

Using	WebPageTest
Web	Performance	Testing	for	Novices	and	Power	Users

Rick	Viscomi,	Andy	Davies,	and	Marcel
Duran

Using	WebPageTest

by	Rick	Viscomi,	Andy	Davies,	and	Marcel	Duran

Copyright	©	2016	Rick	Viscomi,	Andy	Davies,	and	Marcel	Duran.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editors:	Courtney	Nash	and	Brian	Anderson

Production	Editor:	Shiny	Kalapurakkel

Copyeditor:	Gillian	McGarvey

Proofreader:	Eileen	Cohen

Indexer:	Wendy	Catalano

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

October	2015:	First	Edition

http://safaribooksonline.com

Revision	History	for	the	First	Edition
2015-10-09:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491902592	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Using	WebPageTest,
the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	authors	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
authors	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-90259-2

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491902592

Foreword

I	have	many	tools	in	my	web	performance	toolkit.	Chrome	DevTools	is	my	goto	for
inbrowser	performance	analysis.	I	use	the	PageSpeed	Insights	and	YSlow	extensions	for
converting	performance	observations	into	actions.	I	love	bookmarklets,	especially	for
doing	performance	analysis	in	mobile	browsers.	The	websites	I	run	are	monitored	using
several	RUM	and	synthetic	performance	measurement	services.

But	I	rely	on	WebPageTest	more	than	all	of	these	other	tools	combined.	Why?

You	can	run	WebPageTest	from	anywhere.	It	doesn’t	require	installing	anything,	all	you
need	is	a	browser.	I’ve	frequently	run	an	analysis	of	someone’s	website	in	IE	from	China
on	my	iPhone	and	shown	them	the	results	midconversation.	They’re	amazed,	and	I	have	to
swing	the	conversation	from	explaining	how	such	a	powerful	analysis	can	be	done	so
quickly	on	my	phone	to	what	they	need	to	do	to	make	their	website	faster.

WebPageTest	makes	it	easy	to	save	and	share	results.	When	analyzing	performance,	it’s
often	hard	for	one	person	to	convey	their	experience	to	other	team	members.	Sharing	a
WebPageTest	URL	ensures	that	everyone	is	looking	at	the	same	experience.	This	is
especially	helpful	in	bug	reports.	Since	results	are	never	deleted,	it’s	possible	to	go	back	to
review	performance	problems	in	older	browsers	and	previous	versions	of	the	website.

WebPageTest	covers	a	wide	range	of	performance	metrics.	It	has	waterfall	charts	with	the
associated	request	and	response	headers.	It	has	timing	metrics	including	time	to	first	byte,
document	complete,	and	fully	loaded.	WebPageTest	breaks	down	the	number	of	requests
and	bytes	by	content	type.	Users	who	look	deeper	find	the	CPU	utilization,	bandwidth,
and	main	thread	timelines,	which	are	often	the	key	for	uncovering	the	most	critical
performance	fixes.

More	than	anything	else,	WebPageTest	is	constantly	innovating	in	the	space	of	web
performance.	Ten	years	ago	everyone	tracked	window.onload	as	a	reflection	of	how	long	it
took	for	a	user	to	start	experiencing	a	website.	And	ten	years	ago	that	was	a	satisfactory
approximation.	But	today’s	websites	use	AJAX,	preloading,	async	loading,	lazyloading,
and	other	advanced	techniques,	which	means	we	can	no	longer	rely	on	window.onload	to
be	an	accurate	reflection	of	what	the	user	sees.

WebPageTest	leads	the	way	in	finding	new	ways	to	measure	and	convey	the	user
experience.	This	started	with	its	focus	on	filmstrip	views	and	side-by-side	videos.
Highlighting	start	render	time	lets	website	owners	know	how	long	users	are	waiting	to	get
an	indication	that	the	website	is	even	alive	and	able	to	respond	to	their	requests.	The	most
important	innovation	is	the	development	of	the	Speed	Index	metric:	one	number	that
summarizes	the	overall	rendering	experience.

WebPageTest	is	the	leading	web	performance	tool	in	the	world	today.	It	is	easy	to	use,
provides	the	performance	metrics	that	matter,	and	is	pioneering	new	ways	to	measure	the
actual	user	experience	that	websites	deliver.	In	2009’s	Even	Faster	Web	Sites,	I	wrote	that
WebPageTest	“hasn’t	gotten	the	wide	adoption	it	deserves.”	Fortunately,	that’s	no	longer

true.	In	fact,	now	there’s	even	a	book	about	it!	Read	on	and	find	out	how	to	get	the	most
out	of	WebPageTest	to	help	you	deliver	a	web	experience	that	is	fast	and	enjoyable.

—	Steve	Souders,	Chief	SpeedCurver	at	SpeedCurve,	“working	on	the	interplay	between
performance	and	design”	-	http://stevesouders.com

Preface

WebPageTest	is	a	synthetic	performance	testing	tool	for	websites	that	has	evolved	since	its
original	public	release	in	2008.	I	originally	developed	it	at	AOL	as	a	tool	to	provide
developers	information	on	the	page	load	experience	for	end	users	(with	realistic
connectivity	and	in	browsers	that	were	used	to	visit	sites).	At	the	time,	most	developers
used	Firefox	because	the	developer	tools	were	much	better	than	what	were	available	in
any	other	browser,	and	the	data	center	that	served	the	pages	was	right	across	the	street,
connected	by	fast	ethernet	to	the	office.	In	that	environment,	all	pages	loaded
unrealistically	fast	and	we	needed	a	way	to	analyze	and	share	the	performance	that	users
experienced	in	Internet	Explorer,	on	Windows,	and	in	the	slow	connectivity	environments
that	existed	at	the	time	(dialup	and	slow	DSL	primarily).

The	features,	supported	browsers,	and	platforms	have	evolved	over	time,	but	the	core
mission	has	been	very	consistent:	to	provide	detailed	information	to	developers	about	the
loading	performance	of	their	pages	in	a	realistic	end	user	environment.

WebPageTest	is	an	open	source	project	on	GitHub,	available	for	people	to	install	and	use
in	whatever	environment	they	would	like,	with	a	very	liberal	BSD	license.	There	are
several	commercial	testing	platforms	that	use	all	or	some	of	the	WebPageTest	code	and	it
also	powers	the	HTTP	Archive	(httparchive.org).	The	most	visible	instance	of
WebPageTest	is	the	free,	public	one	at	webpagetest.org,	which	is	a	great	demonstration	of
the	performance	community	coming	together	with	test	locations	provided	by	over	fifty
companies	and	individuals.	As	of	September	2015,	the	public	instance	of	WebPageTest	is
running	45,000	tests	per	day	and	there	have	been	roughly	53	million	tests	run	since	it	was
launched	in	2008.

WebPageTest	is	very	much	a	developer	tool,	built	mostly	to	help	developers	identify	and
solve	frontend	performance	issues,	so	it	can	be	a	bit	overwhelming	at	first,	but	hugely
powerful	once	you	get	more	familiar	with	it.	I’m	extremely	grateful	to	O’Reilly,	Andy,
Marcel,	and	Rick	for	putting	this	book	together	to	help	people	get	past	that	hurdle	and	get
the	most	out	of	WebPageTest.

—	Patrick	Meenan,	lead	developer	and	creator	of	WebPageTest

Who	Should	Read	This	Book
Independent	site	owners

Web	developers

Performance	engineers

A	Word	on	Web	Performance	Today
We	all	know	bad	web	performance	when	we	see	it.	When	something	takes	too	long	to	load
or	become	interactive,	we	start	to	get	bored,	impatient,	or	even	angry.	The	speed	—	or
lack	thereof	—	of	a	web	page	has	the	ability	to	evoke	negative	feelings	and	actions	from
us.	And	when	we	lose	interest,	have	to	wait	too	long,	or	get	mad,	we	may	not	behave	as
expected,	which	is	to	consume	more	content,	see	more	advertisements,	or	purchase	more
products.

The	Web	as	a	whole	is	getting	measurably	slower.	Rich	media,	such	as	photos	and	videos,
are	cheaper	to	download	thanks	to	faster	Internet	connections	but	they	are	also	more
prevalent	than	ever.	Expectations	of	performance	are	high	and	the	bar	is	being	raised	ever
higher.

Because	you’re	reading	this	book,	chances	are	you’re	not	only	a	user	but	someone	who
can	do	something	about	this	problem.	There	are	many	tools	at	your	disposal	that	specialize
in	web	performance	optimizations.	However,	none	is	more	venerable	than
WebPageTest.org.	WebPageTest	is	a	free,	open	source	web	application	that	audits	the
speed	of	web	pages.	In	this	book,	we	will	walk	you	through	using	this	tool	to	test	the
performance	of	web	pages	so	that	you	can	diagnose	the	signs	of	slowness	and	get	your
users	back	on	track.

http://www.webpagetest.org/

Navigating	This	Book
This	book	is	organized	into	three	primary	sections:	basic,	intermediate,	and	advanced	use
cases,	each	of	which	corresponds	to	a	different	level	of	familiarity	with	WebPageTest:

Basic	use	cases	provide	a	foundation	of	testing	experience	by	explaining	how	to	run
and	interpret	simple	tests.

Intermediate	use	cases	have	a	deeper	focus	on	more	sophisticated	test	scenarios,	some
of	which	may	require	scripted	commands	to	configure	how	the	tests	are	executed.

Advanced	use	cases	describe	lower-level	capabilities	typically	required	by	special	test
environments	including	the	API	and	private	instances.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

TIP
This	icon	signifies	a	tip,	suggestion,	or	general	note.

WARNING
This	icon	indicates	a	warning	or	caution.

Using	Code	Examples
This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Using	WebPageTest	by	Rick	Viscomi,	Andy
Davies,	and	Marcel	Duran	(O’Reilly).	Copyright	2015	Rick	Viscomi,	Andy	Davies	and
Marcel	Duran,	978-1-491-90259-2.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

mailto:permissions@oreilly.com

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at
http://www.oreilly.com/catalog/0636920033592.do.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://www.oreilly.com/catalog/0636920033592.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
There	are	many	people	who	helped,	encouraged,	and	cajoled	us	during	the	long	process	of
writing	this	book	and	we’re	truly	grateful	for	their	support.

Chief	amongst	those	is	Pat	Meenan,	who	answered	our	many	questions	and	guided	us	as
we	dug	into	the	fabulous	tool	he	created.

Courtney	Nash,	Brian	Anderson,	Shiny	Kalapurakkel,	Gillian	McGarvey	at	O’Reilly,	and
Gareth	Hughes,	Tony	Quartarolo,	Steve	Souders	and	Tim	Kadlec	are	a	few	of	the	others
we	also	owe	a	debt	to.

Writing	a	book	takes	time	and	eats	into	the	other	aspects	of	our	lives,	so	perhaps	the
biggest	thanks	we	owe	is	to	Corinne,	Rick’s	fiancée,	Ligia,	Marcel’s	wife,	and	Nicki,
Andy’s	wife.

Finally,	we’d	like	to	thank	you,	our	readers,	as	we	hope	this	book	encourages	you	to	use
WebPageTest,	host	your	own	instances,	integrate	it	into	your	daily	development	cycle	and
contribute	back	so	that	WebPageTest	continues	to	be	one	of	the	best	tools	for	analyzing
the	performance	of	web	pages.

Part	I.	Basic	Use	Cases

Imagine	for	a	moment	that	you	have	been	hired	as	the	new	assembly	line	foreman	at
Gizmos	&	Doodads	Incorporated,	a	company	that	manufactures	highly	desirable	widgets.
Your	new	boss	tells	you	about	how	slow	production	has	been;	orders	have	been	taking
twice	as	long	to	fulfill	and	the	line	has	been	unable	to	keep	up	with	what	is	otherwise	a
successful	increase	in	business.	Your	job	is	to	make	sure	that	the	line	workers	can	meet
demand.

You	outline	a	plan	to	not	only	meet	demand	but	also	have	the	factory	running	at	peak
efficiency.	The	first	step	of	your	plan	is	to	determine	the	current	rate	of	production	and	set
goals	to	measure	improvement.	The	second	step	is	to	measure	and	fine-tune	the	efficiency
of	each	phase	of	the	operation.	Step	three,	of	course,	is	profit.

In	order	to	find	out	the	production	speeds,	you	implement	a	widget-counter	system	that
measures	how	quickly	each	unit	is	made.	After	a	week	of	aggregating	information,	you
determine	that	the	end-to-end	time	for	manufacturing	is	half	as	fast	as	you	need	it	to	be	to
meet	the	quota.	You’ve	confirmed	that	there	is	indeed	a	problem	in	the	performance
process,	but	you	still	don’t	know	why.

To	understand	what’s	wrong,	you	move	to	the	second	step	and	analyze	what	each	part	of
the	assembly	line	is	doing.	You	inspect	every	station	for	inefficiencies	and	time	how	long
it	takes	until	the	task	is	completed.	Contrary	to	the	continuous	collection	of	data	in	the	first
step,	this	one	is	more	like	a	snapshot	of	performance.	With	this	new	perspective,	you’re
more	easily	able	to	see	how	the	parts	work	together	and	consume	time.

Armed	with	concrete	performance	data	and	a	detailed	breakdown	of	each	stage	of	widget
production,	you	can	see	a	path	to	reaching	the	goal	of	doubling	assembly	speed.	As	it
turns	out,	the	top	and	bottom	pieces	of	the	widget	can	be	assembled	independently	and
combined	at	the	end,	halving	the	time	it	takes	to	build!

This	plan	is	not	so	different	from	the	way	you	would	approach	web	performance
optimization.	After	determining	the	actual	speed	of	your	web	page,	you	get	an	idea	of	how
much	faster	it	needs	to	be.	Then	you	turn	to	a	breakdown	of	what	the	page	is	actually
doing	while	it	loads	to	figure	out	ways	to	achieve	the	necessary	speedup	required	to	meet
your	goal.	These	two	steps	are	distinct	in	methodology	because	they	serve	different
purposes:	finding	out	how	fast	a	page	is,	and	finding	out	how	to	make	it	faster.

This	section	will	approach	the	utility	of	WebPageTest	from	a	beginner’s	point	of	view,
starting	with	addressing	a	couple	of	ways	in	which	it	can	be	misused.	Subsequent	chapters
dive	into	the	fundamental	ways	WebPageTest	can	be	used	to	determine	how	to	make	a
page	faster.

Chapter	1.	How	Fast	Is	My	Page?

The	first	question	to	pop	into	the	minds	of	most	people	tasked	with	optimizing	the
performance	of	a	web	page	is	probably	“How	fast	is	it?”	As	in	the	story	about	the	factory,
understanding	the	current	state	of	a	system	is	an	important	first	step	on	the	road	to
optimization.	Determining	the	current	speed	of	a	page	helps	to	dictate	the	severity	of	the
performance	problem	and	sets	a	baseline	from	which	to	improve.

Before	diving	into	WebPageTest	for	the	purpose	of	getting	the	one	golden	number	that
represents	the	true	speed	of	your	page,	take	a	step	back	and	consider	two	cautionary
points.	First,	the	golden	number	you	seek	may	not	be	the	metric	provided	by	the	tool.	If
you	want	to	know	the	speed	of	a	page,	you	should	define	exactly	what	you’re	trying	to
measure.	Second,	even	if	the	tool	did	report	on	the	metric	you	care	about,	it	is	not
necessarily	representative	of	the	page’s	true	speed.	The	true	speed	is	that	which	the	real
users	of	the	page	experience.	Real	users	live	all	over	the	world,	use	different	technologies
like	device	type	or	browser,	and	connect	to	the	Internet	differently.	The	true	speed	of	this
amalgamation	is	extremely	hard	to	reflect	in	a	single	test.

Measure	What	Matters
WebPageTest	measures	the	speed	of	a	web	page	based	on	the	amount	of	time	that	has
elapsed	from	the	initial	page	request	until	the	browser	fires	the	load	event,	sometimes
referred	to	as	the	document	complete	time.	This	is	the	time	at	which	the	Document	Object
Model	(DOM)	has	been	created	and	all	images	have	been	downloaded	and	displayed.	For
most	traditional	web	pages,	the	load	time	is	a	suitable	metric	for	representing	how	long	a
user	must	wait	until	the	page	becomes	usable.

One	misconception	about	WebPageTest	is	that	the	default	metric,	load	time,	is	always
applicable	to	the	page	being	tested.	Not	all	web	pages	are	created	equal,	however,	and	this
metric	may	not	accurately	represent	the	true	amount	of	time	users	wait.

For	example,	think	about	the	last	time	you	read	a	news	article	online.	As	the	page	loaded,
what	were	you	waiting	for?	The	most	probable	answer	is	that	you	were	waiting	for	the	text
content	of	the	article	itself.	The	DOMContentLoaded	event,	also	reported	by	WebPageTest,
is	like	the	load	event	except	that	it	doesn’t	wait	for	images	to	be	displayed.	The	timing	of
this	event	may	be	a	more	appropriate	metric	to	track	because	the	time	to	load	the	ancillary
images	should	not	necessarily	be	taken	into	account.	The	default	metric	is	not	always	the
most	relevant	to	the	page	in	test.

For	one	final	example,	consider	the	YouTube	video	player	page.	This	is	not	a	traditional
web	page	and	its	content	is	more	elaborate	than	just	text	and	images.	Sometimes,	as	in	this
case,	custom	application-specific	metrics	are	needed	to	represent	the	true	load	time.	Users
of	this	page	are	waiting	for	the	video	to	play,	as	opposed	to	the	text	appearing	or	images
loading.	The	page	itself	needs	to	tell	the	browser	when	the	wait	is	actually	over,	because
the	built-in	events	aren’t	designed	for	this	particular	use	case	of	reporting	when	the	video
starts	playing.

Application-Specific	Metrics
You	can	log	custom	application-specific	metrics	to	WebPageTest	with	the	User	Timing	API.	Using	the
YouTube	example,	when	the	video	starts	to	play,	that	moment	in	time	can	be	marked	with	a	line	of
JavaScript:

performance.mark('playback-start');

WebPageTest	will	capture	these	marks	and	make	them	available	in	test	results.

Synthetic	Versus	RUM
Web	performance	tools	tend	to	be	divided	based	on	which	big	question	they	answer:	“How
fast	is	it?”	or	“How	can	it	be	made	faster?”	The	two	classifications	of	tools	are	commonly
referred	to	as	synthetic	and	real-user	monitoring	(RUM).	WebPageTest	falls	under	the
synthetic	category.

There’s	a	saying	that	when	you	have	a	hammer,	all	of	your	problems	start	to	look	like
nails.	Similarly,	no	one	type	of	web	performance	tool	can	answer	all	of	your	questions.	It’s
important	to	distinguish	what	each	type	does	and	how	it	can	be	used	so	that	you	know
when	to	use	the	right	tool	for	the	job:

Synthetic RUM

Laboratory-like	testing Measures	performance	of	real	users

Low	variability,	controlled High	variability,	unrestricted

Ad	hoc	tests Continuous	data	collection

Tools	like	WebPageTest	are	considered	to	be	synthetic	because	of	their	artificial	testing
environments.	Akin	to	a	clean	room	in	a	laboratory,	WebPageTest	gives	its	testers	granular
control	over	many	of	the	variables	that	contribute	to	performance	changes,	such	as
geographic	location	and	type	of	network	connection.	By	making	these	variables	constant,
the	root	causes	of	poor	frontend	performance	can	be	more	easily	identified	and	measured.

Unlike	the	control	afforded	by	synthetic	testing,	RUM	does	what	its	name	implies	and
measures	the	actual	performance	real	users	are	experiencing	in	the	wild.	The	unbridled
variations	in	browsers	and	bandwidth	are	all	accounted	for	in	the	reporting	so	that	each
and	every	user’s	unique	environment	is	represented.	By	looking	at	the	raw	data,	you	can
draw	definitive	statistical	conclusions.	For	instance,	with	access	to	the	performance
results,	you	are	able	to	determine	the	page-load	time	for	any	given	percentile.	RUM	is	also
considered	to	be	monitoring	because	data	tends	to	be	continuously	recorded	and	streamed
to	a	dashboard.	By	monitoring	performance,	developers	are	able	to	get	instant	notification
when	page	speed	takes	an	unexpected	turn;	a	decline	in	speed	could	theoretically	page	an
engineer	immediately	if	necessary.	This	is	especially	useful	for	mission-critical
applications	for	which	performance	is	just	as	important	as	availability.

For	attempting	to	determine	the	overall	speed	of	a	page,	it’s	clear	that	RUM	is	the
appropriate	solution	because	it	accurately	represents	the	performance	of	actual	users.
When	starting	out	with	WebPageTest,	one	pitfall	is	to	assume	that	the	synthetic	results	are
like	real-user	metrics.	The	reality,	however,	is	that	synthetic	tools	are	deliberately	designed
to	focus	on	the	performance	of	a	web	page	under	strict	conditions	that	are	otherwise
highly	volatile	in	real-user	performance.

To	help	illustrate	this	pitfall,	imagine	that	you	run	a	synthetic	test	of	your	home	page	and

come	to	find	that	the	load	time	is	10	seconds.	“That’s	crazy,”	you	think,	because	it	never
feels	that	slow	to	you.	Your	real-world	experience	does	not	coincide	with	the	test	results.
It’s	not	that	the	test	is	necessarily	wrong.	The	test	configuration	is	meant	to	represent	one
particular	use	case.	If	it	isn’t	set	up	to	match	your	browser,	in	your	city,	over	your
connection	speed,	you’re	unlikely	to	get	comparable	results.	The	test	is	only	an	artificial
representation	of	what	someone	under	similar	conditions	might	experience.	It’s	up	to	you
to	configure	the	test	in	a	way	that	mimics	the	conditions	that	you	want	to	compare.
Throughout	the	book,	we’ll	look	at	different	use	cases	that	each	has	its	own	unique
conditions,	which	in	turn	have	corresponding	configurations.

Chapter	2.	What’s	Slowing	Down	My
Page?

It’s	good	to	know	how	fast	a	page	is.	Knowing	how	to	make	it	faster	is	even	better.
Knowing	the	change	in	performance	over	time	is	extremely	important	to	validating	that
the	optimizations	to	the	page	are	actually	working.	Before	any	optimizations	can	be	made,
however,	you	need	to	understand	how	the	page	is	put	together	and	what	opportunities	exist
for	optimization.	To	get	there,	this	chapter	will	walk	you	through	the	steps	of	running	a
very	simple	test	and	analyzing	the	results	to	figure	out	what	exactly	is	going	on	under	the
hood.

Running	a	Simple	Test
Almost	everyone	who	starts	out	with	WebPageTest	goes	through	the	home	page,	which
acts	as	the	gateway	to	the	rest	of	the	tool.	Putting	ourselves	in	the	shoes	of	someone	who
has	never	used	the	tool	before,	let’s	try	to	run	our	first	test.

First,	go	to	www.webpagetest.org.	One	of	the	most	prominent	parts	of	the	page	is	the	great
big	text-input	field,	with	a	prompt	to	Enter	a	Website	URL	(Figure	2-1).	Let’s	get	started
by	providing	the	web	address	of	a	page	we	want	to	test	(Figure	2-2).

Figure	2-1.	The	default	WebPageTest	home	page

http://www.webpagetest.org

Figure	2-2.	The	URL	field	of	the	home	page	set	to	www.example.com

At	this	point,	you	may	either	be	feeling	overwhelmed	by	all	of	the	other	configuration
options	or	eager	to	jump	in	and	start	customizing	the	test.	Either	way,	don’t	worry	about
the	rest	of	the	options.	Part	II	will	look	at	some	of	the	more	advanced	ways	to	configure
tests.	But	for	our	first	test,	let’s	simply	start	with	a	URL	and	see	what	happens	when	we
leave	everything	else	to	its	default	value.	To	run	the	test,	click	on	the	big	Start	Test	button
next	to	the	URL	input	field.	That’s	it.	That’s	how	to	run	the	simplest	test	with
WebPageTest.	Now	the	fun	begins.

By	now,	you’ve	been	taken	to	a	page	that	shows	how	the	test	is	progressing	(Figure	2-3).
There	are	three	phases	in	the	lifetime	of	a	test:	waiting,	testing,	and	done.

Figure	2-3.	The	test	has	progressed	to	the	second	phase	and	is	in	the	process	of	being	run

WebPageTest	is	a	publicly	accessible	tool,	which	implies	that	many	people	may	be	trying
to	use	it	at	the	same	time.	The	browser	and	location	are	shared	commodities,	and	there
could	be	a	queue	of	tests	backed	up.	This	is	the	waiting	phase,	when	the	resource	you	need
is	already	in	use	and	there	may	be	more	tests	ahead	of	you	waiting	for	the	same.	This	can
be	the	most	unpredictable	phase	because	of	two	factors:	the	variable	number	of	tests	in	the
queue	and	the	variable	complexity	of	the	tests.	Some	tests	require	more	time	to	complete
than	others.	Having	many	of	these	kinds	of	tests	in	the	queue	can	slow	down	this	phase	to
minutes	or	even	hours.	Sometimes,	a	test	can	get	stuck	and	nothing	in	the	queue	can	move
until	an	administrator	becomes	available	to	sort	it	out.

TIP
To	get	an	idea	of	resource	availability,	check	out	webpagetest.org/getLocations.php.	This	page	lists	the
available	resources	for	a	given	location	and	browser,	which	you	can	use	to	pick	a	lesser-utilized
configuration	for	faster	testing.

If	you	find	yourself	in	a	queue	that’s	not	moving,	consider	changing	to	a	different	browser	or	test	location.
Each	combination	has	its	own	queue,	and	this	tool	will	tell	you	which	ones	are	the	shortest.

When	your	test	has	reached	the	front	of	the	queue,	it	will	switch	to	the	testing	phase.	At
this	point,	a	browser	somewhere	is	loading	the	web	page	you	entered	and	collecting	lots	of
data.	Because	we	configured	a	very	basic	test,	this	phase	should	only	take	a	minute.
Finally,	when	the	test	reaches	completion,	the	progress	page	becomes	a	report	summary
(Figure	2-4).	This	is	where	we	can	start	to	analyze	the	performance	of	our	page.

http://www.webpagetest.org/getLocations.php

Figure	2-4.	After	the	test	has	completed,	the	test	progress	page	turns	into	the	test	summary	page,	which	provides	an
overview	of	the	page	performance

The	first	place	to	look	is	the	table	of	data.	This	is	the	metrics	summary	of	the	test,
containing	a	breakdown	of	important	milestones	of	the	page-load	process.	From	left	to
right:

Load	Time

The	time	from	the	initial	request	until	the	browser	load	event.	Also	known	as	the
document	complete	time.	This	is	the	default	performance	metric	on	WebPageTest.

First	Byte

Time	until	the	server	responds	with	the	first	byte	of	the	response.

Start	Render

Time	until	the	browser	paints	content	to	the	screen.

DOM	Elements

Number	of	elements	in	the	document.

Document	Complete

Time

Same	as	Load	Time.

Requests

Number	of	HTTP	requests	before	the	load	event,	not	including	the	initial
request.

Bytes	In

Total	size	of	the	Document	Complete	Requests’	response	bodies	in	bytes.

Fully	Loaded

Time

The	time	from	the	initial	request	until	WebPageTest	determines	that	the	page	has
finished	loading	content.	The	page	might	have	waited	for	the	load	event	to	defer
loading	secondary	content.	The	time	it	takes	to	load	the	secondary	content	is
accounted	for	in	the	Fully	Loaded	Time.

Requests

Total	number	of	HTTP	requests	recorded	in	this	test	run,	not	including	the	initial
request.

Bytes	In

Total	number	of	bytes	received	in	this	test	run.

Before	each	test,	WebPageTest	clears	the	browser	cache	to	ensure	that	it	downloads	all
resources.	This	is	considered	to	be	the	first	view,	representing	a	new	user	visiting	the	page
without	any	local	copies	of	the	resources.	One	of	the	default	WebPageTest	configurations
is	to	load	the	page	a	second	time	without	clearing	the	browser	cache;	this	is	known	as	the
repeat	view.	The	difference	between	the	number	of	requests	of	first	and	repeat	views	is	an
indicator	of	the	number	of	cacheable	resources	on	the	page.	The	metrics	for	each	view	are
enumerated	in	the	summary	table.

WARNING
In	addition	to	the	first	and	repeat	views,	WebPageTest	has	another	configuration	for	the	number	of	times	to
run	the	test.	By	default,	this	value	is	1.	The	summary	metrics	only	reflect	the	performance	of	the	single	test
run.	With	so	few	runs,	these	metrics	can	easily	be	affected	by	network	or	server	fluctuations.	Anomalies	do
happen,	and	only	running	one	test	can	disguise	the	anomalies	as	realities.	One	WebPageTest	best	practice	is
to	run	tests	multiple	times	and	choose	the	most	representative	run	to	look	at.	Tests	can	be	run	up	to	nine
times	(not	including	repeat	views).	The	method	for	choosing	the	most	representative	test	run	is	to	sort	all
runs	by	some	metric	and	choose	the	middle-most	run.	By	definition,	this	is	referred	to	as	the	median	run.
The	default	median	metric	is	the	document	complete	time	or	load	time.

There	exists	a	URL	parameter	named	medianMetric.	Change	the	metric	used	to	calculate	the	median	run	by
providing	the	medianMetric	URL	parameter.	Set	its	value	to	one	of	the	other	metrics’	names,	and	the
summary	metrics	will	reflect	this	other	run.	For	example,	?medianMetric=bytesIn	chooses	the	median
based	on	the	number	of	bytes	downloaded.	See	“Details	of	Requests	In	Test	Results”	for	a	full	list	of
median	metric	options.

http://www.webpagetest.org/result/140603_1J_633/?medianMetric=bytesIn

After	running	this	simple	test,	we’re	able	to	report	on	the	summary	metrics	to	get	an	idea
of	how	fast	or	slow	the	page	performance	was.	Keep	in	mind,	though,	that	the
performance	of	the	test	may	not	be	representative	of	the	actual	performance	live	users	of
the	page	are	experiencing.	The	real	value	in	these	metrics	comes	from	comparing	them
against	the	performance	of	other	similarly	configured	tests.	Comparison	is	the	key	to
determining	whether	the	differences	between	tests	have	made	a	positive	or	negative
impact.	This	first	test	won’t	do	much	good	unless	we’re	able	to	find	ways	to	optimize	the
page	and	rerun	the	test	for	comparison,	so	in	the	next	section	we	will	look	at	how	to	read
the	waterfall	diagram	to	find	out	what	could	be	slowing	the	page	down.

Reading	a	Waterfall
Undeniably,	the	most	important	part	of	a	web	performance	report	is	the	waterfall	diagram.
Waterfalls	are	a	visualization	of	the	network	activity,	which	is	broken	down	into	individual
HTTP	requests	(see	Figure	2-5).

Figure	2-5.	An	example	of	a	waterfall

Each	request	is	made	up	of	five	main	phases:

DNS	lookup

The	time	to	resolve	a	human-friendly	hostname	like	http://www.example.com	to	its
Internet	Protocol	(IP)	address.	An	IP	address	is	like	a	phone	number	unique	to	the
computer	that	will	be	serving	the	web	page.	Resolving	the	DNS	of	a	web	page	is	sort
of	like	looking	through	a	phone	book.

Initial	connection

The	time	for	the	browser	to	establish	a	connection	to	the	server.	If	resolving	the	DNS
of	the	server	is	like	looking	up	a	phone	number,	this	is	the	step	of	dialing	the	number
and	waiting	for	someone	to	answer.

SSL	negotiation

The	time	for	the	browser	and	server	to	agree	on	a	secure	way	to	communicate.	This
step	is	skipped	for	plain	HTTP	requests	but	is	a	requirement	for	secure	protocols	like
HTTPS	and	SPDY.

Time	to	First	Byte	(TTFB)

http://www.example.com

The	time	for	the	server	to	prepare	the	response	to	the	request.	Prior	to	this	phase,	the
server	had	no	idea	what	the	request	was	even	for.	This	is	when	the	server	looks
something	up	in	a	database	or	calls	an	external	API.

Content	download

The	time	for	the	server	to	send	the	entire	contents	of	the	response.	This	time	is
directly	proportional	to	the	size	of	the	response	and	the	speed	of	the	connection.

Figure	2-6	shows	a	request	with	all	of	the	previously	listed	phases.

Figure	2-6.	An	example	of	a	request	with	all	five	phases:	DNS	lookup	(teal),	initial	connection	(orange),	SSL	negotiation
(purple),	TTFB	(green),	and	content	download	(blue)

Waterfalls	are	also	decorated	with	bars	and	lines,	marking	the	times	at	which	page-level
events	occur,	as	shown	in	Figure	2-7.

Figure	2-7.	The	waterfall	events	shown	behind	the	requests.	From	left	to	right:	msFirstPaint	(light	green),	Start	Render
(dark	green),	DOM	Content	Loaded	(pink),	Document	Complete	(dark	blue),	and	On	Load	(light	blue)

There	are	four	basic	page-level	events:

Start	Render	(first	paint)

The	time	for	the	browser	to	display	the	first	pixel	of	content	(paint)	on	the	screen.
There	are	two	separate	events	shown,	one	for	each	method	of	measurement.	Start
Render	is	WebPageTest’s	own	metric,	determined	by	programmatically	watching	for
visual	changes	to	the	page.	This	is	illustrated	in	the	section	“Filmstrip	and	Video”.
The	other	metric	is	reported	by	the	browser	and	represents	the	time	it	claims	to	have
first	painted	to	the	screen.

DOM	Content	Loaded

After	the	browser	has	received	the	HTML	payload,	it	parses	it	into	the	DOM,	which
is	a	virtual	representation	of	the	page	structure.	The	browser	will	fire	an	event	to	let
the	page	know	that	the	DOM	is	ready	so	that	the	page	can	go	on	to	interact	with	it.
One	such	interaction,	for	example,	would	be	to	assign	a	click-event	listener	to	a
button.	This	page-level	event	has	both	a	start	and	end	time,	representing	how	long	the
page	spent	handling	the	DOM	ready	event.

On	Load

The	start	and	end	time	of	the	page’s	load-event	handler.	The	browser	fires	the	load
event	when	the	DOM	is	ready	and	all	images	have	loaded.	Pages	typically	use	this
event	handler	to	perform	secondary	tasks	like	loading	content	below	the	fold	(outside
of	the	user’s	viewport).

Document	Complete

Effectively,	the	time	that	the	browser	fires	the	load	event.	This	event	name	can	be
considered	a	misnomer	because	the	document	may	not	necessarily	be	complete.
Around	this	time,	the	page’s	script	is	hard	at	work	in	the	load-event	handler	firing	off
more	requests	for	secondary	content.	The	incomplete	nature	of	this	metric	is	why
Fully	Loaded	was	added	to	the	table	of	metrics	from	the	previous	section.

The	final	type	of	waterfall	adornment	is	the	request	highlighting.	Yellow	and	red
highlights	are	applied	to	request	rows	to	indicate	that	some	kind	of	inefficiency	or	error
occurred.

Highlights	fall	into	three	main	categories:

Errors	(red)

The	most	common	cause	for	this	is	likely	to	be	HTTP	404	errors	(Not	Found),	which
can	occur	if	the	URL	of	a	resource	was	mistyped	or	if	the	resource	was	deleted	from
the	server.	Other	typical	errors	include	HTTP	500	internal	server	errors,	when	the
server	can’t	respond	to	the	request	because	of	a	bug	in	its	own	code.	See	Figure	2-8.

Figure	2-8.	A	series	of	requests,	two	responses	to	which	are	shown	as	errors:	HTTP	404	(Not	Found)	and	500	(Internal
Server	Error)

Redirects	(yellow)

A	resource	was	requested	at	one	particular	URL	and	the	server	reported	that	it	does
exist,	but	under	a	different	URL.	The	alternate	URL	is	returned	and	the	browser	has
to	try	again.	These	are	HTTP	301	and	302	response	codes	(Figure	2-9	and	Figure	2-
10).	This	is	inefficient	because	the	browser	had	to	repeat	its	request,	further	delaying
the	time	to	load	the	resource.	Redirects	commonly	occur	when	the	server	rewrites	the
URL	of	the	page,	such	as	from	example.com	to	www.example.com.	Secure	web	pages
may	even	redirect	users	from	http://example.com	to	https://example.com.	Or	even
worse,	both:	http://example.com	to	http://www.example.com	to
https://www.example.com.	These	redirects	occur	on	the	initial	request	before	any
content	has	even	been	loaded,	so	they	are	considered	especially	harmful	to	page
performance.

Figure	2-9.	A	series	of	requests,	two	responses	to	which	are	shown	as	redirects:	HTTP	301	(Moved	Permanently)
and	302	(Found)

Figure	2-10.	The	initial	request	for	a	page	is	redirected	four	times	in	a	chain	reaction	of	redirection.	The	initial
request	is	already	at	a	800	millisecond	disadvantage.	This	happens	when	the	server	tries	to	rewrite	a	page	URL,
commonly	to	a	different	subdomain	or	protocol,	which	in	turn	causes	another	rewrite,	and	so	on,	until	finally	the

actual	resource	is	able	to	load.

Cache	(yellow)

http://example.com
https://example.com
http://example.com
http://www.example.com
https://www.example.com

In	repeat	views,	which	is	the	second	pass	of	a	page	with	the	browser	cache	already
warmed	up,	some	resources	have	been	downloaded	but	didn’t	include	information
about	how	long	they	are	valid.	For	each	of	these	resources,	the	browser	had	to	ask	the
server	if	what	it	has	in	cache	is	still	valid.	The	server	responded	with	an	HTTP	304
code	(Not	Modified)	to	answer	that	the	file	has	not	been	changed	since	it	was	cached,
as	shown	in	Figure	2-11.	Having	a	resource	in	cache	is	always	better	than	having	to
download	it	all	over	again,	but	this	304	response	should	not	be	necessary.	When	the
server	sent	the	resource	to	the	browser	the	first	time,	it	should	have	included	all	of	the
pertinent	information	of	its	cache	lifetime.

Figure	2-11.	A	series	of	requests,	four	responses	to	which	are	shown	as	304	(Not	Modified)

Waterfall	Slope
In	addition	to	the	lines,	bars,	and	colors	in	a	waterfall	diagram,	there’s	another,	more
subtle	indicator.	Remember	that	the	start	offset	is	the	amount	of	time	that	has	passed	since
the	page	started	loading	until	the	request	is	finally	made.	Waterfall	shapes	are	determined
by	the	start	offsets	of	the	requests.	Shapes	can	be	tall,	short,	wide,	or	narrow	depending	on
the	number	of	requests	and	the	rate	at	which	they	are	completed.	See	Figure	2-12	and
Figure	2-13	as	examples	of	these	variations.	Identifying	the	shape	of	a	waterfall	is	an	easy
way	to	see	the	performance	big	picture.

Figure	2-12.	An	example	of	a	series	of	requests	in	a	waterfall	with	tall	and	narrow	slope.	Many	requests	are	initiated	at
roughly	the	same	time,	as	illustrated	by	their	mostly	aligned	left	edges.

Figure	2-13.	An	example	of	a	series	of	requests	in	a	waterfall	with	short	and	wide	slope.	Several	requests	are	made	in	a
row	but	with	a	noticeable	amount	of	time	between	them.	The	horizontal	slope	here	is	an	indicator	of	inefficient	network

utilization.

Waterfall	shapes	are	simply	a	general	descriptor	for	a	page’s	performance.	To	really
understand	which	requests	are	hurting	performance,	we	need	to	look	at	the	waterfall’s
slope.	Recall	from	geometry	that	the	slope	of	a	line	in	a	coordinate	system	is	its	height
divided	by	its	length,	or	“rise	over	run.”	In	a	waterfall	diagram,	things	are	a	little	different.
The	top-left	point	is	the	origin	(or	zero	value),	so	increasing	requests	actually	go
downward.	Still,	we	can	apply	the	concept	of	slope	to	waterfalls	in	order	to	better
understand	them.

Looking	at	a	waterfall	from	the	perspective	of	request	start	offsets,	you	can	begin	to	notice
similarities	and	differences.	For	example,	many	requests	in	a	row	with	close	to	the	same
start	offset	appear	stacked.	If	you	draw	a	line	to	the	left	of	the	requests,	the	line	will	look
almost	vertical,	as	shown	in	Figure	2-14.	In	terms	of	slope,	this	is	ideal.	What	it	means	is
that	in	a	given	period	of	time,	many	things	were	happening.	The	opposite	would	be	a	case
when	adjacent	requests	have	very	different	start	offsets,	in	which	case	the	slope	line	would
be	long	and	approaching	horizontal.	These	imaginary	near-horizontal	lines	are	excellent

indicators	of	poor	performance	afoot.	In	essence,	something	is	happening	such	that
requests	are	getting	delayed.

Figure	2-14.	An	example	of	a	long	series	of	requests	in	a	waterfall	with	tall	slope.	These	are	mostly	images	loading	over
five	domain	shards.	The	vertical	slope	is	an	indicator	of	efficient	use	of	the	network.

There	are	a	couple	of	key	considerations	when	looking	at	waterfall	slopes.	First,	be	aware
of	the	scale	of	the	time	axis.	Tests	that	run	in	a	short	amount	of	time	may	sometimes	be
shown	in	units	of	half	a	second,	which	would	exaggerate	the	horizontal	aspect	of	slope.
Second,	keep	in	mind	which	requests	are	most	important	to	the	user	experience.	Many
requests	may	be	necessary	to	construct	a	usable	page.	The	critical	path	is	the	name	for	the
requests	that	are	required	to	get	the	page	to	this	state.	The	slope	of	the	critical	path	should
always	be	as	vertical	as	possible.	In	contrast,	the	slope	of	requests	outside	of	the	critical
path	should	be	second	in	priority.

TIP
You	can	restrict	which	requests	appear	in	the	waterfall	diagram	on	the	Customize	Waterfall	page,	a	link	to
which	is	accessible	directly	under	the	waterfall.	Enter	ranges	of	request	numbers	to	narrow	it	down.	This	is
especially	useful	for	limiting	the	waterfall	to	only	the	critical	path.

Connection	View
To	recap,	the	waterfall	diagram	is	a	visualization	of	the	network	traffic	while	a	given	page
loads.	This	view	is	great	for	spotting	most	performance	anti-patterns	related	to	the	critical
path.	WebPageTest	provides	an	alternate	view,	called	the	connection	view,	focused	not	on
the	sequence	of	requests	but	rather	the	connections	through	which	requests	are	made
(Figure	2-15).	This	type	of	view	lends	itself	to	better	illustrating	how	the	networking
between	server	and	browser	works.

Figure	2-15.	The	connection	view	for	a	page	with	many	JavaScript	resources,	as	indicated	by	the	color	coding.	Each
row	is	numbered	1	through	7,	representing	seven	total	connections.	Each	connection	would	normally	be	labeled	with	the

host	to	which	it	is	connecting,	but	this	information	has	been	omitted	from	the	figure	for	simplicity.

Each	row	in	the	connection	view	diagram	represents	a	communication	channel	established
over	the	Transmission	Control	Protocol	(TCP).	It’s	not	uncommon	to	see	multiple
connections	opened	for	the	same	domain.	When	this	happens,	requests	are	able	to	be	made
in	parallel,	which	can	be	useful	for	taking	advantage	of	available	bandwidth.	Note,
however,	that	with	multiplexing	support	in	HTTP/2,	it	is	no	longer	necessary	or	beneficial
to	open	multiple	connections.	A	single	connection	can	efficiently	stream	multiple
responses	concurrently.

Drawn	in	each	row	is	one	or	more	requests.	Although	the	requests	are	illustrated
differently	from	the	waterfall	diagram,	keep	in	mind	that	the	same	data	is	being	shown	in
the	connection	view.	The	DNS	lookup,	initial	connection,	and	SSL	negotiation	phases	are
shown	as	short	bars	before	the	first	request	in	each	row.	By	definition,	each	row	has	one
and	only	one	initial	connection.	Further,	each	domain	has	one	and	only	one	row	that
completes	the	DNS	resolution	phase.	This	illustrates	the	reuse	of	phases	between
subsequent	requests	to	the	same	domain.	The	domain	name	does	not	need	to	be	resolved
again,	plus	open	connections	can	be	reused	without	penalty	of	creating	another.

The	TTFB	and	content	download	phases	are	included,	but	their	colors	are	unique	to	the
content	type	of	the	request.	For	example,	JavaScript	resources	are	tan	and	images	are
purple.	The	legend	below	the	diagram	shows	what	each	color	represents.	The	lighter	shade
is	the	TTFB	and	the	darker	shade	is	the	content	download	phase.	Be	aware	that	very	small
resources	may	have	download	times	so	small	that	the	darker	shade	is	virtually
imperceptible.	All	of	this	color	coding	has	nothing	to	do	with	connections,	but	it	still	adds
some	value	to	the	diagram	by	making	it	easier	to	spot	patterns	and	irregularities.

Common	Anti-Patterns
So	far,	we’ve	looked	at	ways	of	reading	a	waterfall	to	conclude	that	something	is	wrong.
But	to	figure	out	what	is	wrong,	you	need	to	know	what	you’re	looking	for.	Some
performance	problems	have	a	telltale	signature,	called	an	anti-pattern,	that	they	leave
behind	in	a	waterfall.	Spotting	these	anti-patterns	takes	some	practice,	so	in	this	section
we’ll	look	at	a	few	common	performance	issues	and	their	signatures.

Long	first-byte	time

If	we’re	going	to	look	at	common	performance	issues,	let’s	start	with	the	one	that	people
seem	to	need	a	lot	of	help	with.	A	tweet	in	December	2012	by	WebPageTest	creator	Pat
Meenan,	stated	that	90%	of	the	posts	on	the	tool’s	forums	had	to	do	with	excessive	time-
to-first-byte	results.	At	the	beginning	of	this	chapter	we	defined	First	Byte	as	the	time
from	the	request	to	the	first	byte	of	the	response.	This	isn’t	to	be	conflated	with	the	Time
to	First	Byte	(TTFB),	which	is	one	of	a	few	phases	of	the	initial	request	that	can	contribute
to	unacceptable	first-byte	times.

Starting	from	the	beginning,	DNS	resolution	could	be	affected	by	long	certificate	chains	or
high	latency	on	the	name	servers.	Long	DNS	resolution	could	be	debugged	using	free
online	tools.	The	connection	phase	of	the	initial	request	could	be	compromised	by
inefficient	server	settings,	such	as	a	small	congestion	window,	which	would	result	in	more
round-trips	than	necessary.	The	security	negotiation	phase	requires	even	more	round-trips
between	the	browser	and	server	to	secure	the	connection.	Despite	everything	that	can	go
wrong	in	the	first	three	phases,	the	TTFB	phase	tends	to	be	the	culprit,	as	shown	in
Figure	2-16.	This	is	the	phase	affected	by	long-running	server	processing,	typically
database	access.	Because	the	server	is	outside	of	WebPageTest’s	instrumentation	reach,
diagnosing	backend	issues	will	require	additional	tooling.

Figure	2-16.	A	2,109	millisecond	request	with	a	1,795	millisecond	TTFB,	which	accounts	for	approximately	85%	of	the
total	request	time.	The	subsequent	request	is	blocked	during	the	entire	TTFB	phase.

This	anti-pattern	is	arguably	one	of	the	most	detrimental	because	it	affects	the	initial

response,	which	contains	the	markup	and	styles	necessary	to	draw	something	onto	the
screen.	Users	waiting	for	the	response	would	have	no	visual	fodder	to	alleviate	the	wait.
Anti-patterns	after	the	first	paint	would	at	least	leave	something	on	screen	for	users	to
preoccupy	themselves	with,	unlike	this	one.	This	first	request’s	performance	impacts	the
lower	limit	on	how	fast	the	page	can	get.	No	amount	of	optimization	on	the	frontend	can
change	how	quickly	the	backend	is	able	to	service	requests.

Reopened	connections

One	of	the	easiest	anti-patterns	to	spot	in	the	connection	view	is	the	problem	of	not
reusing	connections.	In	order	for	the	browser	to	request	a	resource	from	the	server,	it
needs	to	have	an	open	connection,	or	channel,	over	which	to	make	the	request.	These
channels	are	usually	left	open	for	the	browser	to	reuse	for	its	next	requests.	This	is
accomplished	by	the	server	instructing	the	browser	how	long	the	connection	is	good	for.
Without	it,	the	browser	must	initiate	a	new	connection	for	each	and	every	request,	as
shown	in	Figure	2-17.	The	underlying	connection	protocol,	TCP,	is	known	as	the	three-
way	handshake	for	the	number	of	messages	between	browser	and	server.	So	for	every
request,	additional	time-consuming	round-trips	are	unnecessarily	incurred.	This	is	made
worse	for	secure	requests,	which	require	even	more	round-trips	for	the	SSL	negotiation
phase.	Reused	connections	share	the	preexisting	security,	avoiding	the	need	to	spend
redundant	time	establishing	another	channel.	Enabling	connection	reuse	requires	a	change
to	the	web-server	configuration;	the	Keep-Alive	setting	must	be	turned	on.	Fortunately,
this	is	an	easy	and	well-documented	change.

Figure	2-17.	Looking	closely,	you	can	see	that	many	of	these	requests	start	with	a	small	orange	bar	to	indicate	that	new
connections	are	being	made.	This	is	time	that	could	otherwise	be	spent	downloading	the	requested	content.

Closing	connections	is	the	signature	anti-pattern	of	the	connection	view.	By	design,	each
row	is	a	connection,	so	you’d	normally	expect	to	see	connections	to	the	primary	content
server	being	reused	for	multiple	requests,	leading	to	many	resources	shown	side-by-side.
For	this	anti-pattern,	however,	connections	are	used	only	once,	so	each	row	would	only
contain	a	single	request.	This	problem	is	unique	to	each	server,	so	it	may	not	be	a	problem
throughout	the	entire	diagram.

Canceled	requests

Consider	a	page	with	relatively	complex	markup	consisting	of	many	elements,	several
levels	deep.	This	page	was	built	with	some	best	practices	in	mind,	so	the	script	tags	were
appended	to	the	body	of	the	document.	After	making	the	initial	request	for	this	page,	a
simple	browser	would	receive	the	response	data	and	linearly	parse	the	document	to
construct	the	DOM.	As	it	parses	further	and	deeper	into	the	markup,	more	time	passes
before	those	footer	scripts	are	loaded.	Finally,	after	everything	above	the	scripts	is	parsed,
the	scripts	can	be	requested	from	the	server.	If	this	seems	inefficient,	that’s	because	it	is.
Modern	browsers	are	smarter	than	that,	so	they	use	a	technique	to	find	resources	like	these
scripts	earlier,	but	not	always	without	making	a	mistake.

Modern	browsers	employ	lookahead	scanning	on	a	page	to	get	a	sense	of	what	will	need
to	be	loaded.	Think	of	it	as	two	parsers	on	the	document	at	the	same	time:	one	does	the
simple	job	of	parsing	the	markup	into	the	DOM,	and	the	other	—	known	as	the	lookahead
pre-parser	—	jumps	ahead	to	find	external	resources	that	will	be	needed	by	the	page.
When	the	lookahead	pre-parser	finds	one	such	resource,	it	tries	to	download	it	as	soon	as
possible.	The	problem	is	that	the	DOM	may	contain	information	relevant	to	that	resource,
which	may	not	have	been	parsed	yet.	If	this	happens,	the	lookahead	pre-parser	will	have
wastefully	started	loading	a	resource	that	cannot	be	used	anymore,	and	WebPageTest	will
record	this	as	a	canceled	request.	Canceled	requests	will	eventually	be	completed	later,
resulting	in	a	duplicate	entry	in	the	waterfall	diagram.

This	problem,	mostly	limited	to	Internet	Explorer,	happens	because	the	lookahead	pre-
parser	makes	some	incorrect	assumptions	about	the	resources	it’s	trying	to	preload.	For
example,	if	a	script	source	attribute	is	given	a	relative	file	path	like	/main.js,	the
lookahead	pre-parser	may	see	this	and	assume	that	the	file	is	relative	to	the	current	host.
However,	there	is	a	way	to	override	the	host	to	use	for	relative	paths	in	HTML;	this	is
known	as	the	base	tag.	If	content	is	served	over	www.example.com,	the	base	tag	can	be
used	to	supplant	the	host	with	something	else,	like	foo.example.com,	where	all	relative	file
paths	should	be	served.	If	the	lookahead	pre-parser	gets	to	the	main.js	script	before	the
DOM	parser	finds	the	base	tag,	it	will	incorrectly	look	for	the	resource	at
www.example.com/main.js.	Even	if	a	resource	exists	at	that	location,	it’s	still	not	what	the
document	actually	requested	and	it	must	be	discarded.	Similarly,	other	kinds	of	markup
can	invalidate	preloaded	resources	like	the	charset	and	x-ua-compatible	meta	tags.	As	is
the	situation	with	the	base	tag,	these	tags	can	lead	to	invalid	assumptions	about	the
resources	to	be	loaded	on	the	page.

Canceled	requests	have	noticeable	effects	on	the	performance	of	a	web	page.	The
resources	that	the	lookahead	pre-parser	was	trying	to	preload	may	have	been	unnecessarily
competing	for	bandwidth	with	other	important	resources	on	the	page	(Figure	2-18).	Worse,
when	the	resources	are	finally	loaded,	they	may	come	through	seconds	after	the	initial
attempt.

Figure	2-18.	Requests	for	several	resources	are	shown	as	canceled.	Many	of	the	subsequent	requests	are	for	the	same
resources,	duplicating	effort.

Fortunately,	there	are	some	best	practices	that	can	help	you	avoid	this	situation.	Meta	tags
with	equivalent	attributes	to	HTTP	response	headers	should	be	set	as	a	header	to	begin

with.	This	avoids	preload	invalidation	because	the	lookahead	pre-parser	knows	to	make
the	correct	assumptions	before	the	DOM	parser	even	begins.	As	for	the	base	tag,	if	it	must
be	used,	it	should	be	included	as	early	in	the	HTML	head	element	as	possible.	This	will
reduce	the	amount	of	time	that	the	lookahead	pre-parser	has	to	make	incorrect
assumptions,	but	it	is	not	bulletproof.

Network	silence

Maintaining	good	waterfall	slope	requires	the	number	of	requests	in	a	given	time	to	be
high.	Of	the	anti-patterns	that	kill	slope,	network	silence	is	the	epitome	of	suboptimal
request	scheduling.	A	silent	network	means	that	requests	are	not	being	made.	This	is	fine
if	the	page	has	finished	loading,	but	when	there	are	still	outstanding	resources,	they	should
be	loaded	as	soon	as	possible.	The	observable	clues	to	network	silence	are	long	pauses	or
gaps	between	requests	in	the	waterfall,	low	bandwidth	utilization,	and,	more	rarely,	high
CPU	utilization.

An	inverse	relationship	between	CPU	and	bandwidth	during	a	period	of	network	silence	is
usually	indicative	of	a	blocking	process.	Because	the	browser’s	main	thread	is	busy	on	a
long-running	process,	it	is	unable	to	proceed	with	other	jobs	in	the	queue,	such	as	fetching
additional	resources.	There	are	a	couple	of	ways	that	a	web	application	can	hold	up	the
queue	like	this.	Most	commonly,	slow	JavaScript	is	to	blame.	Scripts	that	do	too	much,
like	iterating	over	a	very	large	list	and	processing	each	item,	will	take	a	noticeably	long
time	to	complete,	as	shown	in	Figure	2-19.	When	this	happens,	the	browser	is	unable	to
respond	to	user	input,	including	click	or	scroll	events.	One	technique	to	mitigate	this	effect
is	to	yield	the	thread	back	to	the	browser	by	using	requestAnimationFrame	or
setTimeout	to	delay	additional	processing	after	the	script	has	run	for	some	time.
Complicated	markup	can	also	take	a	long	time	to	process.	For	example,	using	HTML
tables	for	layout	has	often	been	discouraged	because	of	its	lack	of	semantics.	Using	tables
for	layout	could	also	be	computationally	expensive,	due	to	the	high	cost	of	laying	out	a
table	that	changes	size	to	fit	its	content.	This	can	be	avoided	by	using	less	expensive
markup	for	layout.	Also	keep	in	mind	that	the	impacts	of	slow	JavaScript	and	complicated
markup	are	exacerbated	on	a	slower	CPU.

Figure	2-19.	In	this	abbreviated	waterfall,	the	gap	between	request	numbers	70	and	71	is	nearly	four	seconds	long.	The
low	CPU	and	high	bandwidth	utilizations	suggest	that	request	20	is	likely	to	blame	for	blocking	request	71.

As	easy	as	it	is	to	see	network	silence	in	a	waterfall	diagram,	WebPageTest	is	not
equipped	to	identify	the	underlying	problem	by	default.	As	with	the	problem	of	a	long
first-byte	time,	the	tool	is	great	at	showing	that	there	is	a	problem	but	additional	tools	are
necessary	to	determine	what	the	problem	actually	is.	In	the	case	of	network	silence,	a
profiler	is	required.

WebPageTest	Grades
Similar	to	YSlow,	the	web	performance	analysis	browser	plug-in	developed	by	Yahoo!,
the	WebPageTest	grades	evaluate	the	page	data	captured	by	the	test	and	show	whether	the
page	has	passed	or	failed	a	certain	goal.	There	are	several	goals	being	tested,	all	of	which
were	chosen	to	be	the	most	essential	performance	benchmarks.	For	example,	YSlow	or
Google’s	Page	Speed	tool	might	give	a	grade	for	combining	multiple	stylesheets	into	one.
In	reality,	there	can	be	valid	reasons	for	loading	multiple	stylesheets,	yet	these	tools	aren’t
necessarily	able	to	take	that	into	consideration.	The	WebPageTest	grades,	on	the	other
hand,	are	a	set	of	web	performance	must-haves	to	which	most,	if	not	all,	pages	should
adhere.	In	this	section,	we’ll	look	at	how	the	grades	are	evaluated	and	what	you	can	do	to
improve	them.

In	general,	grades	are	evaluated	first	as	a	percentage.	The	numeric	values	are	converted	to
the	familiar	letter	grades	on	a	standard	academic	scale:

Letter	Grade Percentage

A: 90%+

B: 80–89%

C: 70–79%

D: 60–69%

F: 0–59%

The	intention	of	the	grades	described	in	this	section	is	to	call	attention	to	some	of	the	most
important	web	performance	best	practices.	The	grades	are	organized	so	that	the	most
critical	appear	first.	This	means	that	you	should	focus	your	efforts	on	optimizing	things
like	connection	reuse	and	gzipping	before	moving	on	to	other	important	but	less	impactful
optimizations	like	image	compression	or	content	delivery	networks.

First-Byte	Time
The	first-byte	time	is	the	time	at	which	the	browser	receives	the	first	byte	of	the	HTML
content.	This	grade	rates	how	tolerable	the	first-byte	time	is	for	the	test.	Up	until	this	time,
the	only	things	going	on	are	the	network-level	connections	and	the	server-side	processing.
As	a	reminder,	these	phases	are	the	DNS	lookup,	initial	TCP	connection,	SSL	negotiation
(where	applicable),	and	TTFB.	WebPageTest	rates	a	test’s	first-byte	time	by	looking	at
how	long	these	phases	take	in	aggregate	and	comparing	it	against	a	target	time.	The	closer
to	the	target	time,	the	better	the	rating.

The	formula	to	compute	the	grade	of	the	test	is	based	on	the	expected	number	of	round-
trips	between	browser	and	server.	The	grade	automatically	fails	if	the	first-byte	time	is
greater	than	seven	round-trips	plus	some	allowance	time.	The	target	time	is	expected	to	be
three	round-trips	plus	allowance	time	for	SSL	negotiation:

target	first-byte	time	=	RTT	*	3	+	SSL

If	the	initial	connection	is	less	than	three	seconds,	RTT	=	initial	connection.	Otherwise,
RTT	is	the	network	shaping	latency	time	(i.e.,	28	ms	for	Cable)	plus	100	ms.	See	the
section	“Traffic	Shaping”	for	more	on	customizing	the	connection	speed.

The	percentage	value	for	this	grade	is	evaluated	by	the	following	formula:

value	=	100	-	((observed	first-byte	time	-	target	first-byte	time)	/	10)

For	demonstration	purposes,	let’s	evaluate	the	first-byte	time	for	a	hypothetical	test.	The
first-byte	phases	of	the	initial	request	are:

100	ms	DNS	lookup

150	ms	initial	connection

500	ms	TTFB

The	target	first-byte	time	would	be	three	times	the	initial	connection,	or	450	ms.	The
observed	first-byte	time	(the	sum	of	the	phases)	is	750	ms,	which	is	300	ms	slower	than
the	target	time.	That	would	make	the	value	70,	resulting	in	a	C	grade.

target	first-byte	time	=	3	*	initial	connection	=	3	*	150	ms	=	450	ms

observed	first-byte	time	=	100	ms	+	150	ms	+	500	ms	=	750	ms

value	=	100	-	((750	ms	-	450	ms)	/	10)	=	100	-	(300	/	10)	=	100	-	30	=	70

In	this	way,	WebPageTest	does	a	good	job	of	highlighting	the	opportunity	for	optimizing
the	first-byte	time.	At	a	glance,	it	should	be	easy	to	see	that	the	initial	request	TTFB	is
dragging	the	grade	down.

Keep-Alive	Enabled
The	grade	for	enabling	Keep-Alive	measures	the	effectiveness	of	connection	reuse.	As
we’ve	seen	in	the	“Reopened	connections”	anti-pattern	section,	closing	connections	are	a
missed	opportunity	for	performance	enhancement.	Necessitating	additional	round-trips
between	the	user	and	the	server	to	initiate	a	connection	is	redundant	and	time-consuming.
The	purpose	of	this	grade	is	to	evaluate	the	extent	to	which	requests	are	inefficiently
reopening	connections.

Recall	that	a	connection	must	be	made	whenever	the	page	is	communicating	with	a	new
host.	For	example,	a	page	with	two	resources	from	a	single	host	should	ideally	make	a
connection	for	the	request	for	the	first	resource	and	reuse	that	same	connection	for	the
second	resource.	We	say	that	the	page	has	two	requests	to	the	same	host,	the	first	of	which
is	expected	to	negotiate	a	connection	and	the	second	of	which	is	expected	to	communicate
using	the	already-open	channel.

The	grade	is	evaluated	according	to	the	following	formula:

value	=	number	of	reused	connections	/	expected	number	of	reused	connections

Let’s	look	at	another	hypothetical	test	to	see	how	the	grade	would	be	evaluated.	The
requests	per	host	are:

1	request	to	Host	A

10	requests	to	Host	B

7	requests	to	Host	C

The	expected	number	of	reused	connections	can	be	expressed	as	the	total	number	of
requests	less	one	initial	connection	per	host.	That	would	make	15	reused	connections.
Hypothetically,	however,	Host	B	is	the	only	one	that	has	the	Keep-Alive	configuration
enabled.	Hence,	the	number	of	reused	connections	would	only	be	Host	B’s	requests	(10)
less	the	initial	connection:	9.	Therefore	the	value	would	be	9/15,	or	60%,	equal	to	a	barely
passing	grade	of	D.	In	other	words,	60%	of	the	requests	could	have	shaved	a	round-trip’s
worth	of	time	off	simply	for	reusing	the	existing	open	connection.

Compress	Transfer
Like	Keep-Alive,	compressing	text-based	resources	over	the	network	is	a	straightforward
server-side	configuration.	When	enabled,	resources	like	HTML,	JavaScript,	and	CSS	files
will	be	compressed,	or	gzipped,	resulting	in	a	smaller	file	size	and	quicker	download.	The
grade	for	compression	is	also	like	that	for	enabling	Keep-Alive	in	that	it	is	a	ratio	of	the
actual	performance	over	the	expected	performance.

The	exact	formula	for	this	grade	is:

value	=	optimized	resource	size	/	actual	resource	size

To	determine	the	optimized	resource	size,	WebPageTest	actually	compresses	each	and
every	resource	to	find	out	if	it	is	suitably	smaller	than	the	size	of	the	resource	as	it	was
transferred.	“Suitably	smaller”	in	this	case	means	that	the	resource	is	more	than	10%
smaller	and	more	than	1,400	bytes	when	compressed.	If	a	resource	meets	these	conditions,
the	test	is	penalized	in	proportion	to	the	number	of	bytes	that	could	have	been	saved.

Note	that	because	images	are	binary	resources,	they	are	excluded	from	the	compression
grading.	But	they	are	not	exempt	from	scrutiny,	as	the	following	two	grades	are	especially
for	them.

Compress	Images
Just	as	text-based	files	can	be	gzipped	to	save	bytes	and	time,	images	are	compressable	as
well.	WebPageTest	specifically	evaluates	JPEG	images	by	optimizing	them	and	measuring
the	difference.	A	test	is	penalized	if	it	contains	images	that	can	be	reduced	in	size	by
configuring	them	to	load	progressively	and	degrading	visual	quality	to	85%.	The	exact
evaluation	is:

value	=	optimized	image	size	/	actual	image	size

After	compressing	each	image,	its	size	is	compared	to	the	actual	image	without
optimizations.	The	greater	the	difference,	the	lower	the	score.	For	example,	if	1	MB	of
images	could	be	compressed	by	150	KB,	the	optimized	image	size	would	be	~85%	of	the
actual	size,	resulting	in	a	grade	of	B.

Progressive	JPEGs
JPEG	images	are	one	of	two	types:	baseline	or	progressive.	Most	images	used	on	the	web
are	baseline,	which	appear	to	load	from	top	to	bottom.	Progressive	JPEGs,	on	the	other
hand,	show	the	entire	image	with	low	quality	at	first,	and	then	with	gradually	increasing
quality.	The	advantage	of	the	progressive	JPEG	type	is	that	the	user	perceives	it	as	loading
more	quickly,	even	if	it	is	of	low	quality.	As	we’ll	discuss	in	“Perceived	Performance”,
giving	users	the	perception	of	speed	is	a	very	valuable	optimization.

This	grade	is	evaluated	by	the	ratio	of	the	number	of	progressive	bytes	in	a	JPEG	to	its
total	size:

value	=	progressive	bytes	/	total	bytes

The	WebPageTest	grading	is	based	on	10	KB	chunks	of	the	image,	each	of	which	is
checked	for	a	new	scan.	Scans	are	the	gradual	increases	of	quality.	If	the	chunk	contains	a
scan,	all	10	KB	are	considered	to	be	progressive	bytes.	All	of	the	test’s	JPEGs	are	checked
and	the	bytes	are	tallied	to	come	up	with	a	final	value,	which	is	then	expressed	as	a	letter
grade.

Cache	Static	Content
Static	resources	like	images	tend	not	to	change	often.	Repeated	visits	to	a	page	may	be
redundantly	downloading	these	resources	if	they	are	not	properly	configured	to	stay	in	the
browser’s	cache.	This	grade	checks	the	HTTP	responses	for	resources	that	are	determined
to	be	static	and	evaluates	them	based	on	their	lifetime:

value	=	expiration	score	/	number	of	static	resources

This	formula	is	a	little	different	from	the	previous	grades,	as	it	relies	on	a	scoring	system.
The	way	it	works	is	that	a	static	resource’s	response	headers	are	inspected	for	a	cache
lifetime	value.	This	could	come	from	a	Cache-Control:	max-age	or	Expires	header.	A
static	resource	is	given	a	score	of	100	if	its	lifetime	is	greater	than	a	week.	If	not,	it	can
still	be	redeemed	for	50	points	if	its	lifetime	is	greater	than	an	hour.	Otherwise,	it	receives
a	score	of	0.	The	scores	for	all	static	resources	are	tallied	and	divided	by	the	total	number
of	static	resources	to	get	the	percent	value.

Effective	Use	of	CDNs
A	content	delivery	network	(CDN)	is	a	system	for	distributing	resources	to	servers
geographically	closer	to	users.	One	benefit	of	this	is	that	the	round-trip	time	is	faster.	The
formula	is	straightforward:

value	=	static	resources	served	from	a	known	CDN	/	number	of	static	resources

WebPageTest	keeps	a	log	of	known	CDN	providers.	Each	static	resource	is	checked	to	see
if	its	host	server	was	one	such	provider.	The	more	resources	served	from	a	CDN,	the	better
the	value.	This	grade	is	unique	in	that	there	are	only	two	possible	outcomes:	pass	or	fail.
The	passing	grade	for	using	a	CDN	effectively	is	to	have	at	least	80%	of	static	resources
served	from	a	CDN.

Chapter	3.	Cache	Optimization

There’s	no	question	that	the	longer	a	web	page	takes	to	load,	the	less	attention	a	user	will
give	it.	Curious	minds	might	wonder	what	happens	to	users’	attention	as	a	web	page
becomes	faster.	How	fast	can	something	get	without	users	noticing	that	they	had	to	wait
for	it?	Research	shows	that,	in	general,	people	perceive	load	times	of	100	milliseconds	or
less	as	seemingly	instantaneous.	This	is	the	Holy	Grail	of	web	performance;	if	we	could
make	a	web	page	load	faster	than	a	user	can	notice,	our	work	here	would	be	done.	Easy,
right?	Not	quite.

Think	about	everything	that	could	go	wrong	while	a	page	loads.	Before	the	server	can
even	send	the	first	bit	of	data,	a	few	round-trips’	worth	of	negotiation	take	place	just	to
open	the	lines	for	communication.	Each	phase	in	the	connection	chips	away	at	the	100-
millisecond	budget	for	which	we’ve	aimed.	It’s	not	long	before	the	users	notice	that
they’re	waiting	on	us	to	load	the	page.	Caching	to	the	rescue.

What	is	a	cache?	A	textbook	definition	might	be	that	a	cache	is	just	a	portion	of	computer
memory	temporarily	set	aside	for	data	needed	in	the	near	future.	Conceptually,	caching
allows	an	application	to	quickly	access	data.	The	canonical	example	of	caching	is	saving
the	results	of	CPU	computations	in	random-access	memory	(RAM)	as	opposed	to	disk
space.	The	time	required	to	read	from	and	write	to	disk	is	much	greater	than	it	is	with
memory,	so	effective	caching	can	have	profound	impacts	on	computation	time.	Even
newer	technology	like	solid	state	drives	(SSDs)	are	slower	to	use	than	RAM	due	to
hardware	limitations.

Instead	of	a	CPU,	RAM,	and	persistent	storage	drives,	we’re	concerned	with	users,	their
browsers,	and	our	web	server.	Analogously,	a	user	needs	to	fetch	information	and	instead
of	taking	the	long	and	slow	route	to	our	server,	the	user	would	simply	be	able	to	access	a
local	copy	minus	the	waiting.	With	the	browser’s	cache,	we	are	able	to	save	copies	of
resources	like	images,	stylesheets,	and	scripts	directly	on	the	user’s	machine.	The	next
time	one	of	these	resources	is	needed,	it	can	be	served	from	cache	instead	of	taking	the
slower	journey	across	the	Internet.

Of	course,	there	are	limitations	to	the	cache.	Most	important,	it	has	a	finite	size.	Modern
browsers’	caches	are	in	the	tens	of	megabytes,	which	may	be	enough	to	comfortably	fit	an
average-sized	website.	But	the	browser	cache	is	shared	among	all	websites.	There	is
bound	to	be	a	congestion	issue.	When	this	happens,	the	browser	performs	an	eviction.	One
or	more	unlucky	resources	are	removed	from	the	cache	to	make	room	for	new	ones.
Another	consideration	is	that	resources	are	not	expected	to	be	valid	indefinitely;	each
resource	is	saved	along	with	metadata	about	how	long	the	browser	can	consider	it	to	be
fresh.	Even	if	a	resource	is	in	the	cache	and	the	user	makes	a	request	for	that	same
resource,	it	may	be	served	over	the	network	if	the	cached	version	is	not	fresh.

We’ll	explore	the	concept	of	freshness	later	in	this	chapter	and	provide	details	of	how	to
configure	resources	efficiently	for	caching.	We	will	also	look	at	the	tools	WebPageTest
provides	to	measure	how	effectively	a	website	uses	browser	caching.

Enabling	Repeat	View
Tests	that	run	on	WebPageTest	default	to	a	“cold”	cache	experience	much	like	that	of	a
user	who	has	never	been	to	a	website	before.	This	allows	the	tool	to	record	the	network
activity	of	all	resources	needed	to	build	the	page.	The	test	browser	follows	the	instructions
of	the	resources’	response	headers	and	saves	them	to	the	cache.	Other	client-side	caches
are	warmed	up	—	for	example,	the	DNS	cache	that	saves	a	map	of	domain	names	to	IP
addresses	for	resources.	Before	each	test	run,	however,	these	caches	are	flushed	to	provide
a	clean	and	consistent	environment.

Throwing	out	the	test	client’s	cache	is	a	great	way	to	simulate	the	“worst	case”	scenario	in
which	no	resources	are	locally	available,	but	in	reality	we	know	that	this	is	hardly	always
the	case.	Users	revisit	websites	all	the	time	and	some	sites	even	share	resources.	For
example,	the	popular	jQuery	JavaScript	library	is	often	included	in	websites	through	a
shared	and	public	CDN.	If	a	user	visits	two	websites	that	both	reference	this	resource,	the
second	site	will	have	the	performance	benefit	of	using	the	cached	version.	So	if
WebPageTest	clears	the	cache	before	each	test,	how	can	we	represent	these	use	cases?

The	Repeat	View	configuration	setting	is	one	way	that	WebPageTest	is	able	to	address	this
(Figure	3-1).	To	enable	it,	select	the	First	View	and	Repeat	View	option.	Each	“view”	is
effectively	another	instance	of	the	test	run.	The	terminology	may	be	getting	confusing	at
this	point,	so	think	of	it	taxonomically	as	a	single	test	containing	multiple	runs,	each	of
which	contains	one	or	two	views.	First	View	refers	to	the	cold	cache	setup	in	which
nothing	is	served	locally,	whereas	Repeat	View	refers	to	the	warm	cache	containing
everything	instantiated	by	the	first	view.	In	addition	to	selecting	the	radio	button	UI	on	the
page,	you	can	also	enable	repeat	views	by	setting	the	querystring	parameter	fvonly	to	0.
So,	for	example,	the	URL	webpagetest.org?fvonly=0	would	preset	the	radio	button	to
the	First	View	and	Repeat	View	option.

Figure	3-1.	The	option	to	enable	repeat	views	for	each	test	run	is	on	the	WebPageTest	home	page	in	the	Advanced
Settings	section

You	may	be	thinking	that	you	might	as	well	run	all	tests	with	this	option	set.	After	all,	it
shows	a	different	perspective	that	may	be	useful	for	analysis.	Despite	the	convenience	of
always	having	a	repeat	view	available,	keep	in	mind	that	someone	has	to	pay	for	it	—	not
necessarily	monetarily	but	rather	with	time	and	resources.	You	pay	for	repeat	views	by
waiting	for	your	tests	to	complete.	For	all	intents	and	purposes,	enabling	repeat	view
effectively	doubles	the	test	duration	because	it	executes	each	test	run	in	both	cache	states.
When	you	are	running	many	tests	or	a	test	with	many	runs,	you	can	get	your	results	sooner
by	ensuring	that	each	test	does	less	work.	This	is	also	important	because	WebPageTest	is	a
public	tool.	It	may	be	the	case	that	there	is	someone	else	in	the	world	waiting	to	run	his
own	test	behind	yours.	The	longer	your	test	takes	to	run,	the	longer	that	person	has	to	wait
(and	the	people	behind	him,	too).	And	it	should	go	without	saying,	but	we	will	say
anyway:	WebPageTest	itself	has	finite	resources.	It’s	not	in	danger	of	running	out	of	space
any	time	soon,	but	if	you	could	save	a	few	megabytes	of	disk	space	by	only	enabling
repeat	view	when	you	need	it,	why	not?	If	you	are	running	your	own	private	instance	of
WebPageTest,	this	point	may	be	especially	critical.	Simply	put,	use	discretion	with	this
and	other	configuration	options	that	consume	additional	resources	like	the	number	of	test
runs	(which	are	capped	at	nine	for	this	reason)	and	the	screenshot/video	options.

There	are	also	some	limitations	to	the	usefulness	of	repeat	views.	By	definition,	this	view
is	an	identical	page	load	to	the	first	view.	For	the	purposes	of	synthetic	testing,	this	is	great
for	analyzing	the	cacheability	of	the	resources	of	a	single	page.	Inconveniently,	real	users
tend	to	follow	a	flow	of	pages	—	starting	at	the	home	page	and	navigating	through	to

secondary	content,	for	example.

Repeat	views	are	not	necessarily	able	to	demonstrate	the	warm-cache	experience	that	real
users	experience	throughout	the	website.	If	a	user	visits	Page	B	via	Page	A	and	you	run
first	and	repeat	view	tests	on	Page	B,	you	would	not	be	accounting	for	the	differences	in
resources	between	the	two	pages.	You	may	misinterpret	the	repeat	view	results	to	mean
that	Page	B’s	warm	cache	state	is	better	than	it	actually	is.	The	reality	is	that	you	need	a
way	to	load	both	pages	synthetically	in	order	to	represent	the	scenario	of	visiting	a	page
with	another	page’s	resources	in	cache.	Repeat	views	are	limited	to	loading	a	single	page
with	its	own	resources	in	cache.	To	resolve	this	issue,	we	will	need	a	more	powerful	tool
that	is	flexible	enough	to	handle	multiple	pages.	That	tool	is	reserved	for	a	later	chapter;
see	“Flow	View”	for	more	information.

Analyzing	Cachability
After	configuring	a	test	to	execute	repeat	views	as	described	in	the	previous	section,	you
must	then	analyze	the	results	to	determine	how	well	resources	are	being	cached.	To	do	so,
you	need	to	know	both	what	to	look	for	and	where	to	look.

How	long	a	resource	will	be	cached	by	the	browser	(if	at	all)	is	determined	by	two	factors:
age	and	time	to	live	(TTL).	Both	of	these	values	are	configured	by	the	server	in	the	form
of	HTTP	headers.

The	age	of	a	resource	can	be	identified	using	one	of	two	headers:	entity	tags	(ETags)	or	the
Last-Modified	header.	An	entity	tag	is	simply	a	unique	identifier	representing	the	content
of	a	resource.	As	the	content	changes	—	for	example,	updating	an	image	but	retaining	the
same	URL	—	the	ETag	would	change	respectively.	Alternatively,	the	Last-Modified
header	is	a	date	stamp	of	the	time	at	which	the	resource	most	recently	changed,	as	shown
in	Example	3-1.	Either	header	can	be	used	to	identify	the	age,	or	state,	of	a	resource	at	the
time	it	is	downloaded	and	cached.

Example	3-1.	Sample	resource	age/state	HTTP	headers
Last-Modified:	Fri,	19	Jan	2007	04:40:18	GMT

ETag:										W/"0a56eeb833bc71:2f7"

After	the	user’s	browser	has	downloaded	and	cached	the	resource,	it	will	stay	in	cache
until	it	is	evicted	to	make	room	for	newer	resources,	or	until	it	expires.	To	determine	the
expiration	date,	browsers	rely	on	one	of	two	TTL	headers:	Expires	or	the	max-age
property	of	Cache-Control.	The	Expires	header	provides	a	date	stamp	of	the	exact
moment	when	the	resource	will	expire.	Similarly,	the	Cache-Control:	max-age
(sometimes	referred	to	as	CCMA)	header	specifies	the	number	of	seconds	from	the	time
of	download	until	the	resource	expires.	See	Example	3-2	for	example	values	for	these
headers.

Example	3-2.	Sample	resource	TTL	HTTP	headers
Cache-Control:	max-age=31536000

Expires:							Fri,	20	Nov	2015	06:50:15	GMT

Now	that	you	know	what	to	look	for,	let’s	talk	about	where	to	find	this	data.	First,	you’ll
need	to	head	over	to	the	results	(or	details)	page	for	a	test	run,	which	is	where	the	waterfall
diagrams	are	shown.	Clicking	on	any	request	row	in	the	waterfall	will	invoke	a	panel	with
summary	information	about	the	resource.	The	three	other	tabs	in	this	panel	let	you	drill
down	into	the	request	headers,	response	headers,	and	the	response	body.	From	this	panel,
this	chapter	is	only	concerned	with	the	Request	and	Response	tabs.

The	Response	tab	displays	all	of	the	headers	sent	back	from	the	server	to	the	browser,
including	the	caching	headers	discussed	earlier	(ETag,	Cache-Control,	Expires,	and
Last-Modified).

Heuristic	Caching
What	you	see	in	the	repeat-view	waterfall	diagram	is	helpful	toward	understanding	which
resources	must	be	downloaded	across	subsequent	visits.	However,	what	you	don’t	see	may
mislead	you.

The	omission	of	resources	from	the	repeat-view	waterfall	suggests	that	they	were	served
from	cache.	You	would	generally	be	right	to	assume	that	these	resources	were	configured
to	persist	across	page	views,	but	there	are	edge	cases	in	which	resources	may	only	appear
to	be	correctly	configured.

The	HTTP/1.1	specification	permits	user	agents	to	estimate	how	long	to	keep	a	resource	in
cache	using	heuristics:

Since	origin	servers	do	not	always	provide	explicit	expiration	times,	HTTP	caches
typically	assign	heuristic	expiration	times,	employing	algorithms	that	use	other	header
values	(such	as	the	Last-Modified	time)	to	estimate	a	plausible	expiration	time.	The
HTTP/1.1	specification	does	not	provide	specific	algorithms,	but	does	impose	worst-
case	constraints	on	their	results.

13.2.2	Heuristic	Expiration,	http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

According	to	the	specification,	if	a	browser	downloads	a	resource	with	an	unknown
lifetime,	it	can	assign	an	expected	lifetime	known	as	a	heuristic	expiration	time.	What	this
means	for	you	is	that	the	repeat	view	may	not	be	entirely	what	it	seems.	You	may
incorrectly	assume	that	a	resource	has	been	loaded	from	cache	because	it	has	been
properly	configured	to	do	so.	Under	some	circumstances,	a	browser	may	cache	a	resource
even	when	not	explicitly	instructed	by	the	server’s	response	headers.	As	a	result,
WebPageTest	will	not	show	this	resource	as	having	loaded	over	the	network	in	the	repeat
view	waterfall.

You	may	be	wondering	why	you	should	even	bother	to	set	caching	headers	in	the	first
place	if	browsers	will	do	the	work	for	you.	The	answer	is	that	browsers	only	estimate	how
long	one	of	these	resources	should	be	cached,	and	that	control	should	always	be	in	the
developer’s	hands.	Despite	granting	the	authority	of	heuristic	expiration	to	browsers,	the
specification	puts	the	onus	on	developers	to	maintain	this	control:

Since	heuristic	expiration	times	might	compromise	semantic	transparency,	they	ought	to
be	used	cautiously,	and	we	encourage	origin	servers	to	provide	explicit	expiration	times
as	much	as	possible.

13.2.2	Heuristic	Expiration,	http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

Furthermore,	it’s	not	always	clear	how	long	implicitly	cached	resources	should	persist.
The	specification	stops	short	of	imposing	an	algorithm	to	determine	the	lifetime	of	these
resources	and	leaves	that	up	to	the	browser	vendors.	One	way	to	get	an	exact	answer	is	to
go	directly	to	the	source.	That	is,	check	the	browser’s	source	code.

Chrome’s	source	code	is	freely	available,	so	we	can	see	how	it	implements	Section	13.2.2.

Of	interest	is	the	file	for	evaluating	resources’	HTTP	response	headers,	aptly	named
http_response_headers.cc.

if	((response_code_	==	200	||	response_code_	==	203	||

				response_code_	==	206)	&&	!must_revalidate)	{

		//	TODO(darin):	Implement	a	smarter	heuristic.

		Time	last_modified_value;

		if	(GetLastModifiedValue(&last_modified_value))	{

				//	The	last-modified	value	can	be	a	date	in	the	future!

				if	(last_modified_value	<=	date_value)	{

						lifetimes.freshness	=	(date_value	-	last_modified_value)	/	10;

						return	lifetimes;

				}

		}

}

As	you	can	see,	a	resource	can	be	implicitly	cached	for	up	to	10%	of	the	difference
between	the	time	it	was	downloaded	and	the	time	it	was	last	modified.	In	other	words,	if	a
user	loads	a	resource	only	an	hour	old	without	any	explicit	cache	headers,	Chrome	will
cache	it	for	six	minutes.	As	the	resource	ages,	its	heuristic	expiration	time	also	increases.
If	you	consider	that	the	recommended	cache	lifetime	for	a	static	resource	is	1	year,	realize
that	you	can	only	get	this	kind	of	performance	for	resources	over	10	years	old.	This	is
exactly	why	you	should	take	control	of	the	HTTP	response	headers	to	include	explicit
cache	instructions	for	browsers	to	ensure	that	the	resource	is	handled	exactly	how	you
intend.

Chapter	4.	Comparing	Tests

By	now,	you	should	have	a	good	idea	of	what	to	look	for	when	optimizing	a	page.
Supposing	you	have	compressed	a	few	images	or	delay-loaded	a	JavaScript	file	or	two,
you’re	probably	eager	to	find	out	how	much	of	a	difference	these	changes	have	made.
Besides	manually	loading	each	individual	test’s	results	page	side	by	side,	WebPageTest
allows	you	to	compare	tests	with	tools	especially	designed	to	highlight	the	differences.	In
this	chapter,	we’ll	look	at	the	comparison	tools	at	your	disposal	and	how	WebPageTest
makes	it	all	possible.

Perceived	Performance
So	far	we’ve	looked	at	web	performance	from	a	very	mechanical	point	of	view.	That	is	to
say	that	we’ve	gathered	a	lot	of	great	data	about	how	the	page	is	constructed	“under	the
hood,”	like	millisecond-precision	event	timings.	But	there’s	one	area	of	web	performance
that	is	arguably	more	important	than	simple	load-time	metrics.	That	is	the	measure	of	how
fast	a	user	perceives	the	page	to	load:	does	it	feel	fast?	So	what’s	the	difference?	For
example,	the	user	doesn’t	care	if	the	page-load	event	fired	after	one	second	if	the	video
she	was	intending	to	watch	doesn’t	load	until	five	seconds.	The	literal	load	time	of	the
page	was	only	one	second,	but	the	perceived	load	time	was	much	longer.	Overhyping
metrics	like	the	load	event	can	lead	us	astray	when	optimizing	web	pages.	We	also	need	to
look	at	performance	from	the	users’	perspective	and	optimize	for	their	experience,	which
may	not	necessarily	align	with	WebPageTest’s	default	metrics.

The	visual	comparison	tools	described	in	this	chapter	address	the	shortcomings	of	context-
agnostic	metrics.	These	tools	are	more	like	a	camera	than	a	stopwatch,	giving	us	the
ability	to	actually	see	the	page	load	just	as	an	end	user	would.	This	kind	of	empathetic
analysis	allows	us	to	better	understand	how	quick	a	page	feels.

Capture	Video
The	Capture	Video	configuration	option	makes	test	comparison	possible.	With	this	option
enabled,	screenshots	of	the	page	will	be	taken	at	regular	intervals	during	loading.	These
screenshots	comprise	the	filmstrip	view	and,	when	shown	in	succession,	make	up	the
video	replay.	Figure	4-1	shows	you	where	to	enable	the	option.

Figure	4-1.	The	Advanced	Settings	area	of	the	home	page	is	toggled	and	the	Capture	Video	checkbox	is	enabled.	This
configuration	will	ensure	that	screenshots	are	taken	during	page	load	and	that	test	results	can	be	compared	against

other	tests.

To	enable	this	option,	select	the	checkbox	on	the	Test	Settings	tab	of	the	Advanced
Settings	section.	This	tells	WebPageTest	to	save	screenshots	at	regular	intervals	during	the
page	load	process.	These	still	images	comprise	the	frames	that	will	make	up	a	video
recording	of	the	loading	process.	This	visual	data	will	form	the	foundation	for	the	core
functionality	of	the	test	comparison	tool.	Only	when	this	configuration	is	turned	on	are
you	able	to	use	the	tool	to	compare	against	other	tests.

TIP
There	are	several	querystring	parameters	that	are	helpful	when	you	know	you’re	going	to	be	using	the	test
comparison	page.	On	the	WebPageTest	home	page,	append	these	parameters	to	the	URL	before	starting
your	test:

video=1	ensures	that	the	Capture	Video	option	is	always	enabled.

continuousVideo=1	maintains	a	consistent	frame	rate	of	10	fps.	Without	this,	the	test	is	not	guaranteed
to	always	record	screenshots	every	100	milliseconds,	as	it	slows	down	to	1	fps	by	default.

iq=100	alters	the	image	quality	of	JPEG	screenshots	to	any	value	between	0	and	100,	with	100	being
the	best	quality.

pngss=1	formats	the	final	screenshot	of	the	fully	loaded	page	as	a	PNG	image.

Be	aware	that	there	are	some	limitations	to	the	screenshots	and	the	resultant	video.	First
and	foremost,	screenshots	can	only	be	taken	of	the	visible	area	of	the	web	page,	known	as
the	area	above	the	fold.	Just	like	a	user’s	browser	window,	the	test	agent’s	browser	has	a
fixed	size	outside	of	which	a	screenshot	is	unable	to	capture.	Second,	the	rate	of	capture	is
slow	enough	to	avoid	major	interference	with	the	CPU.	Taking	a	virtual	picture	comes	at	a
cost	in	terms	of	computation,	which	must	be	balanced	with	the	processing	required	to
build	the	page.	For	example,	if	the	pictures	were	taken	at	a	smooth	60	frames	per	second,
the	processor	would	be	burdened	every	16.7	milliseconds,	which	could	adversely	affect
test	results.	For	this	reason,	screenshots	are	limited	to	10	frames	per	second;	fast	enough	to
capture	granular	changes	to	the	page	and	slow	enough	to	stay	out	of	the	CPU’s	way.	And
the	last	word	of	caution	is	related	to	the	quality	of	the	pictures.	To	save	on	storage	space,
screenshots	are	recorded	at	lower	resolution.	The	default	quality	is	passable	for
recognizing	prominent	elements	on	the	page	but	unsatisfactory	for	reading	most	text.

Filmstrip	and	Video
In	the	late	nineteenth	century,	a	heated	debate	had	developed	over	whether	a	horse	in
motion	was	ever	completely	unsupported	midair	or	if	it	always	had	at	least	one	foot	on	the
ground.	United	States	Senator	Leland	Stanford	commissioned	Eadweard	Muybridge	to
photograph	his	galloping	horse,	Sallie	Gardner,	to	settle	the	debate	scientifically.

Muybridge	carefully	positioned	24	cameras	along	a	track	to	capture	Stanford’s	horse	in
action.	As	the	horse	rode	by,	each	camera	took	a	photograph	of	the	horse	mid-stride.	What
resulted	was	a	set	of	images	all	centered	on	the	horse,	capturing	its	movements	for	further
scrutiny.	What	Muybridge	had	on	film	was	enough	to	bury	the	debate	definitively;	the
horse	could	be	seen	momentarily	suspended	in	midair	without	a	foot	on	the	ground.	This
series	of	photographs	is	considered	to	be	one	of	the	first	motion	pictures	ever	recorded,
known	as	Sallie	Gardner	at	a	Gallop	or	The	Horse	in	Motion	(Figure	4-2).

Figure	4-2.	Eadweard	Muybridge’s	still	photographs	of	Sallie	Gardner	in	motion

Like	the	galloping	horse,	web	pages	can	appear	to	load	too	quickly	to	discern	any
particular	pattern.	The	naked	eye	isn’t	able	to	break	down	the	process	into	discrete
observable	steps,	so	we	use	tools	to	assist	us.	Muybridge’s	series	of	cameras	was	able	to
show	what	the	eye	couldn’t	see.	WebPageTest’s	filmstrip	is	an	incredibly	powerful	tool
that	similarly	captures	moments	in	time,	allowing	us	to	better	quantify	how	a	page	loads
visually,	as	shown	in	Figure	4-3.

Figure	4-3.	Two	tests	with	different	connection	speed	configurations	are	compared	side-by-side	visually	using	the
filmstrip	view.	In	this	way,	it’s	clear	that	the	top	test	loads	faster.

The	Visual	Comparison	page	is	only	available	to	tests	that	have	enabled	video	capture.	For
these	tests,	the	page	is	accessible	by	way	of	either	the	test	log	or	the	test	summary	page.
The	test	log	lets	you	refer	back	to	completed	tests	(Figure	4-4),	both	those	that	you	started
yourself	and	those	that	have	been	set	to	public	by	everyone	else	using	the	tool.	From	this
page,	you	are	easily	able	to	select	multiple	tests	for	comparison.	Alternatively,	you	can	see
a	test’s	visual	progress	view	from	its	summary	page,	as	shown	in	Figure	4-5.

Figure	4-4.	Multiple	tests	are	listed,	each	with	its	own	checkbox	to	add	it	to	the	Visual	Comparison	page.	The	Compare
button	navigates	to	the	page	with	each	selected	test’s	unique	ID	appended	in	the	URL.

Figure	4-5.	From	a	test’s	summary	page,	the	Filmstrip	View	link	on	the	right	takes	you	to	the	test’s	corresponding	Visual
Comparison	page

WebPageTest	constructs	the	filmstrip	by	taking	periodic	screenshots	of	the	page	above	the
fold.	These	images	are	laid	out	chronologically	so	that	each	passing	frame	shows	the	page
a	little	closer	to	being	fully	loaded	(see	Figure	4-6).	Like	Muybridge’s	photographs,	these
still	images	instill	a	sense	of	movement	as	the	page	appears	to	load.	Long	runs	of	blank	or
unchanging	images	tell	you	that	the	page	is	slow	to	load.	This	is	exactly	the	kind	of
empathetic	analysis	that	makes	perceived	performance	so	powerful.	Being	able	to	look	at
test	results	that	evoke	a	feeling	of	slowness	should	make	you	just	as	impatient	and	anxious
as	a	user	would	feel.	Load	time	is	just	a	number,	but	seeing	a	page	load	is	a	feeling.

Figure	4-6.	On	the	Visual	Comparison	page,	you	are	able	to	generate	a	video	from	the	selected	test	filmstrips	with	the
Create	Video	button.	Optionally,	the	Slow	Motion	checkbox	alters	the	playback	speed	from	10	fps	down	to	2	fps,

dramatizing	each	frame	of	progress.

To	truly	give	you	a	feeling	of	the	page	performance,	the	filmstrip	is	second	only	to	the
video	feature.	This	is	a	real-time	playback	of	each	frame	in	the	filmstrip.	Things	get	really
interesting	when	you	add	tests	to	the	comparison;	the	video	will	synchronize	each	test	and
visualize	their	progress	side	by	side,	as	shown	in	Figure	4-7.	This	is	especially	useful	for
succinctly	capturing	the	difference	in	performance	between	tests.	To	that	end,	the
performance	video	is	great	for	nontechnical	people	to	see	and	understand	page-load	time
across	tests.	A	video	is	easy	to	watch	and	doesn’t	require	numbers	to	complicate	the
message	that	one	page	is	faster	than	another.

Figure	4-7.	The	filmstrip	comes	alive	in	this	real-time	video	of	the	WebPageTest	home	page	loading	over	a	fast	and	slow
connection

Storytelling	by	itself	is	mentally	imaginative.	As	kids,	we	would	tell	stories	in	an	activity
called	“show	and	tell,”	during	which	everyone	would	present	something	they	wanted	to
talk	about.	Coupled	with	actually	showing	something	from	the	story,	the	activity	also
becomes	visually	engaging.	In	the	web	performance	testing	version	of	“show	and	tell,”	the
filmstrip	and	video	serve	as	the	tangible	parts	of	the	performance	story.	They	can’t	do	it
alone,	though,	so	we	use	these	tools	in	addition	to	the	cold	hard	metrics	and	waterfall
charts	to	tell	the	complete	story.

Speed	Index
Recall	from	“Measure	What	Matters”	that	generic	metrics	like	load	time	and	time-to-first-
paint	are	blind	to	the	context	of	a	page.	Unlike	the	filmstrip	and	video,	which	show
exactly	what	is	visible	to	the	user	at	a	given	time,	these	cold	hard	metrics	tell	you	more
about	how	the	page	is	doing	than	how	the	user	is	doing.	WebPageTest	invented	a	new
metric	to	address	this	specific	problem,	but	it	needed	to	be	context-aware	like	the	visual
comparison	tools.	The	speed	index	of	a	page	is	derived	from	each	screenshot’s	visual
progress	toward	being	fully	loaded	(see	Figure	4-8).	A	page	that	displays	more	to	the	user
sooner	has	a	lower,	or	better,	speed	index	than	a	page	that	is	slower	to	display	content.
This	property	of	the	speed	index	is	what	makes	it	superior	to	other	metrics;	it	is	a	measure
of	general	user	experience	as	it	relates	to	page	loading.

To	demonstrate	the	speed	index’s	usefulness,	consider	two	versions	of	the	same	page.
Both	versions	paint	to	the	screen	and	complete	loading	at	exactly	the	same	times.	The	only
difference	between	them	is	the	rate	at	which	content	is	painted.	Ask	any	user	which
version	they	would	prefer	and	the	consensus	would	always	be	for	a	page	that	shows	more
content	sooner.	Even	when	cold	metrics	like	paint	and	load	time	are	equal,	the	user
experience	begs	to	differ.	The	speed	index	is	a	measure	of	this	experience.

Figure	4-8.	Each	frame	in	the	filmstrip	is	annotated	with	the	percentage	of	the	page	that	has	finished	loading.	This
visual	progress	data	forms	the	basis	for	the	speed	index	calculation.

When	visually	comparing	these	two	hypothetical	tests,	it’s	clear	that	one	of	them	appears
to	load	faster.	We	can	graph	the	visual	progress	data	to	illustrate	how	two	versions	of	the
same	page	could	load	so	differently,	as	shown	in	Figure	4-9.

Figure	4-9.	The	tests’	visual	progress	is	plotted	in	a	chart.	The	test	that	is	perceived	to	load	more	quickly	climbs	higher
in	visual	completeness	sooner	than	the	other	test,	which	stagnates	below	20%	complete	for	about	10	seconds.

To	show	how	the	speed	index	can	be	derived	from	the	illustration	in	Figure	4-9,	consider
the	percentage	of	content	that	is	not	rendered	at	any	given	time.	For	the	faster	test,	we	can
say	that	there	is	less	to	be	rendered.	Another	way	of	thinking	of	it	is	to	look	at	the	area
above	the	lines,	as	shown	in	Figure	4-10.	By	shading	in	these	areas,	the	speed	index
emerges	and	the	stark	difference	in	area	corresponds	to	small	and	large	indexes.

Figure	4-10.	The	area	above	each	line	graph	illustrates	the	amount	of	content	not	yet	displayed	at	any	given	time

Remember	that	these	two	tests	started	and	finished	displaying	content	at	exactly	the	same
times!	But	the	speed	index	isn’t	fooled	by	a	page	that	takes	its	time	in	the	middle	of	the
page	load.	We’ve	seen	how	it	works	visually,	so	how	is	it	computed?	In	calculus,	an
integral	is	used	to	calculate	the	area	under	a	curve	(see	the	formula	in	Figure	4-11).	If
you’re	getting	anxious	flashbacks	to	math	class,	don’t	worry.	The	integral	of	the	visual

progress	curve	tells	us	the	amount	of	content	that	has	been	displayed,	but	remember	that
we’re	interested	in	the	content	yet	to	be	displayed.	We	can	get	the	area	above	the	curve	by
subtracting	the	completed	percentage	from	1	and	integrating	the	result	for	each	100-
millisecond	interval.

WARNING
The	speed	index	is	much	better	at	representing	the	quality	of	a	page	load’s	user	experience	than	simpler
metrics	like	first	paint	and	load	times.	However,	it	is	not	a	one-size-fits-all	number,	because	it	still	fails	in
one	important	area:	application-specific	contexts.	100%	visual	completeness	is	not	necessarily	equivalent	to
total	usability	of	a	page.	Not	only	is	the	page	content	below	the	fold	excluded	from	visual	measurements,
but	also	WebPageTest	has	no	idea	which	part	of	the	page	users	are	actually	waiting	for.	For	example,	a	page
that	is	only	25%	visually	complete	may	still	have	enough	visible	content	for	a	user	to	start	interacting	with
it.	Think	of	a	news	page	that	shows	the	headline	and	article	immediately	but	delay-loads	other	components
like	the	article’s	corresponding	photograph.	The	story	is	absolutely	readable	without	the	picture;	therefore
visual	completeness	is	not	a	perfect	indicator	of	user	experience.

Figure	4-11.	The	speed	index	formula	expressed	mathematically,	using	calculus

Let’s	see	how	this	is	implemented	in	code:

function	getSpeedIndex(&$filmstrip)	{

				$speed_index	=	0;

				$last_time	=	0;

				$last_progress	=	0;

				foreach($filmstrip['frames']	as	$time	=>	&$frame)	{

								//	The	interval	between	frames.

								$elapsed	=	$time	-	$last_time;

								//	The	area	of	the	rectangle	above	the	current	point	is	length	*	width,

								//	where	the	length	is	the	remaining	progress	%

								//	and	the	width	is	the	time	interval.

								$speed_index	+=	$elapsed	*	(100	-	$last_progress);

								//	Save	the	current	state	for	the	next	frame.

								$last_time	=	$time;

								$last_progress	=	$frame['progress'];

				}

				return	$speed_index;

}

Using	this	relatively	straightforward	algorithm,	we	can	get	a	single	number	that
adequately	represents	the	loading	performance	of	a	page.	The	speed	index	metric	is	a
novel	way	to	look	at	web	performance.	You	should	look	at	it	in	your	test	analysis	to	give
you	a	more	complete	idea	of	performance	beyond	the	default	metrics.	By	doing	so,	you’ll
be	able	to	make	more-informed	decisions	about	how	to	better	optimize	your	page.

Summary	of	Part	I
In	the	preceding	chapters,	we	looked	at	the	basic	use	cases	of	WebPageTest.	We	started	by
dispelling	a	couple	of	common	misconceptions	about	how	the	tool	should	be	used.
WebPageTest	is	a	synthetic	tool,	which	has	different	applications	from	RUM.	Synthetic
tools	are	excellent	for	identifying	how	to	make	a	page	faster	but	not	necessarily	useful	for
understanding	the	actual	speeds	users	are	experiencing.	The	performance	metrics	that
WebPageTest	exposes	are	especially	useful	for	comparison	purposes	but	shouldn’t	be
mistaken	for	the	ground	truth	of	real	users’	performance.

To	understand	what	could	be	slowing	down	a	web	page,	we	looked	at	a	few	of	the	tools
available	in	the	test	analysis	report.	The	flagship	tool	of	WebPageTest	is	the	waterfall
diagram.	Having	discussed	each	constituent	part	of	a	waterfall,	we	came	to	a	better
understanding	of	what	to	expect	from	it.	For	example,	the	shape	of	a	waterfall	says	a	lot
about	the	underlying	performance	of	the	page.	A	waterfall’s	shape	can	be	broken	down
further	into	discrete	slopes	of	horizontal	and	vertical	imaginary	lines	that	indicate	which
requests	are	contributing	to	poor	performance.	We	also	looked	at	the	connection	view,
which	is	just	a	different	way	of	visualizing	the	network	activity,	the	difference	being	that
requests	are	grouped	by	the	channel	over	which	they	are	served.

Using	the	waterfall	and	connection	views,	we	were	able	to	come	up	with	a	list	of	anti-
patterns	in	which	bad	performance	manifests	itself.	Of	the	anti-patterns	to	look	out	for,	the
most	common	and	severe	is	the	long	first-byte	time.	When	the	initial	request	takes	a	long
time	to	process,	the	entire	page	is	delayed	and	literally	nothing	can	proceed.	Ironically,
WebPageTest	is	not	well-equipped	for	us	to	figure	out	exactly	why	the	response	was
delayed.	Additional	tools	are	required	to	trace	the	source	of	the	problem.	WebPageTest	is,
by	design,	a	client-side	analysis	tool	—	one	of	many	tools	you	should	keep	at	your
disposal	when	testing	web	performance.

In	addition	to	the	network	visualizations,	we	also	studied	the	way	that	WebPageTest
grades	tests.	These	grades	are	meant	to	be	the	most	essential	performance	optimizations
that	should	be	universally	applicable	to	all	pages.	For	example,	images	are	the	most
ubiquitous	resource	type	on	the	web	and	yet	they	are	too	often	transferred	with
unnecessary	bloat.	The	Compress	Images	grade	analyzes	a	test’s	images	to	see	just	how
much	could	have	been	saved	with	basic	image	compression	techniques.	The	greater	the
savings,	the	worse	of	a	grade	the	test	will	receive.	Unlike	the	raw	data,	these	grades	try	to
do	some	of	the	analysis	for	you	by	calling	out	the	more	egregious	categories	of
inefficiencies.

And	finally,	we	saw	how	to	compare	tests	so	that	the	differences	between	them	become
more	apparent.	The	clearest	way	to	show	how	two	tests	differ	is	to	look	at	them	visually
by	making	use	of	the	filmstrip	and	video	tools.	The	filmstrip	view	shows	screenshots	at
periodic	intervals,	allowing	us	to	see	exactly	what	is	visible	on	screen.	These	screenshots
are	postprocessed	so	that	we’re	able	to	determine	their	visual	completeness,	or	the
percentage	of	the	page	that	has	completed	loading.	This	metric	gives	way	to	the	speed

index	metric,	which	is	a	radically	different	way	of	measuring	page	performance.	We	talked
about	how	perceived	performance	is	in	tune	with	how	users	perceive	a	page	load.	The
perception	of	performance	can	be	totally	unlike	the	“cold”	performance	metrics	that	serve
(for	the	most	part)	to	report	on	distinct	browser	events	like	when	the	DOM	is	ready	or
when	the	page	has	loaded.	The	speed	index	quantifies	the	user	experience	based	on	the
rate	at	which	a	page	loads.	Loading	more	content	to	the	screen	sooner	just	feels	faster	to
the	user.	Of	course,	this	is	only	as	useful	as	the	relevance	of	the	content	being	displayed.
That’s	why	the	filmstrip	and	video	tools	are	so	important,	because	we’re	able	to	see
exactly	which	parts	of	the	page	are	rendering	and	when.

These	basic	use	cases	have	formed	a	solid	foundation	upon	which	we	will	build	up	a	more
thorough	understanding	of	how	to	use	WebPageTest	like	the	experts.	For	most	people,	this
may	be	enough	to	get	started	and	make	impactful	web	performance	optimizations.	If
you’re	someone	who	needs	to	get	more	out	of	WebPageTest,	continue	reading	to	learn
about	how	to	use	its	more	advanced	features.

Part	II.	Intermediate	Use	Cases

Most	of	Part	I	was	concerned	with	understanding	how	to	analyze	WebPageTest	results.
Having	completed	Part	I,	you	should	now	be	comfortable	reading	waterfall	diagrams,
comparing	tests,	and	getting	down	to	business	determining	what	is	slowing	down	your
page.	These	skills	are	extremely	valuable	and	will	only	get	sharper	as	we	continue	looking
at	the	next	level	of	use	cases.

Up	until	now,	however,	our	test	configurations	have	been	overly	simplified.	As	you’ve
seen,	WebPageTest	makes	it	very	easy	to	get	results	for	a	particular	URL.	With	few
exceptions,	the	test	settings	we’ve	looked	at	so	far	have	been	left	at	their	default	values.
As	easy	as	it	is	to	leave	these	settings	untouched,	the	test	results	can	lose	relevance	and
usefulness	if	the	test	is	misconfigured.

In	Part	II,	we	will	build	on	the	foundation	of	test	analysis	by	discussing	the	use	cases	of
test	configuration.	For	each	of	the	following	chapters,	a	unique	use	case	will	be	examined.
We’ll	discuss	ways	to	use	WebPageTest’s	flexible	configuration	options	to	address	each
scenario,	providing	you	with	the	skills	you	need	to	adequately	test	your	website.

Chapter	5.	Simulating	Real	Users

In	Part	I,	the	first	thing	we	said	about	WebPageTest	was	that	it	is	a	synthetic	tool,	not	to	be
confused	with	real-user	monitoring.	By	virtue	of	being	synthetic,	WebPageTest	is	only	an
approximation	of	page	loading	performance.	But	synthetic	testing	can	(and	should!)	still
accurately	resemble	the	way	actual	users	access	the	page.

Why	would	it	matter	if	a	synthetic	test	is	realistic?	It	is	completely	within	the	realm	of
possibility	that	a	user	with	an	empty	browser	cache	from	Dulles,	Virginia	in	Internet
Explorer	9	over	a	cable	Internet	connection	is	visiting	a	given	web	page.	The	goal	of
synthetic	testing,	however,	is	not	necessarily	to	optimize	for	one	particular	use	case	but
rather	to	optimize	for	the	entire	user	base.	The	best	way	to	do	that	is	to	set	up	synthetic
tests	that	are	representative	of	the	population.	For	example,	test	in	a	commonly	used
browser	from	a	typical	location	over	reasonable	network	speeds.	These	simple	changes
allow	you	to	focus	on	the	performance	issues	that	actually	matter	to	users.

To	make	the	point,	imagine	that	you’re	contracted	to	optimize	the	performance	of	a
university	web	page	for	enrolled	students	to	check	their	class	schedules.	You	can	assume
that	users	are	likely	to	be	on	very	fast	university	infrastructure,	and	there’s	a	good	chance
that	they	will	be	accessing	the	site	from	their	mobile	phones	as	they	figure	out	when	and
where	their	next	class	is.	Given	this	information,	a	good	test	configuration	would	make
use	of	a	mobile	browser	with	a	fast	connection	in	a	location	geographically	proximate	to
the	university.	By	establishing	the	synthetic	test	in	a	way	that	simulates	a	student
accessing	the	page,	you’re	better	able	to	identify	performance	issues	that	are	actually
affecting	real	users.

This	scenario,	though	contrived,	demonstrates	the	importance	of	simulating	real	users.	If
you	only	test	with	the	WebPageTest	defaults,	you	might	overlook	issues	specific	to	mobile
usage.	What	if	the	hypothetical	university	happens	to	be	located	in	London,	England?	That
would	be	a	useful	piece	of	information	to	have	so	that	you	could	choose	one	of
WebPageTest’s	London	test	agents.	Testing	geographically	close	to	the	servers	would
mean	that	the	browser	and	server	have	a	shorter	path	over	which	to	communicate,	leading
to	faster	round-trip	times	or	latency.	Carelessly	testing	from	the	default	location	in	Dulles,
Virginia	would	include	unrealistic	traces	of	transatlantic	latency	in	the	results.	The	last
thing	you	want	to	do	is	spend	time	fixing	a	problem	that	doesn’t	even	exist,	so	avoid
polluting	test	results	with	costly	distractions.

WARNING
When	a	user	revisits	a	page	configured	to	cache	its	resources,	the	browser	is	able	to	make	use	of	the	local
copy	and	avoid	downloading	the	resources	all	over	again.	This	is	great	for	performance	because,	as	the
saying	goes,	the	fastest	network	request	is	the	one	you	never	even	have	to	make.	The	cache	state	is	such	an
important	factor	precisely	because	it’s	so	impactful.	A	page	loaded	with	a	warm	cache	is	usually	much
faster	than	its	cold	counterpart.	If	users	typically	hit	a	page	with	a	warm	cache,	overanalyzing
WebPageTest’s	first-view	results	is	less	likely	to	lead	to	meaningful	insights.

WebPageTest’s	configurability	makes	real-user	simulation	possible.	As	we	saw	in	the
university	example,	we	could	select	test	parameters,	such	as	mobile	device,	connection
speed,	and	test	location,	to	ensure	realism.	The	configuration	options	extend	to	the
application	layer	as	well,	which	means	that	WebPageTest	can	actually	initialize	tests	by
interacting	with	the	web	page	itself.	A	significant	issue	we	haven’t	considered	yet	is	user
authentication.	The	fact	that	the	application	shows	a	student	his	own	personalized
schedule	must	mean	that	it	knows	who	that	student	is.	So	how	can	WebPageTest	tell	the
application	whose	schedule	to	use?	As	we’ll	see	in	detail	in	Chapter	9,	there	are	a	few
techniques	to	give	WebPageTest	access	to	privileged	user	data	and	simulate	signing	in.	For
the	purposes	of	this	chapter,	you	should	just	be	aware	that	these	capabilities	exist.

Identifying	Demographics
In	the	previous	example	of	the	university	course	schedule	page,	you	were	given	several
pieces	of	information	about	the	users.	Knowing	that	the	users	are	students,	accessing	the
page	from	their	mobile	devices,	on	campus,	and	connected	to	university	WiFi,	you	are
better	able	to	simulate	their	experience	in	a	synthetic	test.	Understanding	who	is	actually
using	a	website	is	as	vital	as	understanding	how	they	access	it.	For	our	hypothetical
scenario,	that	all	sounds	great.	But	reality	is	never	so	simple.

The	process	of	understanding	your	users	could	take	several	low-	or	high-tech	routes.	One
of	the	easiest	and	most	direct	ways	would	be	to	post	a	survey	for	your	users.	Think	of	a
web	form	that	users	fill	out	to	provide	you	with	their	personal	information.	Potential
questions	could	be,	“Where	are	you?”	or	“What	browser/device	are	you	using?”	This
virtual	census	relies	on	users	to	volunteer	their	information	to	you,	which	you	must	then
save	and	organize	into	meaningful	metrics.	While	these	results	would	be	accurate	and
custom-tailored	to	the	questions	you’re	specifically	looking	to	answer,	users	generally
don’t	want	to	be	bothered	with	online	surveys,	especially	when	it	comes	to	personal
information.	This	method	also	gets	in	the	way	of	what	the	users	came	to	your	website	to
do,	and	could	lead	to	negative	behavior	like	an	increased	bounce	rate.	For	these	reasons,
it’s	probably	not	a	good	idea	to	take	the	low-tech	approach.

Fortunately,	several	high-tech	options	are	available	in	the	form	of	real-user	monitoring.
Although	RUM	has	been	discussed	so	far	primarily	as	a	web	performance	tool,	it	is	also
suitable	for	surveying	real-user	demographics.	You	may	be	wondering	how	this	can	be
done	without	users	volunteering	their	information	such	as	by	entering	their	browser	and
location	into	a	web	form.	The	good	news	is	that	much	of	this	data	can	be	inferred	from	the
communications	already	going	on	between	the	user’s	browser	and	the	web	server.
Browsers	use	HTTP	request	headers	to	include	not	only	information	about	the	resource
they	want	but	also	information	about	themselves.	For	example,	a	Chrome	browser	would
include	the	User	Agent	request	header	with	a	value	similar	to	Mozilla/5.0	(Windows	NT
6.1;	WOW64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/36.0.1985.125

Safari/537.36.	Additionally,	the	server	already	knows	the	user’s	IP	address,	which	is
necessary	to	be	able	to	route	responses	back	to	the	user.	The	user	agent	header	and	IP
address	can	be	used	to	infer	the	user’s	browser,	operating	system,	and	coarse	geographical
location.

In	addition	to	user	metrics,	RUM	services	are	also	well-equipped	to	collect	page	data.
Another	HTTP	request	header	is	Referer,	which	is	intentionally	misspelled	to	maintain
consistency	with	the	HTTP	specification.	This	header	denotes	the	URL	of	the	page	that	the
user	was	on	when	the	request	was	made.	By	linking	user	data	like	IP	address	with	page
data,	the	services	are	able	to	interpolate	patterns	such	as	navigation	flow	through	a
website.	RUM	services	are	also	capable	of	handling	application-specific	data.	For
example,	a	website	may	have	content	that	makes	use	of	a	Flash	player.	Because	not
everyone	has	the	Flash	plug-in	installed,	it	would	be	useful	for	the	service	to	include	the

proportion	of	clients	that	can	support	Flash.

All	of	this	is	made	possible	by	the	web	page	including	a	callback	to	the	RUM	service.	The
callback	is	made	in	the	form	of	an	HTTP	request	to	the	RUM	API	endpoint.	In	addition	to
the	data	captured	by	the	HTTP	request	headers	(IP	address,	User-Agent,	Referer),	the
web	page	could	also	attach	application	data	just	like	a	form	would	turn	input	fields	into
request	data	on	submit.	By	making	this	request	from	the	user’s	browser	on	the	web	page
directly	to	the	RUM	service,	all	of	the	aforementioned	metrics	become	available	to	the
service	to	store	and	analyze.

Adding	a	RUM	service	to	your	website	gives	you	the	ability	to	not	only	monitor
performance	but	also	capture	valuable	information	about	who	your	users	are.	And	because
RUM	constantly	ingests	live	data,	you	can	see	how	users	change	the	way	they	access	your
site	over	time.	For	the	purposes	of	configuring	synthetic	tests,	there	is	no	better	source	of
truth	than	RUM	data.	There	are	many	great	RUM	services	available	like	Google	Analytics
(Figure	5-1)	and	SOASTA	mPulse.	These	tools	all	have	several	core	features	in	common
like	web	performance	monitoring	and	reporting	of	user	geography	and	technology.	But
because	Google	Analytics	is	the	most	prominent	RUM	tool	in	use	on	the	web,	we’ll	use
that	to	demonstrate	how	to	identify	user	demographics	in	live	user	data.	Translating	these
instructions	to	other	RUM	tools	or	even	newer	versions	of	Google	Analytics	should	be
straightforward	given	the	similarity	between	features.

Figure	5-1.	Example	of	the	Google	Analytics	overview	page,	which	graphically	displays	information	about	website
traffic	over	a	given	period	of	time

Each	of	the	following	sections	will	look	at	a	demographic,	walk	you	through	identifying	it
in	Google	Analytics,	and	demonstrate	how	to	configure	it	on	WebPageTest.	The	sections
will	increase	in	complexity,	starting	with	the	most-viewed	pages	of	a	site.	The	following
three	sections	will	take	you	through	the	browser/device,	location,	and	connection-speed
user	metrics.

Popular	Pages
Suffice	it	to	say	that	the	pages	that	you	test	on	WebPageTest	should	generally	be	pages
that	your	users	frequently	visit.	This	application	metric	is	the	most	straightforward	for
RUM	services	to	analyze	because	it	is	just	a	count	of	the	distinct	HTTP	Referer	values.
On	Google	Analytics,	you	can	find	your	popular	pages	by	navigating	to	the	All	Pages
table	under	Behavior	>	Site	Content.	Figure	5-2	shows	the	most	popular	pages	for	an
example	website.

Figure	5-2.	Table	of	fictional	web	pages	for	the	website	www.example.com,	sorted	by	page	views.	The	home	page	(/)	is
the	most	popular	page.

Figure	5-2	shows	us	that	the	home	page	accounts	for	almost	half	of	all	page	views,	so	that
would	definitely	qualify	as	a	good	URL	to	run	on	WebPageTest.	/foo/	and	/bar/	are	the
next	two	most-popular	pages,	so	for	more	complete	coverage	it	would	be	a	good	idea	to
add	test	cases	for	these	URLs	on	WebPageTest	as	well	(Figure	5-3).

WARNING
The	list	of	popular	pages	is	not	grouped.	This	means	that	if	your	page	varies	by	querystring	data,	each
unique	URL	would	be	counted	separately.	The	example	website	used	in	Figure	5-2	contains	a	blog.	Each
blog	post	can	be	directly	accessed	with	the	?post=[title]	querystring	parameter.	When	all	blog	posts	are
considered,	it’s	possible	that	in	aggregate	the	blog	is	the	most	popular	page	of	the	entire	site.	Because
Google	Analytics	breaks	down	pages	by	unique	URL,	you	are	only	able	to	see	which	blog	posts	are
individually	the	most	popular.	The	popularity	of	the	blog	as	a	single	page	type,	like	the	home	page	or
secondary	pages	like	/foo/	and	/bar/,	is	not	directly	comparable.	The	current	implementation	means	that	you
would	only	be	able	to	determine	the	relative	popularity	of	individual	blog	posts	instead.	This	may	become
an	issue	if	you	have	many	individual	pages	that	each	contribute	many	page	views,	but	not	as	many	as	other
more	popular	standalone	pages.	When	you	look	at	a	list	of	pages	sorted	by	page	view,	you	may	make	the
mistake	of	ignoring	the	other	ungrouped	pages.

Figure	5-3.	One	of	the	most	popular	page	URLs	as	determined	by	Google	Analytics	is	fed	into	WebPageTest	via	the	URL
text	input	field	on	the	test	configuration	home	page

When	you	select	pages	to	use	for	testing,	popularity	should	not	be	the	only	factor.	You
must	also	consider	pages	on	which	performance	is	a	business-critical	requirement.	For
example,	an	ecommerce	web	site	may	want	to	audit	the	performance	of	the	product	pages
or	the	checkout	flow.	These	pages	may	not	show	up	in	the	analytics	report	as	some	of	the
most	frequented	pages	on	the	entire	site,	but	that	should	not	diminish	the	importance	of
page-loading	performance,	due	to	their	direct	business	impact.

Device	and	Browser
Up	until	2007,	the	year	of	the	first	iPhone,	it	would	be	uncommon	to	see	web	traffic	from
anything	but	desktop	computers.	But	the	web-enabled	mobile	device	revolution	has	now
made	it	possible	for	users	to	access	web	pages	from	their	phones.	Google	Analytics	can
show	you	the	breakdown	of	traffic	from	traditional	desktop,	mobile	(phone),	and	tablet
devices,	as	shown	in	Figure	5-4.

Figure	5-4.	The	Mobile	Overview	page	breaks	down	website	traffic	by	the	type	of	device	used:	desktop	computer,	mobile
phone,	and	tablet.	In	this	screenshot,	desktop	overshadows	mobile	and	tablet	traffic	at	93.5%,	with	mobile	following	at
4.5%,	and	tablet	taking	up	the	remaining	2%.	This	lack	of	device	diversity	would	suggest	that	desktop-only	testing	would

be	sufficient.

The	mobile	overview	page,	as	shown	in	Figure	5-4,	is	accessible	from	the	Mobile	section
under	the	Audience	heading.	The	interesting	part	of	this	page	is	the	device	category
breakdown,	which	in	this	case	shows	desktop	commanding	over	90%	of	traffic.
Depending	on	the	type	of	website	being	analyzed,	mobile	could	easily	overtake	desktop
traffic.	If	your	website	is	frequently	visited	by	mobile	users,	you	should	be	pleased	to
know	that	as	of	February	2014,	WebPageTest	has	been	upgraded	to	an	arsenal	of	mobile
devices	for	your	testing	needs.	Figure	5-5	shows	you	how	to	select	a	testing	location	from
the	WebPageTest	home	page.

Figure	5-5.	On	the	WebPageTest	home	page,	selecting	the	test	location	in	Dulles,	Virginia	gives	you	access	to	a	variety
of	actual	mobile	devices	on	which	to	test

The	list	of	test	locations	on	the	WebPageTest	home	page	includes	a	section	just	for	mobile
devices	in	Dulles,	Virginia.	This	location	is	equipped	with	an	iPhone	4	as	well	as	several
Android	4.4	devices	including	the	Motorola	E,	Motorola	G,	Nexus	5,	and	Nexus	7	tablet.

In	addition	to	the	device	category,	the	type	of	browser	used	is	also	relevant.	This
information	can	also	be	found	on	the	Technology	tab	under	the	Audience	heading.	The
Browser	&	OS	page	defaults	to	showing	you	a	list	of	the	most	popular	browsers,	as	shown
in	Figure	5-6.

Figure	5-6.	The	Browser	&	OS	page	defaults	to	a	list	of	the	website’s	most	popular	browsers.	In	this	screenshot,	Chrome
makes	up	64%,	Firefox	20%,	Safari	10%,	Internet	Explorer	trailing	at	about	4%,	and	other	miscellaneous	browsers
comprising	the	rest.	Based	on	this	data,	you	might	choose	to	test	in	both	Chrome	and	Firefox	on	WebPageTest.

The	data	shown	in	Figure	5-6	indicates	that	the	Chrome	browser	accounts	for	almost	two-
thirds	of	traffic.	If	this	were	your	website	being	analyzed,	this	should	be	a	signal	to	you

that	your	test	configuration	should	focus	on	this	particular	browser.	But	does	this	mean
that	Chrome	is	also	the	most	popular	browser	on	mobile	devices?	We	know	that	phones
and	tables	are	able	to	support	a	variety	of	browsers.	To	get	a	breakdown	of	mobile	browser
traffic,	you	can	modify	any	page	to	narrow	the	traffic	to	only	the	mobile	segment	of	users,
as	shown	in	Figure	5-7.

Figure	5-7.	This	screenshot	shows	how	to	segment	traffic	by	mobile	and	tablet	devices.	This	was	accomplished	by
changing	the	All	Sessions	segment,	which	represents	100%	of	traffic,	to	the	Mobile	and	Tablet	Traffic	segment,	which	is
only	6.5%	of	the	total.	Doing	this	on	the	Browser	&	OS	page	allows	you	to	view	the	website’s	most	popular	mobile

browsers	and	operating	systems.

As	the	title	of	the	page	suggests,	the	Browser	&	OS	page	also	allows	you	to	view	a
breakdown	of	device	operating	systems.	This	is	especially	useful	when	you	are	viewing
the	mobile	segment	of	traffic.	Switching	to	view	the	list	of	most	popular	operating	systems
can	be	done	by	changing	the	primary	dimension,	the	control	for	which	can	be	found	above
the	data	table.

Although	this	provides	a	more	realistic	view	into	actual	mobile	usage,	WebPageTest	is
only	able	to	provide	basic	browser	support	for	testing	on	mobile	devices	such	as	Chrome
on	Android	and	Safari	on	iOS.	Mobile	browsers,	such	as	the	native	Android	Browser,
Opera	Mini,	and	Firefox,	are	unfortunately	not	supported	as	of	the	time	of	writing.

Geographic	Location
The	location	from	where	your	tests	are	run	matters.	Lack	of	attention	to	this	usually	comes
in	two	forms:	testing	unrealistically	close	to	or	far	from	the	server.	For	example,	a	private
test	agent	could	be	set	up	on	the	same	physical	network	as	the	web	server	itself.	This	is
akin	to	running	a	web	server	on	your	laptop	and	testing	the	page-load	performance	by
opening	a	browser	on	the	same	machine.	The	time	for	the	test	agent	to	communicate	with
the	server	is	so	small	that	no	live	user	could	ever	experience	it.	Conversely,	it’s	even	easier
to	configure	a	test	to	run	unrealistically	far	from	the	server.	Imagine	an	Australian-based
website	being	tested	from	the	default	WebPageTest	agent	in	the	US.	If	the	majority	of
traffic	originates	from	the	US,	this	might	make	sense.	However,	if	the	website	primarily
serves	Australians,	then	the	latency	overhead	just	to	make	one	round-trip	would	be
quixotically	distracting	from	the	actual	performance	issues.

As	noted	in	High	Performance	Browser	Networking	(O’Reilly)	by	Ilya	Grigorik,	“the
performance	of	most	web	applications	is	limited	by	latency,	not	bandwidth,	and	while
bandwidth	speeds	will	continue	to	increase,	unfortunately	the	same	can’t	be	said	for
latency.”	When	it	comes	to	configuring	WebPageTest,	geographic	location	is	becoming
even	more	important	considering	its	direct	impact	on	the	latency	performance	bottleneck.
Due	to	the	number	of	round-trips	needed	to	service	a	request,	latency	is	actually	the
limiting	factor,	not	bandwidth.	It	is	for	this	reason	that	understanding	real-user
demographics	like	geographic	location	are	so	critical.	Figure	5-8	shows	us	a	view	of
Google	Analytics’	visitor	geolocation	page.

Figure	5-8.	The	default	view	of	the	visitor	geolocation	page.	Visitor	locations	are	grouped	by	country.

In	order	to	determine	where	users	are	from,	we	turn	to	Google	Analytics’	Audience
category,	under	the	Geo	heading.	This	provides	a	map	view	of	recent	visitors,	grouped	by
country	by	default.	It	turns	out,	though,	that	population-dense	countries	like	India	may
actually	be	skewing	the	results.	Popular	areas	that	span	multiple	countries,	like	regions	of
Europe,	are	underrepresented	in	this	kind	of	visualization.	To	account	for	this,	Google
Analytics	also	groups	visitors	by	subcontinent	regions	(as	shown	in	Figure	5-9).	For
example,	France	and	Germany	are	in	Western	Europe,	while	countries	like	Mexico	and
Honduras	are	considered	Central	America.	These	regions	provide	a	level	of	detail	coarse
enough	to	account	for	congested	political	boundaries	while	still	accurately	conveying
areas	of	interest.

Figure	5-9.	An	alternate	view	of	visitor	locations	groups	by	subcontinent	region

The	table	in	Figure	5-10	suggests	that	to	account	for	at	least	50%	of	visitors,	tests	should
be	run	from	North	America,	Eastern	Asia,	and	Western	Europe.

Figure	5-10.	Western	Europe	as	a	whole	accounts	for	more	traffic	than	just	India.	In	country	view,	however,	India
overshadows	all	other	European	countries	individually.

We	can	drill	down	into	these	regions	to	see	the	geographic	distribution	of	traffic	within	the
region.	On	this	particular	website,	North	American	traffic	overwhelmingly	originates	from
the	US.	Within	the	US,	only	a	few	states	account	for	most	of	the	traffic:	California,	New
York,	and	Virginia.	WebPageTest	may	not	always	have	a	test	agent	available	in	the
particular	region	that	accounts	for	the	majority	of	traffic	on	your	own	website,	but	a
neighboring	test	agent	is	the	next	best	thing.

Figure	5-11	shows	the	test	agent	locations	all	around	the	world.	This	map	can	be	used	to

select	an	agent	geographically	close	to	regions	in	which	traffic	is	highest.

Figure	5-11.	WebPageTest	visualizes	test	agent	locations	on	a	map.	Pins	are	placed	around	the	world	to	illustrate	the
presence	of	a	WebPageTest-enabled	machine	available	for	use.

Connection	Speed
If	you’ve	ever	connected	to	the	Internet	over	a	dial-up	modem,	you	know	how
frustratingly	slow	web	pages	can	be.	Modern	hardware	has	advanced	well	beyond	dial-up;
now	we	have	fiber	optic	connections	near	the	speed	of	light.	The	Web	itself	has	also	taken
on	a	different	shape.	As	a	whole,	the	Web	has	gotten	heavier,	rich	with	high-resolution
images	and	video.	Users	can	now	take	advantage	of	higher	speeds	by	streaming	video
from	services	like	YouTube	and	Netflix,	which	accounts	for	about	half	of	North	America’s
Internet	traffic.	Unfortunately,	not	everyone	has	the	privilege	of	access	to	high-speed
Internet.	These	users	experience	the	Web	much	more	slowly.	In	the	spirit	of	this	chapter	to
synthesize	tests	that	represent	the	actual	user	experience,	controlling	test	connection	speed
is	equally	important.

Real	users’	connection	speeds	are	not	explicitly	tracked	in	RUM.	By	using	some	of	the
metrics	we’ve	already	explored	(and	some	trial	and	error)	we	can	make	a	good
approximation.	Let’s	start	by	looking	at	the	page-load	times	for	our	example	website
(Figure	5-12).

Figure	5-12.	By	default,	the	Page	Timings	view	shows	the	average	page-load	time	for	the	entire	site	over	time

You	can	view	the	average	page-load	time	for	any	given	page,	so	let’s	start	by	narrowing
down	to	the	most	popular	page.	In	Figure	5-2,	we	observed	that	the	home	page	accounts
for	about	40%	of	all	traffic.	Click	on	the	home	page	URL	in	the	table	below	the	chart	to
filter	the	page	speed	results	to	only	this	page.

Also	recall	from	the	previous	section	that	geography	plays	an	important	role	in	web
performance,	so	we	will	use	the	table	from	Figure	5-10	to	select	the	North	American
subcontinent	region	(Figure	5-13).

Figure	5-13.	Looking	at	the	page-load	times	per	subcontinent	region,	it’s	easier	to	see	the	difference	in	load	time	across
the	world.	This	view	also	allows	us	to	drill	down	to	specific	regions.

To	get	a	more	accurate	idea	of	typical	page-load	time,	we	need	to	look	at	the	median	time
as	opposed	to	the	average	by	default.	Statistically,	the	median	(or	50th	percentile)	of	a	data
set	represents	the	middlemost	value,	which	is	unaffected	by	however	large	or	small	the
outliers	may	be.	Averages	take	outliers	into	account	and	can	be	misleading	when
interpreted	by	themselves.	Switching	from	Map	Overlay	to	the	Distribution	view	produces
a	much	better	look	at	a	histogram	of	load	times	(Figure	5-14).	Using	this,	we	can	deduce
the	median	load-time	range	by	finding	the	load	time	at	which	it	accounts	for	50%	of	the
total.

Figure	5-14.	We	can	drill	down	the	page-load	time	buckets	to	half-second	increments	to	calculate	the	range	in	which	the
50th	percentile	of	users	exist

To	read	this	chart,	start	with	the	percentage	of	the	first	bucket,	0–1	second,	which	is	about
28%.	This	is	less	than	50%,	so	we	look	at	the	next	bucket,	which	accounts	for	another
58%.	This	exceeds	the	median	value,	so	we	can	drill	down	to	get	finer	bucket	values.	At
1–1.5	seconds,	an	additional	14%	is	accounted	for,	bringing	the	total	to	42%.	The	1.5–2
second	bucket	adds	another	17%,	so	we	know	the	50th	percentile	lies	in	this	range.

Now	comes	the	trial	and	error.	On	WebPageTest,	create	a	few	tests	of	the	same	page
originating	from	the	same	subcontinent	region,	in	this	case	somewhere	in	North	America.
In	each	test,	choose	a	different	connection-speed	profile:	dial-up,	DSL,	cable,	or	fiber.
What	we’re	looking	for	is	a	connection	that	produces	results	with	a	load	time	somewhere
in	the	1.5–second	range.	Let’s	say	that	cable	came	the	closest	at	2.2	seconds.	We	can	speed
this	up	to	fall	in	that	Goldilocks	range	by	customizing	the	connection	speed,	as	shown	in
Figure	5-15.

Figure	5-15.	Adjusting	the	up/down	bandwidth	and	latency	settings	gives	us	finer	control	over	the	speed	resources	travel
over	the	network

The	techniques	discussed	in	this	chapter	enable	you	to	set	up	your	synthetic	tests	in	a	way
that	reflects	typical	usage.	By	leveraging	software	that	aggregates	real-user	demographics,
you’re	able	to	determine	the	most	accurate	settings	to	represent	your	visitors.

With	the	assurance	that	your	tests	are	accurate	representations	of	live	traffic,	scrutiny	of
performance	issues	that	manifest	themselves	in	synthetic	test	results	carries	more	weight.
Optimizing	the	synthetic	experience	will	more	likely	translate	to	an	optimized	real-user
experience	when	you’re	able	to	focus	on	the	issues	that	actually	affect	them.

Chapter	6.	Mobile	Testing

Generally	speaking,	traditional	web	developers	have	always	had	to	ensure	that	their	code
worked	across	popular	browsers.	This	has	become	the	universal	truth	of	web	development;
users	can	and	will	access	the	web	however	they	are	able.	In	recent	years,	the	freedom	of
accessibility	has	become	less	about	“taking	back	the	Web”	by	choice	of	browser	and	more
about	convenience	of	access	with	mobile	devices.	And	it	hasn’t	stopped	at	mobile	phones,
either.	People	will	access	the	web	on	their	tablets	and	watches,	and	they	will	even	get	it
projected	onto	their	eyeball	if	they	so	desire.	While	we’re	still	waiting	for	the	wearable
WebPageTest	agent,	there	is	already	support	for	tablets	and	phones.

In	this	chapter,	we	will	explore	the	options	that	WebPageTest	provides	for	mobile	web
performance	testing.	Mobile	support	falls	under	two	categories:	emulation	and	native.
Rather	than	testing	on	an	actual	phone	or	tablet,	emulation	runs	on	desktop	browsers
configured	to	act	like	a	mobile	device.	For	the	real	thing,	WebPageTest	agents	can	actually
control	physical	mobile	devices.	As	we’ll	discuss,	each	tool	has	its	drawbacks	and
advantages.

Desktop	Emulation
It	is	common	for	web	developers	to	call	their	site	“mobile-friendly”	if	it	is	responsive.	One
way	to	do	this	is	to	give	mobile	devices	the	entire	desktop	page	and	rely	on	client-side
code	to	force	it	to	be	mobile-friendly.	For	example,	a	page	could	be	viewed	on	a	large
desktop	monitor	or	a	small	phone	screen,	and	some	savvy	CSS	rules	could	keep
everything	fitting	like	a	glove.	The	CSS	can	work	on	large	or	small	screen	sizes	by	using
media	queries	to	adjust	the	styles	that	are	applied	to	the	page	based	on	the	dimensions	of
the	screen.	For	a	desktop	browser	to	fool	a	media	query,	all	it	has	to	do	is	change	its
viewport	size	to	be	as	small	as	a	mobile	device.

One	obvious	problem	with	this	approach	is	that	the	mobile	client	must	download	all	of	the
code	required	for	the	desktop	view,	which	may	not	entirely	be	used	in	the	mobile	view.	As
we’ll	discuss	more	in	“Traffic	Shaping”,	unnecessary	content	can	have	a	profound	impact
on	performance	as	a	result	of	limited	download	capacity.	Many	web	developers	have
recognized	this	problem	and	have	come	up	with	another	way	to	serve	mobile	web	content.
The	User-Agent	property	included	in	the	browser’s	request	headers	provides	the	server
with	demographic	information	about	the	user’s	device.	Servers	can	tell	whether	the	user	is
on	a	desktop	or	mobile	device	based	on	the	information	in	this	header.	So	instead	of
relying	on	client-side	code	like	CSS	to	adjust	the	page	layout	from	desktop	to	mobile-
friendly,	the	server	will	use	the	User-Agent	header	to	provide	trimmed-down	mobile	code
whenever	necessary.	Tricking	a	server	into	giving	a	desktop	browser	its	mobile	web	page
can	easily	be	done	by	modifying	the	browser’s	User-Agent	value.

WebPageTest	can	create	a	desktop	browser	with	a	small	viewport	as	well	as	overwrite	its
User-Agent	identity.	This	is	the	basis	for	mobile	web-browser	emulation	with	desktop
browsers.	Let’s	look	at	how	to	enable	these	options.

Any	test	location	that	supports	Chrome	can	emulate	a	mobile	device.	To	configure	this,	go
to	the	Chrome	tab	of	the	Advanced	Settings	section.	Check	the	Emulate	Mobile	Device
option,	as	shown	in	Figure	6-1,	and	start	the	test.	That’s	it.

Figure	6-1.	The	option	to	enable	mobile	emulation	is	found	on	the	Chrome	tab	of	the	Advanced	Settings	section.	This
will	cause	desktop	Chrome	to	masquerade	as	a	Nexus	5	and	compel	the	server	to	produce	the	mobile	web	version	of	the

test	page.

As	a	result,	the	browser	will	identify	itself	as	something	like	“Mozilla/5.0	(Linux;
Android	4.4.4;	Nexus	5	Build/KTU84P)	AppleWebKit/537.36	(KHTML	like	Gecko)

Chrome/37.0.2062.55	Mobile	Safari/537.36,”	which	is	a	Nexus	5	device	running
Chrome	37.	It	will	also	adjust	the	viewport	to	match	the	Nexus	5	with	a	1080	x	1920	px
screen	and	3x	pixel	density.

TIP
You	can	specify	your	own	User-Agent	value	on	the	same	tab	that	allows	you	to	enable	mobile	device
emulation.	It’s	also	possible	to	configure	the	browser	window	to	be	as	small	as	a	mobile	device	by
programmatically	adjusting	the	viewport	size	with	a	scripting	command.	For	example,	in	the	Script	tab,	you
would	enter	setViewportSize	1080	1920	to	achieve	the	same	viewport	as	a	Nexus	5;	1080	pixels	wide	and
1920	pixels	tall.	These	two	options	give	you	the	flexibility	to	emulate	any	device	configuration.	See
Chapter	7	for	a	more	thorough	introduction	to	using	the	Script	tab.

The	test	results	for	an	emulated	mobile	web	page	appear	just	like	those	for	a	desktop	page.
You	still	get	the	waterfall	diagram,	screenshots,	video	of	the	loading	progress,	and	detailed
analysis.	However,	emulation	does	come	with	shortcomings.	Desktop	computers	generally
have	more	powerful	CPUs	that	can	build	a	web	page	faster	than	a	mobile	device.	Desktops
also	have	the	capacity	for	much	larger	browser	caches,	which	means	that	repeat	views
may	be	uncharacteristically	optimistic	under	emulation.	Perhaps	the	most	significant
factor	is	the	connection	speed,	which	can	be	drastically	slower	on	a	mobile	network.

Despite	these	limitations,	there	is	still	something	to	be	learned	from	emulation.	Especially
when	mobile	tests	are	compared	against	straightforward	desktop	tests,	egregious	“mobile-
unfriendly”	anti-patterns	can	be	spotted.	Look	at	the	size	of	static	resources,	for	example.
Just	by	counting	the	bytes,	you	can	tell	if	a	mobile	site	is	unoptimized	if	the	sizes	are	all
equal	(Figure	6-2	and	Figure	6-3).	Alternatively,	you	could	see	whether	the	size	of	one
type	of	resource	is	disproportionately	high.

Figure	6-2.	Using	the	A/B	testing	techniques	from	Chapter	3,	we	can	use	the	automatically	generated	charts	to	compare
the	resources	of	multiple	tests.	Here,	we	compare	resources	of	a	desktop	page	against	its	unoptimized	mobile

counterpart.	The	total	number	of	bytes	loaded	for	markup,	scripts,	styles,	and	images	are	all	identical.	This	is	a	red	flag
that	the	mobile	page	has	hardly	been	optimized	—	if	at	all.

Figure	6-3.	Even	after	some	optimizations	have	been	made	to	the	mobile	web	page,	this	chart	can	show	us	when	mobile
is	loading	more	of	something	than	desktop.	In	this	case	the	mobile	page	has	more	image	bytes.	Considering	that	the
screen	size	is	much	smaller	and	the	design	is	much	simpler,	this	should	be	an	automatic	red	flag	to	warn	against

wastefully	loading	images	that	are	larger	than	necessary.

WebPageTest	can	account	for	the	blind	spots	of	emulation	with	additional	tooling.	The
following	sections	each	address	a	particular	blind	spot:	simulating	the	connection	speeds
commonly	experienced	on	mobile	devices,	and	getting	accurate	results	by	testing	on
physical	devices.

Traffic	Shaping
In	order	to	simulate	a	mobile	web	page	in	a	desktop	browser,	we	need	to	use	Chrome’s
emulation	mode.	This	encourages	the	web	server	to	give	the	browser	the	mobile	version	of
the	page,	but	the	browser	still	has	many	properties	that	are	unlike	a	mobile	experience.	As
most	mobile	users	would	be	quick	to	point	out,	the	connection	speed	on	a	mobile	device	is
typically	much	worse	than	on	a	desktop	connection.	WebPageTest	accommodates	this
discrepancy	by	changing	the	way	the	desktop	test	agent	is	able	to	communicate	over	the
network.	This	technique,	called	traffic	shaping,	allows	test	agents	to	simulate	slow
connection	speeds.

We	looked	at	traffic	shaping	in	“Connection	Speed”	to	find	a	speed	that	is	representative
of	the	real-user	population.	Instead	of	varying	the	connection	speed	to	find	realistic	results
with	trial	and	error,	we	already	know	the	network	type	that	we’re	looking	for.	For	the
purpose	of	emulating	a	mobile	device,	we	can	simulate	the	network	conditions	by
choosing	one	of	the	preconfigured	mobile	profiles,	as	shown	in	Figure	6-4.

Figure	6-4.	You	can	select	one	of	WebPageTest’s	preconfigured	connection	profiles	on	the	Test	Settings	tab	of	Advanced
Settings.	You	could	also	configure	a	custom	connection	profile	by	supplying	your	own	download	speed,	upload	speed,

and	round-trip	time	(RTT).

WebPageTest	offers	two	mobile	profiles	for	throttling	the	test	agent’s	network	speed:	3G
and	Fast	3G.	Both	profiles	share	the	same	upload	and	download	speeds	of	1.6	and	0.768
Mbps	respectively.	The	difference	is	that	the	3G	profile’s	RTT	is	half	as	fast	as	Fast	3G’s.
Keep	in	mind	that	the	TCP	handshake	alone	is	one	full	round	trip,	so	just	opening	up	a
single	connection	on	the	slower	3G	profile	takes	a	minimum	of	300	ms	as	opposed	to	150
ms	on	Fast	3G.

Modern	cellular	networks	utilize	faster	technologies	like	4G.	Even	though	this	option	is
not	explicitly	preconfigured	in	WebPageTest,	you	can	still	represent	this	demographic	by
choosing	the	Custom	connection	and	specifying	comparable	download,	upload,	and	RTT
values.	For	4G,	one	approximation	would	be	to	configure	5	and	2	Mbps	for	download	and
upload	speeds	respectively,	and	75	ms	for	RTT.	These	values	came	from	researching
typical	speeds	and	may	vary	depending	on	location	and	carrier.

Native	Devices
So	far,	our	mobile	tests	have	been	configured	to	run	in	a	desktop	browser.	The	browser
disguises	itself	as	a	mobile	user	agent	and	shrinks	its	viewport	to	handheld	proportions.
The	WebPageTest	test	agent	throttles	the	connection	to	be	more	realistic	to	cellular
network	performance.	The	shortcoming	of	desktop	emulation	is	that	the	hardware
powering	the	browser	is	still	that	of	a	desktop.	What	we	need	is	a	way	to	run	synthetic
performance	tests	on	real	mobile	devices.

The	difference	that	native	hardware	offers	to	synthetic	testing	is	in	the	computation	power.
Even	when	you	load	identical	web	pages	over	identical	connection	speeds,	a	mobile
device	will	generally	take	longer	to	load	than	a	desktop	browser.	This	is	because	of	the
underlying	hardware	that	does	the	heavy	lifting	of	building	the	page	to	display	on	screen.
Mobile	devices	are	smaller	by	nature	and	hence	they	have	less	room	for	hardware.	This
forces	a	trade-off	between	size	and	performance:	a	smaller	CPU	can	fit	in	a	phone	but	is
not	as	powerful,	whereas	a	desktop	CPU	can	take	up	as	much	space	as	it	needs.	Memory	is
also	a	significant	factor.	The	browser	cache	on	a	mobile	phone	can	be	as	little	as	5%	of
that	of	its	desktop	counterpart.	This	introduces	another	common	computational	trade-off
between	the	speed	of	a	program	and	the	amount	of	space	it	can	take	up.	The	relationship
between	speed	and	space	means	that	(all	other	things	being	equal)	a	smaller	cache	would
mean	a	slower	running	time.	For	mobile	synthetic	testing,	these	factors	directly	affect
metrics	like	the	load	time	of	a	page	because	the	phone	or	tablet	is	slower	by	design.

Recall	from	“Device	and	Browser”	that	WebPageTest	has	native	iOS	and	Android	devices
available	for	public	use.	Running	tests	for	these	devices	is	just	as	easy	as	any	other
configuration.	To	start,	choose	a	geographic	location	with	one	of	these	devices	on	site,	and
then	pick	your	device,	as	shown	in	Figure	6-5.

Figure	6-5.	Testing	on	a	native	device	is	as	straightforward	as	selecting	a	mobile-supported	location	and	picking	your
device

Note,	however,	that	the	availability	of	mobile	devices	is	extremely	limited.	Only	about	a
dozen	devices	are	available	and	they	are	all	located	in	Dulles,	Virginia,	maintained
personally	by	WebPageTest’s	creator	(Figure	6-6).	Keep	this	in	mind	when	running	your
mobile	tests.	Most	important,	consider	the	queue	of	people	who	may	want	to	use	these
scarcely	available	resources	and	keep	tests	to	a	minimum.	You	should	also	consider	the
effects	of	the	devices’	location.	There	will	be	latency	inherent	to	the	physical	location	of
the	test	agents,	especially	if	they	are	testing	a	web	page	served	oceans	away.

Figure	6-6.	In	this	2014	photo,	the	actual	Android	devices	hooked	up	to	the	WebPageTest	agent	in	Dulles,	Virginia	are
shown.	From	left	to	right:	Nexus	7	(landscape),	Nexus	7	(portrait),	two	Nexus	5,	five	Motorola	G,	and	two	Motorola	E.

Source:	Android	web	performance	testing	takes	a	big	leap	forward

These	publicly	available	mobile	devices	do	not	communicate	over	a	cellular	network.
They	are	connected	to	a	traffic-shaped	WiFi	network,	which	is	deliberately	done	for
reliability.	In	order	to	keep	the	mobile	test	agents	online	and	unaffected	by	capricious
network	conditions,	they	are	relegated	to	a	3G-shaped	traffic	configuration.	This
connection	speed	is	preset	for	you,	as	it	is	the	only	option	compatible	with	the	native
mobile	devices.

TIP
If	traffic	shaping	does	not	suit	your	needs	and	your	tests	require	native	mobile	devices	on	their	native
cellular	networks,	WebPageTest	can	still	work	for	you.	With	a	private	instance	of	WebPageTest,	you	can
create	your	own	mobile	test	agent	by	installing	testing	software	on	a	native	device.	See	“Mobile	Test
Agents”	for	more	information	about	setting	this	up.

http://blog.patrickmeenan.com/2014/02/android-web-performance-testing-takes.html

Chapter	7.	Scripting	Preconditions

Chapters	5	and	6	focused	on	different	ways	to	configure	WebPageTest	to	more	accurately
represent	how	real	users	access	a	page.	We	considered	the	browser,	connection	speed,
geographic	location,	and	device	type	as	customizable	options.	One	thing	that	has	been
relatively	unmentioned	so	far	is	the	state	of	the	page	and	how	that	can	have	an	effect	on	its
performance.

The	cache	state	of	a	page	has	been	discussed	earlier,	but	as	noted	in	“Enabling	Repeat
View”,	we	cannot	simply	rely	on	the	repeat	view	to	represent	the	cache	state	of	a	page.
This	view	is	useful	for	illustrating	the	resources	that	could	benefit	from	client-side
persistence	through	the	narrow	perspective	of	reloading	a	page	to	see	what	still	needs	to	be
downloaded.	Realistically,	however,	users	don’t	just	visit	a	page	and	reload	it.	There	are
other	vectors	in	which	a	page	could	be	warmed	up	with	the	user’s	prior	browsing	history.

Two	examples	of	this	would	be	caching	of	resources	both	internal	and	external	to	the	site.
Resources	can	be	shared	between	pages	of	the	same	site,	such	as	a	common	stylesheet	or
masthead	logo.	Going	from	one	page	to	another	doesn’t	usually	require	that	these
resources	be	downloaded	again.	External	resources	can	also	be	shared	between	pages	on
different	sites.	Third-party	resources	like	CDN-hosted	JavaScript	libraries	may	already	be
cached	on	a	user’s	machine	before	the	user	ever	visits	a	page	that	requires	that	resource.
When	the	user	visits	such	a	page	for	the	first	time,	this	is	one	fewer	resource	that	needs	to
be	downloaded.	In	both	of	these	examples,	the	page	is	in	an	in-between	state	in	which
some	resources	are	immediately	available	and	some	are	not.	As	you	may	have	guessed,
this	can	have	a	dramatic	effect	on	performance.

In	this	chapter,	we	will	look	at	two	approaches	to	configuring	WebPageTest	such	that	the
results	more	accurately	reflect	real-user	experiences.	First,	we	will	use	scripting	to	address
the	cache-state	gap.	Instead	of	relying	on	a	completely	cold	cache	state	on	first	view	and
an	unrealistically	primed	cache	in	the	repeat	view,	we	will	give	instructions	to	the	testing
agent	to	simulate	a	third	state	known	as	the	flow	view.	Finally,	this	chapter	will	tackle	the
problem	of	testing	web	pages	that	users	are	logged	into.	Many	sites	personalize	content	for
users,	and	some	pages	are	entirely	blocked	off	to	unauthenticated	visitors.	In	order	to	get
visibility	into	the	performance	of	these	types	of	pages,	we	will	need	to	instruct	testing
agents	to	log	in	to	a	website	before	running	the	test.

Flow	View
Out	of	the	box,	WebPageTest	offers	two	simple	yet	powerful	options	to	configure	a	test:
first	and	repeat	views.	These	views	are	extremely	helpful	for	identifying	general
performance	problems	but	do	not	always	reflect	the	state	in	which	a	user	experiences	a
page.	For	example,	you	may	have	found	through	“Popular	Pages”	that	most	users	enter
through	the	home	page	and	navigate	to	some	secondary	page.

The	resources	shared	between	these	two	pages	(Figure	7-1)	would	not	need	to	be	loaded
when	the	user	navigates	to	the	secondary	page,	assuming	that	their	cache	configuration
has	been	set	properly.	But	the	remaining	resources	unique	to	the	secondary	page	still	need
to	be	loaded,	and	this	exact	scenario	is	not	always	captured	by	the	first	or	repeat	views.	So
we	turn	to	the	scripting	interface	for	finer	control.

Figure	7-1.	Diagram	of	the	resources	of	two	web	pages,	home	and	secondary.	Between	them,	there	are	some	shared
resources.

logData	and	navigate
To	script	the	flow	view,	there	are	only	two	basic	commands	that	you	need	to	know:
logData

Turns	on	or	off	the	recording	of	network	activity	presented	by	the	waterfall	diagram.
navigate

Instructs	the	test	agent	to	perform	an	HTTP	navigation	to	a	specified	URL.

These	commands	are	entered	into	the	scripting	input	field	in	the	Advanced	Settings
section,	as	shown	in	Figure	7-2.

Figure	7-2.	WebPageTest	is	configured	to	preload	the	home	page	of	a	website	before	navigating	to	and	capturing	the
network	data	for	a	secondary	page

The	exact	script	to	perform	the	flow	view	is	as	follows:

logData	0

navigate	http://www.example.com

logData	1

navigate	http://www.example.com/test

The	first	two	commands	disable	network	recording	and	preload	the	home	page.	In	order	to
get	a	clear	view	of	the	secondary	page’s	performance,	we	disable	network	recording	of	the
home	page	to	exclude	it	from	the	waterfall	diagram.	When	the	home	page	is	preloaded,	all
of	its	cachable	resources	are	warmed	up	and	downloaded	for	the	secondary	page	to	load
immediately	from	cache.	The	last	two	commands	enable	network	recording	and	load	the
secondary	page.	Enabling	logData	here	ensures	that	we	get	the	secondary	page’s	network
activity	in	the	waterfall	diagram.	The	second	navigate	command	simulates	the	user
clicking	on	a	link	from	the	home	page	to	the	/test	page.	Resources	that	have	already	been
loaded	on	the	home	page	are	not	reloaded	on	the	secondary	page,	but	rather	they	are
served	from	cache.	In	this	particular	test,	we’re	able	to	configure	WebPageTest	to	establish

the	precondition	that	the	home	page	has	been	loaded	and	its	resources	have	been	cached.
Without	scripting,	this	would	not	be	possible.

By	using	this	simple	pattern	on	pages	that	are	not	usually	visited	directly,	test	results	will
more	accurately	reflect	the	real-user	experience.	Remember	to	look	at	your	RUM	report	to
determine	common	entry	pages	and	configure	your	flow	views	accordingly.

Authentication
Until	now,	there	has	been	a	dangerous	blind	spot	in	our	performance	testing.	Our	test
configurations	have	all	lacked	authentication,	which	is	the	means	by	which	users	are	able
to	log	in	to	a	website.	Some	pages	or	even	the	entire	site	may	be	completely	inaccessible
to	testing	without	authentication.	Personalization	is	also	an	important	part	of	the	user
experience	and	it	would	be	important	to	capture	any	performance	overhead	this	may	incur.
For	example,	simply	authenticating	a	user	would	typically	require	a	database	lookup	to
verify	their	credentials.	This	lookup	alone	could	be	a	performance	bottleneck	and	would
be	completely	invisible	to	unauthenticated	tests.	We	need	a	way	to	run	authenticated	tests.
Fortunately,	WebPageTest	provides	three	ways	to	do	this.

WARNING
When	testing	authenticated	pages	on	WebPageTest,	you	are	strongly	advised	to	use	an	account	specifically
for	testing	purposes.	The	credentials	for	this	account	will	be	entered	into	WebPageTest	and	may	be	visible
on	the	test	results	page.

You	should	also	be	sure	to	mark	the	tests	as	private,	which	will	prevent	the	results	from	appearing	in	the
publicly	visible	and	searchable	list	of	recent	test	results.	Private	tests	can	still	be	accessed	by	anyone	with
the	test	ID,	so	the	test	account	credentials	may	still	be	exposed	inadvertently.

A	much	more	secure	defense	against	leaking	account	credentials	to	the	public	would	be	to	use	a	private
instance	of	WebPageTest.	Refer	to	Chapter	11	for	more	information	about	setting	up	a	private	instance.

In	this	section,	we	will	demonstrate	how	to	use	each	of	the	three	techniques	for	enabling
test	authentication.	First,	the	Auth	tab	is	the	most	straightforward	method.	Next,	we	will
utilize	the	scripting	commands	to	programmatically	submit	a	login	form.	And	finally,	we
will	look	at	setting	an	authentication	cookie.	Even	though	each	approach	is	designed	to
produce	the	same	result,	we	will	discuss	some	caveats	that	you	should	consider	when
selecting	a	technique.

HTTP	Basic	Authentication
WebPageTest’s	advanced	configuration	section	includes	a	tab	specifically	for
authenticating	using	a	simple	HTTP	header.	The	Auth	tab	allows	you	to	provide	a
username	and	password,	which	is	base64-encoded	and	assigned	to	an	HTTP	request
header	(see	Figure	7-3).	This	technique	is	called	HTTP	Basic	Authentication	(HBA).

Figure	7-3.	In	the	Advanced	Settings	section,	the	Auth	tab	can	be	used	to	input	a	username	and	password.	This	data	will
be	sent	to	the	test	page	in	the	form	of	an	Authorization	header.

This	is	the	simplest	way	to	configure	WebPageTest	to	log	you	in	as	a	particular	user.	Keep
in	mind,	though,	that	the	account	credentials	are	sent	in	plain	text	in	the	HTTP	headers.
For	example,	this	would	be	the	request	header	generated	by	entering	a	username	of
username	and	a	password	of	password	into	the	Auth	tab:

Authorization:	Basic	dXNlcm5hbWU6cGFzc3dvcmQ=

The	name	of	the	header	is	Authorization,	whose	value	contains	text	that	should	be
interpreted	as	account	credentials.	The	Basic	keyword	is	a	hint	to	the	server	how	to
interpret	the	encoded	value.	In	this	case,	the	value	is	a	base64-encoded	string	of	a
username	and	password,	delimited	by	a	colon.	In	other	words,
dXNlcm5hbWU6cGFzc3dvcmQ=	is	username:password	in	base64-encoding.	With	this	data,
the	server	can	decode	and	parse	the	credentials	and	authenticate	the	user.

It’s	up	to	the	server	to	support	HBA,	so	this	is	not	always	a	reliable	way	to	authenticate	a

test.	Still,	it	is	the	most	straightforward	method	offered	by	WebPageTest	to	log	in	to	a	test
website.

DOM	Manipulation
Another	way	to	authenticate	users	with	WebPageTest	is	to	programmatically	interact	with
the	UI	of	the	page	to	complete	a	login	form.	This	approach	most	closely	aligns	with	the
way	a	user	would	manually	log	in.

WebPageTest	provides	several	scripting	commands	that	interact	with	the	elements	on	a
page.	The	two	commands	that	we’ll	leverage	for	authentication	are	setValue	and
submitForm:

logData	0

navigate	http://www.example.com/login

setValue	id=u	username

setValue	id=p	password

submitForm	id=login-form

logData	1

navigate	http://www.example.com/profile/username

The	way	this	script	works	is	by	first	navigating	to	the	login	page	of	our	test	site	without
recording	any	of	the	activity	so	far.	This	should	look	familiar	because	this	script	is	an
extension	of	the	“Flow	View”,	in	which	one	page	is	loaded	before	the	test	page.	Next,
setValue	literally	sets	username	to	be	the	value	of	the	element	with	an	ID	of	u.	A	similar
command	sets	the	password	on	element	p.	The	IDs	of	these	elements	are	specific	to	the
markup	of	the	login	page,	so	you’ll	need	to	inspect	the	source	of	the	page	you’re	testing.	If
an	ID	is	not	present,	you	could	use	any	other	uniquely	identifiable	attribute:

<input	type="text"	name="uname"	class="form-field">

For	example,	given	the	preceding	HTML,	you	could	use	the	name	attribute	to	target	this
element	directly.	There	would	presumably	be	many	other	elements	on	the	page	with
type="text"	or	class="form-field".	The	command	you	would	use	in	this	case	is:

setValue	name=uname	username

As	previously	mentioned,	this	script	extends	the	flow	view,	which	means	that	it	is	a
pseudocached	test.	One	drawback	to	this	approach	is	that	it	would	not	allow	you	to	test	a
cold	load	of	an	authenticated	page.	This	is	because	the	login	page’s	resources	will	always
have	been	cached	first.	To	address	this,	we’ll	look	at	one	final	technique	that	does	not
require	a	helper	page	to	log	in	first.

Setting	Cookies
The	third	and	final	authentication	method	is	almost	a	hybrid	of	the	first	two	methods.
Recall	that	with	HBA,	the	Authorization	header	is	included	on	the	initial	request.	We
also	tried	to	manually	log	in	by	programmatically	mimicking	the	way	a	user	would
complete	a	form.	These	methods	have	their	drawbacks:	HBA	is	not	supported	everywhere,
and	DOM	manipulation	requires	a	login	page	to	be	sacrificed	to	the	cache	before	testing.
This	method	has	the	simplicity	of	leveraging	HTTP	headers	and	the	versatility	of	using	the
scripting	interface.	Here’s	how	it	works:

setCookie	http://www.example.com	session=286755fad04869ca523320acce0dc6a4

navigate	http://www.example.com/

The	setCookie	command	enables	you	to	configure	a	cookie	to	be	included	in	the	request
headers.	The	syntax	of	the	command	is	setCookie	path	name=value.	The	path	specifies
the	domain	on	which	the	cookie	is	valid.	After	a	space	delimiter,	the	path	is	followed	by
the	name	and	value	of	the	cookie	used	to	track	authenticated	users.

This	is	a	hybrid	approach	because	it	sets	a	request	header	similar	to	HBA	and	it	uses	the
scripting	interface	like	the	DOM-manipulation	approach.	However,	this	is	a	simple	and
elegant	script	unencumbered	by	the	same	drawbacks	that	limit	the	feasibility	of	the	other
techniques.	Every	website	that	does	authentication	will	set	some	kind	of	cookie	to	persist
the	session,	so	you	don’t	need	to	worry	about	lack	of	support.	Conveniently,	it	is	also	cold-
cache-friendly,	so	you	can	get	that	first-view	experience	without	having	to	preload	a	login
page.

The	beauty	of	this	approach	is	its	extensibility.	As	written,	this	is	a	first-view	script	with
an	empty	cache,	something	we	were	not	able	to	achieve	with	the	DOM-manipulation
approach.	If	necessary,	we	could	incorporate	the	flow	view	to	get	a	different	caching
experience.

Chapter	8.	SPOF	Testing

On	November	12,	2014,	for	90	excruciating	minutes,	customers	of	Google’s	DoubleClick
for	Publishers	(DFP)	service	experienced	an	outage.	It	is	estimated	that	over	50,000
websites	were	affected,	costing	millions	of	dollars	in	lost	advertising	revenue.	In	addition
to	the	direct	loss	of	revenue,	there	was	a	secondary	effect.	Some	websites	that	depended
on	DFP	started	experiencing	outage-like	behavior	of	their	own.	Users	were	unable	to
access	these	sites	because	the	pages	effectively	froze	waiting	for	network	activity	with	the
DFP	server.	This	scenario	is	known	as	a	single	point	of	failure	(SPOF)	of	frontend	code,	in
which	one	weak	link	can	take	the	whole	site	down.

Brian	O’Kelley,	CEO	of	AppNexus,	operator	of	a	large	real-time	online	ad	platform	and
a	DoubleClick	rival,	estimated	the	disruption	cost	publishers	$1	million	per	hour	in
aggregate.

Wednesday’s	outages	affected	more	than	55,000	websites,	according	to	Dynatrace,
which	monitors	website	and	web	application	performance	for	companies	including
eight	out	of	the	10	largest	retailers	in	North	America.

http://on.wsj.com/1EUfDRn

A	SPOF	is	able	to	happen	due	to	the	way	browsers	handle	unresponsive	servers.	When	a
server	experiences	an	outage	similar	to	what	happened	to	Google’s	ad	service,	websites
that	depend	on	it	fail	to	communicate.	The	browser’s	normal	recourse	is	to	try	again.	As
the	browser	unsuccessfully	attempts	to	reach	the	downed	server,	the	original	request	is	left
hanging.	When	this	request	is	made	synchronously,	all	other	page	activity	grinds	to	a	halt.

A	user	visiting	a	site	that	is	undergoing	a	SPOF	is	likely	to	have	a	very	bad	experience.
The	page	appears	blank	or	incomplete,	nothing	on	the	page	responds	to	interactions	like
scrolling	or	clicking,	and	much	time	is	wasted.	Users	don’t	care	if	the	site	is	the	victim	of
a	third-party	failure;	as	far	as	they’re	concerned,	the	site	is	broken.	Site	owners	can
immediately	expect	a	loss	of	business	from	these	users,	simply	because	they’re	unable	to
use	the	site.	Worse	yet,	there	are	long-term	effects	that	adversely	impact	these	users’
sentiment.	Sites	that	go	down	are	seen	as	less	reliable,	untrustworthy,	and	undeserving	of	a
return	visit.

There	are	many	possible	sources	for	a	SPOF.	In	addition	to	the	cause	in	the	advertising
example,	social	media	widgets	are	commonly	cited	examples	of	SPOF-inducing	scripts.	A
website	that	includes	a	button	to	post	to	Twitter	may	suffer	if	Twitter	goes	down.	Other
common	third-party	resource	types	include	analytics	code	like	Google	Analytics	and
JavaScript	frameworks	like	jQuery.	You	and	your	site	can	be	affected	if	you	rely	on
external	resources	like	these.

You	may	be	thinking	at	this	point	that	externally	hosted	third-party	resources	are	terrible
because	they	have	the	ability	to	take	your	website	down.	Your	next	thought	may	be	to

mitigate	the	risk	of	a	SPOF	by	turning	these	third-party	resources	into	“first-party”
resources	by	hosting	them	yourself.	If	the	third-party	server	goes	down,	you	would	be
unaffected,	but	if	your	server	goes	down,	your	site	would	be	affected	no	matter	where
your	resources	are	hosted.	This	might	seem	like	a	viable	alternative,	but	remember	the
benefits	of	third-party	resource	hosting.	Perhaps	the	most	obvious	advantage	is	that	you
don’t	have	to	update	the	resource	as	changes	are	published.	For	example,	some	jQuery
users	prefer	to	use	a	centrally	located	CDN	to	host	the	JavaScript	file	because	updates	to
the	library	are	automatically	pushed	to	the	hosted	file.	Another	advantage	is	that	the
resource	is	shared	among	multiple	websites.	If	the	resource	is	configured	to	be	cached	by
users,	visiting	one	website	will	effectively	preload	the	resource	and	make	it	readily
available	for	the	next	website.	For	popular	resources,	users	would	rarely	need	to	reload	it.

The	truth	is	that	third-party	resources	can	be	trusted	not	to	bring	your	site	down.
Techniques	and	best	practices	have	been	developed	to	ensure	that	one	server’s	outage
doesn’t	become	everyone	else’s	SPOF.	The	most	straightforward	solution	is	to	load	third-
party	resources	asynchronously.	By	definition,	this	means	that	the	page	does	not	depend
on	the	resource’s	immediate	availability.	No	matter	how	long	the	resource	takes	to	load
(even	if	not	at	all),	the	show	will	go	on	and	the	page	will	continue	to	function.	The	feature
brought	by	the	resource	will	be	unavailable	of	course,	but	developers	could	plan	for	that
contingency	accordingly	with	fallbacks.

You	should	be	happy	to	hear	that	there	were	many	websites	that	did	not	go	down	as	a
result	of	that	DFP	outage.	These	websites	correctly	implemented	defensive	techniques	to
handle	such	a	failure,	and	the	worst	that	happened	was	that	the	site	was	unable	to	display
any	advertisements.	To	most	users,	this	sounds	like	a	win.	And	there	certainly	were	plenty
of	people	rejoicing	at	the	outage	for	turning	a	significant	portion	of	the	web	ad-free.	But
this	is	a	success	story	because	the	problem	ended	there	for	these	websites.	News	sites	were
still	able	to	deliver	the	news,	and	ecommerce	sites	were	still	able	to	sell	things.

If	you	weren’t	eager	to	start	analyzing	whether	your	site	is	liable	to	SPOF	before,	by	now
you	should	be.	What	we’ve	looked	at	so	far	with	WebPageTest’s	synthetic	testing	is	good
for	identifying	areas	of	a	page	that	can	be	sped	up.	These	tests	are	somewhat	“blue	sky”
scenarios	in	which	all	of	your	third-party	resources’	servers	are	online	and	properly
handling	traffic.	This	presents	a	blind	spot	in	your	analysis	if	you’re	looking	for	potential
causes	of	SPOF.	Recall	that	the	other	kind	of	performance	measurement,	RUM,	simply
collects	live	data	about	how	real	users	are	impacted.	If	a	SPOF	were	to	occur,	RUM	would
certainly	detect	this	and	show	an	anomaly	in	the	reporting.	But	at	this	point,	it’s	too	little
too	late.	The	outage	is	real	and	your	users	are	suffering	for	it.	What	we	need	is	a	way	to
prevent	SPOF,	not	just	react	to	it.

In	this	chapter,	we	will	look	at	how	to	use	WebPageTest	to	diagnose	SPOF	problems
before	they	happen.	To	do	this,	we	will	induce	SPOF-like	conditions	by	preventing
responses	from	ever	reaching	the	client.	In	this	simulation,	a	request	is	made	and	never
heard	from	again,	just	like	what	would	happen	if	the	server	at	the	other	end	went	down.
Using	this	technique,	we	hope	to	expose	failure-prone	resources	that	could	be	costing	you

valuable	business.

We	will	also	discuss	request	blocking,	which	is	a	technique	related	to	inducing	SPOF	with
some	clear	differences.	By	preventing	requests	from	ever	being	dispatched,	we	are	able	to
measure	performance	by	omission,	which	is	the	effect	a	resource	has	when	removed	from
the	page.

Black-Hole	Rerouting
There	are	only	two	ways	to	know	how	your	site	reacts	to	a	third-party	failure:	testing	it
ahead	of	time	and	watching	it	unfold	as	it	is	actually	happening.	We’re	going	to	see	how
WebPageTest	can	be	used	to	test	third-party	failures	so	that	your	users	aren’t	the	first	to
know.

The	first	step	of	SPOF	testing	is	to	identify	the	third	parties	that	can	take	your	page	down.
To	do	this,	we	use	the	Domains	tab	of	the	results	page	(Figure	8-1).	After	running	a	first-
view	test	of	your	page,	you	can	access	a	list	of	the	domains	that	were	used	to	construct	the
page.	These	domains	are	grouped	by	the	number	of	requests	they	served	and	the	total
number	of	bytes	sent.

Figure	8-1.	The	Domains	tab	of	the	test	results	page	shows	the	frequency	and	size	of	resources	served	by	each	domain
for	a	given	page

On	this	page,	we	can	easily	identify	the	domains	that	contribute	the	most	to	a	given	test
page.	Obviously,	the	domain	of	the	test	page	itself	should	be	prominently	high	on	the	list.
What	we’re	looking	for	are	third-party	domains	out	of	our	control.	It	would	be	prudent	to
test	each	and	every	third-party	domain	for	SPOF,	but	for	now	let’s	select	the	one	with	the
most	requests.	With	this	domain,	we	have	a	couple	of	ways	to	simulate	what	would
happen	if	it	were	suddenly	inaccessible.

setDns
Recall	from	“Reading	a	Waterfall”	that	DNS	lookup	is	just	the	resolution	of	a	recognizable
hostname	like	example.com	to	its	IP	address.	This	process	is	identical	to	looking	up	a
phone	number	in	a	phone	book.	With	DNS	resolution,	there	are	many	phone	books:	some
are	little	black	books	while	others	are	exhaustive	tomes.	Computers	have	their	own	little
black	book	in	which	to	jot	down	a	few	important	names	and	numbers.	If	the	browser	needs
to	resolve	a	name	not	in	this	book,	it	asks	an	authoritative	DNS	server.	WebPageTest
provides	a	way	for	you	to	jot	any	name	and	number	into	its	little	black	book.	You	don’t
even	need	to	use	the	correct	number	for	the	given	name.	This	is	exactly	what	we’ll	do	to
simulate	our	first	SPOF.

To	test	what	happens	when	a	given	domain	goes	offline,	start	by	opening	up	the	familiar
Script	tab.	This	time	we’re	going	to	use	a	new	command,	setDns:

setDns	_domain_	_IP	address_

navigate	_test	URL_

The	setDns	command	designates	an	IP	address	to	be	the	point	of	contact	for	all	requests	to
a	given	domain.	When	navigating	to	a	test	page,	any	requests	at	the	given	domain	will
route	to	the	given	address.	Now	we	need	an	IP	address	that	points	to	a	server	that	pretends
to	be	failing.	WebPageTest	has	you	covered	with	the	appropriately	named
blackhole.webpagetest.org	host.	By	assigning	this	host’s	IP	address	to	a	domain,	we’re
able	to	simulate	its	failure:

blackhole.webpagetest.org

72.66.115.13

It’s	worth	noting	that	when	you	run	a	SPOF	test,	nothing	may	actually	go	wrong.	This	is	a
good	thing!	This	means	that	your	page	is	adequately	prepared	to	handle	the	sudden	failure
of	a	third-party	resource.	When	this	isn’t	the	case,	the	test	results	speak	for	themselves
(Figure	8-2).

Figure	8-2.	The	failure	of	a	resource	resulted	in	a	20-second	timeout,	during	which	no	other	requests	were	able	to	be
made	and	page	loading	halted

The	waterfall	diagram	clearly	shows	a	gap	20	seconds	long	between	requests.	This	is	the
amount	of	time	that	the	browser	spent	attempting	to	communicate	with	the	third	party.
Instead	of	communicating	with	the	third	party,	though,	the	browser	was	sending	requests
to	the	black	hole	without	receiving	any	responses.	During	this	time,	the	browser	is	not	able
to	start	any	other	requests.	If	this	happens	early	enough,	the	user	would	be	left	with	an
incomplete,	possibly	unresponsive	page.

SPOF	Tab
If	you’re	thinking	that	scripting	is	a	cumbersome	way	to	run	a	SPOF	test,	you	should	be
relieved	to	know	that	WebPageTest	makes	it	even	easier.	With	the	SPOF	advanced	settings
tab	(Figure	8-3),	all	you	need	to	do	is	enter	the	domain	that	you	want	to	send	to	the	black
hole.

Figure	8-3.	The	SPOF	tab	allows	you	to	test	the	failure	of	a	domain	without	having	to	write	a	setDns	script

When	you	run	a	test	from	the	SPOF	tab,	you’re	actually	running	two	tests:	one	with	and
without	the	DNS	override.	By	running	a	normal	test	along	with	the	SPOF	test,	you	have	a
control	to	differentiate	the	effects	of	the	simulation.	Instead	of	taking	you	to	the	individual
test	results	when	the	test	is	complete,	the	SPOF	test	results	are	displayed	in	the
comparison	view,	as	shown	in	Figure	8-4.	This	makes	it	extremely	easy	to	identify	the
user-perceived	effects	of	a	SPOF.	WebPageTest	also	generates	a	video	comparison	of	the
normal	page	load	and	the	effects	of	SPOF,	as	shown	in	Figure	8-5.

Figure	8-4.	The	SPOF	tab	generates	a	comparison	of	tests	with	and	without	domain	failures.	The	filmstrip	view	clearly
shows	the	page-load	impact	of	SPOF	in	which	the	SPOF	page	takes	more	than	20	seconds	longer	to	load.

When	we	look	at	the	filmstrip	comparison	of	the	two	tests,	the	20-second	difference	is
immediately	apparent.	Other	metrics	like	visual	progress	and	speed	index	also	illustrate

the	dramatic	consequences	of	a	request	timing	out.	See	Figure	8-6	for	a	visual	progress
chart.

Figure	8-5.	WebPageTest	also	generates	a	video	comparison	of	each	test	so	that	you	can	watch	a	page	load	normally
and	observe	the	effects	of	SPOF	side-by-side

Figure	8-6.	The	visual	progress	chart	is	another	way	to	quantify	the	effects	of	SPOF	on	a	page.	This	chart	compares	the
amount	of	time	it	takes	for	a	page	to	display	its	content.	Under	SPOF	conditions,	the	progress	is	0%	for	more	than	20

seconds	until	the	failed	request	times	out	and	the	page	load	is	able	to	complete.

Using	the	SPOF	tab	is	an	incredibly	convenient	way	to	demonstrate	the	dangers	of	the
irresponsible	use	of	third-party	resources.	Developers	should	never	assume	that	third
parties	are	100%	reliable,	because	anything	can	happen,	even	to	the	biggest	Internet
giants.

Blocking	Requests
SPOF	is	such	a	dramatic	scenario.	The	weakest	link	in	a	chain	of	requests	could	spell
destruction	for	the	usability	of	an	entire	page.	Failure	in	this	case	is	a	third-party
meltdown	improperly	handled	on	the	client	side.	Sometimes	failure	could	just	be	a
resource	that	is	too	slow.	Service-level	agreements	(SLAs)	are	used	by	some	third	parties
to	reassure	dependents	that	they	will	serve	resources	at	some	high	rate	of	reliability	or
even	no	slower	than	some	guaranteed	speed.	Failure	could	also	be	an	SLA	that	wasn’t	met.
It	doesn’t	take	a	total	meltdown	for	users	to	become	annoyed	at	the	slowness	of	page	load;
resources	that	load	more	slowly	than	expected	can	and	should	be	considered	failures.

How	can	we	measure	the	impact	of	a	particular	resource?	As	we	know,	the	time	it	takes	to
load	a	resource	is	only	part	of	the	story.	For	JavaScript	resources,	there	is	also	time	to
parse	and	execute	the	code.	The	simplest	way	to	measure	a	resource	would	be	to	run	tests
of	a	page	with	and	without	it.	The	difference	in	speed	is	the	residual	effect	of	that
resource.

A	practical	example	of	this	is	advertisements.	Ads	are	generally	regarded	as	a	necessary
evil,	so	we	may	be	too	quick	to	accept	the	performance	hit	they	incur.	One	way	to	measure
their	impact	would	be	to	serve	pages	without	ads	to	some	segment	of	users	and	compare
performance	against	a	control	group.	Unfortunately,	ads	are	what	keep	the	lights	on,	and	it
may	be	extremely	difficult	to	convince	the	powers	that	be	to	voluntarily	give	up	ad
revenue	to	an	entire	segment	of	users.	Instead	of	a	RUM	A/B	test,	we	can	use	synthetic
testing	to	simulate	a	page	with	and	without	ads.

WebPageTest	exposes	the	functionality	to	block	requests	based	on	pattern	matching.	For
example,	you	could	instruct	the	test	agent	to	prevent	resource	names	containing	the	“ads”
substring	from	being	requested.	This	functionality	is	exposed	in	the	script	tab	through	the
block	command.

block	_substring_

navigate	_test	URL_

Any	request	for	a	URL	containing	the	substring	will	be	blocked	from	ever	reaching	the
network	(Figure	8-7).	How	is	this	any	different	from	sending	the	request	into	the	black
hole?	Most	important,	browsers	will	not	timeout	on	a	request	that	was	never	made,	so	the
page	will	not	experience	that	long	pause	between	requests.	This	test	simply	measures	the
omission	of	a	resource	without	presuming	anything	about	its	reliability	or	load	time.

Figure	8-7.	The	block	tab	takes	a	space-delimited	list	of	substrings	to	be	matched	against	blocked	requests.	If	the	request
URL	contains	any	of	these	substrings,	it	will	be	prevented	from	materializing.

If	scripting	is	not	your	thing,	take	comfort	in	the	fact	that	WebPageTest	has	a	tab	for
blocking	requests,	too.	This	one	couldn’t	be	simpler	to	use;	just	enter	one	or	more
substrings	to	match	against	requests	that	should	be	blocked.

As	with	any	synthetic	test,	several	runs	are	essential	to	ensuring	that	the	results	are
accurate	and	representative.	Nine	test	runs	with	and	without	blocking	should	be	enough	to
get	a	suitable	median	run	that	could	be	used	for	comparison.

Part	III.	Advanced	Use	Cases

So	far	we	have	looked	at	how	to	use	WebPageTest	to	configure	and	analyze	synthetic	web
performance	tests.	We	started	by	learning	what	the	test	results	mean	and	how	to	read	a
waterfall.	In	Part	II,	we	learned	how	to	fine-tune	the	test	configuration	to	more	accurately
reflect	real-use	cases	and	how	to	simulate	anomalies	like	third-party	outages.	Until	now,
everything	has	gone	through	the	public	WebPageTest	UI.

Part	III	is	all	about	advanced	use	cases	of	WebPageTest.	The	users	who	will	benefit	the
most	from	this	unit	are	enterprise-level	developers	who	have	very	high	demand	for	test
automation	and	monitoring,	especially	for	prerelease	web	applications.	In	the	following
chapters,	we	will	look	at	the	application	programming	interface	(API)	of	WebPageTest	and
use	it	to	run	tests	and	get	test	results.	We	will	also	cover	the	process	of	getting	a	local
version	of	WebPageTest	to	run	privately	on	our	own	machine.	Using	these	concepts,	you
will	be	able	to	leverage	the	versatility	of	WebPageTest	for	even	the	most	demanding
requirements	for	synthetic	testing.

Chapter	9.	WebPageTest	API

The	WebPageTest	API	is	RESTful,	meaning	that	commands	with	parameters	are
submitted	by	either	sending	a	POST	or	GET	request	to	WebPageTest	server	PHP	endpoints.
The	API	is	not	fully	normalized;	output	formats	vary	from	endpoint	to	endpoint.	The	vast
majority	output	JSON/JSONP	and	XML,	but	some	output	CSV,	TSV,	HTML,	and	plain
text.	The	WebPageTest	UI	uses	its	API,	so	every	command	and	option	found	on	the	user
interface	has	a	correspondent	in	the	API.

In	this	chapter	you	will	learn	how	to	programatically	run	tests	and	fetch	results	from
WebPageTest	in	both	public	and	private	instances.	This	will	allow	integration	with	an
existing	web	development	pipeline,	as	well	as	the	automation	of	the	whole	process	of
running	a	test	and	reading	its	results	once	the	test	is	complete.

Getting	Started
Before	getting	ready	to	start	using	the	WebPageTest	API,	you	will	need	direct	access	to
either	the	public	instance	of	the	WebPageTest	server	at	www.webpagetest.org	or	a	private
instance	of	WebPageTest,	covered	in	Chapter	11.

Requesting	a	Key
An	API	key	is	required	for	using	the	public	instance	at	www.webpagetest.org.	It’s
generally	not	necessary	for	private	instances	of	WebPageTest	unless	required	by	its
administrator.	The	API	key	is	only	used	by	the	run-test	endpoint	/runtest.php.

Public	instance

For	the	public	instance,	a	trial	key	can	be	obtained	by	filling	out	a	form	at
http://www.webpagetest.org/getkey.php.

TIP
Agreeing	with	the	terms	of	service	is	required	as	the	service	is	offered	on	a	best-effort	basis	and	there	are	no
guarantees	on	anything.

After	you	submit	the	form,	an	email	with	information	on	how	to	retrieve	an	API	key	is
sent	to	you.

API	key	limitations

The	use	of	an	API	key	on	the	public	instance	of	the	WebPageTest	server	is	subject	to	the
following	limitations:

The	API	key	is	provisioned	for	up	to	200	page	loads	per	day.	Each	run	(of	first	and
repeat	views)	counts	as	a	page	load	(10	runs	of	both	first	and	repeat	views	would	count
as	20	page	loads).	That	should	be	sufficient	for	most	low-volume	use	cases	and	for
building	a	proof-of-concept	for	larger	testing.

API	keys	are	limited	to	testing	from	a	subset	of	locations:	Amazon	Elastic	Compute
Cloud	(EC2)	regions	and	the	Dulles	Chrome,	Firefox,	IE,	and	Mobile	agents.	The	EC2
locations	will	offer	consistent	performance	from	location	to	location	and	can	be	scaled
as	necessary	to	meet	demand.

The	results	for	tests	run	with	an	API	key	are	only	available	for	30	days	from	when	the
test	was	run.

If	more	testing,	other	locations,	or	longer	availability	is	needed,	a	private	instance	should
be	considered.	There	are	prepackaged	Amazon	Machine	Images	(AMIs)	available	on	EC2
for	running	a	full	WebPageTest	instance.

Private	instance

On	private	instances	where	an	API	key	is	required,	the	server	administrator	should	be	able
to	provide	one	defined	in	the	settings/keys.ini	file,	which	optionally	provides	the	following
defaults	and	limitations:

Default	location

http://www.webpagetest.org/getkey.php

WebPageTest	allows	a	default	location	and	browser	to	be	assigned	to	a	given	API	key
via	the	default	location	property.	Tests	submitted	without	a	specific	location	will
use	the	one	defined	for	a	given	API	key	rather	than	a	global	one	defined	in
settings/locations.ini.

Quota

Usage	quota,	i.e.,	number	of	page	loads	allowed	per	day,	can	be	restricted	per	API
key	via	the	limit	property,	giving	more	granular	control	and	preventing	test	abuse.

Priority

Test	priority	can	be	enforced	per	API	key	via	the	priority	property,	which	overrides
any	priority	informed	when	scheduling	a	test	with	any	priority	parameter.

Queue	limit

By	default,	there	is	no	limit	for	queueing	tests	for	a	given	API	key	unless	the
queue_limit	property	is	defined.

Running	Tests
In	order	to	run	a	test,	you	must	provide	a	minimum	set	of	configurations	so	that	the	test
can	be	queued	to	run	when	an	agent	that	matches	that	configuration	is	available.	The
following	examples	assume	that	the	reader	has	an	API	key	to	run	tests	on	a	public	instance
of	WebPageTest.

Simple	Example	Test
Here	we	will	run	a	web	performance	test	of	http://www.example.com	on	a	WebPageTest
public	instance	using	an	API	key	with	the	default	configuration	and	returning	results	in
JSON.

The	first	step	is	to	make	a	request	to	the	WebPageTest	server	to	queue	the	web
performance	test	of	http://www.example.com,	providing	an	API	key	and	setting	the	output
format	as	JSON:

http://www.webpagetest.org/runtest.php?url=http%3A%2F%2Fwww.example.com

				&k=API_KEY_GOES_HERE&f=json

Breaking	down	the	preceding	URL:

Protocol
http

Server	host

www.webpagetest.org	(public	instance)

API	endpoint
/runtest.php

Parameters	(key=value)

Web	page	to	be	tested

url=http%3A%2F%2Fwww.example.com	(value	must	be	UTF-8	encoded)

API	key
k=API_KEY_GOES_HERE

Output	format
f=json

If	the	test	is	queued	successfully,	the	WebPageTest	server	will	return	the	following	JSON
response:

{

		"statusCode":	200,

		"statusText":	"Ok",

		"data":	{

				"testId":	"150109_DE_ZW7",

				"ownerKey":	"0123456789abcdef0123456789abcdef01234567",

				"jsonUrl":	"http://www.webpagetest.org/jsonResult.php?test=150109_DE_ZW7",

				"xmlUrl":	"http://www.webpagetest.org/xmlResult/150109_DE_ZW7/",

				"userUrl":	"http://www.webpagetest.org/result/150109_DE_ZW7/",

				"summaryCSV":	"http://www.webpagetest.org/result/150109_DE_ZW7/page_data.csv",

				"detailCSV":	"http://www.webpagetest.org/result/150109_DE_ZW7/requests.csv"

		}

}

Where:
statusCode

http://www.example.com
http://www.example.com

Code	indicating	that	test	was	accepted	and	queued	successfully
statusText

A	human-readable	response	confirming	test	was	accepted	and	queued
data

The	response	object	with	some	information	about	the	test	recently	queued:
testId

The	unique	identifier	for	the	queued	test	(most	useful	data)
ownerKey

A	SHA-1	hash	unique	identifier	for	the	request
jsonUrl

The	API	endpoint	to	retrieve	the	test	results	in	JSON	format
xmlUrl

The	API	endpoint	to	retrieve	the	test	results	in	XML	format
userUrl

The	URL	for	the	WebPageTest	user	interface	(HTML)	with	test	results
summaryCSV

The	URL	for	the	test	summary	in	CSV	format
detailCSV

The	URL	for	the	details	of	all	requests	in	the	tested	page	in	CSV	format

The	testId	is	the	key	used	to	retrieve	any	data	for	the	just-queued	test.	URLs	in	jsonUrl,
xmlUrl,	or	userUrl	will	return	test	results	(covered	in	“Reading	the	Results”)	if	the	test	is
complete,	the	status	of	the	test	informing	which	position	in	queue	if	not	started	yet,	or	how
long	since	the	test	has	been	started.

Status	codes

10x

Test	not	ready
100

Test	started
101

Test	in	queue
102

Server	unreacheable
200

Test	complete

40x

Error
400

Test	not	found
401

Test	request	not	found	(valid	testId	but	not	found	in	work	queues)
402

Test	canceled

If	you	are	running	from	a	private	instance	where	an	API	key	might	not	be	required	to	run
tests,	the	API	request	is	even	simpler:

http://private-instance/runtest.php?url=http%3A%2F%2Fwww.example.com&f=json

Advanced	Example	Test
/runtest.php	is	the	API	endpoint	with	the	largest	number	of	parameters.	This	is	due	to
how	the	API	workflow	works;	i.e.,	it	all	starts	from	configuring	a	test	to	be	run	by	a
WebPageTest	agent.	Once	the	test	is	done,	the	other	API	endpoints	are	as	simple	as
informing	the	test	ID	to	retrieve	data.	The	following	example	will	request	the	public
instance	of	WebPageTest	to	run	a	test	for	http://www.example.com	with	the	following
configuration:

Run	from	San	Francisco	location

Use	latest	Chrome

Use	DSL	connectivity	profile

Run	three	times

First	view	only	(for	each	run)

Capture	video

Set	“Using	WebPageTest”	as	test	label

Capture	DevTools	Timeline	information

http://www.webpagetest.org/runtest.php?url=http%3A%2F%2Fwww.example.com

			&k=API_KEY_GOES_HERE&location=SanFrancisco%3AChrome.DSL

					&connectivity=DSL&runs=3&fvonly=1&video=1&label=Using%20WebPagetest

							&timeline=1&f=json

Breaking	down	the	preceding	URL:

Protocol
http

Server	host

www.webpagetest.org	(public	instance)

API	endpoint
/runtest.php

Parameters	(key=value)

http://www.example.com

Web	page	to	be	tested

url=http%3A%2F%2Fwww.example.com	(value	must	be	UTF-8	encoded)

API	key
k=API_KEY_GOES_HERE

Location

location=SanFrancisco%3AChrome.DSL	(in	the	format:
LocationName:BrowserName.ConnectivityProfile,	value	must	be	UTF-8
encoded)

Connectivity	profile
connectivity=DSL

Number	of	runs
runs=3

First	view	only
fvonly=1

Capture	video
video=1

Test	label

label=Using%20WebPageTest	(value	must	be	UTF-8	encoded)

Capture	DevTools	timeline
timeline=1

Output	format
f=json

Reading	the	Results
Reading	the	results	is	as	simple	as	informing	the	testId	to	/jsonResult.php	or
/xmlResult.php	API	endpoints	with	the	test=testId	parameter.

http://www.webpagetest.org/jsonResult.php?test=150109_DE_ZW7

If	the	test	is	not	yet	complete,	the	WebPageTest	server	may	return:

{

		"data":	{

				"statusCode":	100,

				"statusText":	"Test	Started	4	seconds	ago",

				"id":	"150109_DE_ZW7",

				"testInfo":	{

						"url":	"http://www.example.com",

						//	More	information	about	the	test.	See	Appendix	A.

				},

				"testId":	"150109_DE_ZW7",

				"runs":	1,

				"fvonly":	0,

				"remote":	false,

				"testsExpected":	1,

				"location":	"Dulles:Chrome",

				"startTime":	"01/09/15	17:51:16",

				"elapsed":	4,

				"fvRunsCompleted":	0,

				"rvRunsCompleted":	0,

				"testsCompleted":	0

		},

		"statusCode":	100,

		"statusText":	"Test	Started	4	seconds	ago"

}

The	statusCode	of	100	indicates	that	the	test	has	started	as	statusText,	and	elapsed
shows	4	seconds.	testInfo	shows	details	about	the	test	configuration.	If	the	test	has
multiple	runs,	fvRunsCompleted	(first	view)	and	rvRunsCompleted	(repeat	view)	should
increment	up	to	testsExpected	until	the	test	is	complete	and	statusCode	is	200.

When	the	test	is	complete,	WebPageTest	returns	exhaustive	test	results	containing	test
information	as	well	as	performance	metrics	for	the	tested	page.	For	conciseness,	some
result	properties	were	omitted	from	the	following	JSON	response,	and	similar	properties
were	replaced	by	comments.	See	Appendix	A	for	more	information.

{

		"data":	{

				"id":	"150109_DE_ZW7",

				"url":	"http://www.example.com",

				"summary":	"http://www.webpagetest.org/results.php?test=150109_DE_ZW7",

				"location":	"Dulles:Chrome",

				"runs":	{

						"1":	{

								"firstView":	{

										"URL":	"http://www.example.com",

										"loadTime":	194,

										//	See	Appendix	A	for	exhaustive	results	info.

						}

				},

				"fvonly":	false,

				"successfulFVRuns":	1,

				"successfulRVRuns":	1,

				"average":	{

						"firstView":	{

								//	similar	to	data.runs.1.firstView	above	but	without	pages,

								//	thumbnails,	images,	rawData,	videoFrames,	domains	and	breakdown

						},

						"repeatView":	{

								//	similar	to	data.runs.average.firstView	above

						}

				},

				"standardDeviation":	{

						//	similar	to	data.runs.average	above

				},

				"median":	{

						//	similar	to	data.runs.1	above

				}

		},

		"statusCode":	200,

		"statusText":	"Test	Complete"

}

WARNING
Test	result	properties	might	change	in	new	releases	of	WebPageTest.	Metrics	might	be	added,	removed,
renamed,	or	moved.	Check	WebPageTest	releases	for	the	latest.

Reading	results	is	usually	done	in	an	automatic	fashion	once	the	test	is	succesfully	queued
by	/runtest.php.	There	are	two	ways	to	automate	the	process	of	reading	results:	polling
and	pingback.

https://github.com/WPO-Foundation/webpagetest/releases

Polling	Test	Results
Polling	is	when	a	client	sends	a	request	to	the	server	over	and	over	to	check	whether	it	has
the	expected	data.	With	this	method,	the	WebPageTest	server	/jsonResult.php,
/xmlResult.php	or	/testStatus.php	API	endpoints	will	be	hit	several	times	until
statusCode	is	200.	The	/testStatus.php	endpoint	will	not	return	test	results	when	the
test	is	complete;	therefore,	it	is	easier	and	safer	to	hit	the	/jsonResult.php	or
/xmlResult.php	endpoints	to	get	test	results	when	statusCode	is	200.	This	will	save	a
round-trip	to	the	WebPageTest	server.	More	information	about	the	/testStatus.php
endpoint	can	be	found	in	Appendix	A.

The	following	example	implements	a	simple	polling	mechanism	in	JavaScript.	It	requests
a	WebPageTest	public	instance	to	test	http://www.example.com	using	the	default	test
configuration	and	then	polls	test	results	at	every	five	seconds:

var

		URL_TO_TEST	=	'http://www.example.com',

		WPT_API_KEY	=	'API_KEY_GOES_HERE',

		WPT_RUNTEST_URL	=	'http://www.webpagetest.org/runtest.php?url=%s&k=%s&f=json',

		WPT_RESULTS_URL	=	'http://www.webpagetest.org/jsonResult.php?test=%s';

function	wpt(url,	callback)	{

		window._callback	=	callback;

		var	script	=	document.createElement('script');

		script.src	=	url	+	'&callback=_callback';

		document.head.appendChild(script);

		document.head.removeChild(script);

}

function	results(res)	{

		if	(res.statusCode	==	200)	{

		console.log('First	Paint:',	res.data.median.firstView.firstPaint);

		}	else	if	(res.statusCode	<	200)	{

				var	testId	=	res.data.id;

				console.log('Test',	testId,	'not	ready	yet.	Trying	again	in	5s');

				setTimeout(wpt,	5000,	WPT_RESULTS_URL.replace('%s',	testId),	results);

		}

}

function	runTest(res)	{

		var	testId	=	res.data.testId;

		console.log('Test',	testId,	'requested.	Start	polling	in	5s');

		setTimeout(wpt,	5000,	WPT_RESULTS_URL.replace('%s',	testId),	results);

}

var	url	=	encodeURIComponent(URL_TO_TEST);

wpt(WPT_RUNTEST_URL.replace('%s',	url).replace('%s',	WPT_API_KEY),	runTest);

WARNING
The	previous	code	example	is	an	oversimplification	for	browser	console	testing	purposes	only.	It	is	not
intended	to	be	production-ready	in	any	way.

http://www.example.com

Pingback	Test	Results
WebPageTest	can	also	indicate	when	a	test	is	complete.	This	is	called	pingback	and	avoids
unnecessary	round-trips	to	the	server	(unlike	polling).	By	providing	a	URL	to	the
pingback	parameter	of	the	/runTest.php	endpoint,	WebPageTest	will	hit	that	URL	with	?
test=test_id	when	the	test	is	complete.

Caution

In	order	for	the	WebPageTest	server	(both	public	and	private	instances)	to	be	able	to
pingback	when	the	test	is	complete,	the	pingback	URL	must	be	accessible	from	the
WebPageTest	server.	This	means	that	if	the	pingback	URL	is	behind	a	proxy,	firewall,	or
private	network	to	which	WebPageTest	has	no	direct	access,	the	pingback	URL	will	not
be	hit	when	the	test	is	complete.

The	following	example	implements	a	simple	pingback	mechanism	in	JavaScript.	It
requests	a	WebPageTest	public	instance	to	test	http://www.example.com	using	the	default
test	configuration	with	pingback	set	to	a	given	RequestBin	URL.	In	order	to	test	the
following	code	on	a	browser	console,	a	free	RequestBin	URL	must	be	created	at
http://requestb.in.

var

		URL_TO_TEST	=	'http://www.example.com',

		WPT_API_KEY	=	'API_KEY_GOES_HERE',

		REQUEST_BIN_URL	=	'REQUEST_BIN_URL_GOES_HERE',	//	Get	one	at	http://requestb.in

		WPT_RUNTEST_URL	=	'http://www.webpagetest.org/runtest.php?url=%s&k=%s&f=json',

function	wpt(url)	{

		var	script	=	document.createElement('script');

		url	+=	'&callback=console.log';

		script.src	=	url	+	'&pingback='	+	encodeURIComponent(REQUEST_BIN_URL);

		document.head.appendChild(script);

		document.head.removeChild(script);

		var	requestBinUrl	=	REQUEST_BIN_URL	+	'?inspect';

		console.log('Test	requested.	Check',	requestBinUrl,	'later');

		window.open(requestBinUrl,	'_blank');

}

var	url	=	encodeURIComponent(URL_TO_TEST);

wpt(WPT_RUNTEST_URL.replace('%s',	url).replace('%s',	WPT_API_KEY));

WARNING
The	previous	code	example	is	an	oversimplification	for	browser	console	testing	purposes	only.	It	is	not
intended	to	be	production-ready	in	any	way.

Although	pingback	eliminates	extra	round-trips	to	the	WebPageTest	server,	polling	is
generally	more	reliable,	because	WebPageTest	may	fail	to	inform	the	pingback	URL	when
the	test	is	complete.	If	the	pingback	URL	takes	too	long	to	be	hit,	it	is	unknown	if	the	test
is	really	taking	that	long	or	if	pingback	failed.	Polling	always	knows	the	current	test	status,
which	allows	a	reliable	timeout	mechanism	to	be	set.	Another	option	is	to	use	both
methods:	pingback,	and	then	after	a	certain	timeout,	start	polling.

http://www.example.com
http://requestb.in

Reading	Beyond	Results
/runTest.php	and	/jsonResult.php	or	/xmlResult.php	are	the	essential	WebPageTest
API	endpoints.	They	allow	the	entire	testing-and-reading-results	workflow	for	the	vast
majority	of	automation	with	WebPageTest.	There	are	other	API	endpoints	for	reading
specific	details	of	a	test,	such	as	/export.php	to	get	the	complete	HAR	(HTTP	Archive),
/getTimeline.php	to	get	DevTools	timeline	data	from	tests	performed	by	the	Chrome
browser,	and	/getgzip.php	to	retrieve	several	other	types	of	test	data.	For	a	WebPageTest
private	instance,	/getLocations.php	and	/getTesters.php	can	be	used	to	automate	the
process	of	maintenance.	Both	retrive	important	information	about	the	status	of	test
locations	and	their	agents.

TIP
See	the	WebPageTest	RESTful	APIs	documentation	for	information	on	running	tests	and	reading	results.
For	the	complete	list	of	WebPageTest	API	endpoints,	including	undocumented	ones,	check	Appendix	A.

So	far,	we	manually	hit	WebPageTest	endpoints	to	run	tests	and	read	results.	These	are	the
WebPageTest	API	core	endpoints.	You	are	now	able	to	adapt	and	integrate	the	code
examples	from	this	chapter	into	your	own	web	development	pipeline	as	needed.
Chapter	10,	however,	will	provide	easier	and	seamless	ways	to	automate	this	process.

https://sites.google.com/a/webpagetest.org/docs/advanced-features/webpagetest-restful-apis

Chapter	10.	Continuous	Integration

In	software	engineering,	continuous	integration	(CI)	can	be	defined	as	the	practice	of
merging	all	developer	working	copies	with	a	shared	repository	several	times	a	day.	It
performs	automated	unit	tests	in	build	servers	to	improve	software	quality	through
frequent	small	efforts.

WebPageTest	can	be	integrated	into	a	CI	pipeline	to	test	web	pages	in	the	build	or	staging
server.	It	can	be	used	to	indicate	when	the	performance	of	web	pages	has	regressed.	Such
integration	can	be	done	by	customizing	the	running	and	reading	of	tests,	as	described	in
Chapter	9.

A	common	workflow	would	be	to	run	WebPageTest	after	the	CI	pipeline	successfully
builds	and	all	unit	tests	pass.	Using	either	polling	or	pingback	to	retrieve	WebPageTest
results,	some	metrics	from	the	full	results	set	should	be	compared	against	expected
metrics.	For	example,	data.median.firstView.firstPaint	must	be	less	than	800	ms,	or
data.median.firstView.domElements	must	be	between	800	and	1,000.

In	this	chapter,	you	will	first	learn	how	to	consume	WebPageTest	API	endpoints	via	the
command	line	or	as	a	Node.js	application.	You	will	also	learn	how	to	easily	automate	the
whole	process	of	running	a	test	and	reading	its	results	in	order	to	integrate	with	some
popular	CI	tools.

Node.js	Wrapper
webpagetest	is	a	Node.js	package	available	on	NPM	(package	manager	for	Node.js).	It
provides	a	wrapper	around	the	WebPageTest	RESTful	API	with	the	following	features:

Normalizes	API	endpoints	and	parameter	names	with	JSON	response

Command-line	tool	with	both	short	and	long	options

Methods	with	asynchronous	callback	function	for	Node.js	applications

Polling	and	pingback	helpers	to	run	tests	and	read	results	synchronously

Command-line	batch	jobs

WebPageTest	RESTful	API	proxy

WebPageTest	scripting	helper

CI	test	specs

The	webpagetest	Node.js	wrapper	is	an	open	souce	project	under	MIT	license	and	lives
on	GitHub	at	https://github.com/marcelduran/webpagetest-api.

https://github.com/marcelduran/webpagetest-api

Installing	the	WebPageTest	Node.js	Wrapper
Assuming	Node.js	is	already	installed,	type	the	following	at	the	command	prompt:

	npm	install	webpagetest	-g

The	-g	is	required	to	make	the	command	line	available.

Once	the	WebPageTest	Node.js	Wrapper	is	installed,	you	have	the	command	line	available
in	your	terminal	and	can	get	more	information	by	typing:

	webpagetest	--help

Choosing	Your	WebPageTest	Server
The	default	WebPageTest	API	Wrapper	server	is	the	public	instance
(www.webpagetest.org),	but	you	can	override	it	in	the	command	line	by	doing	one	of	two
things:

Setting	the	-s,	–server	server	option	—	for	example,	webpagetest	-s	wpt-
private-server.com

Setting	the	WEBPAGETEST_SERVER	environment	variable	—	for	example,	export
WEBPAGETEST_SERVER=wpt-private-server.com

As	a	Node.js	module,	the	default	WebPageTest	server	is	also	the	public	instance	and	can
be	overridden	by	specifying	the	first	parameter	of	the	constructor:

var	WebPagetest	=	require('webpagetest');

var	publicWPT	=	new	WebPagetest();

var	privateWPT	=	new	WebPagetest('wpt-private-server.com');

Even	when	a	WebPageTest	server	is	specified,	you	can	still	override	it	with	any	method	by
supplying	the	server	option:

var	wpt	=	new	WebPagetest('wpt-private-server.com');

wpt.getLocations({server:	'another-wpt-server.com'},	function(err,	data)	{

		console.log(err	||	data);

});

http://www.webpagetest.org/

Specifying	the	API	Key
To	specify	the	API	key	in	the	command	line	in	order	to	run	a	test,	set	the	-k,	–key
api_key	as	follows:

	webpagetest	-k	API_KEY_GOES_HERE	test	http://www.example.com

As	a	Node.js	module,	it	can	be	set	either	as	the	second	parameter	in	the	constructor
function	or	as	an	option	in	the	runTest	function:

var	wpt	=	new	WebPagetest('wpt-private-server.com',	'API_KEY_GOES_HERE');

//	run	test	on	wpt-private-server.com	with	a	given	API	key

wpt.runTest('http://www.example.com',	function(err,	data)	{

		console.log(err	||	data);

});

//	run	test	on	wpt-private-server.com	with	another	given	API	key

wpt.runTest('http://www.example.com',	{key:	'ANOTHER_API_KEY'},	function(

			err,	data)	{

		console.log(err	||	data);

});

Running	the	Tests	and	Reading	the	Results
Following	the	examples	from	Chapter	9,	testing	with	the	WebPageTest	API	Wrapper	is
cleaner	and	easier.

Running	tests	from	the	command	line

To	test	the	web	performance	of	http://www.example.com	on	a	WebPageTest	public
instance	using	an	API	key	with	default	configuration:

	webpagetest	test	http://www.example.com	-k	API_KEY_GOES_HERE

Or	with	long	parameter	names:

	webpagetest	test	http://www.example.com	--key	API_KEY_GOES_HERE

Here’s	the	same	test	but	with	the	following	configuration:

Run	from	San	Francisco	location

Use	latest	Chrome

Use	DSL	connectivity	profile

Run	three	times

First	view	only	(for	each	run)

Capture	video

Set	“Using	WebPageTest”	as	test	label

Capture	DevTools	Timeline	information

webpagetest	test	http://www.example.com	-k	API_KEY_GOES_HERE	-l	\

SanFrancisco:Chrome	-y	DSL	-r	3	-f	-v	-L	"Using	WebPageTest"	-M

Or	with	long	parameter	names:

webpagetest	test	http://www.example.com	--key	API_KEY_GOES_HERE	--location	\

SanFrancisco:Chrome	--connectivity	DSL	--runs	3	--first	--video	--label	\

"Using	WebPageTest"	--timeline

Batch	jobs	can	be	run	in	parallel	while	the	response	follows	the	same	order	as	in	a	given
input	file.	Assuming	jobs.txt	has	the	following	content:

test	http://www.example.com	-k	API_KEY_GOES_HERE

webpagetest	test	http://www.example.com	-k	API_KEY_GOES_HERE	-l	\

SanFrancisco:Chrome	-y	DSL	-r	3	-f	-v	-L	"Using	WebPageTest"	-M

Then	from	the	command	line,	type:

http://www.example.com

	webpagetest	batch	jobs.txt

The	test	command	also	supports	a	WebPageTest	script	file	as	input	instead	of	a	URL.
Assuming	sample.wptscript	has	the	following	content:

logData	0

navigate	http://www.example.com/login

logData	1

setValue	name=username	johndoe

setValue	name=password	12345

submitForm	action=http://www.example.com/main

waitForComplete

Then	from	command	line,	type:

	webpagetest	test	sample.wptscript

Reading	results	from	the	command	line

To	read	results,	assuming	any	of	the	above	test	commands	returned	150109_DE_ZW7	as
testId,	type:

	webpagetest	results	150109_DE_ZW7

Running	tests	and	reading	results	from	the	command	line

Since	running	a	test	and	then	reading	its	results	is	the	most	common	WebPageTest
workflow,	the	Node.js	wrapper	provides	polling	and	pingback	mechanisms.	Here	is	an
example	that	requests	that	a	WebPageTest	public	instance	test	the	web	performance	of
http://www.example.com	using	the	default	test	configuration,	and	then	start	polling	every
five	seconds	(default	interval	that	can	be	overriden	if	a	number	in	seconds	is	provided	for
the	--poll	parameter):

	webpagetest	test	http://www.example.com	-k	API_KEY_GOES_HERE	--poll

Here’s	the	same	example	pinging	back	to	a	private	instance	of	WebPageTest,	because	a
public	instance	wouldn’t	be	able	to	pingback	localhost:

	webpagetest	test	http://www.example.com	-s	wpt-private-server.com	--wait

For	both	of	these	tests,	--timeout	could	be	provided	(in	seconds)	to	either	stop	polling	or
abandon	waiting	for	pingback.

Running	tests	and	reading	results	from	a	Node.js	module

All	methods	are	asynchronous;	i.e.,	they	require	a	callback	function	that	is	executed	when
the	WebPageTest	API	response	is	received	with	either	data	or	an	error.	Unlike	with	the
command	line,	method	names	on	the	Node.js	module	are	verbose	(e.g.,	getTestResults
versus	results)	for	code	readability.

http://www.example.com/

The	following	example	tests	the	web	performance	of	http://www.example.com	on	a
WebPageTest	public	instance	using	an	API	key	with	the	default	configuration,	and	then
polls	results	every	five	seconds,	getting	the	first-paint	time	for	first	view:

var	WebPagetest	=	require('webpagetest');

var	wpt	=	new	WebPagetest('www.webpagetest.org',	'API_KEY_GOES_HERE');

wpt.runTest('http://www.example.com',	function(err,	res)	{

		if	(err	||	res.statusCode	>=	400)	{

				return	console.log(err	||	res.statusText);

		}

		function	results(err,	res)	{

				if	(res.statusCode	<	200)	{

						console.log('Test',	res.data.id,	'not	ready	yet.	Trying	again	in	5s');

						setTimeout(wpt.getTestResults.bind(wpt,	res.data.id,	results),	5000);

				}	else	if	(res.statusCode	==	200)	{

						console.log('First	Paint:',	res.data.median.firstView.firstPaint);

				}

		}

		console.log('Test',	res.data.testId,	'requested.	Start	polling	in	5s');

		setTimeout(wpt.getTestResults.bind(wpt,	res.data.testId,	results),	5000);

});

This	could	be	simplified	using	the	pollResults	option:

var	WebPagetest	=	require('webpagetest');

var	wpt	=	new	WebPagetest('www.webpagetest.org',	'API_KEY_GOES_HERE');

wpt.runTest('http://www.example.com',	{pollResults:	5},	function(err,	res)	{

		console.log(err	||	'First	Paint:	'	+	res.data.median.firstView.firstPaint);

});

Similarly,	pingback	coud	also	be	used	in	the	previous	example:

var	WebPagetest	=	require('webpagetest'),

				os	=	require('os'),

				url	=	require('url'),

				http	=	require('http');

var	wpt	=	new	WebPagetest('wpt-private-server.com');

//	Local	server	to	listen	for	test	complete.

var	localServer	=	http.createServer(function(req,	res)	{

		var	uri	=	url.parse(req.url,	true);

		res.end();

		//	Get	test	results.

		if	(uri.pathname	===	'/testdone'	&&	uri.query.id)	{

				localServer.close(function()	{

						wpt.getTestResults(uri.query.id,	function(err,	res)	{

								console.log(err	||	'First	Paint:	'	+	res.data.median.firstView.firstPaint);

						});

				});

		}

});

//	Test	http://www.example.com.

wpt.runTest('http://www.example.com',	{

		pingback:	url.format({

				protocol:	'http',

				hostname:	os.hostname(),

				port:	8080,

				pathname:	'/testdone'

		})

},	function(err,	data)	{

http://www.example.com

		//	Listen	for	test	complete	(pingback).

		localServer.listen(8080);

});

Or	to	make	it	even	simpler,	use	the	waitResults	option:

var	WebPagetest	=	require('webpagetest');

var	wpt	=	new	WebPagetest('wpt-private-server.com');

wpt.runTest('http://www.example.com',	{waitResults:	'auto'},	function(err,	res)	{

		console.log(err	||	'First	Paint:	'	+	res.data.median.firstView.firstPaint);

});

By	setting	auto	to	waitResults,	the	WebPageTest	Node.js	Wrapper	uses	system
hostname	as	the	hostname	and	8000	as	the	port,	which	is	incremented	by	1	in	case	the	port
is	in	use.

TIP
In	the	previous	examples,	the	pingback	URL	must	be	reachable	from	the	private	WebPageTest	server,
aliased	as	wpt-private-server.com.

The	timeout	option	is	also	available	for	both	pollResults	and	waitResults	functions.

To	avoid	the	error-prone	hassle	of	tabs	versus	spaces,	the	WebPageTest	API	Wrapper
provides	a	script	builder	function	named	scriptToString:

var	script	=	wpt.scriptToString([

		{logData:	0},

		{navigate:	'http://www.example.com/login'},

		{logData:	1},

		{setValue:	['name=username',	'johndoe']},

		{setValue:	['name=password',	'12345']},

		{submitForm:	'action=http://www.example.com/main'},

		'waitForComplete'

]);

wpt.runTest(script,	function	(err,	data)	{

		console.log(err	||	data);

});

RESTful	Proxy
The	WebPageTest	API	Wrapper	comes	with	a	handy	RESTful	proxy	(listener)	that
exposes	WebPageTest	API	methods	consistently.	It	means	that	all	the	benefits	of	methods,
options,	and	JSON	output	from	the	WebPageTest	API	Wrapper	can	be	easily	reachable
through	RESTful	endpoints.

API	proxy	endpoints	follow	the	format:

/command[/main_parameter>][?parameter1=value1¶meter2=value2&…]

where:

command:	One	of	the	available	commands	(test,	results,	etc.)	from	the	command	line

main_parameter:	Usually	a	test_id,	url,	or	wpt_script

parameter=value:	List	of	extra	optional	parameters	—	for	example,	key,	first,	etc.

Running	a	proxy	from	the	command	line

Assuming	a	WebPageTest	private	instance	is	located	at	wpt-private-server.com	and	a	local
machine	named	local-machine	has	bidirectional	direct	access:

	webpagetest	listen	--server	wpt-private-server.com

This	will	turn	the	local	machine	into	a	WebPageTest	API	Wrapper	RESTful	proxy	for	wpt-
private-server.com.	From	any	other	machine	in	the	same	network,	WebPageTest	can	be
accessed	via	RESTful	proxy,	such	as:

http://local-machine/help

Displays	the	WebPageTest	API	Wrapper	help	(use	http://local-
machine/help/<command>	to	get	help	for	a	given	command).

http://local-machine/locations

Fetches	WebPageTest	locations	for	wpt-private-server.com.

http://local-machine/test/http%3A%2F%2Fwww.example.com.com?first=true

Runs	a	test	for	http://www.example.com	using	default	test	configuration	on	wpt-
private-server.com.

http://local-machine/results/150109_DE_ZW7

Fetches	test	results	for	an	existing	test	with	ID	150109_DE_ZW7	on	wpt-private-
server.com.

If	--server	or	-s	is	not	provided,	the	WebPageTest	API	Wrapper	first	checks	the
WEBPAGETEST_SERVER	environment	variable	and	falls	back	to	the	public	instance,
www.webpagetest.org.

http://local-machine/help
http://local-machine/help/<command>
http://local-machine/locations
http://local-machine/test/http%3A%2F%2Fwww.example.com.com?first=true
http://www.example.com
http://local-machine/results/150109_DE_ZW7
http://www.webpagetest.org/

Running	a	proxy	from	a	Node.js	module

The	method	for	running	a	proxy	from	a	Node.js	module	is	called	listen	and	has	one
optional	port	parameter	(default	7791).

var	WebPageTest	=	require('webpagetest');

var	wpt	=	new	WebPageTest();

wpt.listen(3000);

Asserting	Metrics	from	Test	Results
The	WebPageTest	API	Wrapper	introduces	the	concept	of	test	specs.	It	allows	any	test
result	coming	from	the	results	command	directly	or	from	synchronous	tests	with	--poll
or	--wait	options	to	be	asserted	by	comparing	the	actual	result	with	expected	results
defined	by	a	spec	JSON	string	or	file.

JSON	Test	Specs
The	assertion	test	specs	file	follows	the	structure	of	the	JSON	output	of	the	WebPageTest
results	command.	Starting	from	data	as	the	root	node,	it	traverses	the	entire	result	tree
looking	for	matching	leaves	from	the	test	specs	definition	file.

As	an	example,	assume	that	a	JSON	file	named	testspecs.json	has	the	following	test	specs
definition:

{

		"median":	{

				"firstView":	{

						"requests":	20,

						"render":	400,

						"loadTime":	3000,

						"score_gzip":	{

								"min":	90

						}

				}

		}

}

If	we	run	the	following	command	to	test	the	first	view	of	http://staging.example.com	using
polling	and	specifying	the	previous	test	specs:

	webpagetest	test	http://staging.example.com	--first	--poll

		--specs	testspecs.json

The	test	returns	the	following	test	results:

{

		"data":	{

		...

				"median":	{

						"firstView":	{

								...

								"requests":	15

								"render":	500,

								"loadTime":	2500,

								"score_gzip":	70

								...

						}

				},

		...

		}

}

It	is	then	compared	to	testspecs.json	and	the	output	is:

WebPageTest

				✓	median.firstView.requests:	15	should	be	less	than	20
				1)	median.firstView.render:	500	should	be	less	than	400

				✓	median.firstView.loadTime:	2500	should	be	less	than	3000
				2)	median.firstView.score_gzip:	70	should	be	greater	than	90

2	passing	(3	ms)

2	failing

The	exit	status	is:

echo	$?

http://staging.example.com

2

Defining	Assertion	Comparison
By	default,	all	comparison	operations	are	<	(less	than),	except	when	an	object	is	informed
with	min	and/or	max	values.	In	this	case,	the	operations	used	for	comparison	are	>	(greater
than)	and	<	(less	than)	when	both	min	and	max	are	informed	that	a	range	comparison	is
used.

Examples	of	overriding	assertion	comparison

Less-than	comparison:

{	"median":	{	"firstView":	{

		"render":	400

}}}

or

{	"median":	{	"firstView":	{

		"render":	{	"max":	400	}

}}}

Greater-than	comparison:

{	"median":	{	"firstView":	{

		"score_gzip":	{	"min":	75	}

}}}

Range	comparison:

{	"median":	{	"firstView":	{

		"requests":	{	"min":	10,	"max":	30	}

}}}

Setting	Default	Operations	and	Labels
It	is	possible	to	optionally	define	default	operations	and	label	templates	inside	the
defaults	property	in	the	specs	JSON	file:

{

		"defaults":	{

				"suiteName":	"Performance	Test	Suite	for	example.com",

				"text":	":	{actual}	should	be	{operation}	{expected}	for	{metric}",

				"operation":	">"

		},

		"median":	{	"firstView":	{

				"score_gzip":	80,

				"score_keep-alive":	80

		}}

}

The	test	suite	name	and	specs	text	label	templates	will	be	used	in	lieu	of	the	predefined
default	ones.	Using	the	previous	test	spec	file	should	output:

Performance	Test	Suite	for	example.com

				1)	70	should	be	greater	than	80	for	median.firstView.score_gzip

				✓	100	should	be	greater	than	80	for	median.firstView.score_keep-alive

1	passing	(3	ms)

1	failing

If	the	defaults	property	is	omitted,	the	following	properties	are	used:

		"defaults":	{

				"suiteName":	"WebPageTest",

				"text":	"{metric}:	{actual}	should	be	{operation}	{expected}",

				"operation":	"<"

		}

Available	Output	Text	Template	Tags
{metric}

metric	name	—	for	example,	median.firstView.loadTime
{actual}

The	value	returned	from	the	actual	test	results	—	for	example,	300
{operation}

The	long	operation	name	—	for	example,	less	than
{expected}

The	defined	expected	value	—	for	example,	200

Available	Assertion	Operations
<

Less	than
>

Greater	than
<>

Greater	than	and	less	than	(range)
=

Equal	to

Overriding	Labels
Overriding	individual	spec	labels	is	also	possible	by	providing	text	in	the	spec	object:

{	"median":	{	"firstView":	{

		"loadTime":	{

				"text":	"page	load	time	took	{actual}ms	and	should	be	no	more

						than	{expected}ms",

				"max":	3000

		}

}}}

Which	outputs:

WebPageTest

				✓	page	load	time	took	2500ms	and	should	be	no	more	than	3000ms

1	passing	(2	ms)

Specifying	Test	Reporter
The	WebPageTest	API	Wrapper	test	specs	use	Mocha	to	build	and	run	a	test	suite.	Once	a
test	suite	is	done,	a	reporter	formats	and	builds	the	output	results.	The	following	reporters
are	available:

dot	(default)

spec

tap

xunit

list

progress

min

nyan

landing

json

doc

markdown

teamcity

http://visionmedia.github.io/mocha

Test	Specs	Examples
Asserting	the	results	of	a	WebPageTest	test	varies	because	it	depends	on	the	key
performance	metrics	you	are	measuring	for	your	pages.	The	WebPageTest	API	Wrapper
test	specs	provide	several	ways	to	assert	any	metric	provided	by	the	WebPageTest	API.
Following	are	some	examples	that	you	can	adapt	to	your	particular	case.

Asserting	by	MIME	type

By	either	running	tests	synchronously	or	just	fetching	results,	it	is	possible	to	test	by
MIME	type:

{

		"median":	{

				"firstView":	{

						"breakdown":	{

								"js":	{

										"requests":	6,

										"bytes":	200000

								},

								"css":	{

										"requests":	1,

										"bytes":	50000

								},

								"image":	{

										"requests":	10,

										"bytes":	300000

								}

						}

				}

		}

}

The	preceding	spec	only	allows	up	to	6	JavaScript	requests	summing	up	to	200	KB,	1	CSS
request	up	to	50	KB,	and	no	more	than	10	images	up	to	300	KB	total.

Asserting	by	processing	breakdown

When	runnning	tests	synchronously	in	Chrome	with	the	--timeline	option,	it	is	possible
to	test	by	processing	breakdown:

{

		"run":	{

				"firstView":	{

						"processing":	{

								"RecalculateStyles":	1300,

								"Layout":	2000,

								"Paint":	800

						}

				}

		}

}

The	preceding	spec	only	allows	up	to	1,300	ms	of	recalculate	styles,	2,000	ms	of	layout,
and	800	ms	of	paint	time	processing.	Thus,	it	avoids	rendering	regression	once	these
metrics	are	known	by	measuring	multiple	times	from	previous	tests.

Jenkins	Integration
You	can	integrate	the	WebPageTest	API	Wrapper	with	Jenkins	and	other	CI	tools
seamlessly.	To	do	so,	run	commands	to	test	synchronously	with	either	--poll	or	--wait
(if	the	Jenkins	server	is	reachable	from	a	private	instance	of	the	WebPageTest	server),	and
specify	a	--specs	file	or	JSON	string	with	either	tap	or	xunit	as	--reporter.

https://jenkins-ci.org

Configuring	Jenkins
Jenkins	expects	the	output	of	a	test	suite	result	in	a	known	format	so	it	can	parse
individual	results	and	alert	in	case	tests	are	not	passing	the	expected	results.	Here	are	a
couple	of	the	most	common	reporters	supported	by	Jenkins:

Using	TAP	as	test	resporter

The	Test	Anything	Protocol	(TAP)	is	a	plug-in	that	can	be	installed	via	the	Jenkins	Plugin
Manager.	Assuming	example.com	has	the	following	configuration:

Staging	server:	staging.corp.example.com

Jenkins	server:	jenkins.corp.example.com

WebPageTest	private	instance:	wpt.corp.example.com

WebPageTest	location	named	Default	with	Chrome	browser

Jenkins	has	a	/specs	directory	with	test	specs	JSON	files,	with:	
/specs/homepage.json:

{

		"median":	{

				"firstView":	{

						"requests":	20,

						"render":	400,

						"loadTime":	3000,

						"score_gzip":	{

								"min":	90

						}

				}

		}

}

The	build	shell	command	to	be	executed	is:

webpagetest	test	http://staging.corp.example.com	\

--server	http://wpt.corp.example.com	--first	--location	Default:Chrome	\

--wait	jenkins.corp.example.com:8000	--specs	/specs/homepage.json	\

--reporter	tap	>	homepage.tap

Jenkins	(the	tool)	has	a	“Post-build	Actions”	section	where	users	should	input
homepage.tap	as	“Test	results.”	You	can	see	a	screenshot	at	http://bit.ly/wpt-jenkins.

Using	JUnit	as	a	test	reporter

Using	the	same	TAP	example	but	without	plug-ins,	Jenkins	can	report	JUnit	by	default
with	the	following	build	shell	command:

webpagetest	test	http://staging.corp.example.com	\

--server	http://wpt.corp.example.com	--first	--location	Default:Chrome	\

--wait	jenkins.corp.example.com:8000	--specs	/specs/homepage.json	\

--reporter	xunit	>	homepage.xml

http://bit.ly/wpt-jenkins

Jenkins	postbuild	actions	should	publish	a	JUnit	test	result	report	for	homepage.xml.

Travis-CI	Integration
Similar	to	Jenkins	integration,	Travis-CI	also	requires	that	tests	should	be	run
synchronously	via	the	--poll	option,	as	it’s	very	unlikely	that	Travis-CI	workers	are
reachable	from	private	or	public	instances	of	WebPageTest	servers.	--specs	is	required	to
test	the	results,	but	--reporter	is	not	as	important,	because	Travis-CI	relies	on	the	exit
status	rather	than	the	output	format	as	like	Jenkins	does.

https://travis-ci.org

Configuring	Travis-CI
The	following	is	an	example	of	a	WebPageTest	performance	test	for	a	contrived	Node
project	in	a	GitHub	public	repo.	Add	a	test	script	to	the	package.json	file:

{

		"name":	"example",

		"version":	"0.0.1",

		"dependencies":	{

				"webpagetest":	""

		},

		"scripts":	{

				"test":	"./node_modules/webpagetest/bin/webpagetest

													test	http://staging.example.com

													--server	http://webpagetest.example.com

													--key	$WPT_API_KEY

													--first

													--location	MYVM:Chrome

													--poll

													--timeout	60

													--specs	specs.json

													--reporter	spec"

		}

}

Note	that	line	breaks	were	added	to	the	test	script	for	clarity;	it	should	be	in	a	single	line.

This	test	script	will:

1.	 Schedule	a	test	on	a	private	instance	of	WebPageTest	hosted	on
http://webpagetest.example.com,	which	must	be	publicly	reachable	from	Travis-CI
workers

2.	 Use	a	WebPageTest	API	key	from	WPT_API_KEY	(environment	variable,	see
“Encrypting	the	WebPageTest	API	key”)

3.	 Test	http://staging.example.com,	which	must	be	publicly	reachable	from
WebPageTest	agents

4.	 Run	a	test	for	first	view	only

5.	 Run	from	location	MYVM	on	Chrome	browser

6.	 Poll	results	every	five	seconds	(default)

7.	 Time	out	in	60	seconds	if	no	results	are	available

8.	 Test	the	results	against	the	specs.json	spec	file

9.	 Output	using	the	spec	reporter

Encrypting	the	WebPageTest	API	key

If	you	are	scheduling	your	tests	to	run	from	public	instances	of	Travis-CI	workers,	such	as
from	a	public	GitHub	repository,	WebPageTest	API	keys	(--key	or	-k)	should	be	used	to
prevent	abuse,	but	do	not	put	unencrypted	API	keys	in	public	files.	Fortunately,	Travis-CI

http://webpagetest.example.com
http://staging.example.com

provides	an	easy	way	to	do	this	via	secure	environment	variables,	which	avoid	explicitly
passing	$WPT_API_KEY	in	the	public	.travis.yml	file.

Install	Travis	and	go	to	the	repo	directory:

gem	install	travis

...

cd	repo_dir

Next,	encrypt	the	WebPageTest	API	key	as	a	secure	environment	variable:

travis	encrypt	WPT_API_KEY=super_secret_api_key_here	--add

Note	that	it	must	run	from	the	repo	directory	or	use	-r	or	--repo	to	specify	the	repo	name
in	the	format	user/repo	—	for	example,	marcelduran/webpagetest-api.

By	default,	the	--add	flag	will	append	the	encrypted	string	to	the	.travis.yml	file	as:

env:

		global:

				-	secure:	+_\encrypted	WPT_API_KEY=super_secret_api_key_here	string_+

In	this	chapter,	we	covered	how	the	WebPageTest	API	can	be	integrated	into	your	web
development	pipeline	via	CI.	It	helps	you	leverage	the	quality	of	your	web	pages	by
preventing	key	performance	metrics	from	regressing	during	push	cycles.	It	can	also	help
you	track	some	performance	metrics	values	over	time	so	you	can	measure	the	impact	of
adding	new	features	to	the	page.	Once	WebPageTest	is	integrated	into	your	CI	tool,	after
several	pushing	cycles	you	start	getting	a	better	idea	of	the	state	of	perfomance	of	your
pages.	Data	collected	from	CI	can	be	used	to	plot	historical	information	about	your	pages’
performance.	It	can	catch	unexpected	regressions	in	non–performance-related	expected
changes.	Some	metrics	can	be	easy	to	track	and	catch,	such	as	the	number	of	requests,	but
some,	especially	those	related	to	time,	can	require	some	tuning	to	find	an	optimum	range.

http://docs.travis-ci.com/user/environment-variables

Chapter	11.	Private	Instances

In	Chapter	9,	we	discussed	how	to	use	WebPageTest’s	API	to	submit	tests,	check	their
status,	and	retrieve	the	results.

Using	the	public	API	is	a	great	way	to	get	started	with	the	API,	but	the	number	of	tests
you	can	run	is	limited	to	around	200	per	day.

TIP
WebPageTest	counts	every	first	view	and	every	repeat	view	as	separate	tests;	scripted	tests	that	involve
more	than	one	page	currently	count	as	a	single	test,	but	that’s	likely	to	change	in	the	future.

Once	you	start	to	automate	testing,	you’ll	probably	find	that	you	want	to	test	more	pages
more	frequently.	For	example,	you	might	want	to	measure	how	a	site	changes	over	time	or
test	each	build	in	a	continuous	integration	process.	Once	you	start	testing	frequently,	a
usage	limit	of	200	tests	per	day	doesn’t	stretch	far.

The	public	site	is	shared	among	all	users,	and	API	tests	run	at	a	lower	priority	than	tests
submitted	via	the	Web,	so	if	many	other	people	are	testing	at	the	location	you	want	to	use,
you	may	have	to	wait	for	a	while.

TIP
Dulles	generally	has	more	than	one	test	agent	for	each	browser,	but	most	other	locations	only	have	a	single
agent	that	is	often	shared	among	all	browsers.

There’s	also	the	challenge	that	webpagetest.org	can	only	test	publicly	accessible	URLs,	so
if	the	site	you	want	to	test	is	behind	a	firewall,	you	may	be	out	of	luck!	Of	course	you
could	poke	holes	in	your	firewall	or	use	a	proxy	service	to	reach	sites	behind	a	firewall,
but	the	proxy	service	is	likely	to	affect	timings.

Finally,	it’s	also	worth	mentioning	that	although	you	can	mark	tests	as	private,	they	are
still	accessible	to	anyone	who	has	(or	can	discover)	the	test	URL.	Fortunately,	it’s	possible
to	use	your	own	instance	of	WebPageTest	to	overcome	these	challenges.	In	this	chapter,
we’ll	look	at	how	to	install	it,	what	the	options	for	test	agents	are,	and	how	to	keep	it	up
and	running	smoothly.

We’ll	also	discuss	some	of	the	features,	such	as	bulk	tests,	that	are	only	available	in	a
private	instance.

How	Does	WebPageTest	Work?
Each	WebPageTest	instance	is	made	up	of	two	types	of	components:	a	server	and	the	test
agents.

A	server	provides	the	web	interface	and	API;	it	also	queues	and	schedules	the	work	for	the
individual	test	agents.	After	the	agents	have	completed	a	test,	it	recieves	the	results	and
displays	them.

The	second	type	of	component	is	the	test	agents,	which	actually	load	the	page	in	a	browser
and	gather	metrics	as	it	loads.	These	test	agents	might	be	desktop	browsers	running	on
Windows,	Safari	running	on	a	iOS	device,	Android	devices	running	Chrome,	or	remote
ones	on	another	WebPageTest	instance.

The	test	agents	poll	the	server	for	work,	measure	the	page	load,	and	then	when	the	test
completes,	upload	the	measurements	and	any	screenshots	it	took	(Figure	11-1).

Figure	11-1.	Test	agents	polling	the	WebPageTest	server

Windows	test	agents	are	the	most	mature	and	fully	featured;	they	can	be	scripted	and	are
relatively	easy	to	support.	The	Android	mobile	agents	capture	a	greater	level	of	detail	than
the	iOS	ones,	but	neither	supports	full	scripting	yet.	Both	of	these	mobile	agents	are	based
on	closed	platforms,	which	imposes	some	limitations	as	well.

We’ll	start	by	using	the	preconfigured	Amazon	Machine	Images	(AMIs)	and	then	walk
through	installing	our	own	instance	from	scratch	with	some	desktop	test	agents.	Then
we’ll	add	mobile	and	other	test	agents	to	our	setup.

Using	the	Preconfigured	AWS	AMI
The	simplest	and	fastest	way	to	get	WebPageTest	up	and	running	is	to	use	the
preconfigured	Amazon	Web	Services	(AWS)	AMIs.

There	are	server	AMIs	available	for	each	AWS	region,	and	they	come	preconfigured	to
launch	test	agents	in	all	the	AWS	locations	on	demand	(to	reduce	costs,	they	also	shut
down	test	agents	when	they’ve	been	idle	for	a	while).

To	start,	you’ll	need	an	AWS	account,	a	user	with	the	permissions	to	manage	EC2
instances,	and	Amazon	Simple	Storage	Service	(S3)	(if	you	want	to	archive	tests	to	S3).

Create	an	AWS	User	with	Relevant	Permissions
In	the	AWS	console,	create	a	new	user	in	Security	Credentials	→	Users	→	Create	New
Users	and	give	the	user	an	appropriate	name,	such	as	WPT.

When	creating	the	user,	remember	to	tick	the	box	to	“Generate	an	access	key	for	each
user,”	and	then	save	the	Access	Key	ID	and	Secret	Access	Key	that	were	generated,	as
you’ll	need	to	provide	these	as	part	of	the	instance	configuration.

Once	the	user	has	been	created,	it	needs	permissions	to	manage	EC2	instances	and	for	S3
storage	to	archive	older	tests.

In	the	AWS	console,	create	two	groups;	in	this	example,	they’re	named	WPT-EC2	and
WPT-S3.

Each	can	be	granted	all	permissions	for	the	service	(e.g.,	ec2:*	and	s3:*),	or	for	finer-
grained	permissions,	use	the	permissions	listed	here:

WPT-EC2

ec2:CreateTags

ec2:DescribeRegions

ec2:DescribeVolumes

ec2:DeleteVolume

ec2:DescribeInstances

ec2:RunInstances

ec2:StartInstances

ec2:StopInstances

ec2:TerminateInstances

WPT-S3

s3:GetObject

s3:PutObject

Once	the	groups	have	been	created,	add	the	WPT	user	to	them	so	that	it	has	the	necessary
permissions	to	manage	EC2	instances	and	S3	storage.

Configure	and	Launch	the	AWS	Instance
You	can	find	a	list	of	the	latest	versions	of	the	AMI	on	a	per-region	basis	in	the
WebPageTest	GitHub	repository.

In	the	EC2	Dashboard,	choose	Launch	Instance	and	then	search	the	Community	AMIs	for
the	WebPageTest	server	AMI.	Select	the	one	you	want	and	choose	an	appropriate	instance
size;	t2.micro	is	an	easy	one	to	start	with	for	the	server.

In	the	next	step,	Configure	Instance	Details,	scroll	down	to	the	bottom	of	the	page	and
open	the	Advanced	Details	Panel.	This	is	where	the	User	Data	for	the	instance	is	specified
—	for	example,	the	user	keys	we	created	earlier	and	the	WebPageTest	settings	we	want	to
apply.

The	ec2_key	and	ec2_secret	should	be	assigned	the	values	for	the	WPT	user	you	created
earlier.	You	can	choose	any	value	you	want	for	the	api_key;	it’s	just	the	value	you	need	to
pass	when	submitting	a	test.

ec2_key=Access	Key	ID

ec2_secret=Secret	Access	Key

api_key=your-api-key

By	default,	the	server	runs	in	headless	mode,	and	tests	can	only	be	submitted	via	the	API.
If	you	want	to	enable	the	normal	web	interface	for	submitting	tests,	add	headless=0	to	the
user	data.

TIP
If	you	choose	to	disable	headless	mode,	you	might	want	to	protect	the	site	using	HTTP	Auth	to	prevent
others	from	submitting	tests.

If	you	do	this,	remember	to	exclude	the	/var/www/webpagetest/www/work	folder,	as	it	contains	the
endpoints	that	the	agents	use	to	check	for	work,	submit	results,	etc.,	and	the	test	agents	don’t	support
accessing	the	server	using	HTTP	Auth	yet.

Remember	to	update	the	security	group	so	that	both	port	22	(SSH)	and	port	80	(HTTP)	are
open;	otherwise,	you	won’t	be	able	to	submit	tests	and	the	agents	won’t	be	able	to	poll	for
work.

Once	the	instance	is	up	and	running,	you	can	visit	it	in	a	browser.	If	the	instance	is	running
in	headless	mode	(see	the	headless	home	page	in	Figure	11-2),	you’ll	see	the	normal
familiar	WebPageTest	interface	but	without	the	ability	to	interactively	submit	tests.

https://github.com/WPO-Foundation/webpagetest/blob/master/docs/EC2/Server%20AMI.md

Figure	11-2.	Headless	instance	home	page

To	check	that	the	install	is	working,	submit	a	test.	You	can	do	this	via	a	browser,	wget,	or	a
REST	client	such	as	Postman	(we	normally	use	Postman):

http://your-server-ip/runtest.php?f=json&url=http://news.bbc.co.uk&k=your-api-key

The	server	should	return	a	response	with	a	statusCode	of	200	with	contents	similar	to:

{

		"statusCode":	200,

		"statusText":	"Ok",

		"data":	{

				"testId":	"150131_Q0_1",

				"ownerKey":	"b9941c6d6336f236287b497a56c4a8f4622a5827",

				"jsonUrl":	"http:\/\/your-server-ip\/jsonResult.php?test=150131_Q0_1",

				"xmlUrl":	"http:\/\/your-server-ip\/xmlResult\/150131_Q0_1\/",

				"userUrl":	"http:\/\/your-server-ip\/result\/150131_Q0_1\/",

				"summaryCSV":	"http:\/\/your-server-ip\/result\/150131_Q0_1\/page_data.csv",

				"detailCSV":	"http:\/\/your-server-ip\/result\/150131_Q0_1\/requests.csv"

		}

}

The	job	is	now	queued,	and	WebPageTest	will	spin	up	an	agent	on	an	EC2	instance	to	run
the	test.

You	can	see	the	job	waiting	for	an	agent	to	become	available	via	/getLocations.php.

If	you	watch	in	the	EC2	Dashboard,	you	will	also	see	the	instance	for	the	test	agent
starting	up.	If	you’ve	used	a	test	location	that’s	in	another	AWS	region,	you’ll	need	to
switch	AWS	regions	in	the	dashboard	to	see	this.

Once	the	test	has	completed,	its	results	can	be	retrieved	via	jsonURL	or	xmlURL	specified	in
the	original	response,	or	the	waterfall	and	other	test	details	can	be	viewed	via	userUrl.

To	reduce	costs,	the	test	agent	will	shut	down	after	about	an	hour	unless	it	receives	any
work	in	the	last	15	minutes	of	the	hour.

Even	though	the	agent	will	shut	down	when	it’s	been	idle	for	a	while,	/getLocations.php
and	/getTesters.php	will	both	show	a	tester	is	available	after	the	EC2	instance	has	shut
down.

The	server	AMI	comes	preconfigured	with	test	agents	in	all	the	AWS	regions.	You	can	see
the	full	list	of	agent	locations	via	/getLocations.php.

Creating	Your	Own	Local	Installation
If	you	don’t	want	to	use	AWS	to	host	your	WebPageTest	instance,	then	you	can	install	it
on	your	own	local	hardware	and	run	either	local	or	remote	test	agents.

The	server	application	is	a	straightforward	PHP	application	and	will	run	on	Windows,
Linux,	or	Mac	OS	X.

We	tend	to	install	the	server	into	c:\wpt-www	on	Windows,	or	a	wpt	folder	under	the	web
server’s	document	root	on	Mac	OS	X	and	Linux.

First	we’ll	start	by	configuring	Apache	and	PHP,	and	then	we’ll	add	the	WebPageTest
files:

1.	 In	Apache’s	configuration,	ensure	that	the	expires,	headers,	and	rewrite	modules	are
enabled	and	that	PHP	is	installed	and	enabled,	too.

2.	 WebPageTest	depends	on	GD2,	ImageMagick,	ffmpeg,	jpegtran,	and	exiftool,	so
install	these	as	well.

3.	 Update	the	following	entries	in	php.ini	to	match	the	values	shown	here:

upload_max_filesize	=	10M

post_max_size	=	10M

memory_limit	=	256M

Once	the	base	server	is	configured,	we	can	install	the	WebPageTest	server
components.

4.	 Download	the	latest	private	release	of	WebPageTest	from	GitHub	and	extract	the
contents	of	the	www	folder	into	the	folder	you’re	going	to	use.	
The	configuration	files	for	WebPageTest	are	an	.ini	format	and	stored	in	the	settings
folder.

5.	 Copy	settings/settings.ini.sample	to	settings/settings.ini.

6.	 Copy	settings/connectivity.ini.sample	to	settings/connectivity.ini.

7.	 WebPageTest	needs	to	store	results,	queues	of	work	in	progress,	etc.,	so	we	need	to
give	the	web-server	user	write	privileges	to	the	following	folders:

tmp

results

work/jobs

work/video

logs

8.	 Restart	Apache.	
WebPageTest	comes	with	a	handy	script	that	checks	many	of	its	dependencies,	and
we	can	use	this	to	verify	our	configuration	so	far.

https://github.com/WPO-Foundation/webpagetest/releases

9.	 In	a	browser,	open	http://your-webpagetest-server/install,	and	hopefully	you’ll	be
greeted	by	a	screen	showing	that	all	the	mandatory	dependencies	are	installed	OK
(Figure	11-3).

Figure	11-3.	Install	checker

10.	 If	all	is	configured	correctly,	loading	the	WebPageTest	home	page	should	look	like
Figure	11-4.

http://your-webpagetest-server/install

Figure	11-4.	Private	instance	home	page

As	we	haven’t	configured	any	test	locations	yet,	the	Test	Location	and	Browser	drop-
downs	are	still	blank;	adding	test	agents	is	our	next	step.

Desktop	Test	Agents
The	desktop	test	agents	are	Windows-based;	both	32-bit	and	64-bit	versions	of	Windows
7,	8,	and	Server	2012	can	all	be	used	as	hosts.	Windows	XP	will	also	work,	but	because
it’s	reached	End	of	Life,	we	won’t	cover	it	here.

Machine	size	is	one	of	the	key	factors	in	getting	consistent,	representative	test	results.	Test
agents	can	be	run	on	either	hardware	or	virtual	machines.	We	normally	use	virtual
machines	with	2	vCPUs	and	2	GB	of	RAM	running	on	a	quad	core	i7	host.

TIP
If	you	don’t	own	any	Windows	licenses	and	want	to	experiment	with	desktop	test	agents,	you	can	either
download	a	virtual	machine	image	from	http://modern.ie	or	use	a	one	of	the	preconfigured	Amazon	EC2
AMIs.

In	this	example,	we’ll	configure	one	location	with	a	Windows	7	test	agent	that’s	running
Chrome,	Firefox,	and	Internet	Explorer	11:

1.	 Install	some	form	of	antivirus	software	such	as	Microsoft	Security	Essentials.

2.	 Install	Chrome	and	Firefox.

3.	 Disable	User	Account	Control.	
In	the	search	box,	type	UAC,	click	on	Change	User	Account	Control	settings,	and
then	slide	the	slider	to	Never	Notify.

4.	 If	you’re	running	Windows	in	a	virtual	machine,	force	it	to	use	the	platform	clock
using	BCDedit	from	an	administrative	shell:	
bcdedit	/set	{default}	useplatformclock	true

5.	 Configure	Windows	to	always	log	in	using	an	account	that	has	local	administration
rights:
a.	 Click	Start	and	launch	netplwiz.

b.	 In	the	User	Accounts	dialog	box,	select	the	account	you	want	to	automatically
log	on	and	uncheck	the	Users	Must	Enter	A	User	Name	And	Password	To	Use
This	Computer	checkbox.

c.	 Click	OK	and,	in	the	Automatically	Log	On	dialog,	enter	the	user’s	password
twice	and	click	OK.

When	Windows	is	restarted,	it	will	now	automatically	log	on	with	the	selected	account.

1.	 To	save	power,	Windows	will	by	default	turn	the	display	off	and	go	to	sleep	after	set
periods	of	time.	The	power	settings	need	to	be	changed	to	prevent	this:
a.	 In	Control	Panel,	choose	System	and	Security	→	Power	Options,	and	create	a

new	Power	Plan	called	Never	Off.

b.	 Turn	off	the	display	Never.

http://modern.ie

c.	 Put	the	display	to	sleep	Never.

d.	 In	Advanced	settings,	change	Require	a	password	on	wakeup	to	No.

Now	that	the	base	Windows	image	is	configured,	we	can	install	the	WebPageTest	agent
software:

1.	 Extract	the	agent	folder	from	the	webpagetest_x.xx.zip	file	into	c:\wpt-agent.

2.	 Install	DummyNet.	
The	desktop	agents	use	DummyNet	to	shape	the	network	connection	during	tests,
and	both	32-bit	and	64-bit	versions	of	DummyNet	are	shipped	in	the	WebPageTest
ZIP	file.	
Depending	on	your	platform,	choose	the	version	of	DummyNet	you	need	and	copy
the	contents	of	the	32-bit	or	64-bit	folder	into	c:\wpt-agent\dummynet.	
In	the	properties	of	the	Network	Adapter	used	for	Internet	access:
a.	 Click	Install.

b.	 Select	Service	and	click	Add.

c.	 Click	Have	Disk	and	navigate	to	c:\wpt-agent\dummynet.

d.	 Select	the	ipfw+dummynet	service	(and	click	through	any	warnings	about	the
driver	being	unsigned).	
If	you’re	connected	via	Remote	Desktop,	you’ll	probably	lose	the	connection
while	installing	DummyNet	and	need	to	reconnect	after.	
Now	we	need	to	configure	WPTDriver	via	its	ini	file:

[WebPageTest]

url=http://your-webpagetest-server

location=Local-WPTDriver	

browser=chrome

Time	Limit=120

;Automatically	install	and	update	support	software	(Flash,	Silverlight,	etc)

software=http://your-webpagetest-server/installers/software.dat

[Chrome]	

exe="C:\Program	Files	(x86)\Google\Chrome\Application\chrome.exe"

options='--load-extension="%WPTDIR%\extension"	--user-data-dir="%PROFILE%"	--no-proxy-server'

installer=http://your-webpagetest-server/installers/browsers/chrome.dat

[Firefox]	

exe="C:\Program	Files	(x86)\Mozilla	Firefox\firefox.exe"

options='-profile	"%PROFILE%"	-no-remote'

installer=http://your-webpagetest-server/installers/browsers/firefox.dat

template=firefox

[IE11]	

exe="C:\Program	Files\Internet	Explorer\iexplore.exe"

Location	name	must	match	one	of	the	locations	in	settings/location.ini	on	the	server.

The	browser	sections	must	also	match	the	browsers	configured	under	the	location	in
locations.ini.

At	this	stage,	it’s	worth	rechecking	that	the	paths	to	the	individual	browsers	are	correct
because,	depending	on	whether	you’re	running	a	32-bit	or	64-bit	version	of	Windows,
Chrome,	or	Firefox,	they	will	be	in	different	locations.	For	a	32-bit	version	of	Windows,
they	will	be	in	Program	Files;	on	a	64-bit	operating	system,	they’ll	be	in	Program	Files
x86).

Now	create	a	shortcut	to	c:\wpt-agent\wptdriver.exe	in	the	startup	folder.

TIP
Originally,	WebPageTest	used	urlblast.exe	to	drive	Internet	Explorer,	and	wptdriver.exe	for	Chrome	and
Firefox.

As	WPTDriver	can	now	drive	Internet	Explorer,	and	URLBlast	is	likely	to	be	deprecated	soon,	we’ve
skipped	installing	it	here.

If	you	want	to	learn	more	about	URLBlast,	it’s	still	covered	by	the	WebPageTest	documentation	and	it	has
some	features	that	are	yet	to	be	ported	to	WPTDriver.

Finally,	we	need	to	clear	the	default	browser	and	other	security	prompts:

1.	 Launch	each	browser	and	clear	the	prompts	such	as	requests	to	be	the	default
browser,	whether	extensions	should	be	loaded,	etc.

2.	 From	the	startup	folder,	launch	WPTDriver	and	ipfw.cmd	manually.	Give	each	of
them	permission	to	run	even	though	they’re	unsigned,	and	uncheck	the	“always	do
this”	box.

3.	 Now	restart	the	test	agent;	it	should	start	polling	the	server	for	work.	If	it’s	polling
for	work	successfully,	there	will	be	requests	for	/work/getwork.php	in	the	Apache
logs.

TIP
If	you	access	the	test	agent	via	Remote	Desktop,	you	must	restart	it	when	you	finish;	otherwise,	the	desktop
will	be	locked	and	screen	captures	will	fail.

When	accessed	via	Remote	Desktop,	Windows	7	doesn’t	display	the	Restart	option	on	the	Start	Menu.	You
can	create	a	desktop	shortcut	by	shutdown	-f	-r	-t	1,	so	you’ve	got	that	option.

Now	that	a	test	agent	is	configured,	we	need	to	configure	the	server	so	that	we	can	submit
tests	for	it,	and	this	is	done	via	settings/locations.ini	on	the	server.

Locations.ini	has	a	hierarchical	structure	of:

		Location	->	Agents	at	each	location	->	Browsers	at	each	location

There’s	already	a	locations.ini.sample	in	the	settings	folder,	so	we	could	rename	and	edit
this,	but	instead	we’re	going	to	start	with	our	own	simple	version	and	update	it	as	we	add
more	agents.

In	the	settings	folder	on	the	server,	create	a	file	called	locations.ini	with	the	following
contents:

[locations]	

1=Local

default=Local

[Local]	

1=Local-WPTDriver

label="Local"

[Local-WPTDriver]	

browser=Chrome,Firefox,IE11

label="local"

List	of	configured	test	locations,	which	matches	the	location	drop-down	in	the
WebPageTest	interface.

List	of	test	agents	configured	for	each	location;	there	will	be	one	of	these	sections	for
each	location.

Individual	test	agent	details;	in	this	example,	the	test	agent	has	Chrome,	Firefox,	and
Internet	Explorer	11	installed.

This	tells	our	WebPageTest	install	that	we	have	one	location	with	a	single	test	agent
running	Chrome,	Firefox,	and	Internet	Explorer	11.

We’ve	started	with	a	simple	configuration,	but	later	in	the	chapter	we’ll	add	more
locations	and	test	agents.

Now	that	we’ve	configured	both	the	test	agent	and	the	server,	we	can	run	our	first	test	to
make	sure	everything	works	as	expected:

1.	 Restart	Apache,	and	then	load	your	instance	of	WebPageTest	in	a	browser	and
submit	a	test.

2.	 Hopefully	you’ll	see	a	successful	test	result,	but	if	you	don’t	take	a	look	at
“Troubleshooting”	later	in	this	chapter.

3.	 Once	you’ve	run	the	first	test,	edit	settings.ini	to	increase	the	number	of	maxRuns
allowed	(we	often	use	49),	then	test	some	well-known	stable	pages,	such	as	BBC
News,	Google,	etc.,	for	a	large	number	of	runs	and	make	sure	that	the	test	agents	are
producing	consistent	results.	(Remember	to	change	the	setting	back	if	you	want	to
limit	how	may	test	runs	someone	can	submit.)

As	an	alternative	to	hosting	your	own	test	agents,	there	are	also	preconfigured	AMIs.
They’re	listed	in	the	WebPageTest	documentation	and	are	easy	to	setup.

Once	your	instance	is	up	and	running,	if	you	find	it’s	getting	busy	and	you’re	having	to
wait	too	long	for	jobs	to	complete,	you	can	set	up	multiple	test-agent	machines	with	the

https://sites.google.com/a/webpagetest.org/docs/private-instances#TOC-EC2-Test-Agents

same	location	name	to	share	the	workload.

Mobile	Test	Agents
So	far	we’ve	covered	installing	desktop	agents,	but	more	and	more	people	are	accessing
our	sites	using	phones,	tablets,	and	other	mobile	devices.

WebPageTest	supports	both	Chrome	and	Chrome	Beta	on	Android,	and	Safari	on	iOS.	The
Android	test	agents	provide	a	greater	level	of	detail	and	have	more	features	than	the	iOS
agents;	for	example,	the	iOS	agent	only	provides	overall	request	and	response	times	for
each	request	rather	than	breaking	out	the	separate	timings	for	DNS	lookup,	TCP	connect,
and	SSL	negotiation.

TIP
Configuring	the	mobile	agents	involves	voiding	the	warranty	on	the	devices,	so	you	might	want	to	use
secondhand	devices.

The	mobile	agents	connect	to	the	WebPageTest	server	via	a	Node.js	application.	The	Node
application	polls	the	server	for	work,	drives	the	test	device	to	load	the	page,	and	then
returns	the	results	to	the	server.	This	process	is	depicted	in	Figure	11-5.

The	Node.js	application	and	the	browser	communicate	using	the	Chrome	Remote
Debugging	protocol.	iOS	uses	the	same	protocol	wrapped	up	in	binary	plists,	so	we	need
to	use	a	proxy	that	translates	between	the	two.

Figure	11-5.	Node.js	app	connecting	to	the	WebPageTest	server

Install	Agent
The	agent	that	acts	as	a	bridge	between	the	server	and	the	test	devices	can	be	installed	on
any	platform	that	supports	Node.js.	We’ve	had	success	on	Linux,	Windows,	and	Mac	OS
X.

1.	 Install	Node.js	from	http://nodejs.org/.

2.	 There’s	a	mobile	folder	in	the	release	of	WebPageTest	we	used	to	install	the	desktop
agents.	Extract	this	to	a	wpt-mobile	folder.

3.	 If	you’re	planning	on	using	Android	test	agents,	download	and	install	the	Android
SDK,	and	make	sure	that	the	Android	Debug	Bridge	(ADB)	is	available	on	the	path.

Once	the	Node.js	agent	has	been	installed,	we	need	to	configure	mobile	devices	on	which
to	run	tests.	The	Android	devices	will	need	their	bootloaders	unlocked,	and	the	iOS
devices	will	need	to	be	jailbroken,	so	it	might	be	worth	considering	buying	used	devices
from	eBay,	Craigslist,	etc.

Add	Android	Devices

For	Android	you’ll	need	a	phone	or	tablet	running	Android	4.4	(KitKat)	or	later	that	can
be	rooted.

In	this	section,	we’ll	use	a	Moto	G	and	a	Nexus	7	as	our	test	devices,	but	we	could	also
use	a	Moto	E,	Nexus	4	or	5,	etc.

Install	the	Android	Debug	Bridge	(ADB)

Download	and	install	the	Android	SDK.

Unlock	the	bootloader

Unlocking	the	bootloader	will	wipe	all	content	and	installed	applications	from	the	device,
so	be	sure	to	back	up	anything	you	want	to	keep.

We’ve	bricked	a	Moto	G	while	rooting	it,	and	a	colleague	did	the	same	to	a	Nexus	7	(both
were	restored	and	worked	eventually),	so	it’s	worth	finding	out	how	to	restore	the	device
just	in	case	you	need	to.

Moto	G:

1.	 Motorola	provides	an	official	route	to	unlock	the	bootloader.

2.	 You’ll	be	asked	to	agree	to	some	terms	and	conditions	and	either	log	in	with	a
Google	account	or	create	a	Motorola	one	before	being	given	straightforward
instructions	on	how	to	unlock	the	bootloader.

3.	 Once	the	bootloader	is	unlocked,	install	Superboot.

4.	 Launch	Superboot	and	Enable	Superuser	(root)	access.	Set	the	Default	Access	to

http://nodejs.org/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
https://motorola-global-portal.custhelp.com/app/standalone/bootloader/unlock-your-device-a/action/auth
https://motorola-global-portal.custhelp.com/app/standalone/bootloader/unlock-your-device-a/action/auth

Grant,	and	disable	notifications.

Nexus	7:

1.	 Unlock	Bootloader.

2.	 Root	the	device	by	following	the	Android	instructions.

Configure	Android

Because	Android	devices	need	to	be	associated	with	a	Google	account,	consider	using	a
separate	Gmail	account	so	that	you	don’t	need	to	worry	about	others	having	access	to	your
email,	tests	affecting	your	search	history,	etc.

Once	the	bootloader	has	been	unlocked,	we	need	to	configure	various	Android	settings
ready	for	testing:

1.	 Launch	Google	Play	and	configure	it	to	automatically	install	updates	(using	the
menu	in	the	top-left	corner).

2.	 Launch	the	Android	settings	utility.

3.	 Disable	Screen	lock	by	setting	it	to	none	in	the	Security	section.

4.	 If	you’re	going	to	be	using	a	device	only	for	portrait	testing,	disable	Auto-rotate	in
the	Display	section.	As	an	alternative,	you	could	install	Adaptive	Rotation	Lock	or
one	of	the	other	rotation	apps	from	the	Play	store.

5.	 Mute	all	the	sounds,	including	music,	ringtone,	and	alarms,	in	the	Sound	section.

6.	 Enable	Airplane	mode	via	More…	under	Wireless	&	Networks,	and	then	connect	to
a	WiFi	network.

7.	 Activate	developer	mode	by	tapping	on	the	OS	Version	seven	times	(it’s	within	the
About	Phone	section).

8.	 Under	Developer	options,	enable	USB	debugging,	and	set	the	device	to	always	Stay
awake.

9.	 Finally,	install	Chrome	and	Chrome	Beta	from	the	Play	Store,	and	ensure	they’re
updated	to	the	latest	release;	then	launch	both,	accept	the	Terms	of	Service,	and	clear
any	dialogs	such	as	the	“Help	make	Chrome	better”	one.

Once	you’ve	finished	configuring	the	whole	device,	it’s	also	worth	turning	down	the
screen	brightness	to	reduce	power	usage	and	heat	generated.

Add	the	agent	to	the	server

To	enable	the	new	device	to	be	used	for	testing,	we	need	to	update	the	server’s
locations.ini	as	follows:

http://forum.xda-developers.com/showthread.php?t=2379618
http://www.teamandroid.com/2014/06/20/root-nexus-7-2013-android-444-ktu84p-kitkat-install-cwm/2/

[locations]

1=Local

default=Local

[Local]

1=Local-WPTDriver

2=Local-MotoG		

label="Local"

[Local-WPTDriver]

browser=Chrome,Firefox,IE11

label="local"

[Local-MotoG]	

browser=Moto-G	-	Chrome,Moto-G	-	Chrome	Beta

label="Moto-G"

type=nodejs,mobile

connectivity="WiFi"

Adds	the	test	device.

List	the	device,	the	browsers	that	are	available,	and	the	bandwidth	configuration.

Check	that	the	agent	works

Finally,	we’re	now	in	a	position	to	fire	up	the	Node.js	agent	and	run	our	first	test	on	the
device.

First	we	need	the	ID	of	our	test	device.	At	a	command	prompt,	type	adb	devices,	accept
the	permissions	dialog	that	appears	on	the	phone,	and	you	should	get	a	response	similar	to:

List	of	devices	attached

AA737KSVW				device

The	folder	in	which	the	Node.js	agent	was	installed,	wpt-mobile,	contains	both	a	shell
script	for	Linux	and	Mac	OS	X,	and	a	batch	file	for	Windows.

Start	the	agent	on	Linux	or	Mac	OS	X	by	running	the	command	shown	here:

./wptdriver.sh	\

		-m	debug	\

		--browser	android:AA737KSVW	\	

		--serverUrl	127.0.0.1	\	

		--location	Local-MotoG	

Device	ID	as	retrieved	from	adb	devices.

URL	of	the	WebPageTest	server.

Name	of	the	location	in	the	servers,	locations.ini.

Once	the	agent	has	started,	it	should	be	available	via	the	server’s	web	interface,	so	you	can
go	and	run	your	first	test.

Add	iOS	Devices
Configuring	an	iOS	test	agent	is	a	bit	more	involved	than	configuring	an	Android	one	due
to	iOS	being	even	more	closed	and	there	being	no	official	support	for	unlocking	the
bootloader	from	Apple	(a.k.a,	jailbreaking).

The	tests	from	iOS	give	less	waterfall	detail	—	they’re	missing	DNS	lookup,	TCP
connect,	and	TLS	negotiation	times,	but	can	capture	video	of	the	page	loading.

To	configure	an	iOS	test	agent,	you’ll	need	a	device	that	runs	iOS	8.x	or	above	and	has	a
lightning	connection,	so	that	video	can	be	captured.	There	must	also	be	a	jailbreak
available,	as	the	host	connects	via	SSH	to	remove	caches	and	other	data	between	runs.

If	you	want	to	capture	video	of	the	page	loading,	the	host	machine	will	need	to	be	able	to
run	OS	X	10.10	(Yosemite)	or	above.	At	present,	OS	X	only	supports	capturing	video
from	one	device	at	a	time,	so	you’ll	need	an	OS	X	host	per	device!

You’ll	need	the	mobile	agent	code	from	v2.19	of	WebPageTest,	or	if	v2.19	isn’t	available,
you	can	pull	the	code	straight	from	the	GitHub	repository.

Jailbreak	the	iOS	device

WebPageTest	needs	iOS	devices	to	be	jailbroken	so	caches	and	other	browser	datastores
can	be	completely	cleared	during	testing.

There	are	several	options	for	jailbreaking	iOS	devices	that	change	on	a	release-by-release
basis,	so	some	research	will	be	required	to	know	what	version	of	iOS	can	be	jailbroken.

Enable	SSH

Once	the	device	has	been	jailbroken,	install	OpenSSH	from	Cydia.

By	default,	the	SSH	password	will	be	alpine,	so	as	a	first	step,	you	need	to	change	this	to
prevent	others	from	accessing	the	phone.

You	can	either	connect	the	device	to	WiFi	and	find	its	IP	address	to	access	SSH,	or	connect
via	a	lightning	cable	and	use	TCP	Relay.	These	instructions	assume	the	device	is
connected	via	a	cable.

tcprelay	and	other	python	utilities	that	are	needed	can	be	found	in
agent/js/lib/ios/usbmux_python_client.

1.	 Change	their	permissions	so	that	they	are	executable:

chmod	+x	agent/js/lib/ios/usbmux_python_client/*.py

2.	 Launch	the	relay	agent	so	that	you	can	connect	to	the	device	—	this	maps	port	2222
on	the	host	to	port	22	on	the	device:

agent/js/lib/ios/usbmux_python_client/tcprelay.py	-t	22:2222

3.	 In	another	terminal	window,	connect	to	the	device:

ssh	-p	2222	root@localhost

The	default	Apple	password	should	be	alpine,	but	check	the	OpenSSH	instructions	if
you	cannot	connect.

4.	 Once	connected,	change	the	root	password:

passwd

5.	 You	should	be	prompted	for	a	new	password	and	asked	to	repeat	it.

6.	 Change	the	password	for	the	regular	user	account:

passwd	mobile

7.	 Again,	you’ll	be	prompted	for	the	new	password	and	asked	to	repeat	it.

8.	 Finally,	create	a	folder	for	SSH	keys.	These	are	so	the	host	can	use	key-based
authentication	to	access	the	device	when	it’s	running	tests.

mkdir	~/.ssh

Once	the	device	has	been	configured	for	SSH	access,	you	need	to	generate	a	public/private
key	pair	on	the	host	and	transfer	them	across.

1.	 Change	to	the	.ssh	folder:

cd	~/.ssh

a.	 Generate	the	key:

ssh-keygen	-t	dsa

b.	 When	prompted	for	a	key	name,	enter	id_dsa_ios,	and	don’t	protect	it	with	a
pass	phrase.

2.	 Now	that	the	key	pair	has	been	generated,	you	need	to	transfer	the	public	key	to	the
device:

scp	-P	2222	id_dsa_ios.pub	root@localhost:~/.ssh

3.	 Add	it	to	the	device’s	authorized	keys	file
a.	 Connect	to	the	device	via	SSH	(when	prompted,	enter	the	password	you	set

previously):

ssh	-p	2222	-i	root@localhost

b.	 Change	to	the	key	folder:

cd	~/.ssh

c.	 Add	the	key	to	the	authorized_key2	folder	and	set	its	permissions:

cat	id_dsa_ios.pub	>>	authorized_keys2

chmod	0600	authorized_keys2

4.	 To	check	if	SSH	is	configured	correctly,	disconnect	your	SSH	session	and	then
reconnect	using	the	following	key:

ssh	-p	2222	-i	~/.ssh/id_dsa_ios	root@localhost

Update	phone	settings

Now	that	SSH	has	been	configured,	there’s	a	few	device	settings	that	need	to	be	changed.

1.	 Connect	the	device	to	your	chosen	WiFi	network.

2.	 Switch	to	airplane	mode	to	disable	cellular	connections	and	then	enable	WiFi	so	the
device	can	connect	to	your	chosen	WiFi	network.

3.	 Enable	Web	Inspector	so	that	the	host	can	connect	to	Safari	to	gather	metrics	while
the	page	loads:

Settings	>	Safari	>	Advanced	>	Web	Inspector	=	ON

Now	that	the	device	is	configured,	there’s	a	few	more	steps	to	do	on	the	host	and	server
before	we	can	run	our	first	test.

Configure	the	host

The	host	application	uses	Node.js,	so	ensure	it’s	installed,	as	in	the	previous	Android
steps.

The	mobile	agent	for	WebPageTest	and	other	utilities	it	requires	are	in	the	agent/js	folder,
so	switch	to	that	folder.

1.	 Connect	the	device	to	the	host	and	ensure	that	OS	X	can	see	it	as	a	web	cam	by
running	xrecord:

lib/ios/video/xrecord	--quicktime	--list

This	should	list	any	built-in	recording	devices	on	the	host,	and	the	device	that’s
connected:	
Available	capture	devices:

AppleHDAEngineInput:1B,0,1,0:1:	Built-in	Microphone

5f355a5b183b2d2d7ba91dcfadd4c14b98504642:	iPhone

CC2437519T1F6VVDH:	FaceTime	HD	Camera

2.	 Once	you’re	sure	the	device	is	connected,	you	need	to	get	the	UDID	of	the	device.
You	can	do	this	via	iTunes.
a.	 Click	on	the	device,	and	then	in	the	Summary,	click	on	the	Serial	Number	to

show	the	UDID.

b.	 The	UDID	will	be	a	long	hexdecimal	string	(for	example,
cbea881cedf361982433b97a4ead38e8e2b4c3e9),	and	you	can	right	click	to
copy	it.

c.	 Launch	the	agent	using	the	following	command,	replacing	the	UDID	of	the
device,	WebPageTest	server	URL,	and	location,	as	appropriate	for	your
configuration:

./wptdriver.sh	\

	--browser	ios:UDID	of	device	\

	--serverUrl	your-webpagetest-server	\

	--location	Local-iPhone5C

The	agent	will	start	polling	the	server	for	work,	but	as	the	server	doesn’t	yet
know	about	the	agent	then	there	won’t	be	any	work	for	it	to	do!

3.	 In	the	same	way	we	added	the	Android	agent	to	locations.ini	on	the	server,	we	need
to	add	the	iOS	device	too:

[locations]

1=Local

default=Local

[Local]

1=Local-WPTDriver

2=Local-MotoG

3=Local-iPhone

label="Local"

[Local-WPTDriver]

browser=Chrome,Firefox,IE11

label="local"

[Local-MotoG]

browser=Moto-G	-	Chrome,Moto-G	-	Chrome	Beta

label="Moto-G"

type=nodejs,mobile

connectivity="WiFi"

[Local-MotoG]

browser=Safari

label="iOS	Safari"

type=nodejs,mobile

connectivity="WiFi"

4.	 Now,	restart	the	webserver	and	the	iOS	device	should	be	available	as	a	location.

Submit	a	test	and	check	that	it	works.

Bandwidth	Shaping
The	Windows	test	agents	use	DummyNet	to	shape	the	network	connection,	but	throttling
the	network	connection	for	the	mobile	devices	isn’t	quite	as	simple.

The	public	instance	of	WebPageTest	uses	a	FreeBSD	machine	with	a	wireless	access	point
connected	to	it	as	a	network	gateway	for	the	mobile	devices.

On	the	gateway,	there	are	a	set	of	DummyNet	pips	for	each	mobile	device	that	can	be
individually	configured.	Originally,	all	devices	were	fixed	to	the	same	network
characteristics,	but	the	Node.js	agent	that	controls	each	device	can	connect	to	the	gateway
to	alter	the	settings	for	each	test.

WanEm,	a	network	emulator	built	by	Tata,	might	offer	an	easier	way	to	get	running	as	an
alternative	to	FreeBSD.	The	team	at	Interatec	experimented	with	WanEm,	but	eventually
chose	an	alternative.

Other	options	for	shaping	the	network	include	using	a	wireless	access	point	that	can
throttle	the	network	for	each	device,	or	a	Network	Link	Conditioner	could	be	configured
on	each	iOS	device.	These	options	are	simpler	to	set	up	but	don’t	offer	the	same	power
and	flexibility	as	FreeBSD	or	WanEm.

Remote	Test	Agents
We’re	not	limited	to	the	test	agents	we	own	and	control;	we	can	also	configure	our
instance	to	use	test	agents	on	other	WebPageTest	instances.

The	test	is	submitted	to	our	local	instance	and	then	passed	to	the	test	agent	with	the	other
WebPageTest	instance	acting	as	a	relay.

This	architecture	gives	us	the	ability	to	extend	our	own	private	instances	with	test	agents
from	other	WebPageTest	instances	(e.g.,	add	some	of	the	public	locations	as	agents	in	our
own	private	instance).

It	also	allows	us	to	operate	WebPageTest	behind	the	firewall	but	with	agents	hosted	on	the
public	Internet.	For	example,	you	could	have	test	agents	and	a	headless	server	running	on
AWS	(or	similar	services)	but	the	main	WebPageTest	install	(with	all	the	test	data)	locally
within	the	firewall.

In	the	example	locations.ini	that	follows,	the	Dublin	test	agent	from	the	public	version	of
WebPageTest	has	been	added:

[locations]

1=Local

2=Dublin

default=Local

[Local]

1=Local-WPTDriver

label="Local"

[Dublin]

1=WPT-Dublin

label="Dublin"

[Local-WPTDriver]

browser=Chrome,Firefox,IE11

label="Local-WPTDriver"

[WPT-Dublin]	

browser=Chrome,Firefox	

label="WPT-Dublin"

relayServer="http://www.webpagetest.org/"	

relayKey=Your	API	Key	

relayLocation=ec2-eu-west-1	

The	WPT-Dublin	section	configures	the	remote	agent,	and	the	relay	entries	provide
the	information	needed	to	pass	the	test	to	the	remote	server.

relayServer	is	self-explanatory,	and	relayKey	is	only	needed	if	the	remote	server
requires	a	key	to	use	its	API.

If	you	don’t	already	know	them	—	i.e.,	the	other	instance	owner	has	given	them	to
you	—	relayLocation	and	browser	are	slightly	more	involved	to	figure	out.

The	easiest	way	to	work	them	out	is	to	use	/getLocations.php,	which	shows	all	the

locations	and	test	agents	attached	to	an	instance,	along	with	their	work	queues.

Looking	at	http://webpagetest.org/getLocations.php,	four	locations	are	listed	for	Dublin:

ec2-eu-west-1:Chrome

ec2-eu-west-1:IE	11

ec2-eu-west-1:Firefox

ec2-eu-west-1:Safari

The	WPTDriver	locations	are	named	as	a	location:browser	name	pair,	so
relayLocation	needs	to	be	set	to	the	matching	location	and	each	browser	name	added	to
the	list	in	the	browser	entry	in	the	.ini	file.

If	you	configure	a	browser	that	doesn’t	exist	at	a	location,	you’ll	see	Test	Error:	Invalid
Browser	Selected:	followed	by	the	browser	on	the	results	page	for	any	test	that	attempts	to
use	it.

TIP
Some	public	locations	are	still	using	URLBlast	to	drive	Internet	Explorer,	so	you	will	also	see	locations
such	as	Miami_IE8.	As	URLBlast	becomes	less	frequently	used,	this	format	of	location	name	will	get	less
frequent.

http://webpagetest.org/getLocations.php

Private-Instance-Only	Features
WebPageTest	has	some	features	that	are	only	available	or	can	only	be	preconfigured	for
tests	on	private	instances.

Bulk	Test
In	the	public	version	of	WebPageTest	we	can	only	test	one	URL	at	a	time.	If	we	want	to
test	a	series,	we	have	to	submit	a	test	for	each.

Private	instances	have	a	bulk	test	feature	that	allows	multiple	URLs	to	be	tested	using	the
same	set	of	test	parameters,	producing	aggregate	statistics	(Figure	11-6).

Figure	11-6.	WebPageTest	private	instance	bulk	testing

Once	a	set	of	URLs	is	inserted	in	the	bulk	test	field	and	the	test	is	submitted,	the	bulk	test
and	its	individual	tests	appear	in	the	list	of	test	results.

Within	the	bulk	test	results,	you	can	download	both	the	individual	test	results	and
agreggate	statistics	for	all	tests	(Figure	11-7).

Figure	11-7.	Bulk	test	results	are	downloadable

Custom	Metrics
WebPageTest	supports	custom	metrics,	and	on	the	public	instance	these	are	defined	in	the
Custom	tab	for	each	test.

In	a	private	instance,	it’s	possible	to	define	a	set	of	custom	metrics	that	are	generated	for
every	test.	Each	metric	is	defined	as	a	JavaScript	snippet	that	returns	a	single	value,	and
there	are	several	examples	already	in	settings/custom_metrics.

To	add	a	new	custom	metric,	create	a	JavaScript	file	(e.g.,	navtiming.js)	in
settings/custom_metrics	that	calculates	and	returns	the	value	for	the	metric.

In	this	case,	navtiming.js	queries	the	Navigation	Timing	API	values	for	the	page	and
returns	them	as	a	JSON	string	so	we	can	return	more	than	one	value	from	the	function.

return	JSON.stringify(window.performance.timing);

For	each	page	tested,	the	script	will	execute	and	return	the	Navigation	Timing	API	values.

You	can	access	the	custom	metrics	via	the	link	in	the	top-right	corner	of	each	view	within
the	test	and	via	the	API	as	well.

Day-to-Day	Management
Once	you’ve	set	up	your	own	WebPageTest	instance,	it	should	run	fairly	trouble-free
(most	issues	we	see	are	related	to	the	initial	install	and	configuration),	but	there	are	some
maintenance	tasks	you	can	do	and	some	other	things	to	be	aware	of.

Monitoring	Queues	and	Test	Agents
Once	you	have	a	working	WebPageTest	instance,	others	in	your	team	or	company	will
start	to	use	it,	and	as	the	instance	gets	busier,	you	might	find	that	you	need	to	wait	longer
for	jobs	to	complete.

WebPageTest	provides	a	few	ways	to	get	an	understanding	of	how	healthy	and	busy	it	is.

Using	/getLocations.php	you	can	see	each	location-browser	pair,	along	with	details	on
how	many	jobs	are	waiting	in	each	of	its	queues.	By	default,	web-submitted	jobs	have	the
highest	priority	and	API	ones	are	lower	(the	actual	priority	of	an	API	job	can	be	set	as	a
parameter	when	the	test	is	submitted,	but	the	API	key	will	have	a	cap	on	the	priority,	too).

In	Figure	11-8,	there	are	two	relay	locations,	WPT-Dublin	and	Dulles-Thinkpad,	where	the
local	server	has	been	configured	to	run	jobs	on	another	WebPageTest	instance,	and	as
/getLocations	is	unable	to	report	their	queue	lengths,	the	information	is	missing.

Figure	11-8.	The	Locations	tab	is	unable	to	report	the	two	locations’	queue	lengths

/getTesters.php	allows	you	to	check	whether	a	test	agent	is	up	and	whether	it’s	polling
for	work	(Figure	11-9).

Figure	11-9.	Testers	tab	showing	a	test	agent	polling	for	work

By	default,	both	/getLocations.php	and	/getTesters.php	return	their	data	in	XML	but
can	also	produce	JSON-	and	HTML-formatted	responses	using	&f=json	and	&f=html
respectively.

If	you	just	want	to	get	an	undertanding	of	how	busy	your	instance	is,	/usage.php	lists	a
summary	of	the	jobs	submitted	over	the	last	week	or	so,	as	shown	in	Figure	11-10.

Figure	11-10.	The	Usage	tab	gives	you	a	history	of	submitted	jobs	over	a	period	of	time

In	the	HTML	versions	of	these	pages,	there	are	also	links	to	view	the	URLs	tested	and	the
IP	addresses	where	tests	are	being	submitted	from.

Archiving	Old	Tests
Over	time,	the	results	of	the	tests	you	run	will	start	to	fill	up	the	disk	of	the	WebPageTest
server.

Depending	on	your	preference,	old	tests	can	be	archived	locally	or	to	Amazon	S3	Storage.
This	behavior	is	configured	in	settings.ini.	Once	the	test	has	been	archived,	the	results,
filmstrip,	etc.	can	still	be	accessed	through	the	web	interface	and	API.

To	archive	to	local	storage,	set	the	path	where	the	archives	will	be	stored	using	the
archive_dir	setting.

If	you	prefer	to	archive	to	S3	storage	(or	a	service	that	conforms	to	the	S3	API),	you’ll
need	to	set	the	following	entries	in	settings.ini:

archive_s3_server=s3.amazonaws.com

archive_s3_key=_access	key_

archive_s3_secret=_secret_

archive_s3_bucket=_bucket_

archive_s3_url=http://s3.amazonaws.com/

Finally,	we	need	to	configure	how	long	the	server	should	wait	before	archiving	old	tests:

archive_days=7

Finally,	we	need	to	configure	cron	or	task	manager	to	run	the	archiving	script
www/cli/archive.php	on	a	regular	basis.

On	Linux,	edit	crontab	using	crontab	-e	and	add	the	following	line:

0	0	*	*	*	/usr/bin/php	/var/www/webpagetest/www/cli/archive.php

Ensure	that	the	path	to	the	PHP	executable	and	script	are	correct.	Also	check	that	the
script	is	executable.

Now,	every	day	at	midnight	all	tests	that	are	older	than	seven	days	will	be	archived.

Updating	an	Instance
New	versions	of	WebPageTest	get	released	a	few	times	a	year,	and	updating	your	own
instance	is	relatively	straightforward:

1.	 Extract	the	ZIP	file	of	the	new	release	and	then	copy	the	new	www	folder	on	top	of
your	existing	www	folder.	(When	Windows	agents	poll	for	work,	they	also	check	for
updates	automatically,	will	download	the	update	from	/www/work/update,	and	install
it	on	the	agent	machine.)

2.	 Update	the	Node.js	agents	by	copying	the	contents	of	the	mobile	folder	over	the
existing	install.

Troubleshooting
If	your	installation	isn’t	working	as	you	expect,	there	are	a	few	common	troubleshooting
techniques	that	you	can	try.

Check	that	the	test	agents	are	polling	for	work

Test	agents	sometimes	stop	working,	and	one	of	the	quickest	ways	to	check	them	is	by
using	/getTesters.php,	which	allows	you	to	see	when	they	last	requested	a	job	from	the
server.

You	can	also	check	that	the	test	agents	are	polling	for	work	by	inspecting	the	web	server
logs.	Each	test	agent	will	make	a	call	to	/work/getwork.php,	and	the	value	for	the
location	field	must	match	one	of	the	locations	in	locations.ini:

192.168.0.10	-	-	[06/Apr/2015:02:18:40	-0700]	"GET	/work/getwork.php?	\

	shards=1&reboot=1&location=Local-WPTDriver&software=wpt&version=	\

		2.16.0.197&ver=197&pc=IE11WIN7&dns=8.8.8.8-8.8.4.4&freedisk=	\

			7.718&GPU=0	HTTP/1.1"	200	5	"-"	"WebPageTest	Driver"

If	an	agent	isn’t	polling	for	work,	check	that	the	server	is	configured	correctly	in
wptdriver.ini	or	on	the	Node.js	command	line.

If	the	agent	appears	to	be	polling	for	work,	try	repeating	the	same	request	that	the	agent’s
making	in	a	browser,	using	the	GET	request	from	the	log	file	as	a	example.

If	the	configuration	is	correct,	the	response	will	contain	the	parameters	for	a	test.	For
example:

Test	ID=141016_RE_1

url=http://news.bbc.co.uk

fvonly=1

Capture	Video=1

runs=1

bwIn=5000

bwOut=1000

latency=28

plr=0

browser=Chrome

orientation=default

On	a	Windows	test	agent,	check	that	the	agent	hasn’t	gone	to	sleep;	the	power	settings
should	be	set	to	keep	it	always	awake.

Watch	the	test	on	the	device

Depending	on	the	acutal	device	being	used	for	testing,	multiple	things	can	trip	up	a	test.	If
you’re	sure	the	agent	is	polling	for	work,	it’s	well	worth	watching	a	test	run	on	the	actual
device.

Typical	issues	that	commonly	occur	on	Windows	are:

Incorrect	browser	paths	in	wptdriver.ini;	remember	that	browsers	have	different	paths
depending	on	whether	they	are	32-bit	or	64-bit	versions	of	Windows.

Browser	permission	dialogs	—	e.g.,	extensions	requesting	permission	to	execute.

Screen	saver	prompting	for	a	password;	the	screen	saver	should	be	configured	so	that	it
never	prompts	for	a	password.

If	the	test	appears	to	run	OK	while	you’re	watching	it,	then	there	are	a	few	more	things	to
check:

Check	the	response	from	the	test	agent

When	a	test	completes,	the	agent	POSTs	the	result	data	back	to	the	server,	so	you	should
see	entries	for	/work/resultimage.php	and	/work/workdone.php	in	the	web	server	logs:

192.168.0.10	-	-	[06/Apr/2015:03:04:27	-0700]	"POST/work/	\

resultimage.php	HTTP/1.1"	200	12	"-"	"WebPageTest	Driver"

192.168.0.10	-	-	[06/Apr/2015:03:04:28	-0700]	"POST	/work/workdone.php	\

	HTTP/1.1"	200	5	"-"	"WebPageTest	Driver"

Check	the	contents	of	the	results	folder

WebPageTest	stores	all	the	test	results	in	the	results	folder	within	its	www	root,	and	the
folder	structure	is	derived	from	the	test	ID.

If	the	URL	for	a	test	result	was	http://192.168.0.21/result/150406_BH_1/,	the	matching
folder	on	disk	would	be	www/results/15/04/06/BH/1	(15/04/06	is	the	date	in	YY/MM/DD
format).

In	the	results	folder	for	a	test,	there	should	be	a	number	of	files	and	folders.	The	exact
number	and	their	names	will	vary	depending	on	the	number	of	test	runs	and	whether
repeat	views	were	included	in	the	test.

Typically,	the	results	folder	will	look	something	like	the	excerpt	shown	here:

www/results/15/04/06/BH/1

├──	1.0.visual.dat.gz

├──	1.1.visual.dat.gz

├──	1_Cached_IEWPG.txt.gz

├──	1_Cached_IEWTR.txt.gz

├──	1_Cached_progress.csv.gz

├──	1_Cached_report.txt.gz

├──	1_Cached_screen_doc.jpg

├──	1_Cached_screen.jpg

├──	1_IEWPG.txt.gz

├──	1_IEWTR.txt.gz

├──	1_progress.csv.gz

├──	1_report.txt.gz

├──	1_screen_doc.jpg

├──	1_screen.jpg

├──	video_1

│			├──	frame_0000.hist

│			├──	frame_0000.jpg

│			├──	frame_0105.hist

│			├──	frame_0105.jpg

│			├──	…

│			├──	frame_0138.hist

│			└──	frame_0138.jpg

└──	video_1_cached

				├──	frame_0000.hist

				├──	frame_0000.jpg

				├──	frame_0013.hist

http://192.168.0.21/result/150406_BH_1/

				├──	frame_0013.jpg

				├──	…

				├──	frame_0022.hist

				└──	frame_0022.jpg

Check	that	GD	is	installed	on	the	server

Blank	waterfalls	and	other	images	indicate	that	the	GD	PHP	module	isn’t	installed.

Contributing	Changes	to	WebPageTest
Once	you’ve	got	your	own	instance	up	and	running,	you’re	likely	to	come	across	things
you’d	like	improved	or	features	you’d	like	to	see	included.

One	of	the	great	things	about	WebPageTest	is	that	it’s	open	source,	so	you	can	create	your
own	fork	on	GitHub,	make	changes,	and	if	appropriate,	contribute	them.	You’ll	find	the
root	respository	at	https://github.com/WPO-Foundation/webpagetest.

Different	parts	of	the	WebPageTest	application	are	written	in	different	languages:	the
server	is	mainly	PHP,	the	Windows	agents	C++,	the	mobile	agents	JavaScript,	and	Python
is	creeping	into	the	code	base,	too.

If	you’re	planning	on	making	changes	and	contributing	them,	it’s	well	worth	talking	to	Pat
Meenan	(WebPageTest’s	creator)	first.	You	can	find	Pat’s	contact	details	on
WebPageTest’s	about	page.	Pat’s	always	really	helpful,	but	remember	he’s	got	a	day	job
working	on	Chrome	so	sometimes	he	will	need	time	to	respond.

When	it	comes	to	submitting	pull	requests	(PRs),	we’ve	found	that	atomic	requests	that
are	clearly	explained	get	merged	more	quickly,	whereas	larger	PRs	that	touch	more	of	the
code	base	take	more	time	to	be	merged.

If	you	want	some	ideas	for	things	you	could	help	improve	in	WebPageTest,	the	GitHub
issues	list	is	a	good	place	to	start,	but	there’s	also	plenty	of	room	for	new	features	to	help
people	install,	troubleshoot,	and	manage	instances.

Running	your	own	private	instance	of	WebPageTest	isn’t	always	a	trouble-free	experience,
but	it	offers	a	whole	range	of	options	that	just	aren’t	available	with	the	public	version,
including	adding	your	own	custom	network	speeds,	changing	the	screenshot	size	and
quality,	and	more.

In	this	chapter,	we’ve	touched	on	some	of	these,	but	if	you	explore	the	configuration	files
in	the	settings	folder	on	GitHub	you’ll	discover	a	whole	lot	more.

https://github.com/WPO-Foundation/webpagetest
http://www.webpagetest.org/about

Appendix	A.	API	Input/Output	Reference
Guide

Examples	of	Test	Results
The	following	are	the	verbose	output	of	examples	used	in	Chapter	9.

When	Test	Is	Not	Complete
When	requesting	test	results	on	an	unfinished/unstarted	test,	you	may	get	a	partial
response:

{

		"data":	{

				"statusCode":	100,

				"statusText":	"Test	Started	4	seconds	ago",

				"id":	"150109_DE_ZW7",

				"testInfo":	{

						"url":	"http://www.example.com",

						"runs":	1,

						"fvonly":	0,

						"web10":	0,

						"ignoreSSL":	0,

						"label":	"",

						"priority":	5,

						"location":	"Dulles:Chrome",

						"browser":	"Chrome",

						"connectivity":	"Cable",

						"bwIn":	5000,

						"bwOut":	1000,

						"latency":	28,

						"plr":	"0",

						"tcpdump":	0,

						"timeline":	0,

						"trace":	0,

						"bodies":	0,

						"netlog":	0,

						"standards":	0,

						"noscript":	0,

						"pngss":	0,

						"iq":	0,

						"keepua":	0,

						"mobile":	0,

						"scripted":	0

				},

				"testId":	"150109_DE_ZW7",

				"runs":	1,

				"fvonly":	0,

				"remote":	false,

				"testsExpected":	1,

				"location":	"Dulles:Chrome",

				"startTime":	"01/09/15	17:51:16",

				"elapsed":	4,

				"fvRunsCompleted":	0,

				"rvRunsCompleted":	0,

				"testsCompleted":	0

		},

		"statusCode":	100,

		"statusText":	"Test	Started	4	seconds	ago"

}

When	Test	Is	Complete
The	following	is	the	complete	test	results	used	in	the	Chapter	9	examples.	Some	repetitive
data	is	replaced	by	detailed	comments	for	code	readability:

WARNING
Test	result	properties	may	change	upon	new	releases	of	WebPageTest.	Metrics	may	be	added,	removed,
renamed,	or	moved.	Check	WebPageTest	releases	for	more	details.

{

		"data":	{

				"id":	"150109_DE_ZW7",

				"url":	"http://www.example.com",

				"summary":	"http://www.webpagetest.org/results.php?test=150109_DE_ZW7",

				"testUrl":	"http://www.example.com",

				"location":	"Dulles:Chrome",

				"from":	"Dulles,	VA	-	Chrome	-	Cable",

				"connectivity":	"Cable",

				"bwDown":	5000,

				"bwUp":	1000,

				"latency":	28,

				"plr":	"0",

				"completed":	1420829496,

				"tester":	"IE9203-192.168.102.93",

				"testerDNS":	"192.168.102.1",

				"runs":	{

						"1":	{

								"firstView":	{

										"URL":	"http://www.example.com",

										"loadTime":	194,

										"TTFB":	103,

										"bytesOut":	1548,

										"bytesOutDoc":	344,

										"bytesIn":	86956,

										"bytesInDoc":	1591,

										"connections":	1,

										"requests":	[

												//	List	of	details	of	all	requests	on	tested	page.	See	details	below.

],

										"requestsDoc":	1,

										"responses_200":	1,

										"responses_404":	1,

										"responses_other":	0,

										"result":	99999,

										"render":	292,

										"fullyLoaded":	271,

										"cached":	0,

										"docTime":	194,

										"domTime":	0,

										"score_cache":	100,

										"score_cdn":	-1,

										"score_gzip":	-1,

										"score_cookies":	-1,

										"score_keep-alive":	100,

										"score_minify":	-1,

										"score_combine":	100,

										"score_compress":	-1,

										"score_etags":	-1,

										"gzip_total":	0,

										"gzip_savings":	0,

										"minify_total":	0,

										"minify_savings":	0,

										"image_total":	0,

										"image_savings":	0,

										"optimization_checked":	1,

										"aft":	0,

										"domElements":	13,

										"pageSpeedVersion":	"1.9",

										"title":	"Example	Domain",

										"titleTime":	290,

										"loadEventStart":	187,

https://github.com/WPO-Foundation/webpagetest/releases

										"loadEventEnd":	190,

										"domContentLoadedEventStart":	187,

										"domContentLoadedEventEnd":	187,

										"lastVisualChange":	0,

										"browser_name":	"Google	Chrome",

										"browser_version":	"39.0.2171.95",

										"server_count":	1,

										"server_rtt":	31,

										"base_page_cdn":	"Edgecast",

										"adult_site":	0,

										"fixed_viewport":	1,

										"score_progressive_jpeg":	-1,

										"firstPaint":	251,

										"docCPUms":	140.401,

										"fullyLoadedCPUms":	421.203,

										"docCPUpct":	64,

										"fullyLoadedCPUpct":	13,

										"isResponsive":	-1,

										"date":	1420829464,

										"SpeedIndex":	0,

										"visualComplete":	0,

										"run":	1,

										"effectiveBps":	517595,

										"effectiveBpsDoc":	17483,

										"tester":	"IE9203-192.168.102.93",

										"pages":	{

												//	Urls	for	details,	checklist,	breakdown,	domains,	and	screenShot.

										},

										"thumbnails":	{

												//	Urls	for	waterfall,	checklist,	and	screenShot.

										},

										"images":	{

												//	Urls	for	waterfall,	connectionView,	checklist,	and	screenShot.

										},

										"rawData":	{

												//	Urls	for	headers,	pageData,	requestsData,	and	utilization.

										},

										"videoFrames":	[

												//	List	of	test	video	frames	objects	containing:

												//	"time":	The	time	elapsed	in	_ms_	since	test	started.

												//	"image":	The	url	for	video	frame	image	at	that	time.

												//	"VisuallyComplete":	The	percentage	of	page	(visually)	completion.

],

										"domains":	{

												"www.example.com":	{

														"bytes":	1591,

														"requests":	1,

														"connections":	1

												},

												//	More	domains	objects	here	when	mutiple	domains	available.

										},

										"breakdown":	{

												//	Total	Bytes	and	number	of	requests	for	html,	js,	css,	image,

												//flash,	font,	and	other

										}

								},

								"repeatView":	{

										//	Similar	to	data.runs.1.firstView.

								}

						}

				},

				"fvonly":	false,

				"successfulFVRuns":	1,

				"successfulRVRuns":	1,

				"average":	{

						"firstView":	{

								//	Similar	to	data.runs.1.firstView	but	without	pages,	thumbnails,

								//	images,	rawData,	videoFrames,	domains,	and	breakdown.

						},

						"repeatView":	{

								//	Similar	to	data.runs.average.firstView.

						}

				},

				"standardDeviation":	{

						//	Similar	to	data.runs.average.

				},

				"median":	{

						//	Similar	to	data.runs.1.

				}

		},

		"statusCode":	200,

		"statusText":	"Test	Complete"

}

Details	of	Test	Results
The	firstView	and	repeatView	properties	from	the	JSON	results	previously	shown
contain	all	web	page	performance	metrics,	described	here:

URL:	The	tested	page	URL.

loadTime:	The	total	time	taken	to	load	the	page	(window.onload)	in	ms.

TTFB:	Time	to	first	byte,	which	is	the	duration	in	ms	from	when	the	user	first	made	the
HTTP	request	to	the	very	first	byte	of	the	page	being	received	by	the	browser.

bytesOut:	The	total	bytes	sent	from	the	browser	to	other	servers.

bytesOutDoc:	Same	as	bytesOut	but	only	includes	bytes	until	the	Document	Complete
event.	Usually	when	all	the	page	content	has	loaded	(window.onload).

bytesIn:	The	amount	of	data	that	browser	had	to	download	in	order	to	load	the	page.	It
is	also	commonly	referred	to	as	the	page	size.

bytesInDoc:	Same	as	bytestIn	but	only	includes	bytes	until	Document	Complete
event.

connections:	The	number	of	connections	used.

requests:	List	of	details	of	all	requests	on	tested	page.

requestsDoc:	The	number	of	requests	until	Document	Complete	event.

responses_200:	The	number	of	responses	with	HTTP	status	code	of	200,	OK.

responses_404:	The	number	of	responses	with	HTTP	status	code	of	404,	not	found.

responses_other:	The	number	of	responses	with	HTTPS	status	code	different	from
200	or	404.

result:	Test	result	code.	0	(success)	or	99999	(content	error)	are	successful	tests,	and
all	other	results	are	errors	as	follows:
0:	Successful	Test

4xx-5xx:	HTTP	Result	(Base	Page	Error)

99996:	Test	Failed	waiting	for	specified	DOM	element/End	condition

99997:	Test	Timed	Out	(no	content	errors)

99998:	Test	Timed	Out	(content	errors)

99999:	Test	Completed	successfully	but	individual	requests	failed	(content	errors)

render:	The	first	point	in	time	(in	ms)	that	something	was	displayed	to	the	screen.
Before	that	user	was	staring	at	a	blank	page.	This	does	not	necessarily	mean	the	user
saw	the	page	content	—	it	could	just	be	something	as	simple	as	a	background	color	—
but	it	is	the	first	indication	of	something	happening	for	the	user.

fullyLoaded:	The	time	(in	ms)	the	page	took	to	be	fully	loaded	—	e.g.,	2	seconds	of	no
network	activity	after	Document	Complete.	This	will	usually	include	any	activity	that
is	triggered	by	javascript	after	the	main	page	loads.

cached:	0	for	first	view	or	1	for	repeat	view.

docTime:	Same	as	loadTime.

domTime:	The	total	time	in	ms	until	a	given	DOM	element	(specified	via	domelement
parameter	when	running	a	test)	was	found	on	the	page.

score_cache:	WebPageTest	performance	review	score	for	leveraging	browser	caching
of	static	assets.

score_cdn:	WebPageTest	performance	review	score	for	using	CDN	for	all	static	assets.

score_gzip:	WebPageTest	performance	review	score	for	using	gzip	compression	for
transferring	compressable	responses.

score_cookies:	WebPageTest	performance	review	score	for	not	using	cookies	on	static
assets.

score_keep-alive:	WebPageTest	performance	review	score	for	using	persistent
connections.

score_minify:	WebPageTest	performance	review	score	for	minifying	text	static	assets.

score_combine:	WebPageTest	performance	review	score	for	bundling	JavaScript
and/or	CSS	assets.

score_compress:	WebPageTest	performance	review	score	for	compressing	images.

score_etags:	WebPageTest	performance	review	score	for	disabling	*ETag*s.

gzip_total:	Total	bytes	of	compressible	responses.

gzip_savings:	Total	bytes	of	compressed	responses.

minify_total:	Total	bytes	of	minifiable	text	static	assets.

minify_savings:	Total	bytes	of	minified	text	static	assets.

image_total:	Total	bytes	of	images.

image_savings:	Total	bytes	of	compressed	images.

optimization_checked:	Whether	or	not	optmizations	were	checked.	It	can	be	disabled
with	noopt=1	parameter	when	running	tests.

aft:	Above	the	Fold	Time	(no	longer	supported).	The	time	taken	to	load	everything	in
the	viewport	above	the	fold.

domElements:	The	total	number	of	DOM	elements.

pageSpeedVersion:	The	Page	Speed	version	used	on	performance	analysis.

title:	Page	title.

titleTime:	Total	time	in	ms	until	page	title	was	set	on	browser.

loadEventStart:	Time	in	ms	since	navigation	started	until	window.onload	event	was
triggered	(from	W3C	Navigation	Timing).

loadEventEnd:	Time	in	ms	since	navigation	started	until	window.onload	event
finished.

domContentLoadedEventStart:	Time	in	ms	since	navigation	started	until	document
DOMContentLoaded	event	was	triggered	(from	W3C	Navigation	Timing).

domContentLoadedEventEnd:	Time	in	ms	since	navigation	started	until	document
DOMContentLoaded	event	finished.

lastVisualChange:	Time	in	ms	until	the	last	visual	changed	occured.

browser_name:	The	browser	name.

browser_version:	The	browser	version.

server_count:	Number	of	IP	addresses	that	were	returned	in	the	DNS	lookup	for	the
domains.

server_rtt:	Estimated	round-trip	time	to	server.

base_page_cdn:	The	CDN	provider	for	the	base	page.

adult_site:	Flag	if	website	(URL	or	title)	is	listed	in	the	settings/adult.txt	file.

fixed_viewport:	Flag	if	page	has	meta	tag	viewport	set.

score_progressive_jpeg:	WebPageTest	performance	review	score	for	using
progressive	JPEG.

firstPaint:	RUM	First	Paint	Time,	the	time	in	ms	when	browser	first	painted

something	on	screen.	It’s	calculated	on	the	client	for	browsers	that	implement	this
method.

docCPUms:	CPU	busy	time	in	ms	until	Document	Complete	event.

fullyLoadedCPUms:	CPU	busy	time	in	ms	until	page	was	fully	loaded.

docCPUpct:	Average	CPU	utilization	up	until	page	content	has	loaded
(window.onload).

fullyLoadedCPUpct:	Average	CPU	utilization	up	until	page	is	fully	loaded.

isResponsive:	Flag	indicating	if	page	is	responsive.	It	basically	checks	if	page	body
has	a	scrollbar	in	a	narrow	browser.

date:	Time	and	date	(number	of	seconds	since	Epoch)	when	test	was	complete.

SpeedIndex:	The	SpeedIndex	score.

visualComplete:	Time	in	ms	when	page	was	visually	completed.

run:	The	run	number.

effectiveBps:	Bytes	per	seconds,	i.e.:	total	of	bytes	in	/	total	time	to	load	the	page.

effectiveBpsDoc:	Same	as	effectiveBps	but	until	Document	Complete	event.

tester:	The	ID	of	tester	that	performed	the	page	test.

userTimes:	W3C	user	timing	marks,	if	any.
metric1:	First	metric.

metricN:	Nth	metric.

userTime.metric1:	Same	as	userTimes.metric1.

userTime.metricN:	Same	as	userTimes.metricN.

custom:	List	of	custom	metrics,	e.g.,	["custom1",	"customN"]

custom1:	First	custom	metric.

customN:	Nth	custom	metric.

Details	of	Requests	In	Test	Results
requests	is	an	array	of	request	details	and	contains	the	following	properties:

method:	The	HTTP	method.

host:	The	host	and	port	number	of	the	resource	being	requested.

url:	The	request	path.

responseCode:	HTTP	status	code.

load_ms:	The	time	in	ms	it	took	the	page	to	load.

ttfb_ms:	Time	to	first	byte	—	i.e.,	the	duration	from	making	the	request	to	the	first
byte	of	resource	being	received	by	the	browser.

load_start:	Time	elapsed	in	ms	since	test	started	until	request	actually	started.

bytesOut:	The	total	bytes	sent	to	request	resource.

bytesIn:	The	amount	of	data	that	browser	had	to	download	in	order	to	load	the
requested	resource.

objectSize:	The	amount	of	encoded	data	resource	takes.

expires:	Resource	cache	expiration	date,	the	same	returned	in	the	Expires	response
headers.

cacheControl:	Resource	cache	control,	the	same	returned	in	the	Cache-Control
response	headers.

contentType:	Resource	content	type,	the	same	returned	in	the	Content-Type	response
headers.

contentEncoding:	Resource	content	encoding,	the	same	returned	in	the	Content-
Encoding	response	headers.

type:	Internal	use	and	legacy.	The	socket	connections	and	DNS	requests	for	URLBlast
are	written	as	separate	entries	in	the	data	log,	and	those	have	different	types.	When	it	is
processed	they	are	discarded	and	only	type	3	is	left.

socket:	The	connection	ID	used	to	download	request	resource.

score_cache:	WebPageTest	performance	review	score	for	leveraging	browser	caching
of	requested	resource.

score_cdn:	WebPageTest	performance	review	score	for	using	CDN	on	requested
resource.

score_gzip:	WebPageTest	performance	review	score	for	using	gzip	compression	for
transferring	compressable	resource	responses.

score_cookies:	WebPageTest	performance	review	score	for	not	using	cookies	on
requested	resource.

score_keep-alive:	WebPageTest	performance	review	score	for	using	persistent
connection	on	requested	resource.

score_minify:	WebPageTest	performance	review	score	for	minifying	text	resource.

score_combine:	WebPageTest	performance	review	score	for	bundling	JavaScript
and/or	CSS	resources.

score_compress:	WebPageTest	performance	review	score	for	compressing	images
resource.

score_etags:	WebPageTest	performance	review	score	for	disabling	*ETag*s	on
requested	resource.

is_secure:	Whether	or	not	resource	is	under	a	secure	connection.

dns_ms:	dns_end	minus	dns_start.

connect_ms:	connect_end	minus	connect_start.

ssl_ms:	ssl_end	minus	ssl_start.

gzip_total:	Total	bytes	of	compressible	response.

gzip_save:	Total	bytes	of	compressed	response.

minify_total:	Total	bytes	of	minifiable	text	response.

minify_save:	Total	bytes	of	minified	text	response.

image_total:	Total	bytes	of	image	resource.

image_save:	Total	bytes	of	compressed	image	resource.

cache_time:	Total	cache	duration	in	seconds.

cdn_provider:	The	resource	CDN	provider.

dns_start:	Time	elapsed	in	ms	since	test	started	until	request	DNS	lookup	started.

dns_end:	Time	elapsed	in	ms	since	test	started	until	request	DNS	lookup	ended.

connect_start:	Time	elapsed	in	ms	since	test	started	until	request	TCP	connection

handshake	started.

connect_end:	Time	elapsed	in	ms	since	test	started	until	request	TCP	connection
handshake	ended.

ssl_start:	Time	elapsed	in	ms	since	test	started	until	request	SSL	negotiation	started.

ssl_end:	Time	elapsed	in	ms	since	test	started	until	request	SSL	negotiation	ended.

server_count:	Number	of	IP	addresses	that	were	returned	in	the	DNS	lookup	for	the
resource	domain.

client_port:	Socket	port	on	the	client	side	for	the	connection	that	the	request	used
(useful	for	matching	to	tcpdump).

jpeg_scan_count:	The	number	of	scans	on	progressive	JPEG	image	resources.

full_url:	Full	requested	URL,	including	URI	scheme.

score_progressive_jpeg:	WebPageTest	performance	review	score	for	image	resource
using	progressive	JPEG.

load_end:	Time	elapsed	in	ms	since	test	started	until	response	actually	ended.

ttfb_start:	Time	elapsed	in	ms	since	test	started	until	resource	time	to	first
(downloaded)	byte	started.

ttfb_end:	Time	elapsed	in	ms	since	test	started	until	resource	time	to	first
(downloaded)	byte	ended.

download_start:	Time	elapsed	in	ms	since	test	started	until	resource	download	started.

download_end:	Time	elapsed	in	ms	since	test	started	until	resource	download	ended.

download_ms:	download_end	minus	download_start.

all_start:	Same	as	load_start.

all_end:	Same	as	load_end.

all_ms:	all_end	minus	all_start.

headers:
request:	Array	of	raw	request	headers,	one	per	line.

response:	Array	of	raw	response	headers,	one	per	line.

index:	The	request	index.

number:	index	+	1.

API
This	is	an	exhaustive	list	of	all	WebPageTest	API	endpoints.

WARNING
New	releases	of	WebPageTest	may	introduce	API	endpoint	changes.	Check	WebPageTest	releases	for	more
details.

https://github.com/WPO-Foundation/webpagetest/releases

Locations
List	of	locations	and	the	number	of	pending	tests:

Endpoint
/getLocations.php

Parameters
f=format

The	output	format:

json

xml	(default)

callback=name

When	used	in	conjunction	with	f=json,	returns	JSONP	—	i.e.,	wraps	the	JSON
output	with	given	callback	function	name.

r=request	id>

Echoes	a	given	request	ID.	Useful	for	tracking	asynchronous	requests.

Output

XML	by	default	or	if	f=xml	is	present

JSON	if	f=json	is	present

JSONP	if	f=json	and	callback=name	are	present

Test
Submit	a	URL	or	script	to	be	tested,	returning	a	test	ID	and	other	information	about	the
submitted	test:

Endpoint
/runtest.php

Parameters
url=url

The	URL	to	be	tested.	Must	be	encoded	in	order	to	escape	URI-specific
characters.

k=api	key

The	WebPageTest	API	key	if	required	by	server.
location=location

Location	to	test	from.
connectivity=profile

Connectivity	profile:

Cable	(default)

DSL

FIOS

Dial

3G

3GFast

Native

Custom,	if	connectivity=custom	then	location=location,
bwDown=bandwidth	and	bwUp=bandwidth	are	required	and	optionally
latency=time	and	plr=percentage.

runs=number

Number	of	test	runs;	defaults	to	1.
fvonly=1

Skip	the	repeat-view	test.
video=1

Capture	video.

private=1

Keep	the	test	hidden	from	the	test	log.
label=label

Label	for	the	test.
web10=1

Stop	test	at	document	complete.	Typically,	tests	run	until	all	activity	stops.
noscript=1

Disable	JavaScript.
clearcerts=1

Clear	SSL	certificate	caches.
ignoreSSL=1

Ignore	SSL	certificate	errors	—	e.g.,	name	mismatch,	self-signed	certificates,
etc.

standards=1

Forces	all	pages	to	load	in	standard	mode	(IE	only).
tcpdump=1

Capture	network	packet	trace	(tcpdump).
bodies=1

Save	response	bodies	for	text	resources.
keepua=1

Do	not	add	PTST	to	the	original	browser	user	agent	string.
domelement=element

DOM	element	to	record	for	submeasurement.
time=seconds

Minimum	test	duration	in	seconds.
tester=name

Run	the	test	on	a	specific	PC	(name	must	match	exactly	or	the	test	will	not	run).
mobile=1

Emulate	mobile	browser	(experimental):	Chrome	mobile	user	agent,	640x960
screen,	2x	scaling,	and	fixed	viewport	(Chrome	only).

timeline=1

Capture	Developer	Tools	Timeline	(Chrome	only).
timelineStack=1

Set	between	1	and	5	to	include	the	JavaScript	call	stack.	Must	be	used	in
conjunction	with	timeline	(increases	overhead;	Chrome	only).

trace=1

Capture	chrome	trace	(about://tracing;	Chrome	only).
netlog=1

Capture	Network	Log	(Chrome	only).
dataReduction=1

Enable	data	reduction	on	Chrome	34+	Android	(Chrome	only).
uastring=string

Custom	user	agent	string	(Chrome	only).
cmdline=switches

Use	a	list	of	custom	command-line	switches	(Chrome	only).
username=username

Username	for	authenticating	tests	(HTTP	authentication).
password=password

Password	for	authenticating	tests	(HTTP	authentication).
sensitive=1

Discard	script	and	HTTP	headers	in	the	result.
noheaders=1

Disable	saving	of	the	HTTP	headers,	as	well	as	browser	status	messages	and
CPU	utilization.

block=urls

Space-delimited	list	of	URLs	to	block	(substring	match).
spof=domains

Space-delimited	list	of	domains	to	simulate	failure	by	rerouting	to
blackhole.webpagetest.org	to	silently	drop	all	requests.

custom=script

Execute	arbitrary	JavaScript	at	the	end	of	a	test	to	collect	custom	metrics.
authType=type

Type	of	authentication:

0:	Basic	(default)

1:	SNS

notify=email

Email	address	to	notify	with	the	test	results.
pingback=url

URL	to	ping	when	the	test	is	complete	(the	test	ID	will	be	passed	as	an	id
parameter).

bwDown=bandwidth

Download	bandwidth	in	Kbps	(used	when	specifying	a	custom	connectivity
profile).

bwUp=bandwidth

Upload	bandwidth	in	Kbps	(used	when	specifying	a	custom	connectivity
profile).

latency=time

First-hop	round-trip	time	in	ms	(used	when	specifying	a	custom	connectivity
profile).

plr=percentage

Packet	loss	rate,	which	is	the	percent	of	packets	to	drop	(used	when	specifying	a
custom	connectivity	profile).

noopt=1

Disable	optimization	checks	(for	faster	testing).
noimages=1

Disable	screenshot	capturing.
pngss=1

Save	a	full-resolution	version	of	the	fully	loaded	screenshot	as	a	PNG.
iq=level

JPEG	compression	level	(30–100)	for	the	screenshots	and	video	capture.
mv=1

Store	the	video	from	the	median	run	when	capturing	video	is	enabled.
htmlbody=1

Save	the	content	of	only	the	base	HTML	response.
tsview_id=id

Test	name	to	use	when	submitting	results	to	tsviewdb	(for	private	instances	that
have	integrated	with	tsviewdb).

affinity=string

String	to	hash	test	to	a	specific	test	agent.	Tester	will	be	picked	by	index	among
available	testers.

blockads=1

Block	ads	defined	by	adblockrules.org.
continuousVideo=1

http://adblockrules.org/

Capture	video	continuously	(unstable/experimental;	may	cause	tests	to	fail).
forceSpdy3=1

Force	SPDY	version	3	(Chrome	only).
swrender=1

Force	software	rendering;	disable	GPU	acceleration	(Chrome	only).
r=request	id

Echoes	a	given	request	ID.	Useful	for	tracking	asynchronous	requests.

Output

JSON	or	XML	if	f=format	is	present

JSONP	if	f=json	and	callback=name	are	present

Status
Check	the	current	status	of	the	submitted	test:

Endpoint
/testStatus.php

Parameters
test=test	id

The	submitted	test	ID.
f=format

The	output	format:

json	(default)

xml

callback=name

When	used	in	conjunction	with	f=json	(default),	returns	JSONP	—	i.e.,	wraps
the	JSON	output	with	given	callback	function	name.

r=request	id

Echoes	a	given	request	ID.	Useful	for	tracking	asynchronous	requests.

Output

JSON	by	default	or	if	f=json	is	present

XML	if	f=xml	is	present

JSONP	if	callback=name	is	present	with	f=format	omitted	or	f=json	is	present

Cancel
Cancel	a	running	or	pending	test:

Endpoint
/cancelTest.php

Parameters
test=test	id

The	submitted	test	ID.
k=api	key

The	WebPageTest	API	key	if	required	by	server.

Output

HTML

Results
Get	the	test	results:

Endpoint

/jsonResult.php	or	/xmlResult.php

Parameters
test=test	id

The	submitted	test	ID.
breakdown=1

Include	the	breakdown	of	requests	and	bytes	by	mime	type.
domains=1

Include	the	breakdown	of	requests	and	bytes	by	domain.
pagespeed=1

Include	the	PageSpeed	score	in	the	response	(may	be	slower).
requests=1

Include	the	request	data	in	the	response	(slower	and	results	in	much	larger
responses).

r=request	id

Echoes	a	given	request	ID.	Useful	for	tracking	asynchronous	requests.
callback=name

When	used	with	/jsonResult.php,	returns	JSONP	—	i.e.,	wraps	the	JSON
output	with	given	callback	function	name.

Output

JSON	when	using	/jsonResult.php

JSONP	when	using	/jsonResult.php	with	callback=name

XML	when	using	/xmlResult.php

Testers
List	tester’s	status	and	details:

Endpoint
/getTesters.php

Parameters
f=format

The	output	format:

xml	(default)

json

callback=name

When	used	in	conjunction	with	f=json,	returns	JSONP	—	i.e.,	wraps	the	JSON
output	with	given	callback	function	name.

r=request	id

Echoes	a	given	request	ID.	Useful	for	tracking	asynchronous	requests.

Output

XML	by	default	or	if	f=xml	is	present

JSON	if	f=json	is	present

JSONP	if	f=json	and	callback=name	are	present

HAR
Get	the	HTTP	archive	(HAR)	from	test:

Endpoint
/export.php

Parameters
test=test	id

The	completed	test	ID.
callback=name

Returns	JSONP	—	i.e.,	wraps	the	JSON	output	with	given	callback	function
name.

Output

JSON

JSONP	when	callback=name	is	present

Chrome	Developer	Tools	Timeline
Get	the	Chrome	Developer	Tools	Timeline	data	(if	available)	from	test:

Endpoint
/getTimeline.php

Parameters
test=test	id

The	completed	test	ID.
run=number

Run	number	on	a	multiple	runs	test;	defaults	to	1	(first	run).
cached=1

Get	the	repeat	view	(cached	view)	instead	of	default	first	view	(primed	cache).

Output

JSON

Test	History
Get	history	of	previously	run	tests:

Endpoint
/testLog.php

Parameters
f=csv

Output	data	as	CSV;	if	omitted,	HTML	page	is	returned.
days=number

Get	history	for	last	number	days,	including	the	current	day.
from=date

Initial	date	in	the	format	YYYY-MM-DD.	It	queries	backwards,	starting	from
date	going	back	to	number	of	days	in	the	past.

filter=string

Narrow	search	for	tests	with	URLs	containing	string.
video=1

Narrow	search	for	tests	that	include	video.
all=1

Search	for	tests	from	all	users.
nolimit=1

Do	not	limit	number	of	results	(100	by	default).	Warning:	might	be	slow.

Output

CSV;	f=csv	must	be	present

Response	Body
Get	response	body	for	text	resources	from	test	if	response	bodies	parameter	was	set	on
submitted	test.

Endpoint
/response_body.php

Parameters
test=test	id

The	completed	test	ID.
request=number

The	request	number;	defaults	to	1	which	is	the	HTML	document.
run=number

Run	number	on	a	multiple	runs	test;	defaults	to	1	(first	run).
cached=1

Get	the	repeat	view	(cached	view)	instead	of	default	first	view	(primed	cache).

Output

text/plain

Waterfall
Get	the	waterfall	PNG	image:

Endpoint
/waterfall.php

Parameters
test=test	id

The	completed	test	ID.
run=number

Run	number	on	a	multiple	runs	test;	defaults	to	1	(first	run).
cached=1

Get	the	repeat	view	(cached	view)	instead	of	default	first	view	(primed	cache).
type=chart

Chart	type:	waterfall	(default)	or	connection.
mime=1

Chart	coloring	by	MIME	type.
width=px

Chart	image	width	in	pixels	between	300	and	2000;	defaults	to	930.
max=seconds

Maximum	time	in	seconds;	defaults	to	automatic.
requests=items

Filter	requests	(e.g.,	1,2,3,4-9,8);	defaults	to	all.
cpu=0

Hide	CPU	utilization.
bw=0

Hide	bandwidth	utilization.
dots=0

Hide	ellipsis	(…)	for	missing	items.
labels=0

Hide	labels	for	requests.

Output

image/png	(binary)

Create	Video
Create	a	video	for	single	or	multiple	tests:

Endpoint
/video/create.php

Parameters
tests=test	ids

One	or	more	comma	separated	test	ID.
end=end	point

Frame	comparison	end	point:

visual:	visually	complete	(default)

all:	last	change

doc:	document	complete

full:	fully	loaded

f=format

The	output	format	(required;	otherwise,	it	redirects	to	video	view	page):

json

xml

callback=name

When	used	in	conjunction	with	f=json,	returns	JSONP	—	i.e.,	wraps	the	JSON
output	with	given	callback	function	name.

Output

JSON	or	XML	if	f=format	is	present

JSONP	if	f=json	and	callback=name	are	present

Get	Gzip	Content
Get	several	test	data	stored	in	WebPageTest	server:

Endpoint
/getgzip.php

Parameters

test=test	id

The	completed	test	ID.
file=filename

Get	data	of	one	of	the	following	files:

testinfo.json	
Get	test	details.

<run>_[Cached_]pagespeed.txt	
Get	the	Google	Page	Speed	JSON	results	(if	available)	from	test.

<run>_[Cached_]progress.csv	
Get	the	CPU,	bandwidth,	and	memory	utilization	CSV	data	from	test.

<run>_[Cached_]IEWTR.txt	
Get	the	request	TSV	data	from	test.

<run>_[Cached_]netlog.txt	
Get	the	Chrome	Developer	Tools	Net	log	JSON	data	(if	available)	from	test.

<run>_[Cached_]trace.json	
Get	the	Chrome	Trace	JSON	data	(if	available)	from	test.

<run>_[Cached_]console_log.json	
Get	the	browser	console	log	JSON	data	(if	available)	from	test.	
Where:
run:	run	number.

Cached_:	if	provided,	get	repeat	view.

<run>_[Cached_]screen[_render|_doc].<jpg|png>	
Get	the	fully	loaded	page	screenshot,	where:
_render:	if	provided,	get	the	page	screenshot	at	the	Start	Render	point	(i.e.,
when	something	was	first	displayed	on	screen).

_doc:	if	provided,	get	the	page	screenshot	at	the	Document	Complete	point
(i.e.,	when	window.onload	was	fired).

jpg:	get	screenshot	in	JPG	format.

png:	get	screenshot	in	PNG	in	full	resolution	if	test	was	submitted	with
pngss=1.

Get	Thumbnail
Get	thumbnail	for	screenshot	and	waterfall:

Endpoint
/thumbnail.php

Parameters
test=test	id

The	completed	test	ID.
file=filename

One	of	the	following	files:

<run>_[Cached_]screen[_render|_doc].<jpg|png>	
Get	the	fully	loaded	page	screenshot	thumbnail,	where:
run:	run	number.

Cached_:	if	provided,	get	repeat	view	screenshot	thumbnail.

_render:	if	provided,	get	the	page	screenshot	thumbnail	at	the	Start	Render
point	(i.e.,	when	something	was	first	displayed	on	screen).

_doc:	if	provided,	get	the	page	screenshot	thumbnail	at	the	Document
Complete	point	(i.e.,	when	window.onload	was	fired).
jpg:	get	screenshot	thumbnail	in	JPG	format.

png:	get	screenshot	thumbnail	in	PNG	if	in	full	resolution.

<run>_[Cached_]waterfall.png	
Get	the	test	run	waterfall	thumbnail,	where:
run:	run	number.

Cached_:	if	provided,	get	repeat	view	waterfall	thumbnail	
Thumbnail	waterfall	has	optional	parameters:

type=chart	
Chart	type:	waterfall	(default)	or	connection.

mime=1	
Chart	coloring	by	MIME	type.

width=px	
Chart	image	width	in	pixels	between	300	and	2000;	defaults	to	930.

max=seconds	
Maximum	time	in	seconds;	defaults	to	automatic.

requests=items	
Filter	requests	(e.g.,	1,2,3,4–9,8);	defaults	to	all.

cpu=0	
Hide	CPU	utilization.

bw=0	
Hide	bandwidth	utilization.

dots=0	
Hide	ellipsis	(…)	for	missing	items.

labels=0	
Hide	labels	for	requests.

Index

A

age	of	resources,	Analyzing	Cachability-Analyzing	Cachability

Amazon	Machine	Images	(AMI),	Using	the	Preconfigured	AWS	AMI-Configure	and
Launch	the	AWS	Instance

Amazon	S3	Storage,	Archiving	Old	Tests

Amazon	Web	Services	(AWS),	Using	the	Preconfigured	AWS	AMI-Configure	and
Launch	the	AWS	Instance

Android	test	device,	Add	Android	Devices-Check	that	the	agent	works

antipatterns,	Common	Anti-Patterns-Network	silence,	Summary	of	Part	I

canceled	requests,	Canceled	requests-Canceled	requests

long	first-byte	time,	Long	first-byte	time-Long	first-byte	time

network	silence,	Network	silence-Network	silence

reopened	connections,	Reopened	connections-Reopened	connections

Apache,	Creating	Your	Own	Local	Installation

API	key

limitations,	Public	instance

specifying,	Specifying	the	API	Key

application-specific	metrics,	Measure	What	Matters

archiving	tests,	Archiving	Old	Tests-Archiving	Old	Tests

assertion	comparisons,	Defining	Assertion	Comparison

assertion	test	specs	file,	JSON	Test	Specs

authentication,	Authentication-Setting	Cookies

DOM	manipulation,	DOM	Manipulation

HTTP	Basic	Authentication	(HBA),	HTTP	Basic	Authentication

setting	cookies,	Setting	Cookies-Setting	Cookies

B

bandwidth,	Geographic	Location,	Bandwidth	Shaping

base	tag,	Canceled	requests

black	hole	rerouting,	Black-Hole	Rerouting-SPOF	Tab

setDns	command,	setDns-setDns

SPOF	tab,	SPOF	Tab-SPOF	Tab

blackhole.webpagetest.org,	setDns

block	command,	Blocking	Requests

blog	pages,	Popular	Pages

browsers,	breakdown	by,	Device	and	Browser-Device	and	Browser

C

caches/caching

analyzing	cachability,	Analyzing	Cachability-Analyzing	Cachability

cache	optimization,	Cache	Optimization-Heuristic	Caching

cache	states,	Scripting	Preconditions

caching	static	content,	Cache	Static	Content

defined,	Cache	Optimization

heuristic	caching,	Heuristic	Caching-Heuristic	Caching

overview,	Cache	Optimization-Cache	Optimization

Repeat	View,	Enabling	Repeat	View-Enabling	Repeat	View

canceled	requests,	Canceled	requests

Capture	Video,	Capture	Video-Capture	Video

Chrome

desktop	emulation	in,	Desktop	Emulation

emulation	mode,	Traffic	Shaping-Traffic	Shaping

testing	by	processing	breakdown,	Asserting	by	processing	breakdown

compress	transfer,	Compress	Transfer

connection	speed,	Connection	Speed-Connection	Speed

connection	view,	Connection	View-Connection	View,	Summary	of	Part	I

connections,	reusing,	Reopened	connections-Reopened	connections,	WebPageTest
Grades,	Keep-Alive	Enabled

content	delivery	networks	(CDNs),	WebPageTest	Grades,	Effective	Use	of	CDNs

content	download,	Reading	a	Waterfall,	Connection	View

continuous	integration	(CI),	Continuous	Integration-Encrypting	the	WebPageTest
API	key

asserting	metrics	from	test	results,	Asserting	Metrics	from	Test	Results-Asserting
by	processing	breakdown

(see	also	test	specs)

Jenkins	integration,	Jenkins	Integration-Using	JUnit	as	a	test	reporter

Node.js	wrapper,	Node.js	Wrapper-Running	a	proxy	from	a	Node.js	module

(see	also	Node.js	wrapper)

Travis-CI,	Travis-CI	Integration-Encrypting	the	WebPageTest	API	key

cookies,	setting,	Setting	Cookies-Setting	Cookies

critical	path,	Waterfall	Slope

D

data	table,	Running	a	Simple	Test-Running	a	Simple	Test

demographics,	Identifying	Demographics-Connection	Speed

connection	speed,	Connection	Speed-Connection	Speed

device	and	browser	breakdowns,	Device	and	Browser-Device	and	Browser

geographic	location,	Geographic	Location-Geographic	Location

popular	pages,	Popular	Pages-Popular	Pages

User-Agent	property,	Desktop	Emulation-Desktop	Emulation

desktop	emulation,	Mobile	Testing-Desktop	Emulation

desktop	test	agents,	Desktop	Test	Agents-Desktop	Test	Agents

devices,	breakdown	by,	Device	and	Browser-Device	and	Browser

DFP	outages,	SPOF	Testing-SPOF	Testing

DNS	Lookup,	Reading	a	Waterfall

Document	Complete	Time,	Measure	What	Matters,	Running	a	Simple	Test-Running
a	Simple	Test,	Reading	a	Waterfall

DOM	Content	Loaded	handler,	Reading	a	Waterfall

DOM	elements,	Running	a	Simple	Test

DOM	manipulation,	DOM	Manipulation

Domains	tab,	Black-Hole	Rerouting

DOMContentLoaded	event,	Measure	What	Matters

DoubleClick	for	Publishers	(DFP)	service,	SPOF	Testing-SPOF	Testing

E

e-commerce	sites,	Popular	Pages

emulation,	Mobile	Testing-Desktop	Emulation

entry	pages,	logData	and	navigate

/export.php,	Reading	Beyond	Results

F

filmstrip,	Filmstrip	and	Video-Speed	Index,	SPOF	Tab

First	Byte,	Running	a	Simple	Test

First	View,	Running	a	Simple	Test,	Flow	View

first-byte	times,	Long	first-byte	time-Long	first-byte	time,	First-Byte	Time-First-Byte
Time

Flow	View,	Flow	View-logData	and	navigate

FreeBSD,	Bandwidth	Shaping

Fully	Loaded,	Running	a	Simple	Test

G

geographic	location,	Geographic	Location-Geographic	Location

/getgzip.php,	Reading	Beyond	Results

/getLocations.php,	Reading	Beyond	Results,	Configure	and	Launch	the	AWS
Instance,	Monitoring	Queues	and	Test	Agents

/getTesters.php,	Reading	Beyond	Results,	Configure	and	Launch	the	AWS	Instance,
Monitoring	Queues	and	Test	Agents,	Check	that	the	test	agents	are	polling	for	work

/getTimeline.php,	Reading	Beyond	Results

Google

DFP	outages,	SPOF	Testing-SPOF	Testing

Google	Analytics,	Identifying	Demographics-Device	and	Browser

Page	Speed,	WebPageTest	Grades

grades,	WebPageTest	Grades-Effective	Use	of	CDNs,	Summary	of	Part	I

cache	static	content,	Cache	Static	Content

compress	images,	Compress	Images

compress	transfer,	Compress	Transfer

effective	use	of	CDN,	Effective	Use	of	CDNs

first-byte	time,	First-Byte	Time-First-Byte	Time

Keep-Alive	enabled,	Keep-Alive	Enabled

progressive	JPEGs,	Progressive	JPEGs

gzipping,	WebPageTest	Grades

H

headless	mode,	Configure	and	Launch	the	AWS	Instance

heuristic	caching,	Heuristic	Caching-Heuristic	Caching

heuristic	expiration,	Heuristic	Caching

HTTP	Basic	Authentication	(HBA),	HTTP	Basic	Authentication-HTTP	Basic
Authentication

I

image	compression,	WebPageTest	Grades,	Compress	Images-Progressive	JPEGs

images

progressive	JPEGs,	Progressive	JPEGs

Initial	Connection,	Reading	a	Waterfall

Internet	speed	(see	connection	speed)

iOS	test	agent,	Add	iOS	Devices

J

Jenkins	integration,	Jenkins	Integration-Using	JUnit	as	a	test	reporter

JPEG	compression,	Compress	Images

JSON	test	specs,	JSON	Test	Specs-JSON	Test	Specs

/jsonResult.php,	Polling	Test	Results,	Reading	Beyond	Results

JUnit,	Using	JUnit	as	a	test	reporter

K

Keep-Alive,	enabling,	Keep-Alive	Enabled

key	requests,	Requesting	a	Key-Private	instance

L

latency,	Geographic	Location

Load	Time,	Measure	What	Matters,	Running	a	Simple	Test-Running	a	Simple	Test

location,	visitor	(see	geographic	location)

logData,	logData	and	navigate

logData	command,	logData	and	navigate

lookahead	pre-parser,	Canceled	requests

lookahead	scanning,	Canceled	requests

M

median	run,	Running	a	Simple	Test

medianMetric,	Running	a	Simple	Test

MIME	type,	testing	by,	Asserting	by	MIME	type

mobile	devices,	Device	and	Browser-Device	and	Browser

as	test	agents,	Mobile	Test	Agents-Bandwidth	Shaping

Android,	Add	Android	Devices-Check	that	the	agent	works

bandwidth	shaping,	Bandwidth	Shaping

iOS,	Add	iOS	Devices

mobile	testing,	Mobile	Testing-Native	Devices

3G/Fast	3G	profiles,	Traffic	Shaping

desktop	emulation,	Mobile	Testing-Desktop	Emulation

on	native	devices,	Native	Devices-Native	Devices

traffic	shaping,	Traffic	Shaping-Traffic	Shaping

Mocha,	Specifying	Test	Reporter

N

native	devices,	and	mobile	testing,	Native	Devices-Native	Devices

navigate	command,	logData	and	navigate-logData	and	navigate

network	silence,	Network	silence-Network	silence

Node.js	wrapper,	Node.js	Wrapper-Running	a	proxy	from	a	Node.js	module

choosing	WebPageTest	server,	Choosing	Your	WebPageTest	Server

installing,	Installing	the	WebPageTest	Node.js	Wrapper

integrating	with	Jenkins,	Jenkins	Integration-Using	JUnit	as	a	test	reporter

reading	results	from	the	command	line,	Reading	results	from	the	command	line

RESTful	proxy	(listener),	RESTful	Proxy-Running	a	proxy	from	a	Node.js	module

running	tests	and	reading	results	from	a	Node.js	module,	Running	tests	and
reading	results	from	a	Node.js	module-Running	tests	and	reading	results	from	a
Node.js	module

running	tests	and	reading	results	from	the	command	line,	Running	tests	from	the
command	line-Running	tests	and	reading	results	from	the	command	line

specifying	API	key,	Specifying	the	API	Key

test	spec	examples,	Test	Specs	Examples-Asserting	by	processing	breakdown

test	specs,	Asserting	Metrics	from	Test	Results-Asserting	by	processing	breakdown

(see	also	test	specs)

NodeJS	agent,	Mobile	Test	Agents-Install	Agent

O

On	Load,	Reading	a	Waterfall

optimization	testing,	What’s	Slowing	Down	My	Page?-Effective	Use	of	CDNs

connection	view,	Connection	View-Connection	View

performance	issues	(see	antipatterns)

phases	of,	Running	a	Simple	Test

running	a	simple	test,	What’s	Slowing	Down	My	Page?-Running	a	Simple	Test

waterfalls,	Reading	a	Waterfall-Waterfall	Slope

WebPageTest	grades	(see	grades)

P

page	revisits,	Simulating	Real	Users

Page	Speed,	WebPageTest	Grades

performance	issues	(see	antipatterns)

performance	perceptions,	Perceived	Performance

PHP,	Creating	Your	Own	Local	Installation

pingback,	Pingback	Test	Results-Pingback	Test	Results,	Running	tests	and	reading
results	from	a	Node.js	module

polling,	Reading	the	Results-Polling	Test	Results,	Pingback	Test	Results

pollResults,	Running	tests	and	reading	results	from	a	Node.js	module

popular	pages,	Popular	Pages-Popular	Pages

preload	invalidation,	Canceled	requests

private	WebPageTest	use,	Private	Instances-Contributing	Changes	to	WebPageTest

API	key,	Private	instance-Private	instance

contributing,	Contributing	Changes	to	WebPageTest-Contributing	Changes	to

WebPageTest

day-to-day	management

archiving	old	tests,	Archiving	Old	Tests-Archiving	Old	Tests

monitoring	queues	and	test	agents,	Day-to-Day	Management-Monitoring
Queues	and	Test	Agents

desktop	test	agents,	Desktop	Test	Agents-Desktop	Test	Agents

home	page,	Creating	Your	Own	Local	Installation

how	it	works,	How	Does	WebPageTest	Work?

local	installation,	Creating	Your	Own	Local	Installation-Creating	Your	Own	Local
Installation

mobile	test	agents,	Mobile	Test	Agents-Bandwidth	Shaping

private-instance-only	features

bulk	test,	Private-Instance-Only	Features-Custom	Metrics

custom	metrics,	Custom	Metrics

remote	test	agents,	Remote	Test	Agents-Remote	Test	Agents

updating	an	instance,	Updating	an	Instance

using	AMI	(Amazon	Machine	Images),	Using	the	Preconfigured	AWS	AMI-
Configure	and	Launch	the	AWS	Instance

processing	breakdown,	testing	by,	Asserting	by	processing	breakdown

profilers,	Network	silence

progressive	JPEGs,	Progressive	JPEGs

public	WebPageTest	use,	WebPageTest	API-Reading	Beyond	Results

automation	of	reading	results

pingback,	Pingback	Test	Results-Pingback	Test	Results

polling,	Reading	the	Results-Polling	Test	Results

example	test,	advanced,	Advanced	Example	Test-Advanced	Example	Test

example	test,	simple,	Simple	Example	Test-Status	codes

key	limitations,	Public	instance

limitations	of,	Private	Instances-Private	Instances

reading	the	results,	Reading	the	Results-Pingback	Test	Results

requesting	a	key,	Requesting	a	Key-Private	instance

R

real-user	simulation,	Simulating	Real	Users-Connection	Speed

connection	speed,	Connection	Speed-Connection	Speed

device	and	browser	breakdowns,	Device	and	Browser-Device	and	Browser

geographic	location,	Geographic	Location-Geographic	Location

popular	pages,	Popular	Pages-Popular	Pages

remote	test	agents,	Remote	Test	Agents-Remote	Test	Agents

Repeat	View,	Running	a	Simple	Test,	Enabling	Repeat	View-Heuristic	Caching,	Flow
View

report	summary,	Running	a	Simple	Test

request	blocking,	SPOF	Testing,	Blocking	Requests-Blocking	Requests

request	highlighting,	Reading	a	Waterfall-Waterfall	Slope

requestAnimationFrame,	Network	silence

resource	availability,	Running	a	Simple	Test

RUM	(real	user	monitoring),	Synthetic	Versus	RUM-Synthetic	Versus	RUM,
Identifying	Demographics-Identifying	Demographics,	logData	and	navigate,	SPOF
Testing

/runtest.php,	Advanced	Example	Test

/runTest.php,	Reading	Beyond	Results

S

screenshots,	Capture	Video-Capture	Video

scripting	preconditions,	Scripting	Preconditions-Setting	Cookies

authentication,	Authentication-Setting	Cookies

(see	also	authentication)

flow	view,	Flow	View-logData	and	navigate

scriptToString,	Running	tests	and	reading	results	from	a	Node.js	module

service-level	agreements	(SLAs),	Blocking	Requests

setCookie,	Setting	Cookies

setDns,	setDns-setDns

setTimeout,	Network	silence

setValue,	DOM	Manipulation

simulating	real	users	(see	real	user	simulation)

single	point	of	failure	(SPOF)	(see	SPOF	testing)

smartphones	(see	mobile	testing;	mobile	devices)

specifying	API	key,	Specifying	the	API	Key

speed	(see	connection	speed)

speed	index,	Speed	Index-Speed	Index,	Speed	Index

speed	metrics	overview,	How	Fast	Is	My	Page?-Synthetic	Versus	RUM

SPOF	tab,	SPOF	Tab-SPOF	Tab

SPOF	testing,	SPOF	Testing-Blocking	Requests

black	hole	rerouting,	Black-Hole	Rerouting-SPOF	Tab

request	blocking,	SPOF	Testing,	Blocking	Requests-Blocking	Requests

SSL	Negotiation,	Reading	a	Waterfall

start	offsets,	Waterfall	Slope

Start	Render,	Running	a	Simple	Test,	Reading	a	Waterfall

static	content,	chaching,	Cache	Static	Content

submitForm,	DOM	Manipulation

synthetic	tools,	Synthetic	Versus	RUM-Synthetic	Versus	RUM

T

tablets	(see	mobile	testing;	mobile	devices)

TAP	(Test	Anything	Protocol),	Using	TAP	as	test	resporter-Using	TAP	as	test
resporter

test	archiving,	Archiving	Old	Tests-Archiving	Old	Tests

test	authentication	(see	authentication)

test	comparisons,	Comparing	Tests-Summary	of	Part	I

Capture	Video,	Capture	Video-Capture	Video

filmstrip	and	video,	Filmstrip	and	Video-Speed	Index

perceived	performance,	Perceived	Performance

querystring	parameters,	Capture	Video

test	specs,	Asserting	Metrics	from	Test	Results-Asserting	by	processing	breakdown

assertion	by	MIME	type,	Asserting	by	MIME	type

assertion	by	process	breakdown,	Asserting	by	processing	breakdown

assertion	comparison,	Defining	Assertion	Comparison

assertion	operations,	Available	Assertion	Operations

examples,	Test	Specs	Examples-Asserting	by	processing	breakdown

JSON,	JSON	Test	Specs-JSON	Test	Specs

output	text	template	tags,	Available	Output	Text	Template	Tags

overriding	labels,	Overriding	Labels

setting	default	operations	and	labels,	Setting	Default	Operations	and	Labels

specifying	reporters,	Specifying	Test	Reporter

testing

mobile	devices	(see	mobile	testing)

performance	issues	(see	antipatterns)

testing	phase,	Running	a	Simple	Test

/testStatus.php,	Polling	Test	Results

text	compression,	Compress	Transfer

third-party	failures,	testing	for,	Black-Hole	Rerouting-SPOF	Tab

three-way	handshake,	Reopened	connections

Time	To	First	Byte	(TTFB),	Reading	a	Waterfall,	Long	first-byte	time

time	to	live	(TTL),	Analyzing	Cachability-Analyzing	Cachability

timeout,	Running	tests	and	reading	results	from	a	Node.js	module

traffic	shaping,	Traffic	Shaping-Traffic	Shaping,	Native	Devices

Transmission	Control	Protocol	(TCP),	Connection	View

Travis-CI,	Travis-CI	Integration-Encrypting	the	WebPageTest	API	key

troubleshooting,	Troubleshooting-Check	that	GD	is	installed	on	the	server

U

updating,	Updating	an	Instance

User	Timing	API,	Measure	What	Matters

User-Agent	property,	Identifying	Demographics,	Desktop	Emulation-Desktop
Emulation

V

Visual	Comparison	page,	Filmstrip	and	Video-Filmstrip	and	Video

visual	progress,	SPOF	Tab

W

waiting	phase,	Running	a	Simple	Test

waitResults,	Running	tests	and	reading	results	from	a	Node.js	module

WanEm,	Bandwidth	Shaping

waterfalls,	Reading	a	Waterfall-Waterfall	Slope,	Heuristic	Caching,	Summary	of
Part	I

antipatterns	in,	Common	Anti-Patterns-Network	silence

page-level	events,	Reading	a	Waterfall-Reading	a	Waterfall

phases	of,	Reading	a	Waterfall

request	highlighting,	Reading	a	Waterfall-Waterfall	Slope

slope,	Waterfall	Slope-Waterfall	Slope

WebPageTest	API	(see	private	WebPageTest	use;	public	WebPageTest	use)

WebPageTest	grades	(see	grades)

X

/xmlResult.php,	Polling	Test	Results,	Reading	Beyond	Results

Y

Yahoo!,	WebPageTest	Grades

YouTube,	Measure	What	Matters

YSlow,	WebPageTest	Grades

About	the	Authors

Rick	Viscomi	is	a	frontend	engineer	and	web	performance	evangelist.	He	has	leveraged
the	power	of	WebPageTest	to	help	speed	up	the	websites	of	the	Travel	Channel,	Food
Network,	and	HGTV.	Since	2013,	he	has	worked	at	Google	to	make	YouTube	fast.

Andy	Davies	first	stumbled	into	web	performance	in	late	1990s,	when	he	was	trying	to
deliver	elearning	over	dial-up	connection	speeds,	and	has	been	hooked	ever	since.	He’s
currently	associate	director	for	web	performance	at	NCC	Group,	where	he	helps	clients
measure	and	improve	the	performance	of	their	websites.	Andy	regularly	speaks	about	web
performance	and	occasionally	contributes	to	open	source	projects	such	as	WebPageTest.
He	also	wrote	A	Pocket	Guide	to	Web	Performance	(Five	Simple	Steps).

Marcel	Duran	is	a	web	performance	engineer	at	Google.	He	previously	worked	to	speed
up	high-traffic	websites	for	Twitter	and	Yahoo!	He	was	also	the	frontend	lead	for	Yahoo!’s
Exceptional	Performance	Team,	where	he	open	sourced	YSlow.	Marcel	also	spoke	at	the
Velocity	Conference	and	coauthored	Web	Performance	Daybook	Volume	2	(O’Reilly).

	

Colophon

The	animal	on	the	cover	of	Using	WebPageTest	is	a	large-spotted	genet	(Genetta	tigrina).
It	is	also	known	as	a	cape	genet	or	blotched	genet.	They	are	native	to	South	Africa	and
other	areas	of	southern	Africa.	They	live	near	lakes,	rivers,	and	other	bodies	of	water	with
sufficient	tree	coverage.

Adult	large-spotted	genets	can	weigh	between	2	and	8	pounds.	Their	bodies	will	grow	in
length	between	19	and	23	inches,	while	the	tail	will	be	between	16	and	22	inches.	Females
are	slightly	smaller	in	size	than	males.	They	are	larger	than	their	common	(or	small-
spotted)	genet	relatives	and	have	different	coloring,	which	helps	distinguish	between	the
two	subspecies.

The	large-spotted	genet	has	a	dark	dorsal	stripe	along	the	length	of	its	back.	The	base
color	of	its	fur	is	of	light	brown/gray	color.	The	irregular	spots	and	stripes	among	its	fur
are	a	dark	brown.	In	small-spotted	or	common	genets,	the	stripes	of	the	tail	are	lighter	in
color.	The	large-spotted	genet	is	similar	to	a	cat	in	numerous	ways:	they	hiss,	have
semiretractable	claws,	and	are	quite	independent,	among	other	things.

This	animal	is	solitary,	nocturnal,	and	carnivorous.	They	hunt	at	night	with	a	diet	that
consists	of	rodents,	birds,	and	insects.	Though	compared	to	cats	and	ferrets	in	terms	of
behavior	and	hunting	methods,	it	is	discouraged	to	get	a	genet	as	an	exotic	household	pet
as	they	tend	to	shun	affection	and	companionship	as	they	grow	older.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Wood’s	Animate	Creation.	The	cover	fonts	are	URW	Typewriter
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Foreword

Preface
Who	Should	Read	This	Book

A	Word	on	Web	Performance	Today

Navigating	This	Book

Conventions	Used	in	This	Book

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

Acknowledgments

I.	Basic	Use	Cases

1.	How	Fast	Is	My	Page?
Measure	What	Matters

Synthetic	Versus	RUM

2.	What’s	Slowing	Down	My	Page?
Running	a	Simple	Test

Reading	a	Waterfall
Waterfall	Slope

Connection	View

Common	Anti-Patterns

WebPageTest	Grades
First-Byte	Time

Keep-Alive	Enabled

Compress	Transfer

Compress	Images

Progressive	JPEGs

Cache	Static	Content

Effective	Use	of	CDNs

3.	Cache	Optimization
Enabling	Repeat	View

Analyzing	Cachability

Heuristic	Caching

4.	Comparing	Tests
Perceived	Performance

Capture	Video

Filmstrip	and	Video
Speed	Index

Summary	of	Part	I

II.	Intermediate	Use	Cases

5.	Simulating	Real	Users
Identifying	Demographics

Popular	Pages

Device	and	Browser

Geographic	Location

Connection	Speed

6.	Mobile	Testing
Desktop	Emulation

Traffic	Shaping

Native	Devices

7.	Scripting	Preconditions
Flow	View

logData	and	navigate

Authentication

HTTP	Basic	Authentication

DOM	Manipulation

Setting	Cookies

8.	SPOF	Testing
Black-Hole	Rerouting

setDns

SPOF	Tab

Blocking	Requests

III.	Advanced	Use	Cases

9.	WebPageTest	API
Getting	Started

Requesting	a	Key

Running	Tests
Simple	Example	Test

Advanced	Example	Test

Reading	the	Results
Polling	Test	Results

Pingback	Test	Results

Reading	Beyond	Results

10.	Continuous	Integration
Node.js	Wrapper

Installing	the	WebPageTest	Node.js	Wrapper

Choosing	Your	WebPageTest	Server

Specifying	the	API	Key

Running	the	Tests	and	Reading	the	Results

RESTful	Proxy

Asserting	Metrics	from	Test	Results

JSON	Test	Specs

Defining	Assertion	Comparison

Setting	Default	Operations	and	Labels

Available	Output	Text	Template	Tags

Available	Assertion	Operations

Overriding	Labels

Specifying	Test	Reporter

Test	Specs	Examples

Jenkins	Integration
Configuring	Jenkins

Travis-CI	Integration
Configuring	Travis-CI

11.	Private	Instances
How	Does	WebPageTest	Work?

Using	the	Preconfigured	AWS	AMI
Create	an	AWS	User	with	Relevant	Permissions

Configure	and	Launch	the	AWS	Instance

Creating	Your	Own	Local	Installation
Desktop	Test	Agents

Mobile	Test	Agents

Install	Agent

Add	iOS	Devices

Bandwidth	Shaping

Remote	Test	Agents

Private-Instance-Only	Features
Bulk	Test

Custom	Metrics

Day-to-Day	Management
Monitoring	Queues	and	Test	Agents

Archiving	Old	Tests

Updating	an	Instance

Troubleshooting

Contributing	Changes	to	WebPageTest

A.	API	Input/Output	Reference	Guide
Examples	of	Test	Results

When	Test	Is	Not	Complete

When	Test	Is	Complete

Details	of	Test	Results

Details	of	Requests	In	Test	Results

API
Locations

Test

Status

Cancel

Results

Testers

HAR

Chrome	Developer	Tools	Timeline

Test	History

Response	Body

Waterfall

Create	Video

Get	Gzip	Content

Get	Thumbnail

Index

	Foreword
	Preface
	Who Should Read This Book
	A Word on Web Performance Today
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	I. Basic Use Cases
	1. How Fast Is My Page?
	Measure What Matters
	Synthetic Versus RUM

	2. What’s Slowing Down My Page?
	Running a Simple Test
	Reading a Waterfall
	Waterfall Slope
	Connection View
	Common Anti-Patterns
	Long first-byte time
	Reopened connections
	Canceled requests
	Network silence

	WebPageTest Grades
	First-Byte Time
	Keep-Alive Enabled
	Compress Transfer
	Compress Images
	Progressive JPEGs
	Cache Static Content
	Effective Use of CDNs

	3. Cache Optimization
	Enabling Repeat View
	Analyzing Cachability
	Heuristic Caching

	4. Comparing Tests
	Perceived Performance
	Capture Video
	Filmstrip and Video
	Speed Index

	Summary of Part I

	II. Intermediate Use Cases
	5. Simulating Real Users
	Identifying Demographics
	Popular Pages
	Device and Browser
	Geographic Location
	Connection Speed

	6. Mobile Testing
	Desktop Emulation
	Traffic Shaping
	Native Devices

	7. Scripting Preconditions
	Flow View
	logData and navigate

	Authentication
	HTTP Basic Authentication
	DOM Manipulation
	Setting Cookies

	8. SPOF Testing
	Black-Hole Rerouting
	setDns
	SPOF Tab

	Blocking Requests

	III. Advanced Use Cases
	9. WebPageTest API
	Getting Started
	Requesting a Key
	Public instance
	API key limitations
	Private instance

	Running Tests
	Simple Example Test
	Status codes

	Advanced Example Test

	Reading the Results
	Polling Test Results
	Pingback Test Results

	Reading Beyond Results

	10. Continuous Integration
	Node.js Wrapper
	Installing the WebPageTest Node.js Wrapper
	Choosing Your WebPageTest Server
	Specifying the API Key
	Running the Tests and Reading the Results
	Running tests from the command line
	Reading results from the command line
	Running tests and reading results from the command line
	Running tests and reading results from a Node.js module

	RESTful Proxy
	Running a proxy from the command line
	Running a proxy from a Node.js module

	Asserting Metrics from Test Results
	JSON Test Specs
	Defining Assertion Comparison
	Examples of overriding assertion comparison

	Setting Default Operations and Labels
	Available Output Text Template Tags
	Available Assertion Operations
	Overriding Labels
	Specifying Test Reporter
	Test Specs Examples
	Asserting by MIME type
	Asserting by processing breakdown

	Jenkins Integration
	Configuring Jenkins
	Using TAP as test resporter
	Using JUnit as a test reporter

	Travis-CI Integration
	Configuring Travis-CI
	Encrypting the WebPageTest API key

	11. Private Instances
	How Does WebPageTest Work?
	Using the Preconfigured AWS AMI
	Create an AWS User with Relevant Permissions
	Configure and Launch the AWS Instance

	Creating Your Own Local Installation
	Desktop Test Agents
	Mobile Test Agents
	Install Agent
	Add Android Devices
	Install the Android Debug Bridge (ADB)
	Unlock the bootloader
	Configure Android
	Add the agent to the server
	Check that the agent works

	Add iOS Devices
	Jailbreak the iOS device
	Enable SSH
	Update phone settings
	Configure the host

	Bandwidth Shaping
	Remote Test Agents

	Private-Instance-Only Features
	Bulk Test
	Custom Metrics

	Day-to-Day Management
	Monitoring Queues and Test Agents
	Archiving Old Tests
	Updating an Instance

	Troubleshooting
	Check that the test agents are polling for work
	Watch the test on the device
	Check the response from the test agent
	Check the contents of the results folder
	Check that GD is installed on the server

	Contributing Changes to WebPageTest

	A. API Input/Output Reference Guide
	Examples of Test Results
	When Test Is Not Complete
	When Test Is Complete

	Details of Test Results
	Details of Requests In Test Results
	API
	Locations
	Test
	Status
	Cancel
	Results
	Testers
	HAR
	Chrome Developer Tools Timeline
	Test History
	Response Body
	Waterfall
	Create Video
	Get Gzip Content
	Get Thumbnail

	Index

