	for	these	actions,	we	can	navigate	to	the
Edit	Menu	|	Editor	Preferences	|	Keyboard	Shortcuts	to	make	any	changes.

Changing	units	of	measurement	in	3ds
Max	and	Maya
For	both	character	and	environmental	artists,	it	is	very	important	to	know	how	to	change
the	units	of	measurement	in	the	third-party	3D	modeling	so	that	when	assets	are	exported
from	the	art	program	and	then	imported	to	Unreal	Engine	4,	the	scale	is	correct	and	as
intended	by	the	artist.	Keeping	in	mind	that	Unreal	Engine	4	uses	the	measurement
conversion	of	1	uu	equaling	1	cm	by	default,	we	want	to	make	sure	that	the	units	of
measurement	in	our	3D	art	program	uses	the	same	conversion.

To	change	the	units	of	measurement	in	3ds	Max	(2013	version),	select	the	Customize
option	and	then	Units	Setup.	Here,	click	on	the	System	Unit	Setup	button	and	change	the
units	of	measurement	as	follows:

In	Maya,	we	can	change	the	units	of	measurement	by	clicking	on	Window	from	the
toolbar.	Now,	select	Settings/Preferences	from	the	drop-down	window	and	then
Preferences.	In	the	Preferences	dialogue	box,	select	Settings.	Under	Working	Units,	we
can	change	the	linear	units	to	centimeter.

Units	of	measurement	–	a	section	review
In	this	section,	you	learned	about	the	basic	unit	conversions	between	the	U.S.	and
European	units	and	how	these	units	translate	into	Unreal	Engine	4’s	Unreal	Units.
Additionally,	we	briefly	discussed	the	common	measurements	for	our	game	world	for	our
player	character,	walls,	staircases,	and	doors/doorways.	Moreover,	we	took	an	in-depth
look	at	unit	snapping	in	Unreal	Engine	4	and	the	significance	of	the	tool	when	it	comes	to
object	placement	and	creating	our	game	world.	Lastly,	we	looked	at	how	to	convert	or
change	the	units	of	measurement	in	3D	art	programs,	such	as	3ds	Max	and	Maya	so	that
artists	can	ensure	that	their	models	are	exported	and	imported	to	the	correct	scale	when
placed	in	Unreal	Engine	4.

Now	that	we	have	a	better	understanding	of	the	units	of	measurement	and	how	they
translate	into	Unreal	Engine	4,	we	can	now	move	forward	to	briefly	discuss	scientific
notation.

The	scientific	notation
This	is	a	method	in	which	we	can	easily	write	very	large	or	significantly	small	numbers
without	having	to	express	the	entire	length	of	the	number,	meaning	writing	a	bunch	of
zeroes.	The	use	of	scientific	notation	is	not	very	common	when	you	use	Unreal	Engine	4
as	a	designer	or	an	artist,	but	as	a	programmer	or	a	technical	designer	who	uses	blueprints
or	even	C++	coding	in	the	engine,	the	use	of	scientific	notation	can	deem	itself	useful.

Let’s	take	a	look	at	some	examples	of	both	large	and	small	numbers	that	are	expressed	in
their	scientific	notation.	To	keep	things	as	simple	as	possible,	these	examples	will	use	the
base	of	10	for	ease	of	clarity:

1,000	(1	thousand)	–	1	*	10^3
100,000	(1	hundred	thousand)	–	1	*	10^5
1,000,000	(1	million)	–	1	*	10^6
.01	(1	hundredth)	–	1	*	10^-2
.001	(1	thousandth)	–	1	*	10^-3
.0001	(1	ten	thousandth)	–	1	*	10^-4

How	to	use	scientific	notation?
The	main	logic	behind	using	scientific	notation	is	to	take	a	very	large	or	small	number	and
convert	it	to	an	easy	to	read/write	expression.	For	an	example	that	isn’t	a	power	of	10,	the
number	0.5	converted	to	scientific	notation	would	read	as	5	*	10^-1.	We	reached	this
expression	by	moving	the	decimal	point	in	0.5	once	to	the	right-hand	side	making	the
number	into	5.	The	goal	of	using	scientific	notation	is	to	reach	the	base	number,	meaning	a
number	between	1	and	9.	As	we	had	to	move	the	decimal	point	to	the	right-hand	side,	we
know	that	the	expression	would	read	as	a	negative	exponent,	whereas	if	we	were	to	move
the	decimal	point	to	the	left-hand	side,	the	exponent	would	be	positive.	The	number	5	is
our	base,	and	we	multiply	it	by	10	with	an	exponent	that	is	equal	to	the	number	of	times
we	moved	the	decimal	point	to	reach	the	said	base.	In	our	case,	it	would	be	1.	Lastly,	we
know	that	the	exponent	would	be	negative	because	we	are	dealing	with	0.5,	a	number	less
than	1,	and	we	had	to	move	the	decimal	point	to	the	right-hand	side.	As	a	result,	our
scientific	notation	of	0.5	would	be	5	*	10^-1.	Here	are	a	few	more	examples	of	large	and
small	numbers	as	expressed	in	the	scientific	notation:

642,300,544,000	–	6.42300544	*	10^11
.00002055	–	2.055	*	10^-5
8,549,248.5004	–	8.549285004	*	10^6
.0125174	–	1.25174	*	10^-2

The	scientific	notation	–	a	section	review
In	this	section,	we	briefly	looked	at	the	scientific	notation	and	how	it’s	used,	along	with
providing	examples	of	large	and	small	numbers	that	are	expressed	using	its	scientific
notation.	Now	that	we	have	discussed	the	scientific	notation,	let’s	go	ahead	and	move	on
to	our	next	topic:	2D	and	3D	coordinate	systems.

The	2D	and	3D	coordinate	systems
In	Unreal	Engine	4,	the	use	of	2D	and	3D	coordinate	systems	are	used	to	determine	the
positions	of	actors	in	our	game	world.	In	a	2D	coordinate	system,	we	can	determine	an
actor’s	position	based	on	the	X	and	Y	axes,	left-right,	and	up-down	respectively.	In	a	3D
coordinate	system,	along	with	the	X	and	Y	dimensions,	we	can	determine	the	actor’s
position	based	on	the	Z	axis:	the	inclusion	of	depth.

In	Unreal	Engine	4,	the	3D	axes	are	labeled	differently,	as	displayed	in	the	preceding
image.	Instead	of	the	“up”	axis	being	the	y	axis,	in	Unreal	Engine	4,	the	“up”	axis	is
labeled	as	the	z	axis.	The	“forward”	axis	is	then	the	y	axis	instead	of	being	the	z	axis,	as
depicted	in	the	preceding	image.

It	should	also	be	discussed	that	Unreal	Engine	4	uses	a	left-handed	coordinate	system,
which	means	that	the	positive	direction	for	the	X	axis	is	on	the	right-hand	side,	the	positive
direction	for	the	Z	axis	is	upward,	and	the	positive	direction	for	the	Y	axis	is	forward.	In
the	left-handed	coordinate	system,	the	positive	rotation	of	an	axis	is	always	in	the
clockwise	direction.	We	can	see	this	reflected	in	the	transform	section	of	the	details	panel
when	an	object	is	selected	and	is	either	moved	or	rotated.

In	Unreal	Engine	4,	the	X	axis	is	labeled	as	a	red-colored	arrow;	the	Y	axis	is	labeled	as
the	green	arrow,	and	the	Z	axis	as	the	blue	arrow.	In	the	editor,	you	can	toggle	the
transformation	type	of	a	selected	object	between	translation,	rotation,	and	scale	by	either
repeatedly	pressing	on	the	spacebar	or	by	toggling	between	the	W	(translation),	E
(rotation),	and	R	(scale)	keys.	The	viewport	depicted	in	the	preceding	image	is	known	as
the	perspective	viewport.	This	is	the	only	3D	viewport	in	Unreal	Engine	4	and	can	be
accessed	using	the	Alt	+	G	shortcut.	When	you	work	on	a	3D	game,	Unreal	Engine	4
offers	three	2D	viewports:	the	top,	side,	and	front	perspective	viewports	to	take	advantage
of	when	you	place	objects	in	your	game	world.

The	top	perspective
This	perspective	presents	the	3D	world	from	a	top-down	view	(using	the	2D	coordinate
system)	with	the	X	and	Y	axes	that	is	similar	to	the	previous	image	of	the	2D	coordinate
system,	where	the	Y	axis	represents	up	and	down	and	the	X	axis	represents	left	and	right.
This	perspective	can	be	accessed	with	the	Alt	+	J	shortcut	or	by	clicking	on	the	drop-down
list	labeled	Perspective	and	selecting	the	Top	option,	as	shown	in	the	following
screenshot:

The	side	perspective
This	perspective	presents	the	3D	world	from	a	side	view	perspective	with	the	Z	and	Y	axes
using	the	2D	coordinate	system.	It	effectively	looks	at	the	world	from	the	left-hand	side	to
the	right-hand	side.	In	this	perspective,	the	Z	axis	represents	up	and	down,	whereas	the	Y
axis	represents	left	and	right.	This	perspective	can	be	accessed	with	the	Alt	+	K	shortcut	or
by	the	same	method	that	is	used	to	access	the	other	three	perspectives.

The	front	perspective
This	perspective	presents	the	3D	world	from	the	front	perspective	with	the	Z	and	X	axes
using	a	coordinate	system.	It	essentially	views	the	world	from	the	front	to	back	side.	In
this	perspective,	the	Z	axis	represents	up	and	down,	whereas	the	X	axis	represents	left	and
right.	This	perspective	can	be	accessed	with	the	Alt	+	H	short	cut	or	by	the	same	method
that	is	used	to	access	the	other	three	perspectives.

Lastly,	let’s	briefly	discuss	how	rotation	works	in	3D	programs,	such	as	Unreal	Engine	4.
In	the	real	world,	the	three	different	types	of	rotation	of	an	object	are	Yaw,	Pitch,	and	Roll.
These	rotations	are	defined	as	follows:

Pitch:	In	Unreal	Engine	4,	this	is	defined	as	the	rotation	of	an	object	about	the	Y	axis.
Yaw:	In	Unreal	Engine	4,	this	is	defined	as	the	rotation	of	an	object	about	the	Z	axis.
Roll:	In	Unreal	Engine	4,	this	is	defined	as	the	rotation	of	an	object	about	the	X	axis.

In	the	real	world,	the	pitch,	yaw,	and	roll	rotations	of	an	object	can	be	visualized	by
looking	at	how	a	plane	can	rotate,	as	shown	in	the	following	image:

The	2D	and	3D	coordinate	systems	–	a
section	review
In	this	section,	we	discussed	the	purposes	of	both	2D	and	3D	coordinate	systems,	their
differences,	and	their	uses	in	Unreal	Engine	4.	Furthermore,	we	took	some	time	to	go
through	the	four	perspectives	offered	in	the	engine:	perspective,	top,	side,	and	front.
Lastly,	we	looked	at	how	to	transform	actors	in	our	3D	world.	With	the	concepts	of	2D
and	3D	coordinate	systems	underneath	our	belt,	you	can	now	move	forward	and	learn
more	about	scalars	and	vectors.

Scalars	and	vectors
These	are	definitions	to	describe	the	motion	of	objects.	Both	are	unique.	In	mathematics,
scalars	are	defined	as	quantities	that	are	described	as	a	single	numerical	value,	whereas
vectors	are	defined	as	quantities	that	are	described	as	a	numerical	value	and	direction.	The
examples	of	scalar	quantities	include	length,	area,	volume,	speed,	mass,	temperature,	and
power,	whereas	the	examples	of	vector	quantities	include	direction,	velocity,	force,
acceleration,	and	displacement.

In	Unreal	Engine	4,	the	use	of	scalar	and	vector	values	is	very	common,	especially	in
blueprints	and	materials.	In	the	context	of	the	material	editor,	scalar	values	are	simply
numerical	values,	whereas	vectors	are	actually	the	colors	of	RGBA	or	red,	green,	blue,	and
alpha.	In	the	Material	editor,	we	can	use	both	scalar	and	vector	parameters	to	influence
the	color	and	intensity	of	the	material	itself.

In	the	preceding	screenshot,	we	are	using	a	vector	parameter	node	in	our	material	to
dictate	the	color	of	the	material	itself.	By	default,	the	vector	parameter	in	the	material
editor	contains	the	values	for	red,	green,	blue,	and	alpha;	the	alpha	value	controls	the
opacity	of	the	color.	In	the	material	example,	the	scalar	parameter	controls	the	strength	of
the	emissive	value	of	the	material.	By	increasing	or	decreasing	this	value,	the	material’s
brightness	will	get	brighter	or	dimmer.	To	recreate	this,	we	can	right-click	on	our	Content
Browser,	select	Material	and	name	this	MAT_Example,	and	double-click	on	the	material	to
open	the	Material	editor.	Perform	the	following	steps:

1.	 Right-click	on	an	empty	space	in	the	Material	editor	and	search	for	the	Vector

parameter.	Set	its	RGBA	values	to	1.0,	0.5,	2.0,	and	1.0	respectively.	We	can	name
this	parameter	as	Material	Color.

2.	 Next,	let’s	right-click	and	search	for	the	Scalar	parameter.	Then,	set	its	numerical
value	to	5	and	name	this	parameter	as	Material	Color	Intensity.

3.	 To	create	a	multiply	node,	we	can	either	right-click	and	search	for	this	node,	or	just
hold	the	M	key	and	left-click	on	the	blank	space	in	the	Material	editor	to	create	the
multiply	node.

4.	 Now,	we	can	multiply	the	color	output	Material	Color	vector	by	the	numerical
output	of	the	Material	Color	Intensity	scalar	and	plug	the	result	into	the	Emissive
Color	input	of	the	material	itself	to	create	a	bright	and	intensive	purple	material.

5.	 For	additional	color,	we	can	plug	the	color	output	of	the	Material	Color	vector
parameter	into	the	Base	Color	input	of	the	material	as	well.

In	the	Blueprints	of	Unreal	Engine	4,	the	scalar	and	vector	parameters	serve	similar
purposes	(as	seen	in	the	material	editor).	The	vector	variable	in	blueprint	scripting	holds
the	values	for	X,	Y,	and	Z	values	and	is	used	to	dictate	the	location	and	direction,	whereas
the	rotator	variables	holds	the	Roll,	Pitch,	and	Yaw	rotation	values.	When	it	comes	to
scalar	variables	in	blueprints,	there	are	many	options	to	use	(such	as	integers	or	floats)
because	scalar	values	are	only	numerical	values	with	no	direction	associated	to	them.

As	shown	in	the	preceding	image,	we	can	split	the	structure	pin	for	the	rotator	and	vector
variables	by	right-clicking	on	the	vector	values	and	selecting	Split	Struct	Pin.	So,	we	can
edit	each	direction	individually	using	float	scalars	to	affect	each.	At	the	same	time,	instead
of	using	individual	scalar	values	by	right-clicking	on	one	of	the	split	float	values	and
selecting	the	Recombine	Struct	Pin	option,	we	can	also	recombine	the	structure	pin	for
these	variables	so	that	we	can	edit	these	values	with	vectors	or	rotators	respectively.

Another	interesting	use	of	materials	and	blueprints	is	that	you	can	dynamically	change	the
value	of	the	scalar	and	vector	parameters	in	the	event	graph	or	the	construction	script	of
the	blueprint.

As	shown	in	the	preceding	image,	we	can	create	a	dynamic	material	instance	from	a	static
mesh	in	our	blueprint	that	uses	the	material	example	we	made	earlier,	which	uses	the
vector	and	scalar	parameters.	Here,	we	can	set	the	Material	Color	vector	parameter,	split
the	color	structure	into	four	unique	float	values	of	RGBA	(red,	green,	blue,	and	alpha)	and
then	use	the	random	float	in	the	range	node	to	create	random	colors	for	the	material.

To	recreate	this,	we	first	need	to	create	a	new	blueprint	by	right-clicking	on	our	content
browser	and	selecting	the	Blueprint	class	and	then	Actor	to	create	an	actor-based
blueprint.	Next,	double-click	on	this	new	blueprint	to	open	the	Blueprint	editor.	Perform
the	following	steps:

1.	 Select	the	Viewport	tab	at	the	top	of	the	editor	so	that	we	can	add	our	components
for	this	example	blueprint.	For	the	base	of	this	blueprint	actor,	we	want	to	add	a	scene
component	to	the	root	of	the	actor	so	that	the	other	actors	we	add	can	be	attached	to
this	component.

2.	 From	the	Add	Component	tab,	select	the	Scene	component	option	and	name	it
ROOT.

3.	 Now,	we	want	to	add	the	shape	of	a	plane	to	our	blueprint	so	that	we	can	see	our
material	on	an	object.	Under	the	StarterContent	folder	in	Shapes,	select	the
Shape_Plane	Static	mesh	so	that	it	is	highlighted	in	the	content	browser.

4.	 With	the	Shape_Plane	mesh	highlighted,	let’s	go	back	to	our	blueprint.	Under	the
Add	Component	tab,	there	will	be	an	option	for	Static	Mesh	(Shape_Plane).	Name
this	component	whatever	you	like	and	rotate/orient	the	mesh	in	the	3D	viewport	as
necessary.

5.	 Now,	back	in	our	Content	Browser,	let’s	select	our	material	so	that	it	is	highlighted.
Then,	back	in	the	blueprint,	we	can	apply	this	material	to	our	plane	mesh	by	selecting
the	plane	in	the	Components	tab	and	clicking	on	the	arrow	next	to	the	Element	0
option	in	the	Materials	section.

6.	 With	our	material	applied	to	our	Static	Mesh,	we	can	now	navigate	to	our
Construction	Script	to	script	the	behavior	that	will	randomly	change	the	color	of
this	material	each	time	the	blueprint	initializes.

7.	 In	the	Construction	Script	tab,	let’s	grab	the	Get	variable	of	our	plane	static	mesh
by	keeping	CTRL	pressed	and	clicking	and	dragging	the	variable	from	the	variables
section	to	the	left-hand	side	of	the	editor.	From	this	variable	pin,	we	can	search	for
Create	Dynamic	Material	Instance.	Make	sure	that	the	material	we	created	is
selected	for	the	Source	Material	variable	in	that	node.

8.	 From	the	return	value	of	the	Create	Dynamic	Material	Instance	node,	we	can
promote	this	value	to	a	variable	that	we	can	then	reference	in	the	blueprint	whenever
we	like.	Name	this	variable	whatever	you	like.

9.	 Now,	we	can	drag	the	pin	from	the	variable	output	of	the	newly	promoted	material
instance	variable	and	search	for	the	Set	Vector	Parameter	node.	Here,	we	need	to
provide	this	node	with	the	name	of	the	vector	parameter	that	we	want	to	change	and
color	values	that	we	want	to	enter.	If	you	remember,	we	named	our	vector	parameter
Material	Color.

10.	 To	randomize	the	color,	we	need	to	drag	from	the	value	input	variable	of	the	Set
Vector	Parameter	Value	node	and	search	for	Make	Linear	Color.	For	the	RGB
values,	we	can	use	Random	Float	in	range	nodes	that	have	a	minimum	value	of	0.5,
a	maximum	value	of	1.0,	and	a	constant	alpha	value	of	1	to	randomize	the	color.

11.	 Now,	when	we	repeatedly	click	on	the	Compile	button	at	the	top,	we	can	see	the
color	of	the	material	change	each	time.

Scalars	and	vectors	–	a	section	review
In	this	section,	we	discussed	the	important	differences	between	the	values	of	vectors	and
scalars,	their	definitions	in	the	case	of	real-world	mathematical	quantities	and	in	the	realm
of	Unreal	Engine	4.	In	addition,	we	looked	at	some	in-engine	examples	of	how	to	use
scalars	and	vectors	in	materials	and	blueprints.	We	also	looked	at	how	to	incorporate
scalars	and	vectors	so	that	it	can	dynamically	change	the	color	of	a	material.	With	a	base
understanding	of	scalars	and	vectors	in	our	pockets,	we	can	now	discuss	Newton’s	laws	of
physics.

Newton’s	laws/Newtonian	physics
concepts
The	base	of	all	that	we	know	about	real-world	physics	comes	from	the	principles
developed	by	Sir	Isaac	Newton,	also	known	as	Newton’s	three	laws	of	motion.	When	we
recreate	real-world	physics	in	video	games,	it	is	very	important	that	we	understand	these
laws	and	how	they	affect	objects	in	our	game	world.	Keep	in	mind	that	not	all	games	use
realistic	physics,	but	these	laws	of	motion	are	still	important	to	grasp	when	you	develop
any	game	world.

Newton’s	first	law	of	motion
Isaac	Newton’s	first	law	of	motion,	also	known	as	the	Law	of	Inertia,	states	that	every
object	in	a	state	of	uniform	motion	tends	to	remain	in	that	state	of	motion	unless	an
external	force	is	applied	to	it.	In	other	words,	an	object	in	motion	tends	to	stay	in	motion
unless	acted	upon	by	another	force.

In	the	real	world,	there	are	external	forces	(such	as	ground	and	air	friction)	that	act	on
objects	in	motion	that	eventually	cause	this	object	to	stop	completely,	or	forces	such	as	a
person	pushing	or	pulling	on	an	object	that	can	cause	acceleration,	or	for	the	move	to
increase	in	speed	over	time.	In	a	vacuum,	there	is	no	friction.	As	a	result,	an	object	in
motion	in	an	infinite	vacuum	space	would	continue	to	move	at	the	same	rate	unless	it	is
acted	on	by	some	external	force.

In	Unreal	Engine	4,	the	blueprint	assets	that	utilize	the	Projectile	component,	such	as
bullets,	rockets,	or	any	other	kind	of	projectiles	used	in	our	game,	can	edit	the	coefficient
of	friction	and	other	physics-based	properties.	From	the	first	person	project	that	was
created	earlier	in	the	chapter,	we	can	navigate	to	the	Content	folder	in	the	Content
Browser	and	then	to	the	FirstPersonBP	folder	and	select	the	Blueprints	folder.	In	this
folder,	we	can	select	the	FirstPersonProjectile	blueprint.	Then,	in	the	Viewport,	we	can
select	the	Projectile	component	to	view	some	of	the	physics	properties,	as	shown	in	the
following	screenshot:

By	increasing	the	Friction	property,	we	can	cause	this	projectile	to	come	to	a	stop	more
quickly,	whereas	decreasing	this	property	will	result	in	the	projectile	coming	to	a	stop	over
a	longer	period	of	time.	We	can	alter	this	property	until	we	can	get	the	behavior	we	want.
For	more	examples	of	physics-based	properties	featured	in	the	Unreal	Engine	4	blueprints,
feel	free	to	investigate	the	FirstPersonCharacter	blueprint	and	select	the
CharacterMovement	component.

Newton’s	second	law	of	motion
This	states	that	the	relationship	between	an	object’s	mass	(m),	its	acceleration	(a),	and	the
applied	force	(F)	is	F	=	ma	or	an	applied	force	is	equivalent	to	the	mass	of	the	object	and
its	applied	acceleration.	Acceleration	and	force	are	vectors,	(remember	that	a	vector	is
both	a	numerical	value	and	a	direction).	In	this	law,	the	directional	force	vector	is	the	same
as	the	direction	of	the	acceleration	vector.

In	more	simple	words,	this	law	focuses	on	the	principle	that	a	change	in	an	object’s
velocity	can	only	occur	if	this	object	is	accelerating	in	a	particular	direction,	and	a	positive
or	negative	acceleration	can	only	take	place	if	an	external	force	is	acting	on	it.

In	Unreal	Engine	4,	we	can	use	blueprints	to	apply	forces	to	physics	objects	and	override
properties	(such	as	acceleration	and	mass)	through	different	available	components.	For
example,	the	CharacterMovement	component	in	the	FirstPersonCharacter	blueprint
has	a	property	labeled	as	Max	Acceleration,	and	if	we	increase	or	decrease	this	property,
we	can	see	how	quickly	the	player	accelerates	from	a	stationary	position	to	its	maximum
walk	speed.

Newton’s	third	law	of	motion
Isaac	Newton’s	third	law	of	motion	and	one	of	the	more	commonly	known	law	states	that
for	every	action	there	is	an	equal	and	opposite	reaction.	In	other	words,	when	an	object
applies	force	to	another	object,	an	equal	and	opposite	force	is	applied	as	well.

In	Unreal	Engine	4,	we	can	see	this	law	of	motion	in	action	by	playing	in	the	editor	and
clicking	on	the	left	mouse	button	while	aiming	at	the	ground	to	see	the	ball	bounce	in	the
opposite	direction	that	it	was	fired	at	and	moving	at	a	speed	equal	to	the	one	in	which	it
was	fired	at,	except	that	we	have	friction	applied	to	this	projectile,	so	it	loses	some	of	its
initial	velocity	due	to	the	friction.

To	bring	all	of	these	laws	of	motion	together,	what	we	can	do	is	add	a	box	collision
component	to	the	FirstPersonCharacter	blueprint,	set	its	Collision	Presets	to	BlockAll,
and	attach	it	to	the	FirstPersonCamera	component	by	dragging	it	onto	the
FirstPersonCamera	component	in	the	Components	tab.

Now	if	we	play	in	the	editor,	we	can	start	running	into	the	physics	cubes	in	the
FirstPersonExampleMap	(which	is	default	to	the	First	Person	project	template)	and	see
forces	applied	to	them,	which	is	equal	to	the	mass	of	the	player	multiplied	by	the	players’
current	acceleration	value.

Newton’s	laws	of	motion	–	a	section
review
In	this	section,	we	discussed	the	three	laws	of	motion	developed	by	Sir	Isaac	Newton	and
their	application	in	the	real	world	and	in	Unreal	Engine	4.	For	each	of	these	three	laws,	we
examined	each	by	providing	working	examples	of	each,	using	blueprints	in	Unreal	Engine
4.	Now	that	we	have	a	strong	understanding	of	these	principles,	we	can	tackle	the	last
subject	of	this	chapter:	forces	and	energy.

Forces	and	energy
One	of	the	most	important	concepts	regarding	energy	is	that	it’s	a	property	of	objects	that
can	be	transferred	from	one	object	to	another,	but	it	cannot	be	created	or	destroyed.	All
forms	of	energy	follow	the	conservation	of	energy	aspect	and	can	be	converted	to	different
types	of	energy.	There	are	many	types	of	energy	that	exist	in	the	real	world.	Here	are	a	few
examples:

Kinetic	Energy:	This	specifies	the	motion	of	a	moving	body
Potential	Energy:	This	denotes	the	energy	that	an	object	has	due	to	its	location	in	the
3D	space
Mechanical	Energy:	This	specifies	the	sum	of	kinetic	and	potential	energies
Heat:	This	denotes	the	amount	of	thermal	energy	being	transferred	in	the	direction	of
decreasing	temperature

These	are	just	a	few	examples	of	energy	that	exist	in	the	real	world,	so	feel	free	to	perform
additional	research	on	the	concept	of	energy	because	this	section	will	only	cover	the
surface	of	the	topic.	When	it	comes	to	the	concept	of	energy	and	the	conservation	of
energy,	Unreal	Engine	4	follows	these	properties	as	well	through	its	built-in	physics
engine.

As	discussed	in	the	previous	section	of	this	chapter	regarding	the	Newtonian	principles,
forces	are	any	interaction	that	tends	to	change	the	motion	of	an	object.	This	can	also	be
referred	to	as	concepts	(such	as	pushing	and	pulling)	and	contains	a	magnitude	and
direction,	making	it	a	vector	quantity.	Forces	can	be	caused	by	gravity,	magnetism,	wind,
or	even	the	pushing	or	pulling	of	an	object	by	a	person	or	machine.

In	Unreal	Engine	4,	we	can	add	forces	through	blueprint	scripting,	and	we	can	perform
this	in	a	few	ways.	The	first	method	is	a	function	called	Add	Force.	This	acts	a	lot	like	a
thruster	and	adds	a	linear	burst	of	energy	in	the	specified	direction.

You	can	add	this	type	of	force	to	any	component	associated	with	our	blueprint,	or	you	can
apply	this	force	to	any	component	that	is	hit	by	a	component	of	our	blueprint.	We	can	also
see	that	there	is	a	bone	name	property	in	this	function.	This	means	that	we	can	apply	force
to	a	bone	if	one	exists	in	our	blueprint.

The	second	method	of	applying	forces	to	our	blueprint	components	or	to	components	in
our	game	world	is	through	the	Add	Radial	Force	function:

This	function	allows	you	to	specify	a	location	in	the	3D	space.	Here,	the	source	of	the
radial	force	begins	and	then	specifies	a	radius	and	strength	using	Float	values.	Lastly,	we
can	apply	one	of	the	two	methods	of	Falloff	for	the	radius,	which	is	either	a	constant	fall-
off	or	a	linear	fall-off.	All	bodies	in	this	radius	will	be	affected	by	this	force,	so	make	sure
that	you	take	this	into	consideration	when	you	apply	radius	and	strength	values.

Forces	and	energy	–	a	section	review
In	this	section,	we	looked	at	forces	and	energy	and	how	they	are	applied	in	the	real-world
and	in	Unreal	Engine	4.	Additionally,	we	investigated	the	different	types	of	energy	that
exist	in	the	real	world.	Furthermore,	we	looked	at	different	examples	on	how	to	apply
forces	in	blueprints	with	the	Add	Force	and	Add	Radial	Force	functions.	Lastly,	we
discussed	the	properties	of	these	two	functions	and	how	they	alter	the	force	that	is	applied.

Summary
In	this	chapter,	we	discussed	a	handful	of	mathematical	and	physics-based	concepts	that
are	necessary	to	grasp	in	order	to	understand	how	physics	works	in	Unreal	Engine	4.	We
looked	at	the	different	units	of	measurement	that	exist	in	the	American	and	European
standards	of	length	and	how	they	convert	from	one	to	another.	We	also	looked	at	Unreal
Units	(uu).	Then,	we	discussed	the	common	measurements	for	walls,	doorways,
characters,	and	stairs.

Next,	you	learned	a	little	bit	about	scientific	notation,	how	it	works,	and	how	it	is	used.
We	looked	at	some	basic	and	advanced	examples	of	conversions	from	numerical	to
scientific	notations.

Additionally,	you	learned	about	the	2D	and	3D	coordinate	systems	and	how	they	are	used
in	the	real	world	and	in	Unreal	Engine	4.	We	also	investigated	the	different	2D	and	3D
viewports	that	exist	in	Unreal	Engine	4	and	the	important	functions	they	serve	when	you
create	game	worlds.

Furthermore,	you	learned	about	the	scalar	and	vector	properties	and	how	they	are	applied
in	the	real	world	and	in	Unreal	Engine	4.	We	also	looked	at	examples	of	how	the	values	of
scalars	and	vectors	are	used	in	the	Material	editor	and	in	blueprints.

We	also	looked	at	each	of	the	three	Newtonian	laws	of	motion	and	provided	real-world
and	Unreal	Engine	4	examples	for	each	law.

Lastly,	you	learned	about	the	different	forces	and	energy	that	exist	in	the	real-world	and
provided	examples	on	how	to	apply	forces	in	blueprints.

Now	that	we	have	a	base	understanding	of	real-world	mathematics	and	physics	concepts
and	how	they	are	used	in	Unreal	Engine	4,	we	can	now	move	on	to	the	Physics	Asset	Tool
(PhAT)	in	Unreal	Engine	4.

Chapter	2.	Physics	Asset	Tool
PhAT	stands	for	Physics	Asset	Tool.	Imagine	you	drop	a	dice.	Based	on	the	reality	of	the
physical	rules	in	the	world	we	live,	the	dice	drops	differently	on	wood,	stone,	glass,	and
carpet.	The	same	can	be	said	for	glass,	plastic	ball,	and	enemy	body	(more	complex).
Using	PhAT,	you	will	learn	how	to	simulate	reality	based	on	the	physical	rules	that	exist	in
the	game	world.	This	is	kind	of	animated,	but	with	more	logics	and	tools.

In	this	chapter,	you	will	first	learn	about	the	most	important	items	in	PhAT	and	then	use
them	in	a	practical	example.

Navigating	to	PhAT
Before	we	start	working	in	Unreal	Editor,	we	will	need	to	have	a	project	to	work	with.
Perform	the	following	steps:

1.	 First,	open	Unreal	Editor	by	clicking	on	the	Launch	button	from	Unreal	Engine
Launcher.

2.	 Start	a	new	project	from	the	Project	browser	by	selecting	the	New	Project	tab.	Then,
select	Third	Person	and	make	sure	that	With	Starter	Content	is	selected.	Give	the
project	a	name	(phat_test).	Once	you	are	finished,	click	on	Create	Project.

After	everything	comes	up	on	your	screen,	in	Content	Browser,	locate	the
ThirdPersonBP	folder	and	click	on	the	Character	folder.	Find	ThirdPersonSkelMesh
and	then	right-click	on	the	list	and	select	Create	|	Physics	Asset,	as	shown	in	the
following	screenshot.	Then,	click	on	Ok	in	the	New	Asset	window.

Note
ThirdPersonSkelMesh	can	be	found	by	the	name	SK_Mannequin	in	the	newer	version
of	Unreal	Engine	4.

Now,	if	everything	works	fine,	you	will	find	your	selected	mesh	in	Physics	Asset	Tool	or
PhAT.	This	kind	of	editor	allows	you	to	put	some	custom	controllers	on	parts	of	your
character’s	mesh	based	on	your	bones.	These	controllers	are	sensitive	to	physical	aspects,
such	as	world	gravity,	movements	of	other	parts,	rotations	on	each	part,	and	collisions
between	parts.

We	will	select	a	human	like	mesh.	Imagine	that	this	is	an	enemy	and	a	player	should	shoot
this	object.	After	shooting,	on	hit,	the	enemy	character	falls	on	the	surface.	For	simulating

this	scenario,	set	your	camera	as	shown	in	the	following	screenshot,	and	click	on	Simulate
from	the	top	menu:

Then,	set	your	camera	to	this	view	and	click	on	Simulate.

In	the	preceding	screenshot,	you	can	see	that	the	character	falls,	but	the	way	it	falls	is	not
natural	in	many	ways.	The	following	image	is	a	screenshot	of	this	action.	Here,	you	can
see	that	the	hands	and	backbones	are	in	an	unreal	position.	PhAT	can	solve	all	these
problems	by	customizing	each	bone	movement	based	on	physical	rules	(such	as	gravity).

The	problem	persists	on	the	back	and	hands	as	the	mesh	falls.

Click	on	Simulate	again	to	go	back	to	the	normal	mode.

The	PhAT	environment
PhAT	has	a	couple	of	gadgets	and	sections.	Here,	we	will	cover	most	of	the	commonly
used	sections:

Hierarchy:	On	the	right-hand	side	of	the	stage,	there	is	a	list	of	bones	entangled	with
meshes	on	the	character.	This	is	used	for	animation	purposes.	Some	bones	have	a
bold	font,	whereas	some	don’t.	When	you	assign	a	physical	asset	to	a	bone,	Unreal
Engine	automatically	makes	it	bold.	This	is	useful	for	addressing	the	bones	involved
with	a	glance	over	them.	You	can	turn	it	on/off	using	the	Windows	button	from	the
top	menu.
Save:	This	saves	the	current	asset	on	the	model.
Find	in	CB:	This	locates	the	current	asset	in	Content	Browser.
Simulate:	This	runs	the	simulation.
Little	arrow	in	front	of	Simulate:	This	changes	the	simulation	mode	between	the
Real	and	No	Gravity	types	of	simulation.
Selected	Simulation:	When	you	select	one	bone	and	then	hit	simulate,	the	only
selected	bone	and	its	branch	(or	children)	will	react	to	simulation.	Let’s	take	a	look	at
an	example:

1.	 Navigate	to	Hierarchy	on	the	right-hand	side	and	select	Bones	with	Bodies.
This	just	shows	the	bones	with	assets.

2.	 Now,	right-click	on	lowerarm_r	in	the	bones	list	and	then	on	Selected
Simulation	to	make	it	active:

3.	 Then,	click	on	Simulate.	As	you	can	see,	only	a	part	of	the	left	hand	shows
some	movement,	but	the	rest	of	the	body	does	not	move:

4.	 Click	again	on	Simulate	to	go	back	to	the	normal	scene.
5.	 Now,	click	on	upperarm_r	in	Hierarechy.	Then,	click	on	Selected	Simulation

again.	As	you	can	see,	now	the	entire	hand	is	part	of	the	simulation,	but	the	body
is	not	moving:

6.	 Later	when	we	start	adding	assets,	this	simulation	type	will	be	useful	and	handy.
For	now,	just	try	experimenting	with	more	bones	and	simulate	your	selection.

Body	Mode:	This	selects	the	different	types	of	visual	presentation	on	the	body.
Translation,	Rotate,	and	Scale:	These	are	tools	for	editing	each	asset.
Details:	In	this	section,	you	will	find	some	related	properties	for	each	asset.	When
you	select	different	assets	in	Hierarchy,	the	properties	related	to	the	selected	asset
are	displayed	here.	You	can	turn	this	on/off	using	the	Window	button	from	the	top
menu:

The	PhAT	example	and	experience
In	order	to	create	a	new	asset	on	each	bone,	it’s	better	to	clean	our	object	from	the
previous	ones.	There	is	a	quick	method	to	perform	this,	that	is,	click	on	Edit	from	the	top
menu	bar	and	then	on	Select	All	Objects.	Now,	click	on	Delete	on	your	keyboard.	Try	this
and	then	click	on	Undo	from	the	same	menu.	You	can	also	try	another	useful	method,
which	is	explained	in	the	next	section.

Deleting	current	assets
Perform	the	following	steps	to	delete	current	assets:

1.	 Set	your	camera	as	shown	in	the	following	screensahot:

2.	 Now,	click	on	Simulate	and	wait	until	the	body	fully	lies	down	on	the	ground,	as
shown	in	the	following	screenshot.	It	is	possible	that	your	result	would	be	a	bit
different,	but	no	problem.	You	can	try	and	click	on	Simulate	to	reach	the	closest
form	of	the	image:

3.	 Now,	press	Ctrl	and	right-click	to	hold	the	head	and	move	your	mouse	up	not	fast,
but	not	slow	either.	It	looks	like	the	mesh	is	hanging	to	your	mouse	pointer,	as	shown
in	the	following	screenshot:

Without	releasing	the	right	mouse	button,	move	your	mouse	in	the	left	and	right
direction	over	the	stage	and	watch	the	elements	of	the	mesh	connecting	and	moving
with	each	other.	You	will	soon	discover	a	red	line	that	indicates	the	path,	in	which
your	mouse	just	moved,	as	shown	in	the	following	screenshot:

If	you	release	the	mouse	button,	you	can	use	Simulate	to	switch	back	to	the	normal
mode	and	create	it	back	again.

4.	 Now	leave	the	mouse,	and	the	character	will	fall	on	the	surface.	Grab	all	the	other
parts	of	the	character	and	experience	the	same	movement	with	different	mouse	speed.
This	is	kind	of	fun	with	PhAT	and	also	shows	how	the	body	is	connected	with	bones.
You	can	track	this	in	Hierarchy.

5.	 Click	on	Simulate	to	go	back	to	the	normal	mode	and	right	click	on	spine_03	in
Hierarchy.	As	you	can	see	in	the	following	screenshot,	this	part	is	selected	in	a
different	color.	Now,	click	on	Simulate.	Then,	grab	this	part	(Ctrl,	right-click	and
hold)	and	move	it.	Select	Simulate	again	to	return	to	normal.	This	time,	select	foot_r
and	try	to	simulate	and	grab	it	and	move	the	character.	As	you	can	see,	when	you
grab	the	body	and	move,	other	parts	create	a	kind	of	rhythm,	which	depends	on	your
mouse	movement	on	the	screen.	This	is	caused	by	the	default	physic	assets	of	each
part.

6.	 Now,	right-click	on	clavicle_r	and	select	Delete	All	Bodies	Below,	as	shown	in	the
following	screenshot.	It	looks	like	nothing	seriously	happened	here,	but	when	you
click	on	simulate,	boom!	The	left	arm	remains	still,	and	a	totally	different	behavior	is
displayed.	Stop	the	simulation,	right-click	on	clavicle_l,	select	Delete	All	Bodies
Below,	and	click	on	Simulate	again.	Now,	both	hands	appear	still,	and	it	doesn’t
behave	like	before.	Select	Undo	to	track	the	difference	between	the	previous	and
current	behavior.

This	practice	is	essential	to	understand	what	PhAT	can	provide	us	in	the	game.	When
you	select	Delete	All	Bodies	Below,	you	can	delete	all	the	previous	physic	assets	on
the	bones	that	will	connect	to	your	selected	bone.	You	can	track	this	in	Hierarchy.
For	example,	clavicle_r	is	connected	to	upperarm_r,	same	logic	(image	it	as	chain
of	bones),	upperarm_r	is	connected	to	lowerarm_r.	And,	lowerarm_r	is	connected
to	hand_r.	Here,	hand_r	is	last	member	of	these	series	of	the	bones.	(this	is	important
for	the	last	bone).	If	you	apply	any	physical	rule	to	clavicle_r,	the	energy	flows
through	the	other	bones	until	the	end:	hand_r.	When	you	select	Delete	All	Bodies
Below,	you	can	actually	delete	this	path	to	navigate	energy.	This	is	why	the	hands
look	solid	in	simulation.

This	is	a	basic	understanding	of	what	PhAT	is	used	for.	You	will	learn	how	to	design
certain	assets	that	guide	and	reflect	the	physical	input	from	the	environment	(such	as
gravity	or	collision)	through	the	bones	of	the	character.

To	see	how	these	assets	will	function	and	navigate	energy,	select	top	bone	to	down
bone	(or	bones)	in	Hierarchy	and	check	whether	clavicle_r	is	connected	to
spine_03.	The	bigger	bone	sends/navigates	the	physic	assets/energy	to	clavicle_r.

7.	 Try	the	same	with	thigh_l	and	thigh_r.	Here,	pelvis	is	the	higher	bone	in	Hierarchy.

Adding	and	customizing	current	assets
Now,	as	we	experience	the	effect	of	PhAT	assets	on	the	bones	and	also	have	an
understanding	of	how	bones	are	connected	and	guide	the	energy,	it’s	time	to	create	our
own	physics	assets	over	the	body.	Refer	to	the	last	part,	try	to	delete	the	different	bones
asset,	and	simulate	the	scene.	Then,	select	Undo	and	Redo.	This	is	a	creative	practice	for
game	designers.

Now,	click	on	Edit	from	the	top	menu	bar,	select	All	Objects,	and	press	Delete	on	your
keyboard.	Now,	we	can	delete	all	the	physic	assets	on	the	body.	Then,	select	All	Bones	in
Hierarchy:

You	will	find	a	detailed	list	of	all	the	bones	in	Hierarchy.	It	seems	that	it	has	more	bones
with	more	detailed	names.	We	can	select	some	of	them	and	establish	our	physic	assets
over	them	in	this	chapter;	you	can	experiment	with	different	bones	and	get	more	realistic
results.

1.	 Change	your	camera	as	follows.	Then,	click	on	Simulation.

1.	 Nothing	will	happen.	Now,	click	on	Body	Mode	at	the	top	and	select
Constraint	Mode.	The	screen	will	go	blank.

2.	 Navigate	back	to	Body	Mode	by	clicking	once	again	on	Constraint	Mode	and
select	Body	Mode.	You	will	see	the	body	again.	Now,	click	on	pelvis	in
Hierarchy,	right-click	on	it,	select	New	Body,	and	click	on	Ok	in	the	New
Asset	box:

3.	 Now,	click	on	Body	Mode	at	the	top	and	select	Constraint	Mode.	Something
will	appear	on	the	screen	this	time.

4.	 This	is	your	first	asset.	Now,	click	on	Simulate	to	try	it	in	the	real	world.	Also,
drag	and	try	to	move	it	around	(holding	Ctrl	and	the	right	mouse	button).	This	is
mostly	similar	to	how	you	check	your	asset	functionality,	create	and	edit,	choose
Simulate	and	then	test	with	mouse.

2.	 Switch	to	Body	Mode	at	the	top	to	view	the	entire	body.	Then,	select	thigh_l	in
Hierarchy	and	create	a	new	body	for	it.	Now,	view	the	changes.	Click	on	Simulate
and	try	to	move	it	with	your	mouse.	As	you	can	see,	the	movement	is	between	two
parts:	pelvis	and	thigh_l,	which	is	represented	in	bold	fonts	in	Hierarchy.

1.	 Switch	to	Bones	With	Bodies	in	Hierarchy	to	have	just	these	bones	in	the	list.
Now,	switch	to	Constraint	Mode	at	the	top.	Now,	you	can	see	the	new	physic
assets	that	you	put	over	your	bones.	At	this	point,	we	have	two.

2.	 Now,	click	on	thigh_l	and	then	on	Selected	Simulation	at	the	top	to	make	it
active.	Then,	click	on	Simulate.	As	you	can	see,	only	the	selected	part	will
move.	Test	this	with	the	mouse.	It	does	not	move	naturally,	and,	compared	to	the
movements	of	a	real	human	body,	it	is	absolutely	unnatural.

3.	 Now,	we	want	to	fix	this	so	that	it	can	move	and	work	based	on	real	physics.	So,
stop	the	simulation	and	click	on	thigh_l	in	Hierarchy.	Under	Details,	locate
Angular	Limits	and	change	the	options,	as	shown	in	the	following	screenshot:

4.	 Now,	change	your	camera	view,	as	shown	in	the	following	screenshot,	and	click
on	Rotation	at	the	top.

5.	 Once	you	select	Rotation,	you	will	see	a	colorful	bold	arc	shape	around	your
selection.	Use	this	to	click	and	rotate	the	physic	asset.	Also,	a	blue	triangle	like
shape	will	appear.	This	indicates	the	maximum	range	in	which	your	bone	can
play	and	move.

6.	 Click	on	the	green	bold	arc	around	your	selected	point,	press	Alt	(very
important),	and	rotate	the	point	so	that	it	points	to	the	ground,	as	shown	in	the
following	screenshot:

7.	 Now,	click	on	Simulate	and	change	your	rendering	options	so	that	it	looks
similar	to	following	screenshot:

8.	 Basically,	changing	MeshRender	Mode	to	None	allows	you	to	see	the	main
physic	assets	behavior	during	the	test.	Also,	setting	ConstraintRender	Mode	to
All	Limits	allows	you	to	observe	the	movement	of	small	tiny	colorful	lines
(which	are	indicated	by	the	arrows),	as	shown	in	the	following	screenshot.
Understanding	and	controlling	these	lines	are	the	key	to	the	soft	physic	assets	on
your	mesh.	The	way	they	move,	the	area	they	cover,	and	the	other	details	are
located	in	the	Detail	section.

9.	 Stay	in	the	simulation	mode	and	move	the	object	a	couple	of	times.	It	moves
from	left	to	right	and	always	stays	with	the	blue	tiny	line	in	the	range	of	the	blue
triangular	shape.	Now,	stop	the	simulation.	In	Details,	inside	Angular	Limits,
change	Swing2Limit	Angle	from	45	(the	current	one)	to	12.0	and	run	the
simulation	again:

10.	 Now,	the	movements	become	tighter.	Also,	the	blue	triangle	appears	smaller.
Change	your	view	and	then	MeshRender	Mode	to	Solid,	as	shown	in	the
following	screenshot.	Then,	check	the	movements	of	the	left	leg	or	the
movement	of	thigh_l	under	your	new	physic	asset	(in	a	better	way).

11.	 Now,	let’s	change	Swing2Limit	Angle	from	12	(the	current	one)	to	45	and	run
the	simulation	again.

3.	 In	Hierarchy,	switch	to	All	Bones	and	then	to	Body	Mode	from	the	top	menu.
Finally,	select	thigh_r	from	the	bone	list,	right-click	on	it,	and	select	New	Body.
This	is	the	second	leg.

1.	 Switch	to	Constraint	Mode	at	the	top.	Similar	to	the	last	bone,	make	the
rotation	and	details	look	similar	to	the	following	screenshot.	Also,	turn	off
Selected	Simulation	from	the	top	menu:

2.	 Change	MeshRender	Mode	to	Solid	and	check	the	behavior	of	the	body	when
you	move	it	on	the	stage.	The	legs	move	much	more	naturally	than	before,	but	it
needs	to	move	in	different	angles	as	well,	as	shown	in	the	following	screenshot:

3.	 To	apply	more	details,	play	with	rotation	and	angles	to	reach	the	following
screenshot:

4.	 Try	the	same	process	with	the	spine_01,	spine_02,	and	spine_03	bones.	Then,
fix	the	limitations,	angles,	and	work	on	clavicle_l	and	clavicle_r.	Finally,	work
on	neck_01	and	head.	This	way,	you	can	grow	your	physic	assets	on	the	body	in
a	properly	organized	way.	You	can	test	the	overall	movement	and,	when
everything	looks	fine,	increase	the	assets	on	smaller	bones	(such	as	fingers).

4.	 As	you	go	further,	you	should	be	aware	of	a	correction	that	needs	to	be	performed	at
the	end	of	each	series	of	bones.	Similar	to	fingers,	head,	and	toes,	this	is	simply
related	to	physical	energy.	When	the	body	moves,	based	on	the	physic	assets	and	the
way	you	edit	these,	the	body	reflects	and	guides	the	movements	from	one	bone	to
another.	If	there	is	no	bone	after	the	current	one,	such	as	head	or	the	last	part	of	the
finger,	it	sometimes	ends	in	an	unusual	vibrate-like	movements	over	the	bone	during
the	simulation	and	the	real	game.	To	guide	this	energy	in	a	controlled	way,	click	on
the	bone	in	Body	Mode,	expand	the	Physics	section	in	Details,	set	Angular
Damping	to	5	and	Linear	damping	to	1,	and	simulate.	Now,	check	your	movements
and	change	these	numbers	until	the	problem	is	fixed.

Summary
Now,	you	can	use	PhAT	to	make	your	character	move	and	reflect,	which	is	similar	to	the
real	world.	Keep	in	mind	that	working	on	PhAT	is	presenting	the	game	story	over	the
character	behavior.	It	is	an	art	because	all	the	details	and	time	that	you	spend	here	are
directly	monitored	and	tried	by	the	player	(perhaps	hundreds	of	times	while	playing	the
game).	It	is	good	practice	to	imagine	a	character	with	some	special	behaviors,	like
movement,	impact	on	other	objects	like	walls,	guns	or	fire,	in	real	world;	and	then,	try	to
recreate	that	behavior	using	Unreal	Engine.	It	is	a	physical	simulation	with	many	details
which	we	have	gone	through	in	this	chapter.	As	a	game	designer,	more	practice	will
guarantee	high	quality	results.

You	can	import	the	rigged	mesh	from	the	3D	software	and	apply	the	same	physic	assets	to
them.	The	mesh	should	be	rigged	in	a	proper	way,	which	is	similar	to	what	we	used	as
default	in	this	chapter.	Try	the	online	sources	by	searching	Unreal	Engine	4	PhAT	on
YouTube.	Also,	if	you	practise	the	example,	you	can	use	the	resources	of	Unreal	Engine	3
and	tuts	in	this	area.

Chapter	3.	Collision
In	this	chapter,	we	will	analyze	collision	in	Unreal	Engine	4,	what	it	is,	the	different	types
of	collision	that	exist	in	the	engine,	how	to	use	it,	and	how	to	apply	it	to	both	static	meshes
and	blueprints.	To	start	with,	we	will	first	take	an	overview	look	of	the	different	collisions
that	exist	in	Unreal	Engine	4,	but	we	will	also	cover	the	following	topics:

Simple	versus	complex	collision
Generating	simple	collision
Creating	complex	and	custom	collision	hulls
Collision	interactions
Custom	object	and	trace	channels
In-depth	collision	presets

For	the	purposes	of	this	chapter,	we	will	continue	to	work	with	Unreal	Engine	4	using	the
Unreal_PhyProject	that	we	created	in	the	first	chapter.

Collision	and	Trace	Responses	–	an
overview
In	the	real	world	and	in	Unreal	Engine	4,	we	define	collision	as	an	overlap	of	two	or	more
objects.	In	the	context	of	Unreal	Engine	4,	Collision	and	Trace	Responses	lay	the
groundwork	for	how	Unreal	Engine	4	handles	collision	and	ray	casting	during	the	game.
Every	object	that	is	given	collision	gets	an	Object	Type	and	a	series	of	responses	that
describe	how	it	interacts	with	the	other	object	types.	In	the	event	of	either	a	collision	or	an
overlap	of	two	or	more	objects,	all	objects	involved	can	be	set	to	affect	or	to	be	affected
by	blocking,	overlapping,	or	ignoring	one	another.

Trace	Responses	describe	how	an	object	should	react	when	you	interact	with	a	trace,
which	is	done	with	a	ray	cast.	An	object	can	choose	to	block,	overlap,	or	even	ignore	a
trace	from	a	particular	source.	By	default,	there	are	two	different	Trace	Responses:

Visibility:	This	specifies	a	trace	from	one	position	to	another
Camera:	This	is	exactly	similar	to	the	Visibility	trace	response,	but	it	should	be	used
when	you	use	a	ray	cast	from	the	camera

Object	Responses	describe	how	an	object	should	respond	when	you	interact	with	other
objects	in	our	game	world.	Similar	to	Trace	Responses,	Object	Responses	offer	the
ability	to	choose	whether	or	not	an	object	will	block,	overlap,	or	ignore	other	objects	when
a	collision	occurs.	By	default,	there	are	six	different	types	of	Object	Responses:

WorldStatic:	This	object	response	is	for	objects	in	our	game	world	that	are	static,
meaning	that	they	do	not	and	cannot	be	moved	by	any	means.	Objects	such	as
volumes,	world	geometry,	or	any	other	meshes	in	the	game	world	are	associated	to
this	object	response.
WorldDynamic:	This	object	response	is	for	objects	in	our	game	world	that	are
moving	actors,	outside	of	player	pawns,	physics	bodies,	vehicles,	and	destructible
actors.	Examples	of	WorldDynamic	objects	would	be	an	elevator,	a	door	that	can
open	and	close,	or	a	wheel	that	a	player	can	turn.
Pawn:	This	object	response	is	for	player	characters	in	our	game	or	any	other
character	that	can	be	possessed	by	the	player.
PhysicsBody:	This	object	response	is	for	any	physics	body	or	object	that	can	be
simulated	with	physics	in	our	game	world.	An	example	of	a	PhysicsBody	object
would	be	a	basketball	that	the	player	can	pick	up	and	throw;	Half-Life	2	is	a	great
example	of	how	physics	body	object	collisions	are	used	in	games.
Vehicle:	Although	this	object	response	is	labeled	as	Vehicle,	what	this	response	is
useful	for	is	to	have	player	pawns	jump	into	them,	such	as	a	vehicle.
Destructible:	This	object	response	is	for	any	actors	that	are	destructible,	meaning
that	they	can	break	apart	using	the	destructible	mesh	editor.

When	you	work	on	setting	up	collisions	on	an	object	or	a	component	in	Unreal	Engine	4
blueprints,	you	will	see	the	following	properties:

It	is	important	to	note	that	we	want	to	make	sure	that	our	static	mesh	or	blueprint
component	has	collision	generated	before	setting	any	collision	presets	to	that	object;
otherwise,	we	will	not	receive	any	responses	once	a	collision	occurs.	Later	in	this	chapter,
we	will	go	into	more	detail	on	how	to	generate	simple	and	complex	collisions	for	our
objects.

When	it	comes	to	setting	up	Collisions	to	an	object,	there	are	numerous	collision	presets
that	default	to	Unreal	Engine	4	that	either	ignores,	overlaps,	or	blocks	a	combination	of
trace	and	object	responses.	In	addition	to	these	presets,	we	do	have	the	option	to	create	a
custom	collision	preset	for	certain	circumstances	in	our	blueprint.	Feel	free	to	explore
some	of	the	collision	presets	and	how	they	differentiate	from	one	another,	but	for	the	sake
of	this	text,	let’s	take	a	look	at	some	of	the	more	common	presets.	We	will	take	an	in-depth
look	at	the	following	presets	later	on	in	this	chapter:

No	Collision:	As	the	name	suggests,	this	collision	preset	eliminates	any	collision
responses	by	setting	the	Visibility	trace	response	and	the	Camera	trace	response	to
ignore	and	sets	Collision	Enabled	to	No	Collision.	Typically,	we	would	use	this	for
blueprint	components	that	we	don’t	want	to	react	to	any	collisions	that	may	occur.

Block	All:	This	collision	preset	causes	all	the	collisions	with	the	associated
component	to	result	in	a	block.	Alternatively,	it	causes	all	the	objects	involved	in	this
collision	to	hit	and	bounce	off	one	another	if	physics	are	applied.	This	is	done	by
setting	all	the	responses,	including	the	trace	and	object	responses,	to	Block	under
their	Collision	Responses,	as	shown	in	the	following	screenshot:

Overlap	All:	This	collision	preset	results	in	all	the	collisions	to	generate	an	overlap
between	all	the	objects	involved	in	the	collision.	As	long	as	the	Generate	Overlap
Events	property	is	checked,	we	can	use	the	blueprint	collision	events	to	enable
behaviors	or	events	to	occur	once	this	type	is	involved	in	a	collision.

Pawn:	This	collision	preset	is	useful	if	it	is	used	for	a	player	pawn	or	character	in	our
game.	By	default,	it	is	set	to	block	Object	Responses,	block	the	Camera	trace
response,	and	ignore	the	Visibility	trace	response:

Physics	Actor:	This	collision	preset	is	used	for	any	actor	or	component	that	is	a
physics-based	actor,	meaning	that	the	object	has	in-game	physics	(such	as	gravity)
applied	to	it.	In	order	for	this	preset	to	work	properly,	we	want	to	make	sure	that	the
Simulate	Physics	property	in	the	Physics	Tab	is	checked.	By	default,	all	the	Trace
Responses	and	Object	Responses	are	set	to	Block:

These	are	just	a	few	of	the	different	options	that	Unreal	Engine	4	offers	by	default	for
collision,	and	we	will	cover	the	other	options	in	more	detail	later	on	in	this	chapter.
Although	there	are	a	handful	of	options	when	it	comes	to	collision	presets	offered	in
Unreal	Engine	4	by	default,	a	really	nice	feature	that	is	in	place	is	the	ability	to	create	your
own	trace,	object	channels,	and	collision	presets.	To	do	this,	we	need	to	navigate	to	the
Edit	window	and	select	Project	Settings:

From	here,	we	need	to	navigate	to	the	Collision	option	in	the	Engine	category:

In	this	menu,	we	can	create	custom	collision	presets,	specify	which	object	and	trace
channels	to	either	ignore,	overlap,	or	block,	give	it	a	specific	name,	and	save	it	to	the
project	file.	For	advanced	needs,	we	can	also	create	custom	object	and	trace	channels	in
this	window.	Later	in	this	chapter,	we	will	create	our	own	custom	collision	preset	and
apply	it	to	an	object.

Collision	and	Trace	Responses	–	a	section
review
In	this	section,	we	briefly	looked	at	the	different	Collision	and	Trace	Responses	that	exist
in	Unreal	Engine	4	and	defined	a	handful	of	these	responses.	We	analyzed	the	different
Trace	Responses	and	Object	Responses	that	default	to	Unreal	Engine	4,	and	we	also
defined	a	limited	number	of	collision	presets	that	are	provided.	Now	that	we	have	a	basic
understanding	of	Collision	and	Trace	Responses,	we	can	move	forward	and	learn	more
about	simple	and	complex	collision	in	Unreal	Engine	4.

Simple	versus	complex	collision
In	Unreal	Engine	4,	we	will	be	able	to	autogenerate	collisions	for	our	meshes	that	can	be
used	in	our	game.	There	are	two	different	types	of	collision	that	exist	in	Unreal	Engine	4:
simple	and	complex	collision.	Each	type	of	collision	serves	its	own	unique	purpose,	and	in
this	section,	we	will	simply	define	each	collision	type	and	provide	examples	of	each.	Later
on	in	this	chapter,	we	will	work	on	how	to	apply	these	collisions	to	our	objects.	We	will
also	test	these	collisions	in	our	game.	Let’s	begin	with	simple	collision.

A	simple	collision	is	a	collision	mesh	that	uses	basic	shapes,	such	as	boxes,	spheres,
capsules,	and	convex	shapes,	to	define	the	bounds	of	our	object.	Convex	shapes	are	ones
that	have	one	or	more	interior	angles	that	are	less	than	180	degrees,	whereas	concave
shapes	are	ones	that	possess	one	or	more	interior	angles	that	are	more	than	180	degrees,	as
shown	in	the	following	image:

In	addition	to	these	basic	shapes,	we	can	generate	a	form	of	simple	collision	called	KDOP
or	K	Discrete	Oriented	Polytope	(where	K	is	the	number	of	axis-aligned	planes).	What
this	option	essentially	does	is	that	it	takes	the	K	axis-aligned	planes	and	moves	them	as
close	as	possible	to	the	selected	mesh.	We	will	go	into	more	detail	on	how	to	generate
these	different	types	of	simple	collision	later	on.	Now,	let’s	define	the	different	types	of
simple	collision	here:

Sphere:	This	creates	a	spherical	bound	mesh	around	the	selected	object.	It	can	be
used	in	physics	objects	and	to	apply	collision	to	objects	that	are	round.

Capsule:	This	creates	a	capsule	bound	mesh	around	the	selected	object	and	is
typically	used	for	character	or	pawn	meshes:

Box:	This	creates	a	box	bound	mesh	around	the	selected	object.	This	type	of	simple
collision	is	most	commonly	used	for	environment	meshes:

10DOP	X:	This	creates	a	box	with	four	edges	beveled	in	the	X-aligned	edges:

10DOP	Y:	This	creates	a	box	with	four	edges	beveled	in	the	Y-aligned	edges:

10DOP	Z:	This	creates	a	box	with	four	edges	beveled	in	the	Z-aligned	edges:

18DOP:	This	creates	a	box	with	all	of	its	edges	beveled:

26DOP:	This	creates	a	box	with	all	of	its	edges	and	corners	beveled:

The	main	advantage	of	simple	collision	is	that	it	almost	eliminates	the	possibility	of	an
object	getting	stuck	to	a	player	or	vice	versa.	An	additional	advantage	is	that	the	collision
mesh	is	of	a	basic	shape,	which	is	less	expensive	to	use	in	the	game	at	runtime.

Complex	collision	is	done	for	each	polygon	and	is	very	expensive	in	Unreal	Engine	4	as
compared	to	simple	collision.	Moreover,	complex	collision	is	never	used	for	an	actor	that
is	simulating	physics,	and	it	will	just	fall	through	the	game	world.	In	order	to	enable
complex	collision	in	the	Static	Mesh	editor,	we	need	to	navigate	to	Details	Panel	and
then	to	the	Static	Mesh	Settings	section.	It	is	here	that	we	can	change	the	Collision
Complexity	parameter	to	Use	Simple	Collision	As	Complex	or	Use	Complex	Collision
As	Simple:

Simple	versus	complex	collision	–	a	section
review
In	this	section,	we	looked	at	the	different	simple	collisions	offered	by	default	in	the	Static
Mesh	editor	in	Unreal	Engine	4.	We	also	discussed	the	advantages	and	disadvantages	of
the	simple	and	complex	collision	when	it	comes	to	game	development	and	engine
performance.	Lastly,	we	briefly	looked	at	how	to	create	both	these	types	of	collision.	With
a	basic	understanding	of	simple	and	complex	collision	under	our	belts,	we	can	now
discuss	how	to	create	simple	collision,	and	how	to	create	collision	hulls	in	Unreal	Engine
4	later	on.

Creating	simple	collisions
When	it	comes	to	creating	collisions,	there	are	many	options	that	we	can	take	advantage	of
to	properly	utilize	collision	and	optimize	game	performance.	As	we	discussed	in	the
previous	section,	we	have	the	option	to	create	simple	and	complex	collisions	in	the	Static
Mesh	editor	in	Unreal	Engine	4,	but	we	can	also	use	third-party	art	programs	to	create
custom	collision	hulls.	Let’s	first	discuss	how	to	create	simple	collisions	in	Unreal	Engine
4,	and	in	the	next	section,	we	will	discuss	how	to	create	complex	and	custom	collisions	for
our	assets.

Let’s	begin	by	opening	StarterContent	and	navigating	to	Content	Browser.	From	here,
let’s	go	to	the	StarterContent	folder	and	select	the	Shapes	folder	that	contains	multiple
simple-shaped	static	meshes	to	select	from.	For	this	set	of	examples,	we	will	choose	the
Shape_Trim	mesh	because	it	is	a	more	complicated	shape	as	compared	to	a	sphere	or	box;
this	way,	we	can	see	the	effects	of	different	collision	options.	Double-click	on	the
Shape_Trim	asset	to	open	the	Static	Mesh	editor.

Navigating	to	the	Static	Mesh	editor	is	very	similar	to	moving	around	in	the	Perspective
view	mode	in	the	main	game	editor	of	Unreal	Engine	4.	At	the	top	of	the	Static	Mesh
editor	is	the	main	toolbar	that	provides	a	handful	of	useful	options	when	you	view	your
mesh	and	its	collision.

The	toolbar	provides	us	the	options	to	save	our	mesh	and	its	properties,	to	view	the	mesh
in	real	time,	which	is	useful	if	the	mesh	has	an	animated	material	applied	to	it,	to	view	any
applied	Sockets,	to	toggle	the	Wireframe	of	the	mesh,	to	view	any	Vertex	Colors	applied
to	the	mesh,	to	toggle	a	background	Grid,	to	toggle	the	Bounds	of	the	mesh,	and	(most
importantly)	to	toggle	the	Collision	applied	to	the	mesh.	Additionally,	we	can	view	the
mesh’s	Pivot	Point,	its	Normals,	Tangents,	Bi-Normals,	and	UV	sheet.

As	we	will	work	primarily	with	collisions,	we	will	want	to	make	sure	that	the	Collision
option	is	toggled	on	so	that	we	can	see	the	bounds	of	the	bounding	collision	mesh.	To	do
this,	we	can	left-click	on	the	Collision	button	to	make	sure	that	it’s	highlighted	in	orange,
and	if	the	mesh	has	any	collision	applied	to	it,	we	will	see	it	in	a	light	blue-colored
wireframe	around	our	object.	By	default,	Shape_Trim	does	have	a	collision	applied	to	it,
so	we	first	want	to	remove	this	collision	so	that	we	are	able	to	apply	only	one	collision
mesh	to	the	object	at	once	for	demonstration	purposes.

1.	 First,	navigate	to	the	Collision	drop-down	window	at	the	very	top	of	the	Static	Mesh
editor	located	alongside	the	File,	Edit,	Asset	window	options.

2.	 Then,	select	Remove	Collision.

Now,	the	light	blue-colored	wireframe	outline	mesh	will	disappear	from	our	mesh,
meaning	that	this	asset	no	longer	has	any	collision	applied	to	it.	It	is	also	very	important	to
keep	in	mind	that	we	do	not	want	more	than	one	collision-bounding	mesh	applied	to	an
object	at	once	in	order	to	keep	our	assets	as	optimized	as	possible,	unless	the	shape	of	the
mesh	demands	more	than	one	collision	mesh.

When	it	comes	to	generating	simple	collision	in	the	Static	Mesh	editor,	it	is	as	easy	as
clicking	on	a	few	buttons	in	its	interface.	Let’s	start	by	creating	a	Sphere	collision	in	our
Shape_Trim	mesh	by	clicking	on	the	Collision	drop-down	menu	and	selecting	Add
Sphere	Simplified	Collision.	Once	complete,	we	should	see	a	collision-bounding	mesh
that	looks	similar	to	the	following	screenshot:

The	Sphere	Simplified	Collision	option	sets	the	radius	of	the	sphere	that	best	matches	the
size	and	shape	of	the	mesh	that	it	is	applied	to.	We	should	also	note	that	the	collision
wireframe	changed	from	light	blue	to	green;	this	means	that	the	collision	will	use	a	simple
shape.	Once	a	collision	is	generated,	the	shape	can	be	moved,	rotated,	and	scaled	to	the
desired	size	and	shape.	For	this	shape,	a	sphere	collision	does	not	seem	to	work	as	we
would	like	it	to	work,	so	let’s	select	the	Remove	Collision	option	from	the	Collision	drop-
down	list	and	then	the	Add	Capsule	Simplified	Collision	option.

As	we	can	see,	the	Capsule	Simplified	Collision	option	does	a	much	better	job	of
matching	the	size	and	shape	of	our	mesh	than	the	Sphere	Simplified	Collision	option
because	it	sets	the	capsule’s	height	and	radius	as	opposed	to	just	setting	the	radius.	We	can
still	see	that	the	collision-bounding	mesh	does	not	fit	this	shape	as	closely	as	we	would
like,	so	let’s	continue	to	add	differently	shaped	collision	meshes	in	order	to	find	the	best
one.

Let’s	remove	the	capsule	collision-bounding	mesh	and	instead	select	the	Add	Box
Simplified	Collision	option	to	Shape_Trim.	Here,	we	can	see	that	the	box	shape	does	a
really	good	job	of	matching	the	size	and	shape	of	the	mesh,	and	in	most	situations,	we
would	use	this	option	for	this	asset	for	use	in	our	game.

For	the	purposes	of	this	chapter,	we	will	continue	to	apply	the	KDOP	Collision	options	to
this	mesh	so	that	we	have	a	better	understanding	of	their	purposes	and	the	results	that	we
can	get	from	these	options.	Now,	let’s	remove	the	Box	Simplified	Collision	option	and
use	the	Add	10DOP-X	Simplified	Collision	option.	If	you	remember	from	the	previous
section,	the	10DOP-X	Simplified	Collision	creates	a	box	with	four	edges	beveled	in	the
X-aligned	edges.	Then,	we	get	the	following	result:

As	we	can	see,	the	10DOP-X	Simplified	Collision	option	generates	a	collision-bounding
mesh	identical	to	the	Box	Simplified	Collision	option.	Now,	let’s	try	applying	the
10DOP-Y	Simplified	Collision	option,	which	creates	a	box	with	four	edges	beveled	in	the
Y-aligned	edges	by	first	removing	the	10DOP-X	Simplified	Collision	option	and	then
selecting	the	Add	10DOP-Y	Simplified	Collision	option	to	obtain	the	following	collision
mesh:

As	we	can	see	here,	the	10DOP-Y	Simplified	Collision	option	does	an	excellent	job	of
almost	exactly	matching	the	size	and	shape	of	our	Shape_Trim	static	mesh.	This	is
definitely	a	viable	option	to	select	when	you	generate	a	collision	for	this	asset.	Lastly,	let’s
apply	the	10DOP-Z	Simplified	Collision	option	to	view	how	it	generates	a	collision	mesh
around	our	asset.	First,	let’s	remove	the	10DOP-Y	Simplified	Collision	option	and	then
navigate	to	the	Collision	drop-down	menu	and	select	Add	10DOP-Z	Simplified
Collision,	which	creates	a	box	with	four	edges	beveled	in	the	Z-aligned	axis	to	obtain	the
following	result:

The	result	is	identical	to	what	we	obtained	when	we	applied	the	Box	Simplified	Collision
and	10DOP-X	Simplified	Collision	options.	Based	on	the	results	we	received	from	these
options,	the	best	choices	for	this	asset	would	either	be	Box	Simplified	Collision	or
10DOP-Y	Simplified	Collision.	Due	to	the	simplicity	of	this	asset,	the	18DOP	and
26DOP	Simplified	Collision	options	won’t	produce	unique	options,	so	to	properly
demonstrate	these	choices,	we	need	to	choose	a	different	asset.

To	demonstrate	this,	let’s	close	Static	Mesh	editor	for	the	Shape_Trim	asset	and	navigate
to	Content	Browser.	Here,	under	the	Starter	Content	folder	in	the	Props	folder,	we	will
double-click	on	the	SM_Chair	asset	to	open	this	mesh	in	Static	Mesh	editor.	The	SM_Chair
asset	does	have	the	default	collision	applied	to	it,	so	before	we	apply	our	own,	let’s	first
remove	its	collision.	Then,	let’s	go	ahead	and	select	the	18DOP	Simplified	Collision
option	and	view	how	it	generates	a	collision-bounding	mesh	for	our	chair:

If	you	remember,	the	18DOP	Simplified	Collision	option	creates	a	collision-bounding
box	with	all	of	its	edges	beveled,	creating	a	nice	collision	around	our	chair.	Here,	let’s
apply	the	26DOP	Simplified	Collision	option	by	first	removing	our	collision	and	then
selecting	the	Add	26DOP	Simplified	Collision	option:

As	you	can	see,	the	26DOP	Simplified	Collision	option	creates	a	box	that	has	all	of	its
edges	and	corners	beveled,	creating	a	smoother	and	more	rounded	collision	mesh	around
our	asset.

Creating	simple	collisions	–	a	section
review
In	this	section,	we	took	a	more	in-depth	look	at	the	different	types	of	simple	collision	that
can	be	generated	in	the	Static	Mesh	editor	in	Unreal	Engine	4	and	the	pros	and	cons	of
each	type.	Using	starter	content	assets	as	examples,	we	applied	each	type	of	simple
collision	to	view	how	they	are	generated	based	on	the	size	and	shape	of	our	asset	to	better
understand	how	they	work.	Now	that	we	have	taken	a	deeper	look	at	how	to	generate
simple	collisions	in	Unreal	Engine	4,	let’s	now	move	on	and	take	a	look	at	how	to
generate	complex	and	custom	collision	hulls	using	Unreal	Engine	4.

Creating	complex	and	custom	collision
hulls
When	it	comes	to	creating	complex	collision	in	the	Static	Mesh	editor,	we	can	use	the
Auto	Convex	Collision	tool	to	customize	the	number	of	hulls	and	hull	vertices	that	the
collision	mesh	will	have.	For	the	purposes	of	this	section,	we	will	need	to	continue	using
Unreal_PhyProject	that	we	created,	and	we	will	use	the	SM_Lamp_Wall	asset	as	an
example	of	how	to	generate	custom	and	complex	collision	hulls.	To	navigate	to	this	asset,
we	need	to	go	to	Content	Browser	and	then	to	the	Starter	Content	folder.	Now,	under
props,	we	will	find	the	SM_Lamp_Wall	asset.	Double-click	on	this	asset	to	open	the	Static
Mesh	editor.	If	this	static	mesh	has	any	default	collisions	applied	to	it,	make	sure	to
remove	the	said	collision	by	navigating	to	the	Collision	drop-down	menu	and	selecting
remove	collision.	Make	sure	that	the	Collision	Toggle	option	is	set	to	on	so	that	we	can
view	the	collision	mesh	in	the	Static	Mesh	editor.

For	this	asset,	we	will	use	the	Auto	Convex	Collision	tool	that	provides	us	with	a	set	of
parameters	to	generate	Complex	Collision.	To	use	this	tool,	we	need	to	navigate	to	the
Collision	drop-down	menu	and	select	the	Auto	Convex	Collision	option.	Once	done,	we
will	be	provided	with	a	submenu	on	the	right-hand	side	under	Details	Panel	labeled	as
Convex	Decomposition	with	the	following	parameters:

Max	Hulls:	This	parameter	determines	the	number	of	hulls	that	are	created	to	best
match	the	size	and	shape	of	the	mesh.
Max	Hull	Verts:	This	parameter	sets	the	maximum	number	of	collision	hull	vertices.
By	increasing	this	value,	we	can	see	how	complex	the	collision	hulls	can	be.
Apply:	This	parameter	generates	a	collision	mesh	based	on	the	Max	Hulls	and	Max
Hull	Verts	parameters.
Defaults:	This	parameter	resets	the	Max	Hulls	and	Max	Hull	Verts	parameters	back
to	their	default	values	of	4	and	12	respectively	(as	seen	in	the	previous	image).

For	the	sake	of	providing	examples,	let’s	apply	Auto	Convex	Collision	to	our
SM_Lamp_Wall	mesh	and	set	the	Max	Hulls	and	Max	Hull	Verts	parameters	to	their
default	values	of	4	and	12	respectively:

To	really	view	the	power	of	this	tool,	let’s	try	applying	Auto	Convex	Collision	to	the
following	parameters:

Max	Hulls:	Set	this	parameter	to	1
Max	Hull	Verts:	Set	this	parameter	to	6

Then,	we	should	see	the	following	result:

As	we	can	see,	setting	these	parameters	to	the	lowest	values	possible	will	result	in	a
collision	mesh	that	does	the	bare	minimum	and	does	not	fit	the	size	and	shape	of	our	lamp.
Now,	let’s	try	applying	Auto	Convex	Collision	to	the	following	parameters:

Max	Hulls:	Set	this	paramerter	to	24
Max	Hull	Verts:	Set	this	paramerter	to	32

With	the	maximum	settings	applied	to	the	convex	collision	mesh,	we	can	see	that	it	does	a
much	better	job	of	covering	the	lamp	in	terms	of	its	size	and	shape.	In	the	end,	we	would
want	to	choose	a	setting	somewhere	between	the	lowest	and	highest	values	for	the	Max
Hulls	and	Max	Hull	Verts	parameters	in	order	to	create	the	most	optimized	collision
possible	for	our	assets.

Now	that	we	have	covered	the	methods	of	how	to	create	collisions	with	the	tools	offered
in	the	Static	Mesh	editor	of	Unreal	Engine	4,	we	will	now	briefly	discuss	how	to	create
and	import	collisions	created	in	third-party	art	programs	(such	as	3ds	Max	or	Maya).

The	idea	behind	creating	customized	collision	geometry	is	to	make	it	as	simple	as	possible
in	order	to	optimize	collision	detection	when	you	play	the	game.	The	more	complicated
the	collision	geometry	for	an	object,	the	more	calculations	are	required	by	the	engine	to
ensure	that	the	collision	is	done	correctly	on	that	object.	When	you	import	the	.FBX	file	to
Unreal	Engine	4,	the	collision	meshes	included	in	this	file	are	identified	by	the	importer
based	on	their	name.	Here	is	the	collision-naming	syntax	required	to	ensure	proper
collision	when	you	import	your	assets	to	Unreal	Engine	4:

UBX_[Mesh	Name]:	This	naming	syntax	is	required	when	you	import	collision
meshes	that	are	box	shaped,	using	either	the	box	object	type	in	3ds	Max	or	the	cube
primitive	in	Maya.	Keep	in	mind	that	if	you	move	any	of	the	vertices	of	the	box
collision	in	the	third-party	art	program	or	deform	the	shape	in	any	way	to	make	it
anything	other	than	a	rectangular	prism,	the	import	will	not	work.
USP_[Mesh	Name]:	This	naming	syntax	is	required	when	you	import	collision
meshes	that	are	sphere	shaped,	using	the	sphere	object	type	in	3ds	Max	and	Maya.
The	sphere	itself	in	the	third-party	art	program	does	not	need	to	have	a	specific
number	of	segments	because	it	is	converted	to	a	true	sphere	for	collision	once	it	is
imported	to	Unreal	Engine	4.

UCX_[Mesh	Name]:	This	naming	syntax	is	required	when	you	import	collision
meshes	that	are	convex	shaped	or	a	shape	that	is	completely	closed	and	does	not	have
an	interior	angle	of	more	than	180	degrees.

When	you	import	the	.FBX	files	that	contain	collision	meshes,	there	are	a	few	concepts
that	we	have	to	keep	in	mind:

1.	 At	the	time	of	writing	this	book,	spheres	are	only	used	for	rigid-body	collisions	and
Unreal’s	zero-extent	traces,	such	as	weapons,	and	not	for	instances	(such	as	player
movements).

2.	 In	the	naming	syntax	mentioned	earlier,	the	Mesh	Name	component	must	be
identical	to	the	name	of	the	mesh	that	the	collision	is	associated	with	in	the	third-
party	art	program.	An	example	would	be	a	box	collision	mesh	for	an	object	named
Chair_01	would	be	labeled	as	UBX_Chair_01,	or	if	there	are	multiple	collision
meshes	for	this	object,	an	additional	collision	mesh	could	be	named
UBX_Chair_01_02,	and	so	on.

3.	 Once	the	collision	meshes	are	created	and	named	properly,	we	can	export	both	the
collision	and	the	mesh	that	the	collision	is	associated	with	in	the	.FBX	file.	Once
imported,	Unreal	Engine	4	will	find	the	collision,	separate	it	from	the	actual	mesh,
and	transform	it	into	a	collision	model.

4.	 In	the	instance	that	an	object	has	a	collision	composed	of	multiple	shapes,	the	best
results	are	found	when	the	collision	hulls	do	not	intersect	with	one	another.

Creating	complex	and	custom	collision
hulls	–	a	section	review
In	this	section,	we	took	an	in-depth	look	at	how	to	create	more	complex	collisions.	We
also	looked	at	how	to	create	custom	collision	hulls	in	third-party	art	programs	(such	as	3ds
Max	and	Maya).	Moreover,	we	analyzed	the	Auto	Convex	Collision	tool	in	the	Static
Mesh	editor	of	Unreal	Engine	4.	We	also	discussed	how	the	Max	Hulls	and	Max	Hull
Verts	parameters	affect	the	collision	that	is	generated	around	our	asset.	Lastly,	we	looked
at	all	the	necessary	naming	conventions	required	in	our	art	applications	that	ensure	proper
exporting	and	importing	of	our	meshes	and	collisions	to	Unreal	Engine	4.	Now	that	we
have	a	very	strong	understanding	of	how	to	generate	collisions	in	Unreal	Engine	4	and
third-party	art	applications,	we	can	now	talk	about	about	the	different	collision
interactions	that	exist	in	Unreal	Engine	4	in	detail.

Collision	interactions
After	discussing	a	lot	about	what	collision	is	and	how	to	generate	different	types	of
collision,	let’s	now	talk	about	how	the	different	collision	responses	function	when	you
interact	with	the	player	and	other	objects	in	our	game	world.	For	the	purposes	of	this
section,	we	will	want	to	have	Unreal_PhyProject	open,	and	we	will	work	with	the
FirstPersonExampleMap	level	and	use	the	default	starter	content	to	analyze	these
interactions.

In	FirstPersonExampleMap,	we	will	find	numerous	cube	physics	actors	spread	across	the
surface	of	the	level	(each	starting	awake	and	active	at	game	time).	If	we	select	any	of
these	cube	actors	in	the	editor	by	left-clicking	on	it,	we	will	see	the	following	Collision
settings	in	its	Details	Panel:

As	we	can	see,	these	actors	will	use	Physics	Actor	collision	preset	and	have	an	Object
Type	of	PhysicsBody.	If	we	were	to	jump	to	the	level	with	the	first	person	project
example	(which	we	have	in	place)	by	pressing	Alt	+	P,	we	can	shoot	these	cubes	with	the
First-Person	Projectile	blueprint	by	left-clicking	on	it.	We	can	see	that	on	colliding,	there
is	an	impulse	created	that	causes	the	boxes	to	be	pushed,	and	the	collision	itself	causes	the
projectile	to	bounce	off	because	it	is	also	a	physics	object	that	has	Physics	Body	Object
Response	set	to	Block.	To	get	a	better	idea	of	what	is	happening,	let’s	open	the	First
Person	Projectile	blueprint	by	navigating	to	Content	Browser	and	then	to	the	First
Person	BP	folder.	In	the	Blueprints	folder,	we	will	find	the	First	Person	Projectile
blueprint.	Double-click	on	this	asset	to	open	its	blueprint.	It	will	bring	us	to	the	main
Event	Graph,	as	shown	in	the	following	screenshot:

If	we	are	viewing	the	blueprint	graph	for	the	first	time,	this	may	be	a	little	confusing,	but
we	can	easily	break	down	the	logic	flow	and	understand	exactly	what	the	projectile	will	do
once	it’s	spawned	and	collides	with	an	actor.

Let’s	first	look	at	the	main	event	of	this	graph:	the	Event	Hit	event	node.	What	this	event
node	checks	for	is	whether	or	not	the	main	root	component	of	the	blueprint	is	hit	in	a
collision.	In	this	case,	the	main	root	of	this	blueprint	is	the	Sphere	Collision	Component
option,	labeled	as	Collision	Component.	Let’s	select	this	component	by	left-clicking	on
Collision	Component	in	the	Components	tab	in	the	top-left	corner	of	the	blueprint	screen
and	then	view	its	collision	in	Details	Panel:

When	you	view	its	collision,	you	will	see	that	it	is	set	exactly	similar	to	the	physics	cube
actors	in	the	level,	possessing	a	Physics	Actor	collision	preset	and	an	Object	Type	set	to
Physics	Body.	What	this	means	in	terms	of	collision	is	that	this	projectile	will	act	similar
to	a	normal	physics	ball,	such	as	a	baseball	or	a	basketball,	when	spawned	into	our	game
world.	A	ball	in	both	the	real	world	and	our	game	world	will	more	than	likely	end	up
hitting	something,	and	when	it	does,	our	Event	Hit	node	will	be	called.

What	happens	next	in	the	First	Person	Projectile	blueprint	is	that	it	checks	whether	or
not	the	other	component	that	hits	our	projectile	is	a	box,	a	wall,	a	player,	or	the	floor.	In
particular,	this	blueprint	will	check	whether	the	other	hit	component	of	any	collision	to
this	projectile	is	Simulating	Physics	or	a	physics	actor.	The	Is	Simulating	Physics
function	node	returns	a	Boolean	value	(True	or	False),	irrespective	of	whether	or	not	the
other	hit	component	is	a	physics	actor.	We	then	use	a	Branch	node	that	uses	this	True	or
False	condition	from	the	Is	Simulating	Physics	function	to	perform	actions	based	on
whether	or	not	the	hit	component	is	a	physics	actor.	We	can	see	that	from	the	True
execution	pin,	we	can	add	an	impulse	at	the	location	of	the	projectile	and	use	the	Other
Component	of	the	Hit	collision	as	our	target	to	apply	this	impulse	to.	To	determine	the
force	of	this	impulse,	we	can	perform	a	simple	multiplication	between	the	velocity	vector
of	the	projectile.	We	multiply	it	by	a	constant	Float	value.	In	addition	to	Add	Impulse	at
Location,	this	math	is	what	causes	the	physics	cube	to	bounce	or	react	to	the	projectile	on
collision,	and	Is	Simulating	Physics	checks	to	ensure	that	no	impulses	are	created	when
hitting	the	walls,	the	floor,	or	even	the	player.	To	have	some	fun	with	this	blueprint,	let’s
change	the	constant	Float	value	from	100	to	1000	and	see	how	it	drastically	changes	the
results	when	the	projectile	hits	a	physics	object.

To	change	the	way	this	projectile	behaves	in	the	game,	we	can	change	its	collision	preset
from	Physics	Actor	to	Custom	so	that	we	can	individually	set	how	the	collision	interacts
with	the	different	object	responses.	For	example,	let’s	set	the	Physics	Body	object
response	from	Block	to	Overlap	and	then	compile	the	blueprint	so	that	we	can	see	the

changes	in	the	game.	The	result	is	that	the	projectile	goes	straight	through	the	physics
cube.	However,	it	still	reacts	normally	to	the	World	Static	object	type	(such	as	the	floor
and	the	walls).	This	is	because	we	changed	the	object	response	to	Physics	Body	from
Block	to	Overlap.	This	causes	the	Event	Hit	event	node	to	never	get	called.

In	the	blueprints	of	Unreal	Engine	4,	there	are	event	nodes	we	can	use	when	objects
overlap.	This	is	called	the	On	Component	Begin	overlap.	As	we	made	our	projectile	use
the	Custom	Collision	preset	that	overlaps	the	physics	bodies	in	the	game,	we	can	use	the
On	Component	Begin	Overlap	event	node	to	have	any	number	of	actions	to	take	place
during	this	collision.	To	set	up	a	basic	example	in	our	projectile	blueprint,	select	the
Collision	Component	option	in	the	Components	tab	so	that	it	is	highlighted.	Next,	right-
click	on	an	empty	space	of	Event	Graph	and	navigate	to	Add	Event	for	Collision
Component	and	then	to	Collision.	Finally,	select	the	Add	On	Component	Begin
Overlap	event	node.

To	have	a	similar	behavior	to	what	we	had	in	the	Event	Hit	node	checking	for	objects	that
are	physics	actors,	let’s	copy	and	paste	the	Is	Simulating	Physics	function	node	and
Branch	that	was	used	in	the	original	blueprint	logic	and	connect	the	nodes,	as	shown	in
the	following	screenshot:

So	far,	we	had	our	projectile	check	for	objects	in	our	world	that	are	physics	actors	once	the
collision	is	overlapped,	but	we	have	no	actions	taking	place	if	this	check	is	True	or	False.
Instead	of	performing	any	kind	of	complicated	actions,	we	will	simply	use	the	Print
String	function	to	print	the	dialogue	to	our	console	so	that	we	know	that	the	check	is
working.	Let’s	right-click	on	the	empty	space	of	Event	Graph	and	search	for	the	Print
String	function	node.	In	the	In	String	parameter,	enter	Overlapped	Physics	Body,	and
connect	it	to	the	True	executional	output	pin,	as	shown	in	the	following	screenshot:

If	we	click	on	the	Compile	button	at	the	top	of	the	blueprint	and	play	the	game,	we	can
see	that	the	projectile	goes	right	through	our	physics	objects,	but	we	do	not	see	our	Print
String	outputted	to	the	console.	This	is	because	both	the	physics	cubes	in	the	level	and	our
projectile	collision	don’t	have	the	Generate	Overlap	Events	parameter	set	to	True	by
default,	so	let’s	select	one	or	more	of	the	cubes	and	navigate	to	their	Collision	Settings	in
Details	Panel	and	make	sure	that	Generate	Overlap	Events	is	set	to	True.	Let’s	perform
the	same	function	to	Collision	Component	in	our	projectile	blueprint.	Now,	if	we	play
again	and	shoot	the	physics	cubes	that	we	customized,	we	will	now	see	our	Print	String
outputted	to	the	console.

From	here,	feel	free	to	experiment	and	customize	the	collision	presets	that	the	projectile
has,	see	how	it	changes	and	reacts	in	our	game	world,	and	add	more	blueprint
functionalities	to	see	what	else	is	possible.

The	last	collision	interaction	that	can	exist	between	objects,	apart	from	Block	and
Overlap,	is	the	Ignore	option.	There	is	not	much	to	this	type	of	Collision	Response
because	it	will	ignore	the	different	Object	Responses	completely	if	it	is	set	to	Ignore.	For
the	purpose	of	our	example,	in	our	First	Person	Projectile	blueprint,	let’s	change	the
Physics	Body	object	response	from	Overlap	to	Ignore.	If	we	play	now,	we	can	shoot	at
the	physics	cubes,	but	it	will	go	completely	through	the	object,	and	neither	the	On
Component	Begin	Overlap	nor	the	Event	Hit	event	nodes	will	be	called.

Collision	interactions	–	a	section	review
In	this	section,	we	got	our	hands	dirty	by	applying	the	different	combinations	of	collision
presets	to	the	First	Person	Projectile	blueprint	to	see	how	it	interacts	with	the	physics
actors	in	our	game	world.	By	setting	the	Physics	Body	object	response	to	Block,	the
Event	Hit	event	node	will	be	called.	Also,	an	impulse	will	be	created	at	the	projectiles’
location,	resulting	in	a	small	push	force	applied	to	the	physics	actor	the	projectile	collides
with.	By	setting	the	Physics	Body	object	response	to	Overlap,	we	can	use	the	On
Component	Begin	Overlap	Event	node	to	call	different	actions	once	the	projectile
overlaps	with	a	physics	actor.	We	just	need	to	make	sure	that	the	physics	actors	in	our
level	and	our	projectile	have	the	Generate	Overlap	Events	set	to	True.	Lastly,	we	briefly
discussed	the	results	of	when	our	projectile	has	the	Physics	Body	object	response	set	to
Ignore.	Like	the	name	suggests,	it	ignores	the	object	response,	and	no	events	are	fired.
Now	that	we	talked	more	about	collision	interactions,	let’s	move	on	and	discuss	how	to
create	and	use	custom	object	and	trace	channel	responses	in	Unreal	Engine	4.

Custom	object	and	trace	channel
responses
Sometimes,	the	default	object	and	trace	channel	responses	are	not	enough	for	what	we
want	to	do	in	our	games.	So,	it	may	be	necessary	to	create	customized	object	and	trace
channel	responses	for	certain	assets	and	scenarios.	To	accomplish	this,	we	can	navigate	to
the	Edit	drop-down	window	at	the	top	of	the	Unreal	Engine	4	editor	and	select	Project
Settings.	From	here,	select	the	Collision	option	under	the	Engine	section.	Here,	we	can
create	custom	Objects,	Trace	Channels,	and	Presets	that	we	can	use	when	we	apply
collisions	to	our	assets.

Let’s	start	with	creating	a	new	Object	Channel	by	selecting	this	option	and	clicking	on
the	New	Object	Channel	button.	Here,	a	dialogue	window	pops	up.	Then,	we	can
customize	how	Object	Channel	responds	by	default.

Name	the	Object	Channel	Projectile,	and	set	its	Default	Response	to	Block.	Now,	let’s
create	a	custom	Collision	Preset	by	selecting	this	option	and	selecting	the	New	button	so
that	a	dialogue	window	appears.	Here,	we	can	set	the	presets	default	values:

We	can	also	name	this	new	Collision	Preset	Profile,	Projectile,	set	the	Collision
Enabled	property	to	Collision	Enabled,	Object	Type	to	Projectile,	(the	one	that	we

have	just	created),	and	the	Description	property	to	anything	that	will	remind	us	of	what
this	Collision	Preset	is	used	for.	Lastly,	we	can	set	all	the	Trace	and	Object	Channels	for
this	preset	to	Block.

For	the	purposes	of	this	section’s	demonstration,	we	won’t	create	a	custom	Trace
Channel,	but	if	we	ever	needed	to,	it	works	exactly	similar	to	creating	a	custom	Object
Channel;	select	the	Trace	Channels	option,	left-click	on	the	New	Trace	Channel	button,
name	the	channel,	and	set	the	Default	Response	to	either	Block,	Overlap,	or	Ignore.

Now	that	we	have	created	a	custom	Object	Channel	and	a	custom	Collision	Preset,	let’s
apply	these	to	the	Collision	Component	of	the	First	Person	Projectile	blueprint.	Once
you	are	in	the	First	Person	Projectile	blueprint,	select	the	Collision	component	from	the
Components	tab	in	the	top-left	corner	and	navigate	to	the	Collision	section	of	the	Details
Panel	in	the	bottom-right	corner	of	the	blueprint	window.	If	we	look	at	the	Collision
Presets	drop-down	menu,	we	will	see	our	Projectile	Collision	Preset	available,	and
when	we	select	this	option,	we	will	see	the	default	values	that	we	set:

We	can	also	see	our	Projectile	Object	Channel	Response	that	we	created	earlier	in	the
Object	Responses	section	of	the	Collision	Component.	Now,	if	we	ever	need	to,	we	can
set	all	of	our	projectile	assets	to	have	the	Projectile	Collision	Preset	so	that	all	of	our
projectiles	behave	the	same	during	collisions.	In	addition	to	this,	we	can	have	other	assets
collide	in	a	specific	way	to	projectiles	by	setting	the	Projectile	object	response	to	Block,
Overlap,	or	Ignore	projectiles	on	colliding.	Now,	when	we	play	the	game,	we	can	see	that
the	First	Person	Projectile	blueprint	behaves	exactly	as	intended	when	you	fire	the

projectile.

Just	as	a	reminder,	we	can	only	have	up	to	18	custom	Object	Channels	and	Trace
Channels,	and	if	we	ever	delete	an	Object	Type	that	has	been	used	in	our	game,	it	will
revert	back	to	WorldStatic,	and	if	we	delete	a	trace	channel	that	has	been	used	in	our
game,	the	behavior	of	the	trace	is	undefined.

Custom	object	and	trace	channel
responses	–	a	section	review
In	this	section,	we	took	a	deeper	look	at	how	to	create	and	implement	custom	objects,
trace	channels,	and	custom	collision	presets.	We	then	applied	these	customized	channels
and	presets	to	the	First	Person	Projectile	blueprint	and	found	that	we	can	have	the	same
collision	behavior	exist	for	the	projectile	when	we	use	custom	collision	presets	and	Object
channels.	Now	that	we	have	created	our	very	own	custom	object	and	trace	channels	and
created	our	own	collision	preset,	we	can	now	move	on	and	take	an	in-depth	look	at	the
additional	default	collision	presets	that	exist	in	Unreal	Engine	4.

In-depth	collision	presets
To	conclude	this	chapter,	let’s	briefly	discuss	the	remaining	collision	presets	available	in
Unreal	Engine	4	that	we	have	not	gone	through	at	this	point:

Custom:	This	collision	preset	allows	you	to	fully	customize	how	you	want	the
collision	to	behave	by	selecting	the	Collision	Enabled	property,	setting	the	Object
Type	property,	and	fully	customizing	how	the	Trace	and	Object	Responses	react	to
different	types	of	collisions.	This	type	of	collision	preset	is	useful	when	we	need	to
customize	an	assets	collision,	and	where	the	default	collision	presets	does	not	fit	the
type	of	collision	we	need.
Block	All	Dynamic:	This	collision	preset	blocks	all	the	actors	by	default	and	makes
the	collision	itself	a	WorldDynamic	object.	This	type	of	collision	preset	is	useful	for
dynamic	objects	or	objects	that	can	move	in	your	game	world	that	you	want	to	block
when	you	collide	with	other	objects.	Lastly,	the	Collision	Enabled	property	is	set	to
Collision	Enabled.
Overlap	All	Dynamic:	This	collision	preset	overlaps	all	the	actors	by	default	and
makes	the	collision	itself	a	WorldDynamic	object.	This	type	of	collision	preset	is
useful	for	dynamic	objects	that	you	want	to	overlap	when	you	collide	with	other
objects.	Lastly,	the	Collision	Enabled	property	is	set	to	No	Physics	Collision,
meaning	that	the	assets’	collision	won’t	use	game	physics.
Ignore	Only	Pawn:	This	collision	preset	blocks	all	the	actors	by	default,	but	it
ignores	the	Pawn	and	Vehicle	object	responses.	This	preset	also	sets	the	Object
Type	of	the	collision	to	WorldDynamic	and	is	useful	for	assets	that	you	want	to
ignore	for	Pawns	and	Vehicles	in	your	game	world.	Lastly,	the	Collision	Enabled
property	is	set	to	No	Physics	Collision.
Overlap	Only	Pawn:	This	collision	preset	blocks	all	the	actors	by	default,	but	it
overlaps	the	Pawn	and	Vehicle	object	responses.	It	also	overlaps	the	Camera	trace
channel.	This	preset	also	sets	the	Object	Type	of	the	collision	to	WorldDynamic	and
is	useful	for	assets	that	need	overlap	events	to	fire	when	it	is	overlapped	during	a
collision	with	Pawns,	Vehicles,	and	Camera	Traces.	Lastly,	the	Collision	Enabled
property	is	set	to	No	Physics	Collision.
Spectator:	This	collision	preset	ignores	all	the	actors	by	default,	except	the
WorldStatic	object	responses.	This	preset	also	sets	the	Object	Type	of	the	collision
to	Pawn	and	is	useful	when	you	want	players	to	see	a	game	in	multiplayer	situations.
Lastly,	the	Collision	Enabled	property	is	set	to	No	Physics	Collision.
Character	Mesh:	This	collision	preset	is	a	Pawn	Object	Type	that	is	used	for	a
Character	Mesh	when	you	create	a	player	character.	By	default,	this	preset	ignores
the	Visibility	trace	response	and	the	Pawn	and	Vehicle	object	responses,	although	it
blocks	the	remaining	values.	Lastly,	the	Collision	Enabled	property	is	set	to	No
Physics	Collision.
Destructible:	This	collision	preset	is	a	Destructible	Object	Type	that	is	used	for
assets	that	can	be	destructible	in	the	game.	By	default,	this	preset	blocks	all	the	Trace
and	Object	Channels.	Its	Collision	Enabled	property	is	set	to	Collision	Enabled.

Invisible	Wall:	This	collision	preset	is	a	World	Static	Object	Type	that	is	used	as	an
invisible	wall	that	blocks	all	the	Trace	and	Object	Responses,	except	the	Visibility
Trace	Response,	which	this	preset	ignores.	This	preset	works	exactly	similar	to	a
blocking	volume.	Lastly,	its	Collision	Enabled	property	is	set	to	Collision	Enabled.
Invisible	Wall	Dynamic:	This	collision	preset	is	a	World	Dynamic	Object	Type
that	is	used	as	an	invisible	wall	that	functions	exactly	similar	to	the	Invisible	Wall
collision	preset,	in	which	it	blocks	all	the	Trace	and	Object	Responses,	except	the
Visibility	Trace	Response,	which	this	preset	also	ignores.	Lastly,	its	Collision
Enabled	property	is	set	to	Collision	Enabled.
Trigger:	This	collision	preset	is	a	World	Dynamic	Object	Type	that	is	used	as	a
Trigger,	meaning	that	it	functions	similar	to	a	Trigger	Volume	so	that	we	can	use	it
to	call	all	the	events	and	functions	in	our	game.	By	default,	the	Trigger	Collision
Preset	overlaps	all	the	Trace	and	Object	Channel	Responses,	except	the	Visibility
Trace	Channel,	which	this	preset	ignores.	Lastly,	its	Collision	Enabled	property	is
set	to	No	Physics	Collision.
Ragdoll:	This	collision	preset	is	used	to	simulate	skeletal	mesh	components.	Its
Object	Type	is	set	to	Physics	Body.	We	can	use	this	preset	for	character	meshes	that
would	turn	rag	doll	when	players	are	killed	or	lose	control	and	would	want	the	player
character	to	be	taken	over	by	physics.	By	default,	this	collision	preset	blocks	all	the
Trace	and	Object	Responses,	except	the	Pawn	Object	Response,	which	it	ignores.
Lastly,	the	Collision	Enabled	property	is	set	to	Collision	Enabled.
Vehicle:	This	collision	preset	is	a	Vehicle	Object	Type	that	is	used	for	any	moving
vehicle	assets	in	our	game	world.	By	default,	this	preset	blocks	all	the	Trace	and
Object	Responses.	Its	Collision	Enabled	property	is	set	to	Collision	Enabled.
UI:	This	collision	preset	is	a	World	Dynamic	Object	Type	that	is	used	for	any	UI
assets	(such	as	UMG	HUD	elements).	By	default,	this	preset	overlaps	all	the	Trace
and	Object	Responses,	except	the	Visibility	Trace	Response,	which	this	preset
blocks.	Lastly,	the	Collision	Enabled	property	is	set	to	No	Physics	Collision.

In-depth	collision	presets	–	a	section
review
In	this	section,	we	took	an	in-depth	look	at	all	the	collision	presets	that	Unreal	Engine	4
provides	users	by	default,	and	by	doing	so,	we	analyzed	the	purpose	and	functionalities	of
each.	Now	that	we	have	covered	collision	presets,	we	can	now	conclude	this	chapter	and
move	on	to	discussing	constraints	in	Unreal	Engine	4.

Summary
In	this	chapter,	we	discussed	how	collision	works	and	how	it	is	implemented	in	Unreal
Engine	4	by	first	analyzing	the	topics	of	trace	and	collision	responses.	We	also	discussed
how	these	responses	work,	their	parameter	values,	and	how	to	implement	these	responses
to	our	blueprint	assets	in	detail.

Next,	you	learned	about	simple	and	complex	collisions	by	defining	what	each	type	is	and
how	they	are	used.	We	also	looked	at	its	pros	and	cons	and	how	to	generate	the	different
types	of	simple	collision.

Additionally,	you	learned	more	about	complex	collisions	and	how	to	generate	these	types
of	collisions	in	Unreal	Engine	4.	You	also	looked	at	how	to	create	custom	collision	hulls
in	third-party	art	programs.

Furthermore,	you	learned	about	collision	interactions.	We	used	the	First	Person
Projectile	blueprint	as	an	example	of	how	these	interactions	are	used	when	it	comes	to
scripting	different	behaviors	for	our	assets.

Moreover,	we	went	through	the	purposes	of	custom	objects	and	trace	channels.	We
discussed	how	to	create	custom	collision	presets,	including	how	to	implement	these
customized	parameters	in	blueprints.

Lastly,	we	discussed	the	different	collision	presets	that	exist	in	Unreal	Engine	4,	their
purposes,	and	how	they	function	in	detail.

Now	that	we	have	a	stronger	understanding	of	how	collision	works	and	how	to	implement
the	different	collisions	for	our	assets,	we	can	now	dive	deep	into	creating	constraints	in
Unreal	Engine	4.

Chapter	4.	Constraints

What	are	constraints?
Constraints	are	basic	physical	actors	in	Unreal	Engine	4.	Imagine	that	physical	rules	need
something	to	be	presented	with,	such	as	a	tool,	switch,	calculator,	or	container.	It’s	called
physic	actor,	and	physic	actors	that	are	responsible	for	simulating	the	physical	behavior
between	two	objects	are	known	as	physics	constraint	actor.

It	works	in	a	similar	way	to	a	minicomputer.	You	can	connect	two	inputs	to	it,	and	it
calculates	how	these	two	should	play	with	the	physical	rules	in	the	game.	Finally,	it
applies	the	changes	to	the	object	as	real-time	processing	during	the	game	play.

The	first	physics	constraint	actor
experience
Before	we	start	working	in	Unreal	Editor,	we	will	need	to	have	a	project	to	work	with.
Perform	the	following	steps:

1.	 First,	open	Unreal	Editor	by	clicking	on	the	Launch	button	from	Unreal	Engine
launcher.

2.	 Start	a	new	project	from	Project	browser	by	selecting	the	New	Project	tab.	Select
First	Person	and	make	sure	that	With	Starter	Content	is	selected	and	give	the
project	a	name	(constraints_test).

3.	 Once	you	are	finished,	locate	the	two	cubes	on	your	view.	Select	one	and	then	click
on	the	small	icon	in	the	top-right	corner	of	your	view:

4.	 Now,	you	have	four	viewports	on	your	screen.	It’s	good	practice	when	you	are
working	with	constraints	to	check	your	stage	from	four	views.	Now,	select	one	of	the
cubes,	middle-click	on	the	top	view,	and	press	the	F	key.	This	automatically
navigates	all	your	viewports	so	that	they	are	all	focused	on	your	actual	selection.

5.	 Now,	we	need	to	move	one	cube	onto	another	one.	Also,	rotate	the	upper	cube	so	that
it	fits	the	same	angle	as	the	one	after	it.	Use	the	move	and	rotate	tools	to	create	your
stage,	as	shown	in	the	following	screenshot.	As	you	can	see,	the	upper	cube	is	about
three	times	further	away	from	the	lower	cube:

6.	 Let’s	click	on	the	area	in	the	top-right	corner	of	your	Perspective	view	to	expand	it
and	press	Play.	You	will	see	one	cube	just	fall	on	the	lower	cube.	This	is	caused	by
gravity.	Also,	you	can	move	the	cubes	by	shooting	balls	at	them.	We	need	to	disable
this	physic	rules	for	the	upper	cube.	Now,	click	on	Stop	to	exit	the	play	mode.	Select
the	upper	cube	and	uncheck	Simulate	Physics	in	Details	on	the	right-hand	side	of
your	editor.	Then,	click	on	Play	again.

7.	 Now,	the	upper	cube	not	only	falls,	but	also,	when	you	shoot	at	it,	it	doesn’t	move.
This	gives	an	ideal	location	to	hang	the	other	cube	to	this	one.	For	this	purpose,
Unreal	Engine	defines	some	tools	(known	as	PhysX	Constraint).	These	tools	allow
you	to	simulate	reality	based	on	the	physical	behavior	and	the	mode	of	the	game
world.	Then,	switch	back	to	four	views,	click	on	All	Classes	in	Modes,	and	locate
PhysicsConstraintActor	near	All	Classes:

8.	 Drag	and	drop	this	actor	and	place	it	in	the	middle	of	the	cubes.	Locate	the
Constraint	section	from	the	right-hand	side	list.	Each	physics	constraint	actor	needs
two	objects	to	operate	with.	This	means	that	we	need	to	give	the	actor	object	names
and	then	this	actor	presents	a	physical-based	action	in	the	game	world	during	the
game	play.	How	we	do	this?	You	will	find	two	similar	actors	in	the	Constraint
section:	Constraint	Actor	1	and	Constraint	Actor	2.	Here,	we	can	define	objects.
Simply	click	on	the	picker	icon	and	then	on	the	upper	cube	for	Constraint	Actor	1
and	another	cube	for	Constraint	Actor	2,	as	shown	in	the	following	screenshot:

9.	 Now,	switch	to	the	Perspective	view,	move	the	lower	cube	a	bit	up,	press	Play,	and
shoot	the	lower	cube	from	different	angles	and	locations,	as	shown	in	the	following
screenshot:

10.	 As	you	can	see,	it	looks	like	something	is	grabbing	the	lower	cube	and	forcing	it	to
remain	there	and	rotate	around	that	point.	Also,	the	cube	shows	normal	behavior	with
gravity.

What	you	observe	here	is	how	physic	constraints	work	in	Unreal	Engine.	You	can	change
the	physical	parameters	related	to	each	object	and	obtain	different	results.	Let’s	take	a	look
at	some:

1.	 For	the	upper	cube,	check	Physics	in	the	Details	window.	When	you	play,	it	seems
that	all	the	cubes	are	connected	to	each	other,	whereas	when	you	move	one,	others
react	to	your	interaction.	Click	on	Stop	and	uncheck	Physics	for	the	upper	cube.

2.	 Select	the	lower	cube.	Then,	in	Physics,	change	Mass	Scale	from	1.0	to	1000.	Now,
play	the	game	and	try	to	move	the	cube.	It	looks	like	it’s	heavy,	very	heavy.	So,	click
on	Stop	and	change	Mass	Scale	to	1.0.

3.	 Select	the	lower	cube,	uncheck	Enable	Gravity,	and	click	on	Play.	Try	to	shoot	the

cube	and	observe	the	difference.	It	saves	its	connection	to	other	objects,	but	doesn’t
follow	the	gravity	of	the	game	world.

4.	 Then,	press	Stop	and	check	Enable	Gravity.

Customizing	physics	constraint	actor
Now	we	know	that	this	actor	connects	two	objects	to	each	other	by	supporting	the	gravity
and	physical	aspects	of	each	object.	We	also	know	that	it	is	invisible	to	players.	In
addition,	Physics	Constraint	Actor	has	some	properties	that	strongly	shape	the	physical
behavior	of	objects.	Let’s	start	with	position.	Switch	back	to	four	views	and	move	your
Physics	Constraint	Actor	close	to	the	upper	cube,	as	shown	in	the	following	screenshot:

Now,	press	Play	and	shoot	the	cube.	As	you	can	see,	it	even	goes	over	the	upper	cube.	It
seems	that	the	rotation	point	is	going	higher.	This	is	correct.	The	exact	description	is	that
you	move	your	physics	constraint	actor	to	the	top.	This	basically	changes	the	way	these
two	objects	behave	based	on	physical	rules.

Now,	click	on	Stop.	Then,	click	on	your	physics	constraint	actor	and	press	F.	In	Angular
Limits,	in	the	Details	section	on	the	right-hand	side,	set	Angular	Swing	1Motion	to
Locked,	Angular	Twist	Motion	to	Limited,	and	Twist	Limit	Angel	and	Angular	Swing
2Motion	to	60:

Now,	click	on	Play.	As	you	can	see,	the	cube	plays	in	a	pyramid-like	area	between	60
degrees	and	nowhere	else.	Then,	click	on	Stop	and	change	Angular	Swing	1Motion	to
Free.	Finally,	click	on	Play.	As	you	can	see,	the	cube	has	free	rotation	on	its	z	axis.

A	simple	game	with	Blueprint
After	you	click	on	Stop,	select	the	cubes	and	your	actor.	Then,	hold	Alt	and	create	a	copy
of	all	by	moving	on	the	Y	axis.	Now,	click	on	the	second	actor	and	pick	the	upper	and
lower	cubes.	Then,	select	one	point	light	object	from	Modes	|	Basic	on	the	left-hand	side
and	place	it	close	to	the	stage	surface	between	the	two	cubes.	Our	goal	is	to	turn	on	the
light	when	the	cubes	experience	collision	and	break	one	of	the	cube’s	physical	constraints.

Now,	click	on	point	light	and	navigate	to	Rendering	in	the	Details	section	and	uncheck
Visible:

Now,	click	on	Blueprint	and	select	Open	Level	Blueprint.	Navigate	back	to	editor	and
select	your	point	light.	Now,	go	back	to	the	Blueprint	editor,	right	click	on	it,	and	select
Create	a	Reference	to	PointLight	from	the	list.	You	will	have	a	curvy	box	with	the
PointLight	title	on	your	blueprint	stage.	Now,	locate	the	small	blue	hollow	circle	in	the
top-right	corner	of	your	point	light	box.	Then,	click	and	hold	the	mouse	and	move	the
pointer	to	the	right.	You	will	find	a	wire-like	line	that	follows	your	mouse.	When	you
leave	the	mouse,	a	list	will	appear	with	a	search	area	to	type.	Enter	toggle	and	click	on
Toggle	Visibility	(PointLightComponent)	from	the	names	in	the	list,	as	shown	in	the
following	screenshot:

Now,	navigate	back	to	editor	and	select	one	of	the	lower	cubes.	Then,	go	back	to
Blueprint	and	use	the	same	method	to	open	the	list,	but	this	time,	open	Add	Event	for
your	cube	name.	Then,	open	Collision	and	select	Add	On	Actor	Hit.	Now,	connect	a	wire
to	the	previous	box	you	made,	as	shown	in	the	following	screenshot:

What	this	does	is	you	first	define	the	reference	to	your	PointLight	and	then	add	the
Toggle	functionality	to	the	visibility	of	the	light.	However,	you	need	to	turn	the	light	on	by
selecting	Hit	Event	for	your	cubes.	So,	we	can	add	Event	for	collision	and	set	the	event	to
execute	our	toggle	function.	Click	on	Play	and	check	how	it	works.	As	you	can	see,
PointLight	turns	on	and	off	on	each	hit	to	the	selected	cube.

Now,	we	need	to	define	another	rule	for	our	game.	We	need	to	disable	the	physical	actor
on	the	hit	event.	Then,	select	your	actor	over	the	other	cube.	Create	a	reference	for	it	as
you	did	for	the	lamp.	Then,	create	the	Break	Constraint	function	with	the	break	keyword
on	the	search	area.	Now,	select	the	cube	that	responds	to	the	actor	and	then	create	another
hit	event	and	connect	it	to	this	function.	This	is	how	the	result	should	look:

Now,	test	the	game.	As	a	result	of	the	heat	effect,	one	cube	turns	the	light	on/off,	whereas
another	falls	on	the	game	stage.

Summary
The	way	game	designers	and	artists	try	to	project	the	mode	and	presentation	of	objects	in
the	game	meets	the	frame	by	frame	animation,	or	wisely	use	the	physical	aspects	of
Unreal	Engine.

Twenty	years	ago,	game	designers	animated	the	open	and	close	movement	of	a	simple
door	with	the	frame	by	frame	method	as	an	image-sequence	file	(such	as	GIF).	Now,	we
can	do	the	same	in	real	time	with	light	effects,	materials,	physical	rules,	and	the	blueprint
code.	Unreal	Engine	4	provides	the	detailed	properties	and	customizations	for	movements
and	dependency	between	objects	in	the	game	world.	This	is	how	creativity	meets	artistic
details	in	a	game	design.	Working	with	constraints	is	a	kind	of	creative	art.

Chapter	5.	Physics	Damping,	Friction,
and	Physics	Bodies
In	this	chapter,	we	will	take	a	deeper	look	at	Physics	Bodies	in	Unreal	Engine	4	and
analyze	how	the	engine	uses	physics	properties,	such	as	Angular	Damping	and	Linear
Friction	to	simulate	real-world	physics	in	our	game.	To	start	with,	we	will	examine	what
Physics	Bodies	are.	We	will	also	look	at	some	of	the	detailed	properties	available	to	these
assets.	In	addition,	we	will	discuss	the	following	topics:

Angular	and	linear	friction
Physical	materials	–	an	overview
Physics	damping

For	the	purposes	of	this	chapter,	we	will	continue	to	work	with	Unreal	Engine	4	and	the
Unreal_PhyProject	that	we	created	in	Chapter	1,	Math	and	Physics	Primer	in	Unreal
Engine.	Let’s	begin	by	discussing	Physics	Bodies	in	Unreal	Engine	4.

Physics	Bodies	–	an	overview
When	it	comes	to	creating	Physics	Bodies,	there	are	multiple	ways	to	go	about	it	(most	of
which	we	have	covered	up	to	this	point),	so	we	will	not	go	into	much	detail	about	the
creation	of	Physics	Bodies.	We	can	have	Static	Meshes	react	as	Physics	Bodies	by
checking	the	Simulate	Physics	property	of	the	asset	when	it	is	placed	in	our	level:

We	can	also	create	Physics	Bodies	by	creating	Physics	Assets	and	Skeletal	Meshes,
which	automatically	have	the	properties	of	physics	by	default.	Lastly,	Shape	Components
in	blueprints,	such	as	spheres,	boxes,	and	capsules	will	automatically	gain	the	properties
of	a	Physics	Body	if	they	are	set	for	any	sort	of	collision,	overlap,	or	other	physics
simulation	events.	As	always,	remember	to	ensure	that	our	asset	has	a	collision	applied	to
it	before	attempting	to	simulate	physics	or	establish	Physics	Bodies,	otherwise	the
simulation	will	not	work.

When	you	work	with	the	properties	of	Physics	on	Static	Meshes	or	any	other	assets	that
we	will	attempt	to	simulate	physics	with,	we	will	see	a	handful	of	different	parameters	that
we	can	change	in	order	to	produce	the	desired	effect	under	the	Details	panel.

Let’s	break	down	these	properties:

Simulate	Physics:	This	parameter	allows	you	to	enable	or	simulate	physics	with	the
asset	you	have	selected.	When	this	option	is	unchecked,	the	asset	will	remain	static,
and	once	enabled,	we	can	edit	the	Physics	Body	properties	for	additional
customization.
Auto	Weld:	When	this	property	is	set	to	True,	and	when	the	asset	is	attached	to	a
parent	object,	such	as	in	a	blueprint,	the	two	bodies	are	merged	into	a	single	rigid
body.	Physics	settings,	such	as	collision	profiles	and	body	settings,	are	determined	by
Root	Component.
Start	Awake:	This	parameter	determines	whether	the	selected	asset	will	Simulate
Physics	at	the	start	once	it	is	spawned	or	whether	it	will	Simulate	Physics	at	a	later
time.	We	can	change	this	parameter	with	the	level	and	actor	blueprints.
Override	Mass:	When	this	property	is	checked	and	set	to	True,	we	can	then	freely
change	the	Mass	of	our	asset	using	kilograms	(kg).	Otherwise,	the	Mass	in	Kg
parameter	will	be	set	to	a	default	value	that	is	based	on	a	computation	between	the
physical	material	applied	and	the	mass	scale	value.
Mass	in	Kg:	This	parameter	determines	the	Mass	of	the	selected	asset	using
kilograms.	This	is	important	when	you	work	with	different	sized	physics	objects	and
want	them	to	react	to	forces	appropriately.

Locked	Axis:	This	parameter	allows	you	to	lock	the	physical	movement	of	our	object
along	a	specified	axis.	We	have	the	choice	to	lock	the	default	axes	as	specified	in
Project	Settings.	We	also	have	the	choice	to	lock	physical	movement	along	the
individual	X,	Y,	and	Z	axes.	We	can	have	none	of	the	axes	either	locked	in	translation
or	rotation,	or	we	can	customize	each	axis	individually	with	the	Custom	option.
Enable	Gravity:	This	parameter	determines	whether	the	object	should	have	the	force
of	gravity	applied	to	it.	The	force	of	gravity	can	be	altered	in	the	World	Settings
properties	of	the	level	or	in	the	Physics	section	of	the	Engine	properties	in	Project
Settings.
Use	Async	Scene:	This	property	allows	you	to	enable	the	use	of	Asynchronous
Physics	for	the	specified	object.	By	default,	we	cannot	edit	this	property.	In	order	to
do	so,	we	must	navigate	to	Project	Settings	and	then	to	the	Physics	section.	Under
the	advanced	Simulation	tab,	we	will	find	the	Enable	Async	Scene	parameter.	In	an
asynchronous	scene,	objects	(such	as	Destructible	actors)	are	simulated,	and	a
Synchronous	scene	is	where	classic	physics	tasks,	such	as	a	falling	crate,	take	place.
Override	Walkable	Slope	on	Instance:	This	parameter	determines	whether	or	not
we	can	customize	an	object’s	walkable	slope.	In	general,	we	would	use	this	parameter
for	our	player	character,	but	this	property	enables	the	customization	of	how	steep	a
slope	is	that	an	object	can	walk	on.	This	can	be	controlled	specifically	by	the
Walkable	Slope	Angle	parameter	and	the	Walkable	Slope	Behavior	parameter.
Override	Max	Depenetration	Velocity:	This	parameter	allows	you	to	customize
Max	Depenetration	Velocity	of	the	selected	physics	body.
Center	of	Mass	Offset:	This	property	allows	you	to	specify	a	specific	vector	offset
for	the	selected	objects’	center	of	mass	from	the	calculated	location.	Being	able	to
know	and	even	modify	the	center	of	the	mass	for	our	objects	can	be	very	useful	when
you	work	with	sensitive	physics	simulations	(such	as	flight).
Sleep	Family:	This	parameter	allows	you	to	control	the	set	of	functions	that	the
physics	object	uses	when	in	a	sleep	mode	or	when	the	object	is	moving	and	slowly
coming	to	a	stop.	The	SF	Sensitive	option	contains	values	with	a	lower	sleep
threshold.	This	is	best	used	for	objects	that	can	move	very	slowly	or	for	improved
physics	simulations	(such	as	billiards).	The	SF	Normal	option	contains	values	with	a
higher	sleep	threshold,	and	objects	will	come	to	a	stop	in	a	more	abrupt	manner	once
in	motion	as	compared	to	the	SF	Sensitive	option.
Mass	Scale:	This	parameter	allows	you	to	scale	the	mass	of	our	object	by
multiplying	a	scalar	value.	The	lower	the	number,	the	lower	the	mass	of	the	object
will	become,	whereas	the	larger	the	number,	the	larger	the	mass	of	the	object	will
become.	This	property	can	be	used	in	conjunction	with	the	Mass	in	Kg	parameter	to
add	more	customization	to	the	mass	of	the	object.
Angular	Damping:	This	property	is	a	modifier	of	the	drag	force	that	is	applied	to	the
object	in	order	to	reduce	angular	movement,	which	means	to	reduce	the	rotation	of
the	object.	We	will	go	into	more	detail	regarding	Angular	Damping	later	in	this
chapter.
Linear	Damping:	This	property	is	used	to	simulate	the	different	types	of	friction	that
can	assist	in	the	game	world.	This	modifier	adds	a	drag	force	to	reduce	linear

movement,	reducing	the	translation	of	the	object.	We	will	go	into	more	detail
regarding	Linear	Damping	later	in	this	chapter.
Max	Angular	Velocity:	This	parameter	limits	Max	Angular	Velocity	of	the	selected
object	in	order	to	prevent	the	object	from	rotating	at	high	rates.	By	increasing	this
value,	the	object	will	spin	at	very	high	speeds	once	it	is	impacted	by	an	outside	force
that	is	strong	enough	to	reach	the	Max	Angular	Velocity	value.	By	decreasing	this
value,	the	object	will	not	rotate	as	fast,	and	it	will	come	to	a	halt	much	faster
depending	on	the	angular	damping	applied.
Position	Solver	Iteration	Count:	This	parameter	reflects	the	physics	body’s	solver
iteration	count	for	its	position;	the	solver	iteration	count	is	responsible	for
periodically	checking	the	physics	body’s	position.	Increasing	this	value	will	be	more
CPU	intensive,	but	better	stabilized.
Velocity	Solver	Iteration	Count:	This	parameter	reflects	the	physics	body’s	solver
iteration	count	for	its	velocity;	the	solver	iteration	count	is	responsible	for
periodically	checking	the	physics	body’s	velocity.	Increasing	this	value	will	be	more
CPU	intensive,	but	better	stabilized.

Now	that	we	have	discussed	all	the	different	parameters	available	to	Physics	Bodies	in
Unreal	Engine	4,	feel	free	to	play	around	with	these	values	in	order	to	obtain	a	stronger
grasp	of	what	each	property	controls	and	how	it	affects	the	physical	properties	of	the
object.	As	there	are	a	handful	of	properties,	we	will	not	go	into	detailed	examples	of	each,
but	the	best	way	to	learn	more	is	to	experiment	with	these	values.	However,	we	will	work
with	how	to	create	various	examples	of	physics	bodies	in	order	to	explore	Physics
Damping	and	Friction	later	in	this	chapter.

Physics	Bodies	–	a	section	review
In	this	section,	we	discussed	what	Physics	Bodies	are	and	how	to	create	them	by	using
static	meshes,	skeletal	meshes,	shape	components	in	blueprints,	and	physics	assets.
Additionally,	you	learned	about	all	the	different	parameters	that	exist	for	Physics	Bodies
in	Unreal	Engine	4.	We	also	looked	at	each	property	and	how	it	affects	the	physics	on	the
specified	object.	Now	that	we	have	a	stronger	grasp	of	what	Physics	Bodies	are,	let’s
move	on	and	discuss	Angular	and	Linear	Damping.

Angular	and	Linear	Damping
In	this	section,	we	will	discuss	Angular	and	Linear	Damping	in	more	detail,	focusing	on
the	friction	properties	of	physics	bodies.	Further	more,	we	will	discuss	physics	damping
and	how	this	can	be	used	when	setting	up	the	constraints	for	our	blueprints.	Let’s	begin	by
briefly	discussing	Angular	Damping	and	Angular	Velocity/Momentum.

In	the	realm	of	physics,	Angular	Velocity	is	defined	as	the	rate	of	change	of	angular
displacement,	also	known	as	a	vector	quantity,	which	specifies	the	angular	speed	or	the
rotational	speed	of	an	object	and	the	axis	in	which	the	object	is	rotating.

In	the	preceding	diagram,	we	can	see	that	w,	or	the	angular	speed,	is	equal	to	the	velocity
divided	by	the	radius	of	the	object	that	is	rotating.

Linear	Angular	Momentum	is	proportional	to	Moment	of	Inertia	(I)	and	Angular
Speed	(w),	so	the	basic	formula	is	L	=	Iw.	We	now	know	that	w	is	equal	to	the	velocity
and	radius	of	the	object,	so	we	can	now	write	the	expression	as	L	=	I	(v/r).	Lastly,
Moment	of	Inertia	is	equal	to	the	radius	of	the	object	squared,	multiplied	by	the	object’s
mass,	or	I	=	r^2	*	(m).	With	this	in	mind,	we	can	now	rewrite	the	Linear	Angular
Momentum	expression	as	L	=	(r^2	*	m)	*	(v/r),	or	more	simply,	we	can	write	the
expression	as	L	=	rmv,	so	the	Linear	Angular	Momentum	of	an	object	is	equal	to	the
radius	of	the	object	multiplied	by	its	mass	and	the	velocity	that	is	applied	to	it.

Now	that	we	have	a	stronger	understanding	of	Angular	Velocity	and	Angular
Momentum,	let’s	apply	this	knowledge	to	the	physics	body	with	the	Unreal_PhyProject
game	project	that	we	created	in	the	first	chapter.	By	default,	there	are	a	bunch	of	physics
body	cubes	placed	throughout	the	FirstPersonExampleMap	level	that	we	can	alter
properties	to	in	order	to	explore	Angular	Damping	and	Angular	Velocity.

Let’s	start	by	selecting	a	random	cube	from	FirstPersonExampleMap	and	viewing	its
Physics	properties	in	Details	panel,	on	the	left-hand	side.	For	the	sake	of	an	example,	let’s
left-click	on	the	down	directional	arrow	in	the	Physics	section	to	expand	the	advanced
properties.	The	first	property	we	will	see	is	Enable	Gravity,	and	by	default,	it	is	set	to
True;	let’s	set	this	property	to	False	so	that	the	selected	physics	body	doesn’t	have	the
force	of	gravity	applied	to	it.	With	this	change	in	place,	we	can	now	move	the	physics

body	upwards	in	the	Z	direction	so	that	it	floats	in	the	level	in	mid-air.	Now,	if	we	play	the
game,	the	physics	body	will	not	move	unless	it	is	shot	at	by	the	player	with	the
FirstPersonProjectile	blueprint.	Once	shot,	the	physics	body	will	start	spinning	and
moving	in	the	appropriate	direction	based	on	where	it’s	shot	and	the	impulse	that	is
applied	to	it	by	the	projectile	blueprint.

Back	in	the	Details	panel	of	Physics	Body,	we	can	now	explore	the	Angular	Damping
property,	which	is	set	to	0	by	default,	meaning	that	the	object	has	no	additional	drag	force
applied	to	it	to	reduce	angular	velocity.	By	increasing	this	value,	we	can	see	that	when	we
shoot	the	object	in	the	game,	the	angular	velocity	slows	down	in	a	stronger	exponential
value	compared	to	how	it	behaved	when	the	Angular	Damping	value	was	set	to	0.	We
can	also	set	the	limit	on	how	fast	the	physics	object	can	rotate	when	a	force	is	applied	to	it
by	altering	the	value	of	the	Max	Angular	Velocity	parameter;	the	higher	the	value,	the
faster	the	object	is	able	to	rotate	if	enough	force	is	applied	to	it.

For	this	example,	let’s	set	the	Angular	Damping	value	to	.01	and,	the	Max	Angular
Velocity	parameter	to	800.	We	will	override	the	Mass	in	Kg	parameter	and	set	a	custom
mass	of	10.0.	We	should	now	have	the	following	properties	in	place	for	our	physics	body
object:

Now,	if	we	play	the	game	and	shoot	at	our	Physics	Body	object,	we	will	see	that	the
object	can	rotate	at	a	very	quick	rate	when	shot	at	by	the	player.	To	find	out	what	else	can

affect	the	Angular	Velocity	and	Angular	Damping	of	an	object,	we	can	increase	or
decrease	the	values	for	the	Mass	in	Kg,	Angular	Damping,	and	Max	Angular	Velocity
parameters.	With	the	knowledge	of	Angular	Damping	and	Angular	Physics	under	our
belt,	let’s	now	discuss	Linear	Damping	and	Linear	Physics	in	Unreal	Engine	4.

In	physics,	Linear	Velocity	is	defined	as	the	rate	of	the	change	of	linear	displacement	of
time,	also	known	as	a	vector	quantity,	which	specifies	the	linear	speed	of	an	object	and	the
direction	in	which	the	object	is	moving	in.

The	formula	for	basic	Linear	Velocity	is	V	=	S/t,	or	velocity	equals	the	change	in
displacement	of	the	object	divided	by	the	time	the	object	takes	to	move	this	change	in
displacement.	The	concept	of	Linear	Damping	is	the	reduction	of	movement	over	time	in
order	to	have	an	object	come	to	a	complete	stop	once	a	force	is	applied	to	it	that	would
cause	displacement,	also	known	as	Friction.	When	it	comes	to	Linear	Momentum,	the
formula	is	p	=	mv,	where	p	is	the	value	of	Momentum,	m	is	the	value	of	the	object’s
mass,	and	v	is	the	velocity	of	the	object.

In	Unreal	Engine	4,	we	can	damper	the	linear	velocity	of	our	physics	body	in	two	ways:
by	creating	a	Physical	Material	to	apply	to	our	physics	body	or	by	changing	the	Linear
Damping	property	in	the	Physics	section	of	the	Details	panel	of	our	physics	body.	For	the
purposes	of	this	section,	we	will	only	discuss	how	to	change	the	Linear	Damping
property	and	we	will	go	into	more	detail	on	how	to	create	Physical	Material	later	in	this
chapter.	Working	with	FirstPersonExampleMap	in	Unreal_PhyProject,	let’s	go	ahead
and	create	a	working	example	of	how	to	properly	utilize	the	Linear	Damping	property	for
our	physics	bodies	in	order	to	recreate	Friction.	For	this	example,	we	can	use	the	same
physics	body	that	we	used	to	demonstrate	angular	velocity	and	angular	damping,	but	we
do	want	to	make	sure	that	we	check	the	Enable	Gravity	parameter	and	set	the	rest	of	the
parameters	to	their	default	values	so	that	we	can	start	this	example	from	scratch.

By	increasing	the	value	of	the	Linear	Damping	property	to	a	value	such	as	100	and
playing	the	game,	we	will	see	that	when	we	shoot	the	physics	body,	it	does	not	translate	as
much	as	it	would	if	the	Linear	Damping	property	was	set	to	its	default	value	of	.01.	With

the	value	of	100,	the	Linear	Damping	property	causes	the	physics	body	to	almost	stay
where	it	is,	but	the	rotation	of	the	object	changes	as	normal	because	we	did	not	change	the
properties	involving	angular	damping.	The	use	of	Linear	Damping	is	very
straightforward,	and	there	is	not	much	customization	passed	(as	discussed	in	the	context	of
physics	bodies	in	their	Physics	properties),	but	we	can	add	additional	properties	using
Physics	Materials.

Angular	and	Linear	Damping	–	a	section
review
In	this	section,	we	discussed	the	concepts	of	Angular	and	Linear	Damping	and	Angular
and	Linear	Velocities	in	the	context	of	real-world	physics	in	detail.	Once	we	were	able	to
grasp	these	concepts,	we	then	applied	what	you	learned	about	using	physics	bodies	in
Unreal	Engine	4	and	the	Physics	properties	of	these	objects	in	order	to	explore	how	they
affect	the	physics	bodies	in	the	game.	Now	that	we	have	examined	angular	and	linear
damping,	we	can	move	on	to	briefly	discuss	what	Physics	Materials	are	and	how	to	apply
them	to	our	physics	bodies.

Physical	Materials	–	an	overview
Physical	Materials	are	assets	that	are	used	to	define	the	response	of	a	physics	body	when
you	dynamically	interact	with	the	game	world.	When	you	first	create	Physical	Material,
you	are	presented	with	a	set	of	default	values	that	are	identical	to	the	default	Physical
Material	that	is	applied	to	all	physics	objects.

To	create	Physical	Material,	let’s	navigate	to	Content	Browser	and	select	the	Content
folder	so	that	it	is	highlighted.	From	here,	we	can	right-click	on	the	Content	folder	and
select	the	New	Folder	option	to	create	a	new	folder	for	our	Physical	Material;	name	this
new	folder	PhysicalMaterials.	Now,	in	the	PhysicalMaterials	folder,	right-click	on	the
empty	area	of	Content	Browser	and	navigate	to	the	Physics	section	and	select	Physical
Material.	Make	sure	to	name	this	new	asset	PM_Test.

Double-click	on	the	new	Physical	Material	asset	to	open	Generic	Asset	Editor	and	we
should	see	the	following	values	that	we	can	edit	in	order	to	make	our	physics	objects
behave	in	certain	ways:

Let’s	take	a	few	minutes	to	break	down	each	of	these	properties:

Friction:	This	parameter	controls	how	easily	objects	can	slide	on	this	surface.	The
lower	the	friction	value,	the	more	slippery	the	surface.	The	higher	the	friction	value,
the	less	slippery	the	surface.	For	example,	ice	would	have	a	Friction	surface	value	of
.05,	whereas	a	Friction	surface	value	of	1	would	cause	the	object	not	to	slip	as
much	once	moved.
Friction	Combine	Mode:	This	parameter	controls	how	friction	is	computed	for
multiple	materials.	This	property	is	important	when	it	comes	to	interactions	between
multiple	physical	materials	and	how	we	want	these	calculations	to	be	made.	Our
choices	are	Average,	Minimum,	Maximum,	and	Multiply.
Override	Friction	Combine	Mode:	This	parameter	allows	you	to	set	the	Friction
Combine	Mode	parameter	instead	of	using	Friction	Combine	Mode,	found	in	the
Project	Settings	|	Engine	|	Physics	section.
Restitution:	This	parameter	controls	how	bouncy	the	surface	is.	The	higher	the
value,	the	more	bouncy	the	surface	will	become.
Density:	This	parameter	is	used	in	conjunction	with	the	shape	of	the	object	to
calculate	its	mass	properties.	The	higher	the	number,	the	heavier	the	object	becomes
(in	grams	per	cubic	centimeter).
Raise	Mass	to	Power:	This	parameter	is	used	to	adjust	the	way	in	which	the	mass
increases	as	the	object	gets	larger.	This	is	applied	to	the	mass	that	is	calculated	based
on	a	solid	object.	In	actuality,	larger	objects	do	not	tend	to	be	solid	and	become	more
like	shells	(such	as	a	vehicle).	The	values	are	clamped	to	1	or	less.
Destructible	Damage	Threshold	Scale:	This	parameter	is	used	to	scale	the	damage
threshold	for	the	destructible	objects	that	this	physical	material	is	applied	to.
Surface	Type:	This	parameter	is	used	to	describe	what	type	of	real-world	surface	we
are	trying	to	imitate	for	our	project.	We	can	edit	these	values	by	navigating	to	the
Project	Settings	|	Physics	|	Physical	Surface	section.

Tire	Friction	Scale:	This	parameter	is	used	as	the	overall	tire	friction	scalar	for	every
type	of	tire	and	is	multiplied	by	the	parent	values	of	the	tire.
Tire	Friction	Scales:	This	parameter	is	almost	identical	to	the	Tire	Friction	Scale
parameter,	but	it	looks	for	a	Tire	Type	data	asset	to	associate	it	to.	Tire	Types	can	be
created	through	the	use	of	Data	Assets	by	right-clicking	on	the	Content	Browser	|
Miscellaneous	|	Data	Asset	|	Tire	Type	section.

Now	that	we	have	briefly	discussed	how	to	create	Physical	Materials	and	what	their
properties	are,	let’s	take	a	look	at	how	to	apply	Physical	Materials	to	our	physics	bodies.
In	FirstPersonExampleMap,	we	can	select	any	of	the	physics	body	cubes	throughout	the
level	and	in	the	Details	panel	under	Collision,	we	will	find	the	Phys	Material	Override
parameter.	It	is	here	that	we	can	apply	our	Physical	Material	to	the	cube	and	view	how	it
reacts	to	our	game	world.

For	the	sake	of	an	example,	let’s	return	to	the	Physical	Material,	PM_Test,	that	we	created
earlier,	change	the	Friction	property	from	0.7	to	0.2,	and	save	it.	With	this	change	in
place,	let’s	select	a	physics	body	cube	in	FirstPersonExampleMap	and	apply	the
Physical	Material,	PM_Test,	to	the	Phys	Material	Override	parameter	of	the	object.
Now,	if	we	play	the	game,	we	will	see	that	the	cube	we	applied	the	Physical	Material,
PM_Test,	to	will	start	to	slide	more	once	shot	by	the	player	than	it	did	when	it	had	a
Friction	value	of	0.7.	We	can	also	apply	this	Physical	Material	to	the	floor	mesh	in
FirstPersonExampleMap	to	see	how	it	affects	the	other	physics	bodies	in	our	game
world.	From	here,	feel	free	to	play	around	with	the	Physical	Material	parameters	to	see
how	we	can	affect	the	physics	bodies	in	our	game	world.

Lastly,	let’s	briefly	discuss	how	to	apply	Physical	Materials	to	normal	Materials,
Material	Instances,	and	Skeletal	Meshes.

To	apply	Physical	Material	to	a	normal	material,	we	first	need	to	either	create	or	open	an
already	created	material	in	Content	Browser.	To	create	a	material,	just	right-click	on	an
empty	area	of	Content	Browser	and	select	Material	from	the	drop-down	menu.	Double-
click	on	Material	to	open	Material	Editor,	and	we	will	see	the	parameter	for	Phys
Material	under	the	Physical	Material	section	of	Details	panel	in	the	bottom-left	of
Material	Editor:

To	apply	Physical	Material	to	Material	Instance,	we	first	need	to	create	Material
Instance	by	navigating	to	Content	Browser	and	right-clicking	on	an	empty	area	to	bring
up	the	context	drop-down	menu.	Under	the	Materials	&	Textures	section,	we	will	find	an
option	for	Material	Instance.	Double-click	on	this	option	to	open	Material	Instance
Editor.	Under	the	Details	panel	in	the	top-left	corner	of	this	editor,	we	will	find	an	option

to	apply	Phys	Material	under	the	General	section:

Lastly,	to	apply	Physical	Material	to	Skeletal	Mesh,	we	need	to	either	create	or	open	an
already	created	Physics	Asset	that	contains	Skeletal	Mesh.	In	the	First	Person	Shooter
Project	template,	we	can	find	TutorialTPP_PhysicsAsset	under	the	Engine	Content
folder.	If	the	Engine	Content	folder	is	not	visible	by	default	in	Content	Browser,	we
need	to	simply	navigate	to	View	Options	in	the	bottom-right	corner	of	Content	Browser
and	check	the	Show	Engine	Content	parameter.	Under	the	Engine	Content	folder,	we
can	navigate	to	the	Tutorial	folder	and	then	to	the	TutorialAssets	folder	to	find	the
TutorialTPP_PhysicsAsset	asset.	Double-click	on	this	asset	to	open	Physical	Asset	Tool.
Now,	we	can	click	on	any	of	the	body	parts	found	on	Skeletal	Mesh	to	highlight	it.	Once
this	is	highlighted,	we	can	view	the	option	for	Simple	Collision	Physical	Material	in	the
Details	panel	under	the	Physics	section.	Here,	we	can	apply	any	of	our	Physical
Materials	to	this	body	part.

Physical	Materials	–	a	section	review
In	this	section,	we	discussed	in	detail	what	Physical	Materials	are	and	what	their
parameters	mean	when	applying	them	to	a	physics	body.	Additionally,	we	explored	how	to
apply	Physical	Materials	to	physics	bodies,	Materials,	Material	Instances,	and	Skeletal
Meshes	in	Physical	Asset	Tool.	Now	that	we	have	a	better	understanding	of	Physical
Materials,	we	can	now	conclude	this	chapter	by	working	with	Constraints	in	blueprints
to	better	understand	Physics	Damping.

Physics	Damping
In	order	to	gain	a	stronger	grasp	of	Physics	Damping	in	Unreal	Engine	4,	we	will	create	a
simple	working	example	of	Constraints	with	blueprints.	To	start	with,	let’s	continue	our
work	in	the	Unreal_PhyProject	project,	navigate	to	Content	Browser	and	then	to	the
Blueprints	folder,	and	right-click	on	it	to	create	a	new	Actor	blueprint.	Let’s	name	this
blueprint	BP_Constraint	and	double-click	on	it	to	open	Blueprint	Editor.

To	begin	this	blueprint,	let’s	navigate	to	the	Viewport	tab	and	then	add	Scene	Component
to	the	Components	tab	using	the	Add	Component	context	sensitive	drop-down	menu.
Name	this	component	ROOT.	Next,	we	will	add	two	cube	meshes	from	the	Basic	Shapes
section	to	the	Add	Components	menu.	Name	one	Stable	Mesh	and	the	other
Constrained	Mesh.	Lastly,	let’s	add	a	Physics	Constraint	component	from	the	Physics
section	and	name	it	Physics	Constraint.	Now,	we	need	to	position	these	components	in
a	manner	that	will	better	showcase	how	to	use	physics	damping	in	Unreal	Engine	4.

Set	the	position	of	our	assets	in	the	Viewport	tab	of	our	blueprint	as	follows:

Stable	Mesh:	X	–	0.0,	Y	–	0.0,	and	Z	–	350.0
Constrained	Mesh:	X	–	120.0,	Y	–	0.0,	Z	–	0.0
Physics	Constraint:	X	–	0.0,	Y	–	0.0,	Z	–	340.0

Now,	we	will	need	to	set	the	default	parameters	to	our	Physics	Constraint	asset	so	that	it
recognizes	the	mesh	that	is	the	anchor.	The	other	mesh	is	the	free-hanging	pendulum
attached	to	it.	To	accomplish	this,	let’s	select	the	Physics	Constraint	component.	Then,	in
its	Details	panel,	we	will	find	the	parameters	for	Component	Name	1	and	Component
Name	2	under	the	Constraint	section.	For	these	parameters,	we	will	need	to	apply	the
names	of	the	two	meshes	that	we	will	use	for	our	constraint:	Stable	Mesh	and
Constrained	Mesh.	Set	these	parameters	as	follows:

Component	Name	1:	Stable	Mesh
Component	Name	2:	Constrained	Mesh

With	these	parameters	in	place,	we	can	now	place	our	BP_Constraint	in
FirstPersonExampleMap	to	see	the	constraint	in	action.	First,	make	sure	to	compile	and

save	the	blueprint	before	placing	this	blueprint	in	our	level.	Once	this	is	placed	in	our
level,	make	sure	to	lift	the	blueprint	well	off	the	ground	so	that	there	won’t	be	any
collision	or	clipping	between	the	constrained	assets	and	our	game	world,	and	when	we	can
play	the	game	to	see	how	the	constraint	works,	we	will	see	the	following	result:

We	will	see	that	the	swinging	cube	will	continue	to	swing	back	and	forth	for	eternity
without	any	sign	of	damping	or	friction	to	slow	it	down.	Let’s	change	this.	Then,	navigate
back	to	the	BP_Constraint	blueprint	and	select	the	Physics	Constraint	component.	In	the
Details	panel,	we	will	see	a	handful	of	parameters	that	we	can	change	to	the	constraint	in
order	to	affect	its	behavior.	Let’s	briefly	define	each	parameter	found	in	the	Details	panel
of	the	Physics	Constraint	component:

Component	Name	1:	This	parameter	requires	the	name	of	the	first	component
property	to	constrain.	If	this	is	left	empty,	the	name	parameter	will	search	in	its
Owner	for	a	parameter	name.	If	Owner	returns	null,	this	parameter	will	use	the	Root
Component	of	Actor	1.
Component	Name	2:	This	parameter	requires	the	name	of	the	second	component
property	to	constrain.	If	this	is	left	empty,	the	name	parameter	will	search	in	its
Owner	for	a	parameter	name.	If	Owner	returns	null,	this	parameter	will	use	the	Root
Component	of	Actor	2.
Joint	Name:	This	parameter	is	used	when	you	work	with	Skeletal	Meshes	and
requires	the	name	of	Bone	that	Joint	is	attached	to.
Constraint	Bone	1:	This	parameter	requires	the	name	of	the	first	bone	(body)	that

this	constraint	is	connecting	to	and	would	be	the	child	bone	in	Physics	Asset.
Constraint	Bone	2:	This	parameter	requires	the	name	of	the	second	bone	(body)	that
this	constraint	is	connecting	to	and	would	be	the	parent	bone	in	Physics	Asset.
Disable	Collision:	This	parameter	disables	the	collision	between	the	bodies	joined	by
this	constraint.
Enable	Projection:	This	parameter	ensures	that	all	the	bodies	are	projected	so	that
both	these	bodies	still	appear	attached	to	each	other	if	a	high	enough	linear	or	angular
velocity	is	applied	to	each	element.	For	example,	a	tether	ball	spinning	too	fast	would
cause	the	elements	to	look	detached,	but	this	parameter	stops	this	from	happening.	If
the	distance	error	between	the	two	bodies	exceeds	0.1	units,	or	if	the	rotation	error
exceeds	10	degrees,	the	projection	will	correct	this.
Projection	Linear	Tolerance:	This	parameter	represents	Linear	Tolerance	in	world
units,	and	if	the	distance	error	exceeds	this	tolerance	limit,	the	body	will	be	projected.
Projection	Angular	Tolerance:	This	parameter	represents	Angular	Tolerance	in
world	units,	and	if	the	angular	distance	error	exceeds	this	tolerance	limit,	the	body
will	be	projected.
Linear	X	Motion:	This	parameter	indicates	whether	or	not	the	linear	motion	along
the	X	axis	is	allowed,	blocked,	or	limited.	If	this	is	limited,	the	Linear	Limit
property	will	be	used	to	determine	whether	a	motion	is	allowed.
Linear	Y	Motion:	This	parameter	indicates	whether	or	not	the	linear	motion	along
the	Y	axis	is	allowed,	blocked,	or	limited.	If	this	is	limited,	the	Linear	Limit
property	will	be	used	to	determine	whether	a	motion	is	allowed.
Linear	Z	Motion:	This	parameter	indicates	whether	or	not	the	linear	motion	along
the	Z	axis	is	allowed,	blocked,	or	limited.	If	this	is	limited,	the	Linear	Limit
property	will	be	used	to	determine	whether	a	motion	is	allowed.
Linear	Breakable:	This	parameter	defines	whether	or	not	the	joint	in	the	constraint
is	breakable	based	on	the	Linear	Break	Threshold	property.
Linear	Break	Threshold:	This	parameter	defines	the	force	threshold	required	to
break	this	joint.
Angular	Swing	1	Motion:	This	parameter	indicates	whether	or	not	the	rotation
around	the	Z	axis	is	allowed,	blocked,	or	limited.	If	this	is	limited,	the	Angular
Limit	property	will	be	used	to	determine	the	range	of	motion.
Angular	Twist	Motion:	This	parameter	indicates	whether	or	not	the	rotation	around
the	X	axis	is	allowed,	blocked,	or	limited.	If	this	is	limited,	the	Angular	Limit
property	will	be	used	to	determine	the	range	of	motion.
Angular	Swing	2	Motion:	This	parameter	indicates	whether	or	not	the	rotation
around	the	Y	axis	is	allowed,	blocked,	or	limited.	If	this	is	limited,	the	Angular
Limit	property	will	be	used	to	determine	the	range	of	motion.
Angular	Breakable:	This	parameter	determines	whether	or	not	it	is	possible	to	break
the	joint	with	angular	force.
Angular	Break	Threshold:	This	parameter	dictates	the	angular	force	necessary	to
break	the	joint.
Linear	Position	Drive:	This	parameter	enables/disables	the	linear	position	drive.
Here,	we	can	set	the	Linear	X,	Y,	and	Z	axes	and	Linear	Position	Target.

Linear	Velocity	Drive:	This	parameter	enables/disables	the	linear	velocity	drive,
where	we	can	set	the	X,	Y,	and	Z	linear	velocity	targets	for	the	constraint.
Linear	Position	Strength:	This	parameter	dictates	the	spring	force	applied	to	the
linear	drive.
Linear	Velocity	Strength:	This	parameter	determines	the	damping	force	applied	to
the	linear	drive.
Linear	Drive	Force	Limit:	This	parameter	limits	the	force	that	can	be	applied	to	the
linear	drive.
Angular	Orientation	Drive:	This	parameter	enables	the	angular	drive	towards	a
target	orientation	along	the	X,	Y,	or	Z	axes.
Angular	Velocity	Drive:	This	parameter	enables	the	angular	drive	towards	a	target
velocity	along	the	X,	Y,	and	Z	axes.
Angular	Drive	Force	Limit:	This	parameter	limits	the	force	that	the	angular	drive
can	apply.
Angular	Position	Strength:	This	parameter	applies	a	spring	force	value	to	the
angular	drive.
Angular	Velocity	Strength:	This	parameter	applies	a	damping	value	to	the	angular
drive.
Angular	Drive	Mode:	This	parameter	determines	the	way	the	angular	paths	are
estimated;	we	can	either	select	SLERP	(Spherical	Linear	Interpolation)	or
decompose	it	into	Twist	and	Swing.

Now	that	we	have	briefly	discussed	the	parameters	available	in	the	Physics	Constraint
component,	let’s	apply	angular	damping	to	our	constraint	so	that	it	can	be	slowed	down
and	brought	to	a	complete	halt.	In	order	to	make	this	happen,	we	will	need	to	apply
Angular	Velocity	Drive	and	set	Angular	Velocity	Strength	to	a	value	of	15.0.	Next,	we
will	need	to	set	Angular	Drive	Mode	to	Twist	and	Swing;	the	remaining	parameters	can
be	set	to	their	default	values.	Once	applied,	let’s	compile,	save,	and	jump	back	to
FirstPersonExampleMap.	We	will	see	that	over	a	short	period	of	time,	Constrained
Mesh	will	slowly	come	to	a	halt.	This	is	due	to	the	high	value	of	the	Angular	Velocity
Strength	parameter;	the	higher	the	value,	the	quicker	Constrained	Mesh	will	come	to	a
halt.	The	lower	the	number,	the	longer	it	would	take	for	Constrained	Mesh	to	come	to	a
halt	all	the	way	to	the	point	where	the	mesh	will	not	stop	swinging.

What	we	can	do	now	to	conclude	this	chapter	is	set	an	angular	force	break	so	that	if	the
constrained	mesh	moves	with	enough	force,	it	will	break	from	the	constraint	entirely	and
become	its	own	unique	physics	body.	To	accomplish	this,	let’s	return	to	the
BP_Constraint	blueprint	and	select	the	Physics	Constraint	component	from	the
Components	tab.	Now,	in	the	Details	panel	under	the	Angular	Limits	section,	we	can	set
Angular	Swing	1	Motion,	Angular	Twist	Motion,	and	Angular	Swing	2	Motion	to
Limited	and	leave	their	Angle	values	as	their	defaults.	Lastly,	make	sure	that	the	Angular
Breakable	parameter	is	checked	and	Angular	Break	Threshold	is	set	to	a	value	of	50.	If
we	compile	and	save	the	blueprint	and	jump	back	to	the	FirstPersonExampleMap	level,
we	will	see	that	when	we	shoot	the	constrained	mesh	enough	times	to	cause	its	angular
velocity	to	increase,	once	it	reaches	the	threshold	that	we	set,	the	mesh	will	separate

entirely	from	the	constraint.	From	here,	we	can	interact	with	the	separated	mesh	as	its	own
physics	body.	This	scenario	is	useful	if	you	want	to	simulate	physics	for	a	tire	swing,	or
for	any	type	of	a	pendulum	object	that	we	wish	to	provide	this	behavior	to.	Feel	free	to
experiment	with	the	Physics	Constraint	values	to	see	how	else	we	can	affect	the
behaviors	of	the	constraint.

Physics	Damping	–	a	section	review
In	this	section,	we	looked	at	how	to	explore	Physics	Damping	using	blueprints	and	the
Physics	Constraint	component.	By	setting	values	in	Physics	Constraint,	we	are	able	to
simulate	a	pendulum	in	our	game	world	that	would	swing	forever	until	we	apply	angular
damping	with	the	Angular	Velocity	Strength	parameter.	Lastly,	we	applied	an	angular
threshold	that	would	cause	our	constrained	mesh	to	break	from	the	joint	and	become	its
own	separate	physics	body.

Summary
In	this	chapter,	we	discussed	what	Physics	Bodies	are	and	how	they	function	in	Unreal
Engine	4.	Moreover,	we	looked	at	the	properties	that	are	involved	in	Physics	Bodies	and
how	these	properties	can	affect	the	behavior	of	these	bodies	in	the	game.

Next,	we	explored	what	Angular	and	Linear	Damping	are	and	how	they	can	affect	our
Physics	Bodies.	We	also	discussed	real-world	physics	when	it	comes	to	linear	and	angular
momentum,	apart	from	linear	and	angular	velocities.

Additionally,	we	briefly	discussed	Physical	Materials,	how	to	create	them,	and	what	their
properties	entail	when	it	comes	to	affecting	its	behavior	in	the	game.	We	then	reviewed
how	to	apply	Physical	Materials	to	static	meshes,	materials,	material	instances,	and
skeletal	meshes.

Lastly,	we	applied	Physics	Damping	to	Physics	Constraint	by	creating	a	working
blueprint	example,	where	we	constrained	two	cube	meshes	together	and	created	a
pendulum.	Moreover,	we	applied	angular	damping	and	angular	threshold	breaks	to	slowly
bring	the	constrained	cube	mesh	to	a	halt.	We	also	implemented	the	ability	for	the
constrained	mesh	to	break	from	the	joint	to	become	its	own	physics	body.

Now	that	we	have	a	stronger	understanding	of	how	Physics	Bodies	work	in	the	context	of
angular	and	linear	velocities,	momentum,	and	the	application	of	damping,	we	can	move	on
and	explore	in	detail	how	Physical	Materials	work	and	how	they	are	implemented.

Chapter	6.	Materials
Every	video	game	provides	a	kind	of	colorful	presentation	for	the	player	(even	in	black
and	white).	As	most	players	experience	memorable	parts	of	the	game,	this	is	what	a	player
hears	and	detects	visually	in	the	game.	This	detection	can	be	about	an	image,	some	notes,
or	something	known	as	texture.

Texture	is	a	digital	shell	that	covers	objects	in	the	game	world.	They	can	be	unique	or
repetitive	over	a	big	area	during	the	play	in	the	different	levels	of	the	game.	They	can	be
interactive	with	the	player	or	world,	artistic,	fantasy,	or	real	and	physical.

For	example,	sea	mostly	has	a	real	texture	of	water.	Some	old	engines	just	handle	a	simple
image	of	water,	whereas	some	modern	engines	(such	as	UE4)	can	provide	the	wave
motion	over	the	texture.	Water	is	well	known	by	everyone	on	our	planet,	and	physical
rules	related	to	water	have	already	been	discovered	by	everyone	during	their	lifetime.

On	the	other	hand,	Alien	skin	is	something	mostly	related	to	art	and	fantasy	of	the	game
story.	There	is	no	experimental	or	proven	physical	aspect	for	such	a	thing.	It	can	wave	or
vibrate	with	many	different	forms.

The	art	of	creating	materials	in	UE4	covers	the	physical	and	artistic	features	of	design	in
detailed	textures	for	the	game.

What	is	physical	material?
Unreal	Engine	4	defines	a	new	method	for	creating	materials.	This	method	is	based	on	the
physical	aspects	of	the	real	world.	Things	such	as	light	reflections	or	heaviness	will
directly	affect	your	model	in	the	game	world	as	visual	elements	and	interactive	behavior.
You	can	make	an	ice	cube	that	moves	on	the	surface	like	a	real	one,	or	you	can	make
waves	of	the	ocean	that	have	their	own	movements	and	reflect	sunlight.

Basically,	the	quality	of	material	has	a	direct	connection	to	the	graphics	card	and
technologies	involved	in	the	CPU	and	the	memory	speed	of	the	machine	of	a	user.	This
leads	developers	and	art	directors	to	answer	some	important	questions:	how	does	our	game
render	materials?	Is	it	necessary	that	a	user	should	have	a	super	good	machine	to	get	what
designers	plan	to	show,	or	can	we	solve	the	quality	aspect	in	simple	ways?

A	material	can	be	created	in	three	different	ways.	The	first	method	uses	an	image	that	is
copied	to	memory.	This	image	gets	loaded	several	times	from	the	memory	and	depends	on
the	size	and	alpha	channel.	It	also	gets	some	processing	time	from	the	CPU.	The	other
method	is	to	use	the	shaders	technology.	Here,	the	graphics	card	and	the	CPU	are	involved
in	creating	a	fully	calculated	shell	on	the	surface	of	the	object	that	represents	the	material.
The	final	one	is	a	mix	of	both.	Unreal	Engine	4	has	all	the	tools	to	develop	materials	of
high	quality.	At	the	same	time,	artists/developers	can	include	some	Shader-based	effect	on
the	surface	of	object.	These	features	can	be	customized.	This	means	that	you	can	allow	the
players	to	set	the	graphics	options	of	the	game	depending	on	the	machine	they	use.

Let’s	go	through	an	example	of	visual	and	interactive	elements	and	how	to	create	a
physics-based	material	in	the	next	section.

Creating	the	first	material
Before	we	start	working	in	Unreal	Editor,	we	will	need	to	have	a	project	to	work	with.
Perform	the	following	steps:

1.	 First,	open	Unreal	Editor	by	clicking	on	the	Launch	button	from	the	Unreal	Engine
launcher.

2.	 Then,	start	a	new	project	from	Project	browser	by	selecting	the	New	Project	tab.
Now,	select	Blank	and	make	sure	that	With	Starter	Content	is	selected.	Name	the
project	material_test.

3.	 From	Content	Browser,	click	on	the	Props	folder.	You	will	see	a	series	of	models
that	you	can	drag	and	drop	onto	the	stage.	Select	SM_MatPreviewMesh_02	and
drag	an	instance	of	it	to	the	stage.	Then,	press	the	F	key	to	focus	the	camera	on	your
shape.	We	will	use	this	shape	to	describe	the	physical	aspects	of	materials	in	the
game.	You	can	choose	other	shapes	and	follow	the	next	steps.

4.	 Now,	click	on	the	Materials	folder	and	right	click	on	an	empty	space	in	the	preview
section.	From	the	menu,	select	Material	and	then	enter	mymaterial	as	the	name	for
the	new	one.	Now,	drag	and	drop	this	material	onto	the	Materials	section	in
Element0,	in	Details	menu.	Now	your	new	material	is	defined	in	the	model:

5.	 Rotate	the	shape	and	zoom	in	and	out	of	the	surface.	It’s	important	to	learn	how	you
can	easily	navigate	your	camera	around	the	model	when	you	create	materials.	Unreal
Engine	4	provides	the	basic	elements	of	physical	light	and	ray	processing	in	real	time
for	the	materials.	It	also	calculates	how	rough	the	surface	is	and	then	dynamically
renders	this	on	the	shape.	All	these	are	at	the	same	time	connected	to	world	details,
such	as	sunlight	or	any	other	source	of	light,	gravity,	and	materials	around	the	shape.
Therefore,	it	is	good	practice	to	check	your	object	from	different	angles	and	zoom
value.	Try	to	reach	out	to	the	angles,	as	shown	in	the	following	screenshot:

Also,	the	model	that	we	are	using	has	two	elements:	Element0	and	Element1.
Element0	is	the	surface	or	shell	of	the	model,	whereas	Element1	is	similar	to	the
core	of	the	shape.	Both	can	accept	different	materials	from	the	Material	folder.

6.	 Double-click	on	Element0	in	the	Materials	section	of	the	Details	menu.	This	opens
the	blueprint	and	the	material	editor	for	your	material.	In	the	middle	of	the	screen,
there	is	a	blueprint	of	the	current	material.	This	is	completely	new	and	is	named
mymaterial.

Before	we	go	too	far,	click	on	Apply	from	the	top	menu	and	check	your	model.	It’s
similar	to	a	black	surface	that	covers	the	shell;	your	material	is	simply	applied	to	the
model,	as	shown	in	the	following	screenshot:

From	now	on,	you	will	learn	how	to	change	this	layer	on	the	shape	using	the
blueprint	in	UE4.

7.	 Double-click	on	Element0	to	go	back	to	the	material	blueprint.	As	you	can	see	in	the
following	screenshot,	there	is	a	box	with	your	material	name	(mymaterial).	This	box
has	some	features	to	connect	the	blueprint	units:

Imagine	that	this	box	is	kind	of	an	output.	You	will	send	data	to	base	color,	metallic,
and	the	rest	of	the	inputs	of	this	box.	It	creates	a	surface	for	your	model	and	then
outputs	this	data	to	your	model’s	surface.	As	you	can	see,	we	don’t	have	any	input	for
this	box	at	this	stage.	As	a	result,	our	material	is	simple	and	without	any	color	or
texture.	You	will	have	a	sample	of	your	material	in	the	top-left	corner	of	your	screen
that	you	can	rotate	or	zoom	with	the	help	of	your	mouse.

The	physics	of	materials
Each	material	in	Unreal	Engine	4	follows	some	physical	properties	to	be	defined	by	a
designer.	This	is	somehow	different	from	the	previous	versions	of	the	engine.	Unreal
Engine	4	gives	developers	and	artists	more	options	to	create	complex	materials	with
higher	performance	compare	to	old	versions.	Also,	you	can	invent	or	create	dynamic
materials	with	this	structure.

As	you	can	see	in	the	preceding	screenshot,	there	are	a	number	of	commands	on	the	left-
hand	side	of	your	material	blueprint	editor	in	the	Palette	section.	Some	have	shortcuts	to
use.	For	example,	you	can	drag	and	drop	Constant	from	here	onto	your	screen,	or	simply
hold	the	1	key	on	your	keyboard	and	left-click	your	mouse	on	the	screen.	Both	these
methods	give	you	a	constant	number	to	connect	the	input	of	the	other	box	in	the	blueprint.
Also,	each	box	has	some	properties	in	the	Details	menu.	These	properties	can	be
customized.

Now	let’s	make	a	material,	based	on	physical	rules,	inside	the	Unreal	Engine	4:

1.	 At	the	top	of	the	mymaterial	box,	locate	Base	Color.	This	property	defines	the	color
of	the	material	and	accepts	numbers	called	vector	numbers.	Vectors	in	Unreal	Engine
4	can	handle	2,	3,	and	4	numbers	together.

This	example	describes	the	main	concept	of	vectors.	Now,	imagine	that	you
have	three	chocolate	boxes	named	2Vector,	3Vector,	and	4Vector.	When	you
open	2Vector,	you	will	find	two	chocolates	together	in	the	box.	When	you	open
3Vector,	you	will	find	three	chocolates	together	in	the	box,	and	so	on.	If	you
send	one	of	these	boxes	to	someone,	it	means	that	you	have	sent	all	the
chocolates	together	in	the	box	to	the	destination.	Now,	when	it	is	opened	at	the
destination,	all	the	chocolates	are	there	at	the	same	time.	In	this	scenario,	the
chocolate	box	is	a	vector	and	the	chocolates	are	the	members	of	the	vector.	The
members	of	the	vector	have	the	same	weight	on	interaction	between	the	user	and
themselves.
We	can	use	vectors	when	we	need	to	use	large	amounts	of	data	at	the	same	time
to	apply	physical	properties	in	the	engine.	Color	is	a	physical	property	made
from	three	numbers	for	RGB	values	(red,	green,	and	blue).	We	need	to	send
three	numbers,	all	together	to	this	input,	so	the	best	choice	is	to	send	a	vector
number.
On	the	right-hand	side	of	the	screen	in	Palette,	locate	Constant2Vector,	drag
and	drop	an	instance	of	it	onto	the	stage,	or	hold	the	3	key	and	right-click	on	the
stage,	as	shown	in	the	following	screenshot.	Now,	right-click	on	black	area,	set
the	color,	and	connect	the	box	to	Base	Color	on	the	mymaterial	box.	The
values	of	RGB	are	shown	in	the	Details	menu	as	well.	You	can	change	them
between	0	and	1,	so	for	example,	pure	yellow	will	be	R:	1.0,	G:	1.0,	and	B:
0.0.	Change	this	to	R:	1.0,	G:	0.327,	and	B:	0.0	to	have	an	orange	color	on	the
model:

2.	 Metallic	surface	is	another	physical	aspect	of	your	material.	It	defines	how	metallic
your	object	looks	like	in	case	of	the	shininess	of	lights	around.	Locate	Metallic	under
Base	Color	on	the	mymaterial	box,	then	drag	and	drop	one	Constant	from	Palette
on	the	right-hand	side.	Change	its	value	to	1.0	in	the	Details	section.	Click	on	Apply
at	the	top	and	check	your	model.	It	looks	similar	to	unpolished	gold.	Now,	go	back	to
the	material	editor	and	change	the	color	to	R:	0.2,	G:	0.2,	and	B:	0.2.	Click	on
Apply	at	the	top	and	check	your	model.	Now,	it	looks	similar	to	unpolished	silver,	as
shown	in	the	following	screenshot:

3.	 Each	material	can	provide	the	physical	behavior	of	soft	or	none	of	the	soft	surfaces.
Imagine	the	difference	between	a	mirror	and	the	white	surface	of	a	wall	made	by
chalk.	The	big	difference	is	that	the	mirror	reflects	the	light	in	a	linear	way,	but	the
chalk	breaks	the	light	into	many	different	angles.	As	a	result,	you	can’t	see	any
reflection	of	the	shape	on	the	wall.

1.	 Let’s	try	this	by	changing	the	color	to	white	by	setting	R,	G,	and	B	to	1.0	for
your	Base	Color	property.	Now,	change	the	metallic	value	to	0.0	and	then	drag
and	drop	one	Constant	from	Palette	on	the	right-hand	side	of	your	screen.
Connect	this	to	the	Roughness	property	on	the	mymaterial	box.	Now,	click	on
apply	and	check	your	model.	It	looks	similar	to	a	plastic	with	a	mirror-like
reflection	of	other	objects	on	the	surface.	Now,	go	back	back	to	the	material
editor	and	change	its	value	to	1.0	in	the	Details	section.	Again,	click	on	apply
and	check	your	model.	Now,	it	looks	similar	a	piece	of	chalk	with	absolutely	no
reflections	of	other	objects	around,	as	shown	in	the	following	screenshot:

2.	 Now,	change	the	metallic	value	to	1.0	and	click	on	Apply.	The	result	is	a	nice
reflective	mirror	surface	around	the	object.	Let’s	go	back	to	the	material	editor.
What	you	see	is	a	fully	metallic	surface	with	maximum	shininess	of	light	and	an
absolute	reflective	surface	that	reflects	light	in	the	most	linear	and	direct	form.
This	is	the	physical	descriptions	of	this	material.	So,	if	you	wish	to	create	a
golden	object	similar	to	the	following	screenshot,	you	should	change	the	values
to	1.0,	0.46,	and	1.0	for	Base	Color,	1.0	for	Metallic,	and	0.28	for
Roughness:

3.	 Sometimes,	you	need	to	create	some	shiny	plastics	(such	as	pool	balls).	For	this

purpose,	Unreal	Engine	4	defines	some	physical	methods	to	simulate	plastic-like
materials.	Change	your	metallic	property	to	0	and	then	change	roughness	to	0.
Now,	click	on	Apply	and	check	the	model.	As	you	can	see,	the	model	looks
similar	to	a	plastic	shiny	toy.	Set	the	Specular	property	to	1.0	by	adding	one
Constant	to	it.	Similarly,	change	other	properties	as	well.	Now,	click	on	Apply
and	check	your	model.	The	images	of	surrounding	objects	will	become	more
visible	in	the	plastic.	Unreal	Engine	4	simulates	the	differences	between	the
shiny	non-metal	surface	and	the	metal	surface	by	including	the	Specular	value
of	the	surface	as	physical	variable.

4.	 It	is	good	practice	to	select	a	couple	of	real-world	objects	around	your	computer
and	create	their	material	in	the	engine	based	on	physical	elements.	This	includes
Softness	(Roughness	and	Specular	inside	the	engine)	and	Shininess,	related	to
the	Metallic	property.	For	example,	try	to	create	green	apple	skin,	shoes,
cooking	tools	(such	as	a	spoon	or	fork),	and	paper.

4.	 Some	materials	need	more	physical	aspects	than	has	been	mentioned	before.	For
example,	water	has	some	patterns	similar	to	waves	on	its	surface	and	transparency.
Also,	the	way	light	reflects	on	the	surface	of	water	is	different	from	metal	or	plastic.
To	create	these	kinds	of	materials,	which	mostly	have	patterns	and	shadows	on	the
surface,	Unreal	Engine	4	uses	some	images	known	as	Normal	Maps.	Click	on	the
Texture	folder	in	your	editor,	find	T_Ground_Moss_N	and	drag	it	onto	your	material
editor,	and	connect	this	to	the	Normal	property	of	mymaterial.	Now,	change	Base
Color	to	0.4,	0.5,	and	0.5	for	the	values	of	RGB.	Then,	click	on	Apply	and	check
your	model.

As	you	can	see	in	the	following	screenshot,	your	model	will	have	a	surface	similar	to
a	stone,	which	in	different	angles	of	light	shows	shadows.

5.	 The	texture	on	the	surface	of	your	model	can	also	accept	movements	in	the	X	and	Y
direction.	Find	Panner	in	Palette	on	the	right-hand	side	of	your	material	editor	and
drag	it	onto	the	stage	and	then	connect	this	to	the	UV’s	input	on	your	Texture
Sample.	Select	both	boxes	and	hit	Ctrl	+	W.	This	shortcut	duplicates	your	selection.
Now,	add	the	Multiply	box	and	connect	your	boxes,	as	shown	in	the	following
screenshot.	Then,	change	Metallic	to	0.7	and	Roughness	to	0.0.	Now,	change	Base
Color	to	0.2,	0.5,	and	1.0	for	RGB	to	see	the	water.	Change	the	values	of	Panner	to
0.02,	0.0,	0.01,	and	-0.011	to	generate	water	waves	on	your	model.

6.	 Now,	let’s	talk	about	other	physical	aspects.	For	this,	close	your	project	and	create	a
new	project	from	Project	browser	by	selecting	the	New	Project	tab.	Select	First
Person	and	make	sure	that	With	Starter	Content	is	selected.	Then,	select	the
Material	folder	and	right-click	on	an	empty	space,	navigate	to	Physics,	select
Physical	Material,	and	name	it	mymaterial:

7.	 Now,	select	a	cube,	click	on	Apply,	and	double-click	on	Materials	on	the	right-hand
side	to	navigate	to	the	material	editor.	In	the	Details	section	of	Phys	Materials	on
the	left-hand	side,	click	and	select	mymaterial;	this	will	apply	your	physical	material
to	the	shape.	Now,	click	on	Apply	at	the	top	to	go	back	to	the	material	editor,	as
shown	in	the	following	screenshot:

8.	 As	you	can	see,	there	isn’t	any	change	on	the	surface.	We	created	a	different	kind	of
material	that	is	responsible	for	the	physical	interaction	of	the	shape,	along	with	other
shapes	around.	Let’s	click	on	Play	and	test	how	your	cube	responds	to	your	shooting.
Then,	press	Stop,	double-click	on	mymaterial,	and	change	Density	to	20	in	the	new
window.	Now,	click	on	Play.	You	will	find	that	your	cube	appears	to	be	heavier	than
the	other	cubes	and	moves	very	slowly	in	response	to	the	shooting.

9.	 Click	on	Stop	to	go	back	to	the	editor,	double-click	again	on	mymaterial,	and	change
Density	to	1.0	(the	default	value).	This	time,	change	Restitution	from	0.3	to	2.3.
Now,	go	back	to	the	editor,	click	on	Play,	and	shoot	at	the	box.	It	seems	that	the	box
has	some	more	elastic	movement.

10.	 Now,	click	on	Stop	and	again	open	the	Details	menu	for	mymaterial	by	double-
clicking	on	it.	Set	Restitution	to	0.3	(the	default	value).	This	time,	change	Friction
to	-24	and	play	again.	This	property	prepares	an	ice-like	behavior	for	your	shape.

You	can	create	a	simple	game	by	changing	Density	to	10,	Restitution	to	2.3,	and
Friction	to	-24.	Now,	try	to	hit	other	cubes	with	the	one	that	you	defined	your
physical	materials	with.

Start	a	new	project	from	Project	browser	by	selecting	the	New	Project	tab.	Select	First
Person	and	make	sure	that	With	Starter	Content	is	selected	and	name	the	project
material_test.

Summary
Making	materials	is	an	art	in	game	design,	and	the	new	generation	of	Unreal	Engine,
which	is	4,	provides	sufficient	levels	of	detail	design	for	the	artists	and	developers	in	this
area.	Basically,	the	first	step	of	making	each	material	in	Unreal	Engine	4	is	to	address	the
physical	features	of	this	object.	Features	such	as	Metallic	or	Color	and	Density	are	some
examples	of	how	you	can	make	a	material	inside	your	game	world,	which	we	went
through	in	this	chapter	in	detail.

Chapter	7.	Creating	a	Vehicle	Blueprint
In	this	chapter,	we	will	create	a	working	Vehicle	Blueprint	from	scratch	using	the	default
assets	provided	by	Unreal	Engine	4	with	the	VehicleGame	project	example	as	well	as
using	assets	which	we	will	be	creating	by	ourselves.	First,	we	will	start	with	an	overview
of	what	Vehicle	Blueprint	will	be	composed	of	and	then	move	on	to	the	specifics	on	how
to	create	the	different	blueprints	for	all	of	their	aspects.	Following	the	overview,	we	will
cover	the	following	topics:

Creating	Vehicle	Blueprints
Editing	Vehicle	Blueprints
Setting	up	user	controls
Testing	the	vehicle

There	is	a	lot	of	content	to	cover	in	this	chapter,	so	let’s	get	started.

Vehicle	Blueprint	–	a	content	overview
A	vehicle	in	Unreal	Engine	4	contains	a	number	of	different	types	of	assets:

A	Skeletal	Mesh
A	Physics	Asset
An	Animation	Blueprint
A	Vehicle	Blueprint
One	or	more	Wheel	Blueprints
A	Tire	Type	Data	Asset

Let’s	start	by	creating	the	necessary	game	project	so	that	we	have	access	to	a	Vehicle
Skeletal	Mesh	by	default,	and	we	don’t	have	to	create	our	own	in	a	third-party	3D
modeling	program.	To	do	so,	let’s	open	the	Epic	Games	Unreal	launcher	and	navigate	to
the	Learn	tab.	Here,	scroll	down	to	the	Example	Game	Projects	section	and	find	the
Vehicle	Game	project	template.	Select	this	project	and	then	the	Download	option:

Once	successfully	downloaded,	we	can	create	the	project	by	navigating	to	the	Library	tab
of	the	Unreal	Engine	launcher,	scroll	to	the	very	bottom	of	the	page	to	the	Vault	section,
and	select	the	Create	Project	option	for	Vehicle	Game:

When	we	select	the	Create	Project	option,	it	will	ask	us	for	a	name	of	the	project.	Let’s
call	this	project	Vehicle_PhyProject.	After	the	Unreal	Engine	launcher	creates	the
vehicle	project	for	us,	we	should	see	it	available	in	our	list	of	projects	in	the	My	Projects
section	of	the	Library	tab.	Now,	double-click	on	the	project	image	to	open	the	Unreal
Engine	4	editor	for	this	project.	By	default,	this	project	contains	all	the	assets	necessary	to
create	a	working	Vehicle	Blueprint,	such	as	a	Skeletal	Mesh,	Wheel	Blueprints,	a
Vehicle	Animation	Blueprint,	and	so	on,	but	we	will	only	use	the	Skeletal	Mesh	that	the
project	provides,	and	we	will	create	every	other	aspect	of	the	Vehicle	Blueprint	from
scratch	step	by	step.

Now	that	we	have	successfully	created	the	Vehicle	Game	Project,	feel	free	to	explore
some	of	the	content	that	it	contains	and	play	the	game	in	the	Desert	Rally	Race	level	to
see	how	our	final	result	will	be	for	this	chapter.	Once	we	are	satisfied	exploring	the	game
project,	let’s	begin	by	creating	a	new	folder	in	Content	Browser	that	will	house	all	of	our
content	for	this	chapter.	First,	navigate	to	Content	Browser	and	highlight	the	Content
folder	at	the	very	top	of	the	content	hierarchy	in	the	top-left	corner	of	the	browser.	Once
highlighted,	we	can	either	right-click	on	the	Content	folder,	select	the	New	Folder	option,
or	left-click	on	the	Add	New	drop-down	menu	and	select	New	Folder.	Name	this	folder
VehicleContent.	With	the	folder	in	place,	we	will	now	navigate	to	the	Vehicles	folder,	the
VH_Buggy	folder	and	then	to	the	Mesh	folder;	this	folder	contains	the
SK_Buggy_Vehicle	Skeletal	Mesh	that	we	need	to	begin	this	lesson.	Let’s	left-click	and
drag	the	SK_Buggy_Vehicle	asset	to	our	VehicleContent	folder	and	select	it	to	create	a
copy.	Name	this	copy	SK_Buggy_NewVehicle.	If	we	want	to	create	our	own	Skeletal
Mesh,	here	are	some	of	the	things	we	should	keep	in	mind.

The	basic,	bare	minimum,	art	setup	required	to	create	a	proper	vehicle	is	just	a	Skeletal

Mesh.	The	type	of	vehicle	will	dictate	how	complicated	an	art	setup	we	will	need,	and
special	considerations	may	need	to	be	given	to	the	suspension.	For	example,	a	tank	does
not	require	a	special	suspension	setup,	whereas	a	dune	buggy	(such	as	the	one	in	the
Vehicle	Game	project	example)	will	require	additional	joints	to	make	the	exposed
components	move	in	a	believable	way.

Some	of	the	more	important	basic	information	we	need	to	know	about	setting	up	our
vehicle	in	a	third-party	art	program	(such	as	3ds	Max	or	Maya)	is	that	we	want	the	vehicle
mesh	to	point	to	the	positive	X	direction.	Next,	we	will	need	to	measure	the	radius	of	our
wheels	in	centimeters	for	use	in	Unreal	Engine	4	because	we	had	discussed	earlier	in	this
book	that	Unreal	Engine	4	uses	centimeters	as	its	unit	of	measurement,	where	1	Unreal
Unit	(uu)	is	equal	to	1	centimeter	(cm).	The	minimum	number	of	Joints	required	for	a
four-wheeled	vehicle	is	5:1	and	4	wheels;	this	will	change	depending	on	the	number	of
wheels	the	vehicle	has	(remember	what	we	discussed	in	Chapter	5,	Physics	Damping,
Friction,	and	Physics	Bodies).	The	wheel	and	root	joints	should	be	aligned	with	the	X
direction	looking	forward	and	the	Z	direction	looking	upwards.	By	doing	so,	this	will
ensure	that	the	wheel	will	roll	on	the	Y	axis	and	steer	on	the	Z	axis.	All	the	other	joints	can
be	arranged	as	required,	but	it	should	be	noted	that	things	such	as	Look	At	nodes	for	the
Animation	Blueprint	assume	that	the	X	direction	is	forward.	To	prevent	visual	oddities,
the	joints	for	our	wheels	should	be	accurately	centered,	as	shown	in	the	following
screenshot:

The	visual	mesh	will	not	be	used	for	collision	detection;	however,	if	the	wheel	mesh	is	off-

center,	it	will	look	as	if	the	wheel	is	broken	and	will	be	really	noticeable	due	to	motion
blur.

For	binding	purposes,	we	can	use	either	the	standard	smooth	bind	for	Maya	or	the	skin
modifier	for	3ds	Max.	Wheels	should	only	have	weights	on	one	joint	so	that	they	can	spin
free	with	no	odd	deformation.	For	shocks	and	struts,	we	can	get	away	with	some	fancy
skinning,	but	it	will	require	more	thought	on	the	Unreal	Engine	Editor	side.

Lastly,	vehicles	are	simply	exported	as	Skeletal	Meshes	with	no	special	considerations
when	you	import	the	asset	to	Unreal	Engine	4.

Now	that	we	have	our	own	copy	of	the	Skeletal	Mesh	vehicle,	we	can	create	our	Physics
Asset	for	this	vehicle	by	right-clicking	on	SK_Buggy_NewVehicle	from	our
VehicleContent	folder,	selecting	the	Create	option	from	the	drop-down	menu	and	then
Physics	Asset.	Then,	name	this	asset	PA_Buggy_NewVehicle	and	leave	all	the	setup
options	to	their	default	values,	as	shown	in	the	following	screenshot:

Now,	double-click	on	the	new	Physics	Asset,	and	we	should	see	something	similar	to	this
screenshot	in	PhAT:

We	obtain	this	result	because	the	Physics	Asset	Tool	(PhAT)	in	Unreal	Engine	4	attempts
to	wrap	the	vertices	that	are	skinned	to	a	joint	as	best	as	it	can.	PhAT	does	not	currently
have	a	way	to	effectively	handle	the	recreation	of	the	constraints	that	hold	all	the	Physics
Bodies	together,	so	what	we	need	to	do	is	delete	all	the	existing	Physics	Bodies	in
Hierarchy	so	that	we	can	start	building	them	from	the	root	joint.	By	doing	so,	all	of	our
constraints	will	be	created	correctly.

To	do	this,	navigate	to	Hierarchy,	press	Shift	and	left-click	on	all	the	options,	and	press
the	Delete	key;	this	will	remove	all	the	Physics	Bodies	from	the	asset:

Starting	with	the	root	joint:	rootJNT,	let’s	create	the	Physics	Bodies	on	the	joints	of	our
vehicles.	Keep	in	mind	that	we	only	need	a	Physics	Body	on	a	joint	that	either	needs	to	be
physically	simulated	or	affects	the	bounds	of	our	vehicle.	For	our	vehicle,	a	box	shape	for
the	root/main	body	and	spheres	for	each	of	the	wheels	will	serve	us	just	fine,	but	we	will
add	additional	Physics	Bodies	to	get	the	desired	behavior	that	we	want	for	other	parts	of
the	vehicle	(such	as	the	antenna).

For	our	Buggy	Vehicle,	we	will	have	a	total	of	10	Physics	Bodies.	The	end	result	should
look	similar	to	the	following	image:

To	accomplish	this,	we	will	first	create	the	large	bounding	box	that	surrounds	the	main
body	of	Buggy	Vehicle.	Select	the	rootJNT	option	from	the	Hierarchy	panel	on	the
right-hand	side	and	then	right-click	and	select	the	Add	Box	option.	Make	sure	to	use	the
Translation	and	Scale	tools	to	shape	the	Physics	Body	box	to	match	the	shape	of	the
body	of	the	buggy	as	best	as	you	can.	Next,	let’s	navigate	to	the	Collision	section	of	the
Details	panel	and	make	sure	that	Simulation	Generates	Hit	Events	is	set	to	True.	Lastly,
in	the	Details	panel	of	the	newly	created	box,	Physics	Body,	make	sure	that	Physics	Type
is	set	to	Default.

Now,	let’s	create	the	Physics	Bodies	for	the	four	wheels	of	our	vehicle.	Each	Physics
Body	will	be	of	the	same	size	and	shape,	and	have	the	same	properties	associated	to	them.
Let’s	select	F_L_wheelJNT	from	the	Hierarchy	panel,	right-click	on	this	option,	and
select	the	Add	Sphere	option.	Use	the	Scale	and	Translation	tools	to	position	the
spherical	Physics	Body	around	the	front-left	wheel	of	the	vehicle	and	change	its	Physics
Type	to	Kinematic.	Follow	this	process	for	the	remaining	three	wheels:	F_R_wheelJNT,
B_R_wheelJNT,	and	B_K_wheelJNT.	Lastly,	let’s	navigate	to	the	Collision	section	of
the	Details	panel	for	each	of	the	four	wheels	and	make	sure	that	Simulation	Generates
Hit	Events	is	set	to	True.

Moving	on,	let’s	now	create	the	Physics	Bodies	for	the	front	and	back	bumpers	of	the
vehicle	by	right-clicking	on	rootJNT	and	selecting	the	Add	Sphyl	option,	which	will
create	a	capsule-shaped	Physics	Body.	Use	the	Scale	and	Translation	tools	to	position
this	Physics	Body	around	the	front	bumper	of	the	vehicle	and	set	its	Physics	Type	to
Default.	Repeat	this	process	for	the	back	bumper	of	the	vehicle	as	well.	Lastly,	let’s
navigate	to	the	Collision	section	of	the	Details	option	for	both.	Make	sure	that	Simulation
Generates	Hit	Events	is	set	to	True.

Before	we	move	on	to	creating	the	Physics	Body	for	the	antenna,	let’s	first	create	the	two
box	shapes	for	the	left-hand	side	and	the	right-hand	side	suspensions	for	the	buggy.	With
the	rootJNT	bone	joint	selected	in	Hierarchy	on	the	right-hand	side,	right-click	and
select	the	Add	Box	option.	Lastly,	let’s	navigate	to	the	Collision	section	of	the	Details
panel	and	make	sure	that	Simulation	Generates	Hit	Events	is	set	to	True.	Then,	the	scale
and	position	of	the	box	should	look	similar	to	the	following	screenshot:

Now,	create	an	additional	Box	Physics	Body	and	shape	and	transform	it	so	that	it	covers
the	other	side	of	the	buggy’s	suspensions.	Then,	set	both	their	Physics	Type	parameters	to
Default.	Next,	let’s	navigate	to	the	Collision	section	of	the	Details	panel	and	make	sure
that	Simulation	Generates	Hit	Events	is	set	to	True.

Lastly,	let’s	set	up	the	Physics	Body	for	the	antenna	of	our	vehicle	so	that	we	can	simulate
a	responsive	antenna	when	we	move	in	our	vehicle.	To	do	this,	select	the	Antenna_01
option	from	the	Hierarchy	panel,	right-click	on	it,	and	select	the	Add	Sphyl	option.	Next,
set	Physics	Type	to	Default,	and	set	the	following	parameters	in	the	Details	panel	for	our
antenna’s	Physics	Body:

Mass	Scale:	Set	this	parameter	to	0.01
Angular	Damping:	Set	this	parameter	to	10.0
Linear	Damping:	Set	this	parameter	to	3.0

To	finish	off	the	Physics	Body	for	our	antenna,	make	sure	that	the	Antenna_01	joint	is
selected	in	the	Hierarchy	panel.	Then,	select	Constraint	Mode	from	the	Body	Mode
drop-down	menu:

While	in	Constraint	Mode	and	with	the	Antenna_01	joint	selected,	set	the	following
parameters	in	the	Details	Panel:

Angular	Swing	1	Motion:	Set	this	parameter	to	Limited
Angular	Twist	Motion:	Set	this	parameter	to	Locked
Angular	Swing	2	Motion:	Set	this	parameter	to	Limited
Swing	1	Limit	Angle:	Set	this	parameter	to	1.0
Swing	2	Limit	Angle:	Set	this	parameter	to	1.0
Swing	Limit	Stiffness:	Set	this	parameter	to	500.0
Swing	Limit	Damping:	Set	this	parameter	to	50.0

With	these	changes	in	place,	let’s	return	to	Body	Mode,	select	rootJNT	from	the
Hierarchy	panel	and	then	the	Selected	Simulation	option,	and	select	Simulate	to	see
how	our	Physics	Bodies	are	affected	by	the	gravity	of	simulation:

We	can	see	that	the	wheels	rotate	in	a	strange	manner	that	don’t	make	too	much	sense	in
the	context	of	a	working	vehicle	for	a	racing	game,	but	we	will	change	this	behavior	later
when	we	create	the	blueprints	for	the	vehicle.

Vehicle	Blueprints	–	a	section	overview
In	this	section,	we	discussed	the	necessary	components	that	make	up	a	working	Vehicle
Blueprint,	and	we	looked	at	the	necessary	details	of	how	to	create	the	Physics	Bodies	for
our	vehicle.	Lastly,	we	used	PhAT	in	Unreal	Engine	4	to	recreate	the	necessary	Physics
Body	components	of	the	Buggy	Vehicle	to	establish	a	working	Physical	Body	for	the
vehicle.	Now	that	we	have	created	the	Physics	Asset	from	the	premade	Skeletal	Mesh
that	is	created	by	default	when	working	with	the	VehicleGame	project,	we	can	now	move
on	and	work	on	Vehicle	Blueprints.

Creating	the	Vehicle	Blueprints
To	create	a	new	Vehicle	Blueprint,	let’s	first	navigate	to	our	VehicleContent	folder	in
Content	Browser	and	then	right-click	on	an	area	that	is	empty.	From	the	context	drop-
menu,	we	will	select	the	Blueprint	Class	option,	click	on	the	drop-down	All	Classes
menu,	search	for	the	WheeledVehicle	Pawn	class,	and	name	this	blueprint
BP_NewVehicle.

The	WheeledVehicle	Pawn	blueprint	contains	an	inherited	component	called
VehicleMovement.	This	component	allows	you	to	have	more	control	over	the	wheels	and
the	overall	behavior	for	the	vehicle.

Next,	we	will	need	to	create	two	different	types	of	Wheel	Blueprints	for	our	vehicle	(one
for	the	front	wheels	and	one	for	the	back	wheels).	To	get	this	going,	let’s	navigate	to	the
VehicleContent	folder	in	Content	Browser,	right-click	on	an	area	of	Content	Browser
that	is	empty,	and	select	the	Blueprint	Class	option.	Now,	in	the	context	sensitive	drop-
down	menu,	enter	Vehicle	Wheel	to	locate	the	VehicleWheel	Blueprint	Object	class.	We
will	create	two	different	VehicleWheel	Blueprint	classes	(one	named	BP_FrontWheel	and
another	named	BP_BackWheel).

In	most	cases,	we	will	want	to	have	at	least	two	wheel	types:	that	is,	one	wheel	type	that	is
affected	by	steering	and	another	that	is	affected	by	the	vehicle	handbrake.	Additionally,	we
can	set	differing	radii,	mass,	width,	handbrake	effect,	suspension,	and	many	other
properties	to	give	our	vehicle	the	handling	we	desire.

Now,	we	can	move	on	and	create	the	TireType	data	asset	that	we	will	need	for	our
VehicleWheel	blueprint.	To	create	a	new	TireType	data	asset	in	Content	Browser,	we
need	to	right-click	on	an	area	of	the	VehicleContent	folder	that	is	empty,	select	the
Miscellaneous	option	and	then	the	TireType	option	from	the	context	sensitive	drop-down
menu	that	appears:

Let’s	name	this	asset	DA_TireType	and	then	right-click	on	the	asset	to	open	Generic
Asset	Editor.	The	TireType	data	asset	has	only	one	single	value:	Friction	Scale.	This
value	not	only	affects	the	raw	friction	of	the	wheel,	but	also	scales	the	value	for	how
difficult	or	easy	it	is	for	a	wheel	to	slide	during	a	hard	turn.	There	is	a	property	slot	in	the
VehicleWheel	blueprint	for	the	TireType	data	asset	that	we	will	use	once	the	time	comes.

Lastly,	we	have	to	create	the	Animation	blueprint.	We	will	use	this	to	animate	our	Buggy
Vehicle.	To	do	this,	navigate	to	Content	Browser	and	then	go	to	the	VehicleContent
folder.	Now,	in	an	empty	area,	right-click	and	select	the	Animation	option	from	the	drop-
down	menu	and	then	select	Animation	Blueprint:

When	we	first	create	an	Animation	Blueprint,	it	will	ask	us	for	a	Target	Skeleton	to	use;
we	will	select	the	SK_Buggy_Vehicle_Skeleton	option	from	the	Target	Skeleton	drop-
down	list.	We	also	want	to	make	sure	that	we	select	the	VehicleAnimInstance	option
from	the	Parent	Class	context	sensitive	drop-down	list	and	name	this	animation	blueprint
BP_VehicleAnimation.	Before	we	move	on	and	discuss	how	to	edit	the	different
blueprints	and	data	assets	we	created	to	complete	our	vehicle,	let’s	briefly	discuss	what
animation	blueprints	are.

An	Animation	Blueprint	is	a	specialized	blueprint	that	contains	graphs	used	to	control
the	animation	of	a	skeletal	mesh.	It	can	perform	blending	of	animations,	has	direct	control
of	the	bones	in	a	skeleton,	and	outputs	a	final	pose	for	our	skeletal	mesh	in	each	frame.
The	Controller	directs	the	pawn	or	character	to	move	based	on	the	player	input	or
decisions	made	based	on	what	the	game	play	dictates.	Each	pawn	has	a	Skeletal	Mesh
component	that	references	the	Skeletal	Mesh	to	animate	and	has	an	instance	of	an
Animation	Blueprint.

Through	the	use	of	its	two	graphs,	the	Animation	Blueprint	can	access	properties	of	the
owning	pawn,	compute	the	values	used	for	blending,	state	transitions,	or	driving	Anim
Montages,	and	can	calculate	the	current	pose	of	the	skeletal	mesh	based	on	the	blending
of	animation	sequences	and	direct	transformations	of	the	skeleton	from	Skeletal	Controls.
When	we	work	with	animation	blueprints,	we	have	to	keep	in	mind	that	there	are	two
main	components	that	work	in	correlation	with	one	another	to	create	the	final	animation
for	each	frame.	One	is	Event	Graph	that	we	can	recognize	from	other	blueprints.	This	is
in	charge	of	performing	updates	to	values	that	can	be	used	in	Anim	Graph	to	drive	State
Machines,	Blend	Spaces,	or	other	nodes	that	allows	you	to	blend	between	multiple
animation	sequences	or	poses	that	fire	off	notifications	to	other	systems,	thereby	enabling
dynamically-driven	animation	effects	to	take	place.

There	is	one	Event	Graph	in	every	Animation	Blueprint	that	uses	a	collection	of	special
animation-based	events	to	initiate	sequences	of	actions.	The	most	common	use	of	Event
Graph	is	to	update	the	values	used	by	Blend	Spaces	and	other	blend	nodes	to	drive
animations	in	the	Anim	Graph.

The	Anim	Graph	is	used	to	evaluate	the	final	pose	of	a	skeletal	mesh	for	the	current
frame.	By	default,	each	Animation	Blueprint	has	an	Anim	Graph.	This	graph	can
contain	animation	nodes	that	are	placed	in	it	to	sample	animation	sequences,	perform
animation	blends,	or	control	bone	transformations	using	Skeletal	Controls.	The	resulting
pose	is	then	applied	to	our	Skeletal	Mesh	for	each	frame	in	the	game.

Creating	the	Vehicle	Blueprints	–	a	section
review
In	this	section,	we	looked	at	the	necessary	blueprints	and	data	assets.	We	will	move	on	and
edit	their	properties	to	obtain	the	behaviors	we	need	for	our	working	Buggy	Vehicle.	First,
we	created	the	WheeledVehicle	blueprint.	This	is	the	main	blueprint	for	our	vehicle.
Then,	we	created	two	types	of	Wheel	Blueprints	(one	for	our	front	wheels	and	another
for	our	back	wheels).	Further,	we	created	the	TireType	data	asset.	This	is	necessary	to
control	the	Friction	property	for	our	wheels.	Lastly,	we	created	our	animation	blueprint
for	the	Buggy	skeletal	mesh,	and	we	discussed	about	Animation	Blueprints	and	its
functionalities	in	detail.	Now	that	we	have	created	the	necessary	blueprint	and	data	assets
for	our	vehicle,	we	can	move	on	and	edit	the	properties	of	these	assets.

Editing	the	Vehicle	Blueprints
With	the	vehicle	blueprints	created,	let’s	now	move	on	and	edit	the	properties	of	these
blueprints	in	order	to	obtain	the	behaviors	we	want	for	our	vehicle.	We	will	begin	by
working	with	the	BP_VehicleAnimation	blueprint	by	double-clicking	on	our	Content
Browser	and	opening	its	Anim	Graph;	which	opens	by	default.	The	first	node	we	will
create	is	the	Mesh	Space	Ref	Pose	node,	and	this	is	used	to	return	the	mesh	space
reference	pose	for	our	skeletal	mesh	in	the	Animation	Blueprint.	To	create	this	node,
right-click	on	an	area	of	the	Anim	Graph	that	is	empty.	Now,	from	the	context	menu,	we
will	search	for	the	Mesh	Space	Ref	Pose	node:

Next,	we	will	need	a	Wheel	Handler	node.	This	is	used	to	alter	the	wheel	transformation
based	on	the	setup	in	the	Wheeled	Vehicle	blueprint;	keep	in	mind	that	this	will	only	work
when	the	owner	is	of	the	Wheeled	Vehicle	class.	The	Wheel	Handler	node	also	handles
the	animation	needs	of	our	wheels,	such	as	the	spinning,	the	steering,	the	handbrake,	and
the	suspension.	There	is	no	additional	setup	required;	this	node	obtains	all	the	necessary
information	from	the	wheels	and	transforms	it	into	animation	on	the	bone	that	the	wheel	is

associated	with.	To	create	the	Wheel	Handler	node	in	the	Anim	Graph	of	our	Vehicle
Animation	blueprint,	we	need	to	right-click	on	an	area	of	the	graph	that	is	empty.	Then,
from	the	context-sensitive	menu,	we	can	search	for	Wheel	Handler.	Finally,	we	can
connect	the	Component	Pose	output	of	the	Mesh	Space	Ref	Pose	node	to	the
Component	Pose	input	of	Wheel	Handler,	as	shown	in	the	following	screenshot:

Unless	we	have	additional	struts	or	other	suspension	needs,	we	would	connect	the
Component	Pose	output	of	the	Wheeler	Handler	node	to	the	Result	output	node	of	the
Final	Animation	Pose;	if	we	do	this,	a	Component	to	Local	node	will	automatically	be
generated	between	the	Wheel	Handler	and	the	Final	Animation	Pose	nodes	so	that	it	can
convert	Component	Space	Pose	to	Local	Space	Pose.	As	our	Vehicle	Physics	Asset	and
Vehicle	Skeletal	Mesh	contain	bones	for	the	vehicle	suspension,	we	will	want	to	create
additional	nodes	to	handle	the	joints	that	affect	the	suspension	polygons.	To	do	this,	pull
the	output	of	the	Wheel	Handler	node	and	use	the	context-sensitive	drop-down	menu;	we
will	search	for	the	Look	At	node.	In	the	Details	panel	under	the	Skeletal	Control	section
of	the	Look	At	node,	we	will	want	to	edit	the	Bone	to	Modify	and	Look	at	Bone
properties	so	that	we	can	modify	the	four	bones	we	have	on	our	vehicle’s	skeletal	mesh,
and	we	have	the	Look	at	Bone	look	at	our	wheel	joints.	Let’s	create	four	different	Look
At	nodes	and	set	each	individual	property	for	the	Bone	to	Modify	and	Look	at	Bone
settings:

1.	 First	node:

Bone	to	Modify:	Select	this	property	as	F_L_Suspension
Look	at	Bone:	Select	this	property	as	F_L_wheelJNT

2.	 Second	node:

Bone	to	Modify:	Select	this	property	as	F_R_Suspension
Look	at	Bone:	Select	this	property	as	F_R_wheelJNT

3.	 Third	node:

Bone	to	Modify:	Select	this	property	as	B_R_Suspension
Look	at	Bone:	Select	this	property	as	B_R_wheelJNT

4.	 Fourth	node:

Bone	to	Modify:	Select	this	property	as	B_L_Suspension
Look	at	Bone:	Select	this	property	as	B_L_wheelJNT

With	the	four	Look	At	nodes	in	place,	we	can	now	connect	the	output	of	the	last	Look	At
node	to	the	Result	input	node	of	the	Final	Animation	Pose	node.	Our	final	Vehicle
Animation	blueprint	should	look	similar	to	the	following	screenshot:

With	these	nodes	in	place,	we	are	done	with	the	Vehicle	Animation	blueprint.	We	can
now	move	on	and	edit	our	Tire	data	asset.

Similar	to	what	we	have	discussed	earlier,	the	Tire	data	asset	only	has	one	property	value
to	edit:	Friction	Scale.	Let’s	navigate	back	to	Content	Browser	and	to	our
VehicleContent	folder.	Now,	we	double-click	on	the	DA_Tire	Tire	Type	asset.	In	the
Generic	Asset	Editor,	let’s	change	the	Friction	Scale	property	from	its	default	value	of
1.0	to	a	new	value	of	2.0:

With	this	change	to	our	Tire	data	asset	in	place,	we	can	now	move	on	and	edit	our	Wheel
blueprints.	Navigate	back	to	Content	Browser	and	to	our	VehicleContent	folder	so	that
we	can	double-click	our	BP_BackWheel	blueprint	and	edit	its	properties.	As	discussed
previously,	the	properties	of	the	front	and	back	wheels	will	vary	slightly	because	the	front
wheels	will	be	responsible	for	steering,	whereas	the	back	wheels	will	be	responsible	for
responding	to	the	handbrake.

The	properties	that	we	need	to	initially	set	are	as	follows:

Shape	Radius:	This	property	determines	the	radius	of	the	shape	used	for	the	vehicle
wheel.
Shape	Width:	This	property	determines	the	width	of	the	shape	used	for	the	vehicle
wheel.
Affected	by	Handbrake:	This	property	determines	whether	or	not	the	wheel	is
affected	by	the	handbrake	that	the	player	uses	to	stop	the	vehicle.	This	parameter	is
typically	used	for	back	wheels	only,	not	for	the	front	wheels.
Steer	Angle:	This	specifies	the	maximum	angle	that	the	wheel	can	rotate	in	both	the
positive	and	negative	directions,	that	is,	turning	left	and	right.
Tire	Type:	This	property	determines	the	TireType	data	asset	that	the	wheel	will	use
for	its	Friction	Scale	property.

The	Shape	Radius	and	Shape	Width	properties	are	determined	by	the	size	of	the	wheels,
and	in	this	specific	case,	these	are	the	back	wheels	on	our	vehicle,	so	for	these	settings,
let’s	set	the	following	parameters:

Shape	Radius:	Set	this	parameter	as	57.0
Shape	Width:	Set	this	parameter	as	30.0

Again,	keep	in	mind	that	these	values	will	change	depending	on	the	vehicle	being	used
and	the	size	of	the	wheels.	Next,	we	will	need	to	change	the	value	of	the	Steer	Angle
property.	As	we	will	work	with	the	BP_BackWheel	Wheel	blueprint,	and	the	back	wheel
will	not	control	the	steering;	we	will	set	the	Steer	Angle	property	from	its	default	value	of
70.0	to	a	value	of	0.0.

Moving	on,	we	need	to	make	sure	that	the	BP_BackWheel	Wheel	blueprint	has	the
Affected	by	Handbrake	property	set	to	True	so	that	these	wheels	are	affected	when	the
player	uses	the	brakes	of	the	vehicle	to	slow	it	down	and	allow	it	to	stop.	Lastly,	we	need
to	set	Tire	Type	from	its	default	value	of	DefaultTireType	to	DA_Tire	from	the	drop-
down	menu	so	that	this	Tire	Type	is	used	by	our	BP_BackWheel.

Now	that	we	have	completed	the	BP_BackWheel	blueprint,	let’s	navigate	back	to
Content	Browser	and	to	our	VehicleContent	folder	and	then	double-click	and	open	the
BP_FrontWheel	blueprint.	If	we	take	a	look	at	the	skeletal	mesh	for	our	vehicle,	we	will
see	that	the	back	wheels	are	slightly	larger	than	the	front	wheels;	this	will	be	important
when	you	set	the	values	for	the	Shape	Radius	and	Shape	Width	parameters	of	the
BP_FrontWheel	blueprint.	Set	the	following	values	for	the	Shape	Radius	and	Shape
Width	properties:

Shape	Radius:	Set	this	parameter	to	52.0
Shape	Width:	Set	this	parameter	to	23.0

We	can	see	that	the	shape	radius	is	only	5	units	less	than	the	BP_BackWheel	value	and
the	shape	width	is	only	7.0	units	less;	this	is	the	difference	in	Unreal	Units	(uu)	between
the	two	types	of	wheels.

As	we	will	work	with	the	BP_FrontWheel	blueprint,	we	will	want	to	uncheck	the
Affected	by	Handbrake	property	so	that	it	is	False	because	the	front	wheels	of	our
vehicle	should	not	react	at	all	to	the	handbrake.	Before	we	set	the	Steer	Angle	parameter,
we	have	to	understand	that	this	angle	is	the	max	angle	that	the	wheel	can	rotate	in	both	the
positive	and	negative	directions,	that	is,	turning	left	and	right.	For	our	Buggy	Vehicle,	any
value	between	50	and	60	works	best,	but	for	the	sake	of	providing	a	value	for	testing
purposes,	let’s	set	the	Steering	Angle	value	to	55.

Last	but	not	least,	let’s	make	sure	that	the	TireType	parameter	is	using	our	DA_Tire	data
asset.

Before	we	move	on	to	editing	the	BP_NewVehicle	Vehicle	blueprint,	let’s	take	some	time
here	to	briefly	define	some	of	the	parameters	of	our	Wheel	blueprints	that	we	didn’t	edit
so	that	we	have	a	better	understanding	of	the	overall	functionality	of	the	Wheel	blueprint.
Here	are	the	additional	properties	we	can	manipulate	for	our	Wheel	blueprint	for	further
customization:

Lat	Stiff	Max	Load:	This	is	the	maximum	normalized	tire	load,	in	which	the	tire	can
deliver	no	more	lateral	(sideways)	stiffness,	irrespective	of	how	much	extra	load	is
applied	to	the	tire.
Lat	Stiff	Value:	This	determines	how	much	lateral	stiffness	can	be	given	to	the
lateral	slip.
Long	Stiff	Value:	This	determines	how	much	longitudinal	stiffness	can	be	given	to
the	longitudinal	slip.
Suspension	Force	Offset:	This	is	the	vertical	offset	from	the	vehicle	center	of	mass
where	suspension	forces	are	applied.
Suspension	Max	Raise:	This	value	determines	how	far	the	wheel	can	go	above	its
resting	position.
Suspension	Max	Drop:	This	value	determines	how	far	the	wheel	can	go	below	its
resting	position.
Suspension	Natural	Frequency:	This	determines	the	oscillation	frequency	of
suspension;	most	cars	have	values	between	5	and	10.
Suspension	Damping	Ratio:	This	value	is	the	rate	at	which	energy	is	dissipated
from	the	spring	of	the	vehicle.	Most	cars	have	values	between	0.8	and	1.2;	values
less	than	1	are	more	sluggish,	whereas	values	greater	than	1	is	twitchier.
Max	Brake	Torque:	This	sets	the	maximum	brake	torque	of	our	vehicle	in	Newton
Meters	(Nm).
Max	Hand	Brake	Torque:	This	property	sets	the	maximum	handbrake	torque	for
this	wheel	in	Nm.	A	handbrake	should	have	a	stronger	brake	torque	than	the	brake.
This	will	be	ignored	for	wheels	that	are	not	affected	by	the	handbrake.

Now	that	we	have	a	better	understanding	of	Wheel	Blueprints,	let’s	move	on	to	our
Vehicle	Blueprint.	Navigate	back	to	Content	Browser	and	to	our	VehicleContent	folder.
Let’s	double-click	on	BP_NewVehicle	and	focus	on	the	Details	panel	when	we	select	the
Mesh	(Inherited)	component	from	the	Components	tab	in	the	top-left	corner	of	our
blueprint.	Keep	in	mind	that	we	need	to	click	on	the	Open	Full	blueprint	editor	before
viewing	the	Viewport,	Construction	Script,	and	Event	Graph	tabs	in	the	blueprint.

The	first	thing	we	will	do	is	select	the	Mesh	(Inherited)	component	in	the	Components
tab.	Then,	in	its	Details	panel,	we	will	change	the	Anim	Blueprint	Generated	Class
property	and	the	Skeletal	Mesh	property.	For	the	Anim	Blueprint	Generated	Class
property,	we	want	to	ensure	that	our	BP_VehicleAnimation	blueprint	is	selected	from	the
context-sensitive	drop-down	menu;	we	do	this	because	we	want	our	vehicle	to	use	the
animation	blueprint	that	we	set	up	earlier.	For	the	Skeletal	Mesh	property,	we	will	use	the
SK_Buggy_NewVehicle	skeletal	mesh	that	we	made	a	copy	of	in	the	VehicleContent
folder.	With	these	properties	in	place,	we	can	now	edit	the	parameters	of	the
VehicleMovement	(Inherited)	component,	where	we	will	implement	the	Wheel
Blueprints	for	our	vehicle.

Select	the	VehicleMovement	(Inherited)	component	from	the	Components	tab.	Then,	in
its	Details	panel,	let’s	find	the	Wheel	Setups	parameters,	where	we	can	set	Wheel	Class
and	Bone	Names	that	we	want	to	use	for	each	individual	wheel	for	our	vehicle.	In	the
Wheel	Setups	section,	set	the	following	parameters	for	the	four	wheels:

1.	 Wheel	0:

Wheel	Class:	Set	this	parameter	to	BP_FrontWheel
Bone	Name:	Set	this	parameter	to	F_L_wheelJNT

2.	 Wheel	1:

Wheel	Class:	Set	this	parameter	to	BP_FrontWheel
Bone	Name:	Set	this	parameter	to	F_R_wheelJNT

3.	 Wheel	2:

Wheel	Class:	Set	this	parameter	to	BP_BackWheel
Bone	Name:	Set	this	parameter	to	B_L_wheelJNT

4.	 Wheel	3:

Wheel	Class:	Set	this	parameter	to	BP_BackWheel
Bone	Name:	Set	this	parameter	to	B_R_wheelJNT

Keep	in	mind	that	when	we	use	a	unique	skeletal	mesh,	the	Bone	Name	properties	will	be
different	depending	on	how	they	are	named.	We	can	also	add	more	wheels	to	the	vehicle
setup	by	clicking	on	the	+	sign	next	to	the	Wheel	Setups	option.

The	last	thing	we	need	to	do	for	this	Vehicle	Blueprint	is	implement	a	third-person	view
camera	position	behind	and	slightly	above	our	vehicle.	To	create	a	Camera	component,
we	need	to	navigate	to	the	Components	tab.	From	the	Add	Component	option,	we	can
search	the	Camera	component.	Name	this	component	VehicleCamera	and	set	its	position
and	rotation	values	as	follows:

Location:

X:	Set	value	to	-490.0
Y:	Set	value	to	0.0
Z:	Set	value	to	310.0

Rotation:

Roll	(X):	Set	value	to	0.0
Pitch	(Y):	Set	value	to	-10.0

Yaw	(Z):	Set	value	to	0.0

Finally,	we	want	to	make	sure	that	the	Use	Pawn	Control	Rotation	option	from	the
Details	panel	of	the	VehicleCamera	component	is	unchecked	so	that	it	is	set	to	False.
With	these	parameters	in	place,	we	are	now	ready	to	start	setting	up	our	User	Controls	so
that	we	can	begin	to	test	our	Vehicle	Blueprint.

Editing	the	Vehicle	Blueprints	–	a	section
review
In	this	section,	we	set	up	the	basic	functionality	for	all	of	our	vehicle	blueprints.	First,	we
added	the	functionality	to	our	Vehicle	animation	blueprint	by	creating	a	Mesh	Space	Ref
Pose	node,	connected	it	to	a	Wheel	Handler	node,	and	implemented	four	different	Look
At	nodes	for	each	of	our	Suspension	Bones	that	are	attached	to	our	vehicle.	Next,	we	set
up	the	Friction	Scale	value	for	our	Tire	Type	data	asset.	Then,	we	set	up	the	parameters
required	for	our	two	different	Wheel	Blueprints	so	that	we	get	the	appropriate	behaviors
for	our	front	and	back	wheels.	Lastly,	we	set	up	the	parameters	for	our	Vehicle	Blueprint
by	applying	the	necessary	skeletal	mesh	and	animal	blueprint	for	the	vehicle.	We	also	took
the	time	to	implement	the	two	Wheel	Blueprints	and	associated	them	with	the	four	wheel
bones	of	the	vehicle’s	skeletal	mesh.	With	these	blueprints	in	place,	we	can	now
implement	the	user	controls	for	our	vehicle	so	that	the	player	can	actually	drive	the	vehicle
in	the	game	environment.

Setting	up	user	controls
When	we	use	the	Vehicle	Game	project	example,	there	are	default	User	Inputs	already	in
place	that	allows	you	to	control	the	vehicle	in	the	game,	but	we	will	take	a	look	at	the
input	settings	so	that	we	have	a	better	understanding	of	what	they	are.	To	view	the	current
input	controls,	let’s	navigate	to	Project	Settings	by	first	left-clicking	on	the	Edit	drop-
down	and	selecting	Project	Settings;	be	sure	to	either	be	in	a	blueprint	or	a	level	to	gain
access	to	Edit	options:

From	Project	Settings,	navigate	to	the	Input	option	in	the	Engine	section	so	that	we	gain
access	to	Action	Mappings	and	Axis	Mappings	for	our	controls.	By	default,	we	already
have	the	MoveForward	mapping	and	the	MoveRight	mapping	in	place	that	utilize	a
combination	of	keyboard	keys	and	gamepad	buttons;	for	our	purposes,	we	will	only	need
to	use	a	few	of	these	buttons.	Let’s	expand	the	Axis	Mappings	drop-down	list	and	first
view	the	MoveForward	option;	we	will	see	multiple	buttons	that	are	used	to	move	our
vehicle	forward,	such	as	the	W,	S,	up,	and	down	keys	for	example.	We	will	remove	all	the
options,	except	the	W	and	S	keys	to	ensure	that	we	don’t	have	any	unnecessary	key
bindings	for	our	controls;	to	do	this,	just	click	on	the	X	button	located	next	to	each	option
to	remove	it.	We	will	also	see	a	Scale	value	next	to	each	key	binding:	1	and	-1.	This	refers
to	the	direction	that	the	MoveForward	control	will	actually	move	the	player	or	vehicle
forward	or	backward;	the	same	idea	applies	to	the	MoveRight	option	as	well.	Let’s
expand	the	MoveRight	Axis	mapping	and	remove	all	the	key	bindings,	except	the	A	and
D	keys.

The	last	thing	we	want	to	do	here	is	evaluate	Handbrake	Action	Mapping.	By	default,
we	have	multiple	key	bindings,	but	we	want	to	remove	all	of	them,	except	the	Space	Bar
option:

Before	we	move	on,	let’s	briefly	discuss	the	differences	between	Action	Mappings	and
Axis	Mappings:

Action	Mapping:	These	mappings	are	for	key	presses	and	releases,	such	as	the
pressing	and	releasing	of	spacebar
Axis	Mapping:	These	mappings	allow	inputs	that	have	a	continuous	range	and
direction

Overall,	Action	and	Axis	Mappings	provide	a	mechanism	to	easily	map	keys	and	axes	to
input	behaviors	by	inserting	a	layer	of	indirection	between	an	input	behavior	and	the	keys
or	the	game	pad	buttons	that	initiate	it.

The	final	step	is	for	us	to	create	a	Game	Mode	blueprint	so	that	when	we	play	in-editor,
we	are	able	to	drive	around	in	our	vehicle.	Let’s	navigate	back	to	Content	Browser	and	to
our	VehicleContent	folder	so	that	we	can	create	the	Game	Mode	blueprint.	Once	in	the
VehicleContent	folder,	let’s	right-click	on	an	area	of	the	Content	folder	that	is	empty,
select	the	Blueprint	Class	option.	Then,	from	Common	Classes,	select	the	Game	Mode
option	and	name	this	new	blueprint	BP_VehicleGameMode.	Now,	double-click	on	this	new
blueprint,	and	under	the	Details	panel,	we	will	find	the	section	labeled	as	Classes.	We	will
change	the	Default	Pawn	class	from	DefaultPawn	to	BP_NewVehicle.	This	ensures	that
when	we	play	the	game,	by	default,	it	will	use	our	BP_NewVehicle	Pawn	class.

The	last	thing	we	need	to	do	is	apply	this	new	BP_VehicleGameMode	to	our	Project
Settings	by	navigating	back	to	Project	Settings,	and	under	the	Project	section,	we	will
find	the	Maps	&	Modes	option.	It’s	here	that	we	can	apply	BP_VehicleGameMode	by
expanding	the	Default	Modes	section.	Now,	from	the	Default	Game	Mode	drop-down
list,	we	can	select	the	BP_VehicleGameMode	option.	For	future	reference,	when	we	create
levels,	we	can	navigate	to	the	Settings	option	while	in	the	main	Level	Editor	and	select

World	Settings.	This	allows	you	to	view	your	World	Settings	located	next	to	the	Details
panel	on	the	right-hand	side	of	the	screen.	In	World	Settings,	we	will	find	the	Game
Mode	section.	Here,	we	can	see	the	Game	Mode	Override	parameter	and	select
BP_VehicleGameMode.	With	this	in	place,	we	can	play	the	game	and	see	our	vehicle	in
action,	but	we	will	see	that	we	are	unable	to	move	our	vehicle	when	we	press	the	W,	A,	S,
and	D	keys.

We	can	now	move	on	and	add	the	input	action	events	in	our	BP_NewVehicle	so	that	we
are	able	to	move	around	and	control	our	vehicle.

Setting	up	user	controls	–	a	section	review
In	this	section,	we	created	the	Axis	Mappings	so	that	the	vehicle	could	gain	the	ability	to
move	forward/backward	and	right/left.	We	also	implemented	the	ability	to	use	the
handbrake	with	the	Action	Mapping	in	Project	Settings.	Lastly,	we	created	a	new	Game
Mode	blueprint	and	implemented	the	Game	Mode	in	the	Project	and	World	Settings	of
our	level.	With	these	in	place,	we	can	move	on	and	add	behaviors	to	our	BP_NewVehicle
Event	Graph.	This	allows	you	to	control	your	vehicle.

Scripting	movement	behaviors
Before	we	can	have	our	vehicle	move	through	various	player	controls,	we	need	to	script
the	blueprint	behaviors	in	BP_NewVehicle	Event	Graph	by	taking	advantage	of	the
VehicleMovement	(Inherited)	Component	variable.	To	start	with,	let’s	navigate	to
Content	Browser	and	to	our	VehicleContent	folder	so	that	we	can	double-click	and	open
BP_NewVehicle.

In	an	empty	area	of	Event	Graph,	let’s	right-click	and	use	the	context-sensitive	drop-
down	menu	to	search	for	our	Input	Axis	MoveForward	event	node	so	that	we	can	control
the	forward	and	backward	throttle	of	our	vehicle.	Next,	we	need	to	grab	a	Get	variable	of
the	VehicleMovement	(Inherited)	component.	To	do	this,	we	have	to	hold	down	the
CTRL	key	and	then	click	and	drag	the	VehicleMovement	component	from	the
Components	tab	onto	our	Event	Graph.	Then,	we	can	pull	the	VehicleMovement
variable	and	search	for	the	Set	Throttle	Input	action	node	from	the	context-sensitive
drop-down	menu	that	appears.	Finally,	we	can	connect	the	main	executable	pin	of	Input
Axis	MoveForward	Event	to	the	input	executable	pin	of	the	Set	Throttle	Input	node,
and	we	need	to	connect	the	Axis	Value	float	output	of	our	event	to	the	Throttle	float
value	input,	as	shown	in	the	following	screenshot:

What	this	logic	does	is	it	uses	Axis	Value	for	our	Input	Axis	MoveForward	option,
which	will	either	be	1	or	-1	depending	on	the	keys	that	are	pressed,	and	applies	this	value
to	the	Throttle	of	our	vehicle,	which	results	in	our	vehicle	moving	forward	or	backward.

Next,	let’s	set	up	the	logic	to	steer	our	vehicle	by	right-clicking	on	an	empty	area	of	our
Event	Graph	and	search	for	the	Input	Axis	MoveRight	event.	We	will	also	need	a	copy
of	the	Vehicle	Movement	Component	variable	so	that	we	can	pull	this	copy	and	search
for	the	Set	Steering	Input	action	node	from	the	context	sensitive	drop-down	menu.
Connect	the	output	executable	pin	of	the	Input	Axis	MoveRight	event	node	to	the	input
executable	pin	of	the	Set	Steering	Input	node.	Also,	connect	the	Axis	Value	Float	output
to	the	Steering	Float	input,	as	shown	in	the	following	screenshot:

Lastly,	we	need	to	set	up	the	logic	for	the	handbrake	so	that	when	the	player	presses	and
releases	the	spacebar,	the	handbrake	will	react	appropriately	to	the	input.	To	begin	with,
let’s	right-click	on	an	empty	area	of	Event	Graph	and	search	for	the	Input	Action
Handbrake	event	node.	Next,	we	will	need	to	create	a	copy	of	the	Vehicle	Movement
Component	variable,	and	from	this	variable,	we	need	to	pull	from	it	and	search	for	the
Set	Handbrake	Input	action	node	from	the	context-sensitive	drop-down	menu.	We	then
need	to	check	the	New	Handbrake	Boolean	input	variable	of	the	Set	Handbrake	Input
node	so	that	it	uses	the	handbrake	of	our	vehicle	to	come	to	a	halt.	Next,	we	need	to	create
a	copy	of	the	Vehicle	Movement	Component	variable	and	the	Set	Handbrake	Input
node,	but	for	this	copy,	we	want	to	make	sure	that	the	New	Handbrake	Boolean	input
variable	is	unchecked.	Lastly,	we	need	to	connect	the	Pressed	output	executable	pin	of	the
Input	Action	Handbrake	node	to	the	input	executable	pin	of	the	Set	Handbrake	Input
node	that	has	its	New	Handbrake	Boolean	set	to	True.	Then,	connect	the	Released
output	executable	pin	of	the	Input	Action	Handbrake	node	to	the	input	executable	pin	of
the	Set	Handbrake	Input	node	that	has	its	New	Handbrake	set	to	False.

With	the	logic	in	place	in	our	BP_NewVehicle	Vehicle	blueprint,	we	can	compile	and	save
the	content	and	then	navigate	to	the	DesertRallyRace	level	so	that	we	can	play	in-editor
and	test	our	vehicle.	Again,	make	sure	that	World	Settings	has	the	GameMode	Override
parameter	set	to	our	BP_VehicleGameMode	blueprint	before	the	testing	phase.

Now,	when	we	play	the	game,	we	will	be	able	to	move	our	vehicle	forward	and	backward
with	the	W	and	S	keys,	steer	the	vehicle	with	the	A	and	D	keys,	and	use	the	handbrake
with	spacebar	to	have	our	vehicle	come	to	a	halt.	We	will	also	see	that	the	wheels	spin
when	it	moves	either	forward	or	backward,	the	front	wheels	turn	in	the	direction	we	press,
and	the	physics	of	our	vehicle	work	as	expected.

Scripting	movement	behaviors	–	a	section
review
In	this	section,	we	worked	on	scripting	the	necessary	behaviors	of	our	vehicle	so	that
when	we	play	the	game,	we	were	able	to	move	and	steer	our	vehicle.	First,	we
implemented	Set	Throttle	Input	in	conjunction	with	our	Input	Axis	MoveForward
event	node.	Then,	we	used	the	Set	Steering	Input	node	with	our	Input	Axis	MoveRight
event.	Lastly,	we	associated	the	Set	Handbrake	node	functionality	with	the	Input	Action
Handbrake	event	node.	Now	that	we	are	able	to	drive	our	vehicle	in	the	game,	we	can
evaluate	its	behavior	and	test	how	it	feels.

Testing	the	vehicle
When	we	test	our	vehicle,	we	have	to	keep	in	mind	the	controls	and	the	feel	we	are	trying
to	create	when	we	drive	the	vehicle.	The	behaviors	of	a	vehicle	will	drastically	differ
depending	on	the	type	of	gameplay	we	are	going	for,	such	as	the	drastic	difference
between	the	vehicles	in	Mario	Kart	as	compared	to	the	ones	from	the	Forza	series.

If	tweaks	or	changes	are	necessary	to	obtain	the	desired	behavior,	the	main	aspect	to	view
is	the	VehicleMovement	(Inherited)	component	in	the	BP_NewVehicle	blueprint,	where
it	has	various	parameters	in	its	Details	panel	that	we	can	change	in	order	to	change	the
behavior	of	the	vehicle,	such	as	Differential	Setup	or	Transmission	Setup.	We	can	also
use	VH_Buggy	and	the	other	default	vehicle	content	that	is	provided	by	Epic	Games
when	we	use	the	Vehicle	Game	Project	example	as	a	reference	point	to	change	the	way
our	vehicle	behaves.

Use	the	vehicle	we	have	created	in	this	chapter	as	a	stepping	stone	to	create	a	unique
vehicle	that	behaves	in	different	ways.	Also,	feel	free	to	play	around	with	the	settings	in
the	Animation,	Wheel,	and	Vehicle	Blueprints	to	see	what	we	can	create.

Summary
In	this	chapter,	we	created	our	own	working	vehicle	with	the	Vehicle	Game	Project
Example	template	step	by	step	from	scratch.	In	the	process	of	doing	so,	we	accomplished
certain	tasks.

First,	we	downloaded	and	created	a	project	using	the	Vehicle	Game	Project	Example
template	so	that	we	could	have	access	to	several	resources	and	content	available	to	create
a	basic	vehicle	and	a	template	racing	game.	Then,	we	created	our	own	Physics	Asset
using	PhAT	with	the	default	buggy	skeletal	mesh	as	a	base	and	implemented	our	own
Physics	Bodies	to	the	vehicle.

Next,	we	created	all	the	necessary	blueprints	and	data	assets	required	in	constructing	a
working	vehicle	for	our	game.	To	begin	with,	we	created	a	Wheel	Vehicle	Blueprint
component	that	contained	the	VehicleMovement	(Inherited)	Component	class.	Then,	we
created	two	different	types	of	Wheel	Blueprints	(one	for	the	front	wheels	and	another	for
the	back	wheels).	Each	has	its	own	set	of	unique	parameters.	Lastly,	we	created	the
Vehicle	Animation	Blueprint	component	required	to	obtain	the	proper	motion	of	our
wheels	when	we	drive.

Additionally,	we	then	edited	each	of	these	blueprints	so	that	we	could	obtain	the	proper
behavior	for	our	vehicle.	We	also	set	up	the	user	controls	for	our	vehicle	by	editing	Input
Action	and	Axis	Mappings	so	that	the	appropriate	key	bindings	were	set	for	our	vehicle
to	move	forward/backward	in	order	to	use	the	handbrake	and	steer	left/right.

Then,	we	implemented	the	Blueprint	logic	within	our	BP_NewVehicle	Wheeled	Vehicle
Blueprint	by	implementing	the	Input	Action	and	Axis	Mapping	event	nodes	to	the
appropriate	Vehicle	Movement	actions	such	as	setting	the	throttle	value,	and	the	steering
input	values.

Lastly,	we	set	up	our	own	Game	Mode	Blueprint	that	utilizes	our	BP_NewVehicle	Pawn
Blueprint	class	and	implemented	that	Game	Mode	into	the	Project	Settings,	as	well	as
to	the	World	Settings	of	our	level.	From	there,	we	were	able	to	play	in-game	and	drive
our	vehicle	around	the	level,	and	we	posed	the	challenge	of	changing	the	parameters	of
our	BP_NewVehicle	in	order	to	obtain	unique	behaviors	for	our	vehicle.

In	the	next	chapter,	we	will	be	covering	advanced	physics	topics	and	troubleshooting
concepts	like	pragmatic	physics.

Chapter	8.	Advanced	Topics
Mixing	multiple	physical	rules	of	an	object	and	customizing	physical	properties	is	one	of
the	new	and	powerful	features	in	Unreal	Engine	4.	This	allows	designers	and	developers
to	apply	physics	on	a	larger	scale.	Things	such	as	ocean	water,	sky,	a	grass	field,	and
object	destruction	are	examples	of	how	to	apply	multiple	physics	for	player	interactions	in
the	game	world.

This	chapter	provides	an	example	of	various	physics	rules	of	a	simple	object.

Simulating	complex	physics	–	destruction
If	you	want	to	destroy	an	object	in	the	game	into	small	pieces,	you	have	to	break	it	into
small	objects	and	save	the	model	as	a	huge	file	that	needs	heavy	processing	by	the
machine	to	render,	and	it	also	takes	time	to	make	animation	for	each	piece.	Some
designers	have	ignored	this	method	by	replacing	objects	with	some	particle	system	over
the	object	position.

Today,	Unreal	Engine	4	not	only	solves	this	issue,	but	also	provides	features	and
properties	to	customize	the	destruction	of	an	object.	Depending	on	the	artistic	or	reality-
based	features	of	the	game,	you	can	simulate	the	way	the	energy	flows	and	destroys	the
object	and	control	the	physical	aspects	of	the	target	at	the	same	time.	Each	destruction	is
simply	an	interaction	or	collision	between	two	objects.	This	displays	special	visual
presentations	during	a	specific	period	of	time	in	the	game	world.	In	our	example,	we	will
simulate	the	bullet	from	the	first	person	shooter	map	in	UE4	over	a	simple	cube.	For	this,
first	we	need	to	define	our	bullet	blueprint	and	then	work	on	the	cube	object	to	display	the
destruction	after	the	hit.	Perform	the	following	steps:

1.	 First,	open	Unreal	Editor	by	clicking	on	the	Launch	button	from	Unreal	Engine
launcher.

2.	 Then,	start	a	new	project	from	Project	browser	by	selecting	the	New	Project	tab.
Now,	select	First	Person	and	make	sure	that	With	Starter	Content	is	selected	and
name	the	project	dest_test.

3.	 Now,	open	the	FirstPersonBP	folder	and	then	in	the	Blueprints	folder,	double-click
on	FirstPersonProjectile.	This	opens	the	blueprint	of	your	bullet.	Check	the	titles	of
the	box	and	the	relations	between	each	of	them.	This	box	simulates	the	default
behavior	of	the	bullets:	hit	the	target	and	disappear	and	hit	the	wall	and	return	at	the
opposite	angle.	These	two	have	branches	from	the	Other	Comp	output	on	the	event
box.

4.	 Disconnect	Event	Hit	by	pressing	Alt	+	right-click	on	the	outputs.	Move	it	to	an
empty	area	on	the	blueprint	screen	and	connect	Cast	To	Destructible	Actor	to	it.
This	means	that	the	bullet	will	interact	with	the	destroyable	object.	Click	on	the	Cast
Failed	output	and	connect	Destroy	Actor	to	it.	This	means	that	if	the	bullet	doesn’t
interact	with	any	objects,	it	gets	destroyed	after	a	while.

5.	 Click	on	the	As	Destructible	Actor	output	and	connect	the	Get	Destructible
component	to	it	and	then	connect	the	Destructible	Component	output	of	this	box	to
Apply	Radius	Damage.	By	changing	the	properties	of	this	box,	you	can	control	the
physical	simulation	of	the	destruction	of	an	object.

Note
To	create	a	new	box	in	Blueprint,	it’s	better	to	click	and	hold	the	mouse	on	the
output	of	the	box	and	then	drag	the	wire,	leave	the	mouse,	and	in	the	opening	menu,
enter	the	new	box	name.

6.	 Now,	add	more	connections	between	your	boxes,	as	shown	in	the	following
screenshot:

As	you	can	see	in	the	preceding	screenshot,	the	Hit	Location	output	and	the	Hit
Origin	input	are	directly	connected	to	each	other.	You	can	include	more	blueprint
boxes	between	the	Hit	Location	output	and	the	Hit	Origin	input	of	your	blueprint	to
support	different	scenarios.	For	example,	imagine	you	want	the	player	to	shoot	at	an
object	in	the	sky	and	destroy	another	object	located	on	the	surface.	For	this	scenario,
there	are	a	couple	of	ways	to	create	a	blueprint.	This	is	not	part	of	the	physical	rules
and	is	mostly	related	to	the	controls	and	event	handling	in	the	blueprint.	In	our
example,	they	are	located	at	the	same	point,	so	the	object	gets	destroyed	by	the	bullet
at	the	hit	point.

Now,	let’s	create	and	customize	the	target	by	performing	the	following	steps:

1.	 Go	back	to	the	editor	and	create	a	simple	material	with	just	the	base	color	and	one
physical	material	in	your	material	library.	Then,	drag	and	drop	a	cube	from	Basic	in
the	Modes	panel,	right-click	on	it,	and	select	Find	in	Content	Browser.	This	will
find	the	original	object	in	the	engine	local	library.	Now,	right-click	on	it	in	Content
Browser.	From	the	menu,	select	Create	Destructible	Mesh.	This	will	create	a	new
cube	object	with	the	properties	to	simulate	destruction.

2.	 Drag	an	instance	of	this	new	cube	onto	the	stage	and	apply	your	materials	to	this	new
object.	Hit	Play	at	the	top	and	shoot	at	the	cube.	You	will	find	that	your	bullets	get
projected	from	the	surface	of	the	cube.	Now,	click	on	Stop	and	navigate	back	to
editor.	Open	the	blueprint	for	your	First	Person	Projectile,	locate	the	Apply	Radius
Damage	box,	and	change	Base	Damage	to	1000,	as	shown	in	the	following
screenshot:

3.	 In	editor,	double-click	on	the	Destructible	Component	section	in	the	Details	panel
of	your	cube.	A	new	window	will	open.	Here,	you	can	define	the	properties	related	to
destruction.	Change	Support	Depth	to	1	and	then	Voronoi	to	360	(if	your	system	is
not	very	powerful,	change	it	to	120).	Now,	click	on	Fracture	Mesh	located	at	the

top.	With	this	action,	you	will	be	able	to	apply	your	setting	to	the	mesh;	otherwise,	it
will	not	work.

4.	 Again,	let’s	navigate	back	to	editor,	hit	Play,	and	shoot	just	one	bullet	at	the	object.
As	you	can	see,	the	cube	breaks	into	many	small	particles.	Now,	hit	stop	and	double-
click	on	Destructible	Component	again.	This	time,	change	Voronoi	to	2,	click	on
Fracture	Mesh	at	the	top,	and	play	the	level	again	(shoot	just	one	bullet	at	the
object).

As	you	can	see	in	the	preceding	image,	there	is	a	big	difference	between	the	number
of	particles	and	the	changes	on	Voronoi.	This	way,	you	can	define	the	number	of
pieces	for	the	object	during	the	destruction	period.	Unreal	Engine	4	automatically
calculates	the	shape	of	pieces	and	renders	them	to	the	stage	in	real	time	based	on

physical	rules.	You	can	also	import	other	meshes	and	apply	the	same.

5.	 Change	Voronoi	back	to	360	and	then	Damage	Threshold	to	40.	Click	on	Fracture
Mesh	and	play	the	level	(shoot	just	one	bullet	at	the	object).

As	you	can	see,	the	object	provides	some	resistance	against	your	bullet.	If	you
increase	Damage	Threshold	to	120,	you	need	to	shoot	more	than	one	bullet	to
destroy	the	object	and	particles.	This	is	similar	to	a	rifle	bullet	destruction	of	a	heavy
material	similar	to	stone.

6.	 Now,	change	Damage	Threshold	to	1	(the	default	value),	click	on	Fracture	Mesh
and	then	switch	back	to	the	blueprint.	We	want	to	simulate	the	shotgun	bullet’s
destructive	power	on	the	target.	Change	Impulse	Strength	to	600	and	click	on
Compile	at	the	top.	Then,	navigate	back	to	editor	and	play	the	level	by	shooting	one
bullet	at	the	object.

As	you	can	see	in	the	following	screenshot,	it	breaks	with	much	more	energy.	Also,
the	visual	simulation	of	physics	is	different.	Now,	navigate	back	to	blueprint,	change
it	to	6000,	click	on	Compile	at	the	top,	and	play	the	game	again.	Bang!	This	looks
similar	to	a	heavy	shotgun	hit	from	close	distance,	isn’t	it?

7.	 You	can	also	involve	physical	material	features	in	the	object.	This	means	that	with

multiple	physical	rules,	you	can	work	at	the	same	location.	Now,	double-click	on
your	physical	material	and	change	Friction	to	-60	and	Restitution	to	0.	Then,	play
the	game.	You	can	see	in	the	following	screenshot	that	the	object	breaks	into	particles
similar	to	ice	cubes	and	spreads	around	the	game	stage.	Such	a	cool	effect	can	be
combined	by	changing	Restitution	to	1.8.

There	are	many	ways	to	combine	the	physical	aspect	of	your	object	and	the	bullet
preferences	with	the	destruction	properties	of	the	object.	For	example,	you	can	tune	your
bullet	energy	by	changing	Impulse	Strength	over	a	period	of	time.	Also,	as	you	know,
each	material	can	be	customized	by	its	own	blueprint.	For	example,	imagine	that	you	have
a	ghost	in	your	game;	when	you	destroy	it,	it	breaks	into	many	particles	and	parts,	and
each	part	looks	like	rainwater.	To	create	this	scenario,	try	to	apply	some	dynamic	or
random	changes,	such	as	waving,	to	your	material	and	compare	the	results.

Sometimes,	when	you	use	a	couple	of	physical	customizations	on	an	object,	they	tend	to
overlap	with	each	other	or	remove	each	other’s	effect.	To	avoid	such	problems,	it’s	good
practice	to	understand	the	physical	rules	related	to	the	instigator	of	the	event	(the	bullet	in
the	previous	example)	and	then	the	physical	rules	of	the	target.

Summary
A	simulation	of	mass	change	or	a	series	of	changes	is	a	kind	of	art	in	the	game	world.	A
sufficient	blueprint	by	developers	can	synchronize	the	physics	behind	the	scenes.	The
presentation	and	quality	of	the	simulation	is	based	on	the	artist’s	efforts	and	madness.

Based	on	what	you	learned	in	this	chapter,	imagine	that	you	(as	a	developer)	try	to	put	50
objects	on	the	stage.	When	you	shoot	at	one,	all	get	destroyed	within	a	delay	of	a	second.
Also,	you	(as	an	artist)	should	design	how	and	in	which	way	the	objects	get	destroyed	and
probably	ask	developers	to	make	life	easier	with	some	blueprints.	This	great	mix	of
developers	and	artists	in	the	game	design	is	one	of	the	powerful	aspects	of	Unreal	Engine
4.

Index
A

Angular	and	Linear	Damping
about	/	Angular	and	Linear	Damping,	Angular	and	Linear	Damping	–	a	section
review

B
Block	All	/	Collision	and	Trace	Responses	–	an	overview

C
centimeter	(cm)	/	Vehicle	Blueprint	–	a	content	overview
collision

and	trace	responses	/	Collision	and	Trace	Responses	–	an	overview,	Collision
and	Trace	Responses	–	a	section	review
simple,	versus	complex	/	Simple	versus	complex	collision
simple	collision,	creating	/	Creating	simple	collisions,	Creating	simple	collisions
–	a	section	review
custom	collision	hulls,	creating	/	Creating	complex	and	custom	collision	hulls,
Creating	complex	and	custom	collision	hulls	–	a	section	review
complex	collision	hulls,	creating	/	Creating	complex	and	custom	collision	hulls,
Creating	complex	and	custom	collision	hulls	–	a	section	review
presets	/	In-depth	collision	presets,	In-depth	collision	presets	–	a	section	review

collision,	presets
Custom	/	In-depth	collision	presets
Block	All	Dynamic	/	In-depth	collision	presets
Overlap	All	Dynamic	/	In-depth	collision	presets
Ignore	Only	Pawn	/	In-depth	collision	presets
Overlap	Only	Pawn	/	In-depth	collision	presets
Spectator	/	In-depth	collision	presets
Character	Mesh	/	In-depth	collision	presets
Destructible	/	In-depth	collision	presets
Invisible	Wall	/	In-depth	collision	presets
Invisible	Wall	Dynamic	/	In-depth	collision	presets
Trigger	/	In-depth	collision	presets
Ragdoll	/	In-depth	collision	presets
Vehicle	/	In-depth	collision	presets
UI	/	In-depth	collision	presets
about	/	In-depth	collision	presets	–	a	section	review

collision	interactions
about	/	Collision	interactions,	Collision	interactions	–	a	section	review

common	measurements,	Unreal	Engine	4	/	Common	measurements	in	Unreal	Engine
4
complex	collision	hulls

creating	/	Creating	complex	and	custom	collision	hulls,	Creating	complex	and
custom	collision	hulls	–	a	section	review

constraints
about	/	What	are	constraints?
first	physics	constraint	actor	experience	/	The	first	physics	constraint	actor
experience
physics	constraint	actor,	customizing	/	Customizing	physics	constraint	actor

conversions
URL	/	Units	of	measurement

custom	collision	hulls
creating	/	Creating	complex	and	custom	collision	hulls,	Creating	complex	and
custom	collision	hulls	–	a	section	review

custom	object
and	trace	channel	responses	/	Custom	object	and	trace	channel	responses,
Custom	object	and	trace	channel	responses	–	a	section	review

D
2D	and	3D	coordinate	systems

about	/	The	2D	and	3D	coordinate	systems
up	axis	/	The	2D	and	3D	coordinate	systems
forward	axis	/	The	2D	and	3D	coordinate	systems
top	perspective	/	The	top	perspective
side	perspective	/	The	side	perspective
front	perspective	/	The	front	perspective
section	review	/	The	2D	and	3D	coordinate	systems	–	a	section	review

3ds	Max
units	of	measurements,	changing	/	Changing	units	of	measurement	in	3ds	Max
and	Maya
units	of	measurement,	changing	/	Changing	units	of	measurement	in	3ds	Max
and	Maya

E
energy

about	/	Forces	and	energy
kinetic	energy	/	Forces	and	energy
potential	energy	/	Forces	and	energy
mechanical	energy	/	Forces	and	energy
heat	/	Forces	and	energy
section	review	/	Forces	and	energy	–	a	section	review

F
forces

about	/	Forces	and	energy
section	review	/	Forces	and	energy	–	a	section	review

Friction	property	/	Newton’s	first	law	of	motion
front	perspective,	2D	and	3D	coordinate	systems

about	/	The	front	perspective
pitch	/	The	front	perspective
yaw	/	The	front	perspective
roll	/	The	front	perspective

G
game

with	blueprint	/	A	simple	game	with	Blueprint

K
K	Discrete	Oriented	Polytope	(KDOP)	/	Simple	versus	complex	collision

L
Law	of	Inertia	/	Newton’s	first	law	of	motion

M
material

physics	/	The	physics	of	materials
Maya

units	of	measurement,	changing	/	Changing	units	of	measurement	in	3ds	Max
and	Maya

movement	behaviors
scripting	/	Scripting	movement	behaviors,	Scripting	movement	behaviors	–	a
section	review

N
Newton’s	laws

about	/	Newton’s	laws/Newtonian	physics	concepts
first	law	/	Newton’s	first	law	of	motion
second	law	/	Newton’s	second	law	of	motion
third	law	/	Newton’s	third	law	of	motion
section	review	/	Newton’s	laws	of	motion	–	a	section	review

No	Collision	/	Collision	and	Trace	Responses	–	an	overview
normal	maps	/	The	physics	of	materials

O
Object	Responses

WorldStatic	/	Collision	and	Trace	Responses	–	an	overview
WorldDynamic	/	Collision	and	Trace	Responses	–	an	overview
Pawn	/	Collision	and	Trace	Responses	–	an	overview
PhysicsBody	/	Collision	and	Trace	Responses	–	an	overview
Vehicle	/	Collision	and	Trace	Responses	–	an	overview
Destructible	/	Collision	and	Trace	Responses	–	an	overview

Overlap	All	/	Collision	and	Trace	Responses	–	an	overview

P
Pawn	/	Collision	and	Trace	Responses	–	an	overview
PhAT

navigating	to	/	Navigating	to	PhAT
gadgets	/	The	PhAT	environment
sections	/	The	PhAT	environment
example	/	The	PhAT	example	and	experience
current	assets,	deleting	/	Deleting	current	assets
current	assets,	adding	/	Adding	and	customizing	current	assets
current	assets,	customizing	/	Adding	and	customizing	current	assets

physic	actor	/	What	are	constraints?
physical	material

about	/	What	is	physical	material?
first	material,	creating	/	Creating	the	first	material

Physical	Materials
about	/	Physical	Materials	–	an	overview,	Physical	Materials	–	a	section	review
Friction	parameter	/	Physical	Materials	–	an	overview
Friction	Combine	Mode	parameter	/	Physical	Materials	–	an	overview
Override	Friction	Combine	Mode	parameter	/	Physical	Materials	–	an	overview
Restitution	parameter	/	Physical	Materials	–	an	overview
Density	parameter	/	Physical	Materials	–	an	overview
Raise	Mass	to	Power	parameter	/	Physical	Materials	–	an	overview
Destructible	Damage	Threshold	Scale	parameter	/	Physical	Materials	–	an
overview
Surface	Type	parameter	/	Physical	Materials	–	an	overview
Tire	Friction	Scale	parameter	/	Physical	Materials	–	an	overview
Tire	Friction	Scales	parameter	/	Physical	Materials	–	an	overview

physics
complex	physics,	simulating	/	Simulating	complex	physics	–	destruction

Physics	Actor	/	Collision	and	Trace	Responses	–	an	overview
Physics	Bodies

about	/	Physics	Bodies	–	an	overview,	Physics	Bodies	–	a	section	review
Simulate	Physics	parameter	/	Physics	Bodies	–	an	overview
Auto	Weld	property	/	Physics	Bodies	–	an	overview
Start	Awake	parameter	/	Physics	Bodies	–	an	overview
Override	Mass	property	/	Physics	Bodies	–	an	overview
Mass	in	Kg	parameter	/	Physics	Bodies	–	an	overview
Locked	Axis	parameter	/	Physics	Bodies	–	an	overview
Enable	Gravity	parameter	/	Physics	Bodies	–	an	overview
Use	Async	Scene	property	/	Physics	Bodies	–	an	overview
Override	Walkable	Slope	on	Instance	parameter	/	Physics	Bodies	–	an	overview
Override	Max	Depenetration	Velocity	parameter	/	Physics	Bodies	–	an	overview
Center	of	Mass	Offset	property	/	Physics	Bodies	–	an	overview

Sleep	Family	parameter	/	Physics	Bodies	–	an	overview
Mass	Scale	parameter	/	Physics	Bodies	–	an	overview
Angular	Damping	property	/	Physics	Bodies	–	an	overview
Linear	Damping	property	/	Physics	Bodies	–	an	overview
Max	Angular	Velocity	property	/	Physics	Bodies	–	an	overview
Position	Solver	Iteration	Count	parameter	/	Physics	Bodies	–	an	overview
Velocity	Solver	Iteration	Count	parameter	/	Physics	Bodies	–	an	overview

Physics	Constraint,	Details	panel
Component	Name	1	parameter	/	Physics	Damping
Component	Name	2	parameter	/	Physics	Damping
Joint	Name	parameter	/	Physics	Damping
Constraint	Bone	1	parameter	/	Physics	Damping
Constraint	Bone	2	parameter	/	Physics	Damping
Disable	Collision	parameter	/	Physics	Damping
Enable	Projection	parameter	/	Physics	Damping
Projection	Linear	Tolerance	parameter	/	Physics	Damping
Projection	Angular	Tolerance	parameter	/	Physics	Damping
Linear	X	Motion	parameter	/	Physics	Damping
Linear	Y	Motion	parameter	/	Physics	Damping
Linear	Z	Motion	parameter	/	Physics	Damping
Linear	Breakable	parameter	/	Physics	Damping
Linear	Break	Threshold	parameter	/	Physics	Damping
Angular	Swing	1	Motion	parameter	/	Physics	Damping
Angular	Twist	Motion	parameter	/	Physics	Damping
Angular	Swing	2	Motion	parameter	/	Physics	Damping
Angular	Breakable	parameter	/	Physics	Damping
Angular	Break	Threshold	parameter	/	Physics	Damping
Linear	Position	Drive	parameter	/	Physics	Damping
Linear	Velocity	Drive	parameter	/	Physics	Damping
Linear	Position	Strength	parameter	/	Physics	Damping
Linear	Velocity	Strength	parameter	/	Physics	Damping
Linear	Drive	Force	Limit	parameter	/	Physics	Damping
Angular	Orientation	Drive	parameter	/	Physics	Damping
Angular	Velocity	Drive	parameter	/	Physics	Damping
Angular	Drive	Force	Limit	parameter	/	Physics	Damping
Angular	Position	Strength	parameter	/	Physics	Damping
Angular	Velocity	Strength	parameter	/	Physics	Damping
Angular	Drive	Mode	parameter	/	Physics	Damping

physics	constraint	actor
about	/	The	first	physics	constraint	actor	experience
customizing	/	Customizing	physics	constraint	actor

Physics	Damping
about	/	Physics	Damping,	Physics	Damping	–	a	section	review
Physics	Constraint	/	Physics	Damping

PhysX	Constraint	/	The	first	physics	constraint	actor	experience

S
scalars

about	/	Scalars	and	vectors
section	review	/	Scalars	and	vectors	–	a	section	review

scientific	notation
about	/	The	scientific	notation
using	/	How	to	use	scientific	notation?
section	review	/	The	scientific	notation	–	a	section	review

simple	collision
versus	complex	collision	/	Simple	versus	complex	collision,	Simple	versus
complex	collision	–	a	section	review
Sphere	/	Simple	versus	complex	collision
Capsule	/	Simple	versus	complex	collision
Box	/	Simple	versus	complex	collision
10DOP	X	/	Simple	versus	complex	collision
10DOP	Y	/	Simple	versus	complex	collision
10DOP	Z	/	Simple	versus	complex	collision
18DOP	/	Simple	versus	complex	collision
26DOP	/	Simple	versus	complex	collision
creating	/	Creating	simple	collisions,	Creating	simple	collisions	–	a	section
review

T
trace	channel	responses

and	custom	object	/	Custom	object	and	trace	channel	responses,	Custom	object
and	trace	channel	responses	–	a	section	review

Trace	Responses
and	collision	/	Collision	and	Trace	Responses	–	an	overview
Visibility	/	Collision	and	Trace	Responses	–	an	overview
Camera	/	Collision	and	Trace	Responses	–	an	overview

U
unit	snapping	/	Unit	snapping	in	Unreal	Engine	4
units	of	measurement

about	/	Units	of	measurement
inches	(in)	/	Units	of	measurement
feet	(ft)	/	Units	of	measurement
millimeters	(mm)	/	Units	of	measurement
kilometer	(km)	/	Units	of	measurement
centimeters	(cm)	/	Units	of	measurement
meters	(m)	/	Units	of	measurement
changing,	in	3ds	Max	/	Changing	units	of	measurement	in	3ds	Max	and	Maya
changing,	in	Maya	/	Changing	units	of	measurement	in	3ds	Max	and	Maya
section	review	/	Units	of	measurement	–	a	section	review

Unreal	Engine	4
launching	/	Launching	Unreal	Engine	4
common	measurements	/	Common	measurements	in	Unreal	Engine	4
unit	snapping	/	Unit	snapping	in	Unreal	Engine	4

Unreal	Unit	(uu)	/	Vehicle	Blueprint	–	a	content	overview
Unreal	Units	(uu)	/	What	is	an	Unreal	Unit?
user	controls

setting	up	/	Setting	up	user	controls,	Setting	up	user	controls	–	a	section	review

V
vectors

about	/	Scalars	and	vectors
section	review	/	Scalars	and	vectors	–	a	section	review

vehicle	blueprint
about	/	Vehicle	Blueprint	–	a	content	overview,	Vehicle	Blueprints	–	a	section
overview
assets	/	Vehicle	Blueprint	–	a	content	overview
creating	/	Creating	the	Vehicle	Blueprints,	Creating	the	Vehicle	Blueprints	–	a
section	review
editing	/	Editing	the	Vehicle	Blueprints,	Editing	the	Vehicle	Blueprints	–	a
section	review
Shape	Radius	property	/	Editing	the	Vehicle	Blueprints
Shape	Width	property	/	Editing	the	Vehicle	Blueprints
Affected	by	Handbrake	property	/	Editing	the	Vehicle	Blueprints
Steer	Angle	property	/	Editing	the	Vehicle	Blueprints
Tire	Type	property	/	Editing	the	Vehicle	Blueprints
testing	/	Testing	the	vehicle

W
Wheel	blueprints

Lat	Stiff	Max	Load	/	Editing	the	Vehicle	Blueprints
Lat	Stiff	Value	/	Editing	the	Vehicle	Blueprints
Long	Stiff	Value	/	Editing	the	Vehicle	Blueprints
Suspension	Force	Offset	/	Editing	the	Vehicle	Blueprints
Suspension	Max	Raise	/	Editing	the	Vehicle	Blueprints
Suspension	Max	Drop	/	Editing	the	Vehicle	Blueprints
Suspension	Natural	Frequency	/	Editing	the	Vehicle	Blueprints
Suspension	Damping	Ratio	/	Editing	the	Vehicle	Blueprints
Max	Brake	Torque	/	Editing	the	Vehicle	Blueprints
Max	Hand	Brake	Torque	/	Editing	the	Vehicle	Blueprints

	Unreal Engine Physics Essentials
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Math and Physics Primer
	Launching Unreal Engine 4
	Units of measurement
	What is an Unreal Unit?
	Common measurements in Unreal Engine 4
	Unit snapping in Unreal Engine 4
	Changing units of measurement in 3ds Max and Maya
	Units of measurement – a section review
	The scientific notation
	How to use scientific notation?
	The scientific notation – a section review
	The 2D and 3D coordinate systems
	The top perspective
	The side perspective
	The front perspective
	The 2D and 3D coordinate systems – a section review
	Scalars and vectors
	Scalars and vectors – a section review
	Newton's laws/Newtonian physics concepts
	Newton's first law of motion
	Newton's second law of motion
	Newton's third law of motion
	Newton's laws of motion – a section review
	Forces and energy
	Forces and energy – a section review
	Summary
	2. Physics Asset Tool
	Navigating to PhAT
	The PhAT environment
	The PhAT example and experience
	Deleting current assets
	Adding and customizing current assets
	Summary
	3. Collision
	Collision and Trace Responses – an overview
	Collision and Trace Responses – a section review
	Simple versus complex collision
	Simple versus complex collision – a section review
	Creating simple collisions
	Creating simple collisions – a section review
	Creating complex and custom collision hulls
	Creating complex and custom collision hulls – a section review
	Collision interactions
	Collision interactions – a section review
	Custom object and trace channel responses
	Custom object and trace channel responses – a section review
	In-depth collision presets
	In-depth collision presets – a section review
	Summary
	4. Constraints
	What are constraints?
	The first physics constraint actor experience
	Customizing physics constraint actor
	A simple game with Blueprint
	Summary
	5. Physics Damping, Friction, and Physics Bodies
	Physics Bodies – an overview
	Physics Bodies – a section review
	Angular and Linear Damping
	Angular and Linear Damping – a section review
	Physical Materials – an overview
	Physical Materials – a section review
	Physics Damping
	Physics Damping – a section review
	Summary
	6. Materials
	What is physical material?
	Creating the first material
	The physics of materials
	Summary
	7. Creating a Vehicle Blueprint
	Vehicle Blueprint – a content overview
	Vehicle Blueprints – a section overview
	Creating the Vehicle Blueprints
	Creating the Vehicle Blueprints – a section review
	Editing the Vehicle Blueprints
	Editing the Vehicle Blueprints – a section review
	Setting up user controls
	Setting up user controls – a section review
	Scripting movement behaviors
	Scripting movement behaviors – a section review
	Testing the vehicle
	Summary
	8. Advanced Topics
	Simulating complex physics – destruction
	Summary
	Index

