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Preface

Secure digital imaging is an important research area combining methods and
techniques coming from cryptography and image processing. Visual cryptog-
raphy and in general secret image sharing techniques enable distributing sen-
sitive visual materials to involved participants through public communication
channels, as the generated secure images do not reveal any information if they
are not combined in the prescribed way. In visual cryptography, the decoding
process is performed directly by the human eyes, while in general, the shared
images need some processing to reconstruct the secret image. The increas-
ing number of possibilities to create, publish, and distribute images calls for
novel protection methods, offering new sharing and access control mechanisms
for the information contained in the published images. Secure image sharing
techniques overcome the traditional cryptographic approach, providing new
solutions for the development of new and secure imaging applications.

Since both digital imaging and privacy protection are two research themes
that involve a continuously growing number of people and applications, the
book focuses on secure image sharing techniques, offering an interesting ref-
erence point for studying and developing solutions needed in such areas. This
book aims to fill the existing literature gap, providing a valid guide for profes-
sional people and/or researchers interested in such fields of research. It pro-
vides a scientifically and scholarly sound treatment of state-of-the-art tech-
niques to students, researchers, academics, and practitioners who are inter-
ested or involved in the study, research, use, design, and development of image
sharing techniques. It can serve as a guide for making use of visual crypto-
graphic algorithms and as a basis to develop applications based on image
secret sharing solutions.

The book has the form of a contributed volume, where well-known experts
address an extensive range of topics related to visual cryptography techniques
and solutions for secure image sharing. Besides introducing the relevant is-
sues of such research fields, and providing a coverage of theoretical results,
the book illustrates some aspects and interesting results concerning recent
research directions. It covers the most prominent topics in the area, such
as the possibility of sharing multiple secrets, visual cryptography schemes
based on the probabilistic reconstruction of the secret image, possibility to
include pictures in the distributed shares, contrast enhancement techniques,
visual cryptography schemes based on different logical operations for combin-
ing the shared images, color images visual cryptography, cheating prevention,
alignment problem for image shares, and the description of some practical

xxxi

© 2012 by Taylor & Francis Group, LLC



xxxii Preface

applications of visual cryptography. In addition to the above, steganography
and authentication are discussed, and different methods of image sharing are
presented, including mathematical and probabilistic techniques for generating
the image shares.

Each chapter provides the fundamentals for the topics under consideration
and the detailed description of the relevant methods, presenting examples and
practical applications to demonstrate the effectiveness of the surveyed tech-
niques. Chapters 1–2 introduce visual cryptography and its application to
halftone and color images, respectively. The techniques presented in these
chapters focus on the problem of providing high quality shares using halfton-
ing, and providing an adaptation of visual cryptography to color images, re-
solving the problem of darkening caused from the superposition of the shares
in the reconstruction phase. Chapter 3 presents an extension of the general
technique useful for sharing multiple images using the same set of shares.
Chapter 4 shows how visual cryptography schemes can be applied to photo-
graph images, obtaining interesting results for practical applications.

Chapters 5–7 focus on different extensions of basic visual cryptography
technique. Probabilistic visual cryptography schemes trade the guarantee of
a correct reconstruction of the secret image with a reduced pixel expansion of
the generated shares. In Chapter 6 the basic superposition mechanism used
for the reconstruction of the secret image is abandoned for a XOR- based
reconstruction phase, improving on the contrast of the reconstructed image.
Chapter 7 presents random grid techniques, which are derived from visual
cryptography, but provide a reduced pixel expansion in the generated shares
and do not need a basis matrix in the generation phase of the shares.

Chapters 8–9 focus on the contrast of the reconstructed images. In Chapter
8 the bounds on the contrast of the most known schemes are discussed. In
Chapter 9 techniques based on the reversing of the images are presented,
where black pixels are reversed to white ones and vice versa. Using such an
operation, schemes with perfect reconstruction of both white and black pixels
can be derived, avoiding any loss of resolution for the shared image.

Chapters 10–12 are more focused on the problems to be faced in the prac-
tical applications of visual cryptography schemes. One is cheating prevention,
as discussed in Chapter 10, where the problem of malicious participants to the
schemes is discussed. The other problem relates to the alignment of the shares
in the reconstruction phase. In general, techniques to prevent the alignment
of the shares and introduce some degree of tolerance in the reconstruction
phase are discussed. Finally, Chapter 12 presents some applications of visual
cryptography in the field of securing online transactions and e-voting.

Chapters 13–17 are more focused on general image sharing techniques.
Image sharing in halftone images is discussed in Chapter 13, where two gen-
eral techniques of data hiding are presented and analyzed. An algorithm for
color image sharing is presented in Chapter 14, where interpolation is used
for hiding secret images. Image sharing techniques based on polynomial se-
cret sharing are discussed in Chapter 15. Chapter 16 discusses steganography
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and authentication in the context of image sharing, presenting some novel
schemes. Finally, Chapter 17 presents a novel technique for image sharing,
where the reconstruction phase can be performed both via the superposition
of the shares, or via some computation.

In all the chapters, figures, tables, and examples are used to improve the
presentation and the analysis of the discussed methods and techniques. Bibli-
ographic references are included in each chapter and provide a good starting
point for deeper research and further exploration of the topics covered in this
volume.
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2 Visual Cryptography and Secret Image Sharing

1.1 Introduction

Visual cryptography (VC), proposed by Naor and Shamir in [19], is a paradigm
for cryptographic schemes that allows the decoding of concealed images with-
out any cryptographic computation. Particularly in a k-out-of-n visual se-
cret sharing scheme (VSS), a secret image is cryptographically encoded into
n shares. Each share resembles a random binary pattern. The n shares are
then xeroxed onto transparencies respectively and distributed among n par-
ticipants. The secret images can be visually revealed by stacking together
any k or more transparencies of the shares and no cryptographic computa-
tion is needed. However, by inspecting less than k shares, one cannot gain
any information about the secret image, even if infinite computational power
is available. Aside from the obvious applications to information hiding, VC
can be applied to access control, copyright protection [10], watermarking [8],
visual authentication, and identification [18].

1.1.1 Visual Cryptography

The main instantiation of VC realizes a cryptography protocol called secret
sharing (SS). In a conventional SS scheme, a secret image is shared among n
participants in such a way that subsets of qualified participants can pull their
shares and recover the secret but subsets of forbidden participants can obtain
no information about it. Here, both the sharing phase and the reconstruction
phase involve algorithms that are run by computers (specially, a dealer runs a
distribution algorithm and a set of qualified parties can run a reconstruction
algorithm). The surprising novelties of a VSS scheme are in representing data
as images and in an elementary realization of the reconstruction phase, con-
sisting of just viewing the image obtained after stacking transparencies. VSS
schemes inherit all applications of conventional SS schemes; most notably,
access control. As an example, consider a bank vault that must be opened
everyday by five tellers, but for security purposes it is desirable not to en-
trust any two individuals with the combination. Hence, a vault-access system
that requires any three of the five tellers may be desirable. This problem can
be solved using a 3-out-of-5 threshold scheme. In addition to access control,
VSS schemes can be applied to a number of other cryptographic protocols
and applications using conventional SS, such as threshold signatures, private
multiparty function evaluation, electronic cash, and digital elections.

Another quite intriguing instantiation of VC schemes realizes VSS with
innocent-looking images as shares. This version of VSS has applications to
a multiparty variant of steganography. In a steganography scheme, a user A
sends an innocent-looking image to another user B, in such a way that B can
recover some hidden images, but no observer of the communication between A
and B even suspects that the communication contains some hidden images. In
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to generate mutually exclusive sets of pixels. To this end, the method of error
diffusion is modified so as to produce multitone output pixels where the pixels
of each tone are assigned to a pixel set. Multitone error diffusion is obtained
by simply replacing the thresholding block by a multilevel quantization block
in halftone error diffusion. The number of output levels of the quantization
block is the same as the number of tones of the multitone image [15]. Multitone
error diffusion can generate multitone images where the pixels of each tone are
homogeneously distributed. The multitone error diffusion algorithm proposed
in [4] is used here for the generation of mutually exclusive pixel sets. This
algorithm jointly optimizes the distribution of multitone pixels by locating the
pixels of different tones in a correlated fashion so that the mutual interference
between different tones is minimized and multitone pixels are well separated
from each other. Refer to [4] for details.

1.2 Visual Secret Sharing

We provide a brief description on visual cryptography where the key concepts
will be referenced in subsequent sections. Please refer to [19, 2] for more details
on VSS.

1.2.1 Notion and Formal Definitions

To illustrate the principles of VSS, consider a simple 2-out-of-2 VSS scheme
shown in Figure 1.3. Each pixel p taken from a secret binary image is encoded
into a pair of black and white subpixels in each of the two shares. If p is
white/black, one of the first/last two columns tabulated under the white/black
pixel in Figure 1.3 is selected. The selection is random such that each column
is selected with a 50% probability. Then, the first two subpixels in that column
are assigned to share 1 and the following two subpixels are assigned to share
2. Independent of whether p is black or white, p is encoded into two subpixels
of black-white or white-black with equal probabilities. Thus, an individual
share gives no clue as to whether p is black or white [26, 25]. Now consider
the superposition of the two shares as shown in the last row of Figure 1.3.
If the pixel p is black, the superposition of the two shares outputs two black
subpixels corresponding to a gray level 1. If p is white, it results in one white
and one black subpixel, corresponding to a gray level 1/2. Then by stacking
two shares together, we can obtain the full information of the secret image.

Figure 3.24 shows an example of the application of the 2-out-of-2 VSS
scheme. Figure 1.4(a) shows a secret binary image SI to be encoded. Ac-
cording to the encoding rule shown in Figure 1.3, each pixel p of SI is split
into two subpixels in each of the two shares, as shown in Figure 1.4(b) and
Figure 1.4(c). Superimposing the two shares leads to the output secret im-
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(a) Secret binary image (b) Share 1

(c) Share 2 (d) Decoded image

FIGURE 1.4
Example of 2-out-of-2 scheme. The secret image (a) is encoded into two shares
(b)-(c) showing random patterns. The decoded image (d) shows the secret
image with 50% contrast loss. (Reprinted with permission from IEEE Trans.
Inf. Forensics Security, vol. 4, no. 3, pp. 383–396, Sep. 2009 c©IEEE 2009).

The participants in X are able to observe the secret image without perform-
ing any cryptographic computation. VSS is characterized by two parameters:
the pixels expansion γ, which is the number of subpixels on each share that
each pixel of the secret image is encoded into, and the contrast α, which is
the measurement of the difference of a black pixel and a white pixel in the
reconstructed image [5].

For each secret binary pixel p that is encoded into γ subpixels in each of
the n shares, these subpixels can be described as an n×γ Boolean matrix M,
where a value 0 corresponds to a white subpixel and a value 1 corresponds
to a black subpixel. The ith row of M, ri, contains the subpixel values to
be assigned to the ith share. The gray level of the reconstructed pixel p,
obtained by superimposing the transparencies in a participant subset X =
{ii, i2, · · · , is}, is proportional to the Hamming weight w(v) of the vector
v = OR(ri1 , ri2 , · · · , ris), where ri1 , ri2 , · · · , ris are the corresponding rows in
the matrix M [26, 25].

Definition 1 Let (ΓQual,ΓForb) be an access structure on a set of n par-
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8 Visual Cryptography and Secret Image Sharing

ticipants. Two collections of n × γ Boolean matrices C0 and C1 constitute a
VSS scheme if there exists a value α(γ) and value tX for every X in ΓQual
satisfying [3]:

1. Contrast condition: any (qualified) subset X = {i1, i2, · · · , iu} ∈
ΓQual of u participants can recover the secret image by stacking the
corresponding transparencies. Formally, for a matrix M ∈ Cj, (j =
0, 1) the row vectors vj(X,M) = OR(ri1 , ri2 , · · · , riu). It holds that:
w(v0(X,M)) ≤ tX −α(γ) ·γ for all M ∈ C0 and w(v1(X,M)) ≥ tX
for all M ∈ C1. α(γ) is called the relative difference referred to as
the contrast of the decoded image and tX is the threshold to visually
interpret the reconstructed pixel as black or white.

2. Security condition: Any (forbidden) subset X = {i1, i2, · · · , iv} ∈
ΓForb has no information of the secret image. Formally, the two col-
lections Dj(j = 0, 1), obtained by extracting rows i1, i2, · · · , iv from
each matrix in Cj, are indistinguishable.

1.2.2 Construction of VSS Scheme

If the given secret pixel p is black (white), the matrix M is randomly selected
from matrices collections C1 (C0). The matrix collections can be obtained by
permuting the columns of the corresponding basis matrix S0 or S1 in all
possible ways [3]. The basis matrices are defined below.

Definition 2 Two matrices S0 and S1 are called basis matrices, if S0 and S1

satisfy the following tow conditions [3]:

1. Contrast condition: If X = {i1, i2, · · · , iu} ∈ ΓQual, the row
vectors v0 and v1, obtained by performing OR operation on rows
i1, i2, · · · , iu of S0 and S1 respectively, satisfy w(v0) ≤ tX −α(γ) ·γ
and w(v1) ≥ tX .

2. Security condition: If X = {i1, i2, · · · , iv} ∈ ΓForb, one of
the two v × γ matrices, formed respectively by extracting rows
i1, i2, · · · , iv from S0 and S1, equals to a column permutation of
the other.

The algorithm to construct the basis matrices for a given VSS scheme can
be found in [2, 5]. See [5] for the construction algorithm of basis matrices
that leads to the best contrast. As an example, the S0 and S1 in a 2-out-of-2
scheme are shown below:

S0 =
[

0 1
0 1

]
, S1 =

[
0 1
1 0

]
. (1.3)

S0 corresponds to the encoding of a white secret pixel and S1 corresponds to
the encoding of a black secret pixel.
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1.3 Halftone VSS Construction Using Error Diffusion

The introduced methods for halftone VSS are built upon the fundamental
principles of conventional VSS. Given a secret halftone image and multi-
ple grayscale images, halftone shares are generated such that the resultant
halftone shares are no longer random patterns, but take meaningful visual
images. Without loss of generality, the k-out-of-n scheme is described in the
following.

1.3.1 Share Structure

The first step in constructing a halftone VSS scheme is to construct the un-
derlying k-out-of-n VSS scheme where a secret image pixel is encoded into γ
pixels in each share. γ is the VSS pixel expansion and only a function of (k, n).
Furthermore, in halftone VSS, a share image is divided into nonoverlapping
halftone cells of size q = v1 × v2 where q > γ. A secret image pixel is encoded
into one halftone cell in each share. Within the q pixels in a halftone cell,
only γ pixels called secret information pixels (SIPs) actually carry the secret
information. Here γ is exactly the VSS pixel expansion. Since γ SIPs are not
designed to carry share visual information, q ≥ 2γ is desirable for good share
image quality.

It is required that when all qualified shares are stacked together, only the
secret visual information is revealed. Thus, besides SIPs, auxiliary pixels that
are forced to be black (value 1) are also introduced. These pixels are called
auxiliary black pixels (ABP). In each halftone cell, there are x ABPs. ABPs
are deliberately introduced into the shares so that some ABPs on one share
block the visual information of the other shares. Thus, when qualified shares
are stacked together, only the secret visual information is revealed on the
reconstructed image as a result of the OR operation. In each halftone cell, the
remaining q−γ−x pixels that are neither SIPs or ABPs are assigned to carry
the visual information of the shares.

An example of the halftone cells in a 2-out-of-2 scheme is shown in Fig-
ure 1.5 where the 1st and 2nd pixels in each cell are SIPs. The 3rd pixel in
share 1 and the 4th pixel in share 2 are ABPs. When stacking two shares to-
gether, the result is a white pixel with contrast 1/4. The 4th pixel in share 1
and the 3rd pixel in share 2 are assigned values to carry visual information of
the shares. They can take a value of 0 or 1, which will not affect the decoded
image.

There should be a sufficient number of ABPs in the shares so that the
visual information of one share is completely blocked by the ABPs on the
other shares. Since the ABPs are not designed to carry visual information,
the number of ABPs in a share is to be minimized as follows. Let p(i, j) =
[p1(i, j), p2(i, j), . . . , pn(i, j)]T be the vector where pl(i, j) is the (i, j)th pixel
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As another example, consider a 2-out-of-3 halftone VSS scheme where a
secret image pixel is encoded into a halftone cell of size q = 12. The number
of SIPs is γ = 6. By Eqn. 1.4, the optimal number of ABPs is x = 4. Thus,
the configuration matrix T of the 6 non-SIPs is given by:

T =

 1 1 1 1 M M
1 1 M M 1 1
M M 1 1 1 1

 . (1.6)

From the content of T, it is concluded that 1/3 of the pixels on a share will
be ABPs.

1.3.2 Distribution of SIPs and ABPs

The locations of the SIPs do not depend on the share images or the secret im-
age, but only on the HVC expansion q and the underlying VSS scheme. Thus,
the distribution of SIPs can be generated prior to the generation of halftone
shares. For security purposes, the SIPs should be randomly distributed. To
achieve good image quality, it is also desirable to distribute the SIPs homo-
geneously so that one SIP is maximally separated from its neighboring SIPs.
Since the SIPs are maximally separated, the quantization error caused by an
SIP will be diffused away before the next SIP is encountered leading to visu-
ally pleasing halftone shares. Similarly, the distribution of ABPs can also be
determined a priori. As SIPs, ABPs should be distributed as homogenously
as possible and maximally separated from each other. Since there is a strong
correlation between the distribution of SIPs and the distribution of ABPs, the
distributions of SIPs and ABPs should be optimized jointly to avoid low fre-
quency spectral interference among them [4]. The SIPs and ABPs should also
be maximally separated from each other. The jointly optimized distributions
of SIPs and ABPs are generated based on a method of blue noise multitoning
as follows [4].

We first construct a constant grayscale image with gray level g =∑w
i=0 gizi, where gi is a tone arbitrarily chosen between 0 and 1 and gi 6= gj

for i 6= j. zi is the pixel density for the pixels with tone gi. The value of zi,
together with w, depends on q, γ and the structure of the configuration matrix
T. By using the blue noise multitone error diffusion, an output image with
w+1 tones is produced. The distribution of pixels with tone gi indicates a pixel
distribution denoted by Zi. Let z0 = γ/q, then Z0 indicates the distribution
of SIPs. The distribution of ABPs in a share is a subset of {Zi}, i = 1, . . . , w.

An example following the previous 2-out-of-3 halftone VSS example is used
to illustrate how to set zi, gi, and w, where a secret image pixel is encoded
into a halftone cell of size q = 12. Among the q pixels, γ = 6 SIPs are
characterized by basis matrix S0 or S1; q − γ = 6 non-SIPs are characterized
by the configuration matrix T. Thus, the matrix Ri, i = 0, 1, is constructed

© 2012 by Taylor & Francis Group, LLC



12 Visual Cryptography and Secret Image Sharing

below for the q pixels:

Ri = [Si T]

=

[
� � � � � � 1 1 1 1 M M
� � � � � � M M 1 1 1 1
� � � � � � 1 1 M M 1 1

]
︸ ︷︷ ︸

Z0

︸︷︷︸
Z1

︸︷︷︸
Z2

︸︷︷︸
Z3

, (1.7)

where each row corresponds to q pixels in one share. The � indicates the SIPs
that are determined by Si. Columns of Ri are partitioned into several sets Zi,
where the columns with the same configuration are assigned to the same set.
As shown in (1.7), columns are partitioned into 4 sets Zi, i = 0, 1, . . . , 3. The
set Z0 denotes the distribution of SIPs and contains 1/2 of all the pixels. The
non-SIPs of each share are partitioned between set Z1, Z2, and Z3, where each
set contains 1/6 of all the pixels. Thus, to generate Zi on the share, we can set
the parameters for the multitone error diffusion as follows: w = 3, z0 = 0.5,
and z1 = z2 = z3 = 1/6. The corresponding tone is arbitrarily chosen as:
g0 = 0, g1 = 0.3, g2 = 0.6, and g3 = 0.9. By using the algorithm proposed in
[4], we obtain homogenous distributions Zi, i = 0, 1, . . . , 3. The combination
of Z1 and Z2 is the distribution of ABPs of share 1; the combination of Z2

and Z3 is the distribution of ABPs of share 2; and the combination of Z1 and
Z3 is the distribution of ABPs of share 3, as shown in (1.8)

SIPs of all shares → Z0

ABPs of share 1 → Z1 ∪ Z2

ABPs of share 2 → Z2 ∪ Z3

ABPs of share 3 → Z1 ∪ Z3.

(1.8)

As an example, assume the share has size 6 × 8 and is partitioned into
4 halftone cells of size 3 × 4, each cell corresponding to one secret image
pixel. Within each cell, there are 6 SIPs and 4 ABPs. Suppose the generated
distributions Zi, i = 0, 1, . . . , 3 are shown on the up-left image in Figure 1.6.
Then, as also shown in Figure 1.6, the distributions of SIPs and ABPs of each
share are determined based on Zi. Note that without knowing what values the
Ms carry, any two shares can be stacked together to decode the secret image
pixels.

Notice that we may not be able to generate an exact number of pixels as
desired for sets Zi, i = 0, 1, 2, 3. However, for ABPs, as long as the membership
of ABPs to the sets Zi indicated in (1.8) is maintained, a slight deviation
from its desired number of pixels for Zi, i = 1, 2, 3 is allowable. The contrast
condition of image decoding is still maintained. Such a point can be clearly
illustrated in Figure 1.7 where the composition of each share is shown. It is
clear that the relative size of Zi, i = 1, 2, 3 is not important.

However, the distribution of SIPs, denoted by Z0, needs to be refined to
guarantee that there are exactly γ SIPs in each halftone cell. Each halftone
cell is checked to find out the number of pixels belonging to Z0. Assume the
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16 Visual Cryptography and Secret Image Sharing

visible distortion. In this way, the SIPs and ABPs are seamlessly embedded
into the halftone shares generated and the halftone share is structured taking
meaningful visual information.

Much like the methods in [26, 25], the above procedure can be extended
to an arbitrary access structure (ΓQual,ΓForb). The security of the introduced
halftone VSS scheme is guaranteed by the properties of the underlying visual
secret sharing scheme.

1.4 Halftone VSS Construction Using Parallel Error
Diffusion

In the previous method, uniformly distributed auxiliary black pixels are intro-
duced to satisfy the contrast condition of image decoding. The current method
exploits the fact that halftoning of the grayscale images alone may generate a
sufficient number of black pixels to block the shared visual information from
showing on the decoded image.

As in the previous method, in the current method, the shares are also di-
vided into nonoverlapping halftone cells of size q = v1 × v2. γ pixels within
the halftone cell are SIPs carrying the secret visual information. A method
based on error diffusion is used to generate the distribution of SIPs. To this
end, a constant-value grayscale image of gray level z0 = γ/q, having the same
size of a share image is first produced. This grayscale image is then halftoned,
producing a distribution of ”1”s, denoted by Z0. Z0 determines the distri-
bution of the SIPs. To ensure that there are exactly γ ”1”s in each halftone
cell, the error diffusion is constrained such that the values of some pixels are
preset and are not modified by the error diffusion. The error e(m,n), which is
the difference between the input to the thresholding block and the resultant
pixel value, is still calculated for the preset pixels and then diffused away to
neighboring grayscale pixels through the error filter. In this constrained er-
ror diffusion mechanism, if the current halftone cell already contains γ ”1”s,
the rest of the pixels in the halftone cell are prefixed and constrained to be
”0”s. The quantization error is accumulated and diffused to grayscale pixels
in neighboring cells. If the current halftone cell contains t < γ ”1”s, and the
error diffusion already proceeds to the (q − γ − t)th pixel of the current cell,
then the rest of the γ− t pixels in that cell are all constrained to be ”1”s. This
procedure guarantees that there are exactly γ SIPs in each halftone cell. Since
the errors are always diffused to neighboring grayscale pixels, a homogeneous
distribution of SIPs is produced, where most of the SIPs are well separated
from each other. The assignment of SIPs are predetermined using the same
approach as described previously.

Then, the current method halftones the grayscale images in parallel to
produce the halftone shares. Within the error diffusion process, all the shares
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are checked at each non-SIP position to see if a sufficient number of black
pixels have been produced. If a sufficient number of black pixels have not yet
been generated, black pixels are deliberately inserted at that position. The
SIPs are again preserved and not changed.

In a k-out-of-n scheme, if only τ < n − k + 1 black pixels are generated
by halftoning at a non-SIP location (i, j), then λ = n − k + 1 − τ shares
with the smallest magnitudes of halftone error at (i, j) are selected and black
pixels are inserted at (i, j) on these shares. Thus, the contrast condition of
image decoding is guaranteed. The quantization error caused by the inserted
black pixels will be diffused away to neighboring grayscale pixels and pleasing
halftone shares can be obtained. Since far fewer black pixels are deliberately
introduced, the second method imposes fewer constrains on the error diffusion
and thus it has the potential to achieve better image quality than that of the
first method. However, to achieve uniform image quality of the whole share,
we need to choose the grayscale images in a selective way.

It is clear that the decision to insert a black pixel or not depends on the
image content of the shares. Thus, the inserted black pixels are not evenly
distributed. In some regions of the image, the error diffusion mechanism is
constrained by the SIPs. In some other regions, error diffusion is constrained
not only by the SIPs but also by the inserted black pixels. Therefore, the im-
age quality on some regions in the image may be better than the image quality
on some other regions that exhibit more artifacts. The parallel approach may
thus generate shares whose image quality is not consistent over the whole im-
age. Such quality discrepancy may cause visible distortions. To mitigate such
visible distortion, we need to minimize the number of black pixels inserted.
An obvious way to mitigate the distortion is to select grayscale images where
the contents of some images tend to be complimentary to those of the others.
For example, if there is one bright (white) region on one image, there should
be corresponding dark region(s) in some other image(s). Then the halftoning
of the grayscale images will generate most of the black pixels needed and the
number of inserted black pixels will be greatly reduced, which leads to visually
pleasing halftone shares. In a n-out-of-n scheme, if n� 1, then this approach
is especially effective and the visible distortion is less likely to happen.

1.5 Quality of Halftone Shares

In this section, we focus on the quality analysis of the halftone shares for the
first method. The analysis also helps to evaluate the share image quality of the
second method. With the exception of the SIPs and the ABPs, all pixels in the
halftone share produced by the first method are assigned freely to carry the
shared visual information. The proportion of these pixels governs the image
quality of the resultant halftone shares. The quantity s is called the quality
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index of the halftone share and is represented as:

s =
q − x− γ

q
, (1.11)

where q is the halftone cell size, x is the number of ABPs in a cell, and γ is the
number of SIPs in a cell. A large s leads to good image quality of the halftone
share. However, s cannot be arbitrarily large and it can be shown that:

s ≤ (
k − 1
n

)(
q − γ
q

) < 1. (1.12)

Thus, the best image quality of a halftone share that can be achieved depends
on k, n and the halftone cell size q. If k, n, and s are the design parameters,
then q is calculated as:

q = d (k − 1)γ
k − ns− 1

e. (1.13)

Consider the 2-out-of-2 scheme. Assume q = 4, then it is calculated that
x = 1 and s = 0.25. Since s is small, the image quality of the share is not
high. If q is larger, then better image quality can be expected. Furthermore,
as q → ∞, s approaches 0.5. However, a larger q leads to worse contrast loss
of the reconstructed image. As will be shown later, the contrast loss of the
reconstructed image can be improved by filtering.

The quality of each share depends on the quality index s. We can compare
the share image with the halftone image generated from the grayscale image
without encoding any secret information and then compute the perceived
error ε between the coded and uncoded halftone image. The perceived error is
calculated by employing an appropriate human visual system (HVS) model.
See [11, 9] for details.

For the second method, it is difficult to determine the proportion of pixels
that carry visual information of the shares. However, it is clear that for n� 1
in a n-of-of-n scheme, the quantity s approaches:

s =
q − γ
q

, (1.14)

which indicates potentially good image quality for a sufficiently large q.
Compared with methods in [26] and [22], the requirement of a comple-

mentary pair is removed and all shares generated carry natural images. From
(1.12), it is clear that for the first method, the quality index is more correlated
to {k, n} in the VSS scheme. A visually pleasing halftone image share can be
obtained if n � 1 and n − k is small, and if the HVC expansion q is suffi-
ciently large. If small image quality discrepancy of the share is tolerable, then
we should first consider the first method, especially if we have the flexibility
to choose the grayscale images. If the grayscale images are carefully chosen,
n � 1, and n − k is small, then the distortion due to image quality discrep-
ancy will be hardly noticeable. Otherwise, only the first method should be
considered since it is the only method that guarantees uniform image quality
of the shares without using complimentary shares.
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1.6 Discussion

1.6.1 Improvement of Image Quality

As stated previously, the quality index s heavily affects the image quality of the
halftone shares. A large s leads to visually pleasing halftone shares, but it also
introduces higher contrast loss in the reconstructed images. The error filter
employed in the error diffusion also affects the image quality of the shares. For
example, an error filter with longer weights leads to a sharper contrast in the
halftone image [20, 14]. Another factor that affects the image quality is the
position-dependent threshold in the thresholding block. To achieve a visually
more pleasing halftone image, output-dependent threshold modulation can be
used in the error diffusion to spread the minority pixels as homogeneously as
possible and suppress some unwanted textures [6]. For various methods that
can improve the halftone image by error diffusion, refer to [20, 6, 17, 21], etc.

Error diffusion is employed as the halftoning algorithm to generate halftone
shares since error diffusion is able to generate a visually pleasing halftone
image with simple computation. However, other halftoning algorithms can
also be applied to the second method to generate halftone shares. The DBS
algorithm can be used to generate a high quality halftone image but with
significant computation [1]. Note that the DBS algorithm for multitoning can
also be used to generate the distributions of SIPs and ABPs.

1.6.2 Comparison with Other Methods

To evaluate the performance of the introduced methods, it is illustrative to
compare our methods with VC and extended visual cryptography (EVC) [3].
VSS can be treated as a special case in our methods for s = 0, which means
that no visual information is carried by the share. In EVC, shares carry visual
information and there is a tradeoff between the contrast of the reconstructed
image and the contrast of the share image. This tradeoff is similar to the
tradeoff between the contrast of the reconstructed image and the image quality
of the halftone shares in our methods. However, the shares generated by EVC
is basically based on pixels expansion. Thus, EVC is unable to generate shares
that can show fine details.

1.6.3 Image Decoding

In the methods introduced in this chapter, a large HVC expansion is desirable
to make s large. But the contrast loss of the decoded image is severe when the
HVC expansion is large. However, a low contrast does not hinder the decoding
of the secret image if the decoding can be performed digitally. Initially shares
are supposed to be xeroxed on transparencies and decoding of the secret image
involves stacking the shares physically. However, both the distribution of the
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shares and decoding of the secret image can be performed in a digital way
where the decoding rule remains the same (OR operation). The human visual
system is still the ultimate tool to identify the secret image.

The robustness of the introduced scheme to the contrast loss is attributed
to the fact that shares have well-defined local structure. If decoded digitally,
we can measure the local intensity of the reconstructed image by filtering
the data through a running window. Then we measure the local intensity of
the data within the window. We can assign 1 to the current pixel if the local
intensity is relatively high and assign 0 to the current pixel if the local intensity
is relatively low. By such a simple method, the contrast of the reconstructed
image can be enhanced and the content is more readable. The size of the
running window should be the same as the size of the halftone cell. However,
if the halftone cell size is unknown, a proper window size can be obtained by
trying different window sizes until only two different local intensities are most
likely to appear.

1.7 Simulation Results

(a) (b)

FIGURE 1.9
(a) Grayscale image Lena. (b) Part of the distribution of SIPs and ABPs.
The gray pixels indicate SIPs and the black pixels indicate ABPs. (Reprinted
with permission from IEEE Trans. Inf. Forensics Security, vol. 4, no. 3, pp.
383–396, Sep. 2009 c©IEEE 2009).
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In this section, examples are provided to illustrate the effectiveness and
tradeoff of the introduced methods. Constructions of 3-out-of-3 halftone VSS
schemes are illustrated. The secret image to be encoded is the logo of the
University of Delaware. Three grayscale natural images, Lena, Earth, and
Baboon are provided to generate the shares. The size of the share is 513× 513
and the size of the secret image is 171× 171. For illustrative purposes, image
Lena is shown in Figure 1.9(a).

The VSS pixel expansion of the secret pixel is γ = 4 and the size of the
halftone cell is q = 3× 3. The number of ABPs for each halftone cell is x = 2
and the quality index is s = 1/3. The distributions of SIPs and ABPs for each
share are decided before halftone shares are generated. The jointly optimized
distribution of SIPs and ABPs over a local region in one share is shown in
Figure 1.9(b) where the gray pixels indicate SIPs and the black pixels indicate
ABPs. We use the Floyd-Steinberg error filter shown in Figure 1.2 for the error
diffusion. For robust error diffusion, output-dependent threshold modulation
is employed and the threshold t(m,n) at the point (m,n) is given by:

t(m,n) = 0.25 + 0.33× 0.25× [g(m,n− 1)
+ g(m,n− 2) + g(m,n− 3)].

The threshold modulation tries to adjust the current threshold by using the
information of three preceding halftone pixels. For error diffusion, the error
diffusion constant is set to α = 0.8 to avoid error diffusion instability.

Three output shares are shown in Figure 1.10(a) to Figure 1.10(c), re-
spectively, where the corresponding perceived errors are also shown. When
calculating the perceived error ε, an alpha stable human visual system model
proposed in [9] is used. All shares show visually pleasing halftone images where
the image details can be clearly recognized. The resultant shares do not show
either residue image of the encoded image or any residue image of other shares.
Figure 1.10(d) shows the reconstructed image when shares 1 to 3 are ”stacked”
together with the OR operation. The content of the reconstructed image is
clearly recognizable with a contrast α = 1/9. The decoded image does not
bear any residue of any share images.

To illustrate the tradeoff between the share image quality and contrast of
the decoded image, we show another set of simulation results of a 3-out-of-3
halftone VSS scheme. Compared with the previous example, the halftone cell
size is changed to q = 4×4. The sizes of the shared image and the secret image
are well adjusted to be 512× 512 and 128× 128, respectively. The number of
ABPs for each halftone cell is x = 4 and the quality index increases to s = 1/2.
The three output shares are shown in Figure 1.11(a) to Figure 1.11(c), respec-
tively, where the corresponding perceived error is also shown. Figure 1.11(d)
shows the reconstructed image by stacking three shares together, where the
contrast of the decoded image is α = 1/16. Shares in the second example have
larger halftone cell size, thus larger s and better image quality than that of
the shares in the first example, as can be seen from Figure 1.11. However, the
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(a) (b)

(c) (d)

FIGURE 1.10
(a)–(c) Shares of the 3-out-of-3 scheme using the first method, q = 9. The
perceived errors are 1.73 × 1010, 8.45 × 109, and 5.46 × 109, respectively. (d)
Decoded image by shares (a)-(c), α = 1/9. (Reprinted with permission from
IEEE Trans. Inf. Forensics Security, vol. 4, no. 3, pp. 383–396, Sep. 2009
c©IEEE 2009).

© 2012 by Taylor & Francis Group, LLC



Visual Cryptography from Halftone Error Diffusion 23

(a) (b)

(c) (d)

FIGURE 1.11
(a)–(c) Shares of the 3-out-of-3 scheme using the first method, q = 16. The
perceived errors are 7.1 × 109, 3.48 × 109, and 2.27 × 109, respectively. (d)
Decoded image by shares (a)-(c), α = 1/16. (Reprinted with permission from
IEEE Trans. Inf. Forensics Security, vol. 4, no. 3, pp. 383–396, Sep. 2009
c©IEEE 2009).
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contrast loss of the decoded image is worse. It is observed that the contrast
of Figure 1.11(d) is lower than that of Figure 1.10(d).

(a) (b)

(c) (d)

FIGURE 1.12
(a)–(c) Shares of the 3-out-of-3 scheme using the second method, q = 16.
(d) Decoded image by shares (a)–(c), α = 1/16. (Reprinted with permission
from IEEE Trans. Inf. Forensics Security, vol. 4, no. 3, pp. 383–396, Sep. 2009
c©IEEE 2009).

In the following, we present the halftone shares generated by using the
second construction method. The performance of the second method is evalu-
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(a) (b)

(c)

FIGURE 1.13
(a)–(c) Another set of shares generated by the second method, q = 16, depict-
ing more pronounced artifacts. (Reprinted with permission from IEEE Trans.
Inf. Forensics Security, vol. 4, no. 3, pp. 383–396, Sep. 2009 c©IEEE 2009).
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ated by comparing its shares with those of the first method. Figure 1.12(a)–(c)
show three shares produced using the second method in a 3-out-of-3 scheme
where the size of the image is 512×512 and the size of the halftone cell is 4×4.
Here, images Lena, Tank, and Baboon are used. It is obvious that all halftone
shares show images with fine details. The reconstructed image is shown in Fig-
ure 1.12(d), which preserves all the secret information. Compared with Figure
1.12(a), Figure 1.11(a) is generated using the first method, showing less image
details and appearing dark due to the added ABPs.

We should point out that the second method does not necessarily pro-
duce visually pleasing halftone shares if the grayscale images are not carefully
selected. As an example, Figure 1.13(a)–(c) shows another set of shares gen-
erated by Lena, Earth, and Baboon using the second method with the same
scheme. Careful inspection shows these shares present more artifacts due to
the cross interference between the shares. The reason is that the contents of
the three grayscale images are not complementary to each other. Comparing
Figure 1.13(a) with Figure 1.11(a) and Figure 1.12(a), local geometric distor-
tion can be observed in Figure 1.13(a). The texture of the distorted region
is quite different from that of the neighboring regions, which causes visible
artifacts. On the other hand, Figure 1.11(a) and Figure 1.12(a) both show
smooth images with uniform image quality. Thus, it is important to choose
appropriate grayscale images for the second method.

1.8 Conclusion

In this chapter, HVC construction methods based on error diffusion are in-
troduced, which can generate shares with pleasing visual information. In the
introduced methods, the pixels that carry the secret information are preset
before a halftone share is generated from a grayscale image. Error diffusion is
used to construct the shares so that the noise introduced by the preset pixels
is diffused away when halftone shares are generated. The secret information
is then naturally embedded into the halftone shares. The homogeneous and
isotropic distribution of the preset pixels imposes the least noise in the er-
ror diffusion, thus leading to shares with high image quality. Our introduced
methods follow the basic principle of VC, thus the security of the construction
scheme is guaranteed. The introduced HVC constructions apply not only to
VSS but also to VSS used in the context of visual authentication and encryp-
tion.

For the first method, by using auxiliary black pixels, the contrast condition
of the decoded image is satisfied. Furthermore, the shares do not suffer any
interference from other shares. When auxiliary black pixels are employed, blue
noise multitone error diffusion is used to generate the distributions of the secret
information pixels and black auxiliary pixels. The second method exploits the
fact that halftoning of the graycale images alone can generate most of the black
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pixels needed. Black pixels are inserted only when a sufficient number of black
pixels have not yet been produced. By carefully selecting the grayscale images,
the second method can also generate shares with visually pleasing images. For
both methods, the decoded image does not suffer any interference from the
shared images. It is clear that there is a tradeoff between the shared image
quality and the contrast loss of the decoded image. However, by simple linear
filtering, the contrast loss can be easily recovered.
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2.1 Introduction

The key property used to construct visual cryptography schemes for black
and white images is the following: if we superpose transparencies with black
and white pixels, the resulting pixel that our eyes see is black if at least one
of the superposed pixels is black and is white if all the superposed pixels are
white. Such a property can be rephrased as follows: the possible ”state” for
the pixels can be represented with a bit, using 0 for white and 1 for black,
and the human visual systems performs an OR of the input pixels in order to
reconstruct the secret pixels.

This key property does not easily extend to colored pixels. With colored
pixels the state of each pixel cannot be represented anymore with a single
bit and the ”reconstruction” operation performed by our eyes is much more
complicated than a simple OR.

In this chapter we will first describe the difficulties that arise from the
superposition of colored pixels and then we review the work on visual cryp-
tography for colored images.

We assume that the reader is familiar with (at least the basics of) black
and white visual cryptography.

2.2 Color Superposition

What happens when we stack together two transparencies so that two pixels
get superposed? What is the color that the human eyes see as the result of
this superposition? Figure 2.1 illustrates the superposition operation with two
examples. In the first one we are using black and white pixels: the superpo-
sition of a black pixel with a white pixel yields a black pixel. In the second
example, we are using colored pixels: the superposition of a yellow pixel with
a magenta pixel yields a red pixels.

Using only black and white images the result of the superposition of pixels
printed on transparencies is straightforward: it is black if and only if at least
one of the pixels is black.

The answer to the same question gets much more complicated when we use
colors. In order to understand what happens when we superpose transparen-
cies with colored pixels we have to talk a bit about light and color theory.

2.2.1 Color Vision and Color Models

Modern understanding of light and color vision is based upon the advances
of several great scientists, such as the ones due to Newton. Thanks to them

© 2012 by Taylor & Francis Group, LLC



Visual Cryptography for Color Images 33

FIGURE 2.1
(See color insert.) Pixels superposition: black and white (left) and colored
(right).

today we have a good understanding of light and colors; the topic is quite
complex and a rigorous and detailed explanation goes beyond the scope of
this chapter. However, we will try to explain the basic properties of light and
colors because they are crucial for any visual cryptography scheme that deals
with color images.

Roughly speaking, light consists of electromagnetic energy with wave-
lengths in the approximate range of 350–750 nm, as shown in Figure 2.2.
The visible range represents only a small fraction of the full electromagnetic
spectrum.

FIGURE 2.2
(See color insert.) Electromagnetic spectrum.

When a particular wavelength in such a range hits the retina in our eyes, it
is perceived as a color. In the visible range, shorter wavelengths are perceived
as bluish colors, middle wavelengths as greenish colors, and higher wavelengths
as reddish colors. When our eyes are hit by several wavelengths we perceive a
color that is a sort of ”sum” of the wavelengths. If the eyes are hit by all the
visible wavelengths, the perceived color is white. That is, a (pure) white light
consists of all the visible wavelengths.

The expressions ”red light,” ”yellow light,” etc., are technically incorrect,
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but we will often use them to mean a light whose wavelength is perceived
as red, yellow, etc. Since each wavelength corresponds to a color, there are
infinite colors, one for each possible wavelength.

An object appears to be of a particular color because when light hits the
object some light is absorbed, that is some wavelengths are absorbed; the
remaining wavelengths are perceived by our eyes. When light hits an object
it can also be reflected (or pass through the object). An object of a particular
color χ, has strong absorption properties for the wavelengths that do not
correspond to χ while it reflects the light with color χ. For example, an object
appears yellow (when hit by a white light) because it reflects the yellow light
and absorbs most strongly in the other parts of the spectrum. In the case of a
transparency, the light that is not absorbed instead of getting reflected passes
through the transparency.

A color model is a formal model that allows us to represent all (or some
of) the possible colors. One of the most used color model is the one called the
”additive color model.” With this method three primary colors (usually red,
green, and blue) are mixed to obtain other colors. Figure 2.3 shows this model
with the primaries red, green, and blue; the colors yellow, cyan, and magenta
are produced when two of these primaries overlap. Varying the ”intensity” of
each primary in the mixing we can obtain many other colors.

FIGURE 2.3
(See color insert.) Additive color model with primaries red, green, and blue.

The set of all possible colors that we can obtain depends on the three
primary colors that we use. Any three colors can be used as primaries; the
range of colors that we obtain is the gamut of those primaries. Unfortunately,
no three primary colors exist so that their gamut corresponds to the set of
all possible colors; however by choosing red, green, and blue as primaries we
obtain a very large number of colors in their gamut. This is why these three
colors have been chosen for the additive color model and the model is often
called Red, Green, and Blue (RGB). Most displays use this model.

Another color model is the ”subtractive color model,” also called the Cyan,
Magenta, and Yellow (CMY) model. In this case the colors are obtained with a
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subtractive technique that starts from a white light and subtracts wavelengths
corresponding to the three colors cyan, magenta, and yellow. Figure 2.4 shows
the CMY model.

FIGURE 2.4
(See color insert.) Subtractive color model with primaries cyan, magenta, and
yellow.

Most modern printers use this model, often exploiting an additional black
ink; an additional K in the name CMYK indicates the use of the extra black
ink. Notice that we can obtain black by using all three inks (cyan, magenta,
yellow) together; however it is more efficient to cover a pixel with just black
ink, rather covering it with the three inks cyan, magenta, and yellow.

In the additive model we start from the absence of light, which gives the
black color, and we add light to obtain other colors with the extreme case
being the white color obtained when we add all possible wavelengths. In the
subtractive model we start from a white light and we subtract wavelengths
to obtain other colors with the extreme case being the color black obtained
when we take out all possible wavelengths.

If we are not very picky, and a discussion about this aspect goes beyond
the scope of this chapter, we can say that the RGB and the CMY models are
equivalent and complementary. Indeed an ink with the color cyan absorbs the
light corresponding to the red color, an ink with the color magenta absorbs
the light corresponding to the green color, and an ink with the color yellow
absorbs the light corresponding to the blue color. Because of this, for both
models, we will formally represent a color χ as a triple (x, y, z), where x, y, and
z denote the amount of red, green, and blue, respectively, that χ consists of.
The amount of each type of light (red, green, blue) is described by an integer
in the range [0, L]. With this setting, we can produce (L+1)3 different colors,
which, for L sufficiently large, are enough to approximate all colors that the
human eyes are able to distinguish. Typically, for computers, we have L = 255.
To make things easier, throughout this chapter, we use L = 100.

Each of the components x, y, and z can be seen as a filter that lets pass
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through only some light. The color (0, 0, 0), which we will denote also with
the symbol ”•,” is the black color: indeed all filters are 0, meaning that there
is no light left. The color (100, 100, 100), which we will denote also with the
symbol ”◦,” is white because no light is absorbed by the filters. The colors
red, green, and blue are represented, respectively, by (100, 0, 0), (0, 100, 0),
and (0, 0, 100); we will refer to these colors also as R, G, and B, respec-
tively. The colors cyan, magenta, and yellow are represented, respectively,
by (0, 100, 100), (100, 0, 100), and (100, 100, 0); we will refer to these colors
also as C, M, and Y, respectively. The color (50, 0, 0) is also a red, because that
is the only component present, but it is darker since some red light has been
absorbed. The higher the value of the component, the lighter is the color. If all
components are equal, i.e., (x, x, x), then the resulting color is a gray whose
intensity depends on x: the smaller is x, the darker is the gray.

Recall that this representation works fine both for the additive model and
for the subtractive model. In the additive model we start from (0, 0, 0) and add
light while in the subtractive model we start from (100, 100, 000) and subtract
light.

In the context of visual cryptography we can think of the transparencies as
filters; starting from a white light we ”subtract” some light applying filters (the
transparencies). The remaining light determines the color that we see when
superposing several transparencies. At this point it is worth emphasizing that
”white” on a transparency is actually ”transparent.” We assume to start with
a pure white light; if the transparency does not have any ink on it, then the
white light just passes through the transparency and we see white.

What is the color of the pixel resulting from the superposition of one or
more transparencies?

When we drop some ink on the transparency and hold the transparency
to the light we see the color that the ink lets pass through. When more trans-
parencies get stacked together, the color of the resulting pixel depends on the
absorption properties of the inks on all of the transparencies.

Let χ1 = (x1, y1, z1) and χ2 = (x2, y2, z2) be two colors and assume that
two pixels of color χ1 and of color χ2 are printed on two different transparen-
cies.

The following operator add describes the color superposition operation:

add(χ1, χ2) =
(
int

(x1x2

L

)
, int

(y1y2

L

)
, int

(z1z2

L

))
.

Notice that taking into account only the inks that we have used for each
transparency is a simplification: the perception of the final color depends also
on the material of the transparencies and the aberrations that the stack of
transparencies produces. Moreover, it is likely that the initial light we start
with is not a pure white light and that there are also other sources of light in
the environment. However, the add operator is a quite good approximation.

The add operation is commutative and thus the order in which we su-
perpose the colors is irrelevant. As expected, it results that add(Y, M) = R,
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add(R, G) = Y, add(Y, M, C) = •. Figure 2.5 shows some other examples of
superposition of colored pixels.

FIGURE 2.5
(See color insert.) Examples of pixels superposition.

The add operator can be easily extended to any number of pixels. Indeed
since the operation is commutative it is enough to add any two pixels each
time until we get to one pixel. Let χ1 = (x1, y1, z1), χ2 = (x2, y2, z2), . . . , χn =
(xn, yn, zn) be the colors of the pixels. The color of the pixel that results from
the superposition is:

add(χ1, χ2, . . . , χn) = (X,Y, Z)

where

X = int
(x1x2 . . . xn

Ln−1

)
, Y = int

(y1y2 . . . yn
Ln−1

)
, Z = int

(z1z2 . . . zn
Ln−1

)
.

Figure 2.6 shows examples of superpositions with 3 pixels.

FIGURE 2.6
(See color insert.) More examples of pixels superposition.

2.2.2 Lattices

Some papers (e.g., [7]) use finite lattices to formalize the properties of the
superposition of colored pixels. A finite lattice is a partially ordered set for
which any two elements of the set have a least upper bound and a greatest
lower bound. We can use a lattice to describe a color model.
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FIGURE 2.7
Lattice for the RGB and CMY color models.

In the additive model the superposition of two colored pixels corresponds to
the greatest lower bound while in the subtractive color model the superposition
corresponds to the least upper bound. The choice of a particular lattice is
equivalent to the choice of a color model. For example, the lattice in Figure 2.7
is equivalent to the color model that uses the following 8 colors: black, white,
R, G, B, C, M, and Y. Notice that this particular set of colors is closed under
the superposition operation. It is worth emphasizing that this lattice is not
equivalent to the RGB and CMY models: it only considers the 8 colors with
zero or full intensity while the RGB and CMY models have many more colors.

2.2.3 The Darkening Problem

When we superpose pixels having the same color, unless we have zero or full
intensity components, the resulting pixel is a darker version of the original
color. This is because each transparency is a filter that absorbs some light,
except when the transparency is white, and thus the resulting pixel is darker.
Figure 2.8 shows examples of superposition of pixels with the same color, a
light grey. As can be noticed in the figure, as we add more pixels the resulting
color becomes darker, with the limit being a full black.

We will refer to this problem as the darkening problem. Some of the schemes
that we will describe later superpose pixels with the same color, but ignore
the darkening problem.
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FIGURE 2.8
The darkening problem.

2.2.4 The Annihilator Color

Since for any color χ we have that add(χ, •) = •, in many visual cryptography
schemes for color images the black color is often used to ”cover up” other
colors so that they don’t show up in the reconstructed image. For this reason
we call the black color the ”annihilator” color. The presence of the annihilator
color in the reconstructed image has no meaning and thus the observer has to
ignore it. The use of the annihilator color is not a problem from a formal point
of view but the visual effect is not good: in many cases the presence of the
annihilator color in the reconstructed image is overwhelming (e.g., 90% of the
image) and thus it is not reasonable to assume that the observer can recognize
the secret image. This is clearly a problem if we want to share images, but it
doesn’t rule out some applications as we will see in later sections. We remark
that the annihilator color, has nothing special: it is just the black color! If
the secret image contains black pixels, then we will not be able to distinguish
amongst the black pixels in the reconstructed image which ones were originally
black and which ones were annihilated.

2.2.5 The Identity Color

Color ◦ is the ”identity” color, in the sense that for any color χ we have that
add(χ, ◦) = χ. In some schemes the identity color is used, together with the
annihilator color, as a special color. Recall that that in the context of visual
cryptography white is actually transparent.
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2.3 Formal Models for Colored VCS

In this section, we discuss the formal model for color visual cryptography, or
Color-VC for short. We first recall the basic properties of the formal model for
black and white visual cryptography, B&W-VC for short, that will be needed
also for the case of color images and then we dwell upon the problems that
need to be tackled in order to define a formal model for Color-VC.

2.3.1 The Models for B&W-VC

For B&W-VC the formal models used in the literature are all equivalent (with
variations on the metrics used for evaluation, like for example the contrast of
the scheme). The two key properties, that will be needed also for color images,
are:

• the safety property, which guarantees that nonqualified sets of participants
are not able to reconstruct the secret image;

• the contrast property, which guarantees that qualified sets of participants
are able to reconstruct the secret image.

To evaluate visual cryptography schemes the most important metric is the
pixel expansion, that is the number of subpixels used in the reconstructed
image for each pixel of the secret image.

Another important measure for the evaluation of B&W-VC schemes is the
contrast of the reconstructed image that can be defined as a function of the
contrast property. Several contrast properties and metrics can be found in
literature for B&W-VC. We refer the reader to the relevant papers about the
contrast (see for example [5]).

With the exception of the definition of the contrast, the formal model for
B&W-VC is pretty standard.

2.3.2 The Models for Color-VC

For color images even the model becomes difficult to define. Do we start
with a prespecified palette, perhaps the one used in the secret image, or do
we consider all possible colors? What color model do we consider? Do we
consider the darkening problem? Is the palette closed under the superposition
operation? That is, if we start with a prespecified palette, do we consider the
possibility that the reconstructed image contains colors that are not in the
original palette? How do we define the contrast property for color images and
what is the contrast metric? Do we allow the use of the annihilator color?
How do we account for it in the contrast property?
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In the following, we discuss all these issues. We start by defining the secret
and the shares palettes as follows:

• Secret palette: this is the set of colors used in the secret image. This is a
finite set of c colors (we can have at most one color per pixel). To make
notation easier we will denote these colors simply with the set of integers
{1, 2, . . . , c}. For the colors white, black, red, green, blue, cyan, magenta,
and yellow we will also use the corresponding symbol (◦, •, R, G, B, C, M, Y)
instead of the palette index.

• Shares palette: this is the set of colors that we can print on the shares or
obtain by superposing printed shares. The shares palette might be the same
as the original palette, or it might be augmented with some (or even many)
other colors. Most of the schemes used in the literature augment the shares
palette with the colors ◦ and •. We denote the colors in the shares palette
with the set of integers {1, 2, . . . , d}. When the shares palette is a superset
of the secret palette (this is the case in almost all of the scheme presented
in this chapter) we have that d ≥ c and to simplify the notation we assume,
without loss of generality, that the first c colors of the shares palette are
exactly those in the secret palette.

The secret image consists of a collection of pixels, each one with a color of
the secret palette. As for B&W-VC, each pixel of the secret image is encoded
in the shares into a certain number m of subpixels. Such an integer m is the
pixel expansion of the scheme.

In order to define a scheme we need to specify the qualified and the non-
qualified set of participants. There are n participants. For simplicity we con-
sider only the case of threshold schemes: Any set of at least k participants is
a qualified set, while any set with less than k participant is a nonqualified set
of participants.

In order to share each pixel of the secret image a trusted third party has to
create and distribute shares to the n participants. The creation of the shares
is defined using distribution matrices. These are c collections (multisets) of
n×m matrices C1, C2, ..., Cc, whose elements are in the shares palette.

To share a secret pixel of color i, the dealer randomly chooses one of the
matrices in Ci and distributes row j to participant j. Thus, the chosen matrix
defines the m subpixels in each of the n transparencies.

An example of distribution matrix is the following:

D =


1 • 1 M 1
R 1 1 ◦ 2
2 1 1 • 3
◦ M 1 G B


In this case, there are n = 4 participants (number of rows in the distri-

bution matrices) and the pixel expansion of the scheme is m = 5 (number of
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columns in the distribution matrices). If D is the matrix selected for the dis-
tribution of the shares then the 5 subpixels in the first share will have colors
1•1M1, while those in the second share will have colors R11◦2.

Given a distribution matrix M and a set of participants X, we denote
with M |X the submatrix of M obtained by considering only the rows of M
corresponding to the participants in X.

As for the black and white case, the definition of a scheme must satisfy
the security and the contrast properties:

Security property: Given a forbidden set X, |X| < k, the c collections of
|X|×m matrices, Di, i = 1, 2, ..., c, consisting of M |X for each M ∈ Ci, contain
the same matrices with the same frequencies. This property guarantees that
a forbidden set of participants has no information on the secret image.

Contrast property: The contrast property has to guarantee that the secret
image will be visible for a qualified set of participants. For B&W-VC this
property uses two thresholds ` and h, with ` < h, and requires that when the
secret pixel is white, the number of black subpixels in the reconstruction is at
most ` and when the secret pixels is black, the number of black subpixels is
at least h. Many papers that deal with color images generalize this definition
requiring that in the reconstructed pixel there are at least h subpixels of color
i, where i is the color of the secret pixel, and for any other color j 6= i there
are at most ` subpixels with color j. Notice that this definition can be used
only if the shares palette is equal to the secret palette. Moreover, it allows
the possibility that the reconstructed pixel is made up of an overwhelming
majority of subpixels with a wrong color. For example if h = 4, l = 3, and
c = 10 it is possible to have in the reconstructed pixel only 4 subpixels with the
right color while other 27 = 3 · 9 have (mixed) wrong colors. The annihilator
color • can be present without any restriction.

Probably a better definition of the contrast property should require that
in the reconstructed image there be at least h subpixels with the right color
and at most ` subpixels with wrong colors. That is, the number of subpixels
with the right color should be greater than the number of subpixels with a
wrong color (counting all the subpixels with wrong colors).

We will refer to the first property as the weak contrast property and to the
second one as the strong contrast property.

Next, we provide a formalization of such properties. Define the add(M) for
a distribution matrix M to be the vector whose jth component is the add of
column j in M and define wi(v) for a vector v to be the number of elements
equal to color i, for i = 1, 2, . . . , c, that is for any color in the secret palette.
Moreover we define w̄i(v) to be the number of elements in v different from
color i and from the annihilator color.

Weak contrast property: There must exist h and `, integers 0 ≤ ` < h ≤ m,
such that given a qualified set X, |X| = k, for any M ∈ Ci, it holds that
wi(add(M |X)) ≥ h and wj(add(M |X)) ≤ ` for any j in the shares palette
and j 6= i. Note that the annihilator color is not considered, that is, it is
allowed that many pixels be •.
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Strong contrast property: There must exist h and `, integers 0 ≤ ` < h ≤ m,
such that given a qualified set X, |X| = k, for any M ∈ Ci, it holds that
wi(add(M |X)) ≥ h and w̄i(add(M |X)) ≤ `. Also in this case the annihilator
color can be present without restriction.

In the black and white case, the thresholds ` and h, together with the pixel
expansion m have been used to define several variants of the contrast metric,
such as α = h−`, α = (h−`)/m, and α = (h−`)/(h+`). Similar measures have
been used for color schemes and we will specify the definition of the contrast
when presenting the schemes. However, for Color-VC schemes we need to
account for the presence of the annihilator color in the reconstructed image
and this makes the contrast less important. We will evaluate the annihilator
presence that we can define as β = b/m, where b is the number of pixels that
get annihilated in the reconstruction process.

2.3.3 The SC, ND, and General Models

The schemes that we will review in the rest of the chapter can be classified,
based on the formal model that they use, into three classes. In the next para-
graph we define three formal models for Color-VC.

The SC (Same Color) model.

The SC model does not allow the superposition of pixels with different colors,
with the exception of the identity (◦) and the annihilator (•) colors. Hence,
the shares have to be constructed in such a way that each column in the
distribution matrices have elements taken from the set {i, ◦, •}, for some color
i. Thus, when we superpose several transparencies, we never have a pixel of
color i superposed with a pixel of color j.

Moreover the darkening problem is ignored. That is, it is assumed that
superposing several pixels with color i, the resulting color is still i.

An example of a distribution matrix for such kinds of schemes is the fol-
lowing (we have used three colors, denoted with the numbers 1, 2, and 3):

D =


3 1 1 1 • 2 2 2 ◦ • 3 3 • 3 ◦ • • ◦ 1 • ◦ • 2
3 1 1 • 1 2 2 • 2 • 3 • 3 ◦ 3 • • 1 • ◦ ◦ 2 •
3 1 • 1 1 2 • 2 2 3 ◦ 3 • • 3 • 1 • • • 2 • •
3 ◦ 1 1 1 • 2 2 2 3 • • 3 3 • 1 • • • 2 ◦ ◦ ◦


As can be noted, in each column, we either have colors ◦, •, or pixels with

a color χ = 1, 2, or 3. We never have a column that mixes two different colors
in the set {1, 2, 3}.

This restriction and the fact that the darkening problem is ignored avoids
the complications that derive from color superposition.
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The ND (No Darkening) Model.

The ND model is as the SC model but it considers the darkening problem.
Thus, again we cannot superpose pixels with different colors, but if we su-
perpose several pixels with the same color we get a darker version of that
color.

The General Model.

In the General model, there are no restrictions about the superposition of pix-
els and the superposition operation satisfies the real properties of color super-
position. This means the darkening problem is considered. Very few schemes
have been defined for this model.

2.3.4 Base Matrices

Given a matrix B, we denote by C(B) the set of matrices obtained by permut-
ing in all possible ways the columns of B. In most schemes, the c collections
Ci are obtained by fixing c matrices Bi, i = 1, 2, . . . , c, and letting Ci = C(Bi).
The matrices Bi are called the ”base matrices.” Base matrices constitute an
efficient representation of a scheme. Indeed, the dealer has to store only the
base matrices and in order to randomly choose a matrix from C(Bi) it has to
randomly choose a permutation of the columns of the base matrix Bi.

Notice that the security property for a base matrices scheme is equivalent
to: Given a forbidden set X, the matrices Bi|X, for i = 1, 2, . . . , c are the
same up to a permutation of the columns.

2.4 Schemes for the SC Model

In this section, we review the known schemes for the SC model. Verheul and
van Tilborg [10] were the first to consider visual cryptography schemes for
color images. Their model is equivalent to the SC one; as we will see shortly
their model requires a special property, which can be easily implemented us-
ing the SC model. The schemes of [10] were improved first by [2] and then
by [7, 11]. Paper [3] provides a lower bound on the pixel expansion and also
the construction of (n, n)-threshold schemes that achieve the lower bound.
It turns out that the (n, n)-threshold schemes of [7, 11] also have optimal
pixel expansion, which means that the schemes of [3] and those of [7, 11] are
equivalent.
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2.4.1 The VV Schemes

The model considered in [10], which we will call the VV model, requires a
special property: if we superpose pixels with different colors then the resulting
pixel is black. As we have explained earlier, this property is not natural.
When we superpose two pixels with different colors, we get a third color that
depends on the colors of the two superposed pixels. In some particular cases
the resulting color is actually black, but it is not black in most cases.

Verheul and van Tilborg propose a trick that ”implements” such a prop-
erty. The trick works as follows: each pixel is divided into c subpixels, where
c is the number of colors in the secret image, subpixels i gets color number i,
while all other subpixels get painted with black, as shown in Figure 2.9.

FIGURE 2.9
(See color insert.) The VV trick for the case of 4 colors. Subpixels with different
colors are never superposed.

This trick implements the required property and makes the VV model
equivalent to the SC model because in the resulting scheme subpixels with
different colors are never superposed. However, to implement the trick, we
have to pay an extra pixel expansion factor of c and a considerable fraction
of the original pixel gets annihilated in the reconstruction.

The schemes of [10] are constructed using finite fields that satisfy certain
conditions. We refer the reader to the original paper for a detailed description
of the construction.

Assuming that c > 2 is a prime power, the construction produces

• (k, k)-threshold schemes with c colors for any k;

• (k, c− 1)-threshold schemes with c colors for k < c;

• (k, c)-threshold schemes with c colors for k < c, if k − 1 and c − 1 are not
relatively prime.

The pixel expansion of the schemes is m = ck; this includes the pixel
expansion m = ck−1 due to the construction of the scheme and the extra c
factor due to implementation of the special property of the VV model.

The reconstruction guarantees that there is at least one pixel of the original
color and no pixels with other colors, that is h = 1 and ` = 0. The contrast
property property considered is the weak one. However, we note that when ` =
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0 the weak and the strong contrast property are equivalent. The annihilator
presence β = (m−1)/m, that is only one out of the m pixels is of the original
color, while the remaining m− 1 are annihilated.

As an example, we report the (3, 3)-threshold 3-color scheme. Here are the
three base matrices:

B1 =

 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2


B2 =

 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
3 1 2 1 2 3 2 3 1


B3 =

 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
2 3 1 3 1 2 1 2 3


The pixel expansion, that corresponds to the number of columns in the

base matrices, is m = ck−1 = 32 = 9. The above base matrices work only in
the vv model. Although the annihilator color is not explicitly used, it appears
because of the special property. Indeed, implementing the special property
using the trick suggested earlier, the base matrices become the following:

B1 =

 1 • • 1 • • 1 • • • 2 • • 2 • • 2 • • • 3 • • 3 • • 3
1 • • • 2 • • • 3 1 • • • 2 • • • 3 1 • • • 2 • • • 3
1 • • • 2 • • • 3 • 2 • • • 3 1 • • • • 3 1 • • • 2 •


B2 =

 1 • • 1 • • 1 • • • 2 • • 2 • • 2 • • • 3 • • 3 • • 3
1 • • • 2 • • • 3 1 • • • 2 • • • 3 1 • • • 2 • • • 3
• • 3 1 • • • 2 • 1 • • • 2 • • • 3 • 2 • • • 3 1 • •


B3 =

 1 • • 1 • • 1 • • • 2 • • 2 • • 2 • • • 3 • • 3 • • 3
1 • • • 2 • • • 3 1 • • • 2 • • • 3 1 • • • 2 • • • 3
• 2 • • • 3 1 • • • • 3 1 • • • 2 • 1 • • • 2 • • • 3


Hence, the real pixel expansion is m = ck = 33 = 27. In this particular

case superposing 3 shares we get 26 black pixels out of 27 and just 1 colored
pixel. That is, the annihilator presence is β = 26/27 (about 96%).

This approach doesn’t seem practicable for images, but it can be used for
other applications, like sharing passwords associating, for example, a digit to
each color. For example, as reported in [10], if we use pixels of diameter 0.5
cm with 9 colors we can build a (3, 9)-threshold visual scheme with 9 colors
using 92 = 81 pixels for each color of the password; on a standard A4 page
there is room for a 90 digit password.
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2.4.2 The BDD Schemes

Blundo et al. [2] focus on schemes with maximal contrast. They consider the
weak contrast property and define the contrast as α = (h − `)/(h + `). The
following results are provided in [2]:

• A first construction of c-color (2, n)-threshold Color-VC schemes with max-
imal contrast. The construction requires c > n.

• A proof that the above condition c > n is necessary to have a maximal
contrast scheme. It turns also out that, among the schemes with maximal
contrast, the schemes provided by the first construction are also with optimal
pixel expansion.

• A second construction of c-color (2, n)-threshold Color-VC schemes. Such a
construction gives a better pixel expansion with respect to the first one but
the schemes are not with maximal contrast.

• A construction of maximal contrast c-color (n, n)-threshold Color-VC
schemes with improved pixel expansion with respect to those provided
in [10].

We refer the interested reader to [2] for details about the constructions
and the lower bound cited in this section.

2.4.3 The KY and YL Schemes

Koga and Yamamoto [7] and independently, Yang and Laih [11] provide (k, n)-
threshold c-color schemes that improve on the pixel expansion of the schemes
in [10, 2]. Here we report the construction provided in [11], but the one in [7]
is equivalent.

Construction 1 The construction exploits as a building block the base ma-
trices B◦ and B• of a scheme for black and white images. In order to obtain
the base matrix Bi for color i we can concatenate one modified copy of B◦
with c− 1 modified copies of B•. The required modifications are the following:
in B◦ we substitute ◦ with color i while in the c− 1 copies of B• we substitute
◦ with the remaining c − 1 colors (one color per copy). The pixel expansion
of the c-color scheme is c times the pixel expansion of the original black and
white scheme.

As an example, consider the following (3, 3)-threshold 3-color scheme. We
start with the base matrices of a (3, 3)-threshold scheme for black and white
images as defined in the paper by Naor and Shamir [8] (however, the con-
struction works with any other choice of the black and white base matrices):

B◦ =

 ◦ • ◦ •◦ • • ◦
◦ ◦ • •

 B• =

 • ◦ ◦ •◦ • ◦ •
◦ ◦ • •
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Then we construct the base matrices for the 3-color scheme as follows:

B1 = [B◦→1
◦ |B◦→2

• |B◦→3
• ] =

 1 • 1 • • 2 2 • • 3 3 •
1 • • 1 2 • 2 • 3 • 3 •
1 1 • • 2 2 • • 3 3 • •


B2 = [B◦→1

• |B◦→2
◦ |B◦→3

• ] =

 • 1 1 • 2 • 2 • • 3 3 •
1 • 1 • 2 • • 2 3 • 3 •
1 1 • • 2 2 • • 3 3 • •


B3 = [B◦→1

• |B◦→2
• |B◦→3

◦ ] =

 • 1 1 • • 2 2 • 3 • 3 •
1 • 1 • 2 • 2 • 3 • • 3
1 1 • • 2 2 • • 3 3 • •


Using as a building block the original (k, n)-threshold scheme provided in

the paper by Naor and Shamir [8], whose pixel expansion is 2k−1, the c-color
schemes so obtained have pixel expansion m = c×2k−1. This greatly improves
on the pixel expansion of [2, 10].

Finally, as observed, also in [11], we can delete from the base matrices the
columns that have all pixels with color •. Using the base matrices provided in
the paper by Naor and Shamir [8], for n even we always have one such column
in each base matrix, while for n odd we always have c − 1 such columns
in each base matrix. Hence, the pixel expansion can be further improved to
m = c × 2k−1 − 1 for n even and to m = c × 2k−1 − c + 1 for n odd. This is
important as we will see that for k = n this improved pixel expansion matches
a lower bound proved in [3].

The contrast property considered is the weak one. The scheme have pa-
rameters h = 1 and ` = 0 (recall that for the special case of ` = 0 the weak
contrast property is equivalent to the strong one). The annihilator presence is
β = (m− 1)/m.

The same idea used for the construction of c-color (k, n)-threshold schemes
starting from black and white (k, n)-threshold schemes, can be used also for
general access structure schemes. The pixel expansion of the c-color scheme is
c times the pixel expansion of the black and white scheme that we start with.

2.4.4 The CDD Schemes and a Lower Bound

Paper [3] defines the contrast as α = (h−`)/m and considers the weak contrast
property. The following theorems are proved in [3]:

Theorem 1 In the SC model, the optimal contrast of a c-color (n, n)-
threshold scheme is

αopt =

{
1

c·2n−1−1 , if n is even
1

c·2n−1−c+1 , if n is odd.
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Theorem 2 In the SC model, the pixel expansion of a c-color (n, n)-threshold
scheme, for any c, n ≥ 2, is lower bounded by

m ≥

{
c · 2n−1 − 1, if n is even
c · 2n−1 − c+ 1, if n is odd.

Note that the above lower bound implies that the schemes of [7, 11] have
optimal pixel expansion. In [3] an alternative construction of c-color (n, n)-
threshold schemes with optimal pixel expansion is provided. The construction
is the following:

Construction 2 Fix any color i; base matrix Ci consists of the following
columns:

1. for r = 0, 1, . . . , dn/2e − 1 include the
(
n
2r

)
columns, having 2r

entries equal to • and the remaining ones of color i;

2. for any color j 6= i, for r = 0, 1, . . . , dn−1
2 e−1 include the

(
n

2r−1

)
columns having 2r− 1 entries equal to • and the remaining ones of
color j;

Below is an example for c = 3 and n = 4. For such a scheme m = 23 and
α = 1/23.

C1 =


1 2 2 2 • 3 3 3 • • 1 1 • 1 • • • • 2 • • • 3
1 2 2 • 2 3 3 • 3 • 1 • 1 • 1 • • 2 • • • 3 •
1 2 • 2 2 3 • 3 3 1 • 1 • • 1 • 2 • • • 3 • •
1 • 2 2 2 • 3 3 3 1 • • 1 1 • 2 • • • 3 • • •



C2 =


2 1 1 1 • 3 3 3 • • 2 2 • 2 • • • • 1 • • • 3
2 1 1 • 1 3 3 • 3 • 2 • 2 • 2 • • 1 • • • 3 •
2 1 • 1 1 3 • 3 3 2 • 2 • • 2 • 1 • • • 3 • •
2 • 1 1 1 • 3 3 3 2 • • 2 2 • 1 • • • 3 • • •



C3 =


3 1 1 1 • 2 2 2 • • 3 3 • 3 • • • • 1 • • • 2
3 1 1 • 1 2 2 • 2 • 3 • 3 • 3 • • 1 • • • 2 •
3 1 • 1 1 2 • 2 2 3 • 3 • • 3 • 1 • • • 2 • •
3 • 1 1 1 • 2 2 2 3 • • 3 3 • 1 • • • 2 • • •


Other results of [3] are

• A characterization of maximal contrast (k, n)-thresholds schemes. The char-
acterization describes the schemes with a linear programming problem.

• A construction of c-color (2, n)-threshold schemes with improved pixel ex-
pansion with respect to [10, 11].
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2.5 Schemes for the ND Model

In this section we describe schemes that work for the ND model. This model
has been considered only in [4] where a construction for c-color (k, n)-threshold
schemes is presented.

In order to have pixels with exactly the same color as the original one the
schemes of [4] have the property that in any shares superposition at most one
pixel is colored; all other pixels have one of the two special colors ◦ or •.

The construction uses as a building block a black and white (k− 1, k− 1)-
threshold scheme.

Construction 3 Let S◦k−1 and S•k−1 be the basis matrices of a (k− 1, k− 1)-
threshold scheme and let m′ be the pixel expansion of such a scheme. Denote
the rows of S◦k−1 and S•k−1 with wi and bi, respectively:

S◦k−1 =


w1

w2

...

...
wk−1

 , S•k−1 =


b1
b2
...
...
bk−1

 .
Let S•1 = [•] and S◦1 = [◦]. Then let Fk,n(i, Sφk−1), where i ∈ {1, 2, ..., c}

and φ ∈ {◦, •} be the n×
(
n
k

)
m′ matrix constructed by

(
n
k

)
submatrices, called

”blocks,” with dimension n×m′ each consisting of the following rows: n− k
(”black”) rows of m′ elements •; Each block differs from the others in the
choice of the n−k ”black” rows; The remaining k rows are filled with one row
of elements equal to i followed in order by the k − 1 rows of Sφk−1.

Base matrix for color i, for i ∈ {1, 2, ..., c}, is given by

Bi = Fk,n(1, S•k−1) + . . .+ Fk,n(i− 1, S•k−1) + Fk,n(i, S◦k−1) +
Fk,n(i+ 1, S•k−1) + . . .+ Fk,n(c, S•k−1)

where + denotes the concatenation of the matrices.

An example will clarify the above construction. Let k = 3 and n = 4 and
consider the matrices S◦k−1 and S•k−1 given by the Naor and Shamir (2, 2)-
threshold scheme [8], that is,

S◦2 =
[
◦ •
◦ •

]
, S•2 =

[
◦ •
• ◦

]
.

The F matrices will have
(
n
k

)
= 4 blocks, since we have to place 1 black row

in each of 4 possible positions. Hence, we have
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F3,4(i, S◦2 ) =


i i i i i i • •
◦ • ◦ • • • i i
◦ • • • ◦ • ◦ •
• • ◦ • ◦ • ◦ •

 , F3,4(i, S•2 ) =


i i i i i i • •
◦ • ◦ • • • i i
• ◦ • • ◦ • ◦ •
• • • ◦ • ◦ • ◦

 .
The vertical bars identify the 4 blocks. As can be seen each block is given by
1 black row, and the remaining rows filled, in this order, by one row of i’s and
the rows of S◦2 (or S•2 ), from the first to the last. Using the above F matrices
we can build the following 3-color (3, 4)-threshold scheme.

B1 =


1 1 1 1 1 1 • • 2 2 2 2 2 2 • • 3 3 3 3 3 3 • •
◦ • ◦ • • • 1 1 ◦ • ◦ • • • 2 2 ◦ • ◦ • • • 3 3
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦

 ,

B2 =


2 2 2 2 2 2 • • 1 1 1 1 1 1 • • 3 3 3 3 3 3 • •
◦ • ◦ • • • 2 2 ◦ • ◦ • • • 1 1 ◦ • ◦ • • • 3 3
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦

 ,

B3 =


3 3 3 3 3 3 • • 1 1 1 1 1 1 • • 2 2 2 2 2 2 • •
◦ • ◦ • • • 3 3 ◦ • ◦ • • • 1 1 ◦ • ◦ • • • 2 2
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦

 .

Construction 3 builds a c-color (k, n)-threshold scheme with pixel expan-
sion m = c

(
n
k

)
m′, where m′ is the pixel expansion of the black and white

scheme used as building block. The thresholds ` and h depend on the b&w
scheme used as building block, If such a scheme is with perfect reconstruction
of black pixels the resulting scheme has ` = 0, h ≥ 1. Notice that the contrast
property satisfied is the weak one.

Using as a building block the best, with respect to the pixel expansion,
b&w (k − 1, k − 1)-threshold scheme, provided in [8], whose pixel expansion
is m′ = 2k−2, the resulting scheme has pixel expansion

m = c

(
n

k

)
2k−2.

For k = n the pixels expansion is m = c2n−2. The model assumes the weak
contrast property. The parameters h and ` are h = 1 and ` = 0 and the
annihilator presence is β = (m− 1)/m.

We remark that the schemes of [4] are constructed with the restriction that
the shares have only one colored pixel. This is not a restriction on the model
but just on the kind of schemes that can be constructed. Although this limits
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the search space for good schemes, it guarantees that the reconstructed pixels
are exactly of the same original color (and not a darker version of it).

If we consider a model that requires this special property the c-color (n, n)-
threshold schemes of [4] are optimal with respect to the pixel expansion:

Theorem 3 [4] If the shares are restricted to be such that for any superposi-
tion it is possible to have at most one colored pixel, any c-color (n, n)-threshold
scheme has pixel expansion m ≥ c2n−2.

Other results presented in [4]:

• A construction of c-color (2, n)-threshold with pixel expansion m = c(n−1).

• A matching lower bound m ≥ c(n− 1).

• A construction of c-color (2, n)-threshold with contrast α = 2
cn . The contrast

is defined as α = (h − `)/m and the thresholds h and ` satisfy the weak
contrast property.

• An upper bound on the contrast α ≤ k
cn . This matches the construction for

k = 2.

2.6 Schemes for the General Model

In this last section we finally describe schemes for Color-VC that consider
the General model, that is we consider schemes that superimpose pixels with
different colors. In the rest of the section, we present several (2, 2)-threshold
schemes from [7, 1] and a construction for (2, n)-threshold schemes from [1].

2.6.1 (2, 2)-Threshold Schemes

In this section, we present schemes for the particular case of k = n = 2.

Scheme 1 [7] The secret palette is {Y, C, G} while the shares palette is
{Y, C, G, ◦, •}. The base matrices are:

SY =
[
Y ◦ • C
◦ Y C •

]
SC =

[
C ◦ • Y
◦ C Y •

]
SG =

[
Y C ◦ •
C Y • ◦

]
It is easy to see that for this scheme the pixel expansion is m = 4 and we

have h = 2, ` = 0. The annihilator presence is β = 1/2 because 2 out of 4
pixels are annihilated.
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Scheme 2 [7] Both the secret palette and the shares palette are {◦, Y, M, C, R, G, B, •}.
The base matrices are:

S◦ =
[
◦ Y M C • • • •
◦ • • • Y M C •

]
SY =

[
Y ◦ M C • • • •
◦ Y • • M C • •

]
SM =

[
M ◦ C Y • • • •
◦ M • • C Y • •

]
SC =

[
C ◦ Y M • • • •
◦ C • • Y M • •

]
SR =

[
Y M C ◦ • • • •
M Y • • C ◦ • •

]
SG =

[
C Y M ◦ • • • •
Y C • • M ◦ • •

]
SB =

[
M C Y ◦ • • • •
C M • • Y ◦ • •

]
S• =

[
Y M C ◦ • • • •
• • • • Y M C ◦

]
For this scheme the pixel expansion is m = 8 and we have h = 1, ` = 0.

The annihilator presence is β = 7/8 because in most cases 6 out of 8 pixels are
annihilated and for the color white 7 out of 8 pixels are annihilated. Because
of this, if we restrict the secret palette to {Y, M, C, R, G, B, •} and add ◦ for the
shares palette the resulting scheme has h = 2 improving the contrast.

Scheme 3 [7] Both the secret palette and the shares color palette are
{◦, Y, M, C, R, G, B, •}. The base matrices are:

S◦ =
[
◦ Y M C •
◦ B G R •

]
SY =

[
Y M C • ◦
◦ G R B •

]
SM =

[
M C Y • ◦
◦ R B G •

]
SC =

[
C Y M • ◦
◦ B G R •

]
SR =

[
◦ Y M C •
R B G • ◦

]
SG =

[
◦ C Y M •
G R B • ◦

]
SB =

[
◦ M C Y •
B G R • ◦

]
S• =

[
• ◦ Y M C
◦ • B G R

]
It is easy to see that for this scheme the pixel expansion is m = 5 and we

have h = 1, ` = 0. The annihilator presence β = 4/5 because 4 out of 5 pixels
are annihilated.

Scheme 4 [1] The secret and shares palette are {R, G, B, C, M, Y}. The base ma-
trices are:

SR =
[
Y M C • • ◦
M Y • C ◦ •

]
SG =

[
Y C M • • ◦
C Y • M ◦ •

]
SB =

[
M C Y • • ◦
C M • Y ◦ •

]
SC =

[
C ◦ M Y • •
◦ C • • M Y

]
SM =

[
M ◦ Y C • •
◦ M • • Y C

]
SY =

[
Y ◦ C M • •
◦ Y • • C M

]
It is easy to see that for this scheme the pixel expansion is m = 6 and we

have h = 2, ` = 0. The annihilator presence β = 2/3 because 4 out of 6 pixels
are annihilated.
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2.6.2 The (2, n)-Threshold AS Schemes

In [1] a constructions of (2, n)-threshold schemes is provided. The construc-
tion uses, as a building block, the base matrix S• for the black color of the
(2, n)-threshold scheme for black and white images defined in [2]. Matrix S•

is defined as all the binary column-vector with weight
(

n
bn/2c

)
, with the sub-

stitutions 1↔ • and 0↔ ◦. For example, for n = 4, we have

S•4 =


1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 1

 =


• ◦ ◦ • ◦ •
• • ◦ ◦ • ◦
◦ • • • ◦ ◦
◦ ◦ • ◦ • •


Then, to obtain the color scheme, the black and white pixels are substituted

with the rows of a specific (2, 2)-threshold color scheme. For example, using
the KY scheme for the set of colors {C, Y, G} with m = 4 provided in the
previous section and substituting • with the first row of the base matrix for
a given color and ◦ with the second row of the base matrix we get the base
matrix for that color. For example, to get the base matrix for color Y for the
(2, 4)-threshold scheme, we substitute in S◦4 the symbol • with Y◦•C and the
symbol ◦ with ◦YC•.

The scheme that we obtain is:

SC =


◦ C • Y C ◦ Y • C ◦ Y • ◦ C • Y C ◦ Y • ◦ C • Y
◦ C • Y ◦ C • Y C ◦ Y • C ◦ Y • ◦ C Y • ◦ C • Y
C ◦ Y • ◦ C • Y ◦ C • Y ◦ C • Y C ◦ Y • C ◦ Y •
C ◦ Y • C ◦ Y • ◦ C • Y C ◦ Y • ◦ C • Y ◦ C • Y



SY =


◦ Y • C Y ◦ C • Y ◦ C • ◦ Y • C Y ◦ C • ◦ Y • C
◦ Y • C ◦ Y • C Y ◦ C • Y ◦ C • ◦ Y C • ◦ Y • C
Y ◦ C • ◦ Y • C ◦ Y • C ◦ Y • C Y ◦ C • Y ◦ C •
Y ◦ C • Y ◦ C • ◦ Y • C Y ◦ C • ◦ Y • C ◦ Y • C



SY =


◦ Y • C Y ◦ C • Y ◦ C • ◦ Y • C Y ◦ C • ◦ Y • C
◦ Y • C ◦ Y • C Y ◦ C • Y ◦ C • ◦ Y C • ◦ Y • C
Y ◦ C • ◦ Y • C ◦ Y • C ◦ Y • C Y ◦ C • Y ◦ C •
Y ◦ C • Y ◦ C • ◦ Y • C Y ◦ C • ◦ Y • C ◦ Y • C



2.7 Other Schemes

In [9] Shyu proposes a construction that is very similar to the one used in [7,
11]. However, the model, although for many aspects equal to the SC model, has
a crucial difference: the author assumes that the color perceived by the human
eyes is an ”average” of the colors present in the subpixels of the reconstructed
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pixels. For example, if a given surface is evenly covered with red and green we
should see yellow as a result. Although this is in principle true, in practice it
works only if the pixels are so tiny and evenly distributed that our eyes are
not able to distinguish the single pixels and perceives an average color mixing
the two primary colors. What really happens is that our eyes perceive the
mixture of red and green. However, this does not mean that we cannot use this
model. We have to accept the fact that a secret color (yellow, for example)
is reconstructed as a mixture of other colors (red and green, for example).
This model allows building schemes with a better pixel expansion, namely
m = dlog ce × 2n−1. The contrast properties that we have used throughout
this paper are not applicable to this model.

In [6] Hou proposes a method that first splits the secret image into the
cyan, magenta, and yellow components and then uses ad-hoc (2, 2)-threshold
schemes to share those components. Although the paper claims that this
method is easily extensible to the (k, n)-threshold scheme it is not clear how
to use the ad-hoc (2, 2)-threshold schemes for the general case of the (k, n)-
threshold scheme. A proof of the security property is also missing.

2.8 Conclusions

Stepping from visual cryptography for black and white images to visual cryp-
tography for color images is not immediate. The color model poses some tricky
questions that arise from the complex behavior of colors superposition. Many
visual cryptography schemes for color images avoid the problem by not super-
posing pixels with different colors. Very few known schemes do actually exploit
color superposition. In this chapter we have first emphasized the difficulties
that arise from the superposition of colored pixels; then we have provided a
survey of the models of visual cryptography for color images that have been
considered in the literature and a survey of the schemes that have been pro-
posed for such models.

Visual cryptography for black and white images has been thoroughly stud-
ied. The case of color images is still pretty much unexplored. A first direction
of research concerns the definition of a reference model. We believe that the
General model is the one that best represents the real world. All the models
proposed in the literature lack a well-defined notion of contrast, which is a
very important measure for the evaluation of the schemes. A second direction
of research concerns the search for schemes that do use the properties of color
superposition. The construction of schemes for color images seems to be much
more difficult than for black and white images.
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3.1 Introduction

Visual cryptography proposed by Naor and Shamir [7] discloses the possibility
for using human visual ability to perform the decryption process. Specifically,
one secret image is encoded into two shares that are seemingly random pic-
tures. By xeroxing them onto transparencies, the dealer distributes the two
random transparencies to two participants (one share for each participant).
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Each participant cannot tell the secret from his own transparency, but when
the two participants superimpose their transparencies pixel by pixel, they
recognize the secret from the superimposed result by their visual system. Nei-
ther computational devices nor cryptographic knowledge is required for the
decryption process.

With such an interesting characteristic that the decryption process is by
the human visual system only, instead of any computational device, visual
cryptography attracts much attention from researchers. In particular, it is
much useful in situations where computing devices are not available or not
possible to use. Naor and Shamir [7] first presented k out of n visual secret-
sharing schemes, which ensure that the secret is concealed from groups of
less than k participants, while it can be seen by groups of at least k partic-
ipants when they stack their shares altogether. Since this pioneer research,
many theoretical results on the construction or contrast (the relative differ-
ence between the reconstructed white and black pixels in the superimposed
image) of visual secret sharing schemes for binary images have been proposed
in the literature [1, 10, 11, 2]. Some studies [4, 5, 9] focused on the practi-
cal realization of visual cryptographic schemes for gray-level or color images.
So far, the above-mentioned results concern sharing “one”secret in a visual
sense.

Wu and Chen [12] might be the first researchers to consider the problem
of sharing two secret images in two shares in visual cryptography. They con-
cealed two secret binary images into two seemingly random shares, namely
S1 and S2, such that the first secret can be seen by stacking the two shares,
denoted by S1 ⊗ S2, and the second secret can be obtained by Sθ1 ⊗ S2 where
θ denotes the superimposition operation and Sθ1 is the result of rotating S1 θ
counterclockwise. S1 and S2 are in the shape of squares of the same size. In
order to align the encoded pixels on S1 and S2 as well as on Sθ1 and S2, they
designed the rotation angle θ to be 90◦. Nevertheless, it is easy to obtain one
that can be 180◦ or 270◦.

Wu and Chang [13] refined the idea of Wu and Chen [12] by consciously
designing the encoded shares to be circles so that the restrictions to the rotat-
ing angles (θ = 90◦, 180◦, or 270◦) can be removed. Let the two encoded circle
shares in their approach be denoted as A and B. The first secret is revealed
by A⊗B, while the second secret is obtained by A−θ⊗B where θ may be any
angle within (0◦, 360◦) and A−θ is the result of rotating A θ clockwise. Both
of the studies successfully share two secrets in two shares in a visual sense.

Shyu et al. [8] devised an elegant algorithm to achieve the sharing of mul-
tiple sercte images using two circle shares. It is the first true approach that
shares any general number of multiple secrets in two shares. Consider x secret
images. Consider a set of x ≥ 2 secret images. Their scheme produces two circle
shares A and B such that none of them individually leaks any secret and the x
secrets can be obtained one by one by A⊗B, Aθ⊗B, A2θ⊗B, . . . , A(x−1)θ⊗B
where A(i−1)θ is the result of rotating A(i−1)θ counterclockwise for 1 ≤ i ≤ x
for θ = 360θ/x and A0◦ = A. This is the first true result of sharing multiple
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secrets in visual cryptography for any x ≥ 2 secrets in two shares. Their pixel
expansion is 2x, which is the best result so far in the model that each pixel
would be expanded.

Based on a different set of encoding patterns, Feng et al. [3] developed
another scheme to achieve the same goal using two cylinder shares. The pixel
expansion needed is 3x.

In this chapter, we introduce these interesting algorithms. The rest of the
paper is organized as follows. In Section 3.2, we briefly review the visual one-
secret sharing scheme in two shares proposed by Naor and Shamir [7]. The
visual two-secret sharing scheme by Wu and Chen [12] and Wu and Chang [13]
are discussed in Sections 3.3.1 and 3.3.2, respectively. The schemes for visual
multisecret are examined in Section 3.4 in which the experimental results and
discussions are also presented. Section 3.5 gives some concluding remarks.

3.2 Naor and Shamir’s Basic Visual Secret Sharing
Scheme

The basic idea of Naor and Shamir’s encoding scheme [7] for sharing a single
pixel, say p, in a binary image P into two shares s1 and s2 is illustrated in
Table 3.1. If p is white, the dealer randomly chooses one of the first two rows
of Table 3.1 to encode s1 and s2. If p is black, the dealer randomly chooses
one of the last two rows in Table 3.1 to encode s1 and s2. The possibilities of
the two encoding cases are equally likely to occur, independently of whether
the original pixel is black or white. Thus, neither s1 nor s2 exposes any clue
about the binary color of p. When these two shares are stacked together, i.e.,
s1⊗ s2, two black subpixels appear if p is black, while one black subpixel and
one white subpixel appear if p is white as indicated in the rightmost column in
Table 3.1. Based upon the contrast between these two kinds of reconstructed
pixels, our visual system can tell whether p is black or white by observing
s1 ⊗ s2.

Note that s1 (or s2) in Table 3.1 is not a single pixel, but two subpixels. We
call s1 (or s2) an extended block and the pair (s1, s2) the pair of two extended
blocks with respect to p. The number of the subpixels in each of the two
extended blocks (s1, s2) for encoding p is referred to as the pixel expansion.
In Table 3.1, the pixel expansion is 2. In realistic implementations, it may be
chosen as 4 (= 2× 2) in order to retain the aspect ratio of the original secret
image. Since there are six possible patterns for a 2 × 2 extended block, all
pairs of two extended blocks (s1, s2)’s for encoding a specific binary pixel p
(visual one-secret sharing) are summarized in Table 3.2.

When p is white (black), the dealer randomly chooses one of the first (last)
six rows of Table 3.2 to encode p into s1 and s2. It is seen from the last column
of Table 3.2 that the reconstructed pixel r = s1 ⊗ s2 may contain two white
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TABLE 3.1
Encoding a binary pixel p into two shares
s1 and s2.

p probability s1 s2 s1 ⊗ s2

1/2

1/2

1/2

1/2

TABLE 3.2
Implementing the visual one secret sharing
scheme with a pixel expansion of 4.
p Probability s1 s2 r = s1 ⊗ s2

�

1/6

1/6

1/6

1/6

1/6

1/6

�

1/6

1/6

1/6

1/6

1/6

1/6
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and two black subpixels if p is white, or all four black subpixels when p is black.
When all pixels in p are encoded in this way, where each p’s random choice
for encoding alternatives is independent, the encoded shares S1 (containing
all s1’s) and S2 (containing all s2’s) are indeed random pictures, respectively.
When S1 and S2 are superimposed, all of the four subpixels are black in
the reconstructed blocks corresponding to each black pixel in P , while two
subpixels are white and the other two are black corresponding to each white
pixel in P . Based upon such a difference, our visual system recognizes the
white and black pixels in P from S1 ⊗ S2. We say that the reconstructed
image S1⊗ S2 recovers P .

Figure 3.1 shows the implementation results of the encoding scheme in
Table 3.2. Figure 3.1(a) is a secret binary image P , Figures 3.1(b) and (c)
are the two encoded shares S1 and S2, which are random pictures revealing
no information about P and Figure 3.1(d) illustrates the reconstructed image
S1 ⊗ S2 that recovers P visually.

(a) (b)

(c) (d)

FIGURE 3.1
Implementation results of visual one-secret sharing in two shares: (a) P, (b)
S1, (c) S2, (d) S1 ⊗ S2.
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3.3 Visual Two-Secret Sharing Schemes

3.3.1 Wu and Chen’s Scheme

Following the research of Naor and Shamir, Wu and Chen [12] developed a
visual secret sharing scheme that encrypts two secrets into two shares. Given
two N × N (square) secret binary images P1 and P2, their scheme produces
two shares, namely S1 and S2, which reveal no information about P1 or P2

individually. Yet when stacking S1 and S2, we obtain P1 visually; moreover,
when stacking S90

1
◦ and S2, we see P2.

Consider a pair of pixels p1 = P1[i, j] and p2 = P2[u, v] in P1 and P2,
respectively. We refer to (p1, p2) as the corresponding pixels of P1 and P2 if
and only if i = u and j = v. Given a set of corresponding pixels (p1, p2),Wu
and Chen’s encoding scheme for visual two-secret sharing in two shares is
summarized in Table 3.3.

It is seen from Table 3.3 that each pair of corresponding pixels (p1, p2) of
(P1, P2) is encoded into extended blocks s1 (as well as s90

1
◦) and s2 in which

the pixel expansion is m = 4. Note that s90
1
◦ is exactly the result of rotating

s1 90◦ counterclockwise. We explain how Wu and Chen’s encoding scheme
works by using a simple example. Assume that the two secret images P1 and
P2 are composed in a square of 12× 12 pixels. Then, the two encoded shares
S1 and S2 are composed in a square of 48 × 48 (48 = 12 × 4) pixels. They
first decompose S1 into four triangle-like areas with an equal size as shown
in Figure 3.2(a). All of the four areas are composed of an equal amount of
extended blocks (2 × 2 pixels each), which are indexed as shown in Figure
3.2(b) where each triangle-like area contains 36 blocks. Let block j in area k
be denoted as bkj for 1 ≤ k ≤ 4 and 1 ≤ j ≤ 36. The extended blocks in area
I, b1j , are randomly selected out of those in Figure 3.2(c). Each block, say btj ,
in area II, III, IV is assigned to be the same as b1j in area I, that is, btj = b1j
for t = 2, 3, 4, and 1 ≤ j ≤ 36.

Let us pay attention to the four pixels at the top-right, top-left, bottom-
left, and bottom-right corners in sequence (counterclockwise) in P1 and P2.
Assume that those pixels in P1 (P2) are �,�,�,� (�,�,�,�) as shown in
Figure 3.3(a) and (Figure 3.3(b)). Assume that corresponding block b126 at S1

is randomly determined as , then as mentioned bt26 is for 2 ≤ t ≤ 4 (see
Figure 3.3(c)). The above-mentioned pixels in P1 and P2 constitute four sets
of corresponding pixels: (�,�), (�,�), (�,�), and (�,�). Since bk26 in S1 is

for 1 ≤ k ≤ 4, according to Table 3.3 the four blocks b126, b226, b326 and b426,

in S2 with respect to the four sets of the corresponding pixels are , ,

and , respectively (see the 2nd, 6th, 10th, and 14th rows in column s2

of Table 3.3). Figure 3.3(d) illustrates the encoding result of S2. As expected,
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TABLE 3.3
Wu and Chen’s encoding scheme for visual two-secret sharing
in two shares.

p1 p2 Probability s1 s90
1
◦

s2 s1 ⊗ s2 s90
1
◦ ⊗ s2

� �

1/4

1/4

1/4

1/4

� �

1/4

1/4

1/4

1/4

� �

1/4

1/4

1/4

1/4

� �

1/4

1/4

1/4

1/4
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FIGURE 3.2
Encoding S1 in Wu and Chen’s scheme: (a) Four triangle-like areas. (b) In-
dexing the blocks in each of the four areas. (c) Blocks to be assigned.

the four corners in the above-mentioned order in S1 ⊗ S2 reveal �,�,�,�,
respectively (see Figure 3.3(e)) to our visual system. When S1 is rotated as
S90

1
◦ as indicated in Figure 3.3(f), where all blocks are in the form of s90

1
◦, the

four corresponding corners in S90
1
◦ ⊗ S2 recover �,�,�,�, respectively (see

Figure 3.3(g)). It is not hard to see that by encoding all pixels in S1 and S2

with respect to the corresponding pixels in P1 and P2 according to Table 3.3,
P1 and P2 can be recovered by S1 ⊗ S2 and S90

1
◦ ⊗ S2, respectively.

Note that S1 and S2 are in the shape of squares of the same size. S1 ⊗ S2

reveals P1, while Sθ1 ⊗ S2 reveals P2. Wu and Chen set θ to be 90◦. It is easy
to extend their idea to design θ as one of 90◦, 180◦, or 270◦, but the other
degrees are infeasible. This is because the rotated S1 (Sθ1) cannot be aligned to
S2 pixel by pixel when θ 6= 0◦, 90◦, 180◦, or 270◦. Except for the fact that it is
restricted, there is another pitfall in their scheme: since the encoded pixels in
each of areas I, II, III, and IV in S1 are exactly the same, S1 is not a random
picture. In fact, only 1/4 shares of S1 are purely random pictures.

3.3.2 Wu and Chang’s Scheme

Based upon the idea of Wu and Chen [12], Wu and Chang [13] devised an-
other visual two-secret sharing scheme that allows the rotation angle to be an
arbitrary one between 0◦ and 360◦ by adopting circle shares. Given an angle
and two secret images P1 and P2, their approach produces two circle shares A
and B such that any single A or B is a seemingly random picture that leaks
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(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 3.3
Example for illustrating the idea of Wu and Chen [12]: (a) P1, (b) P2, (c) S1,
(d) S2, (e) S1 ⊗ S2, (f) S90

1
◦, (g) S90

1
◦ ⊗ S2.
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nothing about P1 or P2; while A⊗B reconstructs P1 and A−θ⊗B recovers P2

where A−θ denotes the result of rotating A θ clockwise. Note that A−θ ⊗ B
is equivalent to A ⊗ Bθ. Intuitively, it is reasonable to choose circles as the
encoded shares since they ease the correct alignments between A and B as
well as A−θ and B pixel by pixel where 0◦ < θ < 360◦.

They deliberately decomposed circle share A into 360◦/θ areas where each
area contains an equal amount of 2 × 2 sector blocks. Figure 3.4(a) shows
the four typical patterns for sector blocks, namely s1

1, s2
1, s3

1, and s4
1, used in

their approach. That is, the whole circle share A is composed by all these four
sector blocks. Note that s1

1 (s2
1, s3

1, s4
1) can be consciously regarded as the

result of rotating s2
1 (s3

1, s4
1, s1

1, respectively) 90◦ counterclockwise (or s2
1 can

be consciously regarded as the result of rotating 90◦ clockwise). We say that
s1

1’s (s2
1’s, s3

1’s, s4
1’s) previous sector block is s4

1 (s1
1, s2

1, s3
1, respectively) and

its next sector block is s2
1 (s3

1, s4
1, s1

1, respectively) as summarized in Figure
3.4(b).

(a)

s 1
1 s 2

1 s 3
1 s 4

1

(b)
s s 1

1 s 2
1 s 3

1 s 4
1

prev(s) s 4
1 s 1

1 s 2
1 s 3

1

next(s) s 2
1 s 3

1 s 4
1 s 1

1

FIGURE 3.4
2× 2 sector blocks for A in Wu and Chang’s approach: (a) 2× 2 sector blocks
for A, (b) prev(s) and next(s) of sector block s.

Let the number of areas in circle share A be α(= 360◦/θ) and the number
of sector blocks in each area be β. These α areas are indexed clockwise. Let akj
be the jth sector block in area k in A, 1 ≤ j ≤ β and 1 ≤ k ≤ α. At first, the
β sector blocks in the first area are randomly selected out of those in Figure
3.4(a). Then, sector blocks in area t are defined according to those in area
t− 1 by assigning atj as the next sector block of at−1

j , i.e., atj = next(at−1
j ) (or

at−1
j = prev(atj)) for 1 ≤ j ≤ β and 2 ≤ t ≤ α.

Given a pair of corresponding pixels p1 and p2 in P1 and P2, respectively,
each sector block bkj in B is determined by p1, p2, and the corresponding block
akj in A for 1 ≤ j ≤ β and 1 ≤ k ≤ α. Table 3.4 summarizes such an encoding
scheme.

Note that in Wu and Chen’s scheme each extended block s2 in S2 would
be superimposed with s1 and s90

1
◦ when s1 is rotated 0◦ (or fixed) and 90◦

counterclockwise, respectively. In Wu and Chang’s scheme, each sector block
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TABLE 3.4
Wu and Chang’s encoding scheme for visual two-secret sharing in
two shares.

p1 p2 Probability s1 s−θ1 s2 s1 ⊗ s2 s−θ1 ⊗ s2

� �

1/4

1/4

1/4

1/4

� �

1/4

1/4

1/4

1/4

� �

1/4

1/4

1/4

1/4

� �

1/4

1/4

1/4

1/4
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bkj in B is superimposed with akj in area k and ak−1
j in k’s previous area

k − 1 when A is rotated 0◦ and θ clockwise where ak−1
j = prev(akj ) (or akj =

next(ak−1
j )). Note that ak−1

j is the result of rotating akj 90◦ counterclockwise
(or akj is the result of rotating ak−1

j 90◦ clockwise; see Figure 3.4). That means
the result of A−θ ⊗B in Wu and Chang’s scheme emulates that of S90

1
◦ ⊗ S2

in Wu and Chen’s scheme. There is no restriction for θ to be 90◦, 180◦, or
270◦ merely. Yet there exist some inconsistent situations in some of the areas
in A−θ ⊗ B when α = 360◦/θ > 4. Interested readers refer to Ref. [13] for
details.

As mentioned above, square share S1 in Wu and Chen’s scheme is not
a totally random image. Strictly speaking, neither is circle share A in Wu
and Chang’s scheme due to the reason that sector block atj is assigned as
next(at−1

j ) (i.e., the result of rotating at−1
j 90◦ clockwise) for 2 ≤ t ≤ α; that

is, only sector block a1
j in the first area is randomly determined from those

in Figure 3.4(a) for 1 ≤ j ≤ β, while the other areas are not. Furthermore,
sector blocks in the first area of circle share A (see Figure 3.4(a)) in Wu and
Chang’s scheme (or extended blocks in the first area of square share S1 (see
Figure 3.2(c)) contain only four patterns, instead of six, which is the number
of all possible combinations for four subpixels with two white and two black
subpixels (see Table 3.2).

3.4 Visual Multiple-Secret Sharing Schemes

Both of the above-mentioned schemes accomplish visual secret sharing for
only two secrets in two shares. In this section we discuss two more generalized
visual secret sharing scheme for x ≥ 2 secrets in two shares by Shyu et al. [8]
and Feng et al. [3] in Sections 3.4.1 and 3.4.2, respectively.

3.4.1 Shyu et al.’s Scheme

3.4.1.1 Informal Description

Let us start by using a simple example. Assume that the number of secret
images to be shared is x = 3. Let P1, P2, and P3 be the three binary secret
images with the same size h×w. Let p1, p2, and p3 denote the corresponding
pixels in P1, P2, and P3, respectively. Let A and B denote the two circle shares
encoded by the scheme. Our aim is to assure A ⊗ B recovers P1, A120◦ ⊗ B
recovers P2, and A240◦ ⊗B recovers P3.

Since there are three secrets, we decompose circle share A and B into three
(x = 3) chord-areas (chords for short), respectively, in which the angle of each
chord extends up to 120◦(= 360◦/x = 360◦/3). Each chord is divided into a
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set of 2 × 3 (2 × x) chord blocks. Let the number of 2 × 3 blocks in each
chord be β. Let akj and bkj denote block j of chord k in A and B, respectively,
1 ≤ j ≤ β and 1 ≤ k ≤ 3(= x). The chords are indexed clockwise and the
divided blocks in A and B are indexed as shown in Figures 3.5(a) and (b),
respectively. We call akj and bkj the corresponding blocks in A and B.

3.4.1.2 Encoding Circle Share A

We first define three 2×3 elementary blocks, namely s1
A, s2

A, and s3
A, for circle

share A as shown in Figure 3.6. That is, these elementary blocks are the basic
constituents of A and there are one white and five black subpixels in each of
the elementary blocks.

In order to guarantee the randomness when using skA as a constituent of
A for 1 ≤ k ≤ 3, we permute the subpixels within skA before assigning skA as
a constituent block in A. Let Σ = (σ1, σ2, σ3, σ4, σ5, σ6) be a permutation of
1, 2, 3, 4, 5, 6 (in which 6 = 2x = 2×3). We define a function permute(s, Σ) re-
arranging the subpixels in elementary block s by permutation Σ. Figure 3.7(a)
shows a certain typical ordering of the subpixels in a 2× 3 elementary block s
and Figure 3.7(b) shows the result of permute(s, Σ) with Σ = (3, 5, 1, 6, 2, 4).
Note that the order of the subpixels in the elementary block s can be defined
arbitrarily.

We call the set of three blocks (a1
j , a

2
j , a

3
j ) the related blocks of the three

chords in A for 1 ≤ j ≤ β. Obviously, there are totally β sets of the related
blocks in A. For a certain set of related blocks (a1

j , a
2
j , a

3
j ), we generate one

permutation, denoted as Σj , and assign akj to be permute(skA,Σj) for 1 ≤ k ≤
3 and 1 ≤ j ≤ β. That is,

(a1
j , a

2
j , a

3
j ) = (permute(s1

A,Σj), permute(s
s
A,Σj), permute(s

3
A,Σj)) (3.1)

for 1 ≤ j ≤ β.
For the purpose of illustration, we show how the first set of the related

blocks (a1
1, a2

1, a3
1) in A is encoded. Assume that Σ1 = (1, 2, 3, 4, 5, 6). Figure

3.8(a) exposes the results of encoding (a1
j , a

2
j , a

3
j ) in A. Note that for this

particular Σ1 permute(skA,Σ1) = skA for 1 ≤ k ≤ 3. In real implementation,
a new random permutation Σj is adopted when encoding (a1

j , a
2
j , a

3
j ) in A for

each j, 1 ≤ j ≤ β. Figures 3.8(b) and (c) show the results of A120◦ and A240◦,
respectively.

Let [k, j] denote the absolute location with respect to block j of chord k in
a circle share (see Figure 3.9) and Aθ[k, j] denote the content of block [k, j] in
Aθ (i.e., the results of rotating A θ counterclockwise) where 1 ≤ k ≤ 3 (= x),
1 ≤ j ≤ β and θ = 120◦(= 360◦/3)(A0◦[k, j] = A[k, j]). The relationship
among the related blocks is easily seen from Figures 3.8 and 3.9:
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(a)

a1
1

a2
1

aβ

1

a1
2

a2
2

aβ
3

a13

a23

aβ2
...

...

...

...

...

...

I

II

III

(b)

b1
1

b2
1

bβ

1

b1
2

b2
2

bβ
3

b13

b23

bβ2
...

...

...

...

...

...

I

II

III

FIGURE 3.5
Decomposing circle shares A and B into chords, which are further divided into
blocks: (a) A, (b) B.
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their elementary forms s1
A, s2

A, and s3
A, we design sB to be so that both

s1
A⊗ sB and s3

A⊗ sB reveal one white and five black subpixels, while s2
A⊗ sB

show six black subpixels. Our eyes recognize s1
A ⊗ sB and s3

A ⊗ sB as white,
while s2

A ⊗ sB as black. That means (p1, p2, p3) is recovered by (s1
A ⊗ sB ,

s2
A ⊗ sB , s3

A ⊗ sB) in a visual sense.
In actual implementation, the set of three related blocks (a1

j , a
2
j , a

3
j ) in A is

deliberately assigned as (permute(s1
A,Σj), permute(s

2
A,Σj), permute(s

3
A,Σj))

so that we only need to assign b1j to be permute(sB ,Σj) to preserve the su-
perimposition results designed in Table 3.5. Then, when we superimpose a1

j

and b1j , we identify (p1)1
j form a1

j ⊗ b1j . When we rotate A 120◦ counterclock-
wise, b1j ’s corresponding block in A120◦ turns out to be a2

j (i.e., A120◦[1, j],
see formula (3.2) and Figure 3.9) and a2

j ⊗ b1j reveals (p2)1
j in a visual sense.

Likewise, when rotating A 240◦ counterclockwise, b1j ’s corresponding block in
A240◦ is a3

j and a3
j ⊗ b1j reveals (p3)1

j . In general, when rotating A (i − 1)θ
counterclockwise we recognize aij⊗ b1j as (pi)1

j in the first chord of A(i−1)θ⊗B
by our visual system for 1 ≤ i ≤ 3(= x) and θ = 120◦(= 360◦/x).

We call the blocks in column sB of Table 3.5 the elementary blocks cir-
cle share B for sharing 3 secrets, which consists of three white and three
black subpixels. They are named by s0

B , s
1
B , . . . , s

7
B in sequence as indicated

in Figure 3.10. When we denote � as 0 and � as 1, the superscript l of
slB is equal to the code formed by p1p2p3 in binary, i.e. l = btod(p1p2p3)
where btod(b) is a function that returns the decimal representation of a bi-
nary number b. It means that based upon Table 3.5, once (a1

j , a
2
j , a

3
j ) is

assigned to be (s1
A, s

2
A, s

3
A) and b1j is encoded to be s

btod(p1p2p3)
B (specifi-

cally, (a1
j , a

2
j , a

3
j ) = (permute(s1

A,Σj), permute(s
2
A,Σj), permute(s

3
A,Σj)) and

b1j = permute(sbtod(p1p2p3)
B ,Σj) in practical implementation with respect to

give (p1, p2, p3)1
j , (a1

j ⊗ b1j , a2
j ⊗ b1j , a3

j ⊗ b1j ) recovers (p1, p2, p3)1
j .

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3.10
Elementary blocks of share B for sharing 3 secrets: (a) s0

B , (b) s1
B , (c) s2

B , (d)
s3
B , (e) s4

B , (f) s5
B , (g) s6

B , (h) s7
B .

Now, we take the instances in Figure 3.11, in which the first three pixels of
the three divided strips in Pi are depicted for 1 ≤ i ≤ 3, as an example to show
how the corresponding blocks in B are encoded. From Figure 3.11, we have
(p1, p2, p3)1

1 = (�,�,�). According to Table 3.5, the elementary block for b11
is chosen to be sbtod(p1p2p3)

B = s
btod(010)
B = s2

B . Since in practical implemen-
tation, b11’s corresponding block a1

1 (a2
1, a3

1) in A (A120◦, A240◦, respectively)
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has been encoded as permute(s1
A,Σ1) (permute(s2

A,Σ1), permute(s3
A,Σ1), re-

spectively), the same permutation Σ1 should be adopted for encoding b11 to
preserve the superimposition result of s1

A ⊗ sB (s2
A ⊗ sB and s3

A ⊗ sB , respec-
tively). Let us simply set Σ1 = {1, 2, 3, 4, 5, 6}. Therefore, b11 is encoded as
permute(s2

B ,Σ1) ( ) as show in Figure 3.12. It is easily seen that

a1
1 ⊗ b11 = permute(s1

A,Σ1)⊗ permute(s2
B ,Σ1)

= s1
A ⊗ s2

B = ⊗ =
a2

1 ⊗ b11 = permute(s2
A,Σ1)⊗ permute(s2

B ,Σ1)
= s2

A ⊗ s2
B = ⊗ =

a3
1 ⊗ b11 = permute(s3

A,Σ1)⊗ permute(s2
B ,Σ1)

= s3
A ⊗ s2

B = ⊗ =

(a) (b) (c)

FIGURE 3.11
Instances of the first three pixels of the three strips in (a) P1, (b) P2, and (c)
P3.

FIGURE 3.12
Encoding b11 in B.

Therefore, the first blocks in the first chords of A ⊗ B, A120◦ ⊗ B, and
A240◦ ⊗B reconstruct (p1)1

1 (�), (p2)1
1 (�), and (p3)1

1 (�), respectively.
In summary, given a certain (p1, p2, p3)1

j in the first strips of (P1, P2, P3), bij
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is encoded as permute(sbtod(p1p2p3)
B ,Σj) where Σj is a random permutation for

1 ≤ j ≤ β. It is noted that for a specific black b1j in the first chord of B, when
A is rotated 0◦, 120◦, and 240◦ counterclockwise, the blocks that are super-
imposed onto b1j are a1

j , a
2
j , and a3

j , respectively where akj = permute(skA,Σj)
for 1 ≤ j ≤ β and 1 ≤ k ≤ 3.

Now, consider a certain block b2j in the second chord of B. When A
is rotated 0◦, 120◦, and 240◦ counterclockwise, the blocks that are super-
imposed onto b2j are a2

j , a
3
j , and a1

j accordingly (see Figure 3.9 and for-
mula (3.2)). Thus, to recover a given set of (p1, p2, p3)2

j , we should assure
that s2

A ⊗ sB , s3
A ⊗ sB , and s1

A ⊗ sB (or more precisely permute(s2
A,Σj) ⊗

permute(sB ,Σj), permute(s3
A,Σj)⊗permute(sB ,Σj) and permute (s1

A,Σj)⊗
permute(sB ,Σj)) resconstruct (p1)2

j , (p2)2
j and (p3)2

j , respectively. Table 3.6
is designed for this principle.

TABLE 3.6
Encoding a set of corresponding pixels (p1, p2, p3)2

j into a2
j (a3

j and a1
j )

and b2j in terms of s2
A (s3

A, s1
A, respectively) and sB in the first chords of

A and B, respectively for visual 3-secret sharing.
p1 p2 p3 s 2

A s 3
A s 1

A sB s 2
A ⊗ sB s 3

A ⊗ sB s 1
A ⊗ sB

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

In fact, we can rearrange Table 3.6 to make the columns 4–10 exactly
the same as those in Table 3.5. Table 3.7 is such a consequence. Note that
Tables 3.5 and 3.7 are the same except for the headings of columns 1–3. From
Table 3.7, we observe that given a set of corresponding pixels (p1, p2, p3)2

j , the

elementary block of b2j can be easily determined by sbtod(p3p1p2)
B .

Following the above example shown in Figure 3.11, we have (p1, p2, p3)2
1 =

(�,�,�) and Σ1 = (1, 2, 3, 4, 5, 6, ). Since btod(p3p1p2) = btod(011) = 3 b21 is
encoded as permute(s3

B ,Σ1) ( ) as show in Figure 3.13. It is easily seen that
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of A ⊗ B, A120◦ ⊗ B, and A240◦ ⊗ B) reconstruct (p1)2
1 (�), (p2)2

1 (�), and
(p3)2

1 (�), respectively.
Based upon the experience above, Table 3.8 summarizes the encoding

scheme for the blocks in the third chord of B for sharing 3 secrets. We can
see from Table 3.8 that given a set of corresponding pixels (p1, p2, p3)3

j , the

elementary block of b3j is chosen to be sbtod(p2p3p1)
B .

TABLE 3.8
Encoding a set of corresponding pixels (p1, p2, p3)3

j into a3
j (a1

j and a2
j )

and b3j in terms of s3
A (s1

A, s2
A, respectively) and sB in the first chords of

A and B, respectively for visual 3-secret sharing.
p2 p3 p1 s 1

A s 2
A s 3

A sB s 1
A ⊗ sB s 2

A ⊗ sB s 3
A ⊗ sB

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

Following the previous example in Figure 3.11, consider the particular case
(p1, p2, p3)3

1 = (�,�,�). Since btod(p2p3p1) = btod(110) = 6, we encode b31 as
permute(s6

B ,Σ1) ( ) as show in Figure 3.14. It is clearly seen that

a3
1 ⊗ b21 = permute(s3

A,Σ1)⊗ permute(s6
B ,Σ1)

= s3
A ⊗ s6

B = ⊗ =
a1

1 ⊗ b21 = permute(s1
A,Σ1)⊗ permute(s6

B ,Σ1)
= s1

A ⊗ s6
B = ⊗ =

a2
1 ⊗ b21 = permute(s2

A,Σ1)⊗ permute(s6
B ,Σ1)

= s2
A ⊗ s6

B = ⊗ =

We have that a3
1 ⊗ b31, a1

1 ⊗ b31, and a2
1 ⊗ b31 (the first blocks in the third

chords of A⊗B, A120◦⊗B, and A240◦⊗B) recover (p1)3
1 (�), (p2)3

1 (�), and
(p3)3

1 (�), respectively.
Figure 3.15 depicts the results of the first three blocks in the three chords

of A⊗B, A120◦ ⊗B and A240◦ ⊗B, which reconstruct (p1)k1 in P1 (�,�,�)
(Figure 3.15(a) vs. Figure 3.11(a)), (p2)k1 in P2 (�,�,�) (Figure 3.15(b) vs.
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Then the above formula can be simplified as

bkj = permute(sbtod(rotate(p1p2p3,k−1))
B ,Σj) (3.4)

with respect to the set of corresponding pixels (p1, p2, p3)kj where 1 ≤ j ≤ β
and 1 ≤ k ≤ 3.

Since the number of subpixels in both of the elementary blocks of A and B
is 6(= 2x) in the above case, the pixel expansion (i.e., the number of subpixels
in the shares needed to encode a set of corresponding pixels in the secret
images) in this algorithm is 6 for x = 3. The visual x-secret sharing scheme
for any general number x ≥ 2 will be formalized in the following section.

3.4.1.4 General Algorithm

The definitions of the elementary blocks for circle shares A (formula (3.1))
and B (formula (3.4)) and the encoding scheme in Tables 3.5, 3.7, and 3.8 for
visual 3-secret sharing can be generalized to accomplish the visual multisecret
sharing for x ≥ 1 (including x = 1) secrets. Furthermore, there is no need to
store any codebook like Tables 3.5, 3.7, and 3.8. Thus, this scheme formally
presented in the following is not only general but also efficient for physical
implementation.

Assume that there are x secrets to be shared by two participants. The two
circle shares A and B are evenly decomposed into x chords, respectively. Let
θ denote the degree expanded in each chord of A and B. It is computed as

θ = 360◦/x.

We refer to the elementary block of the x secrets as a block with 2x ordered
subpixels as shown in Figure 3.16. It is noted that the pixel expansion in
the scheme is 2x when x secrets are shared. The width and height of the
elementary block can be any combination as long as their multiplication is
2x (or even any number larger than 2x for some special purposes, such as
retaining aspect ratios, to ease the production of the circle shares, and so on).
The order of the 2x subpixels in the elementary block can also be arbitrarily
defined. In the following discussions, we follow the shape and order of the
elementary block as shown in Figure 3.16.

2x

x-1 ... 2

x+2 ...  2x-1

1x

x+1

FIGURE 3.16
Elementary block for x secrets.

We define the set of the elementary blocks for share A as follows:

ExA = {skA|1 ≤ k ≤ x},
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where skA is an elementary block consisting of one white and 2x − 1 black
subpixels in which the jth subpixel, denoted as skA[j], is defined by

skA[j] =
{

0 if j = x+ 1− k;
1 otherwise, (3.5)

for 1 ≤ j ≤ 2x and 1 ≤ k ≤ x.
Figure 3.17 shows the elementary blocks of A for encoding x = 4 secrets.

As an example, we show how the subpixels in s2
A are computed by formula

(3.5). Since k = 2 and x+ 1−k = 4 + 1− 2 = 3, thus skA[3] = 0 and skA[j′] = 1
for 1 ≤ j′ 6= 3 ≤ 8(= 2x) as shown in Figure 3.17(b).

(a) (b) (c) (d)

FIGURE 3.17
Elementary blocks in E4

A: (a) s1
A, (b) s2

A, (c) s3
A, (d) s4

A.

We define the set of the elementary blocks for share B as follows:

ExB = {sγB |0 ≤ γ ≤ 2x − 1},

where sγB is also an elementary block containing x white and x black subpixels
in which the jth subpixel, denoted as sγB [j], is defined by

sγB [j] =
{
rj 1 ≤ j ≤ x;
r2x+1−j otherwise, (3.6)

where γ = btod(rxrx−1 . . . r2r1), rt is the tth least significant bit of γ is repre-
sented in binary (x-bit) in which 1 ≤ t ≤ x and 0 ≤ γ ≤ 2x− 1 for 1 ≤ j ≤ 2x
and rt is the inverse of rt.

Figure 3.18 illustrates the elementary blocks of B for x = 4. Con-
sider s4

B . Since γ = 4 = btod(r4r3r2r1) = btod(0100)2, we have
(s4
B [1], s4

B [2], s4
B [3], s4

B [4]) = (r1, r2, r3, r4) = (0, 0, 1, 0) and (s4
B [5], s4

B [6],
s4
B [7], s4

B [8]) = (r2×4+1−5, r2×4+1−6, r2×4+1−7, r2×4+1−8) = (r4, r3, r2, r1)=
(1, 0, 1, 1). Thus, s4

B is as shown in Figure 3.18(e).
Formulae (3.1) and (3.4) about the encoding of blocks in A and B, respec-

tively, for x = 3 can now be formulated in a more generalized form as follows.
The blocks in A are encoded by

(a1
j , a

2
j , . . . , a

x
j ) = (permute(s1

A,Σj), permute(s
2
A,Σj), . . . , permute(s

x
A,Σj)),

(3.7)
where Σj is a random permutation of {1, 2, . . . , 2x} for 1 ≤ j ≤ β.

Given a set of corresponding pixels (p1, p2, . . . , px)kj in block j of strip k in
(P1, P2, . . . , Px), bkj (i.e., block j of chord k in B) is encoded by

bkj = permute(sbtod(rotate(p1p2...px,k−1))
B ,Σj) (3.8)
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

FIGURE 3.18
Elementary blocks in E4

B : (a) s0
B , (b) s1

B , (c) s2
B , (d) s3

B , (e) s4
B , (f) s5

B , (g)
s6
B , (h) s7

B , (i) s8
B , (j) s9

B , (k) s10
B , (l) s11

B , (m) s12
B , (n) s13

B , (o) s14
B , (p) s15

B .

for 1 ≤ j ≤ β and 1 ≤ k ≤ x where function ratote(p1p2 . . . px, k−1) is defined
by formula (3.3).

Based upon the above definitions and formulae (3.5)–(3.8), our visual
multi-secrets sharing scheme is formally presented in Algorithm 1.

Algorithm 1. Encoding x secret images into two circle shares

Input: x h× w binary secret image P1, P2, . . . , Px
Output: two circle shares A and B such that any single A or B leaks no
information about any one of the secret images, while A(i−1)θ⊗B recovers Pi
for 1 ≤ i ≤ x in the human visual system where θ = 360◦/x and A0◦

1. Create A and B as circle shares, which are decomposed into x chords

where each chord is composed by β = h× (w/x) chord-shaped blocks

referred to as akj and bkj , 1 ≤ k ≤ x and 1 ≤ j ≤ β, respectively and each

block contains 2x subpixels.

2. Generate ExA and ExB according to formulae (5) and (6), respectively.

3. for (each block j, 1 ≤ j ≤ β) do

3.1 { Determine Σj = (σ1, σ2, . . . , σ2x), a random permutation

of {1, 2, . . . , 2x}

3.2 for (each chord k, 1 ≤ k ≤ x) do

{ // all β blocks in x chords of A and B adopt the

same permutation Σj
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3.2.1 akj = permute(skA,Σj)

3.2.2 for (each secret image i, 1 ≤ i ≤ x) do qi = (pi)
k
j

3.2.3 γ = btod(rotate(q1q2 . . . qx, k − 1))

3.2.4 bkj = permute(sγB ,Σj) }
}

4. output(A, B) // A and B are composed by all akj ’s and bkj ’s, respectively

Note that a new permutation Σj is determined to permute the subpixels
in each pair of akj and bkj for 1 ≤ k ≤ x to ensure the entire randomness that
the subpixels in akj and bkj can provide. Further, akj and bkj are encoded by
using the same permutation Σj so that the numbers of the white and black
subpixels in akj ⊗ bkj and skA ⊗ b

γ
B are exactly the same for 1 ≤ k ≤ x.

The pixel expansion of Shyu et al.’s scheme is 2x when x secrets are shared.
In the case of x = 2, the pixel expansion is 2x = 4 which is the same as that of
Wu and Chen [12] as well as Wu and Chang [13]. The number of all possible
patterns in an extended block in S1 [12] (see Figure 3.2(c)) or any sector
block in A [13] (see Figure 3.4(a)) is 4, which contains two white and two
black subpixels, while that in bkj of the scheme is (4!)/(2! × 2!) = 6. The
randomness of this scheme, in the case of x = 2, is surely better than that of
Wu and Chen as well as Wu and Chang.

It is seen from Algorithm 1 that we do not physically store any information
about Tables 3.5, 3.7, and 3.8 in memory. The elementary blocks skA’s and sγB ’s
are generated in the run time (Step 2 in Algorithm 1) according to formulae
(3.5) and (3.6). The encoding process is guaranteed by formulae (3.7) and
(3.8) (Step 3 in Algorithm 1).

3.4.2 Feng et al.’s Scheme

Regarding Feng et al.’s (2, 2, x) scheme [3], x secret images P1, P2, . . . , Px are
encoded into two shares A and B. Each set of x corresponding pixels (in x
secret images) is encoded into two blocks, namely sA ∈ A and sB ∈ B, each
of which consists of x rows containing 3 pixels each. The pixel expansion is
thus 3x. The rotation relationship for revealing each of the x secrets is similar
to Shyu et al.’s scheme where the ith secret is revealed by A ⊗ B(i−1)θ for
1 ≤ i ≤ x. One special design in their scheme is that the encoded shares are
in the form of cylinders to avoid the distortion of the revealed secrets.

They chose four types of 3-pixel patterns, referred to as the effective block
Be = , ineffective block Bi= , white block Bw = and black block
Bb = to construct sA and sB . It is evident that Bi ⊗ Bw = Bi ⊗ Bb =

, Be ⊗Bw = , and Be ⊗Bb= .
Figure 3.19 specifically illustrated the stacked results of these chosen pat-

terns in their scheme.
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Ä

Ä

Be

Be

Bw

Bb

=

=

Ä

Ä

Bi

Bi

Bw

Bb

=

=

FIGURE 3.19
Stacking results of the chosen visual patterns for Feng et al.’s scheme.

Table 3.9 lists a possible set of encoded patterns for s 1
A , s 2

A , s 3
A , and sB ;

and their stacked results for x = 3. The reason that pi is reconstructed by
s iA ⊗ sB is precisely explained in this table. Surely, each set of the encoded
pattern could be permuted correspondingly to accomplish the randomness for
the whole shares.

TABLE 3.9
Possible set of encoded patterns for s 1

A , s 2
A , s 3

A , and sB ; and their
stacked results for x = 3.
p1 p2 p3 s 1

A s 2
A s 3

A sB s 1
A ⊗ sB s 2

A ⊗ sB s 3
A ⊗ sB

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �
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3.4.3 Experimental Results

Here, we implement Shyu et al.’s visual multisecret sharing scheme due to its
generality on the abstraction and the superiority on the pixel expansion (over
Feng et al.’s scheme).

We coded the program by using Borland C++ Builder (BCB) in a personal
computer running MS Windows. Since the blocks are in the shape of chords,
we called the embedded functions in BCB such as circle drawing, line drawing,
flood-filling a closed area, and so on, to build the chord-shaped blocks in the
scheme.

Four experiments were designed to explore the feasibility and applicability
of the visual multisecret sharing scheme. Experiment 1 verifies the correctness
of the scheme for x = 3 where the starting position for encoding on the cir-
cle shares are fixed as above-mentioned. Experiment 2 demonstrates that the
scheme can be easily extended in such a way that the starting position for en-
coding can be arbitrarily assigned. This increases the secrecy of the proposed
scheme. Experiment 3 gives the implementation results of the visual 4-secret
sharing scheme. Experiment 4 presents implementation results of encoding
the shares using cylinder (instead of circle) shares.

Experiment 1: Figure 3.20 illustrates the results of a computer imple-
mentation of the proposed scheme for sharing three secret images. Figures
3.20(a)–(c) are the three secrets to be shared, namely P1, P2, and P3, respec-
tively. Figures 3.20(d) and (e) show the circle shares A and B encoded by
Algorithm 1, which expose no information about P1, P2, and P3 individually.
Figures 3.20(f)–(h) reveal the superimposed results of A⊗B, A120◦⊗B, and
A240◦ ⊗ B, which reconstruct P1, P2, and P3 in our visual system, respec-
tively. Figure 3.20(i) gives another superimposed result, A85◦ ⊗ B that leaks
no information about any of the three secrets. In fact, any result of Aθ ⊗ B,
for θ = 0◦, 120◦, 240◦, is merely a seemingly random picture.

Experiment 2: The encoding processes of A and B in the algorithm start
from the 0◦ position and move on in a clockwise direction (see Figure 3.5).
However, the starting position for encoding in A (or B) can be predefined
arbitrarily.

Figure 3.21 shows the implementation results of using the same example
as in Experiment 1 with a different starting starting position in B; that is, we
encoded B by starting from the 85◦ position (85◦ counterclockwise to the 0◦

position) while we encoded A by starting from the 0◦ position as mentioned.
The three secret images are the same as those in Figures 3.20(a)–(c). Figures
3.21(a) and (b) are the circle shares A′ and B′ encoded by Algorithm 1. Figure
3.21(c) shows the result of A′ ⊗ B′, which reveals nothing about the secrets,
while Figures 3.21(d)–(f) display the superimposed results of (A′)85◦ ⊗ B′,
(A′)205◦⊗B′ and (A′)325◦⊗B′ that reconstruct P1, P2, and P3, respectively,
in our visual system. Note that both A⊗B (Figure 3.20(f)) and (A′)85◦⊗B′
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

FIGURE 3.20
Implementation results for the proposed visual 3-secret sharing scheme: (a)
P1, (b) P2, (c) P3, (d) A, (e) B, (f) A⊗B, (g) A120◦ ⊗B, (h) A240◦ ⊗B, (i)
A85◦ ⊗B.
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is 85◦ counterclockwise away from that in A⊗B.

Experiment 3: Figure 3.22 gives the implementation results of the pro-
posed scheme for sharing four secrets. Figures 3.22(a)–(d) are the four secrets
to be shared, namely P1, P2, P3, and P4, respectively. Figures 3.22(e) and (f)
are the encoded circle shares A and B. Figures 3.22(g)–(j) show the superim-
posed results of A⊗B, A90◦ ⊗B, A180◦ ⊗B, and A270◦ ⊗B that recover P1,
P2, P3, and P4 in our visual system, respectively.

Experiment 4: One disadvantage in applying circle shares is that the
reconstructed secrets might be distorted. This shortcoming could be easily
refined by introducing cylinder shares.

Suppose that we encode each set of x pixels into square blocks (instead
of chord blocks) in Shyu et al.’s scheme. The encoded shares evolve into the
shape of rectangles. Each of the two rectangle shares can be easily rolled
up into a cylinder by aligning the rightmost column next to the leftmost
one. Figure 3.23 shows an example of applying cylinder shares to reveal the
corresponding distorted secrets where (a) and (b) are distorted reconstructed
secrets (which are the same as those in Figure 3.22(g) and (j), respectively)
using circular shares, while (c) and (d) are the corresponding counterparts
using cylinder shares which avoid any distortion when exposing the secrets.

The results in Experiments 1–4, as expected, demonstrate the feasibility
and applicability of Shyu et al.’s visual multisecret sharing scheme. We com-
pare the performances of the aformentioned schemes in terms of the capability
of sharing secrets, pixel expansion, contrast, and shape of shares in the next
subsection.

3.4.4 Comparison and Discussions

When we deal with x secrets, the pixel expansion of Shyu et al.’s scheme [8]
is 2x and the contrast (i.e., the relative difference between the reconstructed
white and black pixels in the superimposed image) of the scheme is 1/(2x)
since all 2x subpixels in a reconstructed black pixel are black, while those
in a reconstructed white pixel are 2x. Suppose that Feng et al.’s scheme is
applied. The pixel expansion becomes 3x and the contrast is 1/(3x). Note
that when x = 2, the pixel expansions (contrasts) in Wu and Chen’s [12], Wu
and Chang’s [13], and Shyu et al’s schemes are all 4 (1/4); while in Feng et
al.’s scheme is 6 (1/6).

Table 3.10 summarizes the numbers of secrets shared (denoted as x), pixel
expansions(denoted as m), contrasts, and the shapes of shares in these visual
multiple-secret sharing schemes for the comparison purpose.

The pixel expansion of Shyu et al.’s scheme [8] is 2x when x secrets are
shared. It would be challenging to prove whether or not it is optimal. Is there
any algorithm that improves the contrast in the scheme? It is surely worthy of
further study. How to extend Shyu et al.’s scheme such that multiple secrets
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3.21
Implementation results for the proposed visual 3-secret sharing scheme with a
different starting encoding position: (a) A′, (b) B′, (c) A′⊗B′, (d) (A′)85◦⊗B′,
(e) (A′)205◦ ⊗B′, (f) (A′)325◦ ⊗B′.
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(a) (b) (c) (d)

(e) (f)

(g) (h)

(i) (j)

FIGURE 3.22
Results of computer implementation for 4-secret sharing: (a) P1, (b) P2, (c)
P3, (d) P4, (e) A, (f) B, (g) A⊗B, (h) A90◦⊗B, (i) A180◦⊗B (j) A270◦⊗B.
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(a) (b)

(c) (d)

FIGURE 3.23
Transforming circle shares (a) and (b) into cylinder counterparts (c) and (d),
respectively.

TABLE 3.10
Comparison of visual multiple secrets sharing schemes.

schemes x m contrast shares’ shape

Wu and Chen [12] 2 4 1/4 square
Wu and Chang [13] 2 4 1/4 square
Feng et al.[3] ≥ 2 3x 1/3x cylnder
Shyu et al.[8] ≥ 2 2x 1/2x circle or

cylinder
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can be shared by more than two shares is also an interesting topic. Potentially,
sharing multiple secrets may have more flexibilities and applications than
sharing only one secret. Visual identification and visual authentication are
some typical applications in visual cryptography [6]. It would be of much
significance to reexamine these topics from a viewpoint of sharing multiple
secrets.

As a matter of fact, the sharing of multiple secrets visually brings forth new
problems to be considered. For instance, with regard to the “starting position
for encoding” in A or/and B in Experiment 2, we may design such a concern
to be some kind of private key, which is only accessible between the dealer and
authorized participant(s). Without the correct starting positions in A or/and
B, the alignment of A and B cannot recover the secret yet. In addition, the
second secret of the three secrets in Experiment 1 might be designed to be
fake for the purpose of diffusion. That is to say whether the whole secret
message is “Help is never on its way”or “Help is on its way”may be treated
to be another private key between the dealer and authorized participant(s).
Mainly, the number of secrets, the degree of the starting position for encoding,
the combination of the true or fake reconstructed secrets, and so on, can be
designed as private keys to increase the level of security in the visual multi-
secret sharing system.

3.5 Concluding Remarks

By adopting circle or cylinder shares, we discuss general visual secret sharing
schemes for x ≥ 1 (indeed, these schemes work well for x = 1) secrets in
two shares in this chapter. The previous studies considered sharing only two
secrets in two shares [12, 13]. Shyu et al.’s scheme can be implemented easily
and it takes only some constant working space. All encoding information can
be determined in run time. By introducing an independent random permu-
tation (i.e., Σj , see formulae (3.1) and (3.4)) when encoding each pair of the
corresponding blocks (i.e., akj and bkj , see Step 3.2.1 and 3.2.4 in Algorithm
1), the scheme ensures the maximum randomness that the subpixels in an en-
coded block may possibly provide. For the transmitter, one machine capable of
running the encoding scheme is needed, while for the receivers, no computing
device is required and the decryption process is simply by the human visual
system. The proposed scheme can be easily extended to gray-level images by
adopting the halftone technology [4] or even color images by exploiting color
decomposition [4] or color composition [9].

In traditional visual secret-sharing schemes, rectangle shares are encoded
to conceal one shared secret. They are easily superimposed by aligning the
rectangular corners. As compared to the rectangle shares, the circle or cylinder
shares are relatively hard to superimpose since there are no reference points
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to align with. Basically, the usage of the circle or cylinder shares increases the
complexity in decoding the secrets. In practical applications, the dealer might
add additional information in the circle shares, such as some supplementary
points, lines, or markers, to ease the superimposition (decoding process) for
the participants. Figure 3.24 shows one possible arrangement in the case of
sharing three secrets as in Experiment 1. Note that circle share A has three
markers (see Figure 3.24(a)), while B has only one (see Figure 3.24(b)) based
upon which A, A120◦, and A240◦ can be superimposed with B easily. Or,
the dealer can deliberately organize such information as private key(s) such
that only the legal receivers are informed how to obtain the key(s). The same
reasoning could be applied if the cylinder shares are adopted.

(a) (b)

FIGURE 3.24
Shares (based upon Experiment 1) with supplementary lines to ease the align-
ments: (a) A with three markers, (b) B with one marker.

Generally speaking, the use of circle or cylinder shares to convey several
secrets discloses some new issues that have not yet been considered in tradi-
tional visual cryptography, such as “How many secrets are there?,”“How to
superimpose the shares (where to align with or in what rotation angles)?,”“Is
there any fake secret(s) for diffusion?,”and so on. These concerns can be de-
signed as a set of private keys. The consideration and distribution of these
private keys can be further discussed.
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4.1 Introduction

Visual cryptography is a kind of cryptography that can be decoded directly by
the human visual system without any computation for decryption. It usually
prints certain images on transparencies and the secret image is reconstructed
by simply stacking the transparencies together. Extended visual cryptogra-
phy allows the printing of meaningful images on transparencies so that it
can conceal the very existence of ”secret” in the transparencies. There have
been a lot of studies to incorporate photograph images into extended visual
cryptography. This chapter attempts to survey the studies on extended visual
cryptography for photograph images.

4.2 Basic Visual Cryptography Schemes

In order to determine basic terminology in this chapter, this section explains
basic concepts of visual cryptography, namely, k out of n Visual Secret Sharing
Scheme ((k, n) VSSS), an Extended Visual Cryptography Scheme (EVCS), and
Random Grids.

4.2.1 (k, n) Visual Secret Sharing Schemes

This scheme was proposed by Naor and Shamir in 1994 [31]. It generates n
transparencies from an original secret image. The transparencies are usually
shared by n participants so that each participant is expected to keep one
transparency. Thus, a secret image is sometimes called a shared image. The
secret image can be observed if any k or more of them are stacked together.
However, the secret image is totally invisible if fewer than k transparencies
are stacked. The images on transparencies are called shadow images.

Each pixel of a shadow image is generated separately in the conventional
VSSS. An original secret pixel will be transformed to n patterns of pixels
for shadow images. These pixels on shadow images are called shares. A share
consists of m black and white subpixels. The human visual system observes
the average of subpixels, because they exist in close proximity. This structure
is usually described by an n ×m Boolean matrix M = [mij ]. Here mij = 0
or 1 if the jth subpixel in the ith shadow is white or black, respectively. If
transparencies of r shadows i1, i2, · · · , ir out of n are stacked in a way that
properly aligns the subpixels, each combined share can be represented by the
Boolean ”OR” of the corresponding rows i1, i2, · · · , ir in the Boolean matrix
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FIGURE 4.2
An example of visual secret sharing scheme (VSSS). Two shadow images of
random patterns (left and middle) and reconstructed secret image (right).

Let us consider a special case of (2, 2) VSSS. Each share consists of
4 subpixels of a 2 × 2 array in a physical implementation, where two of
them are white and the rest two are black. The Boolean matrix of this
scheme is 2 × 4 where each row consisting of two 0’s and two 1’s repre-
sents an arrangement of subpixels in a share. For instance, six possible pat-
terns of shares having 50% gray as shown in Figure 4.1 are represented as
{[0 0 1 1], [1 1 0 0], [0 1 0 1], [1 0 1 0], [0 1 1 0], [1 0 0 1]}. The scheme is
accomplished by the following two collections:

Cw = {matrices obtained by permuting the columns of Sw},
Cb = {matrices obtained by permuting the columns of Sb},

where Sw and Sb are given as below:

Sw =
[

0 0 1 1
0 0 1 1

]
, Sb =

[
0 0 1 1
1 1 0 0

]
.

The above matrices Sw and Sb are called basis matrices. Because the collec-
tions are obtained by permutation of subpixels, each share may have randomly
arranged two white and two black subpixels, which looks 50% gray. A pair of
shares from Cw has the same arrangement of subpixels. The combined result
is the same pattern, which looks 50% gray. A pair of shares from Cb has the
complementary arrangement of subpixels. The combined result consists of four
black subpixels, which looks completely black. Figure 4.2 shows an example
of resulting shadow images and a reconstructed secret image. The size of all
images are 128 × 128 pixels, because the original secret image has 64 × 64
pixels.

The original scheme proposed by Naor and Shamir is uniform, such that
any combined shares from q < k shadow images yield ”OR”ed m-D vector
Mq with H(Mq) = f(q) with uniform probability distribution, regardless of
if the matrices were taken from Cw or Cb. Suppose the case of q = 1, the
above-mentioned combined share is a single share of each shadow image. It
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means all the shadow images consist of uniformly random pattern of black and
white subpixels. Naor and Shamir pointed out an extension of this scheme for
concealing the very existence of the secret image.

4.2.2 Extended Visual Cryptography Scheme

Ateniese et al. extended the VSSS in the sense of a General Access Structure
(GAS) [1] and extended capability. [2] A General Access Structure controls
the qualified set of transparencies with which one can recover the secret image,
while any k or more transparencies can reconstruct the secret image in (k, n)
VSSS. An extended capability is able to introduce a meaningful image as a
shadow image which Naor and Shamir pointed out in their very first paper
[31]. An innocent-looking image of a house, dog, or something else would be
much less suspicious than a random-dotted image as a shadow image.

In the Extended Visual Cryptography Scheme (EVCS), for an access struc-
ture (ΓQual,ΓForb) on a set of n participants, the shared (secret) image can be
recovered by any qualified set X ∈ ΓQual with no trace of the shadow images,
but any forbidden set X ∈ ΓForb has no information on the secret image. More-
over, the shadow images are meaningful so that each participant can recognize
the image on one’s transparency.

Similar to the (k, n) VSSS, an EVCS can be constructed in a pixel-wise
manner. Since n participants share one secret image and have their own images
in the n shadow images, we have to consider n+1 colors, c, c1, · · · , cn ∈ {w, b}
where w and b stands for white and black, respectively. The value c denotes
the color of the secret image pixel and ci denotes the color of the original
image pixel for i-th participant’s shadow image. In order to realize an EVCS
that obtains a c pixel when transparencies associated to a set X ∈ ΓQual,
we need 2n pairs of collections of n ×m Boolean matrices, (Cc1···cn

w , Cc1···cn

b ),
one for each possible combination of white and black pixels in the n original
images for the shadow images.

An EVCS for an access structure (ΓQual,ΓForb) for n participants is valid
if it fulfills the following conditions.

1. For any X ∈ ΓQual and for any c1, · · · , cn ∈ {b, w}, the threshold tX
and the relative difference αR exist, which satisfy H(MX) ≤ tX −
αRm for any M ∈ Cc1···cn

w and H(MX) ≥ tX for any M ∈ Cc1···cn

b .
Here MX denotes the m-D vector obtained by taking Boolean ”OR”
of the row vectors of M corresponding to the participants in X and
H(MX) denotes the Hamming weight of the vector MX .

2. For any X = {i1, · · · , iq} ∈ ΓForb and for any c1, · · · , cn ∈ {b, w},
the two collections of q×m matrices, Dc1···cn

w and Dc1···cn

b , obtained
by extracting rows i1, · · · , iq from each n×m matrix in Cc1···cn

w and
Cc1···cn

b , respectively, are indistinguishable so that the collections
contain the same matrices with the same frequencies.

3. For any i ∈ {1, 2, · · · , n} and any c1, · · · , ci−1, ci+1, · · · , cn ∈ {b, w},
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it results that

min
M∈Mb

H(Mi)− max
M∈Mw

H(Mi) ≥ αSm,

where

Mb = Cc1···ci−1bci+1···cn

b ∪ Cc1···ci−1bci+1···cn
w ,

Mw = Cc1···ci−1wci+1···cn

b ∪ Cc1···ci−1wci+1···cn
w ,

and H(Mi) denotes the Hamming weight of the i-th row vector Mi

of a matrix M .

The values αR > 0 and αS > 0 are referred to as the relative difference of
the reconstructed image and relative difference of shadow images, respectively.
The number αRm ≥ 1 and αSm ≥ 1 are contrasts of the reconstructed image
and the shadow images. People would like both αR and αS to be as large as
possible.

The first condition is the contrast condition that indicates any qualified
set X ∈ ΓQual can recover the secret image. The secret image can be re-
covered by stacking the transparencies of a qualified set, belonging to ΓQual.
The second condition is the security condition that states any forbidden set
X = {i1, · · · , iq} ∈ ΓForb has no information on the secret image. People can-
not get any information on the secret image by inspecting the shadow images
of a forbidden set. The third condition is the extended condition that im-
plies that the shadows images are still meaningful after the original images
are encoded. Any participant can recognize the shadow image on one’s trans-
parency. Although the collectionMb is obtained by combining two collections
Cc1···ci−1bci+1···cn

b and Cc1···ci−1bci+1···cn
w , we have the same set of {Mi} only with

one of the collections, because {Mi : M ∈ Cc1···cn
w } ≡ {Mi : M ∈ Cc1···cn

b } for
any c1, · · · , cn ∈ {b, w} and any i ∈ {1, · · · , n} due to the second condition.

Here we show how to accomplish a 2 out of 2 EVCS. Each share consists
of 4 subpixels like (2, 2) VSSS. However, it contains either two 1’s or three
1’s depending on the colors of pixels of the corresponding original image,
white or black, respectively. The scheme is given by the 4 pairs of collections
(Cc1c2w , Cc1c2b ), namely 8 collections Cc1c2c , where c, c1, c2 ∈ {b, w}. The collec-
tions are obtained by permuting the columns of the following 8 basic matrices,
Sc1c2c :

Swww =
[

0 0 1 1
0 1 0 1

]
, Swwb =

[
0 0 1 1
1 1 0 0

]
,

Swbw =
[

0 0 1 1
0 1 1 1

]
, Swbb =

[
0 0 1 1
1 1 1 0

]
,

Sbww =
[

0 1 1 1
0 1 0 1

]
, Sbwb =

[
0 1 1 1
1 1 0 0

]
,

Sbbw =
[

0 1 1 1
0 1 1 1

]
, Sbbb =

[
0 1 1 1
1 1 1 0

]
.
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FIGURE 4.3
An example of extended visual cryptography scheme (EVCS). Two resulting
shadow images (left and middle) and reconstructed secret image (right).

The reconstructed pixel has 3 or 4 black subpixels if the original secret pixel
is white or black, respectively. In this scheme, the relative contrasts are given
as αR = αS = 1

4 . Figure 4.3 shows an example of resulting shadow images
and reconstructed secret image. The size of all images are 128 × 128 pixels,
because all the original shadow and secret images have 64× 64 pixels.

Ateniese et al. also pointed out some of the most important aspects of the
extended capability [2]. One is related to the contrasts of images. A trade-off
between two relative differences exists, αR and αS , in any (k, k) EVCS as
below:

2k−1αR +
k

k − 1
αS ≤ 1.

This means we cannot increase both contrasts of a reconstructed image and
shadow images, αRm and αSm, simultaneously. They also specified the lower
bound of the pixel expansion m in (k, k) EVCS as below:

m ≥ 2k−1 + 2.

This means we need more pixels to obtain EVCS. Although people would like
contrasts to be as large as possible and pixel expansion as small as possible,
there exist certain limits of them.

4.2.3 Random Grids

Random Grids (RG) give a very different approach to visual cryptography,
which can keep the size of resulting shadow images to be the same as that
of the original image. In other words, the pixel expansion of this method is
m = 1 and no more expansion problems exist. The method is first introduced
by Kafri and Keren in 1987 [17] and reinvestigated by Shyu in 2007 [37]. A
random grid R is defined as a two-dimensional array of pixels. Each pixel is
either transparent (white) or opaque (black) by a coin-flip procedure. The
numbers of transparent pixels and opaque pixels are probabilistically same
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FIGURE 4.4
An example of random grid (RG). Two random grids (left and middle) and
reconstructed secret image (right).

and the average opacity1 of a random grid is 50%:

O(R) =
1
2
.

Let R(p) denote a pixel value of the random grid R at the position p and
R(p) denote its inverse.

R(p) =

 0 if R(p) is transparent (white)

1 if R(p) is opaque (black)
,

R(p) =

 0 if R(p) = 1

1 if R(p) = 0
.

We must note that the inverse of a random grid is also a random grid and its
opacity is 50 %, O(R) = 1

2 . The superimposition of two random grids, R1 and
R2, pixel by pixel is computed by taking Boolean ”OR” operation of their
corresponding pixels, R1(p) and R2(p), as VSSS and EVCS:

(R1 +R2)(p) = R1(p) +R2(p).

It is obvious that the superimposition of the same random grids results in the
original random grid. The superimposition of a random grid and its inverse is
a grid whose pixels are all opaque. Thus, the average opacity will be as below:

O(R+R) = O(R) =
1
2
, O(R+R) = 1.

The encryption algorithm for a binary image B, which generates a pair of
random grids R1 and R2 that can achieve the highest contrast is as follows.

1Originally a concept of average transmission was used both in [17] and [37] instead
of average opacity. However, it is slightly confusing because people usually use 0 for a
transparent (white) pixel and one for an opaque (black) pixel in visual cryptography studies.
Thus, here we use the term average opacity.
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Algorithm

1. Generate a random grid R1 with the same size as B.
2. For each pixel B(p), a grid R2 is determined as below:

R2(p) =

 R1(p) if B(p) = 0

R1(p) otherwise
.

Let T and O denote transparent and opaque regions of the original binary
image B so that B(p) = 0|p∈T and B(p) = 1|p∈O. The regions T and O
fulfills the following constraints:

Ω = T ∪O and φ = T ∩O,

where Ω stands for the entire region of the original image while φ represents
the null region, because B is a binary image. Due to the definition of the above
algorithm, random grids R1 and R2 satisfies the following relations:

R1(p) = R2(p)|p∈T and R1(p) = R2(p)|p∈O .

Therefore, R2 as well as R1 is a random grid and the average opacity of their
superimposition depends on the regions T and O of the input binary image:

O ((R1 +R2)(p))|p∈T =
1
2

and O ((R1 +R2)(p))|p∈O = 1.

The difference of the average opacities of region T and O corresponds to
relative difference α in VSSS. Figure 4.4 shows an example of random grids
and a reconstructed secret image. The size of all images are 64 × 64 pixels,
which is the same as that of the original secret images, because Random Grids
are free from pixel expansion, m = 1.

4.3 Fundamentals of Photograph Visual Cryptography

Digital cameras have become very popular and people can easily obtain
continuous-tone digital image data. However, all the schemes explained in the
last section accept binary images as input. Thus, a photograph image must
be converted to a binary image that can be observed similar to the original
image by the human visual system. The algorithm that can achieve such a
conversion is referred as digital halftoning or halftoning in short [38, 18].

4.3.1 Digital Halftoning

There are several approaches to digital halftoning, namely, noise-encoding,
ordered dither, error diffusion, iterative and search-based methods, etc. Here
we explain some of the approaches.
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FIGURE 4.5
Samples of ordered dither matrices. Clustered-dot matrix (left) and dispersed-
dot matrix (right).

Density Pattern

It is obvious to achieve (l + 1) gray levels, i.e., tones, with l binary pixels.
The density pattern method uses l subpixels for representing each pixel value.
This is similar to the visual cryptography in the sense that a resulting image
requires more pixels than the original image. If we adopt this type of halfton-
ing method, the resulting shadow images and reconstructed secret image are
lm times larger than the original continuous-tone images. Of course, this is
inappropriate since people want to make a resulting image as small as possible.

Noise-Encoding

The easiest way to obtain a binary image from a continuous-tone image of the
same size is thresholding, which assigns 0 to a pixel of the resulting binary im-
age if the original pixel value is smaller than a threshold value. Otherwise it as-
signs 1 to the binary pixel. However, the resulting binary image usually suffers
from pseudo-contours. Noise-encoding is a key concept for improving image
quality. In the early stage of digital halftoning studies, random noise, i.e., white
noise, is used for this purpose. A binary image obtained by adding random
noise followed by thresholding yields better quality than a simply-thresholded
image, because it reduces pseudo-contours. Random dither is a simple exten-
sion of noise-encoding. It uses a random threshold array and thresholds each
pixel with a random number instead of using a constant threshold after adding
a random number to the pixel value.

Ordered Dither

Noises need not be random and a threshold matrix can be generated with a
certain order. Ordered dither generates a binary image by comparing a pixel
of an original continuous-tone image with a threshold value of the periodic
ordered matrix. The methods based on ordered dither are classified into two
categories, clustered-dot ordered dither, and dispersed-dot ordered dither de-
pending on the nature of generated dots.

Clustered-dot ordered dither turns adjacent pixels on which form a cluster
in the matrix. The period length of dots is determined by that of the matrix.
The tone level of a region is modulated by the area size of clustered-dot. Thus,
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times smaller than the original pixel if the image size is fixed to that of
the original image. This results in difficulty of alignment so that transparen-
cies with smaller subpixels are more difficult to be stacked properly. Mis-
aligned transparencies cannot reconstruct the secret image. This cannot be
neglected because one of the most important characteristics of visual cryp-
tography is the capability that the secret information is revealed by simply
stacking transparencies without any computation.

Relative difference (α) It is obvious that contrast is also one of the most
important parameters related to image quality. An image with low contrast
is obscure and difficult to see its details. Furthermore, there exists a certain
tradeoff between contrasts of shadow and secret images in case of extended
visual cryptography. It is impossible to increase both contrasts of a secret
image and shadow images simultaneously.

4.3.3 Photograph Visual Cryptography with Basic Schemes

The straightforward way to incorporate photograph images into visual cryp-
tography is as below:

1. Convert photograph (continuous-tone) images to binary images by
halftoning.

2. Encrypt a secret image by one of the schemes explained in Section
4.2.

Of course the quality of resulting images may be changed by the halfton-
ing algorithm. But here we would like to focus on the differences among the
encryption schemes.

Table 4.1 summarizes the characteristics of visual cryptography with pho-
tograph images according to the encryption schemes, i.e., Visual Secret Shar-
ing Scheme (VSSS), Extended Visual Cryptography Scheme (EVCS), and
Random Grids (RG), in the case of (2, 2). Since all three schemes assume that
shadow images are printed on transparencies and stacked together, the super-
imposition (stacking operation) can be seen as Boolean ”OR” in mathematical
sense. The basic properties of VSSS and RG are very similar except for the
pixel expansions. The pixel expansion of (2, 2) VSSS is m = 2 (it would be 4 if
one wants to preserve the aspect ratio of a image), while RG’s pixel expansion
is m = 1. VSSS and RG have no extended capability. They cannot incorporate
photograph images into shadow images in order to conceal the existence of
”secret,” which means the original shadow images are simple monotone images
(”mono.”) and encrypted results are random-dot binary images (”rand.”). In
other words, the relative difference of shadow images is αS = 0. However,
they can accept a continuous-tone image (”cont.”) as a secret image. A re-
constructed secret image is a halftoned binary image (”half.”) whose relative
difference is αR = 1

2 . Only EVCS among the three basic schemes can incorpo-
rate continuous-tone images into shadow images. The resulting shadow images
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TABLE 4.1
Comparison of visual cryptography schemes, namely, VSSS, EVCS, and RG,
with photograph images in the case of (2, 2). Here, m denotes the pixel ex-
pansion of each scheme. αS and αR stand for relative differences of shadow
images and reconstructed secret image, respectively. l(O)

S and l
(O)
R denote the

tone levels of original images to be processed, while lS and lR denote the
tone levels of the resulting (encrypted/decrypted) images. Strictly speaking,
lS and lR should be 2, because every resulting image consists of white and
black subpixels. However, for human visual system, an image can be observed
as a gray-scale image because of halftoning. In this sense, we specify ”lS > 2”
for EVCS and ”lR > 2” for all three schemes. ”mono.,” ”cont.,” ”half.,” and
”rand.” mean a monotone image, continuous-tone image, halftoned binary
image, and random-dot binary image, respectively.

scheme m
shadow image secret image

αS l
(O)
S lS αR l

(O)
R lR

VSSS 2 (4) 0 1 (mono.) 1 (rand.) 1/2 ∞ (cont.) >2 (half.)
EVCS 4 1/4 ∞ (cont.) >2 (half.) 1/4 ∞ (cont.) >2 (half.)

RG 1 0 1 (mono.) 1 (rand.) 1/2 ∞ (cont.) >2 (half.)

to be printed on transparencies and reconstructed secret image by stacking
shadow images are binary images converted by halftoning. The pixel expan-
sion of (2, 2) EVCS is m = 4. A tradeoff between relative differences of shadow
image and reconstructed image exists. If we restrict both relative differences
to be the same, the maximum relative differences are αS = αR = 1

4 .
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4.4 Variations of Photograph Visual Cryptography

Although extended capability is a crucial aspect for visual cryptography with
a photograph image, contrast of resulting images becomes very low (1

4 at maxi-
mum) due to the tradeoff between relative differences of the shadow image and
reconstructed image. Contrast tends to much lower if the number of shadow
images increases. In order to enhance contrast of encrypted images, several
researches assumed other kinds of operations for superimposition, namely,
”Cover,” [32] ”XOR,” [3, 23] ”NOT,” etc. [40] Sometimes even a certain com-
putation is required for decryption [5, 20, 24]. Most of the approaches are no
longer realized by stacking transparencies.2 Those schemes may not be cate-
gorized as visual cryptography, because the most important characteristics of
visual cryptography is the capability of visual decryption without any compu-
tation. Therefore, we will not discuss these type of approaches assuming other
operations than Boolean ”OR.” Instead our discussion will mainly focus on
(2, 2) schemes. There have been a lot of studies that aim at incorporating color
into visual cryptography [27, 35, 39, 22, 44, 12, 13, 7, 30, 36, 46, 19]. These
approaches are strongly related to the techniques for handling continuous-tone
images. However, this chapter will not discuss those color studies because this
book contains a special chapter dedicated to color visual cryptography.

4.4.1 Approaches to Photograph Visual Cryptography

The main issue for incorporating photographs into visual cryptography is the
quality of resulting images, i.e., pixel expansion, relative differences, tone lev-
els, as we discussed in Section 4.3.2. A lot of approaches to photograph visual
cryptography intend to improve the image quality by introducing a certain
limitation and/or by exploiting image processing techniques. Table 4.2 sum-
marizes those approaches. For instance, [4, 15, 37, 14, 6] limit their shadow
image to a random-dot binary image (”rand.”). Actually they do not intend ex-
tended visual cryptography [33, 34, 21, 41, 9, 47]. Generate very similar images
(”sim.”) or a positive/negative pair of images (”p/n”) as encrypted shadow
images. Sometimes only logo-like images with the trace of shadows (”logo tr.”)
can be reconstructed as a secret image [33, 34, 21, 41, 9, 10, 45]. [10, 25, 42] uti-
lize halftoning techniques to make pixel expansion m = 1. [28, 42, 45, 25, 26]
adjust tone, i.e., dynamic range, of images for improving image quality. Some
studies introduce continuous-tone subpixels into encrypted shadow images to
obtain continuous-tone results [45, 29]. The rest of this section explains those
approaches.

2Only ”Cover” can be physically realized with transparencies and opaque sheets. Physical
implementation of ”XOR” is possible by exploiting polarization.
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TABLE 4.2
Approaches to photograph visual cryptography of (2, 2) scheme. ”pair” repre-
sents constraints on a pair of shadow images such as random-dot binary image
(”rand.”), similar images (”sim.”), positive/negative pair (”p/n”), and differ-
ent pair, i.e., no constraint (”diff.”). ”tone” indicates types of images to be
reconstructed. ”logo” stands for a logo-like image, ”logo tr.” stands for a logo-
like image with traces of shadows, and ”gray” stands for a gray-scale image.
”GAS,” ”RG,” ”not ext.,” and ”cont. tone” mean General Access Structure,
Random Grids, not extended, and continuous-tone, respectively.

approaches m
shadow image secret image

featurespair αS lS tone αR lR
[4, 15] >1 rand. 0 1 gray 1/2 <m GAS, not ext.
[37] 1 rand. 0 1 gray 1/2 >2 RG, not ext.

[14, 6] 1 rand. 0 1 gray 1/2 >2 (k, n), not ext.
[33] >1 sim. ' 1 m+1 logo tr. ≥ 0 − density pattern

[34, 21, 41] 1 sim. ' 1 >2 logo tr. ≥ 0 − ordered dither
[9] 1 sim. ' 1 >2 logo tr. ≥ 0 − error diffusion
[47] 1&4 p/n ≤1/2 >2 logo 1/4 2 GAS, w/o trace
[10] 1 diff. ≤ 1 >2 logo tr. ≥ 0 − error diffusion
[45] 4 diff. 1/4 ∞ logo tr. 1/4 − GAS, cont. tone
[28] >1 diff. ≥1/4 <m gray ≥1/4 <m density pattern
[42] 1 diff. ≥1/4 >2 gray ≥1/4 >2 iterative search

[25, 26] 1 diff. ≥1/4 >2 gray ≥1/4 >2 error diffusion
[29] 2 diff. ≥1/4 ∞ gray ≥1/4 ∞ cont. tone
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4.4.2 Random-Dot Shadow Images

Due to the severe tradeoff between relative differences of the shadow image
and reconstructed image, some studies focused on the quality of the recon-
structed image by giving up extended capability. For instance, in 2000, Blundo
et al. examined a secret sharing scheme with an access structure that can re-
construct a gray-scale image with g gray levels and specified the upper limit of
relative differences α1, · · · , αg−1 as well as the lower limit of pixel expansion
m as below [4]:

min{α1, · · · , αg−1} ≤
1

(g − 1)2k−1
, m ≥ (g − 1)2k−1.

Iwamoto and Yamamoto precisely discussed an (n, n) secret sharing scheme
for a gray-scale image in 2002 [15].

Another important concern is pixel expansion. Both studies explained
above accomplish gray levels by controlling the number of white/black subpix-
els, which means pixel expansion is inevitable. The research for reducing the
pixel expansion in VSSS is mostly based on a probabilistic approach such as
Random Grids revisited by Shyu [37]. Since Random Grids have been already
explained in Section 4.2.3, here we discuss another kind of probabilistic ap-
proach. Ito et al. proposed a secret sharing scheme with m = 1 by introducing
randomness into a conventional (k, n) VSSS in 1999 [14]. Their scheme first
determines a basis matrix according to the value of a secret pixel, black or
white. Then it randomly selects one of a column of the basis matrix, which
stands for values of corresponding subpixels in shadow images, and uses them
as those of shadow pixels. Chen et al. proposed the similar scheme in 2007 [6].
They also proposed to use histogram equalization for enhancing contrast. We
will explain this contrast enhancement technique later in Section 4.4.7.

4.4.3 Similar Shadow Images

Another approach is entirely opposite to the studies explained in the previ-
ous section. It limits the relative difference of secret image to nearly zero and
attempts to enhance the relative difference of shadow images as much as pos-
sible. Some research has succeeded in achieving a full relative difference for
shadow images, namely, αS ' 1, by using very similar shadow images. The
key of this approach is the reconstructed secret image. The secret image can
be observed with the trace of a shadow image. In other words, by overlapping
very similar shadow images, one can observe obscure dark logos or text within
the shadow image.

This type of scheme was first proposed by Oka et al. in 1996 as a water-
marking technique [33]. One can conceal one’s signature within a halftoned
image so that one can claim one’s copyright on the image. It uses multiple sub-
pixels, i.e., density patterns, to represent a gray pixel of the original shadow
image. The second shadow image is generated by rearranging dots, i.e., black
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FIGURE 4.9
Dither matrices for similar shadow scheme proposed in [34].

subpixels, of the first shadow image if the corresponding original secret pixel
is black. On the contrary, the same arrangement is used if the corresponding
secret pixel is white. The secret image appears when the shadow images are
stacked together. It is easy to rearrange subpixels if the gray level of the orig-
inal pixel is approximately 50% gray. But it is difficult to control resulting
darkness in the nearly white or black region of the shadow image. Thus, it is
impossible to guarantee the quality of the reconstructed secret image.

[34, 21, 41] are modifications of this approach without pixel expansion,
namely, m = 1, by using ordered dither. For instance, [34] specified sample
dither matrices based on a Bayer’s matrix as shown in Figure 4.9. Shadow im-
ages are halftoned by using the same dither matrix if the corresponding secret
region is white, while they are halftoned with the different dither matrices if
the corresponding secret region is black. Fu and Au proposed a variation of
this scheme in 2001 [9]. It uses the error diffusion technique to get halftoned
results instead of ordered dither.

4.4.4 Positive and Negative Shadow Images

The underlying concept of this approach is quite similar to the previous ap-
proach. It can achieve a large relative difference for shadow images by using a
positive and negative pair of shadow images instead of a similar pair. It also
reconstructs a logo or text image as a secret image, i.e., binary-tone image,
without any trace of shadow images.

This scheme was proposed by Zhou et al. in 2006 [47]. It is not limited
to (2, 2) VSSS and can handle an access structure. However, here we explain
a basic algorithm to establish a (2, 2) secret sharing scheme due to space
limitations.

1. The positive shadow image is generated by halftoning the original
shadow image. The negative shadow image is obtained by reversing
the positive one. Thus, the overlapping result is entirely black at
this moment.

2. A secret pixel is encrypted into a square region of halftoned pix-
els, Q1 ×Q2. A pair of black and white pixels, referred to as secret
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traces of both shadow images. One can recognize a logo as well as shadow
images at the same time.

Myodo et al. extended this approach to be able to handle a photograph as
a secret image [25]. It can reconstruct a secret photograph image with very
little or no trace of shadow images by properly adjusting tones of images. This
aspect of tone adjustment will be discussed in Section 4.4.7.

4.4.6 Simultaneous Iterative Search

This type of method was proposed by Wu et al. in 2004 [42]. It can handle
three different photographs as two shadow images and a secret image without
pixel expansion, m = 1. This method consists of two major steps, tone ad-
justment and simultaneous iterative search. It first adjusts the tones of three
input images to satisfy a condition on relative differences of shadow and se-
cret images. Then it simultaneously searches three halftoned images. Since
[42] contains very little explanation about the two steps, it is hard to know
the exact algorithm. But it would take a certain amount of time to obtain a
result if it process is images in a brute-force manner.

4.4.7 Tone Adjustment

This type of approach attempts to improve image quality with image process-
ing technique. It tries to enhance contrasts, namely, dynamic ranges, of the
resulting images as much as possible. The conventional visual cryptography
studies consider relative differences, αS and αR, which represent a limitation
of possible pixel values. However, the pixel values of shadow and secret images
are actually limited by lower and upper limits, dynamic ranges, and there is
a certain interaction among them.

Nakajima and Yamaguchi precisely examined the interactions of pixel val-
ues in (2, 2) EVCS [28]. There exist constraints among the pixel values of
three corresponding pixels in shadow and secret images. Let us call the three
corresponding pixels a triplet. The constraints among values of a triplet are
represented as below:

oR ∈ [max (o1, o2),min (o1 + o2, 1)] , (4.1)

where oR denotes pixel opacity of reconstructed secret image and o1 and o2

denote pixel opacities of resulting shadow images.3 This expression indicates
that any reconstructed pixel must be equal to or more opaque than the most
opaque corresponding shadow pixel, max (o1, o2). It also indicates that the
reconstructed pixel must be equal to or less opaque than the sum of opacities
of corresponding shadow pixels, o1 + o2.

3In [28], Nakajima and Yamaguchi discussed pixel transparency instead of opacity. How-
ever, as we already indicated, people usually use 0 for a transparent (white) pixel and 1 for
an opaque (black) pixel in visual cryptography studies. Thus, here we consider pixel opacity
rather than pixel transparency.
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This approach adjusts the tones of given images to make the dynamic
ranges as large as possible while every triplet fulfills the constraints given by
Equation (4.1). Affine transformation or piece-wise linear transformation is
most commonly used for tone adjustment [28, 42, 45, 25, 26]. Wu et al. sug-
gested to calculate optimum parameters [42]. However, [42] does not explain
any details how to obtain optimum parameters. Myodo et al. [25] proposed a
method that can determine optimum parameters at once [26]. They claimed
that their method can enhance relative differences to 0.28 on average without
any violation. Their method can control the relative differences independently
by specifying the weights.

Another approach uses a contrast enhancement technique called histogram
equalization or histogram linearization transformation [11], which is very well-
known for improving the contrast of images. The histogram of an image can be
seen as a function h(i) that returns a frequency or probability density of pixels
having an intensity level i, namely a transparency. Histogram equalization
equalizes or flattens a histogram. This means that frequencies of tone levels
are totally uniform and the resulting image may have a high contrast. Chen
et al. [6] as well as Wu et al. [43] suggested a way to improve image quality
by applying histogram equalization to the input images before encryption.

4.4.8 Continuous-Tone Subpixel

Image quality can be improved by increasing tone levels as discussed in Section
4.3.2. There have been some studies improving image quality by introducing
continuous-tone subpixels into encrypted shadow images [29, 45].

Yang and Chen [45] introduced continuous tone into the resulting shadow
images. They extended usual EVCS explained in Section 4.3.3 by substitut-
ing a black subpixel by a gray subpixel having the same gray value as the
original shadow pixel. This approach can be applied to EVCS with an access
structure. The drawback of this approach is the trace of shadow images. The
reconstructed secret image can be observed in superimposed shadow images.
Thus, a secret image should be a logo or text image. One can recognize a
logo as well as shadow images at the same time when shadow images are
overlapped.

Nakajima and Yamaguchi [29] proposed a very unique approach for im-
proving image quality by introducing continuous-tone subpixels. Their method
also deals with a misalignment problem caused by pixel expansion. We will
discuss this method in the next section.
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FIGURE 4.16
Input images. From left to right, original shadow 1, shadow 2, and secret
images, respectively.

4.5.2 Results

Figure 4.16 shows the three input images. Each image corresponds to the
shadow 1, shadow 2, and secret image, respectively, from left to right. Figure
4.17 gives the encrypted shadow 2 (above) and the secret image reconstructed
by superimposing the output shadows (below). They are generated with 15×15
physical subpixels per pixel. For comparison, the shadow 2 (above) and re-
constructed secret images (below) generated with the straightforward density
pattern are depicted in Figure 4.18. The images in Figure 4.18 contain 3× 3
subpixels per pixel, a practical number of subpixels considering the superim-
position by human hands.

The method is possible to generate quite pleasant results of high image
quality, especially with smoother shading of the petals and the background
stems, or the whiskers and stripes of the cat. This is because the method can
express at least 226 = (15×15+1) gray levels, which means that the resulting
images can almost fully express the gray levels of the input images. Moreover,
the encrypted shadow images can be superimposed by human hands with little
difficulty, as they allow more misalignment tolerance.

4.6 Conclusions

This chapter explained extended visual cryptography handling photograph
images. First, we overlooked the three basic visual cryptography schemes for
binary images, namely, the Visual Secret Sharing Scheme, the Extended Vi-
sual Cryptography Scheme, and Random Grids. Some fundamental concepts
for incorporating photographs into visual cryptography, such as halftoning
techniques, some parameters related to image quality, and issues for handling
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FIGURE 4.17
Examples of resulting images. The upper image is the encrypted shadow 2
and the lower image is the secret image reconstructed by superimposing two
shadows by computer simulation.
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FIGURE 4.18
Examples of the output with density pattern using 3× 3. The upper image is
the encrypted shadow 2 and the lower image is the secret image reconstructed
by superimposing the two shadows by computer simulation.

© 2012 by Taylor & Francis Group, LLC



Extended Visual Cryptography for Photograph Images 123

photographs are observed. Then we surveyed approaches for handling photo-
graph images, most of which are aimed at improving image quality. Finally,
we have discussed one the most unique approaches proposed by Nakajima and
Yamaguchi [29]. Although the method does not guarantee perfect security, it
can generate very pleasant results of high image quality while maintaining
misalignment tolerance.
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Università di Salerno, Italy

CONTENTS

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Visual Cryptography Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.1 The Deterministic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.2 The Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Canonical Probabilistic Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4 Probabilistic Schemes with No Pixel Expansion . . . . . . . . . . . . . . . . . 135
5.5 Trading Pixel Expansion with Probabilities . . . . . . . . . . . . . . . . . . . . . 138

5.5.1 Probabilistic Schemes with Given Pixel Expansion . . . . . 138
5.6 Constructing Probabilistic Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6.1 (n, n)-Threshold Probabilistic Schemes with Any Pixel
Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6.2 (2, n)-Threshold Probabilistic Schemes with Any Pixel
Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.7 Probabilistic Schemes with Boolean Operations . . . . . . . . . . . . . . . . . 147
5.7.1 (2,n) Scheme for Binary Images (Wang) . . . . . . . . . . . . . . . . 147
5.7.2 (n,n) Scheme for Binary Images (Wang) . . . . . . . . . . . . . . . . 149

5.8 Conclusions and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1 Introduction

Visual cryptography schemes allow the encoding of a secret image, consisting
of black or white pixels, into n shares that are distributed to the set P of n
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participants. The shares are such that only qualified subsets of participants
can ”visually” recover the secret image. The secret pixels are shared with
techniques based on subdividing each secret pixel into a certain number m,
m ≥ 2 of subpixels. Such a parameter m is called the pixel expansion, since
the reconstructed shared image becomes m times bigger than the original.
This cryptographic paradigm was introduced by Naor and Shamir [16]. They
analyzed the case of (k, n)-threshold visual cryptography schemes, in which a
black and white secret image is visible if and only if any k transparencies are
stacked together.

The pixel expansion has a number of drawbacks, affecting the quality of
the reconstructed image and the complexity of the visual cryptography scheme
(VCS). In some cases, the pixel expansion is exponential, and this limits the
applicability of the VCS. In general, the ”quality” of the reconstructed image
depends both on the pixel expansion and on the contrast, which is another
measure of the goodness of the scheme. A number of papers studying the
best pixel expansion and the best contrast have appeared in the literature. A
partial list of such papers include [2, 4, 5, 6, 7, 12, 14, 15]. Some other papers
have focused on different models or properties. For example, in [1], visual
cryptography schemes for general access structures (where the qualified set
of participants are arbitrary and not defined by a threshold of participants)
have been studied. Schemes where the shares show meaningful pictures (not
related to the secret) are studied in [3]. In [24] the problem of not distorting
the original image is considered. Some research has also considered the case
of colored images (see for example [10, 9, 19, 25]).

To deal with the pixel expansion, Yang [22, 23] has introduced a new
model of visual cryptography in which the reconstruction of the secret image
is probabilistic, but the shares have the same size of the secret image, i.e., the
schemes have no pixel expansion. To be fair, a first attempt to provide VCS
without pixel expansion has been done by Ito et al. in [13]. In both Ito and
Yang models, each pixel is reconstructed ”OR”ing the corresponding single
pixel contained in the shares. Such models are called probabilistic, because
they give no absolute guarantee on the correct reconstruction of the original
pixel: in some cases, the reconstructed pixel is wrong. This differs from the
traditional VCS, which are now called deterministic, where the reconstruction
of an ”approximation” of the secret pixel is guaranteed. Here the approxi-
mation means that a white (black) pixel can be, in some cases, replaced in
the reconstructed image by a set of subpixels having a given set of white-
ness (blackness). Since in probabilistic models the secret pixel is correctly
reconstructed with some probability, the quality of the reconstructed images
depends on how big is the probability of correctly reconstructing the secret
pixels.

Between deterministic schemes and probabilistic schemes it is possible to
set a trade-off. In a deterministic scheme a certain pixel expansion is paid
for the guarantee of a correct reconstruction. In a probabilistic scheme a re-
construction with no pixel expansion is paid with a (small) probability of
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making mistakes in reconstructing the secret image. In some cases it is pos-
sible to sacrifice some pixel expansion in order to improve the probabilistic
reconstruction of the secret image or vice versa. Yang’s model has been gener-
alized in Cimato et al. [11] showing how it is possible to trade pixel expansion
for the probability of a good reconstruction. Such a model can be seen as a
generalization of both the classical deterministic model and the probabilistic
model introduced by Yang [22]. Moreover, there exists a one-to-one mapping
between probabilistic schemes with no expansion and deterministic schemes;
such a mapping trades the contrast of the deterministic scheme with the prob-
ability factor of the probabilistic scheme. Other proposals in literature have
been introduced to deal with non-OR-based vcs and to extend the approach
to color and grayscale images.

5.2 Visual Cryptography Schemes

A formal definition of the probabilistic model has been given in [11], gen-
eralizing Yang’s approach and extending the traditional definition of VCS.
In the next subsection we review the notions related to traditional VCS, be-
fore introducing the definition of probabilistic visual cryptography schemes in
subsection 5.2.2

5.2.1 The Deterministic Model

The secret image consists of black and white, where usually white color is
interpreted as transparent, so that the superposition of white pixels, let the
color of the pixel contained in the other shares pass. In order to share each
pixel of the secret image the owner of the secret, usually called the dealer,
provides each participant with a share, which is an enlarged version of the
secret pixel consisting of a certain number m of subpixels. So the shared
version of the original secret pixel will consists of m pixels, which are called
subpixels because all together they represent the original secret pixel.

The shares can be conveniently represented with n × m matrices where
each row represents one share, i.e., m subpixels, and each element is either
0, for a white subpixel, or 1 for a black subpixel. A matrix representing the
shares is called the distribution matrix. Physically, the shares are given out in
the form of printed transparencies. Given a distribution matrix M and a set
Q of participants, the notation MQ refers to the submatrix of M consisting
of only the rows corresponding to participants in Q.

To reconstruct the secret image a group of participants stacks together the
shares. Since each secret pixel is represented by m pixels in the shares, the
reconstructed image will be bigger than the original (depending on m and on
the actual positions of the pixels, the image can also be distorted; a perfect
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square is a good choice for m because it avoids distortion). Depending on the
stacked shares, each secret pixel will be reconstructed with a certain number
of black and white subpixels. A reconstructed pixel is considered white if the
number of white pixels in its reconstruction is big enough, i.e., the number of
black subpixel is less than or equal to a given threshold `, and is considered
black if the number of black subpixels is big enough, i.e., greater or equal
a given threshold h. Obviously one has to require that ` < h. l ` and h are
called the contrast thresholds of the scheme. In some other papers, the contrast
thresholds are used slightly differently: m−h is an upper bound on the number
of black subpixels in a white pixel and m− ` is a lower bound on the number
of black subpixels in a black pixel.

Since a reconstructed pixel has to be either black or white, we consider
only schemes such that in the reconstructed image each reconstructed pixel
has a number of black pixels, which is either ≤ ` or ≥ h. An easy way to
resolve ambiguities in the reconstruction is to assume ` = h− 1.

We consider threshold schemes where a qualified set of participants consists
of k or more participants. For these schemes, a nonqualified set of participants,
i.e., a set of less than k participants, will not have any information about the
secret image from the shares. Instead, a qualified set of participants, i.e., a
set of at least k participants will be able to reconstruct the secret image. The
quality of the reconstructed image depends on the scheme.

In a deterministic scheme the quality of the reconstructed image depends
on the so-called contrast that is a function of the pixel expansion m, and
the contrast thresholds ` and h. The contrast of a scheme is defined as γ =
(h− `)/m.

In a deterministic scheme it is guaranteed that, for any qualified set of
participants, the pixel is reconstructed correctly; that is, if the secret pixel is
white then the number of black subpixels in the reconstructed image, corre-
sponding to that secret pixel, is at most `, whereas if the secret pixel is black,
the number of black subpixels in the reconstructed pixel is at least h.

In order to provide shares to the participants the dealer chooses uniformly
at random a distribution matrix from a collection of matrices CB , if the secret
pixel is black, or from a collection of matrices CW , if the secret pixel is white.
Hence, for a deterministic scheme it holds that for any distribution matrix M
of the set CB , the reconstruction of a pixel obtained by MQ for any qualified
set Q, gives at least h black subpixels, whereas for any distribution matrix M
of the set CW the reconstruction of a pixel obtained by MQ for any qualified
set Q, gives at most ` black subpixels. Let us report here the formal definition
of a deterministic VCS:

Definition 1 Let (ΓQual,ΓForb) be an access structure on a set of n partici-
pants. Two collections (multisets) of n×m boolean matrices CW and CB con-
stitute a visual cryptography scheme (ΓQual,ΓForb,m)-VCS if there exist the
integers ` and h, ` < h, such that:

1. Any (qualified) set Q = {i1, i2, . . . , ip} ∈ ΓQual can recover the
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shared image by stacking their transparencies.
Formally, for any M ∈ CW , the ”or” V of rows i1, i2, . . . , ip satisfies
w(V ) ≤ `; whereas, for any M ∈ CB it results that w(V ) ≥ h.

2. Any (forbidden) set X = {i1, i2, . . . , ip} ∈ ΓForb has no informa-
tion on the shared image.
Formally, the two collections of p×m matrices Dt, with t ∈ {B,W},
obtained by restricting each n×m matrix in CX to rows i1, i2, . . . , ip
are indistinguishable in the sense that they contain the same matri-
ces with the same frequencies.

In many schemes, the collection CW (resp. CB) consists of all the matrices
that can be obtained by permuting all the columns of a matrix MW (resp.
MB). For such schemes, the matrices MW and MB are called the base matri-
ces of the scheme. Base matrices constitute an efficient representation of the
scheme. Indeed, the dealer has to store only the base matrices and in order to
randomly choose a matrix from CX he has to randomly choose a permutation
of the columns of the base matrix MX .

A scheme is characterized by several parameters: the number of partic-
ipants n, the threshold k that determines whether a set of participants is
qualified to reconstruct the image, the pixel expansion m, and the contrast
thresholds ` and h, which determine whether a reconstructed pixel is consid-
ered white or black.

5.2.2 The Probabilistic Model

In a probabilistic scheme the reconstruction property is no more guaranteed,
but each pixel can be correctly reconstructed only with a probability given as
a parameter of the schema. This means that the distribution matrices must be
carefully selected in order to satisfy the above properties. For a probabilistic
scheme, as done in [22], it is possible to define the probabilities of (un)correctly
reconstructing a (black)white pixel, given a qualified set of participants Q.
With pi|j is denoted the probability of having a reconstructed pixel i, given
that the corresponding pixel in the secret image was j, where i, j ∈ {b, w}.
Then pw|w(Q), denotes the probability of correctly reconstructing a white
pixel when superimposing the shares of Q, and pb|w(Q) as the probability of
incorrectly reconstructing a white pixel. Notice that pw|w(Q) = z

|CW | where z
is the number of distribution matrices M in CW for which MQ reconstructs
a pixel with at most ` black subpixels and pb|w(Q) = z

|CW | where z is the
number of distribution matrices M in CW for which MQ reconstructs a pixel
with at least h black subpixels. In a similar way pb|b(Q) and pw|b(Q) can be
defined.

The quantities
pb|b(Q)− pb|w(Q)
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and
pw|w(Q)− pw|b(Q)

return then a measure of the goodness of the scheme for the given qualified set
Q. The bigger the above differences the better is the scheme. If both quantities
are equal to 1 for all qualified sets, then the scheme is again a deterministic
one, with no possible error in the reconstruction.

If there exists a positive constant β such that for any qualified set Q it
holds

pb|b(Q)− pb|w(Q) ≥ β

and
pw|w(Q)− pw|b(Q) ≥ β.

then the scheme is called β-probabilistic, meaning that β denotes the possible
error in the reconstruction. Notice that when every reconstructed pixel is
either white or black, that is, the reconstructed pixel has at most ` black
subpixels or at least h black subpixels, we have that for any Q,

pw|w(Q) = 1− pb|w(Q)

and that
pb|b(Q) = 1− pw|b(Q)

and thus,
pw|w(Q)− pw|b(Q) = pb|b(Q)− pb|w(Q).

The value ` and h are the thresholds that define the number of subpix-
els needed to correctly distinguish between a white and black pixel in the
reconstructed image. For some scheme, for some qualified set Q, it could be
possible to obtain a secret pixel with a number of black subpixels strictly
greater than ` and strictly less than h, where the reconstructed pixel is
neither white nor black. In this case the value pb|b(Q) − pb|w(Q) might be
different from pw|w(Q) − pw|b(Q). To avoid such kind of ambiguous situ-
ations, it is possible to fix the value ` = h − 1, so that the equation
pw|w(Q)− pw|b(Q) = pb|b(Q)− pb|w(Q) always holds.

Probabilistic schemes are then characterized by a further parameter: the
probabilistic factor β. In the following a probabilistic scheme will be described
by all these parameters (that is, β, k, n, `, h, and m) which are referred to as
the characteristic parameters of the scheme.

It is now possible to provide the formal definition of a β-probabilistic
threshold visual cryptography scheme with characteristic parameters
(k, n, `, h,m), for short β-probabilistic (k, n, `, h,m)-VCS. The definition nat-
urally extends also to general access structures.

Definition 2 A β-probabilistic (k, n, `, h,m)-VCS consists of two collections
of n×m binary matrices, CW and CB, satisfying the following properties:
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1. There exists β > 0, such that for any set Q of exact k partici-
pants pb|b(Q)− pb|w(Q) ≥ β and pw|w(Q)− pw|b(Q) ≥ β

2. For any set Q of strictly less than k participants, the sets CQW =
{MQ|M ∈ CW } and CQB = {MQ|M ∈ CB} are equal.

Notice that the definition of the scheme requires the reconstruction of
a secret pixel (Property 1) to be well defined for qualified sets of exact k
participants. This is without loss of generality because if a qualified set has
more than k participants one can simply choose k of the shares and use only
those k shares to reconstruct the image. Hence in the rest of the chapter a
qualified set is assumed to consist of exact k participants.

The goodness of a scheme is measured by the pixel expansion m, the
contrast γ = (h − `)/m and by the probabilistic factor β. Notice that for
m = 1 the above definition is equivalent to the one provided by Yang [22].
Whereas for a big enough m, it is possible to construct schemes with β = 1,
and in such a case the above definition is equivalent to the classical definition
of a visual cryptography scheme.

If the pixel expansion m is assumed to be a parameter of a scheme, then
on one extreme, when m = 1 one gets the probabilistic model with no pixel
expansion, and on the other extreme, when m is big enough, one obtains the
deterministic model. In between such two extremes it is possible to consider
probabilistic models with a given pixel expansion, trading the probability of
a good reconstruction with the number of subpixels required to reconstruct
each secret pixel.

5.3 Canonical Probabilistic Schemes

By restricting the attention on a particular class of probabilistic schemes, it is
possible to show that results valid for all the other schemes can be obtained,
without loss of generality. The trick is to prove that for a given scheme it is pos-
sible to define a similar scheme satisfying well-defined additional properties,
without modification on the parameters of the scheme. For this reason canon-
ical β-probabilistic (k, n, `, h,m)-VCS schemes are defined as those schemes
that satisfy the following properties:

1. The cardinality of the collections CW and CB are equal and

2. For any two qualified sets Q1 and Q2 of participants, we have that
px|y(Q1) = px|y(Q2), for x ∈ {w, b} and y ∈ {w, b}.

The first lemma says that given a probabilistic scheme S a new scheme S′

can be constructed such that the cardinality of CW (S′) is the same as that of
CB(S′) and such that S′ has the same characteristic parameters as S.
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The following lemma is similar to the analogous result proved in Section
2.1 of [1] for deterministic schemes.

Lemma 1 Given a β-probabilistic (k, n, `, h,m)-VCS S, there exists a β-
probabilistic (k, n, `, h,m)-VCS S′ such that |CW (S′)| = |CB(S′)|.

Proof Fix a β-probabilistic (k, n, `, h,m)-VCS S, let r1 = |CW (S)| and r2 =
|CB(S)| and assume that r1 6= r2 (otherwise we can choose S′ = S and we
are done). Let r = r1 · r2 and construct S′ by letting CW (S′) (resp. CB(S′))
consists of all the matrices of CW (S) (resp. CB(S)) each one repeated r2 (resp.
r1) times. It is obvious that |CW (S′)| = |CB(S′)| = r.

Since we have only repeated matrices of the collections C it is easy to see
that k, n, and m remain the same. Keeping the same ` and h also β stays the
same: indeed CW (S′) is obtained by replicating the same number of times each
matrix of CW (S) and thus the probabilities pw|w(Q) and pb|w(Q) do not change
for any Q and similarly for pw|b(Q) and pb|b(Q) since CB(S′) is obtained by
replicating the same number of times each matrix of CB(S).

The following lemma shows that schemes can be built where the number
of black subpixels in a reconstructed pixel does not depend on the particular
qualified set of participants chosen to reconstruct the secret pixel and the
characteristic parameters remain the same.

Lemma 2 Given a β-probabilistic (k, n, `, h,m)-VCS S, there exists a β-
probabilistic (k, n, `, h,m)-VCS S′ such that for any two qualified sets Q1 and
Q2 of participants, we have that px|y(Q1) = px|y(Q2), for x ∈ {w, b} and
y ∈ {w, b}.

Proof Fix a β-probabilistic (k, n, `, h,m)-VCS S. Consider first CW (S) and
assume that the desired property does not hold. Then we build a new scheme
S′ where CW (S′) is obtained from CW (S) in the following way: for each matrix
M of CW (S) insert into CW (S′) all the matrices that we can build from M by
permuting in all possible n! ways its rows. The collection CB(S′) is obtained
in the same way from CB(S).

Let Q1 and Q2 be two qualified sets. We have that CQ1
W (S′) = CQ2

W (S′);
indeed, by construction both sets contain, for any qualified set Q, all the ma-
trices in CQW (S), with the same multiplicity (the multiplicity is due to the fact
that when restricting the attention to the rows in Q, the other n − k rows
can be taken in any order). Hence, we have that pw|w(Q1) = pw|w(Q2), and
pb|w(Q1) = pb|w(Q2). For the same reason we have CQ1

B (S′) = CQ2
B (S′) and

thus pb|b(Q1) = pb|b(Q2), and pw|b(Q1) = pw|b(Q2).

By Lemmas 1 and 2, it follows that considering only canonical schemes is
without loss of generality, because for any scheme S an equivalent canonical
scheme S′ having the same characteristic parameters of scheme S can be
provided.
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In the following only canonical schemes will be considered, remembering
that for a canonical scheme px|y(Q1) = px|y(Q2), for x ∈ {w, b} and y ∈ {w, b}
and thus we will just write px|y, without specifying the qualified set.

5.4 Probabilistic Schemes with No Pixel Expansion

Probabilistic threshold schemes give the possibility to construct a VCS scheme
with no pixel expansion, that is having m = 1. In [22] it has been proved
that a deterministic scheme S with contrast γ(S) can be transformed into
a β-probabilistic scheme S′ with β(S′) = γ(S) and no pixel expansion. In
[11] a complementary result has been proven showing that there is a one-to-
one correspondence between the probabilistic model with no pixel expansion
and the deterministic one where the contrast is traded for the probabilistic
factor. Indeed a β-probabilistic scheme S with no pixel expansion can be
transformed into a deterministic scheme S′ with contrast γ(S′) = β(S). An
immediate consequence is that any bound on the contrast of a deterministic
scheme is also a bound on the probabilistic factor of probabilistic schemes
with no pixel expansion. In the following we report the lemma proving the
correspondence between probabilistic schemes with no pixel expansion and
deterministic schemes.

The following lemma has been proved in [22] and applies to VCS with
basis matrices.

Lemma 3 [22] Let S be a deterministic (k, n, `, h,m)-VCS with base matrices
MB and MW . Then, there exists a canonical β-probabilistic (k, n, `′, h′, 1)-VCS
scheme with β = γ(S).

Proof Let S be a deterministic (k, n, `, h,m)-VCS. Construct a probabilistic
scheme S′, by letting CB(S′) (resp. CW (S′)) consists of all the n × 1 vectors
that appear in the matrices MB (resp. MW ).

We need to prove that S′ is a β-probabilistic (k, n, `′, h′,m′)-VCS scheme
with `′ = `, h′ = h,m′ = 1 and β = γ(S) = (h− `)/m. Obviously S′ has pixel
expansion m′ = 1.

By the properties of S, we know that when the secret pixel is black the
reconstruction in S gives at least h black subpixels, that is pb|b ≥ h/m. Obvi-
ously this gives pw|b ≤ (m− h)/m. Similarly, we have pw|w ≥ (m− `)/m and
pb|w ≤ `/m.

Hence, in S′ we have that

pw|w − pw|b ≥
m− `
m

− m− h
m

=
h− `
m

and
pb|b − pb|w ≥

h

m
− `

m
=
h− `
m
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and thus we can set β = h−`
m . The security property is immediate.

Example 1 Consider as starting point the deterministic scheme (3, 4) having
basis matrices MW and MB reported below, whose parameters are m = 6,
h = 5, l = 4, α = 1/6:

MW =


0 0 1 1 1 0
0 0 1 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1

 MB =


1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0

 .
To illustrate the construction, consider the following 1

6 -probabilistic
(3, 4, 4, 5, 1)-VCS S.

CW =




0
0
0
0

 ,


0
0
0
0

 ,


1
1
1
0

 ,


1
1
0
1

 ,


1
0
1
1

 ,


0
1
1
1




CB =




1
1
1
1

 ,


1
1
1
1

 ,


0
0
0
1

 ,


0
0
1
0

 ,


0
1
0
0

 ,


1
0
0
0


 .

Let S be the (n, n, 0, 0, 1)-VCS obtained applying Lemma 3 to scheme SD.
For scheme S we have that pb|b = 5/6, pw|b = 1/6, pw|w = 1/3, pb|w = 2/3,β =
γ(S) = 1/6.

Lemma 3 shows how starting from a deterministic scheme with base ma-
trices it is possible to obtain a corresponding probabilistic scheme. A more
general version of the above lemma we report below has been given in [11]
showing the transformation from a general (also with no base matrices) de-
terministic scheme to a probabilistic one.

Lemma 4 Let S be a deterministic (k, n, `, h,m)-VCS. Then, there exists a
canonical β-probabilistic (k, n, 0, 1, 1)-VCS scheme with β = γ(S).

Proof Let S be a deterministic (k, n, `, h,m)-VCS. Construct a probabilistic
scheme S′, by letting CB(S′) (resp. CW (S′)) consists of all the n × 1 vectors
that appear in all the matrices of CB(S) (resp. CW (S)).

We need to prove that S′ is a β-probabilistic (k, n, `′, h′,m′)-VCS scheme
with `′ = 0, h′ = 1,m′ = 1 and β = γ(S) = (h− `)/m. Obviously S′ has pixel
expansion m′ = 1. We set `′ = 0 and h′ = 1 and we have to prove that this
results in a β-probabilistic scheme.

Let r = |CB(S)|. By the properties of S, we know that when the secret
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pixel is black the reconstruction in S gives at least h black subpixels, that each
matrix of CB(S) has at least h columns, which reconstruct black. Hence, in S′

we have at least r ·h columns that reconstruct black. Since |CB(S′)| = r ·m we
have that pb|b ≥ h/m. Obviously this gives pw|b ≤ (m − h)/m. Similarly, we
have pw|w ≥ (m− `)/m and pb|w ≤ `/m.

Hence, in S′ we have that pw|w − pw|b ≥ h−`
m and pb|b − pb|w ≥ h−`

m and
thus we can set β = h−`

m . The security property is immediate.

For a canonical scheme it is possible to define the characteristic vectors as:

cB = (c0B , c
1
B , . . . , c

m
B )

and
cW = (c0W , c

1
W , . . . , c

m
W )

where ciX is the number of matrices of CX that provide a reconstruction,
by any qualified set, of the secret pixel with exactly i black subpixels. The
characteristic vectors are well defined because, by Property 2 of canonical
schemes, each ciX does not depend on the particular qualified set chosen for
reconstructing the secret pixel.

The following lemma complements the results presented above, showing
how it is possible to transform a probabilistic (canonical) scheme into a de-
terministic scheme.

Lemma 5 Let S be a β-probabilistic canonical (k, n, 0, 1, 1)-VCS and let cB =
(c0B , c

1
B) and cW = (c0W , c

1
W ) be its characteristic vectors. Then, there exists

a deterministic (k, n, `′, h′,m′)-VCS S′ with `′ = c1W , h
′ = c1B, m′ = |CW (S)|

and contrast γ(S′) ≥ β(S).

Proof Let S be a β-probabilistic (k, n, 0, 1, 1)-VCS satisfying the hypothesis
of the lemma. Scheme S′ is constructed by letting its base matrix MB (resp.
MW ) consist of all the vectors of CB(S) (resp. CW (S)). Fix `′ = c1W and
h′ = c1B. We have to prove that S′ is a deterministic (k, n, `′, h′,m′)-VCS
with m′ = r, where r = |CW (S)| = |CB(S)|.

Both CB(S) and CW (S) contain r matrices of dimension n× 1; hence, the
dimension of both MB and MW is n× r; thus, m′ = r.

Since S is a β-probabilistic scheme, we have that pb|b−pb|w ≥ β > 0 hence,
pb|b > pb|w, and since pb|b = c1B/r and pb|w = c1W /r, we have c1B > c1W . Thus,
`′ < h′. Now we need prove that the scheme is deterministic. Scheme S′ is a
basis matrices scheme, so all the matrices of the collections CW (S′) and CB(S′)
are equal up to a permutation of the columns; moreover it is easy to see that a
reconstructed black pixel always has h′ black subpixels and that a reconstructed
white pixel always has `′ black subpixels. Hence, we have p′b|b = p′w|w = 1 and
p′w|b = p′b|w = 0. Hence, scheme S′ is deterministic.

Let us consider the security property. Fix a nonqualified set of participants
and consider the corresponding k′ < k rows of the basis matrices. Each of these
rows can be seen as the concatenation of shares of S (one per each matrix in
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the collections CB(S) and CW (S)). By the security property of S we have that
the k′ rows of MB are equal to the k′ rows of MW , except for a permutation
of the columns. Hence, S′ satisfies the security property.

Finally, the contrast of S′ is γ(S′) = h′−`′
m′ = c1B−c

1
W

r = pb|b− pb|w ≥ β(S).

As already said, the correspondence between deterministic schemes and
probabilistic schemes with no pixel expansion allows the reuse of bounds
found on the contrast as bounds on the corresponding probabilistic factor.
For example, in [14] it has been proved that the contrast of any deterministic
(2, n)-VCS is upper bounded by

γ ≤ γ∗ = 4−(k−1) nk

n(n− 1) · · · (n− (k − 1))
. (5.1)

As an immediate, the following lemma, which is a corollary of Lemma 5,
also holds:

Corollary 6 For any β-probabilistic (2, n, 0, 1, 1)-VCS we have that

β ≤ β∗ = 4−(k−1) nk

n(n− 1) · · · (n− (k − 1))
.

Proof Assume by contradiction that a probabilistic scheme with β > β∗

exists. By Lemma 5, we can construct a scheme with contrast γ ≥ β. Since
β > β∗ = γ∗ we get that γ > γ∗, contradicting Equation (5.1).

5.5 Trading Pixel Expansion with Probabilities

In the above section, the correspondence between deterministic and probabilis-
tic schemes has been stated in Lemma 3 and Lemma 5, showing a trade-off
between pixel expansion and probability factor. It shows that by using a large
enough pixel expansion we can transform a probabilistic scheme into a de-
terministic one. Indeed, on one extreme it is possible to have schemes with
no pixel expansion, where the reconstruction relies entirely on the probability
factor of the scheme. On the other extreme, it is possible to have deterministic
schemes, where the reconstruction is guaranteed but a certain pixel expansion
is required. In the next section we show how it is possible to stay in between
the two extremes, realizing schemes for which the probability factor is traded
for the pixel expansion.

5.5.1 Probabilistic Schemes with Given Pixel Expansion

Lemma 5 shows the basic technique for the construction of a deterministic
scheme with pixel expansion equal to the cardinality r of the collections CB
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and CW of the probabilistic scheme with no pixel expansion taken as a starting
point. Extending such a technique, it is possible to obtain schemes with arbi-
trary pixel expansion m′, with 1 < m′ ≤ r. The new collections of matrices
C′B and C′W for the resulting scheme is built by constructing in all possible
ways matrices with m′ columns from the vectors of the collections CB and
CW of the starting probabilistic scheme (in the particular case of m′ = r, the
resulting scheme is deterministic). We remark that Construction 1 does not
allow repetition of the same column. It is possible to build schemes by also
allowing repetitions of the columns; however, the resulting schemes have a
worst probabilistic factor. Notice that it is useless to construct probabilistic
schemes with m′ > r, since if m′ = r then a deterministic scheme can be
realized.

Construction 1 Let S be a canonical β-probabilistic (k, n, 0, 1, 1)-VCS. Fix
1 < m′ ≤ r, where r = |CB(S)| = |CW (S)|. Construct a scheme S′ whose
collection CB(S′) (resp. CW (S′)) consists of all the matrices of dimension n×
m′ that we can build by choosing m′ vectors of CB(S) (resp. CW (S)).

Notice that we also need to fix the contrast thresholds `′ and h′ of the new
scheme S′. There can be several valid choices.

To illustrate the construction, consider the following 1/3-probabilistic
(2, 3, 0, 1, 1)-VCS S.

CB =


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 CW =


 1

1
1

 ,
 0

0
0

 ,
 0

0
0

 .

For such a scheme, the parameters are pb|b = 2/3 and pb|w = 1/3.

If m′ = 2 is fixed, a 1
3 -probabilistic (2, 3, ·, ·, 2)-VCS is obtained by applying

Construction 1 to scheme S:

CB =


 1 0

0 1
0 0

 ,
 1 0

0 0
0 1

 ,
 0 0

1 0
0 1

 ,
 0 1

1 0
0 0

 ,
 0 1

0 0
1 0

 ,
 0 0

0 1
1 0


CW =


 1 0

1 0
1 0

 ,
 1 0

1 0
1 0

 ,
 0 0

0 0
0 0

 ,
 0 1

0 1
0 1

 ,
 0 1

0 1
0 1

 ,
 0 0

0 0
0 0

 .

The thresholds of S′ can be selected in different ways returning in every
case a 1

3 -probabilistic scheme. If values `′ = 0 and h′ = 1 are selected, the
resulting probabilities for the scheme S′ are p′b|b = 1 and p′b|w = 2/3. For
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`′ = 1 and h′ = 2, scheme S′ has p′b|b = 1/3 and p′b|w = 0. As already said,
here we are considering values satisfying the condition `′ = h′−1. Notice that
for the values the case `′ = 0 and h′ = 2, some reconstructed pixels cannot
be classified as either black or white. In such a scheme the probabilities of
correctly reconstructing secret pixels are smaller (since some of the matrices
are wasted with a reconstruction that is neither black nor white). We also
remark that one could try to eliminate distribution matrices for which the
reconstruction gives a number of black subpixels in the gap between `′ and
h′; however it is not clear whether this can be done without violating the
security property. In the particular case above, `′ = 0 and h′ = 2 is clearly
not possible (indeed we would have a perfect reconstruction of both white
and black). One could also extend the formal model to allow this possibility;
but then the contrast should be redefined in order to account for unclassified
reconstructed pixels.

The matrices MB and MW consisting of all the columns of CB and CW can
be used to represent the new scheme S′, since they give an efficient represen-
tation of the collections C′B and C′W ; clearly together with MB and MW , the
pixel expansion m′ and the thresholds `′ and h′ need to be specified.

Construction 1 starts from probabilistic schemes with no pixel expansion.
Using Lemma 3 or Lemma 4 a probabilistic scheme with no pixel expansion
can be obtained starting from a deterministic scheme. Hence, probabilistic
schemes with pixel expansion can be constructed by starting from a deter-
ministic scheme, applying first Lemma 3 and then Construction 1.

The probabilistic schemes obtained with Construction 1 satisfy the security
property. Indeed, consider a nonqualified set Q of participants and let CQW (S)
(resp. CQB (S)) be the vectors of CW (S) (resp. CB(S)) restricted to the rows
corresponding to participants in Q. By the security property of S, CQW (S) and
CQB (S) are the same collection of vectors. Since the way in which CW (S′) and
CB(S′) are constructed is the same (except that for the former we start from
CW (S) and for the latter from CB(S)), also CQW (S′) and CQB (S′) are the same
collection of matrices. Hence, the security property for S′ holds.

In this section, a formula for the probabilities of the scheme built with
Construction 1 as a function of the probabilities of the starting scheme is
provided. Let S be a canonical probabilistic scheme with no pixel expansion
and let pb|b, pb|w, pw|b and pw|w be the probabilities of S.

Fix an m′ and build a probabilistic scheme with pixel expansion m′ using
Construction 1. Fix also a threshold `′, 0 ≤ `′ < m′. Fixing `′ also gives
h′ = `′ + 1. Notice that, even with this restriction, not all choices of `′ will
result in valid schemes. Let r be the cardinality of the collections CW and CB
of S.

The cardinality of the collections C′W and C′B , of scheme S′, is r′ = r(r −
1) · . . . · (r −m′ + 1) because the first column can be selected in r ways, the
second in r − 1 ways, and so on until the last column for which r −m′ + 1
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choices are possible. It is easy to see that r′ = m′!
(
r
m′

)
. An explanation of

this expression is that the binomial coefficient gives the number of possible
ways of choosing m′ vectors among the r of the collections, and the factorial
coefficient accounts for all the possible permutations for each choice.

Fix a qualified set Q of participants. To compute p′b|b(Q), the number of

matrices of CQB (S) that yield a black reconstructed pixel is needed. Notice
that, for a qualified set, the number of matrices (vectors) CQB (S) that would
give the correct reconstruction of a black subpixel (i.e., a black pixel) is r ·pb|b,
while the remaining r − r · pb|b, would give a wrong reconstruction of a black
secret pixel (i.e., a white pixel). Recall that since S is canonical, pb|b does not
depend on Q. Hence, the number of matrices in CB(S′) that will have a certain
number z of black subpixels, is given by

m′!
(
r · pb|b
z

)(
r − r · pb|b
m′ − z

)
because z vectors can be selected from the r · pb|b vectors that yield a recon-
structed black subpixel, and m′− z vectors from the r− r ·pb|b ones that yield
a reconstructed white subpixel. Hence, z is constrained by 0 ≤ z ≤ r · pb|b and
0 ≤ m′ − z ≤ r − r · pb|b, which implies that binomial coefficients are defined.
(By definition

(
0
0

)
= 1 and that

(
a
b

)
= 0 when b > a.) Hence, the values for

the probabilities of the resulting scheme can be expressed as follows:

p′b|b(Q) =

∑m′

z=h′

(
r·pb|b
z

)(r−r·pb|b
m′−z

)(
r
m′

) (5.2)

and similarly

p′b|w(Q) =

∑m′

z=h′

(
r·pb|w
z

)(r−r·pb|w
m′−z

)(
r
m′

) (5.3)

p′w|w(Q) =

∑`′

z=0

(
r−r·pw|w

z

)(r·pw|w
m′−z

)(
r
m′

) (5.4)

p′w|b(Q) =

∑`′

z=0

(
r−r·pw|b

z

)(r·pw|b
m′−z

)(
r
m′

) . (5.5)

Since from Equations 5.2–5.5, probabilities of S′ do not depend on the
particular qualified set Q, it is possible to conclude that S′ is canonical.
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5.6 Constructing Probabilistic Schemes

The construction previously described can be applied for the construction of
novel probabilistic schemes. The starting point however is the selection of a
particular deterministic scheme that determines the parameters of the result-
ing scheme. Obviously, by changing the selected scheme, different probabilistic
schemes are obtained. In the next sections we will describe some probabilistic
schemes for the (n, n) and the (2, n) cases starting from two selected de-
terministic schemes. In the first case a simple formula for the probabilistic
factor can be obtained, relating β to the pixel expansion of the resulting
scheme, while in the second case, the computation of the parameters results
is more complicated and depends on the selected pixel expansion of the new
scheme.

5.6.1 (n, n)-Threshold Probabilistic Schemes with Any Pixel
Expansion

In this section a (n, n)-threshold probabilistic schemes with any pixel expan-
sion is built, for n ≥ 2 starting from deterministic scheme SD, which is the
(n, n)-threshold deterministic scheme of Naor and Shamir [16]. SD has pixel
expansion m = 2n−1, and thresholds ` = m − 1 and h = m. Moreover, the
scheme consists of a white base matrix containing all vectors with an even
(including 0) number of black subpixels and a black base matrix containing
all vectors with an odd number of black subpixels. For example, for n = 4 the
scheme SD is given by:

MW =


0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 MB =


0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 1 0 0 1 0 1 1
1 0 0 0 0 1 1 1

 .
Let S be the (n, n, 0, 0, 1)-VCS obtained applying Lemma 3 to scheme SD.

For scheme S we have that the cardinality of the collections CB and CW is
r = 2n−1, and that pb|b = 1, pw|b = 0, pw|w = 1/2n−1, pb|w = 1− 1/2n−1.

CB =




0
0
0
0

 ,


1
1
0
0

 ,


1
0
1
0

 ,


1
0
0
1

 ,


0
1
1
0

 ,


0
1
0
1

 ,


0
0
1
1

 ,


1
1
1
1
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CW =




0
0
0
1

 ,


0
0
1
0

 ,


0
1
0
0

 ,


1
0
0
0

 ,


1
1
1
0

 ,


1
1
0
1

 ,


1
0
1
1

 ,


0
1
1
1


 .

Fix an m′, 2 ≤ m′ ≤ r, and let S′ be the probabilistic scheme with pixel
expansion m′ obtained using Construction 1 from scheme S. The threshold `′

for S′ also needs to be selected, remembering also that the threshold h′ will
be obtained if the assumption h′ = `′ + 1 is satisfied. Observe that `′ must
be m′ − 1 because there is only one column with all white pixels and thus it
would be never possible to get more than 1 white subpixel in a reconstructed
pixel (equivalently always at least m′ − 1 black subpixels in a reconstructed
pixel will be obtained). This implies that if by selecting `′ < m′ − 1 all recon-
structed pixels will always be considered black and thus no valid scheme can
be obtained. To construct schemes, values `′ = m′ − 1 and h′ = m′ must be
selected.

To compute the probabilistic factor of scheme S′ it is necessary to compute
p′b|b and p′b|w. All the columns of the black base matrix MB of the deterministic
scheme SD have at least a 1; hence, all columns of CB(S′) have at least a 1.
Thus, m′ black subpixels when reconstructing a black secret pixel are always
returned. This means that p′b|b = 1 and p′w|b = 0. To compute p′b|w consider the
white base matrix MW of scheme SD, which determines CW (S′). Since MW

has one column with all 0s there will be some matrices of CW (S′) that include
such a column. In order for a reconstructed pixel to be considered black it
must have h′ = m′ black subpixels. Among the

(
r
m′

)
possible distribution

matrices of CW (S′), exactly
(
r−1
m′

)
do not include the unique column with all

0s. Hence,

p′b|w =
(
r − 1
m′

)
/

(
r

m′

)
= 1−m′/r

and
p′w|w = m′/r

The formula expressing the probability factor of S′ is then the following:

β =
m′

2n−1
.

The formula shows that there is a linear relation between the pixel expan-
sion of the scheme and the probability factor. A probabilistic scheme with no
pixel expansion implies a small probability factor (β = 1/r) and then a recon-
structed image with many errors; the probability factor of the scheme can be
increased by increasing the pixel expansion to obtain a better reconstructed
image. Clearly for m′ = 2n−1 one would get β = 1, that is, a deterministic
scheme.
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5.6.2 (2, n)-Threshold Probabilistic Schemes with Any Pixel
Expansion

In this section a (2, n)-threshold probabilistic scheme with pixel expansion,
for n ≥ 3 is provided, starting from the (2, n)-threshold deterministic scheme
SD described in [7]. Recall that SD has pixel expansion m =

(
n
bn

2 c
)
, and

thresholds ` =
(
n−1
bn

2 c−1

)
and h =

(
n
bn

2 c
)
−
(
n−2
bn

2 c
)
. The scheme has a white base

matrix consisting of ` columns of all 1s and m− ` columns with all 0s, and a
black base matrix consisting of all binary vectors with exactly bn/2c elements
equal to 1.

For example, for n = 4, scheme SD has m = 6, ` = 3, and h = 5 and is
given by:

MW =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 MB =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 .
Let S be the (2, n, 0, 0, 1)-VCS obtained applying Lemma 3 to scheme SD.

Scheme S is a canonical scheme, and the cardinality of the collections CB and
CW is r = m. The values of the probabilities are pb|b = h/m, pw|b = 1− h/m,
pb|w = `/m, pw|w = 1 − `/m. Since S is canonical the scheme S′ obtained
with Construction 1 is canonical. The value of the pixel expansion m′ can be
arbitrarily fixed between 1 and r.

Consider the case of m′ = 2. For such a value of m′ there are only two
possible choices for the thresholds: `′ = 0, h′ = 1 or `′ = 1, h′ = 2. It is easy
to see from the structure of MW and MB that the following two properties
hold:

• PW: For any set Q of two participants, the matrix MQ
W consists of ` columns

of 2 ones and m− ` columns of 2 zeroes.

• PB: For any set Q of two participants, the matrix MQ
B consists of s =

(
n−2
bn

2 c
)

columns of 2 zeroes and m − s columns with at least a 1 (this is because
for a qualified set Q of 2 participants matrix MQ

B reconstructs a pixel with
exactly h black subpixels, hence the remaining m− h = s are white).

Let us now determine the parameters of the resulting scheme in the two con-
sidered cases.

Case `′ = 0, h′ = 1.

To compute p′b|b, consider that in this case a reconstructed pixel is black if
at least one subpixel is black (and white otherwise). If a qualified set Q is
fixed, by property PB, it is easy to see that the matrices of the collection
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CQB (S′) that consists of all zeroes are exactly s(s − 1). Thus, p′w|b = s(s−1)
m(m−1)

and consequently p′b|b = 1− s(s−1)
m(m−1) .

To compute p′b|w, consider a qualified set Q. By property PW, the matrices

of the collection CQW (S′) that consists of all zeroes are exactly (m−`)(m−`−1).
Hence, p′w|w = (m−`)(m−`−1)

m(m−1) , which gives p′b|w = 1− (m−`)(m−`−1)
m(m−1) .

Hence, for the (2, n)-threshold scheme obtained by choosing `′ = 0 the
probabilistic factor is:

β0 =
(m− `)(m− `− 1)− s(s− 1)

m(m− 1)
.

Case `′ = 1, h′ = 2.

To compute p′b|b, consider that in this case a reconstructed pixel is black if
both subpixels are black (and white otherwise). If a qualified set Q is fixed,
by property PB, the matrices of the collection CQB (S′) that have at least a 1
in each column are exactly (m− s)(m− s− 1). Thus, p′b|b = (m−s)(m−s−1)

m(m−1) .
To compute p′b|w, fix any qualified set Q and consider that by property PW,

the matrices of the collection CQB (S′) that have at least a 1 in each column are
exactly `(`− 1). Thus, p′b|w = `(`−1)

m(m−1) .
Hence, for the (2, n)-threshold scheme obtained by choosing `′ = 1 the

probabilistic factor is:

β1 =
(m− s)(m− s− 1)− `(`− 1)

m(m− 1)
.

Compare now the value of β for the above two cases trying to figure out
whether one case is better than the other, i.e., the probabilistic factor is big-
ger and a better quality image is reconstructed. It is possible to express the
difference β1 − β0 as

β1 − β0 =
ψm(s)− ψm(`)
m(m− 1)

where ψm(x) = (m−x)(m−x−1)+x(x−1). The first and second derivatives
of ψ with respect to x are ∂ψm

∂x = 4x− 2m and ∂2ψm

∂x2 = 4, respectively. Hence,
function ψm(x) is a convex ∪ function of x, with a minimum at x = m/2. A
simple algebra shows that, for n even, s = m

4 ·
n−2
n−1 and ` = m

2 and that for
n odd, s = m

4 ·
n+1
n and ` = m

2 ·
n−1
n . Since in both cases s < ` ≤ m/2, it is

possible to conclude that ψm(s) > ψm(`) and then β1 > β0. A simple analysis
shows that the limit of β1 as n approaches infinity is 5/16 ' 0.31, while the
limit of β0 as n approaches infinity is 3/16 ' 0.18.

In the case of any m′ Equations (5.2)–(5.5) can be used to compute the
probabilities of probabilistic schemes, over all choices of `′ and h′. Table 5.1
gives the resulting values of the probabilistic factor β of S′ over all possible
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choices of `′ and m′, for the case of n. Since for n = 3 scheme SD has m = 3
clearly for m′ = 3 we get a deterministic scheme; such a scheme is obtained
for `′ = 1, h′ = 2. It is worth to notice that for other choices of `′ the
probabilistic factor of the scheme is 0 meaning that no probabilistic scheme
with pixel expansion m′ = 3 can be constructed with Construction 1. For the
case of m′ = 2 `′ = 1 and `′ = 2 are valid choices and they both yield a
1
3 -probabilistic scheme.

TABLE 5.1
Values of β for scheme S′ for
n = 3. The max over each
row is in boldface.
m′\`′, h′ 0,1 1,2 2,3

1 1/3 – –
2 1/3 1/3 –
3 0 1 0

TABLE 5.2
Values of β for n = 4. The max over each row is in
boldface.
m′\`′, h′ 0,1 1,2 2,3 3,4 4,5 5,6

1 1/3 −− – – – –
0.333

2 1/5 7/15 – – – –
0.200 0.467

3 1/20 1/2 9/20 – – –
0.050 0.500 0.450

4 0 1/5 4/5 1/3 – –
0.050 0.800 0.333

5 0 0 1/2 1 1/6 –
0.500 0.167

6 0 0 0 1 1 0

Table 5.2 gives the resulting values of the probabilistic factor β of S′ over all
possible choices of `′ andm′, for the case of n = 4. Notice that for n = 4 scheme
SD has m = 6, hence, for m′ = 6 deterministic schemes can be obtained (in
this case both `′ = 3 and `′ = 4 yield a deterministic scheme). As reported in
the table, also for m′ = 5 a deterministic scheme can be obtained by choosing
`′ = 3. For the other possible choices of m′, the table shows in boldface the
biggest probabilistic factor β found.

Finally, Table 5.3 gives the resulting values of the probabilistic factor β
of S′ over all possible choices of `′ and m′, for the case of n = 5. For n = 5
scheme SD has m = 10, hence, m′ can range from 2 to 10. As reported in
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TABLE 5.3
Values of β for n = 5. The max over each row is in boldface and ε1 and ε2
denote very small values.

m′\`′, h′ 0,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9 9,10
1 3/10 – – – – – – – – –
2 4/15 1/3 – – – – – – – –
3 19/120 29/60 31/120 – – – – – – –
4 1/14 44/105 23/42 17/105 – – – – – –
5 1/42 11/42 55/84 10/21 1/12 – – – – –
6 ε1 5/42 23/42 16/21 1/3 1/30 – – – –
7 0 1/30 1/3 5/6 17/24 11/60 ε2 – – –
8 0 0 2/15 2/3 1 8/15 1/15 0 – –
9 0 0 0 2/5 1 1 3/10 0 0 –
10 0 0 0 0 1 1 1 0 0 0

the table, a deterministic schemes is obtained from m′ = 8 (in such a case,
by choosing `′ = 4). Again the best probabilistic factor found is reported in
boldface.

5.7 Probabilistic Schemes with Boolean Operations

One of the peculiar characteristics of VCS is the fact that the reconstruction
of the secret image is done via the human visual system. This means that
representing a black pixel as ‘1’ and the white pixel as ‘0,’ the reconstruction
is performed via an ”OR” operation of the superposed pixels contained in
the shares. Relaxing such an assumption, it is possible to obtain different
classes of VCS where the secret pixel is reconstructed after performing different
boolean operations on the subpixels contained in the shares. For example
XOR-based VCS have been proposed in [17]. As regards probabilistic VCS,
several proposals have been done [20, 18, 8], where the basic operation for the
reconstruction is no more based on the OR of the shared subpixels, and both
the distribution and the reconstruction phases are consequently modified.

5.7.1 (2,n) Scheme for Binary Images (Wang)

In [20], Wang et al. proposed a probabilistic (2, n)-VCS based on binary XOR
and AND operations, denoted with ⊕ and &, respectively. The construction
is given in Figure 5.3.
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Let A be the binary matrix representing the secret image.

Distribution phase.
The dealer:

• generates n+1 random matrices B1, . . . , Bn+1 ; compute intermediate
matrices C1, . . . , Cn where Ci = Bi&A, for i = 1, . . . , n;

• distributes the n shares A1, . . . , An where AI = Bn+1 ⊕ Ci for i =
1, . . . , n .

Reconstruction phase. A qualified set {ij , ik} of two participants
reconstructs the secret image as follows:

• superimpose their shares executing binary XOR operation to obtain
A′ = Aj ⊕Ak.

FIGURE 5.1
A construction for (2,n) Boolean probabilistic VCS.

In Wang’s scheme, a reverse coding of the pixel is adopted, assigning ‘0’
to black pixel and ‘1’ to white pixels. In this scheme it is easy to see that
a black pixel in the secret image will be always mapped to a black pixel in
each of the computed shares Ai because of the AND operation performed in
the computation of the Cj (for a ‘0’ pixel, Cj = Bj&0 = 0) and the XOR
operation in the reconstruction phase (the contribution for Cj = 0 means that
Aj = Bn+1 ⊕ Cj = Bn+1 and then A′ = Aj ⊕ Ak = Bn+1 ⊕ Bn+1 = 0). The
probabilities of reconstructing a black pixel are then pb|b = 1 and pw|b = 0.
A white pixel will be reconstructed on the basis of the result of the XOR
operation performed on the two matrices Bi and Bk, which are randomly
selected. Then pw|w = pb|w = 1/2. Hence, the construction returns a β = 1/2
probabilistic scheme with contrast 1/2.

The above presented scheme has been modified by Ulutas et al. in [18] and
Chang et al. in [8]. In the first work the construction is modified by adding a
mechanism to augment the probability of selecting a white (black) pixel given
that a white (black) pixel was present in the secret image. Basically, matrices
Bi are no more randomly generated as in Wang’s scheme, but are selected in
two different sets, one for white pixels and the other for black pixels, in order
to maximize the probability of reconstructing a pixel of the right color. Then
a random matrix R of the same size of the secret image is generated and used
to compute the share. The reconstruction phase is not modified. The modified
scheme is given in Figure 5.2.

In Chang et al’s construction, a voting strategy is adopted to apply the
Wang method to grayscale images [8]. In such a method, for each original
pixel, the binary representation of its grayscale value is considered, and for
each bit composing the representation, the Wang scheme is executed and
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repeated 2m + 1 times in the generation phase. In the reconstruction phase,
the voting method is used to recover the best result out of the shared bits in
order to restore the original grayscale value of the pixel.

Let A be the binary matrix representing the secret image.

Distribution phase.
The dealer:

• generates a white image (D) and n shares B1, . . . , Bn with D as secret
image; compute intermediate matrices C1, . . . , Cn where Ci = Bi&A,
for i = 1, . . . , n;

• generates a random matrix R;

• distributes the n shares A1, . . . , An where AI = R⊕Ci for i = 1, . . . , n
.

FIGURE 5.2
Ulutas et al. [18] construction for (2,n) Boolean probabilistic VCS.

5.7.2 (n,n) Scheme for Binary Images (Wang)

A construction similar to the one above described, was proposed by Wang also
for a (n,n) probabilistic VCS. The construction is given in Figure 9.6

Let A be the binary matrix representing the secret image.

Distribution phase.
The dealer:

• generates n− 1 random matrices B1, . . . , Bn−1;

• distributes the n shares A1, . . . , An where A1 = B1, Ai = Bi−1 ⊕Bi,
and An = Bn−1 ⊕A.

Reconstruction phase. The n participants reconstruct the secret im-
age as follows:

• superimpose their shares executing binary XOR operation to obtain
A′ = A1 ⊕A2 · · · ⊕An.

FIGURE 5.3
A construction for (n, n) Boolean probabilistic VCS.

In such a scheme it is easy to see that a black pixel in the secret image
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will be always mapped to a black pixel in each of the computed shares Ai
because of the and operation performed in the computation of the Cj (for a
’0’ pixel, Cj = Bj & 0 = 0) and the XOR operation in the reconstruction
phase (the contribution for Cj = 0 means that Aj = Bn+1 ⊕ Cj = Bn+1

and then A′ = Aj ⊕ Ak = Bn+1 ⊕ Bn+1 = 0. Then pb|b = 1 and pw|b = 0.
A white pixel will be reconstructed according to the pixel returned after the
XOR between the two matrices Bi and Bk, which are randomly selected. Then
pw|w = pb|w = 1/2. Hence, the construction returns a β = 1/2 probabilistic
scheme with contrast 1/2.

The same construction has been extended by Wang et al. in [21] to deal
with grayscale images. Basically each pixel is coded with a binary string g−1
bits long, where g denotes the gray level number, and having a number of ”1”s
equivalent to the 1s present in the binary string obtained by the grey level g
(without respecting the order). A pixel having grey level k in a range from 0
to g− 1, is represented by a binary string having g−k ’0’s and k− 1 ’1’s. The
construction returns a probabilistic scheme with m = g − 1.

5.8 Conclusions and Open Problems

The probabilistic model for VCS schemes has been first described in Yang [22],
where the reconstruction of the secret pixel has been given in probabilistic
terms, no more guaranteeing the correctness property of the traditional VCS
schemes. A generalization of the model has been given then in [11], where
probabilistic schemes with pixel expansion have been described, showing that
there is a one-to-one correspondence between probabilistic schemes with no
pixel expansion and deterministic schemes and that such a one-to-one map-
ping trades the probabilistic nature of the scheme with the contrast of the
deterministic scheme. Probabilistic schemes with pixel expansion can be ob-
tained from deterministic schemes and their probabilistic factors can be stud-
ied. While for (n, n)-threshold schemes it has been proved that there is a
linear relation between the pixel expansion and the probabilistic factor, for
(2, n)-threshold schemes no closed expression for the probabilistic factor has
been found. Finally, a probabilistic model has been extended and alternative
operations (instead of OR) have been considered for the distribution of the
shares and the reconstruction of the secret images.
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6.1 Introduction

A (k, n) visual cryptography (VC) scheme [16] is a type of secret sharing
scheme with the special property that a secret image can be recovered visually
by the human eye and does not require any calculation on a computer. How-
ever, the recovered secret image has low quality. In this case, some researchers
attempt to consider other different approaches to improve the quality (con-
trast) of the recovered image.

Lee et al. [12] presented a VC scheme using an XOR process to share a bi-
nary image. Since phase masks were placed on any path of the Mach-Zehnder
interferometer for reconstruction, the method is impractical and expensive
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[17]. Biham and Itzkovitz [2] investigated a VC system based on passive light
polarization. This is more flexible than the Naor and Shamir schemes but
cannot be modeled by an XOR [17]. Tuyls et al. [17, 18] gave a VC system
that uses the polarization of light. The operation of the VC system is mathe-
matically described by an XOR operation. In Section 6.3, we will show that a
(n, n)-VC scheme with optimal resolution and contrast exist, and that (2, n)-
VC schemes are equivalent to binary codes. Three explicit constructions for
general k out of n schemes are also introduced [17, 13].

Viet and Kurosawa [21] noticed the phenomenon that most copy machines
nowadays can change a black image into a white one and vice versa, then
first gave a VC scheme with reversing for binary image. In the VC scheme
with reversing, a dealer needs run the distribution phase of a VC scheme c
times (with c arbitrary constant), hence requiring each participant to held
c shadows. The almost ideal contrast of a recovered secret image is almost
obtained for a large number of runs c. Cimato et al. [7] presented two ele-
gant construction methods to improve the contrast and pixel expansion of
the scheme in Reference [21]. In order to reduce run times of two schemes
[21, 7], Yang et al. [25, 26] overcame the weakness of reversing only a based
perfect VC scheme and first introduced a nonperfect black VC scheme, this
approach uses a Boolean XOR operation for decoding. Reducing the stacking
and reversing operations and minimizing number held by each participant,
Hu and Tzeng [10] proposed an ideal contrast VC scheme with less reversing
and stacking operations in only two runs. The scheme needs to perform XOR
operations to decode the secret image. In section 6.4, we will introduce Yang
et al.’s scheme and Hu and Tzeng’s [25, 26] scheme with ideal contrast.

The construction of the above schemes is all based on basis matrices, so
they may suffer pixel expansion and loss of contrast. Probabilistic VC schemes
are proposed in [11, 24, 6] with no pixel expansion. However, the recovered
secret image has low contrast. Wang et al. [23] proposed two secret sharing
schemes based on a Boolean operation and the recovering operation is XOR.
One scheme is (2, n) for the binary image, and the other is (n, n) for the
grayscale image. Both have no pixel expansion. Chao and Lin [5] improved
Wang et al.’s [23] scheme in order to obtain a (k, n) scheme, which is fast and
with a reasonable pixel expansion rate. In section 6.5, we introduce the (2, n),
(n, n), and (k, n) schemes.

6.2 Preliminaries

In a black and white (k, n)-visual cryptography (VC) scheme [16], the secret
image consists of a collection of black and white pixels and each pixel is
subdivided into a collection of m black and white subpixels in each of the n
shares. These subpixels are printed in close proximity to each other so that the
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human visual system averages their individual black and white contributions.
The collection of subpixels can be represented by an n ×m Boolean matrix
S = [sij ], where the element sij represents the j-th subpixel in the i-th share.
A white subpixel is represented as a 0, and a black subpixel is represented
as a 1. The white subpixels are let through the light while black subpixels
stop it. sij = 1 if and only if the j-th subpixel in the i-th share is black.
The gray level of the combined share obtained by stacking shares i1, · · · , iγ
is proportional to the Hamming weight (the number of 1’s in the vector V )
H(V ) of the OR-ed (”OR” operation) m-vector V = OR(i1, · · · , iγ). Based
on the definition of Naor and Shamir [16], Verheul and van Tilborg [20] gave
a more general definition. Following the notation from [16, 20], a definition
of k out of n XOR-based visual cryptography scheme is given by Tuyls in
Reference [17]. A (k, n) VC scheme S = (C0, C1) consists of two collections of
n×m binary matrices C0 and C1. To share a white (black) pixel, the dealer
randomly chooses one of the matrices in C0(C1) and distributes its rows as
shares among the n participants of the system. The following is the definition.

Definition 1 [20] Let k, n, n, m, l be positive integers satisfying 1 ≤ k ≤ n
and m ≥ h ≥ l. Let Z(v) be the number of 0’s in the vector v. A [(k, n);m,h, l]
visual cryptography (VC) scheme consists of two collections of n×m Boolean
matrices C0 and C1 such that:

1. For any s ∈ C0, the XOR v of any k of the n rows of s satisfies
Z(v) ≥ h.

2. For any s ∈ C1, the XOR v of any k of the n rows of s satisfies
Z(v) ≤ l.

3. For any i1 < i2 < · · · < it in {1, 2, · · · , n} with t < k the two col-
lections of t×m matrices Dj for j ∈ {0, 1}, obtained by restricting
each n × m matrix in Cj, to rows i1, i2, · · · , it are indistinguish-
able in the sense that they contain the same matrices with the same
frequencies.

The number h and l are called the white level and black level, respectively,
of the scheme. The parameter m is called the block length or pixel expansion
and determines the resolution of the scheme. The contrast α is defined as
α = (h−l)

h+l . Note that α ∈ [0, 1] and α is maximal when l = 0. A scheme
with l = 0 are called maximal contrast schemes. When α = 1, the contrast is
defined as an ideal contrast.

The following symmetry property follows very easily and is therefore stated
without proof.

Proposition 1 [17] Let S = (C0, C1) be a [(k, n);m,h, l] VC scheme. Let
Ĉi be obtained from Ci by replacing zeroes by ones and vice versa. If k is
even, then the scheme (Ĉ0, Ĉ1) is a [(k, n);m,h, l] scheme as well. If k is odd,
then (Ĉ0, Ĉ1) is a [(k, n);m,m − l,m − h] scheme with contrast α given by
α̂ = (h− l)/(2m− l − h). It follows that α̂ > α whenever l + h > m.
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6.3 Visual Cryptography Scheme Using the Polarization
of Light

In this section, we will introduce XOR-based visual cryptography scheme.
They are constructed using basis matrices and the secret image is recovered
by an XOR certain number of shares. We will show how to construct (2, n),
(n, n), and (k, n) XOR-based visual cryptography schemes as follows.

6.3.1 (2, n) Scheme

In this section, we show how to construct a (2, n) XOR-based visual cryp-
tography scheme. The (2, n) scheme is equivalent to binary error-correcting
codes. By a (m,n, d) code, that is, a binary code of length m consists of n
words and a minimum Hamming distance of at least d.

Theorem 1 [17] Let m, l and h be positive integers such that l < h ≤ m.
The three following statements are equivalent.

(i) A [(2, n);m,m, l] VC scheme exists.
(ii) A [(2, n);m,h, l] VC scheme exists.

(iii) A binary (m,n,m− l) code exists.

Proof: It is clear that (i) implies (ii).
In order to show that (ii) implies (iii), let S = (C0, C1) be a [(2, n);m,h, l]

VC scheme. Take a matrix A1 ∈ C1 and let C consist of the rows from A1. As
S is a [(2, n);m,h, l] VC scheme, the Hamming distance between two words
from C is at least m− l. Consequently, C is a (m,n,m− l) code. Finally, to
show (iii) implies (i), let C be a binary (m,n,m− l) code. For c ∈ C, let A(c)
denote the n×m matrix for which each row equals c. Moreover, let B be an
n×m matrix containing each word from C as a row, and for 0 ≤ i ≤ n−1, let
B(i) be the matrix obtained by a cyclic shift of the rows of B over i positions.
We claim that (C0, C1) = ({A(c)|c ∈ C}, {B(0), B(1), · · · , B(n − 1)}) is a
[(2, n);m,m, l] scheme. It is clear that both collections contain n matrices,
and that in each row, each word from C occurs in one matrix from C0 and
in one matrix from C1, showing the indistinguishability. The sum of any two
rows from a matrix in C0 equals 0. Finally, the Hamming distance between
any two rows of a matrix from C1 is at least m− l, showing that the XOR of
these two rows contains at most m− (m− l) = l zeros. �

An example is given as follows.

Example 1 Let C be a binary (3, 3, 2) code containing words 100, 010 and
001. Construct C0 and C1 as follows:

C0 =


1 0 0

1 0 0
1 0 0

 ,
0 1 0

0 1 0
0 1 0

 ,
0 0 1

0 0 1
0 0 1

 ,
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C1 =


1 0 0

0 1 0
0 0 1

 ,
0 1 0

0 0 1
1 0 0

 ,
0 0 1

1 0 0
0 1 0

 .

(C0, C1) is a [(2, 3); 3, 3, 1] scheme. The contrast α = (h−l)
h+l = 2

4 = 1
2 .

6.3.2 (n, n) Scheme

In this section, we show how to construct a (n, n) XOR-based visual cryptog-
raphy scheme.

Proposition 2 [17] Let C0 and C1 be the set of all binary vectors of length n
with even, odd number of ones, respectively. Then (C0, C1) is an [(n, n); 1, 1, 0]
scheme.

An example is given as follows.

Example 2 Let C0 and C1 be

C0 =


0

0
0

 ,
1

1
0

 ,
1

0
1

 ,
0

1
1

 , C1 =


1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
1

1
1


(C0, C1) is a [(3, 3); 1, 1, 0] scheme with contrast α = (h−l)

h+l = 1.

6.3.3 (k, n) Scheme

In this section we will introduce three (k, n) XOR-based visual cryptography
schemes. Construction 1 and Construction 2 are given by Tuyls (see more
detail in Reference [17]). Construction 3 comes from Droste’s OR-based visual
cryptography [9] and Liu et al. [13] shows that it is also a (k, n) XOR-based
visual cryptography scheme.

Before introducing Construction 1 and Construction 2, some definitions
and theorems will be given, which are used in both constructions.

For describing the constructions, we use the following notation. If A is a
binary matrix, then P (A) is the multi set of matrices obtained by permuting
the columns of A. Moreover, we use the concept of (k, n) pairs, defined as
follows.

Definition 2 [17]A pair (A,B) of binary n × m matrices is called a (k, n)
pair if there exist numbers a1, · · · , ak and b1, · · · , bk such that

1. For each i with 1 ≤ i ≤ k, the weight of the sum of any i rows from
A equals ai and the weight of the sum of any i rows from B equals
bi, and

2. ai = bi for 1 ≤ i < k, and ak 6= bk.
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The importance of this definition stems from the following theorem.

Theorem 2 [17] If (A,B) is a (k, n)-pair of n × m matrices, then
(P (A), P (B)) is a [(k, n);m,h, l] VC scheme with h = max(m − ak,m − bk)
and l = min(m − ak,m − bk). Here, ak and bk denote the weight of the sum
of any k rows from A and B, respectively.

Some notations are given here for later use. For a binary vector v of length
m, we define Z(v) as the number of zeros in v, and H(v) as its number of ones.
Moreover, we define the unbalance δ(v) of v by δ(v) = Z(v) − H(v). Note

that δ(v) = m− 2H(v). For later use, we also observe that δ(v) =
m∑
j=1

(−1)vj .

With each binary n×m matrices A we associate two vectors δ(A) and N(A)
of length 2n, with the components indexed by binary vectors of length n.
For each binary vector x of length n, the x-th component δx(A) of δ(A) is
defined as δx(A) = δ(xTA), the unbalance of the sum of the rows in A whose
index i satisfies xi = 1; also, the x-th component Nx(A) of N(A) is defined
as the number of columns of A that are equal to x. Lemma 1 will show that
the vectors δ(A) and N(A) can be computed from each other. To make this
precise, define the 2n × 2n matrix H by H(x,y) = (−1)(x,y), where x, y are

binary vectors of length n and (x,y) =
n∑
i=1

xiyi denotes the inner product of

x and y. Then we have the following lemma:

Lemma 1 [17]

1. The matrix H is a Hadamard matrix, that is, HHT = 2nI.

2. The vectors δ(A) and N(A) are related by δ(A) = HN(A).

We are now in the position to prove a generalization of Theorem 2. Before
stating it, we need one more notation: if A is a n × m matrix, then w(AI)
denotes the weight of the sum of the rows of A indexed by I. Note that
w(AI) = 1

2 (m− δχ(I)(A)), where χ(I) is the characteristic vector of the set I.

Theorem 3 [17] Let A and B be n × m matrices such that for each I ⊂
{1, 2, · · · , n} of size at most k − 1, w(AI) = w(BI). Assume moreover that
there exist integers h and l such that h > l and that for each I ⊂ {1, 2, · · · , n}
of size k, m − w(AI) ≥ h and m − w(BI) ≤ l. Then (P (A), P (B)) is a
[(k, n);m,h, l] VC scheme.

Proof The only nontrivial thing we have to prove is the indistinguishability.
Let I = {i1, · · · , it} be a subset of {1, 2, · · · , n} of size t < k. Let A and
B denote the restrictions of A and B to the t rows indexed by I. Let x =
{x1, · · · , xt} be a binary vector of length t, and let x̃ be the binary vector of
length n for which entry ij is equal to xj for j = 1, 2, · · · , t, and whose other
entries equal zero. It is clear that δx(A) = δx̃(A). As x̃ has weight at most t,
we find, using properties of A and B, that δx(A) = δx(B).
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Hence, by Lemma 1, the number of columns Ny(A) in A and the number of
columns Ny(B) in B of type y = {y0, · · · , yt−1} are equal for all binary vectors
y of length t. As a consequence, the matrices A and B are equal up to a col-
umn permutation, which readily implies indistinguishability in the rows under
consideration in the multisets P (A) and P (B). �

Construction 1
Now an explicit construction of (k, n) VC schemes for all n and all k

with 1 ≤ k ≤ n will be given below. According to Theorem 3, it is sufficient
to construct (k, n)-pairs for all such n and k. We will obtain such pairs by
concatenation of matrices from a fixed collection of building blocks.

For each n and w with 0 ≤ w ≤ n, we let the n×
(
n
w

)
-matrix Cw consist

of all the
(
n
w

)
different 0− 1 column vectors of weight w, in any order.

In the sequel, we will need an explicit expression for the weight of the sum
of any j rows from Cw. In Lemma 2, we state the result. Here and in what

follows, we will use the standard convention that
(
n
k

)
= 0 whenever k < 0 or

k > n.

Lemma 2 [17] The weight of the sum of any j rows, 1 ≤ j ≤ n, from Cw
does not depend on the choice of the rows and is equal to Mj,w, where

Mj,w =
∑
i odd

(
j
i

)(
n− j
w − i

)
.

Let λ = (λ0, · · · , λn)T be a vector of length n + 1 with nonnegative integer
entries. We define the matrix C(λ) to be the matrix consisting of the concate-
nation of λ0 copies of C0, λ1 copies of C1, · · · , λn copies of the matrix Cn. It is

clear that c0(λ), the number of columns of C(λ), satisfies C0(λ) =
∑
w
λw

(
n
w

)
.

According to Lemma 2, the weight of the sum of any j rows of C(λ) equals
cj(λ), where

cj(λ) =
∑
w

λw
∑
i odd

(
j
i

)(
n− j
w − i

)
.

Hence, if we define c(λ) = (c0(λ), · · · , cn(λ))T , then the above can also be
written as c(λ) = Mλ, where M is the (n + 1) × (n + 1) matrix with entries

the Mj,w as defined in Lemma 2 for j ≥ 1 and with M0,w =
(
n
w

)
. Now

suppose that λ and µ are nonnegative integer vectors such that Mλ and Mµ
agree in position 0, 1, · · · , k − 1, but differ in position k. Then (C(λ), C(µ))
is a (k, n) pair of matrices to which we can apply Theorem 2. The way to
find such vectors λ and µ is described in Theorem 5, which uses Lemma 3,
Corollary 4, and Lemma 4 below.
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Lemma 3 [17] For 1 ≤ j ≤ n, 1 ≤ w ≤ n, we have that Mj,w =∑
k≥1

(−2)k−1

(
j
k

)(
n− k
w − k

)
.

The following corollary is a direct consequence of Lemma 3.

Corollary 4 Let R and L be the matrices defined as Rk,w =
(
n− k
w − k

)
for

0 ≤ k, w ≤ n and L0,0 = 1, Li,0 = L0,i = 0 if i > 0, and Lj,k = (−2)k−1

(
j
k

)
if 1 ≤ j, k ≤ n. Then M = LR.

We define the (n+ 1)× (n+ 1) matrix S by Si,j = (−1)i+j
(
n− i
j − i

)
.

Lemma 4 [17]The matrices R and S are inverses of each other.

Theorem 5 [17] Let 1 ≤ k ≤ n − 1. Let θ = (θ0, θ1, · · · , θn) be an integer-
valued vector such that θj = 0 if 0 ≤ j ≤ k − 1, and θk 6= 0, and let φ := Sθ.
For 0 ≤ j ≤ n, we define

λj = max(0, φj) and µj = −min(0, φj).

Then λ and µ are vectors with nonnegative integer entries, and (C(λ), C(µ)) is
a (k, n) pair. The parameters of the corresponding [(k, n);m,h, l] VC scheme
satisfy the following equations:

m =
1
2

n∑
w=0

|φw|
(
n
w

)
, h− l = 2k−1|θk|,

and h+ l = m+
1
2

n∑
w=0

|φw|
∑
i

(−1)i
(
k
i

)(
n− k
w − i

)
.

Proof As S has integer entries, φ has integer entries, hence λ and µ have
nonnegative integer entries. Using Corollary 4, Lemma 4, and the fact that
φ = λ− µ, we find that

c(λ)− c(µ) = Mλ−Mµ = M(λ− µ) = Mφ = LRSθ = Lθ.

As L is a lower triangular matrix, and θj = 0 if j < k, it follows that cj(λ)−
cj(µ) if 0 ≤ j ≤ k − 1, and that

h− l = |ck(λ)− ck(µ)| = |Lk,kθk| = 2k−1|θk|.

Moreover, 2m = c0(λ) + c0(µ) = c0(λ+ µ) = c0(|φ|), and similarly (m− h) +
(m− l) = ck(λ+ µ) = ck(|φ|). �

We will give an example to illustrate the construction.
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Example 3 Take θ = (0, · · · , 0, 1, 2, · · · , n − k, n − k + 1)T . As φ = Sθ, we
have by definition

φi =
n−i∑

v=k−i−1

(−1)v
(
n− i
v

)
(v − k + i+ 1).

If k = 3, then φ = (2 − n, 1, 0, 0, · · · ,−1, n − 2). Consequently, λ =
(0, 1, 0, · · · , 0, n− 2) and µ = (n− 2, 0, · · · , 0, 1, 0). That is to say, A = C(λ)
consists of the n × n identity matrix and n − 2 columns of weight n, while
B = C(µ) consists of n − 2 all-zero columns and furthermore contains each
column of weight n − 1 once. It is clear that A and B both contain 2n − 2
columns. Straightforward computations show that a1 = b1 = n−1, a2 = b2 = 2,
a3 = n+1, b3 = n−3. As a consequence, we obtain a [(3, n); 2n−2, n+1, n−3]
VC scheme with α = 2/(n− 1).

Construction 2
In general, it seems hard to give manageable expression for the physical

parameters of the schemes obtained with Construction 1. Tuyls [17] gave an-
other explicit construction of a (k, n) VC scheme that has the virtue that the
physical parameters of these schemes can readily be computed in Reference
[17]. For constructing these matrices, they used maximum distance separable
(MDS) codes over GF (q), the finite field with q elements. An [n, k] MDS code
over GF (q) consists of qk vectors of length n with entries from GF (q) such
that any two codewords have a Hamming distance of at least n − k + 1. It
is known that such a code exists whenever q + 1 ≥ n. Therefore, we choose
q ≥ n− 1.

Lemma 5 [17] Let C be an [n, k] MDS code over GF (q). In any set of k
positions, each of the qk possible patterns occurs in exactly one of the words
of C.

Proof Fix k positions, two codewords that agree in these positions, differ
in at most n − k positions. We conclude that each of the qk patterns agrees
with at most one codeword. As the number of patterns equals the number
of codewords, each pattern agrees with exactly one codeword in the given
positions. �

Let C be an [n, k] MDS code over GF (q). Let U(C) be an n × qk matrix
over GF (q) in which each word from C occurs as a column once, and let A(C)
be the binary n × qk matrix obtained from U(C) by replacing each nonzero
symbol in GF (q) by a ‘1,’ and the zero symbol in GF (q) by a ‘0.’

Proposition 3 [17] Let 1 ≤ j ≤ k, the sum of any j rows of A(C) has weight
1
2q
k−j [qj − (2− q)j ].

Proof Consider j rows from U(C). Lemma 5 implies that each of the qj pos-
sible patterns occurs in these j positions in qk−j words from C. The number
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of patterns with w nonzero elements equals
(
j
w

)
(q − 1)w. Each such pat-

tern yields a column in A(C) with exactly w ones in the j prescribed rows.
Consequently, the number of ones in the sum of the j rows from A(C) under
consideration equals

qk−j
∑
w odd

(
j
w

)
(q − 1)w =

1
2
qk−j((q − 1 + 1)j − (−1)j(q − 1− 1)j).

�

Proposition 4 [17] The sum of any k+1 rows of A(C) has a weight 1
2q (qk+1−

(2− q)k+1)− q−1
q 2k.

Proof Consider k + 1 positions in C. Any two distinct words from C differ
in at least two of these positions. That is, restricted to these k + 1 positions,
C is a [k+ 1, k, 2] code over GF (q). The number of words of weight w in such
a code equals

bw =
(
k + 1
w

)
(q − 1)

w−2∑
j=0

(−1)j
(
w − 1
j

)
qw−2−j

=
(
k + 1
w

)(
(q−1)w−1−(−1)w−1

q

)
.

The weight of the sum of the rows of A(C) corresponding to the k+ 1 chosen
positions is obtained by summing the above expressions of bw over all odd w.

�

Theorem 6 [17] Let 2 ≤ k ≤ n− 1, and let q be a prime power not smaller
than n− 1. There exists a [(k, n); qk, 1

2 (qk + (−1)k(q− 2)k + (q− 1)2k), 1
2 (qk +

(−1)k(q − 2)k)] VC scheme with contrast (q − 1)2k−1/[qk + (−1)k(q − 2)k +
(q − 1)2k−1].

Proof Let C be an [n, k] MDS code over GF (q), and let D be an [n, k − 1]
MDS code over the same field. In the notation of this section, let A equal
A(C), and let B equal the concatenation of q copies of A(D). By combining
the above results, (A,B) is a (k, n) pair, and (P (A), P (B)) is a VC scheme
with parameters as claimed in the theorem. �

Bounds on the parameters m,h and l
Tuyls provided bounds on the parameters of a (k, n)-VC scheme. We start

by proving that maximal contrast schemes (l = 0) do not exist. We note that
for OR-based schemes maximal contrast schemes can always be constructed.

Proposition 5 [17] Let 3 ≤ k < n. There exists neither a [(k, n);m,h, 0] VC
scheme, nor a [(k, n);m,m, l] VC scheme.
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Proof Let S = (C0, C1) be a [(k, n);m,h, 0] VC scheme and let B ∈ C1.
Denote by σ1, σ2 two arbitrary rows in B. Since n− 2 ≥ k− 1, B contains (at
least) k − 1 more rows. We denote these rows by σ3, · · · , σk+1. Since S is a
scheme with l = 0, the XOR of σ1, σ3, · · · , σk+1 is the all-one vector, as is the
XOR of σ2, σ3, · · · , σk+1. If follows that σ1 = σ2, so all rows of B are equal.

Next, let A ∈ C0 and consider row i and j of A. As k ≥ 3, the indistin-
guishability property of Definition 1 implies that there is a B ∈ C1 that agrees
with A in these rows. As all rows of B are equal, the i-th and j-th row of A
are equal. Since i and j are arbitrary, all rows of A are equal, so A = B, a
contradiction.

The second statement follows from an analogous reasoning. �
The next two propositions show that XOR-based VC schemes with odd

and even k fundamentally differ.

Proposition 6 [17] Let k be odd, and let k < n. For each ε > 0, there are
integers m,h, and l such that l/m < ε and a [(k, n);m,h, l] VC scheme exists.

Proposition 7 [17] Let k be even, and let k < n. If a [(k, n);m,h, l] VC
scheme exists, then l/m ≥ 1/(k + 1).

Corollary 7 [17] For even k < n, the contrast of a k out of n VC scheme is
at most k/(k + 2).

Proof Let S be a [(k, n);m,h, l] scheme. By definition, the contrast α is equal
to (h−l)/(h+l). It is clear that α is increasing in h, and so α ≤ (m−l)/(m+l).
As (m−l)/(m+l) is decreasing in l, we obtain an upper bound on α by plugging
in the upper bound for l from Proposition 7. �

Lemma 6 [17] Let k be an even integer. Let B be a binary matrix with n
rows such that the sum of any k rows from B differs from 0. Then B has at
least n− k + 2 distinct rows.

Lemma 7 [17] Let (C0, C1) be a [(k, n);m,h, l] VC scheme with k ≥ 3, and
let c1 and c2 be two rows of a matrix in C0 and hence also two rows of some
matrix in C1. Then, the Hamming distance between c1 and c2 satisfies

d(c1, c2) ≤ min{2l, 2(m− h)}.

Proposition 8 [17] Let k be even, k ≥ 4. If a [(k, n);m,h, l] VC scheme

exists, then n− k + 1 ≤
min(l,2(m−h))∑

i=0

(
m
i

)
.

Proof Let k be even, k ≥ 4, and let S = (C0, C1) be a [(k, n);m,h, l] scheme.
Let B be a matrix in C1. As l 6= m, no k rows of B add to the all-zero word.
Lemma 6 implies that B has at least n− k+ 2 distinct rows. Since according
to Lemma 7, all rows from B have a Hamming distance at most 2(m− h) to

its top row, we obtain n− k + 2 ≤
2(m−h)∑
i=0

(
m
i

)
.
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Now we assume without loss of generality that the top n − k + 1 rows
of B are distinct. Let c be the sum of the k − 1 bottom rows of B. For
1 ≤ i ≤ n − k + 1, the sum of c and the i-th row of B contains at most l
ones; that is to say, the i-th row of B has a Hamming distance at most l to
the complement of c. As the n− k+ 1 top rows of B are distinct, n− k+ 1 is
at most the number of vectors at distance at most l from the complement of

c, so n− k+ 1 ≤
l∑
i=0

(
m
i

)
. �

Construction 3
Droste [9] proposed an algorithm to construct a (k, n)-VC scheme under

the OR operation. Liu et al. [13] proved that the basis matrices constructed
by that algorithm are also the basis matrices of a (k, n)-VC scheme under the
XOR operation. Droste’s algorithm can be described as follows.

For easy specification, we call a column of a Boolean matrix with an even
number of 1’s even and otherwise odd. If B is a Boolean matrix, we define
P (B) as the multiset of matrices obtained by permuting the columns of B,
i.e., each permutation corresponds exactly to one element of P (B).

The following lemma will be needed later.

Lemma 8 [9] Let B0 and B1 be two n × m Boolean matrices so that there
exist m − 2k−1 column vectors v1, · · · , vm−2k−1 ∈ {0, 1}k with the following
property: for every {i1, · · · , ik} ⊆ {1, · · · , n} the restriction of B0 (resp. B1) to
the rows i1, · · · , ik contains every even (resp. odd) column of length k exactly
once and all columns v1, · · · , vm−2k−1 . Then P (B0) and P (B1) are a k out of
n secret sharing scheme with relative contrast 1/m; here the contrast is defined
as α = h−l

m .

The main idea for construction is to start with an empty matrix (which

has no columns) and, for various q ∈ {0, · · · , n} and all
(
n
q

)
columns, which

have exactly q 1’s. Because of the symmetry of this construction with respect
to rows, all restrictions of such a matrix of k rows contain the same columns.
And one can exactly determine which columns they contain.

Lemma 9 [9] For q ∈ {0, · · · , n} let B be an n ×
(
n
q

)
Boolean matrix that

contains every column with q 1’s exactly once. Then every restriction of B to

k rows (with k ≤ n) contains every column with p 1’s exactly
(
n− k
q − p

)
-times

(where p ∈ max{0, q − (n− k), · · · ,min(q, k)}).

Lemma 9 shows a possibility to expand a matrix, if we add to all its
restrictions every column with p 1’s exactly once: just add all columns with
q = p or q = p + n − k 1’s to the entire matrix. So a subroutine ADD(p, B)
adds to each restriction of k rows of a matrix B every column with p 1’s by
adding columns to the entire matrix.
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ADD(p,B)

Step 1: If p ≤ k − p, add all the columns with q = p 1’s to B.
Step 2: If p ≥ k − p, add all the columns with q = p+ n− k 1’s to B.

The subroutine makes it easy to construct basis matrices B0 (resp. B1)
whose restrictions always contain every even (resp. odd) column. But besides
these columns, every restriction of B0 and B1 can contain remaining columns
(which are the same for all restrictions of one matrix because of the construc-
tion principle). To be appropriate for a k out of n scheme these remaining
columns have to be the same for B0 and B1 (see Lemma 8). So the remaining
columns of every restriction of B0, which are not remaining columns of every
restriction of B1, called the rest of B0, have to be added to every restriction
of B1 and vice versa. In most cases, these added columns will create new rests
that cause new columns to be added.

Droste’s algorithm

Step 1: For all even p ∈ {0, · · · , k}, call ADD(p, B0).
Step 2: For all odd p ∈ {0, · · · , k}, call ADD(p, B1).
Step 3: While the rests of B0 and B1 are not empty:

(a) Add to B0 all columns adjusting the rest of B1 by calling ADD.

(b) Add to B1 all columns adjusting the rest of B0 by calling ADD.

Theorem 8 shows that Droste’s algorithm also generates a (k, n)-VC
scheme under the XOR operation, by Liu et al. [13].

Theorem 8 [13] Droste’s algorithm generates the basis matrices of a (k, n)-
VCS, B0 and B1, under the XOR operation.

Proof We need to prove that the basis matrices B0 and B1 satisfy the contrast
and security conditions of Definition 1.

First, for the contrast condition, we need to prove that the Hamming
weight of the stacking (XOR operation) of any k out of n rows of B0 is less than
that of B1. Denote Bk0 (resp. Bk1 ) as the submatrix generated by restricting to
arbitrary k rows of B0 (resp. B1). According to the Steps 1 and 2 in Droste’s
algorithm, it is clear that all the even (resp. odd) columns appear in Bk0 (resp.
odd). Denote Ik0 (resp.Ik1 ) as the matrix whose columns are all the even (resp.
odd) columns of length k. Because Droste’s algorithm terminates when the
rests of B0 and B1 are empty, it implies that the remaining columns of B0

and B1 are the same, that is, Bk0\Ik0 = Bk1\Ik1 . Denote R as the remaining
columns of B0 and B1, we have Bk0 = Ik0 ∪R,Bk1 = Ik1 ∪R. Because the XOR
(operation) of the entries of an even (resp. odd) column is 0 (resp. 1), we have
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the result that the Hamming weight of the stacking (XOR operation) of the
rows of Bk0 is less than that of Bk1 . Hence, the contrast condition is satisfied.

Second, for the security condition, we need to prove that the submatrices
of any less than k rows of B0 and B1 have the same columns, and only in such
a case, all the column permutations of the two submatrices will generate the
same collection, that is, the security condition is satisfied. Denote Bt0 (resp.
Bt1) as the submatrix generated by restricting to arbitrary t rows of B0 (resp.
B1), where t < k. Denote Bk0 (resp. Bk1 ) as the submatrix generated by con-
catenating Bt0 (resp. Bt1) and arbitrary k − t rows chosen from the remaining
rows of B0 (resp. B1) (other than the rows in Bt0 and Bt1). As discussed above,
we have Bk0 = Ik0 ∪R,Bk1 = Ik1 ∪R, where Ik0 (resp. Ik1 ) is the matrix that con-
tains all the even (resp. odd) columns of length k. Note that Ik0 and Ik1 are the
basis matrices of a (k, k)-VC scheme proposed in References [16, 3]. We have
the result that the submatrices generated by restricting to any t rows of B0

and B1 have the same columns. Hence, the submatrices generated by restrict-
ing to any t rows of B0 and B1 have the same columns, that is, the security
condition is satisfied. �

Besides the above schemes, Liu et al. [15] proposed a step construction to
construct XOR-based visual cryptography for general access structure by ap-
plying (2, 2)-VCS recursively, where a participant may receive multiple share
images. Readers can refer to [15] for more detail. An approach to construct
extended XOR-based visual cryptography was proposed in Reference [14].

6.4 Visual Cryptography Scheme with Reversing

First we introduce the following notations that will be used throughout the
section. Let A||B denote the concatenation of two matrices A and B of the
same number of rows. Let |X| be the number of elements in set X. The symbol
”⊕”denotes an XOR operation. Let GRAY (P ) be the gray level of a pixel P
and defined as GRAY (P ) = |black pixel|/m.

6.4.1 (k, n) VC Scheme Using Cyclic-Shift Operation

Let the shadow image s = [sijk], and the element sijk is the secret pixel sij in
a (W × H)-pixel secret image replaced by m subpixels (sij1, sij2, · · · , sijm),
where i ∈ [1,W ], j ∈ [1, H], and k ∈ [1,m]. The cyclic-shift operation is
Γ([sijk]) = [γ(sijk)], where γ(·) is a 1-bit cyclical right shift function, i.e.,

γ(sij1, sij2, · · · , sijm) = (sijm, sij1, · · · , sijm−1)

A matrix operation Γ(·) cyclically shifts right one subpixel in every m
subpixels (for a secret pixel) in the shadow image.

When the difference of whiteness ”h − l” is odd, we can design an ideal
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contrast VC scheme even when the underlying VC scheme with reversing is
nonperfect black. At this time the decoding needs an XOR operation.

Yang et al.’s scheme [25] is described in a pseudo-code style below in terms
of its construction procedure and the revealing procedure.

Yang et al.’s algorithm for a (k,n)-VC scheme

Distribution phase.
Step 1: Given a secret image, the dealer performs a (k, n) nonperfect

black VC scheme(NPBV CS) to generate n shadows, s1
1, · · · , s1

n for the
first run.

Step 2: The dealer generates the shadows srj = Γ(sr−1
j ) for the rth run,

r = 2, · · · ,m. Note that the shadow should be labeled as to which run it
is, for easy management by the participant.

Step 3: The dealer distributes m shadows s1
j , · · · , smj to Participant j,

j = 1, · · · , n.
Step 4: Finally, every participant holds m shadows.

Reconstruction phase.
Step 1: To recover the secret within m runs, at least k participants,

Participants j1, · · · , jk, offer their (k×R) shadows sij1, · · · , sijk, i = 1, · · ·R,
for reconstruction.

Step 2: Stack the shadows srj1, · · · , srjk to reconstruct the image Tr in the
rth run.

Tr = srj1 + srj2 + · · ·+ srjk, r = 1, · · · ,m

Step 3: Finish m runs by using an XOR operation to reconstruct U ′ =
T1 ⊕ · · · ⊕ Tm.

Step 4: If ”m − h” is even (i.e., ”m − l” is odd) then the reconstructed
image is U ′; otherwise, the reconstructed image is U ′.

Theorem 9 [25] The whiteness percentages of the white and black secret pix-
els for Yang et al.’s algorithm are PW = 100% and PW = 0%, respectively,
after finishing m runs.

Proof There are ”m−h” B ”h” W (respectively ”m− l” B ”l” W ) subpixels
for the white (respectively black) secret pixel. When shifting right one bit
m times, there are m − h (respectively m − l) black subpixels for the white
(respectively black) secret pixels in U ′. Suppose ”m−h” is even (respectively
odd); an XOR operation will result in all white subpixels for the white pixels
in U ′ (respectively U ′). Thus, the PW of the white secret pixel is 100%. On the
other hand, even (respectively odd) ”m − h” means odd (respectively even)
”m− l” since ’h− l’ is odd. It is evident that an XOR operation will result in
all black subpixels for the black pixels in U ′ (respectively U ′), i.e., the PW of
the black secret pixel is 0%. �

An example (2, 4)−NPBV CS is given below as a demonstration for Yang
et al.’s algorithm.
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Example 4 Suppose in (2, 4)-VCS with basis matrices B0 and B1.

B0 =


1000
1000
1000
1000

 , B1 =


1000
0100
0010
0001

 .
The distribution phase is shown in Table 6.1 and the reconstruction phase is
shown in Table 6.2 and Table 6.3.
Distribution phase:

TABLE 6.1
Distribution phase of (2, 4)-VCS using Yang et al.’s [25] algorithm.

Pixel First run Second run Third run Fourth Run
White s1

1 = (1000) s2
1 = (0100) s3

1 = (0010) s4
1 = (0001)

White s1
2 = (1000) s2

2 = (0100) s3
2 = (0010) s4

2 = (0001)
White s1

3 = (1000) s2
3 = (0100) s3

3 = (0010) s4
3 = (0001)

White s1
4 = (1000) s2

4 = (0100) s3
4 = (0010) s4

4 = (0001)
Black s1

1 = (1000) s2
1 = (0100) s3

1 = (0010) s4
1 = (0001)

Black s1
2 = (0100) s2

2 = (0010) s3
2 = (0001) s4

2 = (1000)
Black s1

3 = (0010) s2
3 = (0001) s3

3 = (1000) s4
3 = (0100)

Black s1
4 = (0001) s2

4 = (1000) s3
4 = (0100) s4

4 = (0010)

Reconstruction phase

TABLE 6.2
Reconstruction of participant 1 and 2 using Yang et al.’s [25] algorithm.

First run Second run Third run Fourth runPixel
T1 = s1

1 + s1
2 T2 = s2

1 + s2
2 T3 = s3

1 + s3
2 T4 = s4

1 + s4
2

U ′

White (1000) (0100) (0010) (0001) (0000)
Black (1100) (0110) (0011) (1001) (1111)

TABLE 6.3
Reconstruction of participant 3 and 4 using Yang et al.’s [25] algorithm.

First run Second run Third run Fourth runPixel
T1 = s1

3 + s1
4 T2 = s2

3 + s2
4 T3 = s3

3 + s3
4 T4 = s4

3 + s4
4

U ′

White (1000) (0100) (0010) (0001) (0000)
Black (0011) (1001) (1100) (0110) (1111)

We can see that the white pixel is reconstructed as four white subpixels
and the black pixel is reconstructed as four black subpixels.
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6.4.2 A Scheme for General Access Structure

Let P = {1, 2, · · · , n} be a set of participants, 2P represents the set of all
subsets of P . Let Γqual ⊆ 2P and Γforb ⊆ 2P , where Γqual ∩ Γforb = φ. The
members of Γqual(resp. Γforb) is called qualified sets (resp. forbidden sets).
The Γ = (Γqual,Γforb) is called the access structure. Define Γ0 = {A ∈ Γqual :
A′ /∈ Γqual for all A′ ⊂ A} be all the minimal qualified sets [1].

Suppose Γ0 = {ΓQ1 , · · · ,ΓQt
}, by employing the optimal (k, k)-scheme

[16], the basis matrices L0 and L1 are constructed as follows:
Let kp = |ΓQp

|, and ΓQp
= {p1, · · · , pkp

}, for 1 ≤ p ≤ t. We will construct
a n×2kp−1 matrix Eip, i ∈ {0, 1} according to the following steps: the pi row of
E0
p is the i-th row of the basis matrix B0 of the (kp, kp)-scheme. The elements

of other rows of E0
p are all 1’s.

Then L0 = E0
1 . The construction of E1

p is similar to E0
p except we replace

the pi row of E1
p from the basis matrix B1 of the (kp, kp)-scheme instead of

B0. Then L1 = E1
1‖ · · · ‖E1

t .

Lemma 10 [10] The L0 and L1 are a pair of basis matrices of a perfect black
VC scheme for Γ0 such that the expansion rate is m = 2|Q1−1| + · · ·+ 2|Qt−1|

and GRAY (white) = 1− 1/m.

We now construct an n × 2kp−1 matrix Fp, which has the property that
the elements in pi row of Fp are all 0’s and the other rows of Fp are all 1’s,
here 1 ≤ p ≤ t. Then an auxiliary basis matrix A0 = F1| · · · |Fi.
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Hu and Tzeng [10] algorithm for minimal access structure

Input:

1. Γ0 on a set ρ of n participants.

2. Let C0
p and C1

p be the collection of basis Boolean matrices E0
p and

E1
p , where 1 ≤ p ≤ |Γ0|.

3. Let CAp be the collection of matrix Fp.

Output:
The reconstructed secret image U .

Distribution phase:
The dealer encodes each transparency ti as |Γ0| subtransparecies ti,p and

each subblock consists of one secret image. For 1 ≤ p ≤ |Γ0|, each white
(resp. black) pixel on subblock ti,p is encoded using n× 2kp−1 matrices E0

p

(resp. E1
p). To share a white (resp. black) pixel, the dealer performs the

following steps:
Step 1: Randomly choose a matrix S0

p in C0
p (resp. S1

p in C1
p), and a

matrix A0
p = [ai,j ] in CAp .

Step 2: For each participant i, put a white (resp. black) pixel on the
subblock ti,p if si,j = 0 (resp. si,j = 1).

Step 3: For each participant i, put a white (resp. black) pixel on the
subblock Ai,p if ai,j = 0 (resp. ai,j = 1).
Reconstruction phase:

Let Qp = {i1, · · · , ikp} be the minimal qualified set in Γ0, participants
in Qp reconstruct the secret image by:

Step 1: XORing all the shares tj and stacking all the shares Aj for j =
1, · · · , kp and obtain T and A: T = t1⊕ · · · ⊕ tkp

, A = A1 +A2 + · · ·+Akp

respectively.
Step 2: Computing U = (T +A)⊕A.

Lemma 11 [10] The (k, k)-VC scheme [16] is an ideal contrast (k, k)-VC
scheme with reversing.

Proof k participants perform XOR operations on the k transparencies by
computing t1⊕ t2⊕· · ·⊕ tk. It is easy to see that the white pixels are all white
since S0 has an even number of 1’s; whereas the black pixels are all black since
S1 has an odd number of 1’s. �

Theorem 10 [10] Let Γ = (P,Q, F ) be an access structure on a set ρ of n
participants. Then the basis matrices B0, B1, and A0 constitute a compatible
ideal contrast VC scheme with reversing in two runs.

Proof It is obvious that the VC scheme is security. The basis matrix A0 also
reveals absolutely no information about the secret image since no secret is
encoded into the shares Aj for j = 1, · · · , kp.
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Let L0 = E0
1‖ · · · ‖E0

t , L1 = E1
1‖ · · · ‖E1

t and A0 = F1‖ · · · ‖Ft be the basis
matrices for a VC scheme with reversing, constructed using the previously
described technique. Without loss of generality, let Γ0 = {Q0, · · · , Qt} and
X = Q1, X be a subset of qualified participants. Since the secret image is
reconstructed by computing (T +A)⊕A, we will prove that the general access
structure has an ideal contrast, i.e., H((E0

1 + F1) ⊕ F1) = 0, H((E1
1 + F1) ⊕

F1) = 2|Q1|−1 and H((Ebi + Fi) ⊕ Fi) for i = 2, · · · , |Γ| and b = 0, 1. It
results that H((E0

1 + F1)⊕ F1) = H((E0
1 + 0)⊕ 0) = H(E0

1 ⊕ 0) = H(E0
1) =

0 by Lemma 11, and H((E1
1 + F1) ⊕ F1) = H((E1

1 + 0) ⊕ 0) = H(E1
1 ⊕ 0) =

H(E1
1) = 2|Q1|−1 by Lemma 11, whereas, H((Ebi + Fi)⊕ Fi) = H((Ebi + 1)⊕

1)⊕1 = w(1⊕1) = 0 for i = 2, · · · , |Γ0| and b = 0, 1. �
We give the following example to illustrate the construction method above.

Example 5 Let p = {1, 2, 3, 4} and Γ0 = {{1, 2}, {1, 3}, {2, 3}}. Then the
basis matrices L0, L1, and A are constructed as follows according to the method
above. B0 and B1 are basis matrices of a (2, 2)− V C scheme.

B0 =
[
10
10

]
, B1 =

[
10
01

]
.

E0
1 =

10
10
10

 , E0
2 =

11
10
10

 , E0
3 =

10
11
10

 , E1
1 =

10
01
11

 , E1
2 =

11
10
01

 , E1
3 =

10
11
01

 .
L0 =

101110
101011
111010

 , L1 =

101110
011011
110101

 .
F1 =

00
00
11

 , F2 =

11
00
00

 , F3 =

00
11
00

 , A0 =

001100
000011
110000

 .
The distribution phase is shown in Table 6.4 and the reconstruction phase

is shown in Tables 6.5, 6.6, and 6.7.

Distribution phase

TABLE 6.4
Distribution phase of the visual cryptography with minimal access
structure Γ0 = {{1, 2}, {1, 3}, {2, 3}} using Hu and Tzeng [10] algorithm.

Pixel First run Second run
Black t1 = (101110) A1 = (001100)
Black t2 = (011011) A2 = (000011)
Black t3 = (110101) A3 = (110000)
White t1 = (101110) A1 = (001100)
White t2 = (101011) A2 = (000011)
White t3 = (111010) A3 = (110000)
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Reconstruction phase

TABLE 6.5
Reconstruction of participant 1 and 2 using Hu and Tzeng [10] algorithm.

First run Second runPixel
T = t1 ⊕ t2 A = A1 +A2

U = (T +A)⊕A

Black (110101) (001111) (110000)
White (000101) (001111) (000000)

TABLE 6.6
Reconstruction of participant 1 and 3 using Hu and Tzeng [10] algorithm.

First run Second runPixel
T = t1 ⊕ t3 A = A1 +A3

U = (T +A)⊕A

Black (011011) (111100) (000011)
White (010100) (111100) (000000)

TABLE 6.7
Reconstruction of participant 2 and 3 using Hu and Tzeng [10] algorithm.

First run Second runPixel
T = t2 ⊕ t3 A = A2 +A3

U = (T +A)⊕A

Black (101110) (110011) (001100)
White (010001) (110011) (000000)

6.5 Secret Sharing Scheme Using Boolean Operation

This section gives an introduction to some methods using an XOR Boolean
operation directly without using basis matrices to construct secret sharing
schemes. The algorithms of three schemes: the probabilistic (2, n) secret shar-
ing scheme, (n, n) secret sharing scheme, and (k, n) secret sharing scheme will
be described.

Consider a secret image A with size NR × NC . Each pixel of A can take
any one of c different colors or gray levels. Image A is represented by an
integer matrix A. A = [aij ]NR×NC

, where i = 1, 2, · · · , NR, j = 1, 2, · · · , NC ,
and aij ∈ {0, 1, · · · , c − 1}. We have c = 2 for a binary image and c = 256
for grayscale image with one byte per pixel. In a color image with one byte
per pixel, the pixel value can be an index to a color table, thus, c = 256.
In a color image using an RGB model, each pixel has three integers: R(red),
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G(green), and B(blue). If each R, G, or B takes a value between 0 and 255,
we have c = 2563. This integer matrix is also called A and will be treated
as equivalent to the secret image A itself. The symbol ”&” denotes an AND
operation in the following construction.

6.5.1 (2, n) Scheme

To solve the pixel expansion problem with VSS schemes, Ito et al. [11], Yang
[24] and Cimato et al. [6] proposed probabilistic VSS models. The frequency
of white pixels in a white (or black) area is used to display the contrast of the
recovered image. In reconstructing the secret image, the ”OR”-ed operation of
pixels of the shadows is the same as the stacking operation of subpixels in the
nonprobabilistic VSS schemes. They defined p0 (resp. p1) as the appearance
probability of a white pixel in a white (resp. black) area of the recovered
image. For a fixed threshold probability 0 ≤ pTH ≤ 1 and relative contrast
α ≥ 0, if p0 ≥ pTH and p1 ≤ pTH −α, the frequency of white pixels in a white
area of the recovered image should be higher than that in a black area.

Wang et al. [23] proposed a probabilistic (2, n) secret sharing scheme for
binary images. Boolean XOR and AND operations are employed, and n + 1
distinct random matrices are generated as intermediate results. The scheme
is described in a pseudo-code style below in terms of its input, output, the
construction procedure, and the revealing procedure.

Wang et al.’s [23] algorithm for (2,n) scheme

Input: an integer n with n ≥ 2, and the secret image A.
Output: n distinct matrices A1 · · · , An, called shadow images.
Construction:

Step 1: Generate n+ 1 random matrices B1, · · · , Bn+1.
Step 2: Compute n intermediate matrices C1, · · · , Cn with Ci = Bi&A

for i = 1, · · · , n.
Step 3: Compute n shadow images A1, · · · , An with Ai = Bn+1 ⊕Ci for

i = 1, · · · , n.
Revealing: A′ = Ai ⊕Aj where i, j ∈ {1, 2, · · · , n} and i 6= j.

For integer scalar inputs between 0 and c−1, each operand is represented in
binary and the operation is carried out bit-by-bit. For example, when a = 125
and b = 18, the XOR between these two integers is

a⊕b = (125)10⊕(18)10 = (01111101)2⊕(00010010)2 = (01101111)2 = (111)10

For matrix inputs, the XOR operation of two NR × NC matrices is defined
pixel-wise. That is,

A⊕B = [aij ⊕ bij ], where i = 1, 2, · · · , NR, j = 1, 2, · · · , Nc.
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The AND operation for integer scalar operands and matrix operands can be
defined similarly.

In all computations, every pixel is handled individually, separated from
other pixels. Therefore, to make the context clear, we denote pixel Ai(s, t)
simply as Ai. With the above construction procedure, for a ”0” pixel in A and
any i, we have Ci = Bi&0 = 0 and Ai = Bn+1 ⊕ Ci = Bn+1, thus

A′ = Ai ⊕Aj = Bn+1 ⊕Bn+1 = 0.

For a ”1” pixel in A, Ci = Bi&1 = Bi and Ai = Bn+1 ⊕Bi, thus

A′ = Ai ⊕Aj = Bn+1 ⊕Bn+1 ⊕Bi ⊕Bj = Bi ⊕Bj

which could be 0 or 1. In other words, between the original image A and
a reconstructed image A′, the ”0” bits are kept the same and the ”1” bits
may or may not changed. With any single shadow image, no information of
A is revealed because of the random nature of the matrices B′s. It is easy
to verify that the n matrices A1, A2, · · · , An are n distinct random matrices
from construction method above, each Ai (i = 1, · · · , n) does not contain any
information of the original matrix A.

Associated Shamir’s secret sharing scheme and a gradual search algorithm
for a single bitmap block truncation coding with the above (2, n) scheme, the
secret sharing scheme for color images was proposed in Reference [3]. Com-
bined the above (2, n) scheme with voting strategy, the probabilistic visual se-
cret sharing scheme for grayscale images was provided in Reference [4]. Based
on the above proposed (2, n) scheme, the matrices B1, B2, · · · , Bn are chosen
according to Yang’s into ”probabilistic VC scheme and the (2, n) probabilistic
scheme with improved contrast was given in Reference [19].

6.5.2 (n, n) Scheme

The construction steps are given in the context of grayscale images. It is triv-
ially applicable to binary images and can be easily extended to color images.

Wang et al.’s [23] algorithm for (n,n) scheme

Input: an integer n with n ≥ 2, and the secret image A.
Output: n distinct matrices A1, · · · , An, called shadow images.
Construction:

Step 1: Generate n− 1 random matrices B1, · · · , Bn−1.
Step 2: Compute the shadow images as below:
A1 = B1, A2 = B1 ⊕B2, · · · · · · , An−1 = Bn−2 ⊕Bn−1,

An = Bn−1 ⊕A.
Revealing: A′ = A1 ⊕A2 ⊕ · · · ⊕An.

Theorem 11 [23] A1 ⊕A2 ⊕ · · · ⊕An = A.
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Proof Because the ”⊕” operation is associative and Bi ⊕Bi is a zero matrix
for any i, we have

A′ = B1 ⊕ (B1 ⊕B2)⊕ · · · ⊕ (Bn−2 ⊕Bn−1)⊕ (Bn−1 ⊕A)
= (B1 ⊕B1)⊕ · · · ⊕ (Bn−1 ⊕Bn−1)⊕A
= A.

�
Theorem 12 [23] Ai1⊕Ai2⊕· · ·⊕Aik 6= A for any set of integers {i1, · · · , ik}
when k < n.

Proof We consider two cases. Case 1 is for n ∈ {i1, · · · , ik} and Case 2 is for
n /∈ {i1, · · · , ik}.

Case 1: n ∈ {i1, · · · , ik}. In this case, An ⊕ (⊕tj=sAj) = A ⊕ Bn−1 ⊕
(⊕tj=sAj) where ⊕tj=s means As ⊕ · · · ⊕ At with s, · · · , t being the indices in
{i1, · · · , ik} besides n. Since there are an odd number of n − 2 term random
matrices involved, at least one of them cannot be absorbed into a zero matrix,
thus Ai1 ⊕Ai2 ⊕ · · · ⊕Aik must be random, thus not equal to A.

Case 2: n /∈ {i1, · · · , ik}. Since no matrix A involved in Ai1⊕Ai2⊕· · ·⊕Aik
to begin with, Ai1⊕Ai2⊕· · ·⊕Aik is constructed from the n−1 term random
matrices only and it must be random. �

Next, we analyze the steps of Wang et al.’s [23] (n, n) algorithm in the
context of the grayscale image below. It is trivially applicable to a binary
image and can be easily extended to a color image. Now we give an example
to demonstrate the computation steps in the construction/revealing process
using the above algorithm.

Example 6 Let n = 3 and the secret image A be a single pixel.

Input: A = (240)10 = (1111 0000)2

Construction:
Step 1:
B1 = (125)10 = (0111 1101)2,
B2 = (10)10 = (0001 0010)2

Step 2:
A1 = B1 = (125)10 = (0111 1101)2,
A2 = B1 ⊕B2 = (0110 1111)2,
A3 = B2 ⊕A = (1110 0010)2

Revealing: A′ = A1 ⊕A2 ⊕A3 = (1111 0000)2 = (240)10.

From the above algorithm, it is known that the proposed (n, n) scheme
reconstructs the secret image exactly and when fewer than n shadows are
used, the original secret image A will not be revealed. Moreover, only simple
Boolean XOR operations are used and the size of each shadow image is the
same as the original image, thus no pixel expansion. The above (n, n) secret
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sharing scheme was applied to deal with gray scale and color secret images
respectively in Reference [22].

6.5.3 (k, n) Scheme

Based on above Wang et al.’s [23] (n, n) secret sharing scheme [23], Chao
and Lin [5] have attempted to construct a (k, n) secret sharing scheme. To
design a threshold (k, n) scheme, one may first directly utilize Wang et al.’s

[23] (m,m) scheme for some carefully chosen parameter m =
(

n
k − 1

)
. The

(k, n,m) shadows-assignment matrix has n rows and m columns. Its n rows
represent n persons; and its m columns represent the m (distinct) temporary
shadows produced by the above (m,m) scheme. The element of H is either
0 or 1. The i-th person (row) has a copy of the j-th shadow image (column)
if and only if Hij . Each column of H have exactly k − 1 zeros and n− k + 1
ones.

Now we will introduce Chao et al.’s (k, n)-VC scheme based on the (k, n,m)
shadows assignment matrix H.
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Chao and Lin [5] algorithm for (k,n) scheme

Input: the secret image A
Output: the final shadow Si
Construction:

Step 1: Generate a random image B1 with the same size as A.
Step 2: Generate another image B2 using B2 = B1 ⊕A.
Step 3: Construct a n ×m shadows-assignment matrix H, each column

of H have exactly k − 1 zeros and n− k + 1 ones, so m =
(

n
k − 1

)
.

Step 4: Partition B1 and B2 into m nonoverlapping blocks
C11, C21, · · · , Cm1 and C12, C22, · · · , Cm2.

Step 5: Let C∗ = C11 ⊕ C21 ⊕ · · · ⊕ Cm1. Compute Ci3 = Ci2 ⊕ C∗.
Step 6: Construct m temporary shadows C1, C2, · · · , Cm, where the up-

per half of each Ci is the block Ci1 and the lower half of each Ci is the
block Ci3.

Step 7: Assign the duplicated copies of the m temporary shadows
C1, C2, · · · , Cm to the n persons according to the shadows-assignment ma-
trix H. For each participant i, the final shadow Si is exactly the union of
those copies assigned to him.
Revealing:

Step 1: k participants using their shares Si1 , · · · , Sik to reconstruct the
secret image. Referring to H, all m temporary shadows C1, C2, · · · , Cm can
be extracted from these k final shadows.

Step 2: The upper half of each Ci is the block Ci1 and the lower
half of each Ci is the block Ci3. So we get all C11, C21, · · · , Cm1 and
C13, C23, · · · , Cm3.

Step 3: Compute C∗ = C11 ⊕ C21 ⊕ · · · ⊕ Cm1, then Ci2 = Ci3 ⊕ C∗.
Step 4: Recombination C11, C21, · · · , Cm1 and C12, C22, · · · , Cm2 into B1

and B2.
Step 5: Reveal the secret image A′ by A′ = B1 ⊕B2.

Let the size of secret image A beNR×NC . Since the size of every temporary
shadow Ci(1 ≤ i ≤ m) is 2 × (NR × NC)/m, the size of every final shadow

Si(1 ≤ i ≤ n) is
[

2×(NR×NC)
m

]
×
(
n− 1
k − 1

)
= 2(NR×NC)(n−k+1)

n . Notice that

each final shadow Si(1 ≤ i ≤ n) contains
(
n− 1
k − 1

)
temporary shadows. After

we divide by the size of secret image A, we obtain the pixel expansion rate
per = 2 × n−k+1

n < 2. Each shadow will be at most two times larger than
secret image A.

Next, we will give an example to analyze the steps of Chao and Lin [5]
(k, n) algorithm scheme.

Example 7 Let k = 3, n = 4, and a grayscale secret image A =[
235 45 239
188 103 234

]
.
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Input: the secret image A =
[
235 45 239
188 103 234

]
Output: the final shadows S1, S2, S3, S4

Construction:

Step 1: Generate random image B1 =
[
105 14 208
228 90 2

]
.

Step 2: Generate B2 = B1 ⊕ A =
[
105 14 208
228 90 2

]
⊕
[
235 45 239
188 103 234

]
=[

130 35 63
88 61 232

]
.

Step 3: m =
(

n
k − 1

)
=
(

4
2

)
. Construct a 4 × 6 shadows-assignment

matrix H, each column of H have exactly 2 zeros and 2 ones, so

H =


0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0


Step 4: Partition B1 into 6 nonoverlapping blocks C11 = 105, C21 =

14, C31 = 208, C41 = 228, C51 = 90, C61 = 2, Partition into 6 nonoverlap-
ping blocks C12 = 130, C22 = 35, C32 = 63, C42 = 88, C52 = 61, C62 = 232.

Step 5: C∗ = C11 ⊕C21 ⊕ · · · ⊕C61 = 105⊕ 14⊕ 208⊕ 228⊕ 90⊕ 2 = 11.
Compute C13 = C12 ⊕ C∗ = 130 ⊕ 11 = 137, similarly C23 = 40, C33 =
52, C43 = 83, C53 = 54, C63 = 227.

Step 6: Construct 6 temporary shadows C1 =
[
105
137

]
, C2 =

[
14
40

]
, C3 =[

208
52

]
, C4 =

[
228
83

]
, C5 =

[
90
54

]
, C6 =

[
2

227

]
,, where the upper half of each

Ci is the block Ci1 and the lower half is the block Ci3.
Step 7: According to the shadows-assignment matrix H, assign

C4, C5, C6 → S1, C2, C3, C6 → S2, C1, C3, C5 → S3, C1, C2, C4 → S4.
Revealing:

Step 1: Suppose 3 participants using their shares S1, S2, S3 to reconstruct

the secret image. Referring to H, all 6 temporary shadows C1 =
[
105
137

]
, C2 =[

14
40

]
, C3 =

[
208
52

]
, C4 =

[
228
83

]
, C5 =

[
90
54

]
, C6 =

[
2

227

]
, can be extracted

from S1, S2, S3.
Step 2: The upper half of each Ci is the block Ci1 and the lower half of

each Ci is the block Ci3. So we get all C11 = 105, C21 = 14, C21 = 14, C31 =
208, C41 = 228, C51 = 90, C61 = 2 and C13 = 137, C23 = 40, C33 = 52, C43 =
83, C53 = 54, C63 = 227.

Step 3: Compute C∗ = C11⊕C21⊕· · ·⊕C61 = 105⊕14⊕208⊕228⊕90⊕2 =
11, then C12 = C13 ⊕ C∗ = 137 ⊕ 11 = 130. Similarly, C22 = 35, C32 =
63, C42 = 88, C52 = 61, C62 = 232.
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Step 4: B1 =
[
C11 C21 C31

C41 C51 C61

]
=

[
105 14 208
228 90 2

]
and B2 =[

C12 C22 C32

C42 C52 C62

]
=
[
130 35 63
88 61 232

]
.

Step 5: Reveal the secret image

A′ = B1 ⊕B2 =
[
105 14 208
228 90 2

]
⊕
[
130 35 63
88 61 232

]
=
[
235 45 239
188 103 234

]
.

6.6 Conclusion

XOR-based visual cryptography schemes use XOR operation to decrypt the
secret. These schemes have higher contrast compared with OR-based visual
cryptography. This chapter introduced three types of different XOR-based
visual cryptography schemes. The three type schemes have their virtues re-
spectively. We also notice there is XOR-based audio cryptography, which uses
music to embed message and relies on the human auditory system to decrypt
secret messages. It is a very interesting topic, however we do not cover audio
cryptography schemes because the topic in this chapter is limited to image,
and readers can see more details in Reference [8].
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7.1 Introduction

A random grid was defined by Kafri and Keren in 1987 [7] as a transparency
comprising a two-dimensional array of pixels. Each pixel is either fully trans-
parent or simply opaque and the choice between the alternatives is made by
a coin-flip procedure. Thus, there is no correlation between the values of dif-
ferent pixels in the array.

We could encrypt binary pictures or shapes into two random grids such
that only the areas containing information in the two grids are intercorrelated,

185
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while the others are purely random. When the two grids are superimposed
together, the correlated areas will be resolved from the random background
due to the difference in light transmission so that the secret picture or shape
can be seen visually. Just like conventional schemes in visual cryptography, the
decoding process is done by the human visual system where no computation
is needed; however, no extra pixel expansion is required using random grids.

Observing the interesting features of random grids in image encryption,
which were discussed right before Naor and Shamir’s visual cryptographic
scheme (VCS) [9], Shyu [12, 13] generalized the random grids-based ap-
proaches into visual cryptograms of random grids (VCRG) for achieving visual
secret sharing recently. The most appealing benifits using random grids lie in
that the pixel expansion needed is merely one and no basis matrix is needed.
With the same contrast in the reconstructed results, the optimal pixel expna-
sion in (n, n)-VCS is 2n−1; while that in (n, n)-VCRG is still 1.

We study the random grids-based schemes, analyze the performances, and
demonstrate their feasibilities in this chapter. The rest of the chapter is or-
ganized as follows. The fundamental characteristics of random grids are dis-
cussed in Section 7.2. Section 7.3 discusses how to apply visual cryptograms
of random grids in visual cryptography where the formal definition of VCRG
is given, and the designs, analyses, and implementations of (2, 2)-VCRGs and
(n, n)-VCRGs for binary, gray-level and color images are examined. Section
7.4 exhibits some concluding remarks.

7.2 Random Grids

7.2.1 Random Pixel, Random Grid, and Average Light
Transmission

We refer to a binary pixel r as a random pixel if the choice for r to be trans-
parent or opaque in R is totally random; or equivalently, the probability for
r to be transparent is equal to that for r to be opaque,

Prob (r = 0) = Prob (r = 1) =
1
2
, (7.1)

where 0 (1) denotes a transparent (opaque) pixel. Since a transparent pixel lets
through the light while an opaque one stops it, the average light transmission
of random pixel r is 1

2 , denoted as

t (r) =
1
2
. (7.2)

Definition 1 R is a binary random grid if each pixel r in R is a binary
random pixel.
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Regarding a random grid R, the number of transparent pixels is probabilis-
tically the same as that of opaque ones so that the average light transmission
of R is also 1

2 , denoted as

T (R) =
1
2
. (7.3)

7.2.2 Superimposition of Random Grids

Let ⊗ denote the generalized ”or” operation, which describes the relation of
the superimposition of two random pixels or grids pixel by pixel. It is obvious
that r ⊗ r (R⊗R) is entirely the same as r (R), that is

t (r ⊗ r) =
1
2

or T (R⊗R) =
1
2

(7.4)

for each pixel r in R.
Let R1 and R2 be two independent random grids with the same size. When

R1 and R2 are superimposed pixel by pixel, each pixel (either transparent or
opaque) in R1 has an equal possibility to be stacked by a transparent pixel
or an opaque pixel in R2.We call r1 = R1[i, j] the corresponding pixel of
r2 = R2[i′, j′] if and only if i = i′ and j = j′ (the positions of r1 at R1 and r2

at R2 are the same). It is easy to see that the order of the two random grids
does not affect the superimposed result, i.e.,

R1 ⊗R2 = R2 ⊗R1. (7.5)

Indeed, ⊗ is a commutative operation.

TABLE 7.1
Results of the superimposition of two random
pixels.
r1 r2 r1 ⊗ r2

0 0 0
0 1 1
1 0 1
1 1 1

Table 7.1 shows the superimposed results of the corresponding random
pixels r1 and r2. There is only one outcome among the four possible combi-
nations of r1⊗ r2 showing transparency. Since the four possible combinations
occur with an equal probability, the probability for r1 ⊗ r2 to be transparent
is 1

4 . That is, the average light transmission of the superimposition of R1 and
R2 (r1 and r2) is 1

4 .

We summarize the aforementioned properties in Lemma 1.
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Lemma 1 If R1 and R2 are two independent random grids with T (R1) =
T (R2) = 1/2,

(1) T (R1 ⊗R2) = T (R2 ⊗R1) = 1/4;

(2) T (R1 ⊗R1) = 1/2.

We define R̄ to be the inverse random grid of R if and only if

r′ = r̄

for each r′ in R̄ where r is the corresponding pixel of r′ in R and r̄ denotes
the inverse of r. It is easy to see that r ⊗ r̄ = 1 and R ⊗ R̄ = 1 (1 denotes a
grid in which all pixels are opaque), that is

t (r ⊗ r̄) = 0 and T (R⊗ R̄) = 0 (7.6)

For each pixel r′ in R̄, since Prob (r′ = 0) = Prob (r̄ = 0) = Prob (r =
1) = 1

2 , we obtain

t (r̄) =
1
2

and T (R̄) =
1
2

(7.7)

In general, the relationship of the average light transmissions of R ∈ R̄ is
given in Lemma 2.

Lemma 2 If R is a random grid with T (R) = λ, T (R) = 1− λ.

Proof From T (R) = λ, we know that for any pixel r ∈ RProb (r = 0) = λ
and Prob (r = 1) = 1 − λ. Let r′ ∈ R be the corresponding pixel of r. Thus,
Prob (r′ = 0) = Prob (r = 1) = 1− λ and Prob (r′ = 1) = Prob (r = 0) = λ.
We have T (R) = 1− λ. �

Consider two independent random grids X and Y . There is another im-
portant property called the principle of combination : if we cut a section, say
A, from X and replace it with section B (with the same size as A) from Y ,
the result, denoted as Z = (X \A) ∩B, is another random grid, i.e.,

T (Z) = T (X) = T (Y ) =
1
2

(7.8)

We shall expose how to use the aforemnetioned characteristics of random
grids to accomplish visual secret sharing in the next section.
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7.3 Visual Cryptograms of Random Grids

First of all, we give a formal definition to VCRG for binary images in Section
7.3.1. Section 7.3.2 presents three algorithms for producing (2, 2)-VCRGs for
binary images. The implementation results of these algorithms are reported
in Section 7.3.3. Section 7.3.4 evaluates the performances of these algorithms
in terms of light contrast. Then, algorithms for producing (n, n)-VCRGs for
binary images are discussed in Section 7.3.5. Further, those for gray-level
and color images are examined in Section 7.3.6. Section 7.3.7 reports the
experimental results of (n, n)-VCRGs. The correctness of these algorithms
would be proved and the corresponding light contrasts would be analyzed
accordingly.

7.3.1 Definition of VCRG

Consider a set of n random grids E = {R1, R2, . . . , Rn}, which are encrypted
to share a a secret image B such that R1⊗R2⊗ ...⊗Rn reveals B to our eyes
while any group of less than n grids obtains no information about B. We call
E a set of visual cryptograms of random grids with respect to B.

Let B(0) (B(1)) denote the area of white (black) pixels in B and SE [B(0)]
(S[B(1)]) denotes the area of pixels in SE corresponding to B(0) (B(1)) where
SE = R1⊗R2⊗· · ·⊗Rn. Formally, a set of (n, n) visual cryptograms of random
grids for a binary image is now defined as follows.

Definition 2 Given a binary image B, n random grids {R1, R2, . . . , Rn}
comprise a set of visual cryptograms, referred to as (n, n)-VCRG of B if the
following conditions hold:

(1) Ri is a random grid with T (Ri) = 1/2 for 1 6 i 6 n;

(2) T (SD [B(0)]) = T (SD [B(1)]) where SD = Ri1 ⊗ Ri2 ⊗ · · · ⊗ Rid which
is the superimposed result of some set D = {Ri1 , Ri2 , . . . , Rid} of d distinct
random grids in E , i.e., D ⊂ E , 2 6 d 6 n− 1 and 1 6 i1 < i2 < · · · < id 6
n; and

(3) T (SE [B(0)]) > T (SE [B(1)]) where SE = R1 ⊗ R2 ⊗ · · · ⊗ Rn and E =
{R1, R2, . . . , Rn}.

Both Conditions 1 and 2 are ”security” conditions which ensure that each
individual grid and the superimposed result of any group of less than n random
grids are merely random grids so that no information of B can be obtained.
Condition 3 is the ”contrast” condition, which claims that once the light
transmission of SE [B(0)] is larger than that of SE [B(1)], our visual perception
is able to distinguish B(0) from B(1) by observing SE due to the difference
of their light transmissions in SE .

© 2012 by Taylor & Francis Group, LLC



190 Visual Cryptography and Secret Image Sharing

Note that this definition is different from that in Naor and Shamir’s model.
Suppose that C1 and C2 are the two encoded shares produced by some (2,
2)-VCS using basis matrices M0 and M1 with respect to binary image B.
Then the security condition in (2, 2)-VCS is w(M b[1]) = (M b[2]) for b ∈
{0, 1} where M b[i] is the ith row of M b for i ∈ {1, 2}, while the contrast
condition becomes w(M1[1] or M1[2]) − (M0[1] or M0[2]) > 0. Let c1 in C1

and c2 in C2 be the corresponding pixels of b in B. Let d = c1 ⊗ c2 where d
is in D = C1 ⊗ C2. Let b(0) (b(1)) denote the pixel of b = 0(1) and d[b(0)]
(d[b(1)]) denote such d corresponding to b(0) (b(1)). Since each b = 0 (1) is
encoded according to M0 (M1), the contrast condition in (2, 2)-VCS assures
w(d[b(1)])−w(d[b(0)]) > 1 so that d(1) can be identified from d(0) for all d(0)’s
and d(1)’s inD. However, VCRG only demands T (S[B(0)])−T (S[B(1)]) > 0,
or equivalently, t (s[b(0)])− t (s[b(1)]) > 0.

7.3.2 (2, 2)-VCRG Algorithms for Binary Images

Let random pixel(0, 1) be a function that returns a binary value 0 or 1 to
represent a transparent or opaque pixel, respectively, by a coin-flip procedure
and R1[i, j] denote the complement of R1[i, j]. Each of the following three al-
gorithms successfully encodes a secret binary image B into two random grids
R1 and R2 which constitute a set of (2, 2)-VCRG.

Algorithms 1–3. Sharing a binary image by two random grids

Input: A w × h binary image B where B[i, j ] ∈ {0, 1} (white or black),
16i6w and 16j6h
Output: Two shares of random grids R1 and R2 which reveal B when su-
perimposed where Rk[i, j ] ∈ {0, 1} (transparent or opaque), 16i6w, 16j 6h
and k ∈ {1, 2}

Encryption(B)

Algorithm 1.

1. Generate R1 as a random grid, T (R1) = 1/2

// for (each pixel R1[i, j], 16i6w, and 16j6h) do

// R1[i, j] = random pixel(0, 1)

2. for (each pixel B[i, j ], 16i6w and 16j6h) do

2.1 { if (B[i, j ] = 0) then R2[i, j] = R1[i, j]

else R2[i, j] = R1[i, j]

}

3. output(R1, R2)

© 2012 by Taylor & Francis Group, LLC



Visual Cryptography and Random Grids 191

Algorithm 2.

1. Generate R1 as a random grid, T (R1) = 1/2

2. for (each pixel B[i, j ], 16i6w and 16j6h) do

2.1 { if (B[i, j ] = 0) then R2[i, j] = R1[i, j]

else R2[i, j] = random pixel(0, 1)

}

3. output(R1, R2)

Algorithm 3.

1. Generate R1 as a random grid, T (R1) = 1/2

2. for (each pixel B[i, j ], 16i6w and 16j6h) do

2.1 { if (B[i, j ] = 0) then R2[i, j] = random pixel(0, 1)

else R2[i, j] = R1[i, j]

}

3. output(R1, R2)

The three algorithms are capsulated into a generic procedure named En-
cryption so that when Encryption(B) is called, each of Algorithms 1, 2, or 3
can be applied onto B. Also note that in this paper, 0 (1) denotes a white
(black) pixel in the secret binary image or a transparent (opaque) pixel in the
encrypted share interchangeably.

Table 7.2 summarizes the encoding process of pixel b in secret image B
into r1 and r2 by Algorithms 1, 2, and 3 respectively, the result of r1⊗ r2 and
its average light transmission.

Let B(0) (B(1)) denote the area of all of the transparent (opaque) pixels
in B, that is, pixel b is in B(0) (B(1)) if and only if b = 0 (b = 1) where
B = B(0) ∪ B(1) and B(0) ∩ B(1) = ∅. We denote the area of pixels in ran-
dom grid R corresponding to B(0) (B(1)) by R[B(0)] (R[B(1)]), that is, pixel
r is in R[B(0)] (R[B(1)]) if and only if r’s corresponding pixel b is in B(0)
(B(1)). Surely, R = R[B(0)] ∪R[B(1)] and R[B(0)] ∩R[B(1)] = ∅.

Based upon the above notations, we have the following theorem.

Theorem 1 Given a binary image B, {R1, R2} produced by Algorithms 1–3,
respectively, is a set of (2, 2)-VCRG of B.
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TABLE 7.2
Encoding b into r1 and r2 and results of s = r1 ⊗ r2 by Algorithms 1, 2,
and 3.

b Probability r1 r2 s = r1 ⊗ r2 Prob (s = 0) (t (s))

Algorithm 1
�

1
2 � � � 1

21
2 � � �

�
1
2 � � � 0
1
2 � � �

Algorithm 2

�
1
2 � � � 1

21
2 � � �

�

1
4 � � �

1
4

1
4 � � �
1
4 � � �
1
4 � � �

Algorithm 3
�

1
4 � � �

1
4

1
4 � � �
1
4 � � �
1
4 � � �

�
1
2 � � � 0
1
2 � � �

Proof To prove that R1 and R2 constitute a set of (2, 2)-VCRG, we should
validate whether the following two conditions (setting n = 2 in Definition 2)
hold:

(1) T (R1) = T (R2) = 1
2 ; and

(2) T (S[B(0)]) > T (S[B(1)]) where S = R1 ⊗R2.

Let us examine Algorithm 1 first. Let R1 [B(b)] denote the area of
pixels in R1 that corresponds to B(b) for b = 0 or 1. Note that R1 =
R1[B(0)] ∪ R1[B(1)] where R1[B(0)] ∩ R1[B(1)] = Ø. Since Step 1 in Al-
gorithm 1 composes R1 as a random grid with T (R1) =1/2, we have
T (R1) = T (R1[B(0)]) = T (R1[B(1)]) = 1/2. When B[i, j] = 0, we have
R2[i, j] = R1[i, j]. That means T (R2[B(0)]) = T (R1[B(0)]) = 1/2. Moreover,
when B[i, j] = 1, R2[i, j] = R1[i, j]. By Lemma 2, we have T (R2[B(1)]) =
T (R̄1[B(1)]) = 1 − T (R1[B(1)]) = 1 − 1/2 = 1/2. Due to the facts that
R2 = R2[B(0)] ∪ R2[B(1)] and T (R2[B(0)]) = T (R2[B(1)]) = 1/2, we have
T (R2) = 1/2 by the principle of combination. Therefore both of R1 and R2
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are merely random grids and none of them individually leaks any information
about B. The security condition of Definition 2 is met.

Consider B(0) (the ares of transparent pixels in B). Since R2[i, j] = R1[i, j]
for each B[i, j] = 0 (or B[i, j] ∈ B(0)), thus S[B(0)] = R1[B(0)]⊗R2[B(0)] =
R1[B(0)]. Thus T (S[B(0)]) = 1/2. Regarding B(1), R2[i, j] = R1[i, j] for each
B[i, j] = 1 (or B[i, j] ∈ B(1)). We have S[B(1)] = R1[B(1)] ⊗ R2[B(1)] = 1
(an area with all opaque pixels), i.e., T (S[B(1)]) = 0. Thus T (S[B(0)]) >
T (S[B(1)]). The light contrast condition of Definition 2 is satisfied. There-
fore, {R1, R2} produced by Algorithm 1 is a set of (2, 2)-VCRG of B and
(T (S[B(0)]), T (S[B(1)])) = (1/2, 0).

For Algorithm 2, we have T (R2[B(0)]) = T (R1[B(0)]) = 1/2 and
R2[B(1)] is purely a random grid with T (R2[B(1)]) = 1/2. Thus, R2 is a
random grid with T (R2) = 1/2. Since R2[B(0)] = R1[B(0)], T (S[B(0)]) =
T (R1[B(0)]⊗R2[B(0)]) = T ((R1[B(0)]) = 1/2; while R1[B(1)] and R2[B(1)]
are two independent random grids so that T (S[B(1)]) = T (R1[B(1)] ⊗
R2[B(1)]) = T (R1[B(1)]) × T (R2[B(1)]) = 1/4 (by Lemma 1(1)). We ob-
tain T (S[B(0)]) > T (S[B(1)]).

For Algorithm 3, T (R2[B(0)]) = 1/2 because R2[B(0)] is a purely ran-
dom grid and T (R2[B(1)]) = T (R1[B(1)]) = 1 − T ((R1[B(1)]) = 1/2. We
have T (R2) = 1/2. Further, due to the fact that R1[B(0)] and R2[B(0)]
are independent, T (S[B(0)]) = T (R1[B(0)]⊗T R2[B(0)]) = T (R1[B(0)])×
T (R2[B(0)]) = 1/4; on the other hand, since R2[B(1)] = R1[B(1)], S[B(1)] =
R1[B(1)] ⊗ (R2[B(1)] = 1, i.e. T (S[B(1)] = 0. We have T (S[B(0)]) >
T (S[B(1)]).

Based upon the above statements, we realize that both security and con-
trast conditions in Definition 2 hold for all of the three algorithms. We con-
clude that no information of B can be obtained from random grids R1 or
R2 individually, while S reveals B in our visual system for all of the three
algorithms. Theorem 1 is proved.

The following corollary is an immediate consequence from the statements
in the proof of Theorem 1.

Corollary 1 (T (S[B(0)]),T (S[B(1)])) = (1/2, 0), (1/2, 1/4) or (1/4, 0) for
Algorithms 1–3, respectively where S = R1 ⊗ R2 and {R1, R2} is a set of
(2, 2)-VCRG produced by Algorithms 1–3 with respect to secret image B.

7.3.3 Experiments for (2, 2)-VCRG

Figure 7.1 illustrates the results of the implementation of the above three
algorithms. Figure 7.1(a) is secret binary image B, Figures 7.1(b) and (c)
present the two random grids produced by Algorithm 1 and Figure 7.1(d) is
the superimposed result of these two shares ((b) and (c)). Figures 7.1(e)–g)
illustrate the corresponding results by Algorithm 2, while Figures 7.1(h)–(j)
are the corresponding results by Algorithm 3. It can be easily seen from Figure
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7.1 that the encrypted shares (see Figure 7.1(b), (c), (e), (f), (h), and (i)) are
merely random pictures and no information about B can be obtained. Only
when the two shares are superimposed (see Figures (d), (g), and (j)), can we
see B by our visual system. It is worthy of notifying that there is no extra
pixel expansion in Figures 7.1(b)–(j).

Figure 7.2 shows the reconstructed results by using Naor and Shamir’s
approach for encrypting B in Figure 7.1(a). The pixel expansion of Figure

7.2(a) is 2, while that of Figure 7.2(b) is 4 ( by applying S0 =
[
0 1 0 1
0 1 0 1

]
and S1 =

[
0 1 0 1
1 0 1 0

]
). The former does not retain the aspect ratio with

respect to B, while the latter does. Both sizes of the results in Figure 7.2 are
larger than that of B.

7.3.4 Definition of Light Contrast and Performance Evalua-
tion

To evaluate the relative difference of the light transmissions between the trans-
parent and opaque pixels in reconstructed image S by these random grid-based
algorithms, we define the light contrast of S with respect to B as follows.

Definition 3 The light contrast of a set E of VCRG produced by an encryp-
tion algorithm for a binary image B is defined as

c(E ) =
T (S[B(0)])−T (S[B(1)])

1 + T (S[B(1)])
where S is the superimposed result of all visual cryptograms in E .

Let E1, E2, and E3 denote the three sets of (2, 2)-VCRG produced by Algo-
rithms 1–3, respectively. By Definition 3, the light contrasts of E1, E2, and E3

are c(E1) = 1/2 (= (1/2− 0)/(1 + 0)), c(E2) = 1/5 (= (1/2− 1/4)/(1 + 1/4)),
and c(E3) = 1/4 (= (1/4 − 0)/(1 + 0)). That is, Algorithm 1 achieves the
highest light contrast among the three. This outcome can also be observed by
comparing the reconstructed images in Figures 7.1(d), (g), and (j) in which (d)
is more recognizable than (g) and (j). Note that 1 +T (S[B(1)]) is introduced
as the denominator of c(E ) in favor of a less T (S[B(1)]) (than a larger one)
when two schemes have a same numerator (i.e., T (S[B(0)])−T (S[B(1)])). For
instance, both of E2 and E3 have the same result of T (S[B(0)])−T (S[B(1)]),
yet their T (S[B(1)])’s are 1/4 and 0, respectively. Thus, c(E3) > c(E2) ac-
cording to Definition 3. As we can see, the reconstructed image by E3 (Figure
7.1(j)) is indeed more recognizable than that by E2 (Figure 7.1(g)) by our
visual system. In general, we prefer a set of VCRG with a larger light contrast
that helps our visual perception to recognize the result. Thus, Algorithm 1 is
more preferable than the other two.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

FIGURE 7.1
Implementation results of Algorithms 1, 2, and 3 for encrypting binary image
B : (a) B ; (b), (c), and (d) two encrypted shares and reconstructed image by
Algorithm 1; (e), (f), and (g) two encrypted shares and reconstructed image
by Algorithm 2; (h), (i), and (j) two encrypted shares and reconstructed image
by Algorithm 3.
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(a) (b)

FIGURE 7.2
Reconstructed results by Naor and Shamir’s approach for binary image B in
Figure 7.1(a): (a) m = 2, (b) m = 4.

We summarize the reconstructed light contrasts by these three algorithms
in Table 7.3.

TABLE 7.3
Light contrasts by Algorithms 1–3 in producing
VCRG-2.

E T (S[B(0)]) T (S[B(1)]) c(E )
Algorithm 1 1

2 0 1
2

Algorithm 2 1
2

1
4

1
5

Algorithm 3 1
4 0 1

4

It is noticed that various definitions of contrast in [9, 14, 1] all depend on
pixel expansion so that they are not suitable any more to measure the effective-
ness of our schemes. On the contrary, since we consider the light transmissions
through different areas of the transparency, the measurement of light contrast
is more generalized and can be applied to all kinds of schemes.

We discuss how to generate (n, n)-VCRG in the next subsection.

7.3.5 Algorithms of (n, n)-VCRG for Binary Images

Consider an h × w binary image B and n random grids R1, R2, . . . , Rn with
the same dimension. We call r1, r2, . . . , rn the corresponding pixels of b ∈ B
if all rk’s in Rk’s for 1 6 k 6 n have the same coordinates as b (if b = B[i, j],
then rk = Rk[i, j] where 1 6 i 6 h and 1 6 j 6 w).

By extending the idea of Algorithm 2 directly, we may obtain a set of two
out of n visual cryptograms of random grids where any pair of two out of the
n shares can reveal the secret when superimposed. Given a binary image B,
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we first find a random grid R1 with T (R1) = 1/2. Then, we define Rk for
2 6 k 6 n as follows:

rk = { r1 if b = 0;
random pixel() otherwise, (7.9)

for each pixel rk ∈ Rk where r1, r2, . . . , rn are corresponding pixels of b ∈ B.
It is easy to see that all Rk’s are random grids and when b = 0, t(ri ⊗ rj) =
t (r1 ⊗ r1) = t (r1) = 1/2; while b = 1, t (ri ⊗ rj) = 1/4 by Lemma 1 for
each pair of i and j where 1 6 i 6= j 6 n. That is, T (Ri[B(0)]⊗Rj [B(0)]) =
1/2 > 1/4 = T (Ri[B(1)]⊗Rj [B(1)]). As a result, {R1, R2, . . . , Rn} produced
in this way is a set of two out of n visual cryptograms of random grids. Yet,
it is not a set of (n, n)-VCRG, since Condition 2 in Definition 2 fails.

Let us extract some informative features from the idea in Algorithm 1. Let
B = {0, 1} be a binary set. We introduce a function f : B ×B → B defined
as follows to transcribe the basic idea in Algorithm 1:

f(x, s) = { s if x = 0;
s otherwise, (7.10)

for x, s, s ∈ B where s is the inverse value of s. We may say that function
f(x, s) preserves the value of s if x = 0, and reverses it otherwise (x = 1). In
the subject of sequential circuits, the behavior of f(x, s) is equivalent to that of
a T flip-flop where s, x and f(x, s) are the current state, toggle input, and next
state, respectively. In the area of logical operations, f(x, s) can be implemented
by using the Exclusive-OR operation ( ⊕ ), that is, f(x, s) = x⊕ s.

Let B be a binary image and R1 be a random grid with T (R1) = 1/2. By
introducing function f, the essential idea of Algorithm 1 for generating each
pixel r2 ∈ R2 corresponding to r1 ∈ R1 and b ∈ B can be formulated as

r2 = f(b, r1). (7.11)

Note that when b = 0, r2 = r1; while b = 1, r2 = r1. This is exactly the same
as the manipulation of Step 2 in Algorithm 1.

This critical observation is emphasized as a corollary as follows.

Corollary 2 If R1 is a random grid with T (R1) = 1/2 and the corresponding
pixel r2 ∈ R2 of r1 ∈ R1 is obtained by r2 = f(b, r1) for each r1 ∈ R1 with
any b ∈ B, then R2 is a random grid with T (R2) = 1/2.

By using function f, our first construction of a set of (n, n)-VCRG (E =
{R1, R2, . . . , Rn}) with respect to B is now introduced as follows. We first
generate n − 1 random grids R1, R2, . . . , Rn−1 independently with T (Rk) =
1/2 for 1 6 k 6 n− 1. That is, for every pixel b ∈ B its n− 1 corresponding
pixels r1, r2, . . . , rn−1 are totally random where rk ∈ Rk for 1 6 k 6 n − 1.
Based upon r1, r2, . . . , rk, we compute ak for 1 6 k 6 n − 1 by using the
recursive formula:
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ak = { r1 if k = 1;
f(rk, ak−1) otherwise. (7.12)

Then, we find rn according to b and an−1 by

rn = f(b, an−1). (7.13)

It is noticed that formula (7.11) is a special case of formula (7.13) by set-
ting n = 2. After all rn’s ∈ Rn corresponding to all b’s ∈ B are computed, we
obtain Rn. Then, E = {R1, R2, . . . , Rn} is reported as a set of (n, n)-VCRG
of B. The whole idea is formally illustrated in Algorithm 4.

Algorithm 4. Encrypting a secret image into a set of (n, n)-VCRG
Input: an h× w binary image B and an integer n
Output: E = {R1, R2, . . . , Rn} constituting (n, n)-VCRG of B

1. for (1 6 k 6 n− 1) do

{ generate Rk as a random grid, T (Rk) = 1/2

}

2. for (each pixel B[i, j], 1 6 i 6 h and 1 6 j 6 w) do

2.1 { a1 = R1[i, j]

2.2 for (2 6 k 6 n− 1) do

{ ak = f(Rk[i, j], ak−1) //f(x, s) is defined in formula (7.10)

}

2.3 Rn[i, j] = f(B[i, j], an−1)

}

3. output(R1, R2, . . . , Rn)

Before we prove that E = {R1, R2, . . . , Rn} generated by Algorithm 4
with respect to B is indeed a set of (n, n)-VCRG of B, we explore more useful
features among multiple random grids in the following.

It is easy to see that two independent random grids produce another ran-
dom grid as they are superimposed even when their light transmission is not
1/2. We formalize this in Lemma 3, which is a generalized version of Lemma
1.

Lemma 3 Given two independent random grids R1 and R2 with T (R1) = λ1

and T (R2) = λ2, R1 ⊗R2 is a random grid with T (R1 ⊗R2) = λ1λ2.
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Proof For any pixel r1 ∈ R1 and its corresponding pixel r2 ∈ R2, we have
Prob (r1 = 0) = λ1 and Prob (r2 = 0) = λ2. r1⊗ r2 is transparent if and only
if both of r1 and r2 are transparent, that is, Prob (r1 ⊗ r2 = 0) = Prob (r1 =
0)×Prob (r2 = 0) = λ1λ2. Therefore, T (R1⊗R2) = T (R1)×T (R2) = λ1λ2.

The theme of Lemma 3 can be extended for more than two random grids.

Lemma 4 If U = {R1, R2, . . . , Ru} is a set of u > 2 independent random
grids with T (Ri) = λ for 1 6 i 6 u, then SU is a random grid with T (SU ) =
λu where SU = R1 ⊗R2 ⊗ · · · ⊗Ru.

Proof We prove by mathematical induction. Consider the case of V =
{R1, R2}. The statement (i.e., T (SV ) = λ2) is true by Lemma 3. Assume
that the statement holds for the case of V = {R1, R2, . . . , Ru−1}, that is, SV

is a random grid with T (SV ) = λu−1 where SV = R1 ⊗ R2 ⊗ · · · ⊗ Ru−1.
Then, we further consider U = {R1, R2, . . . , Ru} = V ∪ {Ru}. SU is simply
the superimposed result of SV and Ru, i.e., SU = SV ⊗Ru. By Lemma 3, we
have T (SU ) = T (SV ⊗Ru) = T (SV )×T (Ru) = (λu−1)× λ = λu.

Since the superimposition operation ⊗ is commutative, it is not hard to
obtain that the results of different superimposing orders of R1, R2, . . . , Ru are
all the same (i.e., SU ). As a matter of fact, the superimposed result of any
subset of U is also a random grid as indicated in Lemma 5.

Lemma 5 Let U = {R1, R2, . . . , Ru} be a set up u > 2 independent random
grids and V = {Ri1 , Ri2 , . . . , Riv} ⊂ U where 1 6 i1 < i2 < · · · < iv 6 u
and T (Ri) = λ for 1 6 i 6 u. SV is a random grid with T (SV ) = λv where
SV = Ri1 ⊗Ri2 ⊗ . . .⊗Riv .

The proof of Lemma 4 can be easily applied to prove Lemma 5. Con-
sider a set of u independent random grids U = {R1, R2, . . . , Ru} where
T (Rk) = 1/2 for 1 6 k 6 u. We may generate a set of u binary images
A = {A1, A2, . . . , Au} with respect to U in such a way that each pixel ak ∈ Ak
is defined by formula (7.12), that is,

ak = { r1 if k = 1;
f(rk, ak−1) otherwise,

where ak ∈ Ak and rk ∈ Rk are corresponding pixels for 1 6 k 6 u. Lemma
6 claims that all of A1, A2, . . . , Au are random grids with T (Ak) = 1/2 for
1 6 k 6 u.

Lemma 6 For A = {A1, A2, . . . , Au} generated by formula (7.12) with re-
spect to U = {R1, R2, . . . , Ru} where T (Rk) = 1/2, Ak is a random grid with
T (Ak) = 1/2 for 1 6 k 6 u.

Proof We prove by mathematical induction. For the case of |A | = 1 (i.e.,
u = 1), since a1 ∈ A1 is equal to r1 ∈ R1 by formula (7.12), A1 is exactly the
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same as R1. Thus, A1 is a random grid with T (A1) = T (R1) = 1/2. Assume
that the statement holds for the case of |A | = u−1, that is, A1, A2, . . . , Au−1

are random grids with T (Ak) = 1/2 for 1 6 k 6 u − 1. Due to the reasons
that ru(∈ Ru) = 0 or 1, T (Au−1) = 1/2, and for each pixel au ∈ Au, au =
f(ru, au−1), we obtain that Au is also a random grid with T (Ak) = 1/2 by
Corollary 2.

According to formula (7.12), for each pixel ak ∈ Ak,

ak = f(rk, ak−1) = f(rk, f(rk−1, ak−2))
= · · · = f(rk, f(rk−1, f(. . . , f(r2, a1) . . .)))
= f(rk, f(rk−1, f(. . . , f(r2, r1) . . .))).

That is, the value of ak is determined by its k corresponding pixels
r1, r2, . . . , rk for 1 6 k 6 u. From Lemma 6, we know that ak ∈ Ak for
1 6 k 6 u is a random pixel with t (ak) = 1

2 .

Let V = {Ri1 , Ri2 , . . . , Riv} be a set of v random grids randomly selected
from U , (i.e. V ⊂ U ) where 1 6 v 6 u. Let SU (0)(S(0)) denote the area
of transparent pixels in SU (SV ) where SU = R1 ⊗ R2 ⊗ · · · ⊗ Ru (SV =
Ri1 ⊗ Ri2 ⊗ · · · ⊗ Riv ). Now we would like to examine the light transmis-
sion of the area of pixels in Au corresponding to SU (0)(S(0)), referred to as
Au[SU (0)] (Au[SV (0)]).

Lemma 7

(1) T (Au[SU (0)]) = 1;

(2) T (Au[SV (0)]) = 1/2.

Proof
(1) From Lemma 4, we have T (SU ) = 1/2U . Consider pixel s = 0(or

s ∈ SU (0)). The only chance for s = 0 is that its corresponding pixels
r1, r2, . . . , ru should all be transparent, i.e., r1 = r2 = · · · = ru = 0. Un-
der this circumstance, by formula (7.14) s’s corresponding pixel au in Au
becomes

au = f(ru, f(ru−1, f(. . . , f(r2, r1) . . .)))
= f(0, f(0, f(. . . , f(0, 0) . . .)))
= 0.

That is, if s = 0 (or s ∈ SU (0)). then au = 0. As a result, T (Au[SU (0)]) = 1.
(2) Let U − V = W = {Rj1 , Rj2 , . . . , Rjw} where w = u − v (i.e.,

{j1, j2, . . . , jw} = {1, 2, . . . , u} − {i1, i2, . . . , iv}). From Lemma 5, we know
that both SV and SW are random grids with T (SV ) = 1/2v and T (SW ) =
1/2u−v. Since the order of random grids does not affect the result of super-
imposition, without losing generality, let (j1, j2, . . . , jw) = (1, 2, . . . , w) and
(i1, i2, . . . , iv) = (w + 1, w + 2, . . . , u). That is, W = {R1, R2, . . . , Rw} and
V = {Rw+1, Rw+2, . . . , Ru}. (This can easily be done by renaming all of the

© 2012 by Taylor & Francis Group, LLC



Visual Cryptography and Random Grids 201

random grids.) We focus on pixel t = 0 in SV (or t ∈ SV (0)) only. Its corre-
sponding pixels rw+1 ∈ Rw+1, rw+2 ∈ Rw+2, . . . , ru ∈ Ru should all be trans-
parent, i.e., rw+1 = rw+2 = · · · = ru = 0. Consequently, its corresponding
pixel au ∈ Au becomes

au = f(ru, f(ru−1, . . . , f(rw+1, f(rw, f(rw−1, . . . , f(r2, r1)) . . .))))
= f(0, f(0, . . . , f(0, f(rw, f(rw−1, . . . , f(r2, r1)) . . .))))
= f(rw, f(rw−1, . . . , f(r2, r1) . . .)).

From Lemma 6, we have t (au) = 1/2. In summary, if t = 0 in SV (or
t ∈ SV (0)), then t (au) = 1/2; therefore, T (Au[SV (0)]) = 1/2.

Lemmas 5–7 investigate the properties of u random grids in U =
{R1, R2, . . . , Ru} and another u random grids A1, A2, . . . , Au produced by
formula (7.12) with respect to U for u > 2. Now we pay attention to Algo-
rithm 4. Give a secret image B and n participants, Algorithm 4 first produces
a set of n − 1 independent random grids, namely R = {R1, R2, . . . , Rn−1},
based upon which A1, A2, . . . , An−1 are generated, and then Rn is produced
according to An−1 and B. We claim that Rn is a random grid and the super-
imposed result of any group of less than n shares is also a random grid.

Lemma 8 Give a secret image B and a set of independent random grids
R = {R1, R2, . . . , Rn−1},

(1) Rn generated by formula (7.13) is a random grid with T (Rn) = 1/2; and
(2) SD is a random grid with T (SD) = 1/2d where D = {Ri1 , Ri2 , . . . , Rid} ⊂

R ∪ {Rn} and SD = Ri1 ⊗Ri2 ⊗ · · · ⊗Rid .

Proof
(1) By setting u = n−1 in Lemma 6, we know that An−1 is a random grid

with T (An−1) = 1/2 (or t (an−1) = 1/2) for an−1 ∈ An−1. For rn ∈ Rn[B(0)],
rn = f(0, an−1) = an−1; while rn ∈ Rn[B(1)], rn = f(1, an−1) = an−1. It
implies that both Rn[B(0)] and Rn[B(1)] are areas of random grids with
Rn[B(0)] = 1/2 = Rn[B(1)]. By the principle of combination, Rn is a random
grid with T (Rn) = 1/2.

(2) Since the generation of Rn is different for R1, R2, . . . , Rn−1 (in fact, Rn
is generated from B and An−1 which depends upon R1, R2, . . . , Rn−1 (see for-
mulae (7.12) and (7.13))), there are two cases with regard to the constituents
of D : Case 1: Rn /∈ D ; and Case 2: Rn ∈ D .

For Case 1, since all random grids in D are independently generated, SD

is a random grid according to Lemma 5 with T (SD) = T (SD [B(0)]) =
T (SD [B(1)]) = 1/2d.

Regarding Case 2, assume that D = {Ri1 , Ri2 , . . . , Rid−1 , Rn}. Let L =
{Ri1 , Ri2 , . . . , Rid−1} (i.e., D = L ∪{Rn}) and SL = Ri1 ⊗Ri2 ⊗· · ·⊗Rid−1 .
From Lemma 5, we realize that SL is a random grid with T (SL ) = 1/2d−1.
Besides, by setting u = n − 1 and v = d − 1 in Lemma 7(2), we obtain
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T (An−1[SL (0)]) = 1/2. Consider any pixel an−1 ∈ An−1[SL (0)] and its
corresponding pixels sl ∈ SL (0) (i.e., Sl = ri1 ⊗ ri2 ⊗ · · · ⊗ rid−1 = 0 where
rik ∈ Rik for 1 6 k 6 d − 1), b ∈ B and rn ∈ Rn. If b = 0, rn = f(b, an−1) =
f(0, an−1) = an−1; otherwise (b = 1), rn = f(1, an−1) = an−1. We obtain that
t (rn) = 1/2 on condition that sl ∈ SL (0). It means that T (Rn[SL (0)]) =
1/2.

To explore the light transmission of SD(= SL ⊗ Rn = (SL (0) ⊗
Rn[SL (0)])∪ (SL (1)⊗Rn[SL (1)])), we only need to consider the light trans-
mission of SL (0) ⊗ Rn[SL (0)], since no light can pass through the area of
SL (1) ⊗ Rn[SL (1)] (note that SL (1) is the area of opaque pixels in SL ).
Due to the facts that T (SL ) = 1/2d−1 = T (SL (0)) (by Lemma 5) and
T (Rn[SL (0)]) = 1/2 (proved previously). We have T (SD) = T (SL (0) ⊗
Rn[SL (0)]) = T (SL (0)) × T (Rn[SL (0)]) = (1/2d−1) × (1/2) = 1/2d by
Lemma 3.

Based upon the above discussions, we prove the correctness of Algorithm
4 in Theorem 2.

Theorem 2 Given a binary image B, E = {R1, R2, . . . , Rn} produced by Al-
gorithm 4 with respect to B is a set of (n, n)-VCRG of B.

Proof We prove that E = {R1, R2, . . . , Rn} meets the three conditions in
Definition 2 respectively in the following.

(1) From Step 1 of the algorithm, we realize that R = {R1, R2, . . . , Rn−1} are
truly random grids with T (Ri) = 1/2 for 1 6 i 6 n− 1. From Lemma 8(1),
Rn is also a random grid with T (Rn) = 1/2. Thus, all of R1, R2, . . . , Rn are
random grids with a light transmission of 1/2. Condition 1 of Definition 2
holds.

(2) Regarding any subset of E with d(< n) random grids, namely D =
{Ri1 , Ri2 , . . . , Rid} ⊂ E , 1 6 i1 < i2 < · · · < id 6 n, we have that SD

is a random grid with T (SD) = 1/2d from Lemma 8(2). Condition 2 holds.

(3) Let R = {R1, R2, . . . , Rn−1}, SR = R1 ⊗ R2 ⊗ · · · ⊗ Rn−1 and sr ∈ SR,
rn ∈ Rn, b ∈ B as well as ri ∈ Ri for 1 6 i 6 n− 1 be corresponding pixels.
By Lemma 4, we know T (SR) = T (SR[B(1)]) = T (SR[B(0)]) = 1/2n−1.
We focus on pixel sr ∈ SR that is transparent. The only case for sr = 0 is
r1 = r2 = · · · = rn−1 = 0. In this case, their corresponding pixel an−1 ∈
An−1 is also 0 (or T (An−1[SR(0)]) = 1, see also Lemma 7(1) by setting
u = n − 1 and U = R). Thus, when b = 0, rn = f(p, an−1) = f(0, 0) = 0,
while b = 1, rn = f(p, an−1) = f(1, 0) = 1. We obtain that r1 ⊗ r2 ⊗ · · · ⊗
rn−1⊗ rn = sr⊗ rn = sr⊗0 = sr for b = 0; while r1⊗ r2⊗· · ·⊗ rn−1⊗ rn =
sr ⊗ rn = sr ⊗ 1 = 1 for b = 1. That is, T (SE [B(0)]) = T (SR[B(0)]) =
1/2n−1 > T (SE [B(1)]) = 0. Condition 3 holds.

Since all of the three conditions in Definition 2 hold, we conclude that
E = {R1, R2, . . . , Rn} generated by Algorithm 4 is a set of (n, n)-VCRG of B.
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Corollary 3 is an immediate result from Theorem 2.

Corollary 3 (T (SE [B(0)]),T (SE [B(1)])) = (1/2n−1, 0) where E =
{R1, R2, . . . , Rn} is produced by Algorithm 4 with respect to B and SE =
R1 ⊗R2 ⊗ · · ·Rn.

We give a simple example for n = 3 to explain the relationship among
corresponding pixels b ∈ B, r1 ∈ R1, r2 ∈ R2, r3 ∈ R3, a1 ∈ A1, and a2 ∈ A2

in Algorithm 4.

Example 1. Consider n = 3 and a secret image B. Algorithm 4 first gener-
ates R1 and R2 independently; then produces A1 and A2 by formula (7.12);
at last finds R3 depending on B and A2 according to formula (7.13). Let
E = {R1, R2, R3}. Table 7.4 summarizes all of the possible combinations of
corresponding pixels b ∈ B, r1 ∈ R1, and r2 ∈ R2; and their corresponding
results of a1(= r1) ∈ A1, a2(= f(r2, a1)) ∈ A2, and r3(= f(b, a2)) ∈ R3; as
well as the superimposed results of r1 ⊗ r2, r1 ⊗ r3, r2 ⊗ r3, and r1 ⊗ r2 ⊗ r3.
Table 7.5 lists the light transmissions of the corresponding results in Table
7.4.

It is seen from Tables 7.4 and 7.5 that all of R1, R2, R3, A1, A2 are
random grids with a light transmission of 1/2. Besides, T (SD [B(0)]) =
T (SD [B(1)]) = 1/4 and T (SD [B(0)]) = 1/4 > 0 = T (SD [B(1]) where
D(⊂ E ) = {R1, R2}, {R1, R3} or {R2, R3}. It means that each group of two
random grids obtains no information about B(0) or B(1) when superimposed
(thus, no information about the colors of pixels in B can be found), while B(0)
and B(1) can be identified from SE due to the difference of their light trans-
missions, that is, we see B out of SE because of T (SE [B(0)]) > T (SE [B(1)]).

TABLE 7.4
All possible combinations of b, r1, and r2, the corresponding results
of a1 (= r1), a2 = f(r2, a1), r3 = f(b, a2), and r1 ⊗ r2, r1 ⊗ r3,
r2 ⊗ r3 as well as r1 ⊗ r2 ⊗ r3 by Algorithm 4 for (3, 3)-VCRG.
b r1 a1 r2 a2 r3 r1 ⊗ r2 r1 ⊗ r3 r2 ⊗ r3 r1 ⊗ r2 ⊗ r3

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1
1 0 0 1 1 1 1

1 0 0 0 0 1 0 1 1 1
1 1 0 1 0 1 1

1 1 0 1 0 1 1 0 1
1 0 1 1 1 1 1

Algorithm 4 can be viewed as the generalization from the idea in Algorithm
1. Such knowledge can be easily adapted to generalize the ideas in Algorithms
2 and 3. Algorithms 5 and 6 are the results accordingly.
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TABLE 7.5
Light transmissions of the corresponding
pixels in Table 7.3.
b t (r1) t (a1) t (r2) t (a2) t (r3)

0 1/2 1/2 1/2 1/2 1/2
1 1/2 1/2 1/2 1/2 1/2

t (r1 ⊗ r2) t (r1 ⊗ r3) t (r2 ⊗ r3) t (r1 ⊗ r2 ⊗ r3)

1/4 1/4 1/4 1/4
1/4 1/4 1/4 0

Algorithm 5–6. Encrypting a secret image into n random grid as a set
of (n, n)-VCRG (based upon Algorithms 2 and 3, respectively)

Input: an h× w binary image B and an integer n
Output: a set of n random grids E = {R1, R2, . . . , Rn} constituting (n, n)-
VCRG of B

Algorithm 5.

1. for (1 6 k 6 n− 1) do
{ generate Rk as a random grid, T (Rk) = 1/2
}

2. for (each pixel B[i, j], 1 6 i 6 h and 1 6 j 6 w) do

2.1 { a1 = R1[i, j]

2.2 for (2 6 k 6 n− 1) do

{ ak = f(Rk[i, j], ak−1)

}

2.3 if (B[i, j] = 0) then Rn[i, j] = f(B[i, j], an−1)

( = f(0, an−1) = an−1)

else Rn[i, j] =random pixel()

}

3. output(R1, R2, . . . , Rn)

Algorithm 6.

1. for (1 6 k 6 n− 1) do
{ generate Rk as a random grid, T (Rk) = 1/2
}
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2. for (each pixel B[i, j], 1 6 i 6 h and 1 6 j 6 w) do

2.1 { a1 = R1[i, j]

2.2 for (2 6 k 6 n− 1) do

{ ak = f(Rk[i, j], ak−1)

}

2.3 if (B[i, j] = 0) then Rn[i, j] =random pixel()

else Rn[i, j] = f(B[i, j], an−1) (= f(1, an−1) = an−1

}

3. output(R1, R2, . . . , Rn)

Theorem 3 declares the validity of Algorithm 5 and 6 in producing (n, n)-
VCRG.

Theorem 3 Given a secret binary image B, E = {R1, R2, . . . , Rn} produced
by Algorithms 5 or 6 with respect to B is a set of (n, n)-VCRG of B.

The statements in the proof of Theorem 2 can be easily applied to prove
Theorem 3. We omit the details here.

In Algorithm 5, if b = 0, rn = f(b, an−1) = f(0, an−1) = an−1, otherwise
(b = 1) rn =random pixel( ). Consequently, we obtain T (SE [B(0)]) = 1/2n−1

by Corollary 3 and T (SE [B(1)]) = 1/2n because all pixels in Rk[B(1)]
are random pixels for 1 6 k 6 n. Regarding Algorithm 6, if b = 0,
rn =random pixel(); otherwise (b = 1), rn = f(p, an−1) = f(1, an−1) = an−1.
Thus, we have T (SE [B(0)]) = 1/2n since T (Sk[B(0)]) = T (Rk) = 1/2 for
1 6 k 6 n, and T (SE [B(1)]) = 0 since the only condition for r1⊗r2⊗· · ·⊗rn
to let through the light (i.e., r1 = r2 = · · · = rn−1 = rn = 0) would never
occur (once r1 = r2 = · · · = rn−1 = 0, we have an−1 = 0; but b = 1 causes
rn = an−1 = 1). We obtain the following corollary.

Corollary 4 (T (SE [B(0)]),T (SE [B(1)])) = (1/2n−1, 1/2n) or (1/2n, 0)
where E = {R1, R2, . . . , Rn} is produced by Algorithms 5 or 6, respectively,
with respect to B and SE = R1 ⊗R2 ⊗ · · · ⊗Rn.

The light contrasts of Algorithms 4–6 in point of Definition 3 are summa-
rized in Table 7.6. It is seen from Table 7.6 that among the three approaches,
the light contrast obtained by Algorithm 4 is the best.
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TABLE 7.6
Light contrasts by Algorithms 4–6 for (n, n)-VCRG.

E T (S[B(0)]) T (S[B(1)]) c(E )
Algorithm 4 1/2n−1 0 1/2n−1

Algorithm 5 1/2n−1 1/2n 1/(2n + 1)
Algorithm 6 1/2n 0 1/2n

7.3.6 Algorithms of (n, n)-VCRG for Gray-Level and Color
Images

In Shyu [12], the encryption algorithms of (2, 2)-VCRG for gray-level and color
images were generalized from those for a binary image. We apply the same
reasoning and skills adopted by Shyu in [12] to extend the binary (n, n)-VCRG
algorithms to cope with gray-level and color images.

According to Ref. [12], we simply transform a gray-level image G into its bi-
nary version H by some halftone technology and encrypt the binary equivalent
by using the aforementioned algorithms directly. Let Encryption VCRG(B, n)
denote the procedure of applying Algorithms 4, 5, or 6 to obtain (n, n)-VCRG
with respect to binary image B. Algorithm 7 describes the idea formally.

Algorithm 7. Encrypting a gray-level image into a set of (n, n)-VCRG
Input: an h× w gray-level image G and an integer n
Output: a set of n random grids E = {R1, R2, . . . , Rn} constituting a VCRG-
n of G

1. H = H (G) // H (G) is a halftone function with respect to G

2. (R1, R2, . . . , Rn) =Encryption VCRG(H, n)

// Encrypt H by Algorithms 4, 5, or 6 directly

3. output(R1, R2, . . . , Rn)

Regarding the (n, n)-VCRG for a color image, we follow the experience
from Ref. [12] where the binary (2, 2)-VCRG encryption algorithms were ex-
tended to their color versions by utilizing skills including color decomposition,
halftoning, and color composition. Specifically, we decompose a color image
P into the c, m and y components (which are the primitive colors in the sub-
tractive model), namely PC , Pm, and Py; halftone each of them to be P c, Pm,
and P y such that each pixel px ∈ P x is either x or 0 where x ∈ {c,m,y} and
encrypt the three halftone images into (Rc

1,R
c
2, . . . ,R

c
n), (Rm

1 ,R
m
2 , . . . ,R

m
n ),

and (Ry
1 ,R

y
2 , . . . ,R

y
n) by using any of Algorithms 4, 5, or 6 where the cor-

responding sets of binary colors are {c, 0}, {m, 0}, and {y, 0}, respectively
(instead of {1, 0}). Let Ri denote the image composed by Rc

i , Rm
i and Ry

i ,
i.e., Ri = (Rc

i ,R
m
i ,R

y
i ) for 1 6 i 6 n. Then, E = {R1,R2, . . . ,Rn} can be

reported as a set of color (n, n)-VCRG of P . It means that only when all Ri’s
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are superimposed can we see P , while any group of less than n shares obtains
nothing but a color random grid.

Let Encrypt cVCRG(P x, x , n) denote the procedure of encrypting P x

into n shares Rx
1 ,R

x
2 , . . . ,R

x
n in terms of binary color set {x , 0} where

x ∈ {c,m,y}. It is easy to implement Encrypt cVCRG(P x by using Al-
gorithms 4, 5, or 6 as long as we take 0 and x as the inverse to each other and
modify random pixel() to return 0 or x randomly. Algorithm 8 summarizes
the whole idea of producing color (n, n)-VCRG for a color image.

Algorithm 8. Encrypting a color image into a set of (n, n)-VCRG
Input: an h× w color image P and an integer n
Output: a set of n color random grids E = {R1,R2, . . . ,Rn} constituting a
(n, n)-VCRG of P

1. Decompose P into (P c, Pm, Py)

2. for (x ∈ {c,m,y}) do P x = H (P x)

// H (P x) is an x -colored halftone function so that for each px ∈ P x,
px = x or 0

3. for (x ∈ {c,m,y}) do (Rx
1 ,R

x
2 , . . . ,R

x
n)=Encrypt cVCRG(P x, x , n)

4. for (1 6 i 6 n) do Ri = (Rc
i ,R

m
i ,R

y
i )

// color composition of Rc
i , Rm

i , and Ry
i

5. output(R1,R2, . . . ,Rn)

Based upon the statements in the proofs of Theorems 2 and 3 as well as
those for color (2, 2)-VCRG in Ref. [12], we have the following consequence.

Theorem 4 Given a color image P, E = {R1,R2, . . . ,Rn} produced by Al-
gorithm 8 with respect to P is a set of color (n, n)-VCRG of P.

7.3.7 Experiments for (n, n)-VCRG

We designed four experiments by computer simulations to verify the feasibility
and applicability of the VCRG algorithms. Experiment 1 was designed to test
Algorithms 4, 5, and 6 to obtain sets of VCRG-3 for a binary image. Experi-
ments 2 and 3 focused on producing sets of VCRG-3 for gray-level and color
images, respectively. The sets of VCRG-4 were tested in Experiment 4. All
computer programs in these experiments were coded in Borland C++ Builder
and run in a PC with Windows.

Experiment 1: Encrypting a binary image to obtain VCRG-3.
In this experiment, we adopted Algorithms 4, 5, and 6 to produce three sets
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of VCRG-3, respectively, for binary image B as in Figure 7.3. Figure 7.4 illus-
trates the implementation results of Algorithm 4 where (a), (b), and (c) are
the three random grids produced, namely R4

1, R4
2, and R4

3, respectively; (d),
(e) and (f) are the superimposed results of R4

1 ⊗ R4
2, R4

1 ⊗ R4
3, and R4

2 ⊗ R4
3,

respectively; and (g) is the result of R4
1 ⊗R4

2 ⊗R4
3.

FIGURE 7.3
Binary image B in Experiment 1.

We see from Figure 7.4 that (a)–(f), including R4
1, R4

2, R4
3 and the super-

imposed results of all groups of two out of the three shares, are merely random
grids from which no secret can be obtained, whereas (g) R4

1 ⊗ R4
2 ⊗ R4

3, the
superimpositiion of the three random grids, reveals B to our visual system.
As a result, {R4

1, R
4
2, R

4
3} produced by Algorithm 4 is indeed a set of VCRG-3

of B. It is lucid that Figure 7.4 provides some visualized evidence to Theorem
2.

Figures 7.5 and 7.6 show the corresponding results of Algorithms 5 and 6
for VCRG-3 with respect to B where {R5

1, R
5
2, R

5
3} and {R6

1, R
6
2, R

6
3} are the

two sets of random grids produced by Algorithms 5 and 6, respectively. It is
seen from Figure 7.5 and 7.6, {R5

1, R
5
2, R

5
3} and {R6

1, R
6
2, R

6
3} are surely two

sets of VCRG-3 of B. The correctness of Theorem 3 is visually shown here.
In summary, based upon Figures 7.4–6, Rai and Rai ⊗Rai are random grids

with T (Rai ) = 1/2 (see Figures 7.4(a)–(c), 7.5(a)–(c), and 7.6(a)–(c)) and
T (Rai ⊗ (Raj ) = 1/4 (see Figures 7.4(d)–(f), 7.5(d)–(f), and 7.6(d)–(f)) for
1 6 i 6= j 6 3 and a ∈ {4, 5, 6}. By comparing the reconstructed images, i.e.,
R4

1⊗R4
2⊗R4

3, R5
1⊗R5

2⊗R5
3 and R6

1⊗R6
2⊗R6

3 (see Figures 7.3(g), 7.4(g), and
7.5(g), respectively), we realize that R4

1 ⊗ R4
2 ⊗ R4

3 (by Algorithm 4) attains
the highest light contrast, while R5

1 ⊗ R5
2 ⊗ R5

3 (by Algorithm 5) the lowest.
In fact, these results are foretold by Table 7.6: c(E4) = 1/4, c(E5) = 1/9,
c(E6) = 1/8 for n = 3 where Ea = {Ra1 , Ra2 , Ra3} for a ∈ {4, 5, 6}.

Experiment 2: Encrypting a gray-level image to obtain VCRG-3.
Figure 7.7 illustrates the experimental results of applying Algorithm 7 to pro-
duce a set of VCRG-3 for a gray-level image. Figure 7.7(a) is the gray-level
image G to be encrypted; (b) shows the halftone version H of G by using
the error diffusion technology; (c), (d), and (e) present the outcomes of Al-
gorithm 7 where Encryption VCRG(H, 3) was implemented by Algorithm 4,
namely R4

1, R4
2 and R4

3, respectively; (f), (g), and (h) give the superimposed
results of R4

1⊗R4
2, R4

1⊗R4
3 and R4

2⊗R4
3, respectively; and (i) depicts that of

R4
1⊗R4

2⊗R4
3. As seen from Figure 7.7, R4

1, R4
2, and R4

3 and the superimposed
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(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 7.4
Implementation results of Algorithm 4 for VCRG-3 with respect to B: (a) R4

1,
(b) R4

2, (c) R4
3; (d) R4

1 ⊗R4
2, (e) R4

1 ⊗R4
3, (f) R4

2 ⊗R4
3; (g) R4

1 ⊗R4
2 ⊗R4

3.
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(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 7.5
Implementation results of Algorithm 5 for VCRG-3 with respect to B: (a) R5

1,
(b) R5

2, (c) R5
3; (d) R5

1 ⊗R5
2, (e) R5

1 ⊗R5
3, (f) R5

2 ⊗R5
3; (g) R5

1 ⊗R5
2 ⊗R5

3.
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(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 7.6
Implementation results of Algorithm 6 for VCRG-3 with respect to B: (a) R6

1,
(b) R6

2, (c) R6
3; (d) R6

1 ⊗R6
2, (e) R6

1 ⊗R6
3, (f) R6

2 ⊗R6
3; (g) R6

1 ⊗R6
2 ⊗R6

3.
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results from any two out of them are nothing but random pictures, where
R4

1 ⊗R4
2 ⊗R4

3 reveals H, and consequently G. We realize that {R4
1, R

4
2, R

4
3} is

a set of VCRG-3 with respect to G.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 7.7
Results of Algorithm 7 where Encryption VCRG(H, 3) was implemented by
Algorithm 4 with respect to gray-level image G in Experiment 2: (a) G ; (b)
halftone version H of G ; (c) R4

1, (d) R4
2, (e) R4

3; (f) R4
1⊗R4

2, (g) R4
1⊗R4

3, (h)
R4

2 ⊗R4
3 ; (i) R4

1 ⊗R4
2 ⊗R4

3.

Let {R5
1, R

5
2, R

5
3} and {R6

1, R
6
2, R

6
3} denote the outcomes of Algorithm 7

when Encryption VCRG(H, 3) was implemented by Algorithms 5 and 6, re-
spectively, with respect to G. Figures 7.8(a) and (b) are the superimposed
results of R5

1 ⊗ R5
2 ⊗ R5

3 and R6
1 ⊗ R6

2 ⊗ R6
3, respectively. It is noted that the

three encrypted shares and the superimposed result of any group of two out
of the three shares are indeed random grids that are omitted here.

The feasibility and applicability for Algorithm 7 to encrypt a gray-level
image into VCRG-3 are demonstrated in a visual sense from Figures 7.7 and
7.8. Obviously, implementing Encryption VCRG(H, 3) based upon Algorithm
4 makes Algorithm 7 achieve the highest contrast (while that based upon Al-
gorithm 5 is the worst).

Experiment 3: Encrypting a color image to obtain color VCRG-3.
We tested Algorithm 8 with respect to a color image for obtaining color
VCRG-3 in this experiment. Figure 7.9(a) is the color image P to be en-
crypted; (b), (c), and (d) are P c, Pm, and Py, which are the c, m, and y
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(a) (b)

FIGURE 7.8
Reconstructed results of VCRG-3 with respect to G : (a) R5

1 ⊗ R5
2 ⊗ R5

3; (b)
R6

1 ⊗R6
2 ⊗R6

3.

components of P , respectively; (e), (f), and (g) are P c, Pm, and P y which are
the c-, m-, and y-colored halftone images (by error diffusion) of P c, Pm and
Py, respectively.

By Step 3 of Algorithm 8, P x would be encrypted into {Rx
1 ,R

x
2 ,R

x
3} by

Eycrypt cVCRG(P x, x , 3) for x ∈ {c,m,y}. When Eycrypt cVCRG(Pm,
m, 3) was based upon Algorithm 4, Figure 7.10 evidences the effectiveness of
{Rm

1 ,R
m
2 ,R

m
3 } for being a set of m-colored VCRG-3 with respect to Pm in

which (a)–(f) are the results of Rm
1 , Rm

2 , Rm
3 , Rm

1 ⊗ Rm
2 , Rm

1 ⊗ Rm
3 , and

Rm
2 ⊗ Rm

3 , respectively; and (g) is that of Rm
1 ⊗ Rm

2 ⊗ Rm
3 . Regarding P c

and Py, the corresponding results are similar to Figure 7.10 so that we simply
omit them.

The encrypted monochromatic-colored shares P c
i , P

m
i and Py

i were further
composed to obtain color random grid Ri = {P c

i , P
m
i , P

y
i } for 1 6 i 6 3 in

Step 4 of Algorithm 8. We show the corresponding results in Figure 7.11 where
(a)–(c) are color random grids R1, R2, R3; (d)–(f) give results of R1 ⊗R2,
R1 ⊗R3, R2 ⊗R3, respectively; and (g) shows that of R1 ⊗R2 ⊗R3. When
we implemented Eycrypt cVCRG(P x, x , 3) is based upon Algorithm 4, 5, or
6. The correctness of Theorem 4 holds in a visual sense from the results of
Figures 7.8–10.

Experiment 4: Obtaining VCRG-4.
From the above analytic and experimental results, we know that Algorithm
4 achieves the higher light contrast as compared to Algorithms 5 and 6 for
binary and gray-level images, so does Algorithm 8 based upon Algorithm 4 as
compared to those based upon Algorithms 5 and 6 for a color image. We only
tested Algorithm 4 for binary VCRG-4 and Algorithm 8 based upon Algo-
rithm 4 for color VCRG-4 here. Figure 7.12 summarizes the results of binary
VCRG-4 where (a) is the binary image B encrypted; (b)–(e) are R1, R2, R3,
R4 produced by Algorithm 4; (f) presents the result of R1⊗R2; (g) shows that
of R1 ⊗R2 ⊗R3; and (h) gives that of R1 ⊗R2 ⊗R3 ⊗R4. Even though the
superimposed results from other groups of less than four shares are not shown
here, they are really random grids as expected. It is seen from Figure 7.12
that only when all four shares are superimposed can we see B, while no group
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(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 7.9
(See color insert.) Results of Steps 1 and 2 of Algorithm 8 for VCRG-3 with
respect to color image P in Experiment 3: (a) P ; (b) P c, (c) Pm, (d) Py; (e)
P c, (f) Pm, (g) Py.
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(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 7.10
(See color insert.) Results of Step 3 of Algorithm 8 with respect to Pm where
Eycrypt cVCRG(Pm, m, 3) was based upon Algorithm 4: (a) Rm

1 , (b) Rm
2 ,

(c) Rm
3 ; (d) Rm

1 ⊗Rm
2 , (e) Rm

1 ⊗Rm
3 , (f) Rm

2 ⊗Rm
3 ; (g) Rm

1 ⊗Rm
2 ⊗Rm

3 .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 7.11
(See color insert.) Results of Algorithm 8 for VCRG-3 with respect to P : (a)
R1, (b) R2, (c) R3; (d) R1⊗R2, (e) R1⊗R3, (f) R2⊗R3; (g) R1⊗R2⊗R3

(based upon Algorithm 4); (h) R
′

1 ⊗R
′

2 ⊗R
′

3 (based upon Algorithm 5); (i)
R
′′

1 ⊗R
′′

2 ⊗R
′′

3 (based upon Algorithm 6).
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of less than four shares tells anything about B. {R1, R2, R3, R4} is indeed a
set of VCRG-4.

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 7.12
Results of Algorithms 4 for VCRG-4 with respect to binary image B: (a) B;
(b) R1, (c) R2, (d) R3, (e) R4; (f) R1 ⊗ R2; (g) R1 ⊗ R2 ⊗ R3; (h) R1 ⊗ R2;
(g) R1 ⊗R2 ⊗R3 ⊗R4.

Since n = 4 in this experiment, we have T (Ri) = 1/2 (see Figures 7.12(b)–
(e)), T (Ri ⊗ Rj) = 1/4 (see (f)), and T (Ri ⊗ Rj ⊗ Rk) = 1/8 (see (g)) for
1 6 i 6= j 6= k 6 4. Further, from Table 7.6 we know that the light contrast
of Algorithm 4 is c(E4) = 1/8 for n = 4. Figure 7.13 gives some experimental
results of Algorithm 8 for color VCRG-4 where Eycrypt cVCRG(P x, x , 4)
was based upon Algorithm 4 with respect to P (see Figure 7.9(a)). Figures
7.13(a)–(d) are the color random grids R1,R2,R3,R4 produced; (e) presents
the result of R1 ⊗R2; (f) shows that of R1 ⊗R2 ⊗R3; and (g) gives that of
R1 ⊗R2 ⊗R3 ⊗R4. As seen from Figure 7.13, we realize that {R1 ⊗R2 ⊗
R3 ⊗R4} is a set of color VCRG-4 of P .

The results of the above four experiments are visualized evidences to the
correctness of Theorems 2–4. The proposed schemes (Algorithms 4-8) in pro-
ducing VCRG-n for a secret image are feasible and applicable. Among the
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(a) (b) (c)

(d) (e) (f)

(g)

FIGURE 7.13
(See color insert.) Results of Algorithms 8 where Encrypt cVCRG(P x, x , 4)
was based upon Algorithm 4 for VCRG-4 with respect to P (Figure 7.9(a)):
(a) R1, (b) R2, (c) R3, (d) R4; (e) R1 ⊗R2; (f) R1 ⊗R2 ⊗R3; (g) R1 ⊗
R2 ⊗R3 ⊗R4.
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approaches, Algorithm 4 (Algorithm 8 based upon Algorithm 4) is the most
effective scheme in terms of light contrast for binary or gray-level (color) im-
ages.

It is noticed that when we adopt the light contrast to measure the recon-
structed result for a conventional n out of n visual secret sharing scheme [9],
the best result is 1/2n−1. That means that Algorithm 4 achieves the same
best light contrast. Moreover, it is so appealing that these schemes neither
induce any extra pixel expansion nor require encoding basis matrix. Those
approaches in conventional visual cryptography suffer from the disadvantage
of the inevitable pixel expansion, which increases exponentially as n increases
(and additionally increases as c or dlog2ce for the color cases where c is the
number of colors in the secret image), in the basis matrices. Table 7.7 summa-
rizes the pixel expansions needed by some efficient n out of n visual crypto-
graphic schemes in the literature and our (n, n)-VCRG schemes. Owing to the
reason that the size of the encrypted shares and reconstructed image would
not be expanded, our schemes based upon random grids are more attractive
than those in conventional visual cryptography for both theoretical concerns
and practical applications.

TABLE 7.7
Comparison of pixel expansions for conventional (n, n) visual
cryptographic and (n, n)-VCRG schemes.

binary color

Naor and Shyu Blundo et al. Shyu Shyu
Shamir [9] [13] [3] [11] [13]

2n−1 1


(c− 1)2n−1 − c+ 2

if n is odd;
c(c− 1)2n−2 − c

otherwise

dlog2ce × 2n−1 1

7.4 Concluding Remarks

In this chapter, we propose novel schemes for visual secret sharing using ran-
dom grids. At first, we give a new definition for the visual cryptograms of
n(> 2) random grids with respect to a binary image. Based upon the defini-
tion, we design effective algorithms, prove their correctness formally, analyze
the light contrast in the reconstructed image, and demonstrate their feasi-
bility by computer simulations. By exploiting the skills of halftone and color
decomposition in Ref. [12], the enhanced algorithms are also developed and
verified to deal with gray-level and color images.
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The proposed schemes incorporate human visual intelligence with infor-
mation security in such a way that no computation but only human vision
is needed in the decryption process. They provide cost effective, handy, and
portable solutions to image encryption or sharing even for inexperienced users,
especially for circumstances where no computer can be accessed. Since a secret
image can be encrypted/shared among n(> 2) participants (instead of only
two), our approaches extend and generalize the studies in Refs. [12, 7] such
that the applicability of image encryption or sharing can be broadened to a
greater extent.

The n shares of random grids generated by our VCRG-n algorithms work
well just like those shares by the conventional n out of n visual secret sharing
schemes based upon the definition of Naor and Shamir [9]. However, the pixel
expansion in our schemes is 1 for both of the binary and color images, while
that in Ref. [9] is 2n−1 for the binary case and that in Ref. [11] is dlog2ce ×2n−1

for the color image containing c colors. Therefore, the size of the encoded
shares by our schemes would be much smaller (the same as the secret image).
Further, the sophisticated encoding basis matrices in Refs. [9, 5, 4, 8, 14,
2, 1, 3, 10, 6, 11] are no more needed in our schemes. Regarding the visual
perception in the reconstructed images, our Algorithm 4 achieves the same
light contrast as good as the best n out of n visual secret sharing scheme
devised in Ref. [9]. These clarify the superiority of our schemes.

Our encryption algorithms can be easily hardwired by incorporating a 0/1
random number generator with T flip-flops or Exclusive-OR gates. It would
be an interesting challenge to design a special VCRG hardware for image
encryption. In fact, many research topics in conventional visual cryptography
could be reexamined in view of random grids.
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8.1 Introduction

To describe a visual cryptography scheme we encode the encryption of a pixel
by Boolean matrices. The rows represent the slides and the columns represent
the different subpixels.

For example, the encoding illustrated in Figure 8.1 is described by

M =

0 1 0 1
0 0 1 1
0 1 1 0

 .

To describe the random decision, which must be made when encoding a
pixel, we use multisets that contain all possible choices with the right fre-
quency.

This leads to the formal definition of a visual cryptography scheme.

Definition 1 Let Γ be any access structure for n persons. A visual cryptog-
raphy scheme is a pair of multisets Mb and Mw of Boolean n ×m matrices.
Which satisfy:

223
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8.2 Preliminaries

For the moment we will ignore the pixel expansion and the randomness. Then
contrast optimal visual cryptography schemes can be simplified.

Lemma 1 Let Γ be any access structure then there exists a contrast optimal
visual cryptography scheme (MW ,MB) for Γ with the property that MW is the
multiset of all column permutations of a matrix MW and MB is the multiset
of all column permutations of a matrix MB.

Proof
Let (M′W ,M

′
B) be a contrast optimal visual cryptography scheme for Γ with

pixel expansion m and randomness r.
Let MW = (M ′W

(1)
, . . . ,M ′W

(r)) be the n × (mr) matrix which consist of
all matrices M ′W

(i) ∈ M′W (i = 1, . . . , r) written in sequence, one after the
other. Similarly let MB be the n× (mr) matrix that consists of the matrices
in M′B written after each other.

Let G /∈ Γ, by Definition 1 (b) the restriction of MW and MB to the rows
i ∈ Γ must give return two matrices that different only for a permutation of
their columns, i.e., the scheme (MW ,MB) satisfies the security requirement
(Definition 1 (b)).

Now let G ∈ Γ by Definition 1 (c) the restriction of every matrix in MB to
the rows i ∈ Γ contains at least αm more nonzero columns than the restriction
of a matrix in MW to the same rows. Thus, the restriction of MB to the rows
i ∈ Γ contains at least αmr more nonzero columns than the restriction of MW

to the rows i ∈ Γ. That proves that the scheme (MW ,MB) reconstructs the
secret image. 2

The advantage of the scheme constructed by Lemma 1 is that the visual
cryptography scheme is now described by just two Boolean matrices M ′W and
M ′B instead of two multisets of Boolean matrices. Moreover the order of the
columns in M ′W and M ′B does not matter. For each S ⊆ {1, . . . , n} let x(W )

S

denote the number of columns in M ′W with 1 in the rows corresponding to
S and 0 in the other rows. Similarly define the variables x(B)

S . The scheme is
described completely by the values x(B)

S , x(W )
S .

The security requirements of the visual cryptography scheme translates to
the linear equations ∑

S⊆{1,...n}
S∩G6=0

x(W )
s =

∑
S⊆{1,...n}
S∩G6=0

x(B)
s (8.1)

for all G /∈ Γ and the requirement that a qualified subset can see the image
translates to ∑

S⊆{1,...n}
S∩G6=0

x(W )
s <

∑
S⊆{1,...n}
S∩G6=0

x(B)
s (8.2)
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for all minimal qualified subsets G.
The equations (8.1) and (8.2) lead to the linear program. Replace (8.1) by∑

S⊆{1,...n}
S∩T 6=0

x(W )
s + α ≤

∑
S⊆{1,...n}
S∩T 6=0

x(B)
s

and require ∑
S⊆{1,...n}

x(B)
s =

∑
S⊆{1,...n}

x(W )
s = 1

and maximize α. For small values of n it is no problem to feed that program
into a computer and get the optimal visual cryptography scheme. (I pre-
pared such a program for my book [11]. You can download it from my home-
page http://cage.ugent.be/~klein/vis-crypt/buch/).

For the k-out-of-n access structure it is possible to simplify the linear
program and solve it directly.

Lemma 2 Let Γ be the k-out-of-n access structure. Then in addition to
Lemma 1 we can require that any row permutation of MW is also a column
permutation of MW and, similarly, every row permutation of MB is also a
column permutation of MB.

Proof
Let MW and MB be the two Boolean matrices that describe the visual cryp-
tography scheme constructed in Lemma 1.

For every row permutation σ the matrices Mσ
W and Mσ

B also describe a
k-out-of-n visual cryptography scheme.

Let M̂W be the n × (mn!) matrix that consists of all row permutations
Mσ
W of MW written after each other. Similarly define M̂B . As we have seen

already in the proof of Lemma 1 this also gives a solution of the k-out-of-n
visual cryptography scheme. In addition M̂W and M̂B satisfy the permutation
invariance stated in the Lemma. 2

Lemma 2 allows us to simplify the linear program for a contrast optimal
k-out-of-n visual cryptography scheme. With the notations from above we
get x(B)

S = x
(B)
S′ and x

(W )
S = x

(W )
S′ for |S| = |S′|. Let for i ∈ {0, . . . , n} be

x
(B)
i = x

(B)
{1,...,i} and x

(W )
i = x

(W )
{1,...,i}.

The linear program simplifies to:

n∑
i=0

(
n

i

)
x

(W )
i =

n∑
i=0

(
n

i

)
x

(B)
i = 1 (8.3)

This equation express that the variables denotes the fractions of black sub-
pixels and that all fractions add up to 1.

n−j∑
i=0

(
n− j
i

)
x

(W )
i =

n−j∑
i=0

(
n− j
i

)
x

(B)
i (8.4)
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for j = 0, . . . , k−1. This equation expresses that the stack of j transparencies
always has the same number of white subpixels and replaces (8.1).

Maximize

α =
n−k∑
i=0

(
n− k
i

)
x

(W )
i −

n−k∑
i=0

(
n− k
i

)
x

(B)
i (8.5)

In this form the linear program is simple enough to solve it directly. We
will track this problem in Sections 8.5 and 8.6.

The linear program has been independently deduced by several researchers.
(Variable transformations like x̂(W )

i = x
(W )
n−i or x̂(W )

i =
(
n
i

)
x

(W )
i are common.

This makes the results look quite different in various articles. Always check
the meaning of the variables.)

8.3 Approximate Inclusion Exclusion

The well-known inclusion-exclusion-formula states.

|A1 ∪A2 ∪ . . . ∪An| =
∑
i

|Ai| −
∑
i<j

|Ai ∩Aj |+∑
i<j<k

|Ai ∩Aj ∩Ak| − . . .− (−1)n|A1 ∩ . . . ∩An| .

Obviously, every term on the right-hand side is needed to determine the size
of the union. At this point we can ask whether it is possible to give an ap-
proximate inclusion-exclusion formula. More formally we ask:

Given integers m,n with m ≤ n and sets A1, . . . , An and B1, . . . , Bn where
not all Bi are empty and where∣∣∣∣⋂

i∈S
Ai

∣∣∣∣ =
∣∣∣∣⋂
i∈S

Bi

∣∣∣∣
for every subset S ⊆ {1, . . . , n} such that |S| < m, what is the smallest (or
largest) possible value for the fraction

|A1 ∪ . . . ∪An|
|B1 ∪ . . . ∪Bn|

?

The problem of approximate inclusion-exclusion is closely related to con-
trast bounds in visual cryptography schemes. For n-out-of-n and (n−1)-out-of-
n scheme the solution of the approximate inclusion-exclusion problem trans-
lates directly to a contrast optimal visual cryptography scheme (see Theo-
rem 4 for the details of the translation). Other applications of the approximate
inclusion-exclusion are constant depth circuits and Boolean functions [15].
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It is convenient to replace the size of the sets in the approximated inclusion
exclusion problem by arbitrary measures to get a continuous problem. This
leads to the following problem. Let (Ω,A, µ) be a measurable space and let
A1, . . . , An and B1, . . . , Bn be measurable sets with

µ

(⋂
i∈S

Ai

)
= µ

(⋂
i∈S

Bi

)
for every subset S ⊆ {1, . . . , n} such that |S| < m, what is the smallest (or
largest) possible value for the fraction

µ(A1 ∪ . . . ∪An)
µ(B1 ∪ . . . ∪Bn)

?

Similarly to Lemma 1 we can restrict the approximate inclusion-exclusion
problem to symmetric collections. With

xi =
(
n

j

)µ(⋂
j∈S

Aj ∩
⋂
j /∈S

Aj

)
− µ

(⋂
j∈S

Bj ∩
⋂
j /∈S

Bj

)
for |S| = i the approximate inclusion-exclusion problem leads to the linear
program

Maximize:
n∑
i=1

xi (8.6)

subject to:

n∑
i=j

(
i

j

)
xi = 0 for 1 ≤ j < m (8.7)

−1 ≤
∑
i∈S

xi ≤ 1 for allS ⊆ {1, . . . , n} . (8.8)

(See [15] Lemma 3 for a proof).
Dualizing the linear program leads to the following problem of approxima-

tion theory (see [15] Lemma 5 and Section 8.6 where we use that technique
to determine the asymptotic behavior of k-out-of-n schemes).

Determine
inf
q

max
x=1,...,n

1− q(x) (8.9)

where the infimum ranges over all polynomials q of less than m that have zero
constant terms and satisfies q(x) ≤ 1 for all x ∈ {1, . . . , n}.

The special case m = n leads to Krawtchuck polynomials (see [15] The-
orem 3). But for this special case a elementary combinatorial proof exists
(see [12]).
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Theorem 3 Let A1, . . . , An and B1, . . . , Bn be two collections of sets satisfy-
ing ∣∣∣∣⋂

i∈S
Ai

∣∣∣∣ =
∣∣∣∣⋂
i∈S

Bi

∣∣∣∣
for all proper subsets S of {1, . . . , n}. Then∣∣⋃n

i=1Bi
∣∣− ∣∣⋃ni=1Ai

∣∣∣∣⋃n
i=1Bi

∣∣ ≤ 1
2n−1

.

The bound is sharp.

Proof
We prove by induction on n that the conditions∣∣∣∣⋂

i∈S
Ai

∣∣∣∣ =
∣∣∣∣⋂
i∈S

Bi

∣∣∣∣
for all S ( {1, . . . , n} and the condition∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣+ k =
∣∣∣∣ n⋃
i=1

Bi

∣∣∣∣
with k > 0 imply that ∣∣∣∣ n⋃

i=1

Bi

∣∣∣∣ ≥ k2n−1 .

For n = 1 this is trivial. Now suppose that the theorem holds for n and
let the sets A1, . . . , An+1 and B1, . . . , Bn+1 satisfy∣∣∣∣⋂

i∈S
Ai

∣∣∣∣ =
∣∣∣∣⋂
i∈S

Bi

∣∣∣∣
for all S ( {1, . . . , n+ 1} and∣∣∣∣n+1⋃

i=1

Ai

∣∣∣∣+ k =
∣∣∣∣n+1⋃
i=1

Bi

∣∣∣∣ .
The collections A′i = Ai\An+1 and B′i = Bi\Bn+1 satisfy |

⋃n
i=1A

′
i|+ k =

|
⋃n
i=1B

′
i| and for every proper subset S ( {1, . . . , n} we have∣∣∣∣⋂

i∈S
A′i

∣∣∣∣ =
∣∣∣∣⋂
i∈S

Ai

∣∣∣∣− ∣∣∣∣⋂
i∈S

Ai ∩An+1

∣∣∣∣
=
∣∣∣∣⋂
i∈S

Bi

∣∣∣∣− ∣∣∣∣⋂
i∈S

Bi ∩Bn+1

∣∣∣∣ =
∣∣∣∣⋂
i∈S

B′i

∣∣∣∣ .
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Thus the collections A′i, B
′
i satisfy the induction hypothesis, i.e., we have

|
⋃n
i=1B

′
i| ≥ k2n−1.

On the other hand, we have the collections A′′i = Ai ∩ An+1 and B′′i =
Bi ∩Bn+1. Since ∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣ =
∣∣∣∣ n⋃
i=1

Bi

∣∣∣∣
⇐⇒

∣∣∣∣ n⋃
i=1

A′i

∣∣∣∣+
∣∣∣∣ n⋃
i=1

A′′i

∣∣∣∣ =
∣∣∣∣ n⋃
i=1

B′i

∣∣∣∣+
∣∣∣∣ n⋃
i=1

B′′i

∣∣∣∣
and |

⋃n
i=1A

′
i|+ k = |

⋃n
i=1B

′
i| we find that the collections A′′i and B′′i satisfy

the induction hypothesis with |
⋃n
i=1B

′′
i | + k = |

⋃n
i=1A

′′
i |. Thus, |Bn+1| =

|An+1| ≥ |
⋃n
i=1A

′′
i | ≥ k2n−1. This proves∣∣∣∣n+1⋃

i=1

Bi

∣∣∣∣ =
∣∣∣∣ n⋃
i=1

B′i

∣∣∣∣+ |Bn+1| ≥ k2n−1 + k2n−1 = k2n

as desired.
To see that the bound is sharp consider the sets

Ai = {S ⊂ {1, . . . , n} | |S| even, i ∈ S}

and
Bi = {S ⊂ {1, . . . , n} | |S| odd, i ∈ S} .

Since for each nonempty set the number of subsets of even cardinality is the
same as the number subsets of odd cardinality (0 = (1−1)n =

∑n
j=0(−1)j

(
n
j

)
)

we get ∣∣∣∣⋂
i∈S

Ai

∣∣∣∣ =
∣∣∣∣⋂
i∈S

Bi

∣∣∣∣ = 2n−|S|−1

for each proper subset S of {1, . . . , n}. Hence, the sets Ai and Bi satisfies the
requirement conditions of the approximate inclusion-exclusion problem and∣∣⋃n

i=1Bi
∣∣− ∣∣⋃ni=1Ai

∣∣∣∣⋃n
i=1Bi

∣∣ =
2n−1 − (2n−1 − 1)

2n−1
=

1
2n−1

,

i.e., the bound given by the Theorem is sharp. 2

Theorem 3 translates directly to an contrast optimal n-out-of-n visual
cryptography scheme.

Theorem 4 (see [16]) The optimal contrast of a n-out-of-n visual cryptog-
raphy scheme is α = 21−n and the minimal pixel-expansion is m = 2n−1.

Proof
By Lemma 1 a n-out-of-n visual cryptography scheme can be described by
two Boolean matrices MW and MB .
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Interpret the row vectors of MW and MB as incidence vectors of the sets
Ai and Bi.

The security requirement ((b) in Defintion 1) says |
⋃
i∈S Ai| = |

⋃
i∈S Bi|

for all proper subsets S of {1, . . . , n}. By the inclusion-exclusion formula this
is equivalent to |

⋂
i∈S Ai| = |

⋂
i∈S Bi| for all proper subsets S of {1, . . . , n}.

By Theorem 3 we have

α =

∣∣⋃n
i=1Bi

∣∣− ∣∣⋃ni=1Ai
∣∣∣∣⋃n

i=1Bi
∣∣ ≤ 21−n .

Vice versa the incidence vectors of sets solving the approximated inclusion-
exclusion problem define a contrast optimal n-out-of-n visual cryptography
scheme. Note that 1/α is also a lower bound for the pixel expansion m and
the example shows that this bound is sharp. 2

Using the proof technique of Theorem 3 one could also solve the approxi-
mate inclusion-exclusion problem for the case that only the size intersections
of up to n− 2 sets are known.

Result 5 (see [12] Theorem 3.6) Let A1, . . . , An and B1, . . . , Bn be two
collections of sets satisfying ∣∣∣∣⋂

i∈S
Ai

∣∣∣∣ =
∣∣∣∣⋂
i∈S

Bi

∣∣∣∣
for all proper subsets S of {1, . . . , n} with |S| ≤ n− 2. Then∣∣⋃n

i=1Ai
∣∣∣∣⋃n

i=1Bi
∣∣ ≥ 1−

(
n− 1
bn−1

2 c

)−1

.

The bound is sharp.

For the proof see [12]. At this point we show only the construction that
proves the sharpness.

We give for every subset S ⊆ {1, . . . , n} the size∣∣∣∣⋂
i∈S

Ai\
⋃
i/∈S

Ai

∣∣∣∣ and
∣∣∣∣⋂
i∈S

Bi\
⋃
i/∈S

Bi

∣∣∣∣ .
The construction is best understood if we look at the example n = 9 first.

|S| 1 2 3 4 5 6 7 8 9
|
⋂
i∈S Ai\

⋃
i/∈S Ai| 0 3 0 1 0 0 2 0 4

|
⋂
i∈S Bi\

⋃
i/∈S Bi| 4 0 2 0 0 1 0 3 0
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In general we will have a zigzag line of numbers starting on the left side
in the B-row with the value bn−1

2 c, going down to 1, then has one gap and
restart with 1. The general rule is as follows:

∣∣∣∣⋂
i∈S

Ai\
⋃
i/∈S

Ai

∣∣∣∣ =


|S| − dn2 e if |S| > n/2, and |S| is odd
dn2 e − |S| if |S| < n/2, and |S| is even
0 in all other cases

(8.10)

∣∣∣∣⋂
i∈S

Bi\
⋃
i/∈S

Bi

∣∣∣∣ =


|S| − dn2 e if |S| > n/2, and |S| is even
dn2 e − |S| if |S| < n/2, and |S| is odd
0 in all other cases

(8.11)

Some elementary combinatorial calculations ([12] Theorem 3.8) show that
this example satisfies Result 5 with equality.

Similar to Theorem 4 we can use Result 5 to prove that the contrast α of
the optimal (n−1)-out-of-n visual cryptography scheme satisfies α ≤ 2

n( n−1

bn−1
2 c)

.

The example given above can be used to construct a scheme that satisfies the
bound with equality (see [12] Theorem 3.10).

8.4 Designs and Codes

2-out-of-n visual cryptography schemes are a very special case. In a symmetric,
contrast optimal scheme we encode a white pixel by giving all participants
the same share. For a black pixel we want to minimize the overlap of black
subpixels on the transparencies. This is a typical coding theory problem.

The link to coding theory becomes clear by comparing the following two
theorems and their proofs.

Theorem 6 (Plotkin bound) A binary code of length n with minimal dis-
tance d > 1

2n has at most 2
⌊

d
2d−n

⌋
codewords.

Proof
Let m be the number of codewords. Let A =

∑
c6=c′ d(c, c′) where the sum

ranges over all pairs of codewords. Since the code has minimal distance d the
sum is bounded below by

(
m
2

)
d.

Let mi be the number of codewords that have 1 in the ith column. The
contribution of those columns to the total distance A is mi(m − mi) ≤
bm/2cdm/2e.

Hence, bm/2cdm/2e ≥ A ≥ 1
2m(m− 1)d. For d > 1

2n this gives the bound
stated by the Theorem. 2
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Theorem 7 ([3] Theorem 4.2) The contrast α of an 2-out-of-n visual
cryptography scheme is bounded by

α ≤ dn/2ebn/2c
n(n− 1)

=

{
n

4n−4 for n even
n+1
4n for n odd

Proof
Let m be the number of subpixels and α be the contrast. When stacking
transparencies the fraction of black subpixels cannot become smaller. Thus,
the number of black subpixels on each transparencies must be increased at
least by αm, i.e. for every transparency t1 and every transparency t2 there
must be at least αm subpixels that are write on t1 and black on t2. All pairs
of transparencies give, therefore, at least n(n − 1)αm black-white subpixel
combinations.

Now look at the number of black-white combinations that come from a
single subpixel. If the subpixel is white on i transparencies and black on
n− i transparencies it contributes i(n − i) black-white combinations. The
term i(n− 1) is bounded by bn/2cdn/2e.

This lead to the inequality

n(n− 1)αm ≤ bn/2cdn/2em .

Solving the inequality gives the theorem. 2

The bound of Theorem 7 is sharp and the contrast optimal 2-out-of-n
schemes are related to designs. Let’s recall the definition of a 2 − (v, k, λ)
design. (I recommend [1] as a reference for design theory.)

Definition 2 A 2− (v, k, λ) design is a an incidence structure (V,B, I) with

• |V| = v points

• Every block B ∈ B is incident with k points.

• Every pair of points p, q ∈ V is joined by exactly λ blocks.

Theorem 8 (see [3] Theorem 4.4) Let n be even. A 2-out-of-n visual
cryptography scheme with optimal contrast α = n+1

4n and pixel expansion m

exists if and only if there exists a 2− (n, n2 ,
m(n−2)

4n−4 ) design.

Proof
If we have equality in Theorem 7 we must have equality in every step.

Thus, for each two transparencies there are exactly αm subpixels that are
white on the first and black on the second transparency. Furthermore, each
subpixel is black on exactly n/2 transparencies.

Let MB be the Boolean matrix that describes the encoding of a black pixel.
Interpret MB as an incidence matrix of incidence structure (V,B, I) (Columns
of MB corresponds to block and rows of MB to points.)
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As we have seen above every block consists of n
2 points.

Since for every two transparencies the number of subpixels that is white on
the first and black on the second is constant. Each transparency must have the
same number of black subpixels. Since each subpixel is black on exactly half
of the transparencies the number of black subpixels per transparency must be
m
2 .

Thus, two transparencies have exactly m
2 − αm = m(n−1)

4n−4 common black
subpixels. In the interpretation as incidence structure: Each two points are
joined by m(n−1)

4n−4 blocks.

In other words MB is the incidence matrix of a 2− (n, n2 ,
m(n−2)

4n−4 ) design.

Conversely the incidence matrix of a 2 − (n, n2 ,
m(n−2)

4n−4 ) design satisfies all
requirements of a 2-out-of-n visual cryptography scheme. 2

Similarly, we can deal with the case of n odd. The Proof of Theorem 7
shows that every column in MB must contain either bn/2c or dn/2e zero
entries. So we do not get a design (every block is of the same size), but a
structure called pairwise balanced design (PDB) where the size of block may
vary between some values. We skip the details and just state the final result.

Result 9 (see [3] Theorem 4.5) Let n be odd. A 2-out-of-n visual cryptog-
raphy scheme with optimal contrast α = n

4n−4 and pixel expansion m exists

if and only if there exists a 2 − (n, {n−1
2 , n+1

2 }, w −
m(n+1)

4n ) PBD such that
every point lies in exactly w blocks, where w is an integer in the range

(n− 1)m
2n

≤ w ≤ (n+ 1)m
2n

.

A well-known result from coding theory states that Hadamard codes
archive equality in the Plotkin bound. So we are not surprised that Hadamard
matrices can also be used to construct optimal 2-out-of-n visual cryptography
schemes.

Recall the Definition of Hadamard matrices.

Definition 3 A Hadamard matrix is a n× n matrix H with entries ±1 and
HHt = nI.

It is well known that except for n = 1, 2 the order of a Hadamard matrix
must be divisible by 4. The famous Hadamard conjecture states that for every
n a (4n)×(4n) Hadamard matrix exists. See [8] for an overview of constructions
of Hadamard matrices.

The connection to visual cryptography is established by the next theorem.

Theorem 10 (see [3] Theorem 4.7) The pixel expansion of a contrast op-
timal 2-out-of-(4n− 1) visual cryptography scheme is at least m ≥ 4n− 1. A
scheme with m = 4n− 1 is equivalent to the existence of a 2− (4n− 1, 2n−
1, n−1) design (called a Hadamard design). This is equivalent to the existence
of a Hadamard matrix of order 4n.
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Proof
Let MB be the matrix describing the encoding of a black pixel. As in the proof
of Theorem 8 we find that each transparency must have the same number w
of black subpixels and each two transparencies must share the same number
λ < w of black subpixels. Interpret MB as an integer matrix, then

MBM
t
B = (w − λ)I + λJ .

This matrix has a full rank (det(w−λ)I+λJ = (w−λ)n−1(nλ−λ+w)) and
hence,

4n− 1 = rankMBM
t
B ≤ rankMB ≤ m .

(This is the Fisher’s inequality.)
Now assume m = 4n − 3 then w must be either 2n − 1 or 2n. In the

first case every column of MW must contain 2n− 1 entries 1 and MW is the
incidence matrix of a 2−(4n−1, 2n−1, n−1) design. In the second case every
column of MW must contain 2n entries 1 and MW is the incidence matrix of
a 2− (4n− 1, 2n, n) design. But then the complement of MW is the incidence
matrix of a 2 − (4n − 1, 2n − 1, n − 1) design. This shows that a contrast
optimal 2-out-of-(4n − 1) visual cryptography scheme with pixel expansion
m = 4n − 3 implies the existence of a 2 − (4n − 1, 2n − 1, n − 1) design.
But conversely you get a 2-out-of-(4n − 1) visual cryptography scheme from
a 2− (4n− 1, 2n− 1, n− 1) design by defining MB to be the incidence matrix
of the design and encode it with a pixel by choosing on all transparencies the
same subpixels.

Now we prove that the existence of 2 − (4n − 1, 2n − 1, n − 1) design is
equivalent to the existence of a Hadamard matrix of order 4n.

Multiplying a row or a column of a Hadamard matrix with −1 again gives
a Hadamard matrix. So without loss of generality we may assume that the
first row and the first column of a Hadamard matrix has only 1 as entries. Let
H be a Hadamard matrix of order 4n in that normal from. All rows except
the first row of H must contain 2n entries −1 and for two rows different rows
must differ in exactly 2n columns. Hence, after deleting the first row and first
column H forms the incidence matrix of a 2 − (4n − 1, 2n − 1, n − 1) design
(with −1 instead of 0 to mark that a point is not incident with a block).
Conversely the incidence matrix of a 2 − (4n − 1, 2n − 1, n − 1) becomes a
Hadamard matrix, if one replaces all 0 by −1 and adds an extra column and
an extra row that contains only 1. 2

Other 2-out-of-n visual cryptography schemes are also connected to
Hadamard matrices.

Result 11 (see [3] Theorem 4.9) The minimal pixel expansion m of con-
trast optimal 2-out-of-n visual cryptography schemes satisfies:

m ≥


2n− 2 if n even
n if n ≡ 3 mod 4
2n if n ≡ 1 mod 4

© 2012 by Taylor & Francis Group, LLC



236 Visual Cryptography and Secret Image Sharing

If the Hadamard conjecture is true the bounds are sharp.

We remark that there are 2-out-of-n visual cryptography schemes with
smaller pixel-expansion that are not contrast optimal. In [3] (Theorem 4.12)
2-out-of-n visual cryptography schemes with pixel expansion m ≈

√
n and

contrast α ≈ 1
4 are constructed. For n =

(
m
bm/2c

)
there exists a 2-out-of-n

visual cryptography scheme with pixel expansion m and contrast 1/m (just
color on each transparency is a different set of bm/2c subpixels). This is the
minimal possible pixel expansion.

8.5 Optimal 3-out-of-n Schemes

We construct a scheme that has the normal form of Lemma 2. Remember that
we denoted by x

(W )
i the number of subpixels when encoding a white pixel

that are black of the slides 1, . . . , i and white on the other slides. Similarly
x

(B)
i describes the encoding rule for a black pixel. As we have seen in the

introduction, a k-out-of-n scheme must satisfy

αm =
n−k∑
i=0

(
n− k
i

)
x

(W )
i −

n−k∑
i=0

(
n− k
i

)
x

(B)
i (8.12)

and
n−j∑
i=0

(
n− j
i

)
x

(W )
i =

n−j∑
i=0

(
n− j
i

)
x

(B)
i (8.13)

for j = 0, . . . , k − 1.
Let S(3, g, n) be the visual cryptography scheme that is described by the

values x(W )
0 = x

(B)
n =

(
n−1
g

)
−
(
n−1
g−1

)
, x(W )

n−g = x
(B)
g = 1 and all other variables

are 0.

Theorem 12 ([2] Theorem 4.6) S(3, g, n) is a 3-out-of-n visual cryptogra-
phy scheme with pixel expansion m = 2

(
n−1
g

)
and contrast

α =
g(n− 2g)

2(n− 1)(n− 2)
.

Proof
For j = 0 we have in (8.13):(
n

0

)[(
n− 1
g

)
−
(
n− 1
g − 1

)]
+
(

n

n− g

)
·1 =

(
n

g

)
·1+
(
n

n

)[(
n− 1
g

)
−
(
n− 1
g − 1

)]
= m

For j = 1 we get(
n− 1

0

)[(
n− 1
g

)
−
(
n− 1
g − 1

)]
+
(
n− 1
n− g

)
· 1 =

(
n− 1
g

)
· 1
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which is also true, since
(
n−1
n−g
)

=
(
n−1
g−1

)
. For j = 2 we get(

n− 2
0

)[(
n− 1
g

)
−
(
n− 1
g − 1

)]
+
(
n− 2
n− g

)
· 1 =

(
n− 2
g

)
· 1

which is true since
(
n−1
g

)
−
(
n−1
g−1

)
=
(
n−2
g

)
and

(
n−2
g

)
+
(
n−2
n−g
)

=
(
n−2
g

)
+
(
n−2
q−1

)
=(

n−2
g

)
.

Thus, S(3, g, n) satisfies the security requirements of an 3-out-of-n visual
cryptography scheme.

The contrast of S(3, g, n) is

αm =
(
n− 3

0

)[(
n− 1
g

)
−
(
n− 1
g − 1

)]
+
(
n− 3
n− g

)
· 1−

(
n− 3
g

)
· 1

=
(
n− 2
g

)
+
(
n− 2
g − 1

)
−
(
n− 1
g − 1

)
+
(
n− 3
g − 3

)
−
(
n− 3

3

)
=
(
n− 3
g − 1

)
−
(
n− 2
g − 3

)
+
(
n− 3
g − 3

)
=
(
n− 3
g − 1

)
−
(
n− 3
g − 2

)
So the image is indeed recovered. 2

The scheme S(3, g, n) archives optimal contrast if we choose g = bn+1
4 c.

This is the best possible contrast for a 3-out-of-n scheme. To prove this result
we introduce the canonical form of a k-out-of-n scheme.

Remember that a k-out-of-n scheme is described by the following linear
program.

Maximize:

α =
n−k∑
i=0

(
n− k
i

)
x

(W )
i −

n−k∑
i=0

(
n− k
i

)
x

(B)
i (8.14)

Subject to
n∑
i=0

(
n

i

)
x

(W )
i =

n∑
i=0

(
n

i

)
x

(B)
i = 1 (8.15)

and
n−j∑
i=0

(
n− j
i

)
x

(W )
i =

n−j∑
i=0

(
n− j
i

)
x

(B)
i (8.16)

for j = 0, . . . , k − 1.

Lemma 13 There is an optimal solution of the linear program defined by
(8.14), (8.15), and (8.16) that satisfies:

1.If k is even, then x(W )
i = x

(W )
n−i and x(B)

i = x
(B)
n−i for i = 0, . . . , n.
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2.If k is odd, then x
(W )
i = x

(B)
n−i for i = 0, . . . , n.

3 x(W )
i x

(B)
i = 0 for all i ∈ {0, . . . , n}.

We will say the solution of the linear program is in a canonical form.

Proof
We first show that replacing each transparency of a k-out-of-n visual cryptog-
raphy scheme by its complement again gives a solution of a k-out-of-n visual
cryptography scheme. In the language of linear programming:

Let x(W )
i , x(B)

i be a solution of the linear program (8.14)–(8.16). We claim
that

x̂
(W )
i =

{
x

(W )
n−i if k is even
x

(B)
n−i if k is odd

and

x̂
(B)
i =

{
x

(B)
n−i if k is even
x

(W )
n−i if k is odd

is also a solution of the linear program.
Since

(
n
i

)
=
(
n
n−i
)

the variables x̂(W )
i m x̂

(B)
i satisfy (8.16).

We claim that equation 8.16 implies

n−j∑
i=0

(
n− j
i− h

)
x

(W )
i =

n−j∑
i=0

(
n− j
i− h

)
x

(B)
i

for all h ≤ j. For j = 0 this is trivial and for j ≥ 1, h ≥ 1 it follows from(
n−j
i−h
)

=
(
n−j+1
i−h+1

)
−
(
n−j
i−h+1

)
by induction

n−j∑
i=0

(
n− j + 1
i− h+ 1

)
x

(W )
i =

n−j∑
i=0

(
n− j + 1
i− h+ 1

)
x

(B)
i

and
n−j∑
i=0

(
n− j

i− h+ 1

)
x

(W )
i =

n−j∑
i=0

(
n− j

i− h+ 1

)
x

(B)
i .

To simplify the notation let us assume in the following that k is even.
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When k is odd, it is necessary to exchange x(W )
i by x(B)

i and vice versa.

n−j∑
i=0

(
n− j
i

)
x̂

(W )
i =

n−j∑
i=0

(
n− j
i

)
x

(W )
n−i

=
n∑
i=j

(
n− j
n− i

)
x

(W )
i

=
n∑
i=j

(
n− j
i− j

)
x

(W )
i

=
n∑
i=j

(
n− j
i− j

)
x

(B)
i

=
n−j∑
i=0

(
n− j
i

)
x

(B)
i ,

i.e., the variables x̂(W )
i m x̂

(B)
i satisfy (8.16).

By the same argument we get

n−k∑
i= 0

(
n− k
i− h

)
x

(B)
i + (−1)hα =

n−k∑
i= 0

(
n− k
i− h

)
x

(W )
i (8.17)

for h ≤ k.
For h = k this shows that x̂(W )

i m x̂
(B)
i is an optimal solution of the linear

program.
Let x(W )

i , x(B)
i , x̂(W )

i and x̂(B)
i be two solutions of the linear program, then

x̃
(W )
i = 1

2 (x(W )
i + x̂

(W )
i ), x̃(B)

i = 1
2 (x(B)

i + x̂
(B)
i ) is also a solution of the linear

program.
After this transformations we have a solution that satisfies (a) and (b).
Assume that we have a scheme that does not satisfy (c), i.e., the matri-

ces MW and MB have columns in common. Since the corresponding subpix-
els occur independent of the encoded color they can be omitted. Deleting all
columns that occur in MW and MB we get a scheme with smaller pixel expan-
sion and higher contrast. That proves that every optimal k-out-of-n scheme
must satisfy (c). 2

Now we are ready to determine the optimal contrast of a 3-out-of-n visual
cryptography scheme.

Theorem 14 ([2] Theorem 4.7) The contrast α of a 3-out-of-n visual
cryptography scheme satisfies

α ≤
(n− 2bn+1

4 c)b
n+1

4 c
2(n− 1)(n− 2)

© 2012 by Taylor & Francis Group, LLC



240 Visual Cryptography and Secret Image Sharing

Proof
Assume that the scheme is in canonical form (see Lemma 13) and let MW and
MB be the n×m Boolean matrices that describe the encoding.

Since the scheme is in canonical form, m is even and exactly m′ = m
2

subpixels on each slide are black. In terms of the linear program this means

n−1∑
j=0

x
(W )
j

(
n− 1
j

)
=
n−1∑
j=0

x
(B)
j

(
n− 1
j

)
=

1
2
. (8.18)

By equation 8.17 (with h = 1) the contrast α is

α =
n−k∑
i=0

(
n− 3
i− 1

)
x

(B)
i −

n−k∑
i=0

(
n− 3
i− 1

)
x

(W )
i

Since the scheme is in canonical form we have x(W )
i = x

(B)
n−i and hence,

α =
n−k∑
i=0

((
n− 3
i− 1

)
x

(B)
i −

(
n− 3
i− 1

)
x

(B)
n−i

)

=
n∑
i=0

x
(B)
i

((
n− 3
i− 1

)
−
(

n− 3
n− i− 1

))

=
n∑
i=0

x
(B)
i

((
n− 3
i− 1

)
−
(
n− 3
i− 2

))

Now use equation (8.18) to multiply with 1 and we get

α =

∑n
i=0 x

(B)
i

((
n−3
i−1

)
−
(
n−3
i−2

))
2
∑n
i=0 x

(B)
i

(
n−1
j

)
The inequality

P
x f(x)P
x g(x) ≤ maxx

f(x)
g(x) holds for any functions f and g. Hence,

α ≤ max
0≤i≤n

(
n−3
i−1

)
−
(
n−3
i−2

)
2
(
n−1
j

)
The maximum is reached for i = bn+1

4 c, which proves the theorem. 2

In a recent article M. Bose and R. Mukerjee [5] show how to use group
divisible designs and balanced incomplete block designs to construct 3-out-of-n
visual cryptography schemes with optimal contrast and small pixel expansion.
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8.6 Asymptotic Optimal k-out-of-n Schemes

In the previous sections we solved the problem of contrast optimal visual
cryptography schemes exactly. The result for general k-out-of-n is a little bit
weaker; we have only a tight bound for the optimal contrast.

We start with the linear program
Maximize:

α =
n−k∑
i=0

(
n− k
i

)
x

(W )
i −

n−k∑
i=0

(
n− k
i

)
x

(B)
i

Subject to:
n∑
i=0

(
n

i

)
x

(W )
i =

n∑
i=0

(
n

i

)
x

(B)
i = 1

and
n−j∑
i=0

(
n− j
i

)
x

(W )
i =

n−j∑
i=0

(
n− j
i

)
x

(B)
i

for j = 0, . . . , k − 1. The sign conditions are x(W )
i ≥ 0, x(B)

i ≥ 0.
For the following it is convenient to use the variable transform x̂

(W )
i =(

n
i

)
x

(W )
i and x̂

(B)
i =

(
n
i

)
x

(B)
i . The linear program takes the form

Maximize α = c′(x̂(W ) − x̂(B)) subject to

n∑
i=0

x̂
(W )
i =

n∑
i=0

x̂
(B)
i = 1

and
A(x̂(W ) − x̂(B)) = 0

where A is the k × (n+ 1) matrix with entries A = (aj,i)

aj,i =
(
n− j
i

)(
n

i

)−1

= qj(i)

Note that the j-th row of A is the evaluation of a polynomial qj of degree j
at the positions i = 0, . . . , n. Similarly the vector c is the evaluation of k-th
degree polynomial p(i) =

(
n−k
i

)(
n
i

)−1 at the places i = 0, . . . , n.
Now dualize the linear program. For each constraint we get a variable in

the dual program and since all constraints of the primal program are equalities
the variables in the dual program have no sign restriction. Each variable of the
primal program gives a constraint in the dual program and since all variables
have a sign condition we get inequalities as constraints in the dual program.
The dual program is
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Minimize s+ t subject to

A′u+ (s, . . . , s) ≥ c (8.19)
−A′u+ (t, . . . , t) ≥ c ⇐⇒ A′ − (t, . . . , t) ≤ c (8.20)

Equations (8.19) and (8.20) just state that

s ≥ max
i=0,...,n

(ci −A′iu)

t ≥ max
i=0,...,n

(A′iu− ci).

In the optimal solution these inequalities must be equalities, i.e.,

s = max
i=0,...,n

(ci −A′iu) (8.21)

t = max
i=0,...,n

(A′iu− ci). (8.22)

Now we translate these equations into the language of polynomials. Re-
member that ci = p(i) for a k-th degree polynomial and that the j-th row
of A is the evaluation of a j-th degree polynomial qj . The polynomials qj
(j = 0, . . . , k − 1) form a basis of the vector space Pk−1 of all polynomials of
a degree up to k − 1.

So we may write the dual problem as:
Determine

α = min
q∈Pk−1

(
max

i=0,...,n
(p(i)− q(i)) + max

i=0,...,n
(q(i)− p(i))

)
. (8.23)

By adding the right constant to q, we can choose maxi=0,...,n(p(i)−q(i)) =
maxi=0,...,n(q(i)− p(i)), which simplifies (8.23) to

α = min
q∈Pk−1

max
i=0,...,n

|p(i)− q(i)| . (8.24)

The low terms of p lie in Pk−1, so the problem is just to approximate the
term of degree k. Since

p(i) =
(
n− k
i

)(
n

i

)−1

=
(n− i)!

(n− i− k)!
(n− k)!
n!

=
(n− i)(n− 1− i) · · · (n− (k − 1)− i)

n(n− 1) · · · (n− (k − 1))

=
(

1− i

n

)(
1− i

n− 1

)
· · ·
(

1− i

n− (k − 1)

)
the highest degree term of p(i) is (−1)k/nkik where nk = n(n−1) · · · (n−k+1).
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This simplifies (8.24) to

α = min
q∈Pk−1

max
i=0,...,n

∣∣∣xk
nk
− q(i)

∣∣∣ . (8.25)

Equation 8.25 is almost identical to the following classical problem in ap-
proximation theory:

min
q∈Pk−1

max
x∈[−1,1]

|xk − q(x)| (8.26)

The only difference is that the approximation points in our problem are dis-
crete.

A well-known result from approximation theory states:

Result 15 (see for example Theorem 5.7 of [18]) Of all monic polyno-
mials of degree k the best approximation to 0 in [−1, 1] with the ‖. ‖∞-norm
is 21−kTk, where Tk(x) = cos(k arccosx) denotes the Chebychev polynomial of
the first kind.

Hence, the solution of (8.26) is

q(x) = xk − 21−kTk(x) .

The minimum in (8.26) is 2k−1. Transforming it back to (8.25) we get an
upper bound for α (only an upper bound since we switch from continuous
evaluation points to discrete points.)

Thus, we have the contrast αn,k of a k-out-of-n visual cryptography scheme
is bounded by:

αn,k ≤ 41−k n
k

nk

Asymptotically continuous evaluation points and discrete evaluation points
are the same, thus we have also

lim
n→∞

αn,k ≤ lim
n→∞

41−k n
k

nk
= 41−k .

Obtaining a lower bound for αn,k need a bit extra work. We just cite
without proof.

Result 16 (see [14]) The contrast αn,k of a contrast optimal k-out-of-n vi-
sual secret sharing scheme satisfies

4k−1 ≤ αn,k ≤ 4k−1n
k

nk
.
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8.7 Contrast Trade-Offs for Extended Visual
Cryptography Schemes

In this section we look at a visual cryptography scheme with extended ca-
pacity. In [16] Naor and Shamir show that it is possible to create two trans-
parencies such that each transparency shows an image and the stack of the
two transparencies reveals another image. The three images must not satisfy
any relation.

In general, we have n slides and a subset S of P({1, . . . , n})\{∅}. For an
S-extended visual cryptography scheme we require that for every S ∈ S the
stack of the transparencies i ∈ S reveals an image IS . Furthermore, we require
that there is no other way to get information about the image IS .

As in the case of the simple visual cryptography schemes we formalize
these ideas by describing the encoding algorithm by a multiset of Boolean
matrices. This leads to Definition 4.

Definition 4 Let S ⊆ P({1, . . . , n})\{∅}.
An S-extended visual cryptography scheme is described by multisets MT

of n × m Boolean matrices for T ⊆ S. (For given T each Boolean matrix
in MT describes the colors of the subpixels on each transparency, where the
corresponding pixel in image IT is black if and only if T ∈ T. For encoding,
each matrix in MT is chosen with the same probability.)

The multisets MT must satisfy the following conditions:

1. Let B ∈ MT. For {i1, . . . , iq} ∈ S the Hamming weight of the
OR of the rows i1, . . . , iq of B is h{i1,...,iq} if {i1, . . . , iq} ∈ T and
l{i1,...,iq} otherwise, i.e.,

wHam((bi1,1, . . . , bi1,m) OR . . . OR (biq,1, . . . , biq,m))

=

{
h{i1,...,iq} if {i1, . . . , iq} ∈ T

l{i1,...,iq} if {i1, . . . , iq} /∈ T
.2

(This means stacking the transparencies i1, . . . , iq together we re-
cover the image I{i1,...,iq}.)

2. For {i1, . . . , iq} ⊆ {1, . . . , n} and T,T′ ⊆ S with T ∩
P({i1, . . . , iq}) = T′ ∩ P({i1, . . . , iq}) we obtain the same multi-
sets if we restrict the matrices in MT and MT′ , respectively, to the
rows i1, . . . , iq.

(This condition guarantees the security of the different images.)

If S = P({1, . . . , n})\{∅} we simply call this an extended visual cryptography
scheme.
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S-extended schemes exists as the following theorem shows.

Theorem 17 (see [9]) An S-extended schemes with pixel expansion

m =
∑
S∈S

2|S|−1

and contrast α = 1/m exists.

Proof
The S-extended scheme is built from several k-out-of-k schemes. For each
S ∈ S we reserve 2|S|−1 subpixels. On slides with number i /∈ S these subpixels
are colored black. For the slides i ∈ S these 2|S|−1 subpixels are used to
construct an |S|-out-of-|S| visual cryptography scheme to encode the image
IS (see Theorem 4 for the construction).

To illustrate the construction let S = {{1, 2}, {1, 3}} then m = 4. The
first two pixels are used to encode the image I{1,2} and the next two subpixels
are for the image I{2,3}.

A typical matrix of M∅ is

M∅ =

1 0 1 1
1 0 1 0
1 1 1 0


and a typical matrix of M{{1,2}} is

M∅ =

1 0 1 1
0 1 1 0
1 1 1 0

 .

In the upper right corner you see the 2-out-of-2 scheme for the image I{1,2}.
We claim that this construction yields an S-extended scheme.
Let T ⊆ {1, . . . , n}, what happens if we stack the transparencies i ∈ T?
In the 2|T |−1 subpixels associated with the image IT we have |T |-out-of-

|T | scheme and hence either all 2|T |−1 subpixels in the stack are black or only
2|T |−1 − 1 subpixels are black depending on the color in the image IT .

For S 6= T and T 6⊆ S we find an i ∈ T with i /∈ S. On transparency
i all 2|S|−1 subpixels associated with IS are black. Hence, in the stack of
the transparencies i ∈ T these 2|S|−1 subpixels are always black and do not
contribute to the encoded color.

For S 6= T and T ⊆ S we have a |S|-out-of-|S| scheme for the image IS . By
the security requirement stacking only the transparencies i ∈ T the number
of black subpixels must be independent of the color of image IS . (There will
be exactly 2|S|−1 − 2|S|−|T |−1 black subpixels associated with the image IS .)

As we can see, only the 2|T |−1 subpixels associated with the image IT
contribute to the image that we see when stacking the transparencies i ∈ T .
Hence, the stack of the transparencies i ∈ T reveals image IT .

Since the scheme is built from several standard k-out-of-k schemes, it in-
herits the security from the standard visual cryptography scheme. 2
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Similar to Lemma 1 we can restrict ourselves to the case that MT is the
multiset that consists of all column permutations of a matrix MT.

For S ⊆ {1, . . . , n} we denote by xT
S the number of columns of MT that

have a 1 in the rows i ∈ S and a zero in the rows i /∈ S. The number of
black subpixels in the image IS is either hS (when a black pixel is encoded) or
ls when a white pixel is encoded. Analog to the linear program for ordinary
visual cryptography we get

MxT = rT (8.27)

where rT = (rT
S )∅6=S⊆{1,...,n} with rT

S = hS if S ∈ T and rT
S = lS if S /∈ T.

The (2n − 1) × (2n − 1) matrix M = (mS,T )∅6=S,T⊆{1,...,n} is defined by
mS,T = 1 if S ∩ T 6= ∅ and mS,T = 0 otherwise.

It possible to solve the program explicitly and the starting point is the
observation that M has an simple inverse.

Lemma 18 The matrix M = (mS,T )∅6=S,T⊆{1,...,n} with mS,T = 1 if S∩T 6= ∅
and mS,T = 0 otherwise is invertible and M−1 has only the entries ±1 and 0.

Proof
We prove this by induction on the number n of transparencies.

Sort the variables xT by the following order: First, we enumerate all subsets
that do not contain n. The next subset is the set {n}. Then, the other subsets
containing n follow.

Writing M1 = (1), we obtain the following recursion formula that follows
directly from the definition:

Mn+1 =

Mn 0n,1 Mn

01,n 1 11,n

Mn 1n,1 1n,n

 .

Here the index denotes the number of transparencies. 0i,j or 1i,j , respectively,
denoting a (2i − 1)× (2j − 1) matrix with all entries 0 or 1, respectively.

With M−1
1 = (1) we obtain the following recursion formula for M−1

n :

M−1
n+1 =

 0n,n −M−1
n 1n,1 M−1

n

−11,nM
−1
n 0 11,nM

−1
n

M−1
n M−1

n 1n,1 −M−1
n


Thus, M is invertible, i.e., Equation (8.27) has a unique solution.

We notice that the components of M−1
n 1n,1 are only −1, 0, and 1 and that

11,nM
−1
n 1n,1 = 1. Then the formula can be proved by induction.

Thus, M−1
n contains only the entries −1, 0, and 1 and therefore the solution

of equation (8.27) is integral. 2

By Lemma 18 the solution xT of equation (8.27) is an integer vector if the
right-hand side rT is an integer vector.
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We can explicitly solve equation (8.27) by multiplying with M−1 and get:

xT
S =

∑
{1,...,n}\S⊆T⊆{1,...,n}

(−1)|T |+|S|+n+1rT
T (8.28)

To verify equation (8.28) we can plug in the values of xT
S in equation (8.27).

The calculation is elementary and uses only the identity

n∑
i=0

(−1)i
(
n

i

)
=

{
1 for n = 0
0 for n > 0

.

In a solution of an extended visual cryptography scheme every xT
S must be

nonnegative. This leads to ∑
S⊆T⊆{1,...,n}

(−1)|S|+|T |rT
T ≤ 0 (8.29)

for all possible subsets T of P({1, . . . , n})\{∅}.
In left-hand side of inequality (8.29) we have the sum over rT for |S|+ |T |

even and over −rT for |S| + |T | odd. This becomes maximal if all rT with
|S|+ |T | even are as large as possible (i.e., equal hT ) and all rt with |S|+ |T |
odd are as small as possible (i.e., equal lT ).

Thus, an extended visual cryptography scheme exists if and only if∑
S⊆T⊆{1,...,n}
|S|≡|T | mod 2

hT ≤
∑

S⊆T⊆{1,...,n}
|S|6≡|T | mod 2

lT (8.30)

holds for each S ( {1, . . . , n}.
The linear program given by equation (8.30) is very simple and can be

solved directly.

Theorem 19 ([13] Theorem 3.4) An extended visual cryptography scheme
with n transparencies needs at least 1

2 (3n − 1) subpixels. Hence, the construc-
tion of Theorem 17 is optimal with respect to the pixel expansion, i.e.,

M(P({1, . . . , n})\{∅}) =
1
2

(3n − 1) .

Proof
For each ∅ 6= T ⊆ {1, . . . , n}, let δT = hT − lT . Our goal is to prove that
equation (8.30) implies

m ≥ h{1,...,n} ≥
∑

∅6=T⊆{1,...,n}

δT 2|T |−1 . (8.31)

As the first step in this proof we show that, for given values δT (for ∅ 6=
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T ⊆ {1, . . . , n}), the number h{1,...,n} is minimal if for all S ( {1, . . . , n}
inequality (8.30) is satisfied with equality.

To this end, suppose ∑
S⊆T⊆{1,...,n}
|S|≡|T | mod 2

hT <
∑

S⊆T⊆{1,...,n}
|S|6≡|T | mod 2

lT

for some S ( {1, . . . , n}. But the contrast levels

h̄T =

{
hT for T ⊆ S
hT − 1 otherwise

and

l̄T =

{
lT for T ⊆ S
lT − 1 otherwise

satisfy (8.30), since

|{T | S ⊆ T ⊆ {1, . . . , n}; |T | ≡ |S| mod 2}| =
|{T | S ⊆ T ⊆ {1, . . . , n}; |T | 6≡ |S| mod 2}| .

This proves that if inequality (8.30) is not satisfied with equality we can
find smaller values for the parameters lT and hT , which also satisfy (8.30).
Thus, in an optimal scheme (i.e., a scheme with the smallest possible values for
lT and hT ) inequality (8.30) is satisfied with equality for each T ( {1, . . . , n}.

Next we claim that

hT =
∑

∅6=T ′⊆{1,...,n}

δT ′2|T
′|−1 −

∑
T(T ′⊆{1,...,n}

δT ′2|T
′|−1−|T | (8.32)

for ∅ 6= S ⊆ {1, . . . , n} satisfy (8.30) with equality.
To prove this we have to show that

∑
S⊆T⊆{1,...,n}
|S|≡|T | mod 2

[ ∑
∅6=T ′⊆{1,...,n}

δT ′2|T
′|−1 −

∑
T(T ′⊆{1,...,n}

δT ′2|T
′|−1−|T |

]
=

∑
S⊆T⊆{1,...,n}
|S|6≡|T | mod 2

([ ∑
∅6=T ′⊆{1,...,n}

δT ′2|T
′|−1 −

∑
T(T ′⊆{1,...,n}

δT ′2|T
′|−1−|T |

]
− δT

)
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or equivalently

∑
∅6=T ′⊆{1,...,n}

δT ′

 ∑
S⊆T⊆{1,...,n}
|S|≡|T | mod 2

2|T
′|−1 −

∑
S⊆T(T ′

|S|≡|T | mod 2

2|T
′|−1−|T |

 =

∑
∅6=T ′⊆{1,...,n}

δT ′

 ∑
S⊆T⊆{1,...,n}
|S|6≡|T | mod 2

2|T
′|−1−

∑
S⊆T(T ′

|S|6≡|T | mod 2

2|T
′|−1−|T |

+δT ′
(−1)|T

′|+|S| − 1
2

.

(Note that the last summand is equal to −δT ′ for |T ′| 6≡ |S| mod 2 and equal
to 0 otherwise.)

Comparing coefficients for each δT ′ we obtain

2n−|S|−1 · 2|T
′|−1 −

∑
S⊆T(T ′

|S|≡|T | mod 2

2|T
′|−1−|T | =

2n−|S|−1 · 2|T
′|−1 −

 ∑
S⊆T(T ′

|S|6≡|T | mod 2

2|T
′|−1−|T |

+
(−1)|T

′|+|S| − 1
2

, (8.33)

but this is true since

(−1)|T
′|−|S| = (1− 2)|T

′|−|S|

=
|T ′|−|S|∑
i=0

(
|T ′| − |S|

i

)
(−2)i

=
|T ′|−|S|∑
i=0
i even

(
|T ′| − |S|

i

)
2i −

|T ′|−|S|∑
i=0
i odd

(
|T ′| − |S|

i

)
2i

=
∑

S⊆T⊆T ′
|T ′|≡|T | mod 2

2|T
′|−|T | −

∑
S⊆T⊆T ′

|T ′|6≡|T | mod 2

2|T
′|−|T |

, since
(
|T ′| − |S|

i

)
=

∑
S⊆T⊆T ′
|T |−|S|=i

1.

Thus,

∑
S⊆T⊆T ′

|T ′|≡|T | mod 2

2|T
′|−|T | =

 ∑
S⊆T⊆T ′

|T ′|6≡|T | mod 2

2|T
′|−|T |

+ (−1)|T
′|−|S|
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and therefore, ∑
S⊆T(T ′

|T ′|≡|T | mod 2

2|T
′|−|T |

+ 1 =

 ∑
S⊆t3T(T ′

|T ′|6≡|T | mod 2

2|T
′|−|T |

+ (−1)|T
′|+|S| .

(Note that (−1)|T
′|−|S| = (−1)|T

′|+|S|.) Division by 2 gives ∑
S⊆T(T ′

|T ′|≡|T | mod 2

2|T
′|−1−|T |

 =

 ∑
S⊆T(T ′

|T ′|6≡|T | mod 2

2|T
′|−1−|T |

+
(−1)|T

′|+|S| − 1
2

as required for equation (8.33).
Suppose that h̄T (for ∅ 6= T ⊆ {1, . . . , n}) satisfy (8.30) with equality, too.
If inequality (8.30) is satisfied with equality for all subsets S, we can solve

these equations recursively and get

hS = h{1,...,n} + FS(δT | T ⊆ {1, . . . , n}) ,

for some function FS . Since inequality (8.30) is satisfied with equality for the
contrast values hT and h′T this yields

h̄S = hS + h̄{1,...,n} − h{1,...,n}.

But for S = ∅ inequality (8.30) yields h̄{1,...,n} = h{1,...,n} and therefore
h̄T = hT for all ∅ 6= T ⊆ {1, . . . , n}.

This proves that (8.32) is the only solution of (8.30) that satisfies all
inequalities with equality.

Thus, we find

m ≥ h{1,...,n} ≥
∑

∅6=T ′⊆{1,...,n}

δT ′2|T
′|−1 ≥

∑
∅6=T ′⊆{1,...,n}

2|T
′|−1 =

1
2

(3n − 1)

what proves the theorem. 2

Without proof we mention the following result about the contrast of the
different images.

Result 20 ([13] Theorem 3.6) For ∅ 6= T ⊆ {1, . . . , n} let αT = hT−lT
m be

the contrast of the image IT . The contrast levels of the images satisfy∑
∅6=T⊆{1,...,n}

2|T |−1αT ≤ 1 . (8.34)

Further, let α′T ≥ 0 (for ∅ 6= T ⊆ {1, . . . , n}) satisfy (8.34). Then for every
ε > 0 there exists a generalized visual cryptography scheme with contrast levels
αT (for ∅ 6= T ⊆ {1, . . . , n}) where |αT − α′T | < ε for all nonempty subsets T
of {1, . . . , n}.
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programming, approximation theory, the theory of error correcting codes, de-
sign theory, and elementary combinatorics.
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Università di Salerno, Italy

CONTENTS

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.2 Visual Cryptography Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.2.1 (k, k)-Threshold Visual Cryptography Schemes . . . . . . . . . 259
9.2.2 Perfect Black Visual Cryptography Schemes . . . . . . . . . . . . 260

9.3 Almost Ideal Contrast VCS with Reversing . . . . . . . . . . . . . . . . . . . . . 262
9.4 Ideal Contrast VCS with Reversing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

9.4.1 A Construction Using a Binary Secret Sharing Scheme 266
9.4.2 Constructions Using Perfect Black VCSs . . . . . . . . . . . . . . . 268

9.4.2.1 The Scheme by Cimato, De Santis, Ferrara,
and Masucci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9.4.2.2 The Scheme by Hu and Tzeng . . . . . . . . . . . . . . . 271
9.4.2.3 The Scheme by Yang, Wang, and Chen . . . . . . 274
9.4.2.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

9.4.3 A Construction Using a Nonperfect Black VCS . . . . . . . . 276
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

9.1 Introduction

A visual cryptography scheme for a set of n participants is a method to en-
code a secret image, consisting of black and white pixels, into n shadow im-
ages called shares, one for each participant. Each share is a collection of black
and white subpixels, which are printed in close proximity to each other, so

255
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that the human visual system averages their individual black/white contribu-
tions. The encoding is done in such a way that certain subsets of participants,
called qualified sets, can ”visually” recover the secret image, but other sub-
sets of participants, called forbidden sets, cannot gain any information (in an
information-theoretic sense) about the secret image by inspecting their shares.
A ”visual” recover for a set of qualified participants consists of xeroxing each
share onto a separate transparency, of stacking together the transparencies
and projecting the result with an overhead projector. If the transparencies
are aligned carefully, then the participants will be able to see the secret image
(without any knowledge of cryptography and without performing any crypto-
graphic computation).

This cryptographic paradigm was introduced by Naor and Shamir [11].
They analyzed the case of (k, n)-threshold visual cryptography schemes, in
which the qualified subsets of participants have cardinality k, whereas, the
forbidden subsets of participants have cardinality less than k. Some results on
(k, n)-threshold visual cryptography schemes ((k, n)-threshold visual cryptog-
raphy scheme (VCS), for short) can be found in [1, 2, 5, 8, 10, 12]. The model
by Naor and Shamir has been extended in [1] to general access structures (an
access structure is a specification of all qualified and forbidden subsets of par-
ticipants), where general techniques to construct visual cryptography schemes
for any access structure have been proposed.

Visual cryptography schemes are characterized by two parameters: The
pixel expansion, corresponding to the number of subpixels contained in each
share (transparency) and the contrast, which measures the ”difference” be-
tween a black and a white pixel in the reconstructed image. Visual cryp-
tography schemes such that, in the reconstructed image, all the subpixels
associated to a black pixel are black, are referred to as visual cryptography
schemes with perfect reconstruction of black pixels. Such schemes have been
considered in [12, 4, 3]. Unfortunately, it is not possible to obtain visual cryp-
tography schemes with perfect reconstruction of both black and white pixels.
Such schemes are said to have ideal contrast.

In order to obtain perfect black visual cryptography schemes whose recon-
struction of white pixels is almost perfect, Viet and Kurosawa [13] proposed
a different kind of VCS, called VCS with reversing. Such VCSs require the in-
troduction of an extra noncryptographic operation, that participants can use
to reconstruct the image. Such an operation, which can be easily performed
by many copy machines, is applied to a transparency and creates another
transparency in which black pixels are reversed to white pixels and vice versa.

Specifically, Viet and Kurosawa [13] proposed to run c times (with c arbi-
trary constant) the distribution phase of a VCS with perfect reconstruction of
black pixels and pixel expansion m, hence requiring each participant to store
c · m subpixels for each pixel of the original image. The larger the number
of runs c, the better the contrast of the resulting VCS with reversing. The
drawback of such a solution is that the number of pixels in the reconstructed
image, which depends on both the number of runs and on the pixel expansion
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of the underlying VCS, is greater than that in the original secret image, i.e.,
there is a loss of resolution.

Subsequently, Cimato, De Santis, Ferrara, and Masucci [6] showed how to
construct VCSs with reversing where reconstruction of both black and white
pixels is perfect. In particular, Cimato et al. [6] proposed two different con-
structions. The first solution uses the fact that the introduction of the re-
versing operation, in addition to the stacking operation, allows participants
to compute any Boolean function of their transparencies, since these two op-
erations, corresponding to NOT and OR, respectively, represent a complete
basis for Boolean functions. In particular, the construction uses a binary se-
cret sharing scheme and requires each participant to hold r transparencies,
where r denotes the size of the largest share in the underlying secret sharing
scheme. The second solution uses as a building block a VCS with perfect re-
construction of black pixels, having a certain pixel expansion m and requires
each participant to store m transparencies, each having the same number of
pixels as the original image. Compared to the scheme of Viet and Kurosawa,
such a scheme requires each participant to store m pixels instead than c·m, for
each pixel of the original image, where c is the number of runs of the under-
lying VCS needed in [13] to obtain an asymptotically ideal contrast. By using
a sequence of stacking and reversing operations on their transparencies, in
both schemes proposed by Cimato et al. [6], each qualified set of participants
recover the original secret image with no loss of resolution.

Later, Hu and Tzeng [9] considered the problem of reducing the number
of the transparencies held by each participant in VCSs with reversing. They
proposed a construction for ideal contrast VCSs with reversing requiring each
participant to store only two transparencies. In particular, the first one con-
tains an encoding of the secret image, whereas, the second one is an auxiliary
transparency needed for the reconstruction phase. However, the size of each
transparency is |Γ0| times larger than the size of the secret image, where |Γ0|
denotes the minimum number of subsets qualified to reconstruct the secret
image. Indeed, each transparency contains |Γ0| blocks and each qualified sub-
set of participants reconstructs, without loss of resolution, the secret image
in a single block, whereas the other reconstructed blocks contain only white
pixels.

Then, Yang et al. [14] proposed two different constructions for ideal con-
trast VCS with reversing. In particular, one of their schemes removes the need
of using as a building block a VCS with perfect reconstruction of black pixels.
However, there is a loss of resolution in both their schemes.
Organization. In Section 9.2 we recall the definition and security require-
ments of VCSs. In Section 9.3 we describe the almost ideal contrast VCS
with reversing by Viet and Kurosawa. In Section 9.4 we show and compare
some ideal contrast VCSs with reversing that use as a building block any per-
fect black VCS. Finally, a VCS with reversing constructed upon any VCS is
described in Section 9.4.3.
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9.2 Visual Cryptography Schemes

Let P = {1, . . . , n} be a set of elements called participants, and let 2P denote
the set of all subsets of P. Let ΓQual ⊆ 2P and ΓForb ⊆ 2P , where ΓQual∩ΓForb =
∅. We refer to members of ΓQual as qualified sets and we call members of
ΓForb forbidden sets. The pair (ΓQual,ΓForb) is called the access structure of
the scheme. Define Γ0 to consist of all the minimal qualified sets: Γ0 = {X ∈
ΓQual : X ′ 6∈ ΓQual for all X ′ ⊂ X}. In the case where ΓQual is monotone
increasing, ΓForb is monotone decreasing, and ΓQual ∪ ΓForb = 2P , the access
structure is said to be strong. In a strong access structure, ΓQual = {C ⊆
P : B ⊆ C for some B ∈ Γ0}, and we say that ΓQual is the closure of Γ0. A
participant i ∈ P is an essential participant for (ΓQual,ΓForb) if there exists
a set X ⊆ P such that X ∪ {i} ∈ ΓQual but X 6∈ ΓQual. If a participant
is not essential then we can construct a visual cryptography scheme giving
him nothing as his share. In fact, a nonessential participant does not need to
participate actively in the reconstruction of the image, since the information
he has is not needed by any set in P in order to recover the secret image.
Therefore, unless otherwise specified, we assume throughout this chapter that
all participants are essential.

The secret image consists of black and white1 pixels. In order to share each
pixel of the secret image the owner of the secret, usually called the dealer,
provides each participant with a share (transparency), which is an enlarged
version of the secret pixel consisting of a certain number m of subpixels,
which are printed in close proximity to each other, so that the human visual
system averages their individual black/white contributions. Notice that the
term ”subpixel” is misleading since a pixel is the smallest unit we can control
on an image and thus we cannot further divide the pixel into subpixels. So
the shared version of the original secret pixel will consist of m pixels, which
are called subpixels because all together they represent the original secret
pixel. The value m is called pixel expansion. The shares can be conveniently
represented with an n×m matrix S where each row represents one share, i.e.,
m subpixels, and each element is either 0, for a white subpixel, or 1 for a black
subpixel.

To reconstruct the secret image a group of participants stacks together
their shares. The grey level of the combined share, obtained by stacking the
transparencies i1, . . . , is, is proportional to the Hamming weight w(V ) of the
m-vector V = OR(ri1 , . . . , ris), where ri1 , . . . , ris are the rows of S associated
with the transparencies we stack. This grey level is interpreted by the visual
system of the users as black or as white in accordance with some rule of
contrast. Since each secret pixel is represented by m pixels in the shares,
the reconstructed image will be bigger than the original (depending on m

1Where white should really be interpreted as transparent. So we use white as a synonym
for transparent.
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and on the actual positions of the pixels, the image can also be distorted;
a perfect square is a good choice for m because it avoids distortion). The
characteristics of the model are encapsulated in the following definition, which
is a generalization of the definition of (k, n)-threshold VCSs due to [12].

Definition 1 Let (ΓQual,ΓForb) be an access structure on a set of n partici-
pants. Two collections (multisets) of n×m Boolean matrices C0 and C1 con-
stitute a visual cryptography scheme (ΓQual,ΓForb)-VCS with pixel expansion
m if there exist two integers ` and h such that h > ` satisfying:

1. Any (qualified) set X = {i1, i2, . . . , ip} ∈ ΓQual can recover the
shared image by stacking their transparencies.
Formally, for any M ∈ C0, the ”or” V of rows i1, i2, . . . , ip satisfies
wH(V ) ≤ m− h; whereas, for any M ∈ C1 it results that wH(V ) ≥
m− `.
2. Any (forbidden) set X = {i1, i2, . . . , ip} ∈ ΓForb has no informa-

tion on the shared image.
Formally, the two collections of p×m matrices Dt, with t ∈ {0, 1},
obtained by restricting each n×m matrix in Ct to rows i1, i2, . . . , ip
are indistinguishable in the sense that they contain the same matri-
ces with the same frequencies.

To share a white (black, resp.) pixel, the dealer randomly chooses one
of the matrices in C0 (C1, resp.), and distributes row i to participant i. The
chosen matrix defines the m subpixels in each of the n transparencies.

The first property of Definition 1 is related to the contrast of the image.
It states that when a qualified set of participants stack their transparencies,
they can correctly recover the image shared by the dealer. A pixel will be seen
as a white pixel if sufficiently many subpixels (at least h) in the reconstructed
image are white; whereas, it will be seen as a black one if not too many (at
most `) are white. The value (h − `)/(h + `) is referred to as the contrast
of the reconstructed image. Contrast gives a measurement of how clear the
reconstructed image is in relation to the original one. The second property of
Definition 1 is related to the security of the scheme, since it implies that, even
by inspecting all their shares, any forbidden set of participants cannot gain
any information in deciding whether the shared pixel was white or black.

Several visual cryptography schemes have been realized by using two n×m
matrices, S0 and S1, called basis matrices. The collections C0 and C1 are
obtained by permuting the columns of the corresponding basis matrix (S0 for
C0, and S1 for C1) in all possible ways. This technique has been introduced in
[11].

9.2.1 (k, k)-Threshold Visual Cryptography Schemes

In a (k, k)-threshold visual cryptography scheme the secret image is visible
if and only if all k transparencies are stacked together, but totally invisible
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if fewer than k transparencies are stacked together or analyzed by any other
method.

Naor and Shamir [11] proposed a construction for (k, k)-threshold VCSs
using two basis matrices S0 and S1 defined as follows: S0 is the matrix whose
columns are all the Boolean k-vectors having an even number of 1’s, and
S1 is the matrix whose columns are all the Boolean k-vectors having an odd
number of 1’s. The pixel expansion m of such a scheme is equal to 2k−1 and the
relative difference (h − `)/m between reconstructed white and reconstructed
black is equal to 1/2k−1. The above construction is optimal with respect to
the pixel expansion and the relative difference between reconstructed white
and reconstructed black.

Example 1 The basis matrices S0 and S1 in a (4, 4)-threshold VCS are

S0 =


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1

 S1 =


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 0 0 1 0 1 1 0

 .
The collections C0 and C1 are obtained by permuting the columns of the corre-
sponding basis matrix (S0 for C0, and S1 for C1) in all possible ways. In this
scheme each pixel of the secret image is encoded into m = 8 subpixels.

It is easy to see that the integers h = 1 and ` = 0 satisfy Property 1 of
Definition 1. Let S0 be the matrix chosen by the dealer to share a white pixel;
by stacking the transparencies held by all four participants we get the vector
(0, 1, 1, 1, 1, 1, 1, 1, 1). On the other hand, let S1 be the matrix chosen by the
dealer to share a black pixel; by stacking the transparencies held by all four
participants we get the vector (1, 1, 1, 1, 1, 1, 1, 1, 1). Property 2 of Definition
1 can also be easily verified. Indeed, consider what happens when less than
four participants stack their together transparencies. For example, consider
the first three participants and notice that, by stacking their shares, we get the
vector (0, 1, 1, 1, 1, 1, 1, 1, 1) in both cases when the shared pixel is either white
or black. Thus, the participants are not able to distinguish the color of the
shared pixel by inspecting their shares.

9.2.2 Perfect Black Visual Cryptography Schemes

Visual cryptography schemes such that, in the reconstructed image, all the
subpixels associated with a black pixel are black, i.e., ` = 0, are referred
either to as visual cryptography schemes with perfect reconstruction of black
pixels or to as maximal contrast schemes. For example, the (k, k)-threshold
VCS described in Section 9.2.1 has perfect reconstruction of black pixels. A
perfect reconstruction of both black and white pixels, which would correspond
to visual cryptography schemes having ideal contrast, is impossible. Indeed,
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in [11] it has been shown that any (k, k)-threshold VCS has a pixel expansion
of at least 2k−1 and the relative difference (h − `)/m between reconstructed
white and reconstructed black is at most 1/2k−1. This means that, in the
reconstructed white pixel, for any 2k−1 subpixels, there is at most a white
subpixel.

Visual cryptography schemes with perfect reconstruction of black pixels
have been analyzed in [12, 4, 3]. In particular, in [3] it was shown how to
construct (ΓQual,ΓForb)-VCSs with perfect reconstruction of black pixels having
a pixel expansion m =

∑
X∈ΓQual

2|X|−1, by using a technique proposed in [1].
More precisely, such a technique to constructs visual cryptography schemes
with a perfect reconstruction of black pixels using small schemes as building
blocks in the construction of larger schemes, as explained in the following.
For i = 1, . . . , q, let (ΓiQual,Γ

i
Forb) be an access structure on a set P of n

participants. If a participant j ∈ P is not essential for the i-th access structure,
we assume that j 6∈ ΓiForb and that j does not receive any share. Suppose there
exists a (ΓiQual,Γ

i
Forb)-VCS with a pixel expansion mi and basis matrices T 0

i

and T 1
i , for each i = 1, . . . , q. The basis matrix S0 (S1, resp.) of a VCS for

the access structure (ΓQual,ΓForb) where ΓQual = Γ1
Qual ∪ . . .∪ΓqQual and ΓForb =

Γ1
Forb∩. . .∩ΓqForb is constructed as the concatenation of some auxiliary matrices
T̂ 0
i (T̂ 1

i , resp.), for each i = 1, . . . , q. Such matrices are obtained as follows:
for each j = 1, . . . , n, the j-th row of T̂ 0

i (T̂ 1
i , resp.) has all ones as entries if

the participant j is not essential for (ΓiQual,Γ
i
Forb), otherwise it is the row of

T 0
i (T 1

i , resp.) corresponding to participant j. Hence, S0 = T̂ 0
1 ◦ T̂ 0

2 ◦ . . . ◦ T̂ 0
q

and S1 = T̂ 1
1 ◦ T̂ 1

2 ◦ . . . ◦ T̂ 1
q , where ◦ denotes the concatenation of matrices.

The resulting VCS has a pixel expansion m =
∑q
i=1mi. For a special class of

access structures, such as threshold access structures and graph-based access
structures, it is possible to design VCSs with the perfect reconstruction of
black pixels achieving a smaller value of m, as shown in [1, 12, 3].

Example 2 Let P = {1, 2, 3, 4} and Γ0 =
{
{1, 2}, {2, 3}, {3, 4}

}
. We can

construct a VCS with a perfect reconstruction of black pixels for the access
structure having basis Γ0 by using three (2, 2)-threshold VCSs on the sets of
participants {1, 2}, {2, 3}, and {3, 4}. The basis matrices T 0 and T 1 for the
(2, 2)-threshold VCS described in Section 9.2.1 are

T 0 =
[

1 0
1 0

]
T 1 =

[
1 0
0 1

]
.

From T 0 and T 1 we construct the pair of matrices (T̂ 0
i , T̂

1
i ), for i = 1, . . . , 3

having four rows each, as follows:

T̂ 0
1 =


1 0
1 0
1 1
1 1

 T̂ 1
1 =


1 0
0 1
1 1
1 1

 ,
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T̂ 0
2 =


1 1
1 0
1 0
1 1

 T̂ 1
2 =


1 1
1 0
0 1
1 1

 ,

T̂ 0
3 =


1 1
1 1
1 0
1 0

 T̂ 1
3 =


1 1
1 1
1 0
0 1

 .
Concatenating the matrices T̂ 0

1 , T̂
0
2 , and T̂ 0

3 we obtain the basis matrix S0

S0 =


1 0 1 1 1 1
1 0 1 0 1 1
1 1 1 0 1 0
1 1 1 1 1 0

 ,
whereas, concatenating the matrices T̂ 1

1 , T̂
1
2 , and T̂ 1

3 we obtain the basis matrix
S1

S1 =


1 0 1 1 1 1
0 1 1 0 1 1
1 1 0 1 1 0
1 1 1 1 0 1

 .
The pixel expansion of the above construction is m =

∑
X∈Γ0

2|X|−1 = 6.

9.3 Almost Ideal Contrast VCS with Reversing

In order to improve the contrast in VCSs, Viet and Kurosawa [13] introduced
another noncryptographic operation, called reversing, which can be used by
participants in the reconstruction phase. Such an operation, which can be
easily performed by many copy machines, is applied to a transparency and
creates another transparency in which black pixels are reversed to white pixels
and viceversa. In the following, we will denote by t, the transparency obtained
after applying the reversing operation to the transparency t.

Viet and Kurosawa [13] showed how to construct a (ΓQual,ΓForb)-VCS with
reversing, where black pixels are perfectly reconstructed, whereas, white pixels
are almost perfectly reconstructed. The idea behind their construction is to
run several times the distribution phase of a (ΓQual,ΓForb)-VCS with a perfect
reconstruction of black pixels. The larger the number c of runs, the better the
contrast of the resulting VCS with reversing. In particular, Viet and Kuro-
sawa showed that if the contrast of the underlying VCS is q < 1, then the
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contrast in their VCS with reversing is on the average qc. The price to pay
to get an almost ideal contrast is the number of transparencies stored by each
participant, which corresponds to the number c of runs. Moreover, there is a
loss of resolution in their scheme, since each pixel in the original image corre-
sponds to m subpixels in the reconstructed image, where m denotes the pixel
expansion of the underlying VCS.

In the distribution phase of the VCS with reversing in [13], the encoding
of the secret image is handled pixel by pixel, where each pixel is considered
independently of the others. For each pixel of the original image, the dealer
runs c times independently a (ΓQual,ΓForb)-VCS with a perfect reconstruction
of black pixels and pixel expansion m; we denote by s`i the share for partici-
pant i in run `, for i = 1, . . . , n and ` = 1, . . . , c (notice that the transparency
corresponding to such a share contains m subpixels for each pixel of the orig-
inal image). In the reconstruction phase, any qualified set of participants can
recover the original secret image by performing a sequence of stacking and
reversing operations on their transparencies. The construction is described in
Figure 9.1.

Assume there exists a (ΓQual,ΓForb)-VCS with a perfect reconstruction
of black pixels.

Distribution phase. For each pixel of the secret image, the dealer:

• runs c times independently of the distribution phase of the underlying
(ΓQual,ΓForb)-VCS; let s`

i be the share distributed to participant i in
the `-th run, for i = 1, . . . , n and ` = 1, . . . , c;

• distributes the c-tuple (s1i , . . . , s
c
i ) to participant i.

Reconstruction phase. A qualified set {i1, . . . , ip} of participants
reconstructs the secret pixel as follows:

• superimpose their shares to get α` = OR(s`
i1 , . . . , s

`
ip

), for ` =
1, . . . , c;

• reverse the results of the previous step to obtain α`, for ` = 1, . . . , c;

• superimpose the results of the previous step to get β =
OR(α1, . . . , αc);

• finally, reverse the result of the previous step to obtain β, which is
the reconstructed pixel.

FIGURE 9.1
A construction for almost ideal contrast (ΓQual,ΓForb)-VCS with reversing.

Notice that in the VCS with reversing described in Figure 9.1, the com-
putation of the reconstructed pixel β corresponds to performing c − 1 AND
operations, since β = OR(α1, . . . , αc) = AND(α1, . . . , αc). From the truth
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table of the AND operator, it follows that the reconstructed pixel β will be
black only when α1, . . . , αc are all black. Since each α` corresponds to a re-
constructed pixel in the `-th run of the underlying VCS with a perfect re-
construction of black pixels, it follows that in the case a black pixel has been
shared by the dealer, the reconstructed pixel β will be black no matter how
many AND operations have been performed. On the other hand, in the case a
white pixel has been shared, the reconstructed pixel β will increasily become
whiter with the execution of the runs. Thus, if the contrast of the underlying
VCS with a perfect reconstruction of black pixels is q < 1, then the contrast
in the VCS with reversing described in Figure 9.1 is on the average qc.

The security of the scheme directly follows from the security of the under-
lying VCS.

It is easy to see that the reconstruction phase requires a qualified set of p
participants to perform exactly c+ 1 reversing operations and cp− 1 stacking
operations. Finally, notice that in the construction of Figure 9.1 there is a loss
of resolution, since each pixel in the original image corresponds to m subpixels
in the reconstructed image, where m denotes the pixel expansion of the under-
lying VCS. For example, in the (k, k)-threshold VCS with reversing resulting
from the above construction, each pixel of the original image corresponds to
2k−1 subpixels in the reconstructed image.

Example 3 Let P = {1, 2, 3, 4} and Γ0 =
{
{1, 2}, {2, 3}, {3, 4}

}
. The basis

matrices S0 and S1 in a VCS realizing the access structure ΓQual whose basis
is Γ0 are:

S0 =


0 1 1 0
0 1 1 1
0 1 1 1
0 1 0 1

 S1 =


1 0 0 1
1 1 1 0
1 1 0 1
1 0 1 0

 .
The collections C0 and C1 are obtained by permuting the columns of the cor-
responding basis matrix (S0 for C0, and S1 for C1) in all possible ways. First,
consider two rounds where the shares generated for participant 1 are s1

1 = 0110,
s2

1 = 1100 whereas, the shares generated for the participant 2 are s1
2 = 0111,

s2
2 = 1101. During the reconstruction phase, the two participants stack their

shares and retrieve α1 = OR(s1
1, s

1
2) = 0111, α2 = OR(s2

1, s
2
2) = 1101. By

applying the reversing operation to each αj and stacking the results, they ob-
tain β = OR(0111, 1101) = 1010. By reversing β, they obtain β = 0101,
and reconstruct a white pixel that consists of two out of four white sub-
pixels. Now, let’s add a third round. Assume that the extra shares for par-
ticipants 1 and 2 are s3

1 = 1001 and s3
2 = 1011, respectively. During the

reconstruction phase, the two participants stack their shares and retrieve
α1 = OR(s1

1, s
1
2) = 0111, α2 = OR(s2

1, s
2
2) = 1101, α3 = OR(s3

1, s
3
2) = 1011.

By applying the reversing operation to each αj and stacking the results,
they obtain β = OR(0111, 1101, 1011) = 1110. By reversing β, they obtain
β = 0001, and reconstruct a white pixel that consists of three out of four white
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subpixels. Then, with an extra round the whiteness of the reconstructed pixel
increases.

Let S1 be the matrix chosen by the dealer to share a black pixel. Consider
two rounds. The shares generated for participant 1 are s1

1 = 1001, s2
1 = 1100,

whereas, the shares generated for the participant 2 are s1
2 = 1110, s2

2 = 0111.
During the reconstruction phase, the two participants stack their shares and
retrieve α1 = OR(s1

1, s
1
2) = 1111, α2 = OR(s2

1, s
2
2) = 1111. By applying

the reversing operation to each αj and stacking the results, they obtain β =
OR(1111, 1111) = 0000. By reversing β, they obtain β = 1111, and perfectly
reconstruct a black pixel. It is easy to see that, by increasing the amount of
rounds, the reconstruction of a black pixel continues to be perfect.

9.4 Ideal Contrast VCS with Reversing

The scheme proposed by Viet and Kurosawa [13] is said to have an almost
ideal contrast because the black pixels are perfectly reconstructed, whereas,
the white ones are almost perfectly reconstructed. The larger the number of
runs, the more the whiteness of the reconstructed white pixels. However, a
perfect reconstruction of both black and white pixels, corresponding to an
ideal contrast, cannot be achieved by their scheme, even for a large number of
runs. Moreover, the scheme proposed by Viet and Kurosawa [13] also has the
following drawbacks:

• Each participant is required to store c transparencies, where c denotes the
number of runs for the underlying VCS;

• The size of each transparency is m times the size of the original image, where
m denotes the pixel expansion of the underlying VCS;

• There is a loss of resolution in the reconstructed image;

• A large number of runs is required to obtain an almost ideal contrast;

• The underlying VCS has to be perfect black.

In this section we describe different solutions for VCSs with reversing all
achieving ideal contrast. Each solution further improves on the proposal by
Viet and Kurosawa [13] by overcoming some of the above drawbacks. The
first solution, described in Section 9.4.1, uses the fact that the introduction of
the reversing operation allows participants to compute any Boolean function
of their transparencies and uses as a building block a binary secret sharing
scheme. The schemes described in Section 9.4.2 all use as a building block a
perfect black VCS, whereas, the scheme in Section 9.4.3 is based on a non-
perfect black VCS.
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9.4.1 A Construction Using a Binary Secret Sharing Scheme

In this section we describe an ideal contrast VCS with reversing for any access
structure (ΓQual,ΓForb), proposed in [6]. The scheme uses as a building block
a binary secret sharing scheme (BSS for short).

A BSS for an access structure (ΓQual,ΓForb) on a set of n participants is a
method to share a secret s ∈ {0, 1} among the n participants in such a way that
only subsets of participants in ΓQual can recover the secret, whereas, subsets
of participants in ΓForb have no information about the secret. A BSS consists
of two collections B0 and B1 of distribution functions. A distribution function
f ∈ B0 ∪ B1 is a function associating each participant i to the share f(i). In
the reconstruction phase, any qualified set of participants X = {i1, . . . , ip} ∈
ΓQual run a reconstruction algorithm Rec (f(i1), . . . , f(ip)), which on inputs
the shares they hold, outputs the secret s. See [7] for a formal definition of
BSSs. Let r be the number of bits in the binary representation of the largest
share f(i). Without loss of generality (W.l.o.g.), we consider the r-bits binary
representation of each share f(j), where j 6= i, obtained by prefixing the
r′-bits binary representation of f(j), where r′ < r, with r − r′ zeroes. The
reconstruction algorithm Rec(f(i1), . . . , f(ip)) computes a Boolean function
on its inputs. Such a function can be computed by using a Boolean circuit.
It is well known that OR and NOT represent a complete basis for Boolean
functions, i.e., any Boolean function can be computed by a binary circuit
composed only of OR and NOT gates. Therefore, Rec(f(i1), . . . , f(ip)) can
be computed by a Boolean circuit composed only of OR and NOT gates,
corresponding to stacking and reversing operations, respectively.

In the distribution phase of the VCS with reversing, the encoding of the
secret image is handled pixel by pixel, where each pixel is considered inde-
pendently of the others. For each pixel of the original image and for each par-
ticipant i, the dealer generates the corresponding pixel in each transparency
ti,1, . . . , ti,r, where r is the size of the shares distributed by the underlying
BSS. In the reconstruction phase, any qualified set of participants recover the
original secret image with no loss of resolution by performing a sequence of
stacking and reversing operations on their transparencies. Such a sequence of
operations corresponds to simulating parallel runs of the reconstruction algo-
rithm of the BSS, that is, one run for each pixel of the original image. Such
a parallel execution enables the reconstruction of the original image, because
each transparency contains the same number of pixels of the original image
and each pixel can be reconstructed by using the same Boolean circuit. The
construction is described in Figure 9.2.

It is easy to see that the construction of Figure 9.2 gives an ideal contrast
VCS with reversing with no loss of resolution. Indeed, let us consider the
encoding pixel by pixel. Let X ∈ ΓQual be a qualified set of participants.
From the reconstruction property of the underlying BSS, the participants in
X can reconstruct the secret pixel, by performing the sequence of stacking
and reversing operations on their transparencies corresponding to the binary
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Let (ΓQual,ΓForb) be an access structure on a set of n participants. Let
B0 and B1 be the collections of distribution functions realizing a BSS
for (ΓQual,ΓForb). Let r be the size of the shares distributed by the BSS.

Distribution phase. To share a white (black, resp.) pixel of the orig-
inal image, the dealer has to:

• randomly choose a distribution function f ∈ B0 (resp. f ∈ B1),

• for each participant i, consider the binary representation si,1, . . . , si,r

of the share f(i) and, for each j = 1, . . . , r, put a white (black, resp.)
pixel on the transparency ti,j if si,j = 0 (si,j = 1, resp.).

Reconstruction phase. Let X = {i1, . . . , ip} ∈ ΓQual. Participants in
X reconstruct the secret image by performing the sequence of revers-
ing and stacking operations on their transparencies, corresponding to
the NOT and OR gates of the Boolean circuit computing in parallel
Rec (f(i1), . . . , f(ip)), for each pixel of the original image, where f is
the distribution function chosen to share that pixel.

FIGURE 9.2
A construction for ideal contrast VCS with reversing using a BSS.

circuit simulating the reconstruction algorithm of the underlying BSS. The
security of the scheme directly follows from the security of the underlying
BSS.

As shown in the following, we can construct an ideal contrast (k, k)-
threshold VCS with reversing, with k ≥ 2, where each participant has to
store only one transparency, if we use as a building block a (k, k)-threshold
BSS distributing shares of one bit. This improves on the construction for a
(k, k)-threshold VCS with reversing of Figure 9.1, where each participant has
to store c transparencies, each containing 2k−1 subpixels for each pixel of
the original secret image, c being the number of runs of the underlying VCS
needed to obtain an asymptotically ideal contrast. Indeed, consider the fol-
lowing (k, k)-threshold BSS: to share a secret s ∈ {0, 1}, the dealer randomly
chooses k− 1 random bits s1, . . . , sk−1 and computes sk = s⊕ s1⊕· · ·⊕ sk−1,
where ⊕ denotes the XOR operation. For i = 1, . . . , k, the share for partic-
ipant i is the bit si. In order to reconstruct the secret s in the BSS the k
participants are required to compute the XOR of their shares s1 ⊕ · · · ⊕ sk.
By arranging the k > 2 bits s1, . . . , sk as the leaves of a binary tree of height
dlog ke, where internal nodes have two children and the leaves are distributed
on at most two levels, the problem of computing the XOR of k bits can be
reduced to the problem of computing k − 1 pairwise XORs, corresponding
to the internal nodes of the tree. Since each pairwise XOR operation can be
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expressed in terms of 3 ORs and 4 NOTs as follows:

si ⊕ sj = OR(OR(si, sj), OR(si, sj) ),

then, the computation of each pairwise XOR can be performed by using a
Boolean circuit, having a depth 4, constituted only by OR and NOT gates.
Therefore, the computation of s1 ⊕ · · · ⊕ sk can be performed by a Boolean
circuit having a depth 4dlog ke.

In the corresponding VCS with reversing, for each pixel of the original
image, the dealer runs the distribution phase of the BSS, and, for each partic-
ipant i, generates on the transparency ti the pixel corresponding to the share
si distributed by the BSS. In order to reconstruct the secret image, the k
participants are involved in a computation consisting of stacking and revers-
ing their transparencies, simulating the circuit computing the XOR, which is
composed only by OR and NOT gates. It is easy to see that the number of
reversing and stacking operations needed to reconstruct the secret image is
equal to 4(k − 1) and 3(k − 1), respectively.

Example 4 Let k = 4. If the dealer wants to share a white pixel, he runs
the distribution phase of the BSS for the secret s = 0. Hence, he randomly
chooses three bits s1, s2, and s3, and computes s4 = s ⊕ s1 ⊕ s2 ⊕ s3. For
example, let s1 = 1, s2 = 0, s3 = 0, then s4 = 1. The corresponding pixels
in the transparencies t1, t2, t3, t4 are equal to 1, 0, 0, 1, respectively. In order
to reconstruct the secret pixel, the participants have to simulate the compu-
tation of s1 ⊕ s2 ⊕ s3 ⊕ s4 by performing a sequence of stacking and revers-
ing operations on their transparencies. Notice that s = s1 ⊕ s2 ⊕ s3 ⊕ s4 =
(s1 ⊕ s2) ⊕ (s3 ⊕ s4). Since a = s1 ⊕ s2 = OR(OR(s1, s2), OR(s1, s2) ) = 1
and b = s3 ⊕ s4 = OR(OR(s3, s4), OR(s3, s4) ) = 1, it follows that the
four participants can reconstruct the secret pixel corresponding to the secret
s = a ⊕ b = OR(OR(a, b), OR(a, b) ) = 0 by performing 12 reversing opera-
tions and 9 stacking operations.

9.4.2 Constructions Using Perfect Black VCSs

In this section we describe different constructions using as a building block
a perfect black VCS. In particular, the solution described in Section 9.4.2.1
requires each participant to store m transparencies, where m denotes the pixel
expansion of the underlying perfect black VCS, and offers no loss of resolution.
The scheme described in Section 9.4.2.2 still offers no loss of resolution, but
requires each participant to hold two transparencies having a large size, i.e.,
|Γ0| times the size of the secret image. Finally, the scheme in Section 9.4.2.3
reduces the number of transparencies stored by each participant to m−h+ 1,
but there is a loss of resolution on the reconstructed image.
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9.4.2.1 The Scheme by Cimato, De Santis, Ferrara, and Masucci

In this section we describe a general technique, due to Cimato, De Santis,
Ferrara, and Masucci [6], to construct an ideal contrast VCS with reversing for
any access structure (ΓQual,ΓForb). The scheme uses as a building block a VCS
with perfect reconstruction of black pixels, having a certain pixel expansion
m, and requires each participant to store m transparencies, each having the
same number of pixels as the original image.

In the distribution phase of the scheme, the encoding of the secret image
is handled pixel by pixel, where each pixel is considered independently of the
others. For each pixel of the original image and for each participant i, the
dealer generates the corresponding pixel in each transparency ti,1, . . . , ti,m. In
the reconstruction phase, any qualified set of participants recover the original
secret image with no loss of resolution by performing a sequence of stacking
and reversing operations on their transparencies. The construction is described
in Figure 9.3.

Let (ΓQual,ΓForb) be an access structure on a set of n participants.
Let C0 and C1 be the collections of Boolean matrices constituting a
(ΓQual,ΓForb)-VCS with a perfect reconstruction of black pixels and pixel
expansion m.

Distribution phase. To share a white (black, resp.) pixel, the dealer
has to:

• randomly choose a matrix S = [si,j ] in C0 (S in C1, resp.);

• for each participant i, consider the m bits si,1, . . . , si,m composing
the i-th row of S and, for each j = 1, . . . ,m, put a white (black,
resp.) pixel on the transparency ti,j if si,j = 0 (si,j = 1, resp.).

Reconstruction phase. Let X = {i1, . . . , ip} ∈ ΓQual. Participants in
X reconstruct the secret pixel by computing:

• αj = OR(si1,j , . . . , sip,j), for j = 1, . . . ,m;

• αj , for j = 1, . . . ,m;

• β = OR(α1, . . . , αm);

• β, which is the reconstructed pixel.

FIGURE 9.3
Cimato, De Santis, Ferrara, and Masucci’s ideal contrast VCS with reversing.

It is easy to see that the construction of Figure 9.3 gives an ideal contrast
(ΓQual,ΓForb)-VCS with reversing. Indeed, let us consider the encoding pixel by
pixel and analyze separately the reconstruction phase in case the dealer shared
a white pixel or a black pixel. Let X = {i1, . . . , ip} ∈ ΓQual be a qualified subset
of participants and assume that the secret pixel shared by the dealer was
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white. From Property 1. of Definition 1, there exists an index j ∈ {1, . . . ,m}
for which the encoded pixels in each transparency ti1,j , . . . , tip,j are all white.
It follows that for the same j, αj = 0 and β = OR(α1, . . . , αm) is equal to 1.
Then, β is zero, i.e., the reconstructed pixel will be white. Now, assume that
the secret pixel shared by the dealer was black. Since the underlying scheme
is a (ΓQual,ΓForb)-VCS with a perfect reconstruction of black pixels, it holds
that αj = 1, for j = 1, . . . ,m. Hence, β = OR(α1, . . . , αm) is zero and β = 1,
i.e., the reconstructed pixel will be black. The security of the scheme directly
follows from the security of the underlying VCS.

Compared to the scheme described in Figure 9.1, the one of Figure 9.3
requires each participant to store m transparencies, each having the same
number of pixels as the original image. Furthermore, the scheme requires a
qualified set of p participants to execute exactly m + 1 reversing operations
and mp− 1 stacking operations. Finally, the reconstructed image has no loss
of resolution.

Example 5 Let P = {1, 2, 3, 4} and Γ0 =
{
{1, 2}, {2, 3}, {3, 4}

}
. The basis

matrices S0 and S1 in a VCS realizing the access structure ΓQual whose basis
is Γ0 are:

S0 =


0 1 1 0
0 1 1 1
0 1 1 1
0 1 0 1

 S1 =


1 0 0 1
1 1 1 0
1 1 0 1
1 0 1 0

 .
The collections C0 and C1 are obtained by permuting the columns of the corre-
sponding basis matrix (S0 for C0, and S1 for C1) in all possible ways. Let S0

be the matrix chosen by the dealer to share a white pixel. The corresponding
pixels generated for the transparencies t1,1, . . . , t1,4 for participant 1 are 0, 1,
1, and 0, whereas, the pixels generated for the transparencies t2,1, . . . , t2,4 for
participant 2 are 0, 1, 1, and 1. During the reconstruction phase, the two par-
ticipants stack their shares and retrieve α1 = 0, α2 = 1, α3 = 1, α4 = 1. By
applying the reversing operation to each αj and stacking the results, they ob-
tain β = OR(0, 1, 1, 1) = 1. By reversing β, they obtain β = 0, and reconstruct
a white pixel.

Let S1 be the matrix chosen by the dealer to share a black pixel. The cor-
responding pixels generated for the transparencies t1,1, . . . , t1,4 for participant
1 are 1, 0, 0, and 1, whereas, the corresponding pixels generated for the trans-
parencies t2,1, . . . , t2,4 for participant 2 are 1 1 1, and 0. During the reconstruc-
tion phase, the two participants will perform the same operation sequence as
before, retrieving α1 = 1, α2 = 1, α3 = 1, α4 = 1, β = OR(1, 1, 1, 1) = 0, and
β = 1, reconstructing a black pixel.

Notice that if the qualified set X ∈ ΓQual is a superset of an X ′ ∈ Γ0,
then, in the reconstruction phase, participants in X can recover the secret
image by performing the given sequence of operations on the subset of trans-
parencies held by participants in X ′ only, thus reducing the total number of
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operations. A further improvement can be obtained by considering as a build-
ing block a (ΓQual,ΓForb)-VCS with a perfect reconstruction of black pixels
having a smaller pixel expansion than m =

∑
X∈ΓQual

2|X|−1. In particular,
by considering the set Γ0 of all the minimal qualified subsets, and by using
the same technique proposed in [1], it is possible to construct a (ΓQual,ΓForb)-
VCS with a perfect reconstruction of black pixels, having pixel expansion
m′ =

∑
X∈Γ0

2|X|−1, thus reducing the number of transparencies held by each
participant.

9.4.2.2 The Scheme by Hu and Tzeng

In this section we describe an ideal contrast VCS with reversing for any access
structure (ΓQual,ΓForb), due to Hu and Tzeng [9]. The construction uses the
basis matrices of the Naor-Shamir’s (k, k)-VCS described in Section 9.2.1 along
with the properties of the XOR operator.

Let S0 and S1 be the basis matrices of the Naor-Shamir’s (k, k)-VCS. The
key idea behind Hu and Tzeng’s construction relies upon the fact that the
XOR of the bits belonging to a column of S0 (S1, respectively) is zero (one,
respectively). With such an observation in mind, a (k, k)-VCS with reversing
may be easily constructed by issuing to the participant i a transparency of
the same size as the original image constructed as follows: for each white
(black, respectively) pixel the dealer chooses a column in S0 (S1, respectively)
and puts on the transparency the i-th item of the chosen column. Since each
column of S0 (S1, respectively) has an even (odd, respectively) number of
ones, it is easy to see that by XORring k transparencies the original image is
reconstructed without any loss of resolution. In the following we refer to this
construction as the XOR-(k, k)-VCS. As seen in Section 9.4.1, the problem
of computing the XOR of k transparencies can be reduced to a sequence of
stacking and reversing operations.

By using |Γ0| executions of the XOR-(k, k)-VCS, a naive VCS with revers-
ing for any access structure (ΓQual,ΓForb) can be obtained. Indeed, we simply
execute the above XOR-(|X|, |X|)-VCS for each qualified set X ∈ Γ0. Such a
solution requires each participant to store as many transparencies as the num-
ber of qualified sets he belongs to. Each transparency has the same size as the
original image, on the other hand, each participant needs to keep track of the
correspondence between a transparency and the related qualified set. In order
to overcome such a drawback, Hu and Tzeng proposed a way to combine the
transparencies distributed to a participant in a single transparency. Such a
transparency is then used by a participant in a qualified set along with an ad-
ditional transparency to reconstruct the original image. Both transparencies
held by each participant are |Γ0| times larger than the size of the secret im-
age. Indeed, each transparency contains |Γ0| blocks and each qualified subset
of participants reconstructs, without loss of resolution, the secret image in a
single block, whereas the other reconstructed blocks contain only white pixels.
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Compared to the naive solution, the scheme introduces some computational
overhead by requiring additional stacking and reversing operations.

In the distribution phase, for each qualified set X in Γ0 and each par-
ticipant i ∈ X the dealer generates the subtransparency tX,i resulting by
applying the XOR-(|X|, |X|)-VCS on the set of participants X. For each
set X in Γ0 such that the participant i does not belong to X, the dealer
generates the subtransparency tX,i consisting of all ones. Each participant
i receives a transparency ti corresponding to the concatenation of its sub-
transparency according to an ordering over the qualified sets in Γ0. Hence, let
X1, . . . , X|Γ0| be the qualified sets in Γ0, each participant i receives the trans-
parency ti = tX1,i ◦ . . . ◦ tX|Γ0|,i

, where ◦ denotes the concatenation between
transparencies. Each participant i also receives an additional transparency
t′i of the same size as ti such that each subtransparency t′X,i has all ones if
the participant i does not belong to the qualified set X whereas it (to re-
peat the subject that is each sub transparency) has all zeros, otherwise. The
construction is described in Figure 9.4.

Let (ΓQual,ΓForb) be an access structure on a set of n participants.

Distribution phase. For each qualified set X ∈ Γ0 the dealer has to:

• execute the XOR-(|X|, |X|)-VCS on X to generate the sub-
transparency tX,i for each participant i ∈ X;

• for each i 6∈ X, generate the subtransparency tX,i consisting of all
ones;

• for each i ∈ X, generate a subtransparency t′X,i of the same size of
the original image, having all zeros;

• for each i 6∈ X, generate a subtransparency t′X,i of the same size of
the original image, having all ones;

• distribute to participant i the transparencies ti = tX1,i ◦ . . . ◦ tX|Γ0|,i

and t′i = t′X1,i ◦ . . . ◦ t′X|Γ0|,i
.

Reconstruction phase. Let X = {i1, . . . , ip} be a qualified set in
ΓQual. Participants in X reconstruct the original image by computing:

• T = XOR(ti1 , . . . , tip);

• T ′ = OR(t′i1 , . . . , t
′
ip

);

• U = OR(T, T ′);

• U ′ = XOR(U, T ′), which corresponds to the original image.

FIGURE 9.4
Hu and Tzeng’s ideal contrast VCS with reversing.

It is easy to see that the i-th qualified set obtains the original image in place
of the i-th subtransparency of U ′ while all other subtransparencies contains
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all zeros. Indeed, the matrix corresponding to the i-th subtransparency of U ′

is the same as the i-th subtransparency of T , which from the property of
the XOR operator and the composition of the Naor-Shamir basis matrices
corresponds to the original image. Moreover, the matrices corresponding to
the subtransparency of U but the i-th one contains all ones. Hence, from the
property of the XOR operator such subtransparencies contains all zeros in U ′.

The reconstruction phase requires a qualified set of p participants to per-
form exactly 4p reversing operations and 4p− 1 stacking operations, since, as
seen in Section 9.4.1, the XOR operation can be implemented by means of 3
ORs and 4 NOTs operations.

Example 6 Let P = {1, 2, 3, 4}, Γ0 =
{
X1, X2

}
=
{
{1, 4}, {2, 3, 4}}

}
. Let

S0
1 and S1

1 be the basis matrices associated to the XOR-(2,2)-VCS for X1 and
let S0

2 and S1
2 be the basis matrices associated with the XOR-(3,3)-VCS for

X2 defined as follows:

S0
1 =


1 0
1 1
1 1
1 0

 S1
1 =


1 0
1 1
1 1
0 1

 ;

S0
2 =


1 1 1 1
0 0 1 1
0 1 0 1
0 1 1 0

 S1
2 =


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

 .
Let I =

[
1 0 1
0 1 0

]
be the original image. The transparencies are computed

as follows:

t1 =
[

1 1 0 1 1 1
0 1 1 1 1 1

]
t′1 =

[
0 0 0 1 1 1
0 0 0 1 1 1

]

t2 =
[

1 1 1 1 0 1
1 1 1 0 0 1

]
t′2 =

[
1 1 1 0 0 0
1 1 1 0 0 0

]
t3 =

[
1 1 1 1 0 0
1 1 1 1 1 0

]
t′3 =

[
1 1 1 0 0 0
1 1 1 0 0 0

]
t4 =

[
0 1 1 1 0 0
0 0 1 1 0 1

]
t′4 =

[
0 0 0 0 0 0
0 0 0 0 0 0

]
Participants in X2 = {2, 3, 4} reconstruct the original image by computing

T =
[

1 0 1 0 1 1
0 1 0 0 1 0

]
T ′ =

[
0 0 0 1 1 1
0 0 0 1 1 1

]
U =

[
1 0 1 1 1 1
0 1 0 1 1 1

]
U ′ =

[
1 0 1 0 0 0
0 1 0 0 0 0

]
.
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9.4.2.3 The Scheme by Yang, Wang, and Chen

Yang, Wang, and Chen [14] proposed a different method to construct a VCS
with reversing starting from any perfect black VCS with pixel expansion m.
In their scheme each participant receives m − h + 1 shares, where the first
one corresponds to the one obtained by the underlying perfect black VCS,
whereas the i-th share is obtained by cyclically shifting the (i − 1)-th share
one bit to the right, for each i = 2, . . . ,m− h+ 1. Notice that the right shift
operation can be implemented by means of OR and NOT operations, since
OR and NOT represent a complete basis for Boolean functions.

The scheme is shown in Figure 9.5.

Assume there exists a (ΓQual,ΓForb)-VCS with a perfect reconstruction
of black pixels. Let Φ(·) be a one-bit cyclical right-shift function.

Distribution phase. For each pixel of the secret image, the dealer:

• runs the distribution phase of the underlying (ΓQual,ΓForb)-VCS; let
s1i be the share distributed to participant i, for i = 1, . . . , n;

• for each ` = 2, . . . ,m− h+ 1, compute s`
i = Φ(s`−1

i );

• distributes the (m− h+ 1)-tuple (s1i , . . . , s
m−h+1
i ) to participant i.

Reconstruction phase. A qualified set {i1, . . . , ip} of participants
reconstructs the secret pixel as follows:

• superimpose their shares to get α` = OR(s`
i1 , . . . , s

`
ip

), for ` =
1, . . . ,m− h+ 1;

• reverse the results of the previous step to obtain α`, for ` = 1, . . . ,m−
h+ 1;

• superimpose the results of the previous step to get β =
OR(α1, . . . , αm−h+1);

• finally, reverse the result of the previous step to obtain β, which is
the reconstructed pixel.

FIGURE 9.5
Yang, Wang, and Chen’s ideal contrast VCS with reversing.

The reconstruction phase is the same as that of the scheme shown in Figure
9.1. Recall that the computation of the reconstructed pixel β corresponds to
performing m − h + 1 AND operations, since β = OR(α1, . . . , αm−h+1) =
AND(α1, . . . , αm−h+1). It is easy to see that the construction of Figure 9.5
achieves a perfect reconstruction of both white and black pixels. Indeed, in the
case a white pixel has been shared, α1 contains h white subpixels and m− h
black ones. The maximum interval between two 0s in α1 is m − h, thus, by
shifting right one bit (m− h) times, there is at least an αi having a subpixel
equal to 0 at position j, for each i = 1, . . . ,m − h + 1 and j = 1, . . . ,m.
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Therefore, the reconstructed pixel β = AND(α1, . . . , αm−h+1) results in all
white subpixels. On the other hand, in case a black pixel has been shared, αi

contains all black subpixels, for each i = 1, . . . ,m−h+1, thus also β perfectly
reconstructs the pixel.

The security of the scheme directly follows from the security of the under-
lying VCS.

The reconstruction phase requires a qualified set of p participants to per-
form exactly m − h + 2 reversing operations and (m − h + 1)p − 1 stacking
operations. Finally, notice that in the construction of Figure 9.5 there is a loss
of resolution, since each pixel in the original image corresponds to m subpix-
els in the reconstructed image, where m denotes the pixel expansion of the
underlying VCS.

Example 7 Let P = {1, 2, 3, 4} and Γ0 =
{
{1, 2}, {2, 3}, {3, 4}

}
. The basis

matrices S0 and S1 in a VCS realizing the access structure ΓQual whose basis
is Γ0 are:

S0 =


0 1 1 0
0 1 1 1
0 1 1 1
0 1 0 1

 S1 =


1 0 0 1
1 1 1 0
1 1 0 1
1 0 1 0

 .
The collections C0 and C1 are obtained by permuting the columns of the corre-
sponding basis matrix (S0 for C0, and S1 for C1) in all possible ways. Let S0

be the matrix chosen by the dealer to share a white pixel. Notice that m = 4,
h = 1, and m−h+1 = 4. The shares generated for participant 1 are s1

1 = 0110,
s2

1 = 0011, s3
1 = 1001, and s4

1 = 1100, whereas, the shares generated for the
participant 2 are s1

2 = 0111, s2
2 = 1011, s3

2 = 1101, and s4
2 = 1110. During

the reconstruction phase, the two participants stack their shares and retrieve
α1 = OR(s1

1, s
1
2) = 0111, α2 = OR(s2

1, s
2
2) = 1011, α3 = OR(s3

1, s
3
2) = 1101,

and α4 = OR(s4
1, s

4
2) = 1110. By applying the reversing operation to each αj

and stacking the results, they obtain β = OR(0111, 1011, 1101, 1110) = 1111.
By reversing β, they obtain β = 0000, and reconstruct a white pixel.

Let S1 be the matrix chosen by the dealer to share a black pixel. The
shares generated for participant 1 are s1

1 = 1001, s2
1 = 1100, s3

1 = 0110, and
s4

1 = 0011, whereas, the shares generated for the participant 2 are s1
2 = 1110,

s2
2 = 0111, s3

2 = 1011, and s4
2 = 1101. During the reconstruction phase, the

two participants stack their shares and retrieve α1 = OR(s1
1, s

1
2) = 1111, α2 =

OR(s2
1, s

2
2) = 1111, α3 = OR(s3

1, s
3
2) = 1111, and α4 = OR(s4

1, s
4
2) = 1111.

By applying the reversing operation to each αj and stacking the results, they
obtain β = OR(1111, 1111, 1111, 1111) = 0000. By reversing β, they obtain
β = 1111, and reconstruct a black pixel.
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9.4.2.4 Comparisons

The efficiency of a VCS with reversing is evaluated according to the follow-
ing parameters: the contrast, the size (expansion) and the number of the
transparencies held by each participant, the number of stacking and reversing
operations, and the size (expansion) of the reconstructed image. In Table 9.1
we summarize and compare the parameters of the constructions described in
Sections 9.3 and 9.4.2., which are all based on perfect black VCSs for a general
access structure (ΓQual,ΓForb).

TABLE 9.1
Comparison between VCSs with reversing based on perfect black VCSs.

Scheme Contrast Share Number Number Number Secret
exp. of shares OR oper. NOT oper. exp.

Fig. 9.1 Almost m c cp−1 c+1 m
ideal

Fig. 9.3 Ideal NO m mp−1 m+1 NO
Fig. 9.4 Ideal |Γ0| 2 4p− 1 4p NO
Fig. 9.5 Ideal m m−h+1 (m−h+1)p−1 m−h+2 m

9.4.3 A Construction Using a Nonperfect Black VCS

Yang, Wang and Chen [14] proposed a way to construct an ideal VCS with
reversing when the difference h − ` is odd, starting from any VCS (i.e., not
necessarily a perfect black) with pixel expansion m. Each participant receives
m shares, where the first one corresponds to that obtained by the underlying
VCS, whereas, the i-th share is obtained by cyclically shifting the (i − 1)-
th share one bit to right, for each i = 2, . . . ,m. Notice that the right shift
operation can be implemented by means of OR and NOT operations, since
OR and NOT represent a complete basis for boolean functions.

The scheme is shown in Figure 9.5.
The construction of Figure 9.5 achieves perfect reconstruction of both

white and black pixels. Indeed, in case a white pixel has been shared, α1

contains h white subpixels and m − h black ones. By shifting right one bit
m times, α1, . . . , αm are constructed in such a way that exactly (m − h) out
of m have a black subpixel at position j, for each j = 1, . . . ,m. Therefore,
β = XOR(α1, . . . , αm) is the reconstructed white pixel if (m − h) is even,
otherwise the reconstructed pixel is β. On the other hand, since h− ` is odd,
i.e. h and ` cannot be both odd or both even, if (m− h) is even (odd, resp.)
it holds that m − ` is odd (even, resp.). Hence, in the case a black pixel has
been shared, α1 contains ` white subpixels and m− ` black ones. By shifting
right one bit m times, α1, . . . , αm are constructed in such a way that exactly
(m − `) out of m have a black subpixel at position j, for each j = 1, . . . ,m.
Therefore, β = XOR(α1, . . . , αm) is the reconstructed black pixel if (m − h)
is even, i.e., (m− `) is odd, otherwise the reconstructed pixel is β.
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Assume there exists a (ΓQual,ΓForb)-VCS with pixel expansion m. Let Φ(·) be a one-bit
cyclical right shift function and let (h− `) be odd.

Distribution phase. For each pixel of the secret image, the dealer:

• runs the distribution phase of the underlying (ΓQual,ΓForb)-VCS; let s1i be the share
distributed to participant i, for i = 1, . . . , n;

• for each ` = 2, . . . ,m, compute s`
i = Φ(s`−1

i );

• distributes the m-tuple (s1i , . . . , s
m
i ) to participant i.

Reconstruction phase. A qualified set {i1, . . . , ip} of participants reconstructs the
secret pixel as follows:

• superimpose their shares to get α` = OR(s`
i1 , . . . , s

`
ip

), for ` = 1, . . . ,m;

• compute β = XOR(α1, . . . , αm), which is the reconstructed pixel if (m−h) is even,
otherwise the reconstructed pixel is β.

FIGURE 9.6
Ideal contrast VCS with reversing starting from any VCS.

The security of the scheme directly follows from the security of the under-
lying VCS.

The reconstruction phase requires a qualified set of p participants to per-
form exactly 4(m − 1) reversing operations and p − 1 + 3(m − 1) stacking
operations, since as seen in Section 9.4.1 the XOR operation can be imple-
mented by means of 3 ORs and 4 NOTs operations. Finally, notice that in the
construction of Figure 9.5 there is a loss of resolution, since each pixel in the
original image corresponds to m subpixels in the reconstructed image, where
m denotes the pixel expansion of the underlying VCS.

Example 8 Consider a (2, 3)-threshold VCS, which is not a perfect black,
where m− h is odd. Assume the basis matrices S0 and S1 are:

S0 =

 1 0 0
1 0 0
1 0 0

 S1 =

 1 0 0
0 1 0
0 0 1

 .
The collections C0 and C1 are obtained by permuting the columns of the corre-
sponding basis matrix (S0 for C0, and S1 for C1) in all possible ways. Let S0

be the matrix chosen by the dealer to share a white pixel. The shares generated
for participant 1 are s1

1 = 100, s2
1 = 010 and s3

1 = 001, whereas, the shares
generated for the participant 2 are s1

2 = 100, s2
2 = 010, and s3

2 = 001. During
the reconstruction phase, the two participants stack their shares and retrieve
α1 = OR(s1

1, s
1
2) = 100, α2 = OR(s2

1, s
2
2) = 010, and α3 = OR(s3

1, s
3
2) = 001.

By computing β = XOR(α1, α2, α3) = 111 and its reverse β = 000 the two
participants reconstruct a white pixel.
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Let S1 be the matrix chosen by the dealer to share a black pixel. The
shares generated for participant 1 are s1

1 = 100, s2
1 = 010 and s3

1 = 001,
whereas, the shares generated for the participant 2 are s1

2 = 010, s2
2 = 001

and s3
2 = 100. During the reconstruction phase, the two participants stack

their shares and retrieve α1 = OR(s1
1, s

1
2) = 110, α2 = OR(s2

1, s
2
2) = 011, and

α3 = OR(s3
1, s

3
2) = 101. By computing β = XOR(α1, α2, α3) = 000 and its

reverse β = 111 the two participants reconstruct a black pixel.

9.5 Conclusions

Visual cryptography schemes are characterized by two parameters: the pixel
expansion, i.e., the number of subpixels contained in each share and the con-
trast, which measures the difference between a black and a white pixel in the
reconstructed image. While it is possible to construct schemes with perfect re-
construction of black pixels (or white pixels, respectively), it has been shown
that a perfect reconstruction of both black and white pixels is infeasible. In
order to improve the contrast in VCSs, Viet and Kurosawa [13] introduced an
extra noncryptographic operation: the reversing operation. Specifically, they
showed how to construct VCSs with reversing where the reconstruction of
black (white, respectively) pixels is perfect, whereas, the reconstruction of
white (black, respectively) pixels is almost perfect. Afterwards, Cimato et
al. [6] showed how to construct VCSs with reversing where reconstruction of
both black and white pixels is perfect. Such schemes are said to have an ideal
contrast. In particular, Cimato et al. [6] proposed two different constructions.
One uses as a building block a VCS with perfect reconstruction of black pixels
while the other construction uses as a building block a binary secret sharing
scheme. Subsequently, new constructions for visual cryptography with revers-
ing have been described in [9, 14]. In particular, [9] considered the problem of
minimizing the number of the shares held by each participant while in [14] the
need of using as a building block a VCS with perfect reconstruction of black
pixels is removed.
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10.1 Introduction

In 1994, Naor and Shamir proposed a variant of secret sharing called Visual
Cryptography (VC) [9], where the shares given to participants are xeroxed
onto transparencies. If X is an authorized subset, then the participants in X
can visually recover the secret image by stacking their transparencies together
without performing any computation. One special property distinguishes VC
from conventional secret sharing scheme [16, 17] is that the security of VC is
achieved by losing the contrast and the resolution of the secret image. In other
words, the quality of the reconstructed secret image is inferior to that of the

281
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original secret image. Since the invention of VC, many researchers have de-
voted themselves to enhancing the contrast and resolution of the reconstructed
images [1, 3] and to extending it to general access structures [7]. Moreover,
many schemes to visually share nonbinary secret images, such as gray-level
secret images [2, 5] and color secret images [12, 13], were also proposed. There
are lots of applications based on VC, for example, visual authentication and
identification [10], steganography [4, 6, 8], and image encryption [14].

In 2006, Horng et al. showed that cheating is possible in the k-out-of-n VC
[8]. The cheating activity could cause unpredictable damage to victims be-
cause they will accept a forged image different from the actual secret image as
authentic. In this chapter, we survey some recently proposed cheating preven-
tion schemes in VC and provide a comparative evaluation of their advantages
and disadvantages.

The rest of this chapter is organized as follows. Section 10.2 provides pre-
liminary background on VC and the cheating activities. Section 10.3 surveys
some cheating prevention schemes. Their comparative analyses are in Section
10.4. Finally, conclusions and some research issues are given in Section 10.5.

10.2 Preliminaries

10.2.1 Visual Cryptography

A visual secret sharing scheme is a special variant of a k-out-of-n secret sharing
scheme where the shares given to participants are xeroxed onto transparencies.
Therefore, a share is also called a transparency. If X is a qualified subset, then
the participants in X can visually recover the secret image by stacking their
transparencies without performing any cryptographic computation. Usually,
the secret is an image. To create the transparencies, each black and white
pixel of the secret image is handled separately. It appears as a collection of m
black and white subpixels in each of the n transparencies. We will call these
m subpixels a block. Therefore, a pixel of the secret image corresponds to nm
subpixels. We can describe the nm subpixels by an n × m Boolean matrix,
called a base matrix, S = [Sij ] such that Sij = 1 if and only if the jth subpixel
of the ith share is black and Sij = 0 if and only if the jth subpixel of the ith

share is white. The gray level of the stack of k shared blocks is determined by
the Hamming weight H(V ) of the ”OR”ed m-vector V of the corresponding
k rows in S. This gray level is interpreted by the visual system of the users as
black if H(V ) ≥ d and as white if H(V ) ≤ d− α ∗m for some fixed threshold
d and relative difference α. We would like m to be as small as possible and α
to be as large as possible.

More formally, a solution to the k-out-of-n VC consists of two collections
C0 and C1 of n×m base matrices. To share a white pixel, the dealer randomly
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FIGURE 10.1
Visual cryptography.

chooses one of the matrices from C0, and to share a black pixel, the dealer
randomly chooses one of the matrices from C1. The chosen matrix determines
the m subpixels in each one of the n transparencies. Figure 10.1 shows the
basic concept of visual cryptography.

Definition 1 A solution to the k-out-of-n VC consists of two collections
C0 and C1 of n × m base matrices. The solution is considered valid if the
following conditions are met:

Contrast conditions:

1. For any matrix S0 in C0, the ”or” V of any k of the n rows satisfies H(V ) ≤
d− α ∗m.

2. For any matrix S1 in C1, the ”or” V of any k of the n rows satisfies H(V ) ≥
d.

Security condition:

3. For any subset {i1, i2, . . . , iq} of {1, 2, . . . , n} with q < k, the two collections
D0, D1 of q×m matrices obtained by restricting each n×m matrix in C0, C1
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to rows i1, i2,K, iq are indistinguishable in the sense that they contain the
same matrices with the same frequencies.

Figure 10.2 shows the basic concept of a 2-out-of-2 visual secret sharing
scheme. The secret image is shared through two noise-like transparencies: T1

and T2. In this case, a block consists of 4 subpixels. Each black(white) pixel
of the secret image is turned into two black and two white subpixels of T1 and
T2. Figure 10.3 shows an example of a 2-out-of-3 visual secret sharing scheme.

10.2.2 Cheating in VC

In [8], Horng et al. showed that cheating is possible in k-out-of-n VC. Let’s
take the 2-out-of-3 visual secret sharing scheme shown in Figure 10.3 as an
example. A secret image is encoded into three distinct transparencies, denoted
T1, T2, and T3. Then, the three transparencies are respectively delivered to
Alice, Bob, and Carol. Without loss of generality, Bob and Carol are assumed
to be collusive cheaters and Alice is the victim. During the cheating activity,
Bob and Carol use S2 and S3 to create forged transparency S′2 such that su-
perimposing S′2 and S3 will visually recover the cheating image as in Figure
10.4. Precisely, by observing the following collections of 3 × 3 matrices that
are used to generate transparencies, collusive cheaters can predict the actual
structure of the victim’s transparency so as to create S′2.

C0 = {all the matrices obtained by permuting the columns of

 1 0 0
1 0 0
1 0 0

}
C1 = {all the matrices obtained by permuting the columns of

 1 0 0
0 1 0
0 0 1

}
By observing the above matrices, two rows of above C0 or C1 matrix are de-
termined by collusive cheaters. Therefore, the structure of the corresponding
block of S1 is exact the remaining row. For presenting a white pixel of cheating
image, the block of S′2 is set to be the same structure of S1. For presenting a
black pixel of cheating image, the block of S′2 is set to be the different struc-
ture of S1. For example, if the block of S1 is [010], then S′2 is set to be [010]
for a white pixel or it is set to be [001] for a black pixel.

We note that if the forged shares deviate too much from the original shares
then the victim will notice the difference and suspect being cheated. Therefore,
a necessary condition for a cheating activity to be successful is that the forged
shares must be indistinguishable from the original shares. There are different
cheating activities defined in [15].
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FIGURE 10.4
Cheating in visual cryptography.
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10.3 Cheating Prevention Schemes

A visual secret sharing scheme is said to be a cheating prevention scheme if the
probability of successful cheating is negligible. We will not consider cheating
prevention in computational visual cryptographic schemes [21]. We can divide
the cheating prevention schemes into two classes. One is based on share au-
thentication where another share (transparency) is used to authenticate other
shares (transparencies) and the other is based on blind authentication where
some property of the image is used to authenticate the reconstructed secret
image. For example, in [8], it is assumed that a smooth image such that its
boundary of black and white regions is clearly perceptible is regarded as au-
thentic. Due to practical reasons, most cheating prevention schemes focus on
2-out-of-n schemes. In the following subsections, we will survey 6 recent pro-
posed cheating prevention schemes: two from [8], proposed in 2006 and will
be referred to as HCT1 and HCT2, one from [15], proposed in 2007 and will
be referred to as HT, one from [18], proposed in 2007 and will be referred to
as TCH, and two from [20], proposed in 2009 and will be referred to as PS1
and PS2.

10.3.1 HCT1 and HCT2

In [8], two cheating prevention schemes are proposed: the Authentication
Based Cheating Prevention scheme, referred to as HCT1, and the 2-out-of-
(n + l) cheating prevention scheme, referred to as HCT2. HCT1, shown in
Figure 10.5, is a share-authentication-based cheating prevention scheme and
HCT2, shown in Figure 10.7, is a blind-authentication-based cheating pre-
vention scheme. Figure 10.6 shows an experiment of HCT1. In HCT1, each
participant uses an extra transparency to verify the integrity of other trans-
parencies by means of the appearance of the verification logo. A participant
adopts a verification transparency to verify the integrity of other transparen-
cies through the appearance of his own verification logo. Each verification
transparency is generated by a 2-out-of-2 VC. Therefore, each participant re-
ceives two transparencies, namely, secret share transparency and verification
transparency created by the 2-out-of-n and 2-out-of-2 VC, respectively. Figure
10.6 shows an experiment of HCT1.

HCT2 generates (n+l) transparencies but it only delivers n transparencies
to participants. The probability that cheaters can correctly guess the structure
of each block generated for a black pixel of the victim’s transparency is down
to 1/(1 + l). The secret image is redesigned to consist of two complementary
parts. Two binary images are said to be complementary to each other if and
only if they have the same size and, for all corresponding pixels, one is black
and the other is white. Therefore, the probability that cheaters can correctly
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FIGURE 10.5
HCT1.

FIGURE 10.6
Experiment of HCT1.
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FIGURE 10.7
HCT2.

guess the structure of victim’s transparency is negligible. The idea can be
extended to design a k-out-of-(n+ l) cheating prevention scheme.

10.3.2 HT

The core of HT, shown in Figure 10.8, uses a generic transformation to create
new transparencies by adding two subpixels to every block of every original
transparency. Then, HT creates a verification transparency for each partici-
pant such that the stacking result of the new transparency with the verifica-
tion transparency will reveal a verification image. Therefore, HT is a share-
authentication-based cheating prevention scheme. Basically, HT will perform
the following steps with input C0 and C1 to create verification transparencies

1. Let T0 =

 10
... C0

10

 and T1 =

 10
... C1

10


2. Use T 0 and T 1 as the base matrices for creating transparencies

3. For each participant Pi, choose a verification image and create a verification
transparency vi as follows:
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FIGURE 10.8
HT.

a. For each white pixel in the verification image, the block of vi created
based on [1 0 0 ... 0] (after corresponding permutation as for generating
the secret shares in step 2).

b. b For each black pixel in the verification image, the block of vi created
based on [0 1 0 ... 0] (after corresponding permutation as for generating
the secret shares in step 2).

In the decoding phase of the secret image, before stacking transparencies, each
Pi checks the stacking result of vi with Tj held by participant Pj revealing his
own verification image. Figure 10.9 shows an example of an HT scheme.

10.3.3 TCH

In [18], Tsai et al. proposed a cheating prevention scheme, shown in Figure
10.10, images where shares are generated by Genetic Algorithms. TCH adopts
multiple secret images with the same visual meaning. Each qualified subset
only reveals the corresponding reconstructed secret image and the others are
left unknown to potential cheaters. Any participant accepts the decoding re-
sult only if the visually reconstructed secret image is authentic. In TCH, the
fitness function of the Generic Algorithm was designed according to a 2-out-
of-n visual secret sharing scheme. But, it is not guaranteed that the same
quality is obtained because the Generic Algorithm is a kind of heuristic al-
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FIGURE 10.9
Experiment of HT.
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FIGURE 10.10
TCH.

gorithm. Therefore, the dealer should control the quality of all reconstructed
secret images before delivering all transparencies. That is, all transparencies
should be indistinguishable.

10.3.4 PS1 and PS2

In 2009, De Prisco and De Santis [20] proposed 2-out-of-n and n-out-of-n
cheating prevention schemes, as shown in Figure 10.11. They are obtained by
simply adding an extra column with all 0s to the base matrices of the schemes
of Naor and Shamir.

In the following, we describe another 2-out-of-n cheating prevention
scheme, as shown in Figure 10.12 and proposed in the same paper. This scheme
does not require the use of a complementary image. The base matrices of the
scheme have dimension n × (2n + n + 1). The white base matrix C0 has the
following columns: all the possible 2n binary column vectors of length n, one
additional column with all 1s and n additional columns with all 0s. Whereas,
the black base matrix C1 has the following columns: all the possible 2n binary
column-vectors of length n, one additional column with all 0s in the n columns
of the identity matrix of dimension n× n.

The base matrices of a 2-out-of-3 PS2 scheme are shown as follows:

C0 =

 0 0 0 0 1 1 1 1 0 1 0 0
0 0 1 1 0 0 1 1 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0


C1 =

 0 0 0 0 1 1 1 1 0 1 0 0
0 0 1 1 0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1 0 0 0 1


We refer the readers to [20] for more details.
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FIGURE 10.11
PS1.

FIGURE 10.12
PS2.
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10.4 Analysis of Cheating Prevention Schemes

We begin with a general discussion of the advantages and disadvantages of the
share authentication approach and blind authentication approach. The advan-
tages of share-authentication-based cheating prevention approach are twofold.
One is that checking the authenticity of shares is optional. It can be done only
when someone is suspected of cheating. The other is that the generation of
verification shares is done after the generation of secret shares. Therefore, any
conventional visual secret sharing schemes (for any access structures) can be
turned into a cheating prevention scheme. The quality of the reconstructed se-
cret image is not affected. The disadvantages of this approach are also twofold.
One is that additional shares for verification purpose are needed. The other
is that these schemes lack a formal proof of security.

The advantages of blind-authentication-based cheating prevention ap-
proach are twofold. One is that no additional shares are required. The other is
that we can formally prove the security. We can formally argue that the prob-
ability of changing a black pixel (or white pixel) by the cheaters is less than 1.
The disadvantages of this approach are also twofold. One is that this approach
is only suitable for threshold visual secret sharing schemes. The other is that
the quality of the reconstructed secret image is degraded.

The comparisons of different cheating prevention schemes are illustrated
in Table 10.1. With respect to the total number of subpixels for sharing a
pixel, TCH requires the least subpixels for sharing a pixel. HCL1 requires
2n2 subpixels, since an extra transparency is used to verify the correctness
of other transparencies. HT requires 2n(n+ 2) subpixels because this scheme
also needs verification transparencies and each original transparency is en-
larged. Finally, HCT2 needs 2(n + l)2 subpixels. With respect to prevention
of shares against cheating, the following schemes are all designed according
to authentic conditions (AC). PS and HT both prevent all blocks of each
transparency from cheating. HCT1 only prevents these blocks within the
corresponding verification logo. And HCT2 only prevents blocks that were
created for presenting black pixels. The share-authentication-based cheating
prevention approach can be applied to general access structures. Whereas
blind-authentication-based cheating prevention approach is more suitable for
threshold access structures, with respect to the method for share generation,
HT uses a modified VC by the basis matrices T 0 and T 1. HCL1 and HCL2
use the share construction method of traditional VC. Finally, TCH uses GA
for share generation. With respect to security, all schemes are designed for
preventing a known secret cheating attack. However, HCL1, HT, and TCH
are not formally proved to be secure.
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TABLE 10.1
Comparisons of different cheating prevention visual secret sharing schemes.
Scheme Approach Access stru. Share gen. subpixels Security
HCL1 Share auth. General Base matrices 2n2

HCL2 Blind auth. k-out-of-n Base matrices 2(n+ 1)2 Secure
HT Share auth. k-out-of-n Base matrices 2n(n+ 2)
TCH Blind auth. 2-out-of-n GA n2

PS1 Blind auth. 2(n)-out-of-n Base matrices 2(n+ 1)2 Secure
PS2 Blind auth. 2-out-of-n Base matrices n× (2n + n+ 1) Secure

10.5 Conclusions

In this chapter, we have surveyed some cheating prevention schemes in visual
cryptography and provided a comparative evaluation of their advantages and
disadvantages. There are many topics that deserve further instigation, for
example, giving formal definition of cheating and cheating attack models and
designing new cheating prevention scheme a with less numbers of subpixels
for sharing a pixel.
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11.1 Introduction

The basic principle of the Visual Cryptography Scheme (VCS) was first for-
mally introduced by Naor and Shamir [10]. The idea of the VCS proposed
in [10] is to split an image into two random shares (printed on transparen-
cies), which separately reveal no information about the original secret image
other than the size of the secret image. The image is composed of black and
white pixels. The original image can be recovered by stacking the two trans-
parencies together.

One important parameter in VCS is pixel expansion, where the pixel ex-
pansion reflects the size of the recovered secret image. Many papers in the
literature are dedicated to proposing VCS with smaller pixel expansion. How-
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ever, all these works are based at the pixel level, i.e., to reduce the number of
subpixels that represent a pixel of the original secret image.

We notice that, the final goal of reducing the pixel expansion is to re-
duce the size of the transparencies that are distributed to the participants,
because smaller transparencies are easier to transport. However, the size of
the subpixels that are printed on the transparencies affects the final size of
the transparencies; in fact, the size of the transparencies is the product of the
size of the subpixels and the number of the subpixels in each transparency.
Unfortunately, there is a dilemma when one tries to determine the size of the
subpixels: When the subpixel size is large, it is easy to align the shares (most
publications in the literature require aligning the shares precisely in the de-
crypting phase), but the large subpixel size will result in large transparencies.
On the other hand, when the subpixel size is small, it is relatively hard to align
the shares, but smaller transparencies result. From the point of view of the
participants of the VCS, the goal is to align the shares easily and have small
transparencies as well. Table 11.1 shows the relationship between the size of
the subpixels of the transparencies and the ease to align them (more compar-
isons will be given in Table 11.5 later). Hence, there is a trade-off between the
size of the subpixels of the transparencies and the ease to align them.

TABLE 11.1
The advantages and disadvantages of large and small subpixels.

size of the
subpixels advantages disadvantages

larger easier to align larger transparency size
smaller smaller transparency size harder to align

The usual way of tackling the alignment problem of the VCS is by adding
frames to the shares. To align the shares one just needs to align the frames. Yan
et al. [13] employed the Walsh transform to embed marks in both of the shares
so as to find the alignment position of these shares. However, both methods
need to align the transparencies precisely. Besides, Kobara and Imai [6] con-
sidered a different problem. They calculated the visible space when viewing
the transparencies. The results are somehow related to the alignment prob-
lem, but not exactly, as [6] has no discussion about alignment at all. Kobara
and Imai [6] do not consider the stacking of more than two shares. Nakajima
and Yamaguchi [9] proposed a (2, 2), extended VCS, which the secret image
and shares are natural images. Their scheme can simultaneously reduce the
alignment difficulty. However, their scheme does not hold the perfect security
like a secret sharing scheme.

In fact, the precise alignment of small subpixels is not critical. The secret
image can still be recovered visually even if the participants do not align the
transparencies precisely. This phenomenon helps to determine the size of the
subpixels printed on the transparencies.

This chapter focuses on some recent results about the alignment problem
of the visual cryptography scheme [8, 16]. Two kinds of alignment problems
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of share images are considered. First, the share images are misaligned by
integer number of subpixels (less than the pixel expansion). This part mainly
comes from [8]. In such a case, the secret image can still be observed as
its complementary image. Second, the share images are misaligned by less
than one subpixel. This part mainly comes from [16]). Conditions that the
secret image can still be recovered are studied, and the different misalignment
tolerances of large and small subpixels are compared. The results indicate
that the VCS, by itself, has some misalignment tolerance. At last, we provide
a misalignment tolerant VCS based on the trade-off between the usage of large
and small subpixels.

11.2 Preliminaries

In the VCS, there is a secret image that is encrypted into some shares. The
secret image is called the original secret image for clarity, and the shares are
the encrypted images (and are called the transparencies if they are printed).
When a qualified set of shares (transparencies) are stacked together, it gives
a visual image that is almost the same as the original secret image, we call it
the recovered secret image. In the case of black and white images, the original
secret image is represented as a pattern of black and white pixels. Each of
these pixels is divided into subpixels, which themselves are encoded as black
and white to produce the shares. The recovered secret image is also a pattern
of black and white subpixels that should visually reveal the original secret
image if a qualified set of shares is stacked.

In order to simplify the discussion, in this paper, we will only consider the
black and white VCS, where black pixels are denoted by 1 and white pixels
are denoted by 0.

By a (k, n)-VCS we mean a scheme where the original secret image is
divided into n shares, which are distributed to n participants. Any subgroup
of k out of these n participants can get a recovered secret image, but any
subgroup consisting of less than k participants does not have any information
other than the size about the original secret image.

For a vector v ∈ GFm(2), we denote by w(v) the Hamming weight of the
vector v, i.e., the number of nonzero coordinates in v. A (k, n)-VCS, denoted
by (C0, C1), consists of two collections of n ×m binary matrices C0 and C1.
To share a white (resp. black) pixel, a dealer (the one who sets up the system)
randomly chooses one of the matrices, called a share matrix, in C0 (resp. C1)
and distributes its rows (representing a pattern of subpixels in the share) to
the n participants of the scheme, giving row i to participant i, i = 1, · · · , n.
More precisely, we give a formal definition of the (k, n)-VCS as follows:

Definition 1 Let k, n, m be nonnegative integers, l and h be positive numbers
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satisfying 2 ≤ k ≤ n and 0 ≤ l < h ≤ m. The two collections of n×m binary
matrices (C0, C1) constitute a visual cryptography scheme (k, n)-VCS if the
following properties are satisfied:

1. (Contrast) For any s ∈ C0, the OR of any k out of n rows of s
is a vector v that satisfies w(v) ≤ l.
2. (Contrast) For any s ∈ C1, the OR of any k out of n rows of s

is a vector v that satisfies w(v) ≥ h.

3. (Security) For any i1 < i2 < · · · < it in {1, 2, · · · , n} with
t < k, the two collections of t×m matrices Dj, j = 0, 1, obtained by
restricting each n×m matrix in Cj, j = 0, 1, to rows i1, i2, · · · it, are
indistinguishable in the sense that they contain the same matrices
with the same frequencies.

Note that, in the above definition,

1. m is called the block length and determines the pixel expansion of the scheme.
A pixel of the original secret image is represented by m subpixels in the
recovered secret image. In general, we are interested in schemes with m
being as small as possible. h and l are called the darkness thresholds of the
black and white pixels, respectively.

2. Define the value α = h−l
m to be the contrast of the scheme. Note that,

however, there are other definitions of the contrast of VCS. We use this
definition to establish our result. The proof is similar for other definitions
of contrast.

We consider VCS in which C0, C1 are constructed from a pair of n ×m
binary matrices M0, M1, called basis matrices. The set Ci, i = 0, 1 consists of
the m! matrices obtained by applying all permutations to the columns of Mi.
This approach of VCS construction will have small memory requirements (it
only keeps the basis matrices) and high efficiency (to choose a matrix in C0

(resp. C1) as it only needs to generate a permutation of the basis matrix). We
will use the basis matrices to simplify the discussions.

The above definition of VCS is also called the Deterministic Visual Cryp-
tography Scheme (DVCS). The original secret image can be deterministically
recovered by the qualified shares pixel by pixel in such schemes. In contrast to
the DVCS, Yang and Cimato et al. proposed the Probabilistic Visual Cryptog-
raphy Scheme (PVCS) in [14, 4], where the pixels of the original secret image
can only be probabilistically recovered by the qualified shares, however, in the
overall view the original secret image can be recovered visually as well.

Definition 2 (Probabilistic VCS [14, 4]) Let k, n, and m
′

be nonneg-
ative integers, l̄ and h̄ be positive numbers, satisfying 2 ≤ k ≤ n and
0 ≤ l̄ < h̄ ≤ m

′
. The two collections of n × m

′
binary matrices (C0, C1)

constitute a probabilistic threshold Visual Cryptography Scheme (k, n)-PVCS
if the following properties are satisfied:
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1. (Contrast) For the collection C0 and a share matrix s ∈ C0, by
v a vector resulting from the OR of any k out of the n rows of s. If
w̄(v) denotes the average of the Hamming weights of v, over all the
share matrices in C0, then w̄(v) ≤ l̄.
2. (Contrast) For the collection C1, the value of w̄(v) satisfies
w̄(v) ≥ h̄.

3. (Security) For any i1 < i2 < · · · < it in {1, 2, · · · , n} with
t < k, the two collections of t×m′ matrices Dj, j = 0, 1, obtained by
restricting each n×m′ matrix in Cj, j = 0, 1, to rows i1, i2, · · · it, are
indistinguishable in the sense that they contain the same matrices
with the same frequencies.

The definition of PVCS in [14] only considers the case with n × 1 share
matrices, we extend their definition to the n×m′ case. And the definition of
PVCS in [4] used the factor β to reflect the contrast, we use the values l̄ and
h̄ (darkness grey-levels) to reflect the contrast. The same point of the three
definitions of PVCS is that, for a particular pixel in the original secret image,
the qualified participants can only correctly represent it in the recovered secret
image with a certain probability. Because the human eyes always average the
high frequency black and white dots into gray areas, so the average value of
the Hamming weight of the black dots in the area reflects the grayness of the
area. The PVCS does not require the satisfaction of the difference in grayness
for each pixel in the recovered secret image as the DVCS does. It only reflects
the difference in grayness in the overall view.

The contrast of the DVCS is fulfilled for each pixel (consisting of m sub-
pixels) in the recovered secret image, however, this is quite different in the
PVCS. The application of the average contrast, denoted by ᾱ, first appeared
in [3]. This term is often used in the PVCS, see [4, 14, 11, 7], where the
traditional contrast of the PVCS does not exist. Here we define the average
contrast to be the average value of the overall contrast of the recovered secret
image, i.e., the mean value of the contrast of all the pixels in the recovered
secret image. According to our definition of the contrast α = h−l

m , the average
contrast can be calculated by the formula ᾱ = h̄−l̄

m′
, where h̄ and l̄ are the

mean values of w(v) for the black and white pixels in the overall recovered
secret image respectively, and m

′
is the pixel expansion of the PVCS. Because

the number of pixels is large in the recovered secret image, the values h̄ and
l̄ are equivalent to the mean values of the w(v) in the collections C1 and C0,
respectively. Note that, the DVCS also has the average contrast, and many
proposed DVCS’s in the literature have ᾱ = α, see examples in [10, 5, 1],
etc. When comparing, the DVCS that has ᾱ = α then, in the overall view,
the clearness of the recovered secret image of the PVCS is the same as the
clearness of the recovered secret image of a DVCS. However, because of the
probabilistic nature, a PVCS is disadvantaged in displaying the details of the
original secret image, for example, a thin line in the original secret image is
likely to be displayed as a dotted line in a PVCS.
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11.3 Misalignment with Integer Number of Subpixels

According to the traditional view, the subpixels of the transparencies should
be aligned precisely. Here, we point out that, to recover the secret image
visually, it is not necessary to align the subpixels precisely. In this section, we
will only consider the misalignment with integer number of subpixels.

We will show that, by shifting one of the shares by some number (at
most m − 1) of subpixels to the right (resp. left), one can still recover the
secret image visually, for the reason that the average contrast ᾱ 6= 0. This
result can naturally be extended to the case when more than one share is
shifted. However, we leave the numerical analysis of this case to the interested
readers. So, in this section, we will only consider the case with only one share
(transparency) being shifted by some number of subpixels. And we call the
scheme with a share being shifted the shifted scheme, and the basis matrices
and share matrices of the shifted scheme are called the shifted basis matrices
and shifted share matrices.

We first give an example to show this phenomenon.

Example 1 We take the (2, 2)-DVCS as an example, where the basis matrices
of the scheme are,

M0 =
[

100
100

]
and M1 =

[
100
010

]

FIGURE 11.1
The stacking results of the (2,2)-DVCS (a) when no share is shifted; (b) when
one share is shifted by one subpixels; (c) when one share is shifted by two
subpixel. A printed-text ”CRYPTO” is tested.

Figure 11.1 are the experimental results of the recovered secret image,
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where (a) is the recovered secret image without being shifted, and (b) is the
recovered secret image with the second share being shifted to the left by one
subpixel, and (c) is the recovered secret image with the second share being
shifted to the left by 2 subpixels. From the experimental results we notice
that, the original secret image can be recovered visually by shifting one or two
subpixels for the (2, 2)-DVCS with pixel expansion m = 3. And the clearness
of the recovered secret image with two subpixels being shifted is not as clear
as the one with one subpixel being shifted. Furthermore, the shifted scheme
is not a DVCS anymore; we give an example to show this point:

Example 2 Take the share matrices S0 =
[

010
010

]
and S1 =

[
100
010

]
as an

example, which are chosen from the permutations of the basis matrices M0

and M1 in Example 1. By shifting the second share by one subpixel to the left,
we get the following four matrices:

S0
0 =

[
∗ 010
0 100

]
S0

1 =
[
∗ 010
0 101

]
S1

0 =
[
∗ 100
0 100

]
S1

1 =
[
∗ 100
0 101

]
where Sij, i = 0, 1, j = 0, 1, is the shifted share matrix that a subpixel j is
shifted into Si. The left bottom subpixel of Si is shifted out, and the asterisk
∗ in the Sij can be either 1 or 0, which belongs to the pixel on the left of the
pixel that we considered. So, here and hereafter, we no longer consider the two
subpixels anymore, i.e., we only need to consider the right 3 columns in the
shifted share matrix Sij.

For the above four shifted share matrices, the stacking Hamming weights
are 2, 3, 1, and 2. In particular, the stacking Hamming weight of S0

0 and
S1

1 are the same. Here and hereafter, the stacking Hamming weight means
the Hamming weight of the resulting vector generated by stacking the shares.
Hence, the shifted scheme is not a DVCS anymore.

Generally, we aim at proving the conclusion that, the shifted scheme can
visually recover the original secret image based on the (k, n)-DVCS. However,
it is noticed that this proof can be reduced to the proof based on the (2, 2)-
DVCS in the case that only one share is shifted. The reason is as follows:

First, a (k, n)-DVCS consists of
(
n
k

)
(k, k)-DVCS. For a set of k shares, if

no share is shifted, then the k shares can recover the secret image obviously.
And because we only consider the case when only one of the n shares is shifted,
we only need to consider the k shares that contain the shifted share, i.e., we
only need to prove our conclusion based on a (k, k)-DVCS.

Second, denote the k shares of a (k, k)-DVCS as s1, s2, · · · , sk, without loss
of generality, let sk be the share that is shifted, and let s′k be the resulting
image of stacking the remaining k − 1 shares s1, s2, · · · , sk−1 together. Then
the scheme becomes a (2, 2)-DVCS, where the two shares are s′k and sk. Note
that, the stacking result of this (2, 2)-DVCS is the same as that of the previous
(k, k)-DVCS. The previous (k, k)-DVCS can visually recover the secret image

© 2012 by Taylor & Francis Group, LLC



304 Visual Cryptography and Secret Image Sharing

if and only if s′k and sk can do so. Hence, it is sufficient to prove the conclusion
based on a (2, 2)-DVCS.

We analyze the structure of the basis matrix of the (2, 2)-DVCS. Denote
M0 and M1 as the basis matrices of the (2, 2)-DVCS, then the M0 and M1,
without loss of generality, are in the following form:

M0 =

 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸
a

0 · · · 0︸ ︷︷ ︸
b

0 · · · 0︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
d

 ,
and

M1 =

 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸
a′

0 · · · 0︸ ︷︷ ︸
b′

0 · · · 0︸ ︷︷ ︸
c′

1 · · · 1︸ ︷︷ ︸
d′

 ,
where a, b, c, d, a

′
, b
′
, c
′
, and d

′
are nonnegative integers satisfying a+c+d = l

and a
′

+ c
′

+ d
′

= h. According to the contrast and security property of
Definition 1, we have,

a+ b+ c+ d = a
′
+ b

′
+ c

′
+ d

′

a+ c = a
′
+ c

′

a+ d = a
′
+ d

′

b > b
′

solving the above equations, we get a − a′ = b − b′ = c′ − c = d′ − d. Let
e = b− b′, hence, by deleting identical columns of M0 and M1, we get,

M
′

0 =

 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸

e

0 · · · 0︸ ︷︷ ︸
e


and,

M
′

1 =

 1 · · · 1 0 · · · 0
0 · · · 0︸ ︷︷ ︸

e

1 · · · 1︸ ︷︷ ︸
e


where the number of columns in M

′

0 and M
′

1 is 2e.
Now we know that the basis matrices of an arbitrary (2, 2)-DVCS M0

and M1 contain the same number of identical columns
[

1
1

]
,
[

1
0

]
,
[

0
1

]
,

and
[

0
0

]
apart from the submatrices M

′

0 and M
′

1. Hence, without loss of

generality, they can be represented as the following form:

M0 =

 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸
a′

0 · · · 0︸ ︷︷ ︸
b′

0 · · · 0︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
d

1 · · · 1︸ ︷︷ ︸
e

0 · · · 0︸ ︷︷ ︸
e
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and

M1 =

 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸
a′

0 · · · 0︸ ︷︷ ︸
b′

0 · · · 0︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
d

0 · · · 0︸ ︷︷ ︸
e

1 · · · 1︸ ︷︷ ︸
e

 .
Let m be the pixel expansion, then it is obvious that m = a′+ b′+ c+ d+ 2e.
The collections C0 and C1 contain all the permutations of the basis matrices
M0 and M1, and hence each has m! share matrices.

The shifted scheme is generated as follows:
Shift the second row of the m! share matrices in C0 (resp. C1) to the left

(resp. right) by r subpixels, and let c1, c2, · · · , cr be the r-bit string that is
shifted in, where each ci ∈ {0, 1} represents a subpixel. By the above discus-
sion, we get m! shifted share matrices for C0 (resp. C1). Take the share matrix
M0 ∈ C0 as an example, then the shifted share matrix, denoted by M

(r)
0 , is

as follows:

M
(r)
0 =

 ∗ · · · ∗ 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1 0 · · · 0
1 · · · 1︸ ︷︷ ︸
a′

0 · · · 0︸ ︷︷ ︸
b′

0 · · · 0︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
d

1 · · · 1︸ ︷︷ ︸
e

0 · · · 0︸ ︷︷ ︸
e

c1 · · · cr︸ ︷︷ ︸
r

 ,
where c1 · · · cr of share 2 are the adjacent subpixels of the right pixel that are
shifted in.

By going through all m! share matrices of C0 and C1 and all the possible
string of subpixels c1 · · · cr ∈ {0, 1}r, where {0, 1}r is the set of all the binary
strings of length r, the shifted scheme is generated. Hence, we have:

Theorem 1 The shifted scheme of a DVCS is a PVCS, where the average
contrast of the shifted scheme is ᾱ = − (m−r)e

m2(m−1) , where 1 ≤ r ≤ m − 1 is the
number of subpixels by which the share 2 (the second share) is shifted.

Proof: Without loss of generality, we only prove the case when the share 2 is
shifted to the left, which is equivalent to the case when the share 1 (the first
share) is shifted to the right. Note that, swapping rows 1 and 2 corresponds to
swapping the parameters c and d. We observe that, since the share matrices
of the DVCS satisfy condition 3 of Definition 1 and the shifting operation is
the same for matrices in C0 and C1, the share matrices of the shifted scheme
satisfy condition 3 of Definition 2.

First, we prove the case that the share 2 is shifted by one subpixel, and
then we extend it to the case when it is shifted by r subpixels.

When share 2 is shifted by one subpixel, the adjacent right subpixel of
share 2 is shifted in. Let p1 be the probability that a 1 is shifted in, and p0

be the probability that a 0 is shifted in. Because the share matrices are all
the permutations of the basis matrices, so p1 and p0 have fixed values and
p1 + p0 = 1, i.e., the shifted in subpixel is either 1 or 0. More precisely, by the
above discussion we have p1 = a′+d+e

m and p0 = b′+c+e
m . In the general case

when r subpixels are shifted in, denote pc as the probability that a string of
subpixels c is shifted in, we also have

∑
c∈{0,1}r pc = 1.
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Because, under the OR operation, the stacking of two black subpixels
results in a black subpixel, i.e., 1OR 1 = 1, so this means that there is a black
subpixel that is ineffective (overlapped). Now we define a black pixel (value 1)
to be ineffective if it does not contribute to the total number of black pixels
in the recovered secret image. There are three cases when a black subpixel
1 is ineffective: (1) when that is in the top right corner of the matrix M0

(or M1) and another 1 is shifted in, this results in a overlap; (2) when that
is in the bottom left corner of the matrix which is then shifted out (appear
below an asterisk ‘*’); and (3) when an overlap happens after a shift, which is
possible on the first m− 1 positions (and m− r positions in general). Hence,
the total Hamming weight of the stacking of the shifted share matrices can
be calculated by the total number of the 1’s subtracted by the number of
the 1’s that are ineffective (when two 1’s overlapped, we only count one as
ineffective).

In the first case, denote by s1
0,c and s1

1,c the number of 1’s that are in-
effective for the collections C0 and C1, respectively when the subpixel c is
shifted in. Since there are m! share matrices in the collection C0 and C1, so
the total number of 1’s that are ineffective in the top right corner of all the
share matrices in C0 and C1 is s1

0,1 = s1
1,1 = a′+c+e

m m! (when a 1 is shifted in)
and s1

0,0 = s1
1,0 = 0 (when a 0 is shifted in), where a′+c+e

m is the probability
of the 1’s in the top right corner of the first row.

In the second case, denote by s2
0,c and s2

1,c the number of 1’s that are
ineffective for the collections C0 and C1, respectively when the subpixel c is
shifted in. So the total number of 1’s that are ineffective in the bottom left
corner of all the share matrices in C0 and C1 is s2

1,1 = s2
0,1 = s2

1,0 = s2
0,0 =

a′+d+e
m m!, where a′+d+e

m is the probability of the 1’s in the bottom left corner
of the second row.

In the third case, denote by s3
0,c and s3

1,c the number of 1’s that are ineffec-
tive for the collections C0 and C1 respectively when the subpixel c is shifted

in. Note that, the pattern
[

1
1

]
in the shifted share matrices is the shifted

result of the following four patterns,
[

11
01

]
,
[

10
11

]
,
[

10
01

]
, and

[
11
11

]
in

the collections C0 and C1. We calculate the probability of the first pattern[
11
01

]
for example, and the other three patterns can be calculated similarly.

The probability that the pattern
[

1
0

]
appears at the column i in the matri-

ces of the collection C1 is c+e
m , and, fixing this pattern, the probability that

the pattern
[

1
1

]
appears at the column i + 1 of the collection C1 is a′

m−1 ,

where 1 ≤ i ≤ m−1. So the probability that the pattern
[

11
01

]
appears both
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at the columns i and i + 1 in the collection C1 is c+e
m

a′

m−1 . Similarly, for the
remaining three patterns, the results are shown in Table 11.2.

TABLE 11.2
The probability of the four patterns appearing at the columns i and
i+ 1 in the collections C0 and C1.

collections\patterns
[

10
11

] [
11
11

] [
10
01

] [
11
01

]
C1

a′

m
d+e
m−1

a′

m
a′−1
m−1

c+e
m

d+e
m−1

c+e
m

a′

m−1

C0
a′+e
m

d
m−1

a′+e
m

a′+e−1
m−1

c
m

d
m−1

c
m
a′+e
m−1

The collection C0 and C1 contain all the column permutations of the basis
matrices in all possible ways, and there are only m − 1 choices for the value
of i, so the total number of 1’s that are ineffective of the four patterns of the
collection C1 is s3

1,1 = s3
1,0 = (a

′

m
d+e
m−1 + a′

m
a′−1
m−1 + c+e

m
d+e
m−1 + c+e

m
a′

m−1 )(m−1)m!,
and that of the collection C0 is s3

0,1 = s3
0,0 = (a

′+e
m

d
m−1 + a′+e

m
a′+e−1
m−1 + c

m
d

m−1 +
c
m
a′+e
m−1 )(m− 1)m!.
Denote the total number of 1’s in the share matrices in collections C0 and

C1 plus the number of 1’s in the subpixel c that is shifted in as T0,c and T1,c,
respectively. Then, when a 1 is shifted in, we have T0,1 = T1,1 = (2a′+ c+d+
2e+1)m!, and when a 0 is shifted in, we have T0,0 = T1,0 = (2a′+c+d+2e)m!.

Denote Tc,C as the total stacking Hamming weight of all the matrices of
the collection C (C0 or C1) when a string of subpixels c are shifted in. The
above discussion shows that when a 1 is shifted in, the total stacking Hamming
weight of all the matrices of the collection C1 is

T1,C1 = T1,1 − s1
1,1 − s2

1,1 − s3
1,1

= [(2a′ + c+ d+ 2e+ 1)− a′+d+e
m − a′+c+e

m

−(a
′(d+e)
m + a′(a′−1)

m + (c+e)(d+e)
m + (c+e)a′

m )]m!

and that of the collection C0 is

T1,C0 = T0,1 − s1
0,1 − s2

0,1 − s3
0,1

= [(2a′ + c+ d+ 2e+ 1)− a′+d+e
m − a′+c+e

m

−( (a′+e)d
m + (a′+e)(a′+e−1))

m + cd
m + c(a′+e)

m )]m!

When a 0 is shifted in, the total stacking Hamming weight of the collection
C1 is,

T0,C1 = T1,0 − s1
1,0 − s2

1,0 − s3
1,0

= [(2a′ + c+ d+ 2e)− a′+d+e
m −

(a
′(d+e)
m + a′(a′−1)

m + (c+e)(d+e)
m + (c+e)a′

m )]m!

and that of the collection C0 is
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T0,C0 = T0,0 − s1
0,0 − s2

0,0 − s3
0,0

= [(2a′ + c+ d+ 2e)− a′+d+e
m −

( (a′+e)d
m + (a′+e)(a′+e−1))

m + cd
m + c(a′+e)

m )]m!

We now define the average stacking Hamming weight of each share ma-
trix to be the total stacking Hamming weight of all the share matrices being
divided by the number of the share matrices, i.e., Tc,C

m! . Then the difference
between the average stacking Hamming weight of each share matrix of the
shifted collections C0 and C1, denoted by DA, is

DA = (T1,C1 − T1,C0)p1 + (T0,C1 − T0,C0)p0 = −e(p1 + p0)
m

= − e

m

According to the definition of the average contrast in Section 11.2, with
h̄ = T1,C1p1 + T0,C1p0 and l̄ = T1,C0p1 + T0,C0p0, we get the value of the
average contrast ᾱ = h̄−l̄

m = DA

m = − e
m2 .

Now we consider the general case when the share 2 is shifted by r subpixels.
For this case there are 2r possible subpixels that can be shifted in. For example,
for r = 2, the shifted in strings of subpixels have four cases, 00, 01, 10 and 11.
Denote by p00, p01 p10 and p11 the probabilities of these four cases to happen
respectively, then we have p00 + p01 + p10 + p11 = 1.

We consider the string of subpixels c, let the Hamming weight of c be s,
i.e., w(c) = s. The total number of 1’s that are ineffective in the top right
corner of all the share matrices in C0 and C1 is s1

0,c = s1
1,c = s · a

′+c+e
m m!, and

the total number of 1’s that are ineffective in the bottom left corner of all the
share matrices in C0 and C1 is s2

0,c = s2
1,c = r · a

′+d+e
m m!. For the third case,

the pattern
[

1
1

]
in the shifted share matrices is the shifted result of the

following four patterns,

 1 · · · 1︸︷︷︸
r

0 · · · 1︸︷︷︸
r

,

 1 · · · 0︸︷︷︸
r

1 · · · 1︸︷︷︸
r

,

 1 · · · 0︸︷︷︸
r

0 · · · 1︸︷︷︸
r

 and

 1 · · · 1︸︷︷︸
r

1 · · · 1︸︷︷︸
r


in the collections C0 and C1, and there are only m − r choices for the value
of the position i, so the total number of the 1’s that are ineffective of the four
patterns of the collection C1 is

(
a′

m

d+ e

m− 1
+
a′

m

a′ − 1
m− 1

+
c+ e

m

d+ e

m− 1
+
c+ e

m

a′

m− 1
)(m− r)m!

and of the collection C0 is

(
a′ + e

m

d

m− 1
+
a′ + e

m

a′ + e− 1
m− 1

+
c

m

d

m− 1
+

c

m

a′ + e

m− 1
)(m− r)m!

Hence, when a string of subpixels of c is shifted in, the total stacking Hamming
weight of all the matrices of the collection C1 is

Tc,C1 = [(2a′ + c+ d+ 2e+ s)− r · a
′+d+e
m − s · a

′+c+e
m

−(a
′(d+e)
m + a′(a′−1)

m + (c+e)(d+e)
m + (c+e)a′

m )m−rm−1 ]m!
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and that of the collection C0 is

Tc,C0 = [(2a′ + c+ d+ 2e+ s)− r · a
′+d+e
m − s · a

′+c+e
m

−( (a′+e)d
m + (a′+e)(a′+e−1))

m + cd
m + c(a′+e)

m )m−rm−1 ]m!.

Hence, the difference between the average stacking Hamming weight of each
share matrix of the shifted collections C0 and C1, denoted by DA, is

DA = (T1···1,C1 − T1···1,C0)p1···1 + · · ·+ (T0···0,C1 − T0···0,C0)p0···0

= − e(p1···1+···+p0···0)
m

m−r
m−1

= − e
m
m−r
m−1

and the average contrast is

ᾱ =
DA

m
= − e

m2

m− r
m− 1

.

Because the shifted scheme is not a DVCS anymore and ᾱ 6= 0, let h̄ =
T1···1,C1p1···1 + · · · + T0···0,C1p0···0 and l̄ = T1···1,C0p1···1 + · · · + T0···0,C0p0···0,
then it is known that the shifted scheme is a PVCS. This completes the proof
of Theorem 1. 2

Note that, after a shift, the value of the average contrast has a negative
value ᾱ < 0, which means that the recovered secret image is the complemen-
tary image of the original one, and the absolute value of ᾱ reflects how clear
the image can be viewed visually.

The above Theorem 1 shows that, to align the transparencies when de-
crypting the DVCS, one does not need to align the transparencies precisely.
So, when the participants of a DVCS want to align the transparencies, for ex-
ample, the transparencies in Example 1, they can first align the transparencies
precisely in the vertical direction, and then move the second transparencies
to the right then to the left in the horizontal direction. Then they will get the
recovered secret image for three times. Furthermore, this phenomenon also
helps to determine the size of the subpixels printed on the transparencies.

For other visual cryptography schemes, such as the extended visual cryp-
tography schemes in [2], the visual cryptography schemes for the general ac-
cess structures [1] and the color visual cryptography schemes [15, 12], they all
have the phenomenon stated above. The proof for these visual cryptography
schemes can be modified from that of Theorem 1.

11.4 Misalignment with Less Than One Subpixel

In this section, we do further investigation on misalignment with less than
one subpixel. We show that the secret image can still be recovered visually
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by a slight misalignment. We first give an example, a (2, 2)-VCS, to show
this phenomenon. Denote (dx, dy) as the horizontal and vertical misalignment
deviations from the original position of the subpixel.

Example 3 The images (a), (b), and (c) in Figure 11.2 show the recovered
secret image of a (2,2)-VCS for three misalignment deviations, (dx, dy) =
(0, 0), (0.5, 0), and (1, 2) (unit: subpixel).

FIGURE 11.2
Recovered secret images of a (2,2)-VCS for three misalignment deviations (a)
(dx, dy) = (0, 0), (b) (dx, dy) = (0.5, 0), and (c) (dx, dy) = (1, 2).

From Figure 11.2, we can observe that, the clearness of Figure 11.2 (b) is
worse than the Figure 11.2 (a), and the secret on Figure 11.2 (c) is completely
invisible.

Figure 11.2 shows the case that only two shares are superimposed. The
misalignment problem will become more complex for stacking k shares for
a (k, n)-VCS. Note that, the recovered image will disappear if any one out
of k shares is not at the correct position. In fact the misalignment problem
critically increases as k grows.

The next two subsections are organized as follows: first, we will investigate
the conditions that the secret image can still be observed when the shares are
slightly misaligned, whereby saying slight misalignment we mean deviation
(dx, dy) satisfying 0 ≤ dx, dy ≤ 1; and then we will investigate the misalign-
ment tolerance of large and small pixels. To simplify the discussion, we only
consider the case of (2, 2)-VCS.

11.4.1 Shares with Slightly Misalignment Can Still Recover
the Secret Image

We consider a (2, 2)-VCS with deviation (dx, dy), where a pixel 1W1B (resp.
1B1W) represents a white pixel that contains a white (resp. black) and a
black (resp. white) subpixel; and a pixel 2B0W represents a black pixel that
contains two black subpixels. All possible four cases, (a1), (a2), (b1), and (b2),
of stacked shares with deviation (dx, dy) are shown in Figure 11.3. The stacked
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equations:
min{P (A)} = 0
max{P (A)} = A
P̄ (A) = A/2
min{P (A1, A2)} = min{A1, A2}
max{P (A1, A2)} = max{A1, A2}
P̄ (A1, A2) = A1/2 +A2/2

(11.2)

According to Figure 11.3, it is easy to verify the following equations:

AW,a1 = P (A1) + P (A2) + P (A3) +A4

AB,a1 = P (A1) + P (A2) + P (A3) +A′1 +A′2 +A′3 +A′4
AW,a2 = P (A′1, A

′
2) +A′4

AB,a2 = A1 +A2 +A3 +A4 + P (A′1, A
′
2) +A′3

AW,b1 = P (A′1 +A′2) +A′3
AB,b1 = A1 +A2 +A3 +A4 + P (A′1 +A′2) +A′4
AW,b2 = P (A1) + P (A2) + P (A3)
AB,b2 = P (A1) + P (A2) + P (A3) +A4 +A′1 +A′2 +A′3 +A′4

(11.3)

The following Theorem 2 shows that the stacked shares with slight mis-
alignment can still recover the secret image. Note that, by saying the secret
image is recovered by its original color, we mean that a black (resp. white)
pixel in the secret image is represented by a black (resp. white) pixel in the
recovered secret image; and by saying the secret image is recovered by its
complementary color, we mean that a black (resp. white) pixel in the secret
image is represented by a white (resp. black) pixel in the recovered secret im-
age. In order to consist with Definition 1 and Definition 2, we generalize the
definition of contrast α and average contrast ᾱ as follows:

α =
h− l
2s2

and ᾱ =
h̄− l̄
2s2

(11.4)

where 2s2 is the area of a pixel (including two subpixels) and the definitions
of h, l, h̄, and l̄ are the same as that in Definition 1 and Definition 2.

Theorem 2 For a misaligned (2, 2)-VCS, denote (dx, dy) as the deviation of
the stacked shares, then the secret image can still be recovered if (dx, dy) falls
in the regions of R1, R2, and R3 in Figure 11.4, where the properties of the
misaligned scheme are shown in Table 11.3.

Proof: Denote lWblack area (resp. hBblack area) as the maximum (resp. minimum)
black area of a white (resp. black) pixel, denote l̄Wblack area (resp. h̄Bblack area) as
the average black area of a white (resp. black) pixel, denote hBwhite area (resp.
lWwhite area) as the minimum (resp. maximum) white area of a black (resp.
white) pixel, denote h̄Bwhite area (resp. l̄Wwhite area) as the average white area of
a black (resp. white) pixel. According to Figure 11.3, we have:
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FIGURE 11.4
The regions of deviation (dx, dy) that can recover the secret image.

TABLE 11.3
The properties of the misaligned schemes.

regions R1 R2 R3

(dx, dy)
satisfy

(s− dx)(s− dy)
> s2/2

0 ≤ dx, dy < s

0 ≤ dx < 2s/3
0 ≤ dy < s

2s/3 < dx ≤ s
0 ≤ dy < s

misaligned
scheme

DV CS PV CS DV CS

contrast
αR1 =
s2−2(dx+dy)s+2dxdy

2s2

ᾱR2 =
(2s−3dx)(s−dy)

4s2

ᾱR3 =

− (3dx−2s)(s−dy)

4s2

recovered
secret image

original
color

original
color

complementary
color
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lWblack area is the maximum value of the black area for a white pixel, which
contains two cases (a1) and (a2), i.e.,

lWblack area = max{AB,a1, AB,a2}
= max{P (A1) + P (A2) + P (A3) +A′1 +A′2 +A′3 +A′4,

A1 +A2 +A3 +A4 + P (A′1, A
′
2) +A′3}

= A1 +A2 +A3 +A4+
max{P (A1) + P (A2) + P (A3), P (A′1, A

′
2) +A′3}

= A1 +A2 +A3 +A4 +A1 +A2 +A3

= s2 +A1 +A2 +A3

= 2s2 −A4

(11.5)
hBblack area is the minimum value of the black area for a black pixel, which

contains two cases (b1) and (b2), i.e.,

hBblack area = min{AB,b1, AB,b2} = s2 +A4 (11.6)

l̄Wblack area is the average black area for a white pixel, which contains two
cases (a1) and (a2), i.e.,

l̄Wblack area = ĀB,a1+ĀB,a2
2

= 1
2 [(P (A1) + P (A2) + P (A3) +A′1 +A′2 +A′3 +A′4)
+(A1 +A2 +A3 +A4 + P (A′1, A

′
2) +A′3)]

= 1
2 [(P̄ (A1) + P̄ (A2) + P̄ (A3) +A′1 +A′2 +A′3 +A′4)
+(A1 +A2 +A3 +A4 + P̄ (A′1, A

′
2) +A′3)]

= s2 + A1
2 + A2

2 + 3A3
4

(11.7)

h̄Bblack area is the average black area for a black pixel, which contains two
cases (b1) and (b2), i.e.,

h̄Bblack area =
ĀB,b1 + ĀB,b2

2
= s2 +

A1

2
+
A2

2
+
A3

4
+A4 (11.8)

hBwhite area is the minimum value of the white area for a black pixel, which
contains two cases (b1) and (b2), i.e.,

hBwhite area = min{AW,b1, AW,b2} = 0 (11.9)

lWwhite area is the maximum value of the black area for a white pixel, which
contains two cases (a1) and (a2), i.e.,

lWwhite area = max{AW,a1, AW,a2} = s2 (11.10)

h̄Bwhite area is the average white area for a black pixel, which contains two
cases (b1) and (b2), i.e.,

h̄Bwhite area =
ĀW,b1 + ĀW,b2

2
=
A1

2
+
A2

2
+

3A3

4
(11.11)
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l̄Wwhite area is the average white area for a white pixel, which contains two
cases (a1) and (a2), i.e.,

l̄Wwhite area =
ĀW,a1 + ĀW,a2

2
=
A1

2
+
A2

2
+
A3

4
+A4 (11.12)

According to Definition 1 (definition of a deterministic VCS), in order to
deterministically recover the secret image by its original color, the values of
lWblack area and hBblack area should satisfy lWblack area < hBblack area. Together with
Equations (11.1), (11.5), and (11.6), we get (dx, dy) to satisfy (s−dx)(s−dy) >
s2/2, i.e., (dx, dy) falls in the region R1. And the contrast αR1 is

αR1 =
hBblack area − lWblack area

2s2
=
s2 − 2(dx + dy)s+ 2dxdy

2s2

Similarly, in order to recover deterministically by its complementary color,
the values of hBwhite area and lWwhite area should satisfy hBwhite area > lWwhite area.
However, according to Equations (11.9) and (11.10), we get that hBwhite area >
lWwhite area does not hold. Hence, the secret image cannot be recovered deter-
ministically by its complementary color.

According to Definition 2 (definition of a probabilistic VCS), in order
to probabilistically recover the secret image by its original color, the val-
ues of l̄Wblack area and h̄Bblack area should satisfy l̄Wblack area < h̄Bblack area. To-
gether with Equations (11.1), (11.7), and (11.8), we get (dx, dy) to satisfy
0 ≤ dx < 2s/3, 0 ≤ dy < s. By excluding the region R1 we get to know that
(dx, dy) falls in the region R2. And the contrast ᾱR2 is

ᾱR2 =
hBblack area − lWblack area

2s2
=

(2s− 3dx)(s− dy)
4s2

Similarly, in order to probabilistically recover the secret image by its
complementary color, the values of h̄Bwhite area and l̄Wwhite area should satisfy
h̄Bwhite area > l̄Wwhite area. Together with Equations (11.1), (11.11), and (11.12),
we get (dx, dy) to satisfy 2s/3 < dx ≤ s, 0 ≤ dy < s, i.e. (dx, dy) fall in the
region R3. And the contrast ᾱR3 is

ᾱR3 =
hBblack area − lWblack area

2s2
= − (3dx − 2s)(s− dy)

4s2

2

The above Theorem 2 is consistent with Theorem 1. According to The-
orem 1 and Theorem 2, for the deviation (dx, dy) = (s, 0), the secret image
can be probabilistically recovered by its complementary color with average
contrast ᾱ = 1/4.

The above Theorem 2 considers the deviations (dx, dy) less than one sub-
pixel. In fact, when the value of dx is between s and 2s for a misaligned
(2, 2)-VCS, the secret image can also be recovered. The proof is left to the
interested readers.
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11.4.2 Large Subpixels Have Better Misalignment Tolerance

In this subsection, we investigate the misalignment tolerance of the large and
small subpixels. And show that shares with large subpixels have better mis-
alignment tolerance when recovering the secret image by its original color than
that with small subpixels. Denote the size of the large and small subpixels as
s2 × s2 and s1 × s1 respectively, where s2 > s1. According to Figure 11.5,
the recovered secret image using the small subpixels (Figure 11.5(a)) has a
higher resolution than that using the large subpixels (Figure 11.5(c)). It is ob-
served that Figure 11.5(a) indeed has the refined resolution in detail of Lena
image. We can clearly view the hair in Figure 11.5(a) but the area of hair is
all black in Figure 11.5(c). The image quality using the medium-sized sub-
pixel (Figure 11.5(b)) is between Figure 11.5(a) and Figure 11.5(c). Although
using large subpixels in share has poorer resolution, it will be more robust
to the misalignment error. Next, the misalignment tolerance of different-sized
subpixels is formally analyzed.

FIGURE 11.5
Recovered Lena images for (2,2)-VCS using the different sized subpixels: (a)
the small-sized subpixel, (b) the medium-sized subpixel and (c) the large-sized
subpixel.

Consider a misalignment deviation (dx, dy) in the (2, 2)-VCS. All the pos-
sible cases of stacked shares of a white secret pixel (1B1W) and a black secret
pixel (2B0W) with a deviation (dx, dy) are shown in Figure 11.3. For the small
subpixel (s1 × s1), we define the whiteness RW,a1 (resp. RW,a2) as the ratio
of black area in a stacked two-subpixel area for the case a1 (resp. a2) in Fig-
ure 11.3, and the darkness RB,b1 (resp. RB,b2) as the ratio of the black area
in a stacked two-subpixel area for the case b1 (resp. b2) in Figure 11.3. For
the large subpixel (s2 × s2), the corresponding denotations are R′W,a1, R′W,a2,
R′B,b1 and R′B,b2.

To simplify the discussion, we only consider the one dimension deviation,
i.e., (dx, 0) or (0, dy). Then we have the following one-dimensional deviation
lemma.
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Lemma 3 (One-dimensional deviation) The darkness and the whiteness
ratios always satisfy R′W,a1 ≥ RW,a1, R′W,a2 ≥ RW,a2 R′B,b1 ≥ RB,b1 and
R′B,b2 ≥ RB,b2 for the deviations (dx, 0) and (0, dy) where 0 < dx, dy < s1.

Proof: We only consider the case with deviation (dx, 0) since the proof is the
same for the case with deviation (0, dy). According to equation (11.1), when
dy = 0, we have

A1 = A′1 = 0
A2 = A′2 = 0
A3 = A′3 = dxs
A4 = A′4 = (s− dx)s
A3 +A4 = s2

(11.13)

We consider the relation of RC,c and R′C,c for C ∈ {W,B} and c ∈ (a1),
(a2), (b1) and (b2). Recall that s1 < s2, and RC,c and R′C,c can be calculated
by the following formula:

RC,c =
AC,c
2s2

1

and R′C,c =
AC,c
2s2

2

(11.14)

We have Table 11.4 to show the relation of RC,c and R′C,c for different
values of C and c.

TABLE 11.4
The relation of the ratios RC,c and R′C,c.

Stacked
pixel

Area (AC,c) Ratio (RC,c) Ratio (R′C,c) Relation

White,a1
AW,a1 = A4 RW,a1 = s1−dx

2s1
R′W,a1 = s2−dx

2s2
R′W,a1 > RW,a1

AW,a1 = A3

+A4
RW,a1 = 1/2 R′W,a1 = 1/2 R′W,a1 = RW,a1

White,a2 AW,a2 = A′4 RW,a2 = s1−dx
2s1

R′W,a2 = s2−dx
2s2

R′W,a2 > RW,a2

Black,b1
AB,b1 = A3

+A4 + A′4
RB,b1 = 1− dx

2s1
R′W,a1 = 1− dx

2s2
R′B,b1 > RB,b1

Black,b2
AB,b2 = A4

+A′3 + A′4
RB,b2 = 1− dx

2s1
R′W,a2 = 1− dx

2s2
R′B,b2 > RB,b2

AB,b2 = A3+
A4 + A′3 + A′4

RB,b2 = 1 R′W,a2 = 1 R′B,b2 = RB,b2

The proofs of the relations in Table 11.4 are quite similar. We only take
the proof of the relation between R′W,a1 and RW,a1, for example.

According to equation (11.3), for the stacked pixel of Figure 11.3 (a1),
there are two cases of AW,a1, i.e., I: AW,a1 = A4 and II: AW,a1 = A3 +A4.

For the Case I, we have RW,a1 = AW,a1

2s21
= A4

2s21
= s1−dx

2s1
and R′W,a1 = s2−dx

2s2
,

by subtraction we have R′W,a1 − RW,a1 = s2−dx

2s2
− s1−dx

2s1
= dx(s2−s1)

2s1s2
> 0, i.e.

R′W,a1 > RW,a1.

For the Case II, we have R′W,a1−RW,a1 = s22
2s22
− s21

2s21
= 0, i.e. R′W,a1 = RW,a1.

According to Table 11.4, the lemma follows. 2
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According to Lemma 3, for one-dimensional deviation, it is evident that if
R′W ≥ RW and R′B ≥ RB , the whiteness of the white secret pixel is whiter
and the darkness of the black secret pixel is darker when using the large
subpixels. We can conclude that the large subpixels have better misalignment
tolerance than that of small subpixels. Actually, for two-dimensional deviation,
the conclusion also holds. However, the proof is rather complex; we omit the
proof here. Readers also can reach this conclusion via simulations, for example
the Figure 11.6, and more simulations for two-dimensional deviation can be
found in [16].

FIGURE 11.6
Recovered secret image for a (2, 2)-VCS using two different-sized subpixels
and (dx, dy) = (0.5, 0.5), (s1/s2) = 2: (a) the small subpixel and (b) the large
subpixel; two secret image (a printed text ”VSS” and a halftoned Lena image)
are tested.

From the preceding description and the results in Figure 11.5 and Fig-
ure 11.6, unfortunately, there exists another dilemma of using the large or
small subpixels. Together with previous comparisons in Table 11.1, we sum-
marize the advantages and disadvantages of large and small subpixels in
Table 11.5.

In order to bring these conflicting goals in a kind of balance, we prop-
erly distribute two-sized subpixels in shares to develop their specialities and
simultaneously avoid corresponding disadvantages. Our method is based on
the trade-off between the usage of large and small subpixels. Both two-sized
subpixels create a trade-off, which a large size subpixel leads to the high mis-
alignment tolerance but the low resolution, while the small subpixel has the
opposite properties. Finally, we successfully reduce the difficulty of aligning
shares. Designing our misalignment tolerant VCS therefore delivers the fol-
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TABLE 11.5
The advantages and disadvantages of large and small subpixels.

size of the
subpixels advantages disadvantages

larger
easier to align and

better misalignment
tolerance

larger transparency size
and lower resolution

smaller smaller transparency size
and higher resolution

harder to align and
worse misalignment

tolerance

lowing problems: (1) What is the appropriate percentage of the large subpixel
in a share? (2) What is the appropriate size ratio of the large subpixel to the
small subpixel? (3) How do we arrange the large and small subpixels in one
share?

11.5 A Misalignment Tolerant VCS

11.5.1 The Algorithm

Concerning the first two problems, both items (the percentage and the size
ratio) can be used to trade the quality of the recovered secret image for the
misalignment tolerance. Different percentages and size ratios will be experi-
mented and analyzed in Section 11.5.2. Consider the third problem, how to
arrange the large and small subpixels in one share. In this chapter, we ar-
range them in a regular mask or a random mask. Subsequently, we describe
the encrypting/decrypting algorithm of a (k, n)-threshold misalignment toler-
ant VCS, when given a percentage (the item in Problem (1)), a size ratio (the
item in Problem 2) and an arrangement mask (the item in problem (3)).
Notation Used:

I A gray secret image of size x× y.

γ2 The size ratio of a large to a small subpixel, i.e., γ2 = (s2/s1)2.

IS A small-scaled secret image of size x× y. This image is obtained by
halftoning I into a binary image. Note that, this image is used for
embedding small subpixels.

IB A large-scaled secret image of size (x/γ) × (y/γ). This image is
obtained by reducing the secret image I to size (x/γ) × (y/γ) and
then halftoning to a binary image. Note that, this image is used for
embedding large subpixels.

pB(pS) pB and pS are percentages of large and small subpixels, respectively.
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Mreg A regular mask of size (x/γ) × (y/γ). This mask is only designed
for pB = pS = 50%. Figure 11.7(a) shows the regular mask with
the alternate blocks, B and S , where a block B contains large
subpixels and a block S contains small subpixels.

Mran A random mask of size (x/γ)×(y/γ). This mask is designed for any
pB and pS . At this time, B and S are randomly chosen according
pB and pS , as shown in Figure 11.7(b).

DB(·) Let A = [ai,j ] , where ai,j is the element of the i-th row and j-th
column in A, be a matrix in C1 or C0. The function DB(·) divides
a secret pixel s into m large subpixels (bp)ij ( (bp)ij = 0 denotes
white and (bp)ij = 1 denotes black) in the i-th share, 1 ≤ i ≤ n and
1 ≤ j ≤ m, defined as follows:

DB(s) =
{

(bp)ij = ai,j in A ∈ C0 for s is the white secret pixel.
(bp)ij = ai,j in A ∈ C1 for s is the black secret pixel.

DS(·) Similar to DB(·), it divides a secret pixel into m small subpixels
(sp)ij in the i-th share, 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Amx,my (·) Arrangement function that randomly arranges m large (or small)
subpixels into an (mx ×my)-sized rectangle where m = mx ×my.

O(i) n output shares, i ∈ [1, n], of size (x×mx)× (y ×my).

I ′ The recovered secret image of size (x×mx)× (y ×my).

FIGURE 11.7
Regular and random masks for arranging the large and small subpixels: (a)
regular mask and (b) random mask.

Even though the shares use a regular mask, an attacker could not gain any
information from the mask and the secrecy is not compromised.

Encrypting Algorithm:

Input: I, γ2, pB , pS , C0 and C1 of a (k, n)-threshold VCS.

Output: O(i), i ∈ [1, n].

Step 1: Obtain the large-scaled and small-scaled secret images IB and IS
from a secret image I.
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Step 2: Use pB and pS to generate the Mran mask or choose the Mreg mask
for the case pB = pS = 50%; let the chosen mask M = Mran or
Mreg.

Step 3: For each block in the mask M, do the following:

Step 3-1: If the block is the large block B , for the secret pixel ”s” in
the corresponding block of the large-scaled image IB , do the
following:
Assign (bp)ij = DB(s) for i ∈ [1, n] and j ∈ [1,m];
Use Amx,my

((bp)ij) to create n (mx × my)-sized rectangles,
where m = mx × my, and deliver them in the corresponding
block to O(1), O(2),. . ., O(n), respectively.

Step 3-2: If the block is the large block S , for the secret pixel ”s” in
the corresponding block of the large-scaled image IS , do the
following:
Assign (bp)ij = DS(s) for i ∈ [1, n] and j ∈ [1,m];
Use Amx,my

((sp)ij) to create n (mx × my)-sized rectangles,
where m = mx × my, and deliver them in the corresponding
block to O(1), O(2),. . ., O(n), respectively.

Decrypting Algorithm:

Input: Any k shares from O(i), i ∈ [1, n].

Output: I ′.

Step 1: Print out k shares on transparencies. Stack and align them by hand
with the approximate accuracy.

/* Note that, when stacking shares the tradition VCS needs the pre-
cise alignment; the proposed scheme has the misalignment tolerance
and so that one just aligns them roughly. */

Step 2: Decrypt the secret directly by human eyes.

Step 3: Align shares gradually to get a refined secret image of I ′.

/* One can first align transparencies precisely in the vertical direc-
tion, and then move gradually by hand without losing the secret in
the horizontal direction, finally the recovered secret image with no
deviation can be obtained.*/

For easily understanding the encrypting algorithm, we herein give an ex-
ample to show how to encode a secret image.

Example 4 Construct two shares by the (2, 2) misalignment tolerant VCS,
where pB = pS = 50%, γ2 = 4, and Mreg are used. We use a 16 × 16-pixel
secret image I, one black horizontal on a white background (Figure 11.8).

Since I is black and white now, so IS = I, and IB has the size of 8×8 pixels
shown in Figure 11.8(a) and (b). By using Mreg (Figure 11.7(a)), we encrypt
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the first pixel in IB, which is a white secret pixel. Suppose the white pixel is
divided into two subpixels (��) in the first share O(1), and the corresponding
two subpixels in the second share O(2) are also (��). Subsequently, encrypt
four small secret pixel in IS (see Figure 11.8(c)), these four white secret pixels(
��
��

)
are respectively encrypted into

(
����
����

)
and

(
����
����

)
in

O(1) and O(2). According to the Mreg mask, encrypt all secret pixels in IB
and IS. Finally, we obtain two shares O(1) and O(2) of 32× 16 pixels.

FIGURE 11.8
Encrypt a 16 × 16-pixel secret image by using a (2, 2) misalignment VCS,
where pB = pS = 50%, γ2 = 4, and Mreg are used: (a) the small-scaled secret
image IS , (b) the large-scaled secret image IB , and (c) two shares O(1) and
O(2).

11.5.2 Simulations

In this section, we give some simulations to show the performance of the
misalignment tolerant VCS for different deviations, size ratios, percentages,
and masks. Example 5 uses fifty-fifty large and small subpixels with regular
and random masks, respectively, such that we can try out the performance
of the mask. In Example 6, we use different size ratios to study how the size
ratio affects the visual quality and the misalignment tolerance.

Example 5 Construct the (2, 2) misalignment tolerant VCS, where pB =
pS = 50% and γ2 = 16. Regular mask Mreg and random mask Mran are
tested, respectively. The printed-text ”VSS” is used as a secret image.
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FIGURE 11.9
Recovered secret images for a (2, 2) misalignment VCS using two-sized subpix-
els of γ2 = 16: (a) pB = 0%, (b) pB = pS = 50%, Mreg, (c) pB = pS = 50%,
Mran and (d) pB = 100%, horizontal deviations: 0, 0.5, 1, and 2 are tested
(unit: small subpixel).
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Use the deviations (0, 0), (0.5, 0), (1, 0), (1.5, 0) and (2, 0) to test the
misalignment tolerance of the following four schemes: (a) pB = 0%, (b)
pB = pS = 50%, Mreg, (c) pB = pS = 50%, Mran and (d) pB = 100%.
Notice that (a) and (d) are just the traditional VCS with all small subpix-
els and large subpixels, respectively. The first scheme has the best resolution
when aligning correctly, as shown in Figure 11.9 (a1), but the secret on the
recovered secret image diminishes quickly when the deviation increases. The
secret becomes invisible when the deviation is large enough (see Figure 11.9
(a5)). Comparing Figure 11.9 (a) and (d), the small subpixel gives the high
resolution (see Figure 11.9 (a1) and (d1)), whereas the large subpixel enhances
the misalignment tolerance. For example, the deviation is (dx, dy) = (2, 0), the
secret in Figure 11.9 (a5) becomes invisible but we still visually view the secret
”VSS” in Figure 11.9 (d5). As shown in Figure 11.9 (a3) and (a4), the secret
image is recovered by its complementary color. This interesting phenomenon
is compatible with the result in Section 11.3 and Section 11.4. From these
stacked results, our two-sized subpixel approach actually provides the mis-
alignment tolerance. Also, it is observed that Figure 11.9 (b) (Mreg) has the
better visual quality than Figure 11.9 (c) (Mran). This result is anticipated
because the random arrangement of subpixels will introduce additional noise
to the recovered secret image.

Example 6 Consider the first scheme in Example 5 (a (2, 2) misalignment
tolerant VCS that the large and small subpixels are half used, respectively,
and regularly arranged in a share). Three size ratios, γ2 = 4, 16, and 64, are
tested. The printed-text ”VSS” is used as a secret image.

FIGURE 11.10
Recovered secret images for a (2, 2) misalignment tolerant VCS using pB =
pS = 50%, Mreg and three size ratios: (a) γ2 = 4, (b) γ2 = 16 and (c) γ2 = 64,
horizontal deviations: 0, 0.5, 1, 1.5, 2, 2.5, 3, and 3.5 are tested (unit: small
subpixel).
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Figure 11.10 (a–c) reveal the recovered secret images for γ2 = 4, 16, and
64, respectively. The clearness of the recovered secret image diminishes when
the misalignment increases. The misalignment tolerant VCS using γ2 = 64
has the best misalignment tolerant capability, whereas it has the worst visual
quality for no deviation. On the contrary, the misalignment tolerant VCS
using γ2 = 4 has a different characteristic. We may trade the misalignment
tolerance for the image quality by the size ratio.

11.6 Conclusions and Discussions

This chapter is intended to show some recent results about the alignment
problem of the VCS. We considered two kinds of misalignment, (1) misalign-
ment with integer number of subpixels and (2) misalignment with less than
one subpixel. In both cases, the secret image can be visually recovered. This
phenomenon indicates that, the VCS, by itself, has some misalignment toler-
ance.

Then we compared the misalignment tolerance of large and small subpix-
els, and showed that the large subpixel had better misalignment tolerance.
Based on this result, a misalignment tolerant VCS was given that traded the
large and small subpixels in one share. Simulations were provided to show the
performance of the misalignment tolerant VCS.

Because of the page limit, we cannot introduce more misalignment toler-
ant VCS. Interested readers can find more information about the alignment
problem of the VCS in the following papers [8, 16, 13, 6, 9].
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12.1 Introduction

Naor and Pinkas in their seminal paper [13] suggested to use visual cryptogra-
phy in a transparency-on-screen version. Their main purpose was authentica-
tion, in the sense that an online server is able to authenticate itself to a user
sitting in front of the screen. Implicitly, this already suggests the following
application of visual cryptography to the problem of manipulation of online
transactions, like online money transfers, by trojans:

Main Method. In order to secure online transactions, like online money
transfers, the user gets a numbered set of transparencies, each with a visual
cryptography pattern printed on it, from the transaction server. Now the
user is able to command online transactions in a secure way, see Figure 12.1
as follows. He fills out an online form containing the data for the intended
transaction; in the case of a money transfer this would be the account number
and bank number of the destination bank account and the amount of the
money. This transaction data is submitted via Internet to the server. The
server does not execute the transaction immediately because in that case it

329
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FIGURE 12.1
(a) The bank sends the information to be confirmed in an encrypted image to
the user’s computer and (b) the user is able read this information using the
transparency he got from the bank.
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FIGURE 12.2
A man-in-the-middle manipulation attack by a trojan on an online money
transfer.

would be an easy task for a man-in-the-middle to manipulate the transaction:
the man-in-the-middle would just send his manipulated transaction to the
server. In order to prevent such a manipulation, the server sends a visual
message containing the transaction data to the user’s screen — but of course
this image is not sent openly but instead it is encoded via visual cryptography:
if the user puts the transparency with a certain number on top of the encoded
image on the screen he can see the message contained within the image, i.e., the
transaction data. Note that the image on the screen is random to a man-in-
the-Middle, as this a guaranteed by visual cryptography. The number of the
transparency requested to be used is shown by the server on the user’s screen
together with the secret image. In order to finally confirm the transaction the
user types a transaction number (TAN), which is additionally shown on the
secret image message from the server, into a form on the screen and submits
this TAN to the server. When the server receives the right TAN it executes
the transaction, otherwise not.

Why does this method protect the transaction from being manipulated
by a man-in-the-middle (which may be, for example, a trojan sitting on the
user’s PC)? Because a man-in-the-middle does not know the transparencies
the user got from the server, the man-in-the-middle is not able to manipulate
the image message sent from the server to the user. In other words, the user will
see the transaction that is planned to be executed by the server and will only
confirm such a transaction—a clandestine manipulation of the transaction by
the trojan is impossible.
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FIGURE 12.3
The main method is also applicable to mobile banking.

In the original purpose of secret sharing in [14], the order of the slides was
not relevant. Later work [15] showed that a better contrast can be achieved
with colors if the first slide can have non-transparent colors. Furthermore,
practical applications will work in the way that the (first) slide is sent first
from Alice to Bob over a secure channel (i.e., by surface mail) and used later
as a key to decrypt an image received over an insecure channel.

We regard visual cryptography as a special case of the Cardano grille,
which works on pixels instead of letters. In both cases we can describe the slide
(grille) as a 2-dimensional array over {0, 1}, where 0 stands for ”transparent”
and 1 for ”black.” We describe the encrypted image as a 2-dimensional array
over Σ = {0, 1} or Σ = {0, 1, red, green, ...} or Σ = {0, a, b, c, d, ...}, where
0 stands for ”white” and 1 for ”black.” Colors are used for pixel-oriented
applications and in case the areas are big enough, any alphabet of symbols
can be used, which the receiver of the image can read through a transparent
area.

A compromise between pixel- and symbol-orientation is the segment-based
method described in [2], which works as demonstrated in Figure 12.5. It is
applicable whenever the message consists of symbols that can be represented
by a segment code, for example the 10 digits by the well-known 7-segment
code. The encryption method is basically the same: Instead of pixels, longish
and larger segments are encoded via two possible parallel positions.

Outline: Based on the above idea in [13], we describe techniques in Section
12.2 where the user can confirm a transaction as shown in Figure 12.1. Section
12.3 describes similar techniques that allow the user who received a slide
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from an account provider to securely enter a PIN or confirm transactions.
The multiple use of a slide would be an economical and ecological asset and
improve the convenience of the user who could, for example, leave the slide
adjusted to the screen, but leads to security problems addressed in [13] and in
Section 12.4. A further generalization concerning the slide leads to refractional
(optical) cryptography, which is described in Section 12.5. Technical problems
are discussed in Section 12.6. Section 12.7 describes Chaum’s application of
visual cryptography in elections. It verifies that a ballot was counted without
giving the voter the possibility to show others what she voted for.

12.2 Trojan-Secure Confirmation of Transactions

Naor and Pinkas state the application to online transactions implicitly in
their conference paper [13]. Explicitly it is stated in Appendix A of their full
paper, which can be found on their homepages. Klein, in 2005, describes this
Naor/Pinkas ”transparency onto screen” idea as a main application of visual
cryptography in [11]. Hogl independently re-invents visual cryptography and
the Naor/Pinkas idea in the patent application [9]. Greveler refines some of
the aspects of the Naor/Pinkas idea in [8]. Borchert and Reinhardt [3] discuss
variants of the Naor/Pinkas idea.

We assume the computer can be infected with a trojan, which is able to
eavesdrop and manipulate all input- and output information. Even after a
secure login, a trojan (Malice) can manipulate a transaction, which is con-
firmed with the TAN or iTAN method in the following way as in Figure 12.2:
Bob wants to instruct his banker Alice to transfer 50 dollars to X, but Malice
chances this to ”transfer 5000 dollars to Y.” When Alice requests a confirma-
tion by sending the message ”To transfer 5000 dollars to Y enter the TAN
No. 37,” Malice changes it to ”To transfer 50 dollars to X enter the TAN No.
37,” and Bob will cluelessly enter the TAN No. 37.

To prevent this kind of attack, the authors proposed in [3] methods as in
Figure 12.1 and Figure 12.4, with the idea that Eve is not able to produce a
forged encrypted image of the original transaction. Here again, the image of
message is shifted by a random offset in the x and y-direction to prevent Eve
from concluding back to the slide.

However, the method in Figure 12.1 has the disadvantage that the user still
needs TANs and that Eve might place the image of the original transaction in
an unencrypted way on the screen, which will have the same appearance with
the slide as if it would be the encrypted image of the original transaction.
Thus, Bob might get fooled, if he did not check that there should be a ”gray”
pattern without any information before he places the slide.

This can be improved using the method in Figure 12.4; it makes sure
that the user is able to see the black balls, which is only possible if (at least
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FIGURE 12.4
For confirmation, the user has to click the black balls placed between parts of
the transaction data.

most of) the encrypted image from Alice was sent unchanged to Bob. Since
Malice does not know the position of the parts of the transactions on the
picture, any attempt to alter a part of the transaction would most likely lead
to an incorrect image, which can easily be detected by Bob. A similar version
using the segment-based method in [2] is shown in Figure 12.6 and another
similar version for mobile phones is shown in Figure 12.3. Two versions using
Cardano Cryptography, where the user has to verify the transaction consiting
of an account number by following the blue path, are shown in Figure 12.7 and
implemented in [1]. In the 1-factor confirmation case, the user has to confirm
entering the numbers along the red path; in the 2-factor confirmation case,
the user has to confirm by typing his PIN on the keyboard below according
to the permutation of the digits shown within the red-edged holes.

12.3 Trojan-Secure Authentication Using a PIN

The purpose of this section is to apply visual cryptography in a way such that
the user can enter a password to the server in a way such that the trojan is
not able to get the password.
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FIGURE 12.5
Pixel-based (left) versus segment-based (right) visual cryptography.
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FIGURE 12.6
The main method using segment-based visual cryptography in (a) and (b).
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FIGURE 12.7
Cardano cryptography: above a 1-factor confirmation (user types 3752), below
a 2-factor confirmation (for example, in case his PIN is 1234, the user types
in 4136).
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FIGURE 12.8
(a) To log in, the server sends an encrypted image of a permutated keyboard,
which the user can only read after placing the slide over it. (b) The user enters
the PIN by clicking at the positions according to their order in the PIN.
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As shown in Figure 12.8, the trojan on the computer is not able to see the
permutation chosen by Alice on the keys, which was randomly chosen by the
server. Thus, the mouse-clicks of the user cannot be interpreted by the trojan.
This method can be generalized to any alphabet and allows Bob to send short
messages to Alice in a secure way.

Note here that this method becomes insecure if the message contains mul-
tiple occurrences of the same symbol, a PIN should thus be chosen without
repetitions. In case Bob wants to send messages of length l that may con-
tain repetitions, this could still be accomplished in a secure way by extending
the alphabet to Σ ∪ {r1, r2, ..., rl−1}, where ri indicates the repetition of the
symbol at position i. In this way, for example, the message ”messages” could
be submitted as ”mesr3agr2r4” containing no repetitions in the extended
alphabet.

In order to achieve 2-factor security for transactions, we combine the PIN
method with the confirmation method of Section 12.2 as described in Figure
12.9.

Furthermore, to prevent the attack using the original transaction in an
unencrypted way on the screen as in Section 12.2, we use the refined method
of Figure 12.9.

12.4 Security versus Multiple Use

To achieve information theoretic security for a single use, we can divide the
array into clusters of c pixels (resp. areas), where c is the size of the alphabet
of the encrypted image. Only one pixel in each cluster has a 0 on the slide.
To encrypt a pixel p ∈ Σ, place p at the position of the cluster with the 0 on
the slide and fill the rest of the cluster with a random permutation of Σ \ {p}.
Since each pixel-value in Σ occurs in each cluster of the encrypted image, each
image is possible from the viewpoint of an a evesdropper.

In the model of a known plaintext attack, we assume that the a evesdropper
Eve may receive the secret image later, then she can find out which position in
each cluster has the o on the slide and thus the slide cannot be used securely
a second time.

Known plaintext is relevant for authentication as considered in [13] as
well as for confirmation as considered in Section 12.2; in both cases Bob has
to be convinced that the message was sent by Alice. The problem of multiple
usability is solved in [13] by dividing the slide in distinct areas, where each has
to be big enough to contain the complete message; here we use an approach
with a different distribution. To achieve information theoretic security use a
slide n times, we propose the following two possibilities:

1. For one pixel use a cluster of nc pixels divided into n subclusters of c pixels
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FIGURE 12.9
For confirmation, the user has to click his PIN using a permutation of digits
on the right side in (a) and (b).
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FIGURE 12.10
For confirmation, the user has to click his PIN using inverted numbers.

in which each subcluster has a 0 on the slide. To encrypt the i-th image, we
use only the i-th subcluster as above and fill the rest with 1. This leads to
a contrast of 1

nc .

2. For one pixel use a cluster of cn pixels, which we address as an n-dimensional
array (but arrange 2-dimensionally). Only one pixel in each cluster has a 0
on the slide. To encrypt a pixel p ∈ Σ in the i-th image, place p at each
position of the cluster, which has the same i-th coordinate as the 0 on the
slide then choose a random permutation of Σ \ {p} and fill the rest of the
cluster in a way such that pixels with the same i-th coordinate get the same
color. This leads to a contrast of 1

cn .

In both cases each combination of images is consistent with any combina-
tion of encrypted images. In the first case, the contrast can be improved only
to 1

n using refraction, whereas it can be improved to 1 using refraction in the
second case.

In the case of an unknown plaintext attack, Eve is still able to obtain the
secret images if the slide was used too often and if she can anticipate patterns
in the picture. Let us consider the simple case Σ = {0, 1}, c = 2 and the slide
was used twice. Then Eve can XOR both encrypted images resulting in an
image that is 0 at pixels where both original images coincide and 1 at pixels
where both original images differ, thus she can see the difference of the original
pictures as shown in [12] page 35 and Figure 12.11. Now assume the original
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FIGURE 12.11
Superimposing two encrypted images for the same key-slide shows the differ-
ence of the original picture.

images depict messages using a Font F consisting of f = |F | small symbols
(symbol-pictures) having q pixels.

Assume furthermore the symbols are placed on fixed positions, then Eve
can identify the pairs of symbols on corresponding positions as long as
f2/2 << 2q. Then Eve can use, for example, the redundancy of natural lan-
guages to decipher the text. One measure to complicate this attack is to shift
the picture by a random number of pixels to the left or the right. Then Eve
will have to try out the position of the first symbol and consider x · y · f2/2
combinations, where x and y are the differences of the shifts but smaller than
the width and the height of the symbols. Further complications can be caused
by filling the space around the text by partially random patterns, which Bob
can easily distinguish from the symbols, but Eve will have to start analyzing
parts in the middle of the image. Here she can only assume that about a quar-
ter of the surface of the letters overlap, which means this method of attacking
can be expected to be successfull if x · y · f2/2 << 2q/4.

Furthermore, the partially random patterns can compensate the statistical
imbalance of the correlation of neighboring points. For example, Eve could
look at pairs of pixels, where one is in some small distance above the other.
If both are on a position having a 0 on the slide, then, given many encrypted
images of texts, Eve could detect that they have the same color with a higher
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probability than other pairs. But the partially random patterns are made in
a way such that this probability decreases in the overall image.

Let us now turn to the slides on the previous page: If the slide was used
more than n times, then Eve can try the following attack: She chooses an area
of q = x · y pixels somewhere in the image, then she tries each combination of
positions of the 0 in each of the corresponding q clusters on the slide ((2n)q

possibilities) and checks if it is consistent with each encrypted image in the
sense that there are 4 symbols in F overlapping the area. This takes 4 ·x ·y ·f
steps. And thus 2n·q · 4 · x · y · f steps in total.

The number of possible subimages of a possible original image, where four
symbols overlap, is approximately (x · y · f)4. This means each observed en-
crypted image can help Eve to exclude a sufficient number of possible choices
if 2q >> (x · y · f)4. We therefore estimate the number of steps for Eve as
>> (x · y · f)4·n · 4 ·x · y · f = 4 · (x · y · f)4·n+1. Now assume we use x = y = 10
and a huge font F with many possibilities to depict a symbol that leads to
f = 1000 and roughly 1020·n steps for Eve. Considering many obvious and
also less obvious improvements of the algorithm for Eve, we believe that the
attack is still too expensive for Eve for n = 3.

12.5 Using Refraction

In [4] we generalize the slide from a 2-dimensional array over Σ = {0, 1} to a
2-dimensional array over Σ ⊂ {1}∪R×R with the idea that each pixel on the
slide can either be black or contains a prism (x, y) that refracts the light from
a region on the encrypted image or, from the perspective of the user as shown
in Figure 12.12, refracts the view to a region that is shifted by (x, y) from the
pixel, which is directly behind the pixel on the slide. For example (0, 0) would
correspond to the 0 in the case of usual Visual Cryptography just showing
the pixel directly behind. One possible application would be to use clusters of
2 · 2 = 4 pixels for each pixel of the original and randomly choose one of the 4

pixels to be visible. For example

(1, 0) (0, 0)

(1,−1) (0,−1)
would direct the view to the

upper right pixel on the encrypted image. This corresponds to construction 2
in Section 12.4. Using the slide two times is information theoretically secure
and the contrast is 1.

If we use lenses or fragments of lenses instead of prisms, the view can be
focused on a point inside a pixel. This has the advantage that the positioning
of the slide allows an error of up to half of a pixel. An example is shown in
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FIGURE 12.12
This example shows how the view from the observer (A) through prisms (B)
is directed to areas 1,2,... or 5 on the encrypted image (C); the deviation
depends on the slope of the prism.
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FIGURE 12.13
Some parts of the encrypted image (C) is magnified for the observer (A),
while other parts are hidden. For example, d and j are in the focus while
b, c, e, f, h, i, k, and l are hidden.

FIGURE 12.14
Lenses are placed randomly on the slide (b). This can be done by spraying
a transparent liquid that becomes hard on the side. The area in the focus of
the lenses in the encrypted image (a) is colored in the color of the original
image at this region. The rest of (a) is filled such that colors in (a) are equally
distributed so that the original image can not be obtained from (a) alone but
only together with the slide (b).
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FIGURE 12.15
Each area of the slide (b) has fragments of lenses, which direct the view (c)
in a magnifying manor to one of the symbols on the encrypted text (a).

Figure 12.13. While producing fragments of lenses and prisms on the slide
might require expensive special machines, it will be much cheaper to produce
complete lenses. Since the lenses do not need to have a perfect shape, it would
be sufficient to place drops of a transparent liquid that becomes hard on the
side. This can be done by either using a modified ink-printer or by spraying
the liquid using physical randomness (and Alice can scan it before sending
it to Bob). The use of such a slide is shown in Figure 12.14. Figure 12.15
shows an optical generalization of Cardano cryptography. The advantage to
Cardano cryptography is that the letters are magnified and can be read in a
more natural ordering. The advantage to pixel-based visual cryptography is
that much less precision is needed to position the slide. The disadvantage is
that, in order to achieve a sufficient level of security, more than four choices
(like in Figure 12.15) would be required. A repeated use would be too insecure
as the slide contains only little information. Furthermore, a bigger distance of
slide and screen is required.

12.6 Technical Problems Concerning Adjustment
and Parallaxes

A disadvantage of pixel-based visual cryptography to Cardano cryptography
is that the slide has to be placed at an exact position. We propose to position
the slide at the (for example, left lower) corner of the screen making use of its
frame. Then use the mouse to position and stretch the encrypted image on the
screen accordingsly. The parallaxes is the shift of the pixel on the screen that
can be seen through one point of the slide, which is caused by looking at it from
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FIGURE 12.16
The voter enters the vote, verifies the image, and separates the slides.

a certain angle that differs from the right angle because of central projection
and because the viewer has two eyes at different positions. This is estimated
in [10] to be 0.25 mm in the case of a usual TFT screen, less for displays
of new mobile phones, but might be more if we require a higher distance of
slide and screen so that the use of refraction can take effect (depending on the
size of the lenses). Slight misplacements of the slide cause effects like a bad
contrast or even inverting the picture as described in [10] where the author
also proposes methods to use interference effects at the frame of the slide as
an aid for adjustment.

12.7 Voting with a Receipt Based on Visual
Cryptography

The purpose is to give a voter a receipt, which allows her or anyone else to
verify that her vote was counted in the final result. The difficulty comes from
the requirement that the voter should not be able to prove to anyone else,
what her vote was since this would make abuses such as vote selling possible.

The main procedural method in [6] lets the voter enter her ballot on a touch
screen and then the voting machine produces two slides laminated together
that show the ballot image with visual cryptography to the voter only as
shown in Figure 12.16. Then the voter separates the two slides and goes to
the poll worker. Here one of the slides is destroyed and the other one is scanned
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FIGURE 12.17
Each trustee strips one layer of the doll (represented by the barcode) and uses
it to modify the image. The order is randomly permutated.

and uploaded to the official election website. Furthermore, the voter keeps her
slide as her receipt.

For confidentiality, the voter has to trust that the voting machine has no
memory. But how can the results be computed only from the scanned slides?
To make this possible, the slide cannot be completely random (as usual in
visual cryptography) but is produced by a pseudorandom generator from the
cryptographic version of a nested doll that contains the necessary information
to reproduce the ballot image inside. This means that confidentiality is not
information theoretically secure but only computationally secure under the
usual cryptographic assumptions.

The cryptographic version of a nested doll is produced by the voting ma-
chine from the serial number of the ballot by successively encrypting with the
public keys of a sequence of trustees and printed on the slide as a barcode.
Only all trustees together would be able to compute the ballot image using
their secret keys. The result of the election is computed by a sequence of mix-
operations as described in [5]: The first trustee gets a batch of scanned slides
as input. For each vote, he removes the first layer of the doll and modifies
the encrypted image using the removed layer of the doll. Then he uploads a
batch containing a random permutation of the results to the official election
website. All other trustees do the same with the batch from their predecessor
(see Figure 12.17). In the batch produced by the last trustee, the dolls were
used up and the image became the original ballot image, which can be seen
(and thus counted) by anyone.

To verify that the trustees worked properly, a public random choice is
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used to audit the trustees, which have to reveal half of the connections to the
following batch by publishing the removed layer of the doll, which again allows
anyone to verify these connections. But the choice was made in a way such
that there will be no complete path visible leading from a scanned slide to
its ballot image. In [7], a refinement of the choice is described, which ensures
that nothing can be learned about the ballots of even groups of voters.

But how can the voter be sure that she was not cheated by the voting
machine printing a false second (and later destroyed) slide letting her see her
ballot image but producing a different one after passing all the mixes? The
idea is that after the voting machine printed the visual cryptography part on
the laminated slides, the voter has still the choice to take the upper or lower
slide as receipt and tell the choice to the voting machine before it continues
by printing the barcode of the doll to it; in this way the voting machine would
for each voter only have a 50% chance of cheating without being caught.

12.8 Conclusion

Visual cryptography is a fascinating technique and very intuitive to the user.
However, it is surprising that within the last 15 years since its invention by
Naor and Shamir only a few suggestions have been made to apply it to prac-
tical problems. In this paper we presented Naor and Pinkas technique to use
visual cryptography in order to protect online transactions against manipula-
tion and Chaum’s idea to apply it to verify the correctness of the outcome of
an election. Because of difficulties like adjustment, multiple use, and costs of
special equipment, these suggestions did not lead to applications that are used
for serious purposes. But in the future, further developments of the ideas pre-
sented in this paper, as well as new ideas, could spread practical applications
of visual cryptography.
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13.1 Introduction

While gray-scale images can be readily displayed in computer monitors and
other light-emitting displays, they also need to be displayed routinely in other
reflective media such as newspaper, magazines, books, and other printed doc-
uments. However, in reflective media, the application of ink on the reflective
media implies that only 1-bit images (with two tones: black and white) can
be displayed. A problem arising from this is that straightforward 1-bit quan-
tization on an image would lose most of the important image details. With
such constraints, there is a class of image processing technique called image
halftoning that converts an 8-bit image into an 1-bit image, which resembles
the 8-bit image when viewed from a distance. Such 1-bit images are called
halftone images [1]. Halftone image technologies are widely used in printed
matters.

There are two main kinds of halftoning methods: ordered dithering [1] and

351
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error diffusion [2]. Ordered dithering uses straightforward 1-bit quantization
with fixed pseudo-random threshold patterns to give halftone images with rea-
sonable visual quality. Error diffusion also performs simply 1-bit quantization
but allows the 1-bit quantization error to be fed back to the system and thus
can achieve higher visual quality than ordered dithering.

Sometimes it is desirable to hide watermarking data in halftone images.
Some halftone image watermarks are designed to be fragile and are useful for
authentication and tamper detecting of the halftone images. Some halftone
image watermarks are designed to be robust and are useful for copyright
protection. In some applications, the data are to be embedded into a single
halftone image and some special method can be used to read the hidden
data. In other applications, visual patterns are hidden in two or more halftone
images such that, when they are overlaid, the hidden visual patterns can be
revealed. This kindly visual pattern hiding is also called visual cryptography.
This chapter is about visual cryptography in error diffused halftone images.

The chapter is organized as follows. Section 13.2 introduces the basic error
diffusion technique. Section 13.3 introduces a visual cryptography method
for error diffused images called Data Hiding by Stochastic Error Diffusion
(DHSED) [3]. Section 13.4 introduces an improved method called Data Hiding
by Conjugate Error Diffusion (DHCED) [4]. Section 13.5 gives theoretical and
empirical analysis of DHSED and DHCED. At last, Section 13.6 will give a
summary of this chapter.

13.2 A Review of Error Diffusion

In this section, we will briefly introduce a halftoning method called Error
Diffusion. The method that we will describe is by no means the only way to
achieve halftoning, but is a popular approach that gives good visual quality
while maintaining reasonable complexity. The error diffusion process converts
a multitone image to a halftone one by distributing the error introduced at the
current pixel to a neighborhood of yet unprocessed pixels. The neighborhood,
as well as the weights in the distribution, is described by a set of positions
and weights known as an error kernel. This diffusion of error across a region
allows the local intensity of the halftone image to be preserved approximately.

Consider a multitone image with pixels defined over the range of 0 (black)
to 255 (white). Let h(k, l) be an error kernel defined over a neighborhood N .
For example, the common Steinberg kernel [2] is

1
16

[
∗ 7

3 5 1

]
defined over the neighborhoodN = {(0, 1), (1,−1), (1, 0), (1, 1)}. Here we have
used ∗ to indicate the location of the current pixel. Let (i, j) be the current
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P [y(i, j) = 255] = A/255 (13.5)

P [y(i, j) = 0] = (255−A)/255 (13.6)

such that

E[y(i, j)] = 0 • P [y(i, j) = 0] + 255 • P [y(i, j) = 255]
= 0 • (255−A)/255 + 255 •A/255
= A (13.7)

Typically, the percentages of white and black pixels in X are A/255 • 100%
and (255−A)/255 • 100% respectively, distributed evenly in X. In a way, one
can argue that

P [y(i, j) = 255|x(i, j)] = x(i, j)/255 (13.8)

such that
E[y(i, j)|x(i, j)] = x(i, j) (13.9)

Another common error diffusion kernel is the Jarvis kernel [5]

1
48

 ∗ 7 5
3 5 7 5 3
1 3 5 3 1



FIGURE 13.2
Original multitone ”Lena” (X).
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FIGURE 13.3
Halftone image generated by error diffusion with the Steinberg kernel.

FIGURE 13.4
Halftone image generated by error diffusion with the Jarvis kernel (Y1).
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which has a larger support than the Steinberg kernel. A typical image, Lena,
is shown in Figure 13.2. The corresponding halftone images generated by
Steinberg and Jarvis kernels are shown in Figures 13.3 and 13.4 respectively.
It can be observed that different error diffusion kernels give rise to different
textures in the halftone images. In general, Jarvis gives images with higher
contrast while the Steinberg kernal gives smoother texture. Both are capable
of generating halftone images that mimic the original images when viewed
afar, though tiny details of the original image such as Lena’s hair tend to be
masked by the halftone image texture generated by the error kernel.

The size of all the images in this chapter are 512×512. Due to limited space,
all remaining halftone figures are generated by the Jarvis kernel only, though
the methods described in the chapter are applicable to any error diffusion
kernels.

13.3 Data Hiding by Stochastic Error Diffusion (DHSED)

Data Hiding for halftone images is quite different from that for multitone
images due to the fact that halftone pixels can take on only two values: 0 and
255. They contain high frequency noise but resemble the original multitone
images when viewed afar. As such, normal data hiding techniques such as
least significant bit (LSB) embedding technique [6] would not work on them
because the resulting stego-images will be effectively the watermark image
and would not resemble the original multitone images even when viewed afar.
Thus, it is necessary to develop special data hiding techniques for halftone
images. Although several data hiding technologies for halftone images have
been proposed before, Data Hiding by Stochastic Error Diffusion (DHSED) is
the first visual cryptography method based on error diffusion.

DHSED is a method that embeds a binary secret pattern into two halftone
images derived from the same underlying multitone image. The binary pattern
should be revealed when the two halftone images are superimposed. The idea
of DHSED is to stochastically create a texture phase shift between the two
halftone images at locations where the watermark is ”active” or black (binary
pattern value being zero). The resulting mismatch allows the watermark to
become visible while maintaining the original halftone background. Let X be
the original multitone image and W the binary secret pattern of the same
size. Let Y1 be a halftone image obtained by applying regular error diffusion
to X. Let Y2 be the halftone image obtained through DHSED. The problem,
then, is to obtain Y2 such that W is revealed when Y1 and Y2 are overlaid.
We denote the individual pixels at location (i, j) of both halftone images as
y1(i, j) and y2(i, j), respectively.

The second image Y2 is generated by applying regular error diffusion to
certain areas in X, but with different error conditions. These areas are ob-
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tained by referencing both Y1 and W . Let Wb be the collection of the locations
of all the black pixels in W , and Ww the collection of the white pixel locations.
In constructing Y2, we will force the pixel value at all locations belonging to
Ww to be identical to Y1. In other words, values at these locations are merely
copied from Y1 to Y2. That is,

y2(i, j) = y1(i, j) ∀(i, j) ∈Ww (13.10)

For the remaining pixels in Wb, Y2 needs to look natural and thus DHSED
applies error diffusion with the same error kernel. However, DHSED seeks to
make Y2 different from Y1 statistically so that when they are overlaid, pixels
in Wb would tend to be darker. To achieve this, DHSED first morphologically
dilate, Wb with a structuring element D consisting of a (2L + 1) × (2L + 1)
matrix. We denote the dilated Wb as C.

C = Wb ⊕D (13.11)

which can be interpreted as a L-pixel expansion of Wb in all directions.
For the pixels outside C, DHSED copies Y2 from Y1 using (13.10) but

forces the error for Y2 to be zero, i.e. e2(i, j) = 0 for (i, j) 6∈ C. Note that the
error for Y1 are nonzero in general for the same locations.

Let E = C−Wb = C∩Ww be the ”border” of the secret pattern, obtained
by removing Wb from the expanded region C. For the pixels in E, (13.1) and
(13.2) are still applied while (13.3) and (13.4) are not. (13.10) will be used to
replace (13.3) since E ⊂Ww and Y2 pixels in Ww are copied from Y1. We will
use (13.12) to replace (13.4).

e2(i, j) = max{min{u2(i, j)− y2(i, j), 127},−127} (13.12)

which is basically (13.4) with a limiter. As Y2 pixels in E are copied from Y1

with artificial zero error outside C, there are chances that u2(i, j)− y2(i, j) is
outside ±127. The limiter would then help to make the e2(i, j) reasonable.

For the pixels in Wb, DHSED uses regular error diffusion to generate Y2

so that region Wb in Y2 still has the same characteristic texture as regular
error diffusion. But the ”phase” of the texture will be different compared to
the corresponding region in Y1 since the error outside the region C is different
in Y1 and Y2.

The overlaying operation is equivalent to applying the logical AND oper-
ation between images Y1 and Y2. Since the pixels in region Ww of Y1 and Y2

have been forced to be identical, the overlaid pixel values are simply the reg-
ular error diffused pixel values. However, in region Wb, although the texture
in Y1 and Y2 maintains the same characteristic, there is an artificially intro-
duced phase shift such that collocated Y1 and Y2 pixels tend to be statistically
independent. As a result, the overlaying operation tends to give darker local
intensity thus revealing the secret pattern W . A more detailed analysis of this
will be given in Section 13.4.

Using Lena as the test image and Figure 13.5 as the secret binary pattern
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FIGURE 13.5
Secret pattern ”UST” to be embedded in the halftone image (W ).

FIGURE 13.6
DHSED-generated Y2 (L = 5) of Lena with respect to X in Figure 13.2, W
in Figure 13.5, and Y1 in Figure 13.4.
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FIGURE 13.7
Image Y obtained by overlaying Y1 in Figure 13.4 and Y2 in Figure 13.6.

W , Figure 13.4 is Y1 and Figure 13.6 is Y2 generated using DHSED with
respect to Y1 and W . A threshold L = 5 is used. Note that Figure 13.6
looks like Figure 13.4, which verifies that DHSED can give halftone images
with good visual quality. Figure 13.7 shows the image obtained by overlaying
Figure 13.6 and Figure 13.4. The secret pattern W is clearly visible in Figure
13.7 verifying that DHSED is an effective visual cryptography method.

13.4 Data Hiding by Conjugate Error Diffusion (DHCED)

DHSED as outlined in the previous section is both computationally and con-
ceptually simple, but suffers from three major problems. First, Y1 and Y2

must be obtained from the same X. In other words, DHSED cannot embed
a binary secret pattern in two halftone images obtained from two different
multitone images. Second, when the images are overlaid, the contrast of the
revealed secret pattern is relatively low. Third, occasional boundary artifacts
may happen in Y2 especially towards the right and bottom sides of the secret
pattern where error is not diffused properly across the Wb boundary. Such
boundary artifacts can lower the visual quality of Y2 considerably.

In this section, we will introduce another method called Data Hiding by
Conjugate Error Diffusion (DHCED) that addresses these three problems.
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in Wb because

E[y2(i, j)|w(i, j) = 1, x1(i, j)]
= E[y1(i, j)|x1(i, j)]
= 255 • P [y1(i, j) = 255|x1(i, j)] + 0 • P [y1(i, j) = 0|x1(i, j)]
= 255 • P [y1(i, j) = 255|x1(i, j)]
= 255 • [x1(i, j)/255]
= x1(i, j) (13.14)

E[y2(i, j)|w(i, j) = 0, x1(i, j)]
= E[yc1(i, j)|x1(i, j)]
= 0 • P [y1(i, j) = 255|x1(i, j)] + 255 • P [y1(i, j) = 0|x1(i, j)]
= 255 • [1− P [y1(i, j) = 255|x(i, j)]]
= 255− x1(i, j) (13.15)

But Y2 should resemble X2 instead of X1 and thus this naive method does
not work. Even if X1 and X2 are the same image, this naive method does not
work in Wb as Y2 should resemble X1 instead of the negative of X1.

Although this naive method does not work, DHCED follows a similar logic
except that it favors, instead of forces, Y2 to take on the values in (13.13). In
other words, it treats the value in (13.13) as the favored value of y2(i, j).

Consider Figure 13.8 and any location (i, j) ∈ Wb. Basically, DHCED
applies error diffusion on x2(i, j) including (13.1) to calculate a2(i, j), (13.2)
to calculate u2(i, j) and, in the first Q(·) block, (13.3) to calculate the trial
halftone value y2(i, j). In the N(·) block, the trial value is compared with the
favored value that is obtained by XNOR of w(i, j) and y1(i, j). If they are
equal, no change needs to be done to x2(i, j) and u2(i, j) such that u′2(i, j) =
u2(i, j). If they are not equal, DHCED considers the possibility of forcing
trial y2(i, j) to toggle to achieve the favored value. Recognizing that forced
toggling is equivalent to applying a distortion to x2(i, j) followed by regular
error diffusion, DHCED will execute the forced toggling only if the required
distortion is not excessive.

Here are the details. Note that forcing the trial halftone value to toggle
is equivalent to adding an offset value ∆u(i, j) to u2(i, j). If the trial value
should be toggled from 0 to 255, then u2(i, j) < 128 initially and we need
an offset ∆u(i, j) such that the resulting value, which we called u′2(i, j), is
u′2(i, j) ≡ u2(i, j) + ∆u(i, j) ≥ 128. Thus, there is a lower bound for ∆u(i, j):
∆u(i, j) ≥ 128− u2(i, j) > 0.

Likewise, if we want to toggle from 255 to 0, then u2(i, j) ≥ 128 initially
and we need an offset ∆u(i, j) such that u′2(i, j) ≡ u2(i, j) + ∆u(i, j) ≤ 127.
There is thus an upper bound for ∆u(i, j): ∆u(i, j) ≤ 127− u2(i, j) < 0.

The smallest ∆u(i, j) (in terms of magnitude) needed to achieve toggling
is

© 2012 by Taylor & Francis Group, LLC



362 Visual Cryptography and Secret Image Sharing

∆u(i, j) =
{

128− u2(i, j), u2(i, j) < 128
127− u2(i, j), u2(i, j) ≥ 128 (13.16)

We further note that adding a distortion ∆u(i, j) to u2(i, j) may be inter-
preted as a distortion to the original multitone image pixel x2(i, j). Defining
∆x(i, j) = ∆u(i, j), the input to the normal quantizer u′2(i, j) may be written
as

u′2(i, j) = u2(i, j) + ∆u(i, j)

= x2(i, j) +
∑
k,l∈N

e2(i− k, j − l)× h(k, l) + ∆u(i, j)

= x′2(i, j) +
∑
k,l∈N

e2(i− k, j − l)× h(k, l) (13.17)

x′2(i, j) = x2(i, j) + ∆u(i, j) = x2(i, j) + ∆x(i, j) (13.18)

The interpretation of (13.18) is that the output halftone image using
DHCED in fact represents X ′2, not X2, in the sense of that it can be ob-
tained from X ′2 directly using standard error diffusion. Thus, |∆x| can be
treated as a measure of the distortion introduced by the DHCED process. To
control this distortion, we define a threshold T that determines whether or not
the pixel should be toggled, allowing a trade-off between distortion and visual
quality of the watermarked halftone image. If |∆x| is less than T , the pixel
toggling will be performed, and vice versa. If T decreases, the visual quality
of the watermarked image Y2 will improve at the price of lower contrast of the
secret pattern when the two halftone images are superimposed.

Consider any location (i, j) ∈ Ww. If X1 and X2 are the same image,
DHCED would copy y1(i, j) to y2(i, j) so that Y2 values are effectively obtained
by applying error diffusion to X1. The error e2(i, j) will be computed as in
normal error diffusion. When Y1 and Y2 are overlaid, the regular error diffused
value y1(i, j) will be revealed. The overlaying operation will reveal a local
intensity similar to the local intensity of X1, which is typical for regular error
diffusion.

If X1 and X2 are different, DHCED would not force y2(i, j) to be identical
to y1(i, j) at (i, j) ∈Ww. Instead, it merely treats y1(i, j) as the favored value
of y2(i, j). And DHCED performs the same operation as in Wb.

The proposed DHCED for the case of identical X1 and X2 is simulated.
Using Lena as the test image and Figure 13.5 as the secret binary pattern W ,
Figure 13.4 is Y1 and Figure 13.9 is Y2 generated using DHCED with respect
to Y1 and W . A threshold of T = 10 is used. Note that Figure 13.9 looks like
Figure 13.4 which verifies that DHCED can give halftone images with good
visual quality. Figure 13.10 shows the image obtained by overlaying Figure
13.9 and Figure 13.4. The secret pattern W is clearly visible in Figure 13.7
verifying that DHSED is an effective visual cryptography method.
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FIGURE 13.9
DHCED-generated Y2 (T = 10) of Lena with respect to X in Figure 13.2, W
in Figure 13.5, and Y1 in Figure 13.4.

Comparing DHSED and DHCED, it can be observed that DHSED in Fig-
ure 13.6 has strong boundary artifacts along the embedded watermark es-
pecially on the right and bottom edges of W . With DHCED, the boundary
artifacts are reduced considerably. In addition, the watermark in Figure 13.10
is significantly more visible than Figure 13.7 in terms of contrast, when Y1

and Y2 are overlaid.
DHCED for the case of different X1 and X2 is also simulated. Here Lena

is used as X1 and Pepper is used as X2. The Y1 with respect to X1 is simply
the one in Figure 13.4. The DHCED generated Y2 from X2 with respect to Y1

and W is shown in Figure 13.12. A threshold of T = 10 is used. The overlaid
image of Y1 and Y2 is shown in Figure 13.13. As expected, traces of both
Lena and Pepper can be observed in the overlaid image. More importantly,
the watermark W is revealed also, though the contrast of W in Figure 13.13
is not as good as in Figure 13.10.

13.5 Performance Analysis

In this section, we give an indepth analysis of both DHSED and DHCED. We
will show theoretically why DHCED has better performance than DHSED.
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FIGURE 13.10
Image Y obtained by overlaying Y1 in Figure 13.4 and Y2 in Figure 13.9.

FIGURE 13.11
Original multitone ”Pepper” (X2).
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FIGURE 13.12
DHCED-generated Y2 (T = 10) of Pepper with respect to X2 in Figure 13.11,
W in Figure 13.5, and Y1 in Figure 13.4.

FIGURE 13.13
Image Y obtained by overlaying Y1 in Figure 13.4 and Y2 in Figure 13.12.
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Consider the case when X1 and X2 are the same image X. Consider a rectan-
gular region R of constant intensity A in X. Suppose that the left half of R is
in the white region Ww of W and the right half in the black region Wb of W .
We assume that error diffusion is effective in both the left and right halves of
R such that the average image intensity is preserved. Thus, the probability
distribution of a halftone pixel y1(i, j) in the region R of Y1 is

P [y1(i, j) = 255] = A/255 (13.19)
P [y1(i, j) = 0] = (255−A)/255 (13.20)

such that the expected value is

E[y1(i, j)] = 0 • P [y1(i, j) = 0] + 255 • P [y1(i, j) = 255] = A (13.21)

for (i, j) ∈ R. Typically, the percentage of white and black pixels in Y1 in R
are A/255 • 100% and (255 − A)/255 • 100% respectively, distributed evenly
in R.

The generation of Y2 using DHCED is effectively the application of error
diffusion to the equivalent noisy multitone image. And the error diffusion
should be effective, as usual. The distortion ∆x(i, j) introduced by DHCED
is equally likely to be positive and negative and its magnitude is bounded
by T . The average intensity in R should still be approximately A. Thus, the
probability distribution of a halftone pixel y2(i, j) in the region R of Y2 is
approximately

P [y2(i, j) = 255] ≈ A/255 (13.22)
P [y2(i, j) = 0] ≈ (255−A)/255 (13.23)

such that

E[y2(i, j)] = 0 • P [y2(i, j) = 0] + 255 • P [y2(i, j) = 255] ≈ A (13.24)

for (i, j) ∈ RA.
Let y(i, j) = y1(i, j)

⋂
y2(i, j) be the output pixel obtained by overlaying

Y1 and Y2. The y(i, j) would be white only if both y1(i, j) and y2(i, j) are
white. For the proposed DHCED, the y1(i, j) and y2(i, j) are designed to be
dependent.

In the left half of R, which is in Ww, DHCED would simply copy y1(i, j)
as y2(i, j) such that P [y2(i, j) = y1(i, j)] = 1. Then

P [y(i, j) = 255] = P [y1(i, j)
⋂
y2(i, j) = 255] = P [y1(i, j) = 255] = A/255

(13.25)
such that

E[y(i, j)] = 0 • P [y(i, j) = 0] + 255 • P [y(i, j) = 255] = A (13.26)

In other words, y(i, j) = y1(i, j)) = y2(i, j) for the region Ww and the overlay
operation does not change the halftone pixel values at all.
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In the right half of R which is in Wb, the y1(i, j) and y2(i, j) are favored to
be conjugate to each other (y2(i, j) ≈ y1(i, j)) such that y1(i, j) and y2(i, j)
tend not to be black at the same time. To investigate the behavior of y(i, j),
we consider two different cases: (1) 255 ≥ A > 127 and (2) 127 ≥ A ≥ 0.

For the case of 255 ≥ A > 127, there are more white pixels than black
pixels in R of Y1. The percentage of black pixels in the right half of R of Y1

is about (255 − A)/255 • 100%. For example, if A = 190, about 25% of the
pixels in the right half of R of Y1 should be black. As y1(i, j) and y2(i, j)
tend not to be black at the same time, the black pixels in the right half of
R of Y2 tend to be at different locations from those in Y1. Consequently, the
percentage of black pixels in the right half of R of Y tends to be doubled to
2 • (255−A)/255 • 100%. In our example of A = 190, the approximately 25%
black pixels in the right half of R of Y1 and those of Y2 tend to be at different
locations such that there are about 50% black pixels in the right half of R of
Y . Thus,

P [y(i, j) = 0] ≈ 2P [y1(i, j) = 0] = 2(255−A)/255 (13.27)
P [y(i, j) = 255] ≈ (2A− 255)/255 (13.28)

such that

E[y(i, j)] = 0 • P [y(i, j) = 0] + 255 • P [y(i, j) = 255]
≈ 2A− 255 = A− (255−A) ≤ A (13.29)

In other words, the expected value should increase approximately linearly with
A, from 1 (for A = 128) to 255 (for A = 255). The difference between the
average intensity of the left and right halves of R for 255 ≥ A > 127 is

∆intensity = E[y(i, j)|(i, j) ∈Ww]− E[y(i, j)|(i, j) ∈Wb]
≈ A− (2A− 255) = 255−A (13.30)

For the case of 127 ≥ A ≥ 0, there are fewer white pixels than black pixels
in the right half of R of Y1. Again the y1(i, j) and y2(i, j) tend not to be black
at the same time in DHCED. This implies that the black pixels in the right
half of R of Y2 tend to fill up all the white pixel locations in the right half of
R of Y1, leading to all y(i, j) being black. Thus, P (y(i, j) = 0) ≈ 1 and

E[y(i, j)] = 0 • P [y(i, j) = 0] + 255 • P [y(i, j) = 255] ≈ 0 (13.31)

for 127 ≥ A ≥ 0. And the difference between the average intensity of the left
and right halves of R is, for 127 ≥ A ≥ 0,

∆intensity ≈ A− 0 = A (13.32)

Consequently, the contrast between the left and right halves of R of Y can be
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expressed as, for 255 ≥ A > 127,

contrast =
E[y(i, j)|(i, j) ∈Ww]− E[y(i, j)|(i, j) ∈Wb]

E[y(i, j)|(i, j) ∈Ww]

≈ A− (2A− 255)
A

=
255−A

A
=

255
A
− 1 (13.33)

and, for 127 ≥ A ≥ 0,

contrast =
E[y(i, j)|(i, j) ∈Ww]− E[y(i, j)|(i, j) ∈Wb]

E[y(i, j)|(i, j) ∈Ww]

≈ A− 0
A

= 1 (13.34)

To summarize, for any (i, j) in the right half of R that is in Wb, the
expected value of y(i, j) is

E[y(i, j)] ≈
{

0, 127 ≥ A ≥ 0
2A− 255, 255 ≥ A > 127 (13.35)

The difference in average intensity of the left half and right half of R is

∆intensity ≈
{
A, 127 ≥ A ≥ 0
255−A, 255 ≥ A > 127 (13.36)

and the contrast between the left half and right half of R is

contrast ≈
{

1, 127 ≥ A ≥ 0
255
A − 1, 255 ≥ A > 127 (13.37)

To verify these, we simulate DHCED using an artificial image called
”Ramp” shown in Figure 13.14 as X = X1 = X2, in which the image in-
tensity decreases gradually and linearly from 255 at the top row to 0 at the
bottom row. The hidden pattern to be embedded is called ”Column” and is
black at the center and white on the left and right, as shown in Figure 13.15.
The DHCED generated Y1 and Y2 are shown in Figures 13.16 and 13.17, re-
spectively. The row-wise average intensity of Y1 and Y2 are plotted against
the average intensity of the corresponding row in X in Figure 13.22. As ex-
pected, the row-wise average intensity of Y1 and Y2 are very similar to the
corresponding intensity in X, which verifies (13.21) and (13.24).

Figure 13.18 is the overlaid image Y . We note that in the Ww region, Y is
identical to Y1 and Y2, with intensity decreasing from top to bottom. In the
Wb region, the intensity of Y is as high as X at the top. But as the intensity
of X decreases from the top to bottom, we observe that the intensity of Y
decreases at a fast pace to about the middle of the image (where intensity is
about 127), and remains low in the lower half of the image.

To show the exact behavior of Y in the Wb region, we compute the average
intensity in theWb for each row of Y and plot it against the average intensity of
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FIGURE 13.14
Original multitone image ”Ramp” (X).

FIGURE 13.15
Secret pattern ”Column” to be embedded in the halftone image (W ).
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FIGURE 13.16
Halftone images generated by error diffusion with the Jarvis kernel (Y1).

FIGURE 13.17
DHCED-generated Y2 (T = 10) of Ramp with respect to X in Figure 13.14,
W in Figure 13.15, and Y1 in Figure 13.16.
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FIGURE 13.18
Image Y obtained by overlaying Y1 in Figure 13.16 and Y2 in Figure 13.17.

the corresponding row in X in Figure 13.19. Three such curves are obtained
with 3 values of T , namely T = 5, 10, 15. Also shown in the figure is the
theoretical behavior as predicted by (13.35). It can be observed from the
figure that as T increases, the average intensity curves appear to converge to
the theoretical curve, as expected.

We also compute the difference between the average intensity in the Wb

and the Ww regions for each row of Y , and plot this ∆intensity against the
average intensity of the corresponding row in X in Figure 13.20. Similarly,
the contrast is computed and plotted in Figure 13.21. Also shown in the two
figures are the theoretical behavior predicted by (13.36) and (13.37). It can be
observed that as T increases, the ∆intensity curves and the contrast curves
appear to converge to the corresponding theoretical curves, as expected.

Next, we analyze DHSED and make a comparison with DHCED. Since
DHSED forces Y1 and Y2 to be identical in Ww, both y1(i, j) and y2(i, j) are
identical in the left half of R and the probability distribution is

P [y(i, j) = 255] = P [y1(i, j) ∩ y2(i, j) = 255] = P [y1(i, j) = 255] = A/255
(13.38)

such that E[y(i, j)] = A. For any (i, j) in Wb, the corresponding pixel values
in Y1 and in Y2 are error diffused with relative random phase. Thus, the local
intensity for Y1 and Y2 is

E[y2(i, j)] = E[y1(i, j)] = A (13.39)
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FIGURE 13.19
Row-wise average intensity of Wb in Y in Figure 13.18 vs row-wise average
intensity of X in Figure 13.14 (Ramp).
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FIGURE 13.20
Row-wise ∆intensity of Y in Figure 13.18 vs row-wise average intensity of X
in Figure 13.14 (Ramp).
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FIGURE 13.21
Contrast of Y in Figure 13.18 vs row-wise average intensity of X in Figure
13.14 (Ramp).
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FIGURE 13.22
Row-wise average intensity of Y1 in Figure 13.4 and Y2 in Figure 13.9 vs
row-wise average intensity of X in Figure 13.14 (Ramp).
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and y1(i, j) and y2(i, j) are approximately independent with

P [y(i, j) = 255] = P [y1(i, j) ∩ y2(i, j) = 255]

= P [y1(i, j) = 255] • P [y2(i, j) = 255] = (A/255)2 (13.40)

P [y(i, j) = 0] = 1− (A/255)2 (13.41)

such that
E[y(i, j)] = A2/255 (13.42)

Thus, the intensity of DHSED is expected to be greater than or equal to that
of DHCED, with equality if A = 255. The difference in average intensity is

∆intensity = E[y(i, j)|(i, j) ∈Ww]− E[y(i, j)|(i, j) ∈Wb]

= A−A2/255 (13.43)

The contrast is

contrast =
E[y(i, j)|(i, j) ∈Ww]− E[y(i, j)|(i, j) ∈Wb]

E[y(i, j)|(i, j) ∈Ww]

=
A−A2/255

A
=

255−A
255

(13.44)

We also simulate DHSED on Ramp to verify the equations above. The
hidden pattern is still the Column in Figure 13.15. The DHSED generated Y1

and Y2 are shown in Figures 13.16 and 13.23, respectively. In Figure 13.28,
the row-wise average intensity of Y1 and Y2 are plotted against the average
intensity of the corresponding row in X. As expected, they are very similar
to X, which verifies (13.39).

Figure 13.24 is the overlaid image Y . Similar to DHCED, the Y of DHSED
is identical to Y1 and Y2 in the Ww region, with intensity decreasing from top
to bottom. In the Wb region, the intensity of Y is as high as X at the top
row. But as the intensity of X decreases towards the bottom of the image,
the intensity of Y decreases faster in the center than on the two sides. In
other words, the intensity of Y decreases faster in Wb than in Ww, making
Wb visible in Y .

Similar to DHCED, to show the exact behavior of DHSED in Wb in Y , we
compute the average intensity in the Wb for each row of Y and plot it against
the average intensity of the corresponding row in X in Figure 13.25. Three
curves are obtained for 3 values of L, namely L = 1, 5, 10. Also shown is the
theoretical curve according to (13.42). It can be observed that the 3 empirical
curves match the theoretical curve very well. This also suggests that the choice
of L does not have much effect on the intensity of Wb in Y .

We also compute the difference between the average intensity in Wb and
Ww regions for each row of Y , and plot this ∆intensity against the average
intensity of the corresponding row in X in Figure 13.26. Similarly, the contrast
is computed and plotted in Figure 13.27. Also shown in the two figures are
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FIGURE 13.23
DHSED-generated Y2 (L = 5) of Ramp with respect to X in Figure 13.14, W
in Figure 13.15 and Y1 in Figure 13.16.

FIGURE 13.24
Image Y obtained by overlaying Y1 in Figure 13.16 and Y2 in Figure 13.23.
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FIGURE 13.25
Row-wise average intensity of Wb in Y in Figure 13.24 vs row-wise average
intensity of X in Figure 13.14 (Ramp).
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FIGURE 13.26
Row-wise ∆intensity of Y in Figure 13.24 vs row-wise average intensity of X
in Figure 13.14 (Ramp).
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FIGURE 13.27
Contrast of Y in Figure 13.24 vs row-wise average intensity of X in Figure
13.14 (Ramp).

the theoretical behavior predicted by (13.43) and (13.44). It can be observed
that the empirical ∆intensity curves and contrast curves are similar to the
corresponding theoretical curves, as expected. Again, the choice of L has little
effect.

Comparing DHCED and DHSED, they have the same Y1. For their Y2,
their pixel values are identical in Ww but different in Wb. On overlaying the
corresponding Y1 and Y2, the Y of both DHCED and DHSED are identical in
Ww, but DHCED has lower E[y(i, j)] in Wb than DHSED such that the black
patterns of W would look darker in DHCED than in DHSED as predicted by
Figure 13.29. And, the contrast of the revealed W in DHCED is higher than
that in DHSED as predicted by Figure 13.30.

13.6 Summary

In this chapter, we introduce two ways to achieve steganography in halftone
images, namely DHSED and DHCED. Both methods can embed a binary
secret pattern into two halftone images that come from the same multitone
image. When the two halftone images are overlaid, the secret pattern is re-
vealed. DHCED can further embed a binary secret pattern into two halftone
images from two different multitone images. DHSED operates by introducing
different stochastic phases in the two images. DHCED operates by favoring
certain conjugate values for each pixel and taking on the values only if the
implied distortion is small enough. Both theoretical analysis and simulation
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FIGURE 13.28
Row-wise average intensity Y1 in Figure 13.4 and Y2 in Figure 13.23 vs row-
wise average intensity of X in Figure 13.14 (Ramp).
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FIGURE 13.29
Theoretical average local intensity of Wb in Y for DHSED and DHCED vs
row-wise average intensity of X in Figure 13.14 (Ramp).
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FIGURE 13.30
Theoretical contrast of Y for DHSED and DHCED vs row-wise average in-
tensity of X in Figure 13.14 (Ramp).

results suggest that DHCED can give better contrast of the revealed secret
pattern than DHSED.
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14.1 Introduction

Cryptography plays a very vital enabling role in our modern computing infra-
structure. Almost all real-world applications require keys (such as passwords)
for the purposes of confidentiality, authentication, and nonrepudiation. The
strength of such cryptographic applications is based on the secrecy of a key.
Therefore, the loss of a key can lead to disastrous consequences. Thus, many
cryptographers have tackled the following problem:

Suppose a secret s (a key) is divided into n > 1 parts (called secret shares)
and it satisfies these properties:

1. The secret key s can be easily restored from k (k ≤ n) shares.

381
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2. The secret key s cannot be restored from k − 1 (or less) shares.

3. The size of each share is not more than the size of the secret key s.

Such a scheme is referred to as a (k, n) threshold cryptography scheme
or a secret sharing system[2][17]. It provides a backup mechanism to the se-
cret key and it provides protection against the loss of a key. Secret sharing is
also regarded as a mechanism to transfer secret information by public chan-
nels in cryptography [4]. Blakley based his secret sharing scheme on hyper-
planes [17] and Shamir provided a solution based on the Lagrange interpo-
lation [2]. Asmuth and Bloom scheme is based on the Chinese Remainder
Theorem [5]. The details of these methods are available in [1] [12]. These tra-
ditional secret sharing schemes primarily concentrate on bit strings and do
not take the specific content of these bits into account. However, with the
increasing emphasis on security and digital rights management of multime-
dia data, the connection between multimedia and cryptography is becoming
stronger. In this context, we present our novel ideas on color image sharing in
which we utilize the concept of secret sharing from cryptography and employ
it to protect a secret color image. As we shall see, the ideas cannot be directly
applied so we need to take into account that the data under consideration
describes color images and is not any generic bit stream. In our scheme, a
secret color image is divided into n shares. Each share is an innocuous image
totally unrelated to the secret image. We utilize k (or more) shares in order
to perfectly reconstruct the secret image. However, having access to k− 1 (or
less) shares will not reveal the secret color image.

We envisage several useful applications for a color image sharing scheme.
Suppose we have a secret color image that we desire to protect. If we employ
traditional cryptographic techniques, then we need to encrypt the image and
store the image on a secure server. We then need to pay attention on the
security of the key used for encryption. This server would then become a single
focus of attack from a potential adversary. However, with an image sharing
scheme, we can divide the information in the image into several shares and
keep them on separate servers. This would allow for a lot more redundancy
in the protection since breaking one server will not reveal the secret image.
Another application would be that of data hiding. Suppose we would like to
transmit a secret image over a noisy and insecure channel. We could divide
the image information into several shares that are basically innocuous images.
These images could be transmitted and at the other end, the secret image
could be reconstructed from the threshold number of shares. Another useful
application would be that of a military command and control system based on
the Clark-Wilson security model [11]. Suppose we want the battlefield plans to
be made only if k out of n commanders agree. In which case, we could divide
the battle terrain map into n shares and distribute it to the commanders. Only
if k of them get together can they restore the terrain map and agree to a battle
plan. In general, our scheme would be advantageous in any situation where a
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group of mutually suspicious individuals or processes need to cooperate and
every threshold subset of the group needs to be given the veto power.

The problem of color image sharing is formally defined as follows. In order
to transfer a color image I through a public channel securely, the information
of the color image is divided into n pieces and embedded into images Ii,
(i = 1, 2, · · · , n), and we call the images Ii, (i = 1, 2, · · · , n) as shares. With
the knowledge of any k(k < n) shares Ii, (i = 1, 2, · · · , k), the restoration of
the original color I image is easy; with the knowledge of any k − 1(k < n)
shares, the restoration of the original image I is impossible (i.e., any image is
equally likely to be reconstructed).

FIGURE 14.1
Principle of image sharing.

In Figure 14.1, the left-most image is the original color image that we
desire to keep as a secret and it is divided into several blocks (subimages). We
process each of these blocks into n shares in order to create the subimages
shares. If required, we can compose these shares Ii, (i,= 1, 2, · · · , n) together
and compute the blocks in the right-most image. Block-based processing is
done for breaking correlation. Note that our scheme will require a minimum
of k shares in order for Ir to be exactly equal to Is. If less than k shares are
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used, then Is cannot be restored. The threshold is indispensable in color image
sharing.

14.2 State of the Art

Applying visual cryptography techniques to color images is a very important
area of research because it allows the use of natural color images to secure
some types of information. Due to the nature of a color image, this again helps
to reduce the risk of alerting someone to the fact that information is hidden
within it. It should also allow high quality sharing of these color images. Color
images are also highly popular and have a wider range of uses when compared
to other image types. Many of the techniques presented within this section
use halftone technologies on the color images in order to make them work
with visual cryptography. That is why color visual cryptography is presented
within this section.

In 1996, Naor and Shamir published a second article on visual cryp-
tography ”Visual Cryptography II: Improving the Contrast via the Cover
Base” [23]. The new model contains several important changes from their
previous work; they use two opaque colors and a completely transparent one.

The first difference is the order in which the transparencies are stacked.
There must be an order to correctly recover the secret. Therefore, each of
the shares needs to be predetermined and recorded so recovery is possible.
The second change is that each participant has c sheets, rather than a single
transparency. Each sheet contains red, yellow, and transparent pixels. The
reconstruction is done by merging the sheets of participant I and participant
II, i.e., put the i-th sheet of II on top of the i-th sheet of I and the (i+ 1)-th
of I on top of the i-th of II.

The two construction methods are monochromatic construction and
bichromatic construction. In the monochromatic construction, each pixel in
the original image is mapped into c subpixels and each participant holds c
sheets. In each of participant I sheets, one of the subpixels is red and the
remaining c − 1 subpixels are transparent. In each of participant II sheets,
one of the subpixels is yellow, the other c− 1 subpixels are transparent. The
way the sheets of participant I and II are merged is by starting from the sheet
number 1 of participant I, then putting sheet number 2 of participant II on
top of it, then sheet number 2 of participant I on top of that, and so on.

The order in which subpixels of participant I are colored red constitutes a
permutation π on {1, · · · , c} and the order which the subpixels of participant
II are colored yellow constitutes a permutation σ. π and σ are generated as
follows: π is chosen uniformly at random from the set of all permutations on
c’s elements. If the original pixel is yellow, then π = σ, therefore each red
subpixel of the i-th sheet of participant I will be covered by a yellow subpixel
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of the same position of the i-th sheet of participant II. If the original pixel is
red, then σ(i) = π(i + 1) for 1 ≤ i ≤ c − 1 and σ(c) = π(1), therefore each
yellow subpixel of the i-th sheet of participant II will be covered by a red
subpixel of the same position of the (i+1)-th sheet of participant I except the
c-th sheet. In practice, the first sheet of participant I is not necessarily stored
since it is always covered by other sheets.

A very primitive example of color image sharing appeared in [24]. In this
example, each pixel of the color secret image is expanded to a block of 2× 2
subpixels. Each one of these blocks is filled with red, green, blue, and white
(transparent) colors, respectively. Taking symmetries into account, 24 differ-
ent possibilities for the combination of two pixels can be obtained. It is claimed
that if the subpixels are small enough, the human visual system will average
out the different possible combinations to 24 different colors. To encrypt a
pixel of the colored image, round the color value of that pixel to the near-
est representable color. Select a random order for the subpixels on the first
share and select the ordering on the second share such that the combination
produces the required color.

The advantage of this scheme is that it can represent 24 colors with a
resolution reduction of 4, instead of 242 = 576. The disadvantage is that the
24 colors are fixed once the basic set of subpixel colors is fixed.

Another primitive scheme was also presented [29] and extended more
recently [34]. Verheul and Van Tilborg’s scheme provides a c-color (k, n)-
threshold scheme. This scheme uses the black pixel to superimpose on the
result of two color pixels, superimposition, if they give a resultant color that
is not in the original color palette. This can be achieved by making sure the
superimposed color pixels result in a noncolor palette color, one of which is
changed to a black pixel or by ensuring that one of the color pixels is changed
to black before the superimposing operation [10]. Yang and Laih improve on
the pixel expansion aspect of the Verheul and Van Tilborg scheme and their
(n, n)-threshold scheme is optimal since they match the following lower bound
placed on pixel expansion, formulated in [10]:

m ≥
{
c · 2n−1 − 1, if n is even
c · 2n−1 − c+ 1, if n is odd (14.1)

Hou et al. [18] proposed a novel approach to share color images based on
halftoning. With this halftone technology, different gray levels can be simu-
lated simply by altering the density of the printed dots. Within bright parts
of the image the density is sparse, while in the darker parts of the image, it is
dense. This is very helpful in the visual cryptography sense because it is able
to transform a gray-scale image into a black and white image. This allows for
traditional visual cryptography techniques to be applied. Similarly, the color
decomposition method is used for color images, which also allows the proposed
scheme to retain all the advantages of traditional visual cryptography, such as
no computer participation required for the decryption/recovery of the secret.

Hou himself also provided one of the first color decomposition techniques
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to generate visual cryptograms for color images [19]. Using this color decom-
position, every color within the image can be decomposed into one of three
primary colors: cyan, magenta, or yellow. This proposal is similar to tradi-
tional visual cryptography with respect to the pixel expansion that occurs.
One pixel is expanded into a 2 × 2 block where two color pixels are stored
along with two transparent (white) pixels.

However, [21] examined the security of Hou’s [19] scheme, and while the
scheme is secure for a few specific two-color secret images, the security cannot
be guaranteed for many other cases.

Improving this pixel expansion and also working out the optimal contrast
of color visual cryptography schemes have been investigated [10]. In the paper,
they prove that contrast-optimal schemes are available for color visual cryp-
tography (VC) and then further go on to prove the optimality with regard to
pixel expansion.

A lossless recovery scheme outlined by [20] considers halftoning techniques
for the recovery of color images within visual cryptography. The scheme gen-
erates high quality halftone shares that provide lossless recovery of the secrets
and reduces the overall noise in the shares without any computational com-
plexity. Their proposed method starts by splitting the color channels into its
constituent parts, cyan (C), magenta (M), and yellow (Y). Each channel has
grayscale halftoning applied to it. Error diffusion techniques discussed in [35]
are then applied to each halftone channel. A circularly symmetric filter is used
along with a Gaussian filter. This provides an adequate structure for the dot
placement when constructing the shares.

Efficiency within color visual cryptography [25] is also considered which
improves on the work done by [34, 3]. The proposed scheme follows Yang and
Laih’s color model. The model considers the human visual system’s effect on
color combinations out of a set of color subpixels. This means that the set of
stacked color subpixels would look like a specific color in original secret image.
As with many other visual cryptography schemes, pixel expansion is an issue.
However Shyu’s scheme has a pixel expansion of dlog2ce, which is superior to
many other color visual cryptography schemes especially when c, the number
of colors in the secret image becomes large. An area for improvement however
would be in the examination of the difference between the reconstructed color
pixels and the original secret pixels. Having high quality color VC shares would
further improve on the current schemes examined within this survey, this
includes adding a lot of potential for visual authentication and identification.

Chang et al. [6] present a scheme based on smaller shadow images, which
allows color image reconstruction when any authorized k shadow images are
stacked together using their proposed revealing process. This improves on the
following work [32], which presents a scheme that reduces the shadow size
by half. Chang et al.’s technique improves on the size of the share in that,
as more shares are generated for sharing purposes, the overall size of those
shares decreases.

In contrast to color decomposition, Yang and Chen [33] propose an addi-
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tive color mixing scheme based on probabilities. This allows for a fixed pixel
expansion and improves on previous color secret sharing schemes. One prob-
lem with this scheme is that the overall contrast is reduced when the secrets
are revealed.

In most color visual cryptography schemes, when the shares are superim-
posed and the secret is recovered, the color image gets darker. This is due
to the fact that when two pixels of the same color are superimposed, the re-
sultant pixel gets darker. Cimato et al. [9] examine this color darkening by
proposing a scheme that has to guarantee that the reconstructed secret pixel
has the exact same color as the original. Optimal contrast is also achieved
as part of their scheme. This scheme differs from other color schemes in that
it considers only 3 colors when superimposing, black, white, or one pixel of
a given color. This allows for perfect reconstruction of a color pixel, because
no darkening occurs, either by adding a black pixel or by superimposing two
colors that are identical, that ultimately results in a final darker color.

A technique that enables visual cryptography to be used on color and
grayscale images is developed in progressive color visual cryptography [13].
Many current state-of-the-art visual cryptography techniques lead to the
degradation in the quality of the decoded images, which makes it unsuit-
able for digital media (image, video) sharing and protection. In [13], a series
of visual cryptography schemes have been proposed that not only support
gray-scale and color images, but also allow high quality images including that
of perfect (original) quality to be reconstructed.

The annoying presence of the loss of contrast makes traditional visual cryp-
tography schemes practical only when quality is not an issue which is relatively
rare. Therefore, the basic scheme is extended to allow visual cryptography to
be directly applied on grayscale and color images. Image halftoning is em-
ployed in order to transform the original image from the grayscale or color
space into the monochrome space which has proved to be quite effective. To
further improve the quality, artifacts introduced in the process of halftoning
have been reduced by inverse halftoning.

With the use of halftoning and a novel microblock encoding scheme, the
technique has a unique flexibility that enables a single encryption of a color
image but enables three types of decryptions on the same ciphertext. The
three different types of decryptions enable the recovery of the image of varying
qualities. The physical transparency stacking type of decryption enables the
recovery of the traditional VC quality image. An enhanced stacking technique
enables the decryption into a halftone quality image. A progressive mecha-
nism is established to share color images at multiple resolutions. Shares are
extracted from each resolution layer to construct a hierarchical structure; the
images of different resolutions can then be restored by stacking the different
shared images together.

The advantage is that this scheme allows for a single encryption, multi-
ple decryptions paradigm. In the scheme, secret images are encrypted/shared
once, and later, based on the shares, they can be decrypted/reconstructed in
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a plurality of ways. Images of different qualities can be extracted, depending
on the need for quality as well as the computational resources available. For
instance, images with loss of contrast are reconstructed by merely stacking
the shares; a simple yet effective bit-wise operation can be applied to restore
the halftone image; or images of perfect quality can be restored with the aid
of the auxiliary look-up table. Visual cryptography has been extended to al-
low for multiple resolutions in terms of image quality. Different versions of
the original image of different qualities can be reconstructed by selectively
merging the shares. Not only this, a spatial multiresolution scheme has been
developed in which images of increasing spatial resolutions can be obtained
as more and more shares are employed.

This idea of progressive visual cryptography has recently been ex-
tended [14] by generating friendly shares that carry meaningful information
and that also allows decryption without any computation at all. Purely stack-
ing the shares reveals the secret. Unlike [13] and [7] which require compu-
tation to fully reconstruct the secret, the scheme proposed in [15] has two
types of secrets, stacking the transparencies reveals the first, but computa-
tion is again required to recover the second-level secret. Fang’s scheme is also
better than the polynomial sharing method proposed in [26] by Thien and
Lin. The method proposed in [26] is only suitable for digital systems and the
computational complexity for encryption and decryption is also a lot higher.

Currently, one of the most robust ways to hide a secret within an image is
by typically employing visual cryptography. The perfect scheme is extremely
practical and can reveal secrets without computer participation. Recent state-
of-the-art watermarking [8] can hide a watermark in documents that require
no specific key in order to retrieve it. We take the idea of unseen visible
watermarks and apply a secure mask to them and incorporate it for use within
the VC domain, thus improving the overall security that is currently one of
its weaknesses.

Weir et al. [31] also provide a mechanism for secret sharing using color
images as a base. The technique relies on visual cryptography as a mechanism
for sharing the secret. Many smaller secrets can be embedded within a color
image and a final share can be created in order to reveal all of the secrets. The
color image is visually similar to the original image before embedding due to
the high Peak-Signal-to-Noise Ratio (PSNR) achieved after embedding.

Another recent novel application for color image sharing and using color
images for secret sharing was presented by Weir and Yan [30]. Using Google
Maps, along with its Street View implementation, personally identifiable in-
formation can be obscured using visual cryptography techniques and can be
accurately recovered by authorized individuals who may need the information.
Specifically for law enforcement agencies who many find this type of informa-
tion helpful for a particular case. This type of practical application is very
important for the progression of visual cryptography, which presents a unique
way of using these techniques in a real-world situation.
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14.3 Approaches for Image Sharing

14.3.1 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme is based on the Lagrange interpolation [2].
Given a set of points (xi, yi)(i = 0, 1, 2, ..., k), the Lagrange interpolation
polynomial Lk(x) can be constructed using:

fk(x) =
k∑

i= 0

yi

k∏
j=0;i6=j

x− xi
xj − xi

(14.2)

Given a secret, it can be easily shared using this interpolation scheme. If
GF (q) denotes a Galois field (q > n), the following polynomial is constructed
by choosing proper coefficients a0, a1, · · · , ak from GF (q), which satisfy:

fk(x) = s∗ +
k∑
i=0

aix
i (14.3)

where s∗ is the secret key. The coefficients are randomly chosen over the
integers [0, q) and the details are provided in [2]. Suppose si = f(ai),(i =
0, 1, · · · , k), each Si is known as a share and they all can be delivered to
different persons.

Now we would like to reconstruct the original secret. Suppose k people
have provided their shares si, (i = 0, 1, · · · , k). The following Lagrange inter-
polation polynomial is utilized to reconstruct the original secret:

P k(x) =
k∑
i=0

si

k∏
j=0;i6=j

a− ai
aj − ai

(14.4)

where addition, subtraction, multiplication, and division are defined over
GF (q).

P k(ai) = si; i = 0, 1, 2, · · · , k; s∗ = P k(0); (14.5)

Thus, we can obtain the original secret s∗[1][2].

14.3.2 Color Image Sharing Based on the Lagrange Interpo-
lation

When an image is treated as a secret, we can share the secret based on the
Lagrange interpolation. We consider the image to be a matrix; and Lagrange
interpolation is generalized for matrices.

We assume a grayscale image corresponds to a matrix A. Given ma-
trix Ai = (aiw,h)W×H , where w and h are integer (w = 1, 2, · · · ,W ; h =
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1, 2, · · · , H; i = 0, 1, · · · , k), k is the number of shares. We define the matrix
operations of Lagrange polynomials with degree k in the Galois field:

Lk(x) =
k∑
i=0

Ai

k∏
j=0;i6=j

x− xi
xj − xi

(14.6)

where (xi, Ai) is the feature point, Ai( (i = 0, 1, · · · , k)) are matrices of size
W×H, the elements being nonnegative, xi is a real number and xi ≤ xj(i ≤ j).

Our novel idea for color image sharing using Lagrange interpolation is the
following. We utilize the secret image and a few (< n) other chosen innocuous
images to build the Lagrange interpolation polynomial. We then construct
new images based on this interpolation to obtain a total of n images. We now
can use all the innocuous images and the new reconstructed images as the
shares of the secret image. And the secret image is not distributed but it can
be always reconstructed using the requisite number of shares. So our novelty is
in the construction of new shares based on the secret image and some chosen
innocuous images. We now provide the details of the scheme. In Figure 14.2,
assume that the secret image that we desire to share is at the position x = 0.

(a) l = 2 (b) l = 3

FIGURE 14.2
Image sharing based on the Lagrange interpolation in (a) and (b).

In Figure 14.2(a), we position an innocuous image at x2. We can now
compute many new shares with the parameters in the interval (x2−d, x2 +d),
d > 0, (we have used dmax = x2−x0

4 ). Without loss of generality, we select the
parameter at the position x1 as our newly created share (based on 0 and x2).
We now consider the images at x2 and x1 as the shares of the secret image
at 0. For the reconstruction of the secret, we can collect the two shares, we
calculate the coefficients of Lagrange interpolation polynomial first and then
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compute the image at position 0. In Figure 14.2(b), we put the shares in x1,
x2 and obtain the secret color image at 0; and in Figure 14.2(b), we put the
shares at x1, x2, x3 and restore the secret image at position 0. For a color
image, this operation can be performed for each color channel. Figure 14.3
shows our experimental results for the Lagrange interpolation scheme of a
color image.

(a) Original image and shares 1 and 2

(b) Original image and shares 1, 2, and 3

FIGURE 14.3
(See color insert.) Experimental results of image sharing based on the La-
grange interpolation in (a) and (b).

In Figure 14.3(a), the original color image is the secret image to be shared,
at least two shares are needed to reconstruct the original image, i.e., it is a
(2, n) scheme, thus k = 2. Thus, share 2 has been generated using the original
color image and share 1 (which is an innocuous image). Now, share 1 and
share 2 can be distributed independently and the original color image can be
reconstructed anytime if we obtain both the shares. In Figure 14.3(b), the
original color image is the secret color image and at least three shares are
required to restore the secret color image. This is because k = 3, therefore
it is a (3, n) secret image sharing scheme. Notice that the secret image is
somewhat visible in the generated shares. We will fix this problem later with
the block-based approach.
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However, the Lagrange polynomial based image sharing has a potential
practical problem. It cannot yield too many shares. This is because the La-
grange polynomial curve with a high degree has severe oscillations once the
degree of the polynomial is greater than nine [16]. The consequence of this
oscillations phenomenon is that it is impossible to constrain the pixel values to
lie between 0 and 255. As a result, the resultant shares are not proper images
anymore as shown in Figure 14.4.

(a) Original image (b) Shares 1 (c) Shares 2

FIGURE 14.4
(See color insert.) The image sharing by using a high degree polynomial in-
terpolation in (a)-(c).

In Figure 14.4, the resultant image Figure 14.4(a) is the original secret im-
age, Figure 14.4(b) is the innocuous image and Figure 14.4(c) is the generated
share while the rest of the shares are all-white images. We use a polynomial
of degree 8 for generating Figure 14.4(c). Figure 14.4(c) has obvious color
overflow problems because some pixel values are more than 255 and some are
less than zero, hence the image quality is severely degraded. Note that this is
not a problem in Shamir’s original secret sharing scheme because they con-
sider the secret to be shared as a binary integer, and thus a share can take on
any value. In our case, this binary integer has some constraints because they
denote image pixel values. In order to overcome this serious limitation, it is
obvious that some form of a piece-wise polynomial interpolation is required
in order to bound the degree of the polynomial and thus constrain the oscilla-
tions. We have developed a new color image sharing scheme based on moving
lines, which is a rational implicit curve.

14.3.3 Color Image Sharing Based on Moving Lines

It is well known that the equation of a line in the homogenous form in pro-
jective geometry [22] is:

aX + bY + cW = 0 (14.7)
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where a, b, and c are not all zero, (X,Y,W ) are the homogenous coordinates
of points whose Cartesian coordinates are:

(x, y) = (X/W,Y/W ) (14.8)

It is obvious that X,Y,W cannot all be zero. Let P denote the triple (X,Y,W )
and L denote the triple (a, b, c). We refer to the line L that is:

{(X,Y,W )|L · P = (a, b, c) · (X,Y,W ) = aX + bY + cW = 0} (14.9)

Thus, we can see that a point P lies on a line L = (a, b, c) only and if only
P · L = 0 , where P · L is the dot product.

Now we consider the line L containing two points P1 = (X1, Y1,W1) and
P2 = (X2, Y2,W2), and also the point P at which two lines L1 = (a1, b1, c1)
and L2 = (a2, b2, c2) intersect. Because of the duality principle (of points and
lines), we have these cross products:

L = P1 × P2, P = L1 × L2 (14.10)

A homogeneous point whose coordinates are functions of a variable t (i.e.,
it is parameterized by a variable t) is denoted as:

P [t] = (X[t], Y [t],W [t]) (14.11)

which actually is the rational curve:

x =
X[t]
W [t]

; y =
Y [t]
W [t]

; (14.12)

If the functions are of the following form:

X[t] = Xiφi[t];Y [t] = Yiφi[t];W [t] = Wiφi[t] (14.13)

With {φi[t]} being a given set of blending function, then equation (14.11)
defines a curve:

P [t] =
∑

Piφi[t] (14.14)

where the homogeneous points are Pi = (Xi, Yi,Wi). Likewise,

L[t] = (a[t], b[t], c[t]) (14.15)

denotes the family of lines a[t]x+ b[t]y + c[t] = 0.
In order to obtain the intersection of two pencils, we notice the following

four lines L0,0, L0,1, L1,0, and L1,1 from which two pencils are defined:

L0[t] = L0,0(1− t) + L0,1t, L1[t] = L1,0(1− t) + L1,1t (14.16)

The points, at which they intersect for parameter values t =
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0,∆t, 2∆t, · · · , 1 are on a curve. The parameter t = 0,∆t, 2∆t, · · · , 1 is adap-
tively given and it may take any real number value in the interval [0,1] for a
piece of curve and it also can be extended to the infinite interval [−∞,+∞]
for the whole curve. The curve turns out to be a conic section, which can be
expressed as a rational Bernstein–Bezier curve P [t] as follows:

P [t] = L0[t]× L1[t] (14.17)

It is clear that P [t] is a quadratic rational Bezier curve [27][28] whose
control points are:

P0 = L0,0 × L1,0, P1 =
L0,0 × L1,1 + L0,1 × L1,0

2
, P2 = L0,1 × L1,1 (14.18)

The graph of a quadratic curve generated by moving lines is shown in
Figure 14.5(a).

(a) The graph of a quadratic curve (b) The graph of a quartic curve

FIGURE 14.5
Intersection of two pencils of lines in (a) and (b).

In general, the curve comprising of L0,0, L0,1, L0,2, and L1,0, L1,1 is:

L0[t] = L0,0(1− t) + 2L0,1(1− t)t+L0,2t
2, L1[t] = L1,0(1− t) +L1,1t (14.19)

then P [t] = L0[t]× L1[t], t ∈ [0, 1] is a cubic rational Bezier curve [16].
Without loss of generality, the moving lines consisting of L0,0, L0,1, · · · ,

L0,p, and L1,0, L1,1, · · · , L1,q are:

L0[t] =
p∑
i=0

Li,0B
p
i (t), L1[t] =

q∑
i=0

Li,1B
q
i (t) (14.20)
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FIGURE 14.6
Image sharing scheme based on moving lines.

then P [t] = L0[t]×L1[t], t ∈ [0, 1] represents a rational Bezier curve of degree
p+ q as shown in Figure 14.5(b) [16].

As in the case of Lagrange interpolation, we now construct the scheme of
image sharing based on moving lines as shown in Figure 14.6. In Figure 14.6,
the x-coordinate depicts the given position of the original secret color image,
the y-coordinate indicates the values of the gray-scale pixel value, t is the
parameter for moving lines generation, and x∗ is the position of the new
computed share. For image sharing, we compute the shares using the above
implicit curve. We now present the detailed steps for our moving lines based
on the color image sharing scheme.

Steps of sharing a color image:

1. Suppose we are given one secret image I0 to be shared, k+1 images
I0, I1, · · · , Ik as the innocuous images and a group of corresponding
parameters x0, x1,· · · , xk (x0 ≤ x1 ≤ · · · ≤ xk) as input;

2. Calculate an arbitrary new share corresponding to a parameter
within the interval of the given parameters (x1, xk);

3. The images (greater than k) I0, I1, · · · , Ii−1, Ip, Ii,Ii+1,· · · , Ik;
0 ≤ i − 1 ≤ p ≤ i ≤ k and their corresponding parameters x0, x1,
· · · , xi−1, xp, xi, xi+1, · · · , xk (x0 ≤ x1 ≤ · · · ≤ xi−1 ≤ xp ≤ xi ≤
xi+1 ≤ · · · ≤ xk) are the output computed image shares.

Steps of reconstructing the color image:

1. Select k image shares I0, I1, · · · , Ik and their corresponding position
parameters x0, x1, · · · , xk (x0 ≤ x1 ≤ · · · ≤ xk) and the position
parameter of the color image x0 as the input;

2. Calculate the implicit curve corresponding to pixels in each share
according to the moving lines scheme P [t] = L0[t]×L1[t], t ∈ [0, 1];

3. Reconstruct the secret color image by the scheme of moving lines
at the position of x0 as output.

© 2012 by Taylor & Francis Group, LLC



396 Visual Cryptography and Secret Image Sharing

Note that each of the steps has to be applied separately for each color
channel. The use of a rational curve has several advantages, such as it does
not have the oscillations phenomenon of polynomials with a high degree; a
rational curve is easy to be controlled and is able to express conic curves. Also
a polynomial curve with a high degree cannot guarantee that the interpolation
values can be constrained to a given range [16]. Thus, when a rational curve is
employed to share a color image, the scheme based on moving lines yields more
shares than that of the one based on the Lagrange interpolating polynomial.
With more shares, the secret color image can be shared in a more secure
manner with greater flexibility. However, this greater flexibility comes at an
increased cost of computation compared to that of the Lagrange interpolations
scheme.

14.3.4 Improved Algorithm

If we carefully examine Figure 14.3, we can see that the profile of the se-
cret image is visible in the constructed image shares. The reason is that the
correlation of the secret image is not broken during the image sharing pro-
cess. So far, we selected only one X-position parameter for the secret image,
thus only one share (i.e., the newly created one) is closely related to the se-
cret image and the other shares are totally independent. Thus, the innocuous
images do not contribute towards image hiding. We now modify the earlier
approach slightly to make all the shares involved in data hiding by utilizing a
block-based approach with multiple parameters:

Steps of block-based image sharing:

1. Divide the secret image into blocks.

2. Designate different parameters (i.e., different innocuous image po-
sition) for each block.

3. Share the secret image using the earlier approach.

4. Write down the parameters and positions embedded in the corre-
sponding shares of each block for secret restoration.

The restoration handling is the inverse procedure of the encoding proce-
dure.

In order to clearly explain the scheme, we illustrate the improved approach
in Figure 14.7. In Figure 14.7, the secret image is divided into four blocks, each
block is embedded into the given innocuous image share at a different spatial
position. The secret image can be reconstructed by applying the scheme block-
wise again. This method effectively breaks the correlation of the original secret
image with the secret image being divided into many blocks and these blocks
being hidden in different shares at different locations. Thus, the secret image
is no longer visible in the shares.
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FIGURE 14.7
Improved algorithm of image sharing.

14.4 Experiment and Evaluation

Both of the algorithms proposed in this chapter can theoretically be employed
for image sharing, but actually they are different in terms of practical imple-
mentation. Color image sharing based on Lagrange interpolation allows for
only a limited number of shares due to the oscillations phenomenon. Color
image sharing based on moving lines can theoretically generate an unlimited
number of shares. In practice, generating more shares will require more com-
putation. Thus, as a trade-off, we usually share a color image into at most five
shares.

FIGURE 14.8
(See color insert.) The experimental results of image sharing by moving lines.

We now present some experimental results on images of size 128×128. The
shares and original secret image based on quadric curves of moving lines are
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FIGURE 14.9
(See color insert.) The experimental results of image sharing by moving lines.

FIGURE 14.10
(See color insert.) The experimental results of image sharing by moving lines.

shown in Figure 14.8, which is a (2, n) sharing example. In Figure 14.9, we
illustrate a (3, n) scheme based on cubic curves of moving lines.

Figure 14.9 is the result of (3, n) scheme based upon moving lines to share
a given original image, with share 1 and share 2 being innocuous. Share 3 is
the new computed share. By using shares 1, 2, 3, and their parameters, the
original color image can be restored.

Figure 14.10 is the result of a (4, n) scheme based on a moving line to
share a color image by given original secret image, share 1, share 2, and share
3. Share 4 is the new computed share. When shares 1, 2, 3, 4, and their
parameters are used for the moving lines based scheme, the original color
image can be perfectly restored.

For a sensitive application, it is better to compute the shares by perform-
ing block-by-block (e.g., 8×8 pixel blocks) processing. The advantage of such
an approach is that distributing the reconstructed blocks into the various in-
nocuous images can break the correlation of the secret image in the image
share. Thus, instead of taking n − 1 innocuous images and creating the n-th
share (which can possibly reveal some correlations), we can take n innocuous
images and distribute the secret image blocks within them. In fact, the secret
color images need not be of the same size as that of the shares. Actually, if the
shares have a larger size, the hiding of the color image will be more secure.

Figure 14.11 shows an example of breaking the correlation between neigh-
boring blocks of the secret image. In this (4, n) image sharing scheme, we have
divided the original image into four equal-sized rectangular blocks and have
shared these blocks using a quadric curve generated by the moving lines tech-
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FIGURE 14.11
(See color insert.) Breaking the correlation of neighboring blocks in an image.

nique. What is different here from the earlier examples (where we created a
whole new image as a share) is that we embed the information of each rectan-
gular block into one of the image shares. The embedded information of share
1 is in the lower-left corner, that of share 2 is in the upper-left position while
that of share 3 is embedded is in the upper-right region, and that of share 4
is in the lower-right corner. Thus, the information of the original secret image
is shared among all the image shares. While this example is a simple illustra-
tion of how the correlation can be broken, it is clear that more sophisticated
secret image subdivision and sharing schemes can be devised using the same
principle.

14.5 Conclusion

In this chapter, we introduce the novel concept of color image sharing based on
Lagrange interpolation and moving lines. The security of secret sharing is built
upon the computation of polynomials. Given enough shares, the coefficients
of the interpolating polynomial can be exactly determined. However, if an
attacker does not possess the threshold number of shares and the image shares,
he will not be able to reconstruct the polynomial. Thus, he will not able to
restore the secret image properly.

Secret sharing based on Lagrange interpolation is often utilized to share
binary strings, but it is difficult to use for color image sharing since it yields
only a limited number of shares. We therefore have developed a new color im-
age sharing scheme based on moving lines that does not have that limitation.
An implicit curve generated by moving lines is a rational curve; we believe it
can therefore be directly applied for sharing compressed-domain images.

Our future work will focus on further investigation of color image sharing
in the compressed domain. The possible research directions in the future are:

1. Color image sharing based on compressed domain processing. Ideas
related to DCT, DFT, and DWT can be employed in color image
sharing.
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2. Color image sharing based on visual cryptography. If visual cryptog-
raphy could be implemented in color images, we could share color
images with visual cryptography. Since visual cryptography is per-
fectly secure, color image sharing based on visual cryptography will
be extremely robust.
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15.1 Introduction

The concept of secret sharing comes from the method of secret key manage-
ment and was first seen in the following works [1, 7]. The secret’s owner wants
to share the secret with other participants, but no participants can obtain the
secret alone. When some of the participants work together, the secret is then
revealed. From a technical viewpoint, this secret sharing scheme may also be
referred to as the (t, n)-threshold, where t denotes the threshold value that
will reveal the secret and n is the total number of holding shadows. In this
method, when a secret is given, it must be divided into n shadows and it is
then reconstructed by t or more shadows, possessed by the shadow holders;
no information can be conjectured by fewer than t shadows. In the wake of
this cryptographic application proposal, many related methods were further
proposed to enrich secret sharing diversity in both theoretical and practical
arenas [4, 6, 8, 12].

Visual security was proposed by Naor and Shamir [6] in 1994, where an
image could be reconstructed by superimposing two shares. The shares issued
in this scheme are made up of random binary patterns. The target secret, rec-
ognized by the human visual system, is finally stacked by the (t, n)-threshold
scheme. One of the main advantages, in this scheme, is that it does not require
complicated computations, which traditional numeric cipher-text in secret de-
cryption does, while the sizes of the enlarged shares, and target secrets are left
the same. Thien and Lin [8] proposed an applied secret image scheme for im-
age embedding to improve upon Naor and Shamir’s method. The concealment
of a secret image avoids cipher-based attacks on the basis of stego-image im-
perceptibility. In 2006, Horng et al. uncovered another way to cheat the (t, n)-
threshold under visual cryptography (VC) applications [3]. In their proposal,
a scenario was successfully put forward showing that shareholders were able
to collaborate with each other by sending fake shares to other shareholders.
Accordingly, the final target secret image was different from the genuine one,
corrupting the secret sharing system.

Steganography is a kind of data hiding technique that provides another
method of security protection for digital image data. The purpose of steganog-
raphy is to embed secret data in preselected meaningful images, called cover
images, with people being visually unaware of the secret’s existence. Numer-
ous schemes have been developed to achieve successful data hiding [2, 5]. To
prevent the fake stego-image from the dishonest participants, Lin and Tsai
[4] authored an authentication-based steganography study, where their detec-
tion technique tested whether the offered shares were genuine or not. In their
scheme, parity checks were applied to prevent the modified shares from mali-
cious attacks. Later on, in 2007, Yang et al. [12] enhanced the mechanism of
Lin and Tsai by proposing a revised scheme in which more detailed fake shares
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were created so that they would be detected by those malicious shareholders
in the target secret image (t, n)-threshold system, thus acting as a deterrent.

In 2008, Wang et al. [10] took advantage of the CRC (Cyclic Redundant
Code) in conjunction with the hash function to make authentication-based
steganography more robust, in order to prevent the attacks of fake share of-
ferings. In addition to making it more robust, both the capacity and the image
quality remain comparable to the scheme suggested by the scheme in [12]. In
this chapter, we introduce the polynomial-based image sharing scheme by
reviewing some preliminaries and related works and depicting Wang et al.’s
approach. Moreover, some improvements of Wang et al.’s approach are pro-
posed in this chapter.

The presentation of this chapter is organized as follows. In Section 15.2,
the concept of the polynomial-based sharing scheme is introduced. In Section
15.3, we introduce some preliminaries and related works about the polynomial-
based image sharing scheme. Wang et al.’s scheme and its improvements are
presented in Section 15.4. Observations and experiments of benchmark images
are presented and discussed in Section 15.5. Finally, conclusions are offered in
Section 15.6.

15.2 Polynomial-Based Sharing Scheme

15.2.1 Shamir’s Secret Sharing Scheme

A (t, n)-threshold scheme is a method of sharing a secret among n participants
such that any subset consisting of t participants can reconstruct the secret,
but no subset of smaller size can reconstruct the secret. The first method
was provided in 1979 by Shamir [7] and is known as Shamir’s secret sharing
scheme. In the initial state, a dealer chooses a large prime number p, and makes
p public. The following calculation is performed on Zp: A secret, s ∈ Zp exists,
so the dealer randomly generates a (t-1)th degree polynomial, in Zq:

q(x) ≡ x+ q1x+ q2x
2 + · · ·+ qt−1x

t−1(modp)

where q(0) = s is the secret. The dealer distributes the shadow, yi ≡ q(xi)(mod
p) to node Pi, where xi is the ID number for Pi.

Suppose that t participants get together to reconstruct the polynomial.
Also, assume that their pairs are (x1, y1), (x2, y2), · · · , (xt, yt). The polyno-
mial q(x) can be reconstructed by solving the following equation:

1 x1 · · · xt−1
1

1 x2 · · · xt−1
2

...
...

. . .
...

1 xt · · · xt−1
t




s
q1

...
qt−1

 ≡

y1

y2

...
yt

 (mod p)
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The equation has a unique solution if the determinant of the matrix is nonzero
mod p. It can be shown that the determinant of the matrix is nonzero mod p
if all xi, i = 1, 2,· · · , t, are different. After the polynomial is reconstructed,
the secret s is obtained by the output of q(0).

15.2.2 Lagrange Interpolation Scheme

An efficient method to obtain the sharing polynomial f is to use the Lagrange
interpolation. Assume that the pairs (x1, y1), (x2, y2),· · · , (xt, yt) are used to
reconstruct the polynomial q(x). For k = 1, 2,· · · , t, let

lk(x) =
∏
i=1,i6=k

x−xi

xk−xi
mod p

We know that

lk(xj) = { 1, when k = j
0, when k 6= j

Then, the Lagrange interpolation polynomial is formed as follows:

q′x =
∑t
k=1 yklkmod p

Because yi ≡ q′(xi)(modp) for i = 1, 2,· · · , t and q′(x) has degree t − 1,
q′(x) is equal to the polynomial q(x). Finally, the secret s can be obtained by
evaluating q(x) at x = 0. That is,

s ≡
∑t
k=1 yk

∏t
j=1,j 6=b

−xi

xk−xi
mod p

In fact, all coefficients in q(x) can be seen as secrets. We show an example
for the Lagrange interpolation polynomial.

Example 1.
Take a (2, 4)-threshold scheme. In the share generation phase, assume that
the pixels of the target secret image S indexed in order of left-to-right and
top-to-down is Si, I = 0, 1, 2, · · · , n. The first two pixels, for instance, S0 =
100 and S1 = 200 are set in this case. First of all, a polynomial of q(x) =
200x + 100 mod 251 is given according to the S′is. Compute the shares y′js
associated with each participants as y1 = q(x1=1) = 49, y2 = q(x2=2) =
249, y3= q(x3=3) = 198, and y4 = q(x4=4) = 147, where x′is are the identity
numbers of the four participants. Next, consider the recovery of the pixels of
the target secret image in this case. In the (2, 4)-threshold scheme, any two
participants who own the shares y′js can gather to recover the secret, for ex-
ample, the participants nos. x2 and x4. There are two pairs of (x2, y2) = (2,
249) and (x4, y4) = (4, 147) offered from the participants. In such a way that
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a polynomial of q′(x) is constructed as follows:

g(x)=(249× (x−4)
(x−1) + 147× (x−2)

(x−4) )mod251
=(249× (−2)−1 × (x− 4) + 147× (2)−1 × (x− 2))mod251
= (200x+ 100)mod251

Following up the result, the first two pixels of the target secret image, S0

= 100 and S1 = 200 are obtained from the coefficients of q′(x) = 200x + 100
mod251.

15.3 Preliminaries and Related Works

15.3.1 Thien-Lin Scheme

The (t, n)-threshold scheme in visual cryptography was proposed by Naor
and Shamir [6], where the target secret (image) could only be recognized by
the human eye if there were exactly t or more than t share-images stacked.
However, the share-images generated could only reveal one target secret. When
there are more than 2 target secrets, the numbers of share-images required,
increases. As a result, the occupied share-images, held by participants, also
increase. Inspired by these observations, Thien and Lin (Thien-Lin scheme)
[8] proposed a specific method to accommodate a higher number of share-
images, with the normal storage requirements, using LaGrange polynomial
construction. In this method, there are a total of n share-images, with each
of them being only 1

t times the target secret image. This is also done in the
(t, n)-threshold scheme.

15.3.2 Lin-Tsai Scheme

In [4], Lin and Tsai (Lin-Tsai scheme) proposed a scheme of sharing im-
age, where the requirements of capacity and detecting ability are further
considered when compared to the study of [8]. Similarly, a polynomial of
q(x)=(a0 + a1x + a2x

2 + · · · + ai−1x
i−1) of degree t-1 is applied upon the

concept of the (t, n)-threshold scheme. The q(x) is then devised for exact re-
construction when t pairs of (xi, q(xi)) are offered among n share holders,
where xi is one of the pixels of a pixel-value and q(xi) is the share held in
the share holder. Accordingly, the pixels of the target secret image can be
obtained from the coefficients of the new one of q′(x) via the (t, n)-threshold
polynomial construction. The procedures in [4] are briefly given as follows:
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FIGURE 15.1
The format of Bij , where xi, wi, vi, and ui are represented as binary pattern.

Notations:

q(x): The (t − 1)-degree polynomial of q(x) = (a0 + a1x + a2x
2 + ... +

at−1x
t−1)mod p, where p = 251.

S: The target secret image with the size of m×m. The pixel Si ∈ [0, 250] in
S, 1≤ i ≤ m2. It is caught by up-to-down and left-to-right in order.

Ij : The jth cover image with the size of 2m×2m pixels. There are m2 blocks,
B′ijs, where each one is the size of 2 × 2 containing four pixels as xi, wi,
vi, and ui in the order of left-to-right and up-to-down and 1 ≤ i ≤ m2 and
1 ≤ j ≤ n. The pixel format of Bij is shown in Figure 15.1.

Îj : The jth stego-image with the size of 2m×2m. There are m2 blocks, B̂ij
′
s.

B̂ij is stego-block when the secret is embedded the Bij . The corresponding
pixels in B̂ij to Bij is x̂i, ŵi, v̂i, and ûi, respectively.

bi: Generate a random bit-string with the form of (b1, b2, · · · , bm2), where
1≤ i ≤ m2.

The procedure to generate the stego-image, named as Proc-Lin-Tsai, is
briefly given in the following:

Procedure Proc-Lin-Tsai
Input: S, Ij , j = 1, 2, · · · , n.
Output: Î, j = 1, 2, · · · , n.

Step 1. Generate the random bit string (b1, b2, · · · , bm2).

Step 2. Set a0=Si, i ∈ [1,m2]. For each Si chooses a (t−1)-degree polynomial
q(x)=(a0 + a1x+ a2x

2 + · · ·+ ai−1x
i−1) mod p, where randomly choose t-1

value a1, a2, · · · , ai−1 under the modulo p. Calculate yi = qi(xi), where xi
is obtained and defined from xi in the Ij and represent yi as the bit string
with the form of yi = (yi1, yi2, · · · , yi8).

Step 3. Generate the stego-block, B̂ij , comprised of the four bit strings as
x̂i = (xi1, xi2, · · · , xi8),
ŵi = (wi1, wi2, · · · , wi5, b′i, yi1, yi2),
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FIGURE 15.2
The format of stego-block B̂ij with the size of 2× 2 gray-level pixels.

FIGURE 15.3
Stego-block B̂ij used in Yang et al. which is revised from Figure 15.2, where
hash is used in the pixel of ŵi = (wi1, · · · , wi5, hi, yi3, yi4).

v̂i = (vi1, vi2, · · · , vi5, yi6, yi7, yi8),
and ûi = (ui1, ui2, · · · , ui5, yi6, yi7, yi8),
where b′i is the parity bit, which is chosen to make ŵi including the cor-
responding bit-string bi. The format of stego-block B̂ij is shown in Figure
15.2.

Step 4. Collect B̂ij generated in the Step 3 to create stego-image Îj .

15.3.3 Yang et al.’s Scheme

As observed from the Lin-Tsai scheme, the fake shares can be easily
made by the manner of fixing the parity bit b′i. For example, if âi=
(wi1, wi2, · · · , wi5, b′i, yi1,yi2) = (0, 0, 1, 1, 1, 0, 1, 1), the parity bit b′i is all the
same when the original ŵi is changed to a new ŵi as ŵi = (1, 0, 1, 1, 1, 0, 0, 1).
In such a way, the malicious attackers can easily modify ŵi

′s in the stego-
image to pass the authentication detection. As a result, the revelation of the
target secret image is not a right one. Next, Yang et al. [12] proposed a revised
version to set a new check function, e.g., hash function, instead of parity bit
in [4]. The stego-block B̂ij in [4] is then revised as the format shown in Figure
15.3. As analyzed in Yang et al., the probability of passing the detection with
the fake share offers is ( 1

2 )m
2
.

15.3.4 Inverted Pattern LSB Scheme

In order to conceal the existence of shadow data, steganographic methods
are used to keep the shadows imperceptible. The steganographic method is a
kind of data hiding technique that embeds secret data in preselected mean-
ingful images, called cover images, with people being visually unaware of the
secret’s existence. One common technique to achieve the data hiding is the
LSB-based approach, in which secret data are embedded by directly replacing
the least significant bits (LSBs) with equal bits of the secret for each pixel.
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Moreover, some papers applied various strategies to improving the quality
of stego-images generated by LSB-based approaches. In 2008, Yang [11] pro-
posed an Inverted-Pattern-LSB information hiding algorithm (IPLA for short)
to further highlight the quality of the stego-image. His method combines the
idea of processing secret messages before embedded and processing the stego-
image after embedding. Before embedding, the secret is transformed into a
suitable format so as to benefit the next embedding step. Moreover, the bits
that are used to record the transformation are the critical key in the course of
the secret revelation. The IPLA algorithm is shown below, which was applied
in Wang et al.’s scheme.

Inverted-Pattern-LSB Algorithm (H, S, k, n)
Input: A cover image H and a secret string S for k-bit LSB substitution, z is
the number of sections.
Output: A stego-image and an inverted pattern P .

Step 1. Partition both H and S into z sections evenly. Let H =
H0, H1, · · · , Hz−1, S = S0, S1, · · · , Sz−1 and R = R0, R1, · · · , Rz−1,
where R is the replaced string of H. Also, let the inverted pattern P =
p0, p1, · · · , pz−1, where pi is a bit, for i = 0, 1, · · · , z − 1.

Step 2. For i = 0 to z − 1
If MSEsiRi

≤MSE ¯siRi

Then pi = 0
Else pi = 1

Step 3. For i = 0 to z − 1
If pi = 0
Then Embed Si into Hi

Else embed S̄i into Hi

Step 4. Return the inverted pattern P .

15.3.5 Scalable Secret Image Sharing

The conventional secret image sharing (SIS) scheme, such as the Thien-Lin
scheme [8], only has the threshold property that recovers either the entire
image or nothing. For the (t, n)-SIS scheme, the target secret image could only
be reconstructed by only t or more than t qualified participants. This limits
its possible applications. Recently, Wang and Shyu recommended adding the
scalable decoding capability (the scalability) into the threshold scheme [9]. The
so-called scalability is that the amount of secret information is proportional
to the number of shadows used in reconstruction. Wang and Shyu constructed
a polynomial based (2, n) scalable SIS (SSIS) scheme, which not only had the
threshold property but also the scalability. The clarity of an image in [9] is
measured in terms of three modes: the multisecret mode (spatially partitioning
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the target image into disjoint subimages), the priority mode (dividing the
target image according to the bitplanes), and the progressive mode (combining
the multisecret mode and the priority mode). To extend Wang and Shyu’s
(2, n)-SSIS scheme, Yang and Huang proposed (t, n)-SSIS schemes where a
qualified set of participants consists of any t participants [13]. Two approaches
were proposed for a general construction for any t, 2 ≤ t ≤ n. For t = 2,
Approach 1 has the lesser shadow size than Wang and Shyu’s (2, n)-SSIS
scheme, and Approach 2 is reduced to Wang and Shyu’s (2, n)-SSIS scheme.
The following is the shadow constructing algorithm of their Approach 1.

Shadow Constructing Algorithm

Input: a secret image O.

Output: n shadows Si, i = 1, 2,· · · , n.

Step 1. Divide image O into
(
n
t

)
subimages Ox, x = 1. 2, · · · ,

(
n
t

)
by

one of the three modes.

Step 2. For every image Ox, use a polynomial-based (t, t)-SIS scheme to cre-
ate t subshadows (O1

x, O
2
x, · · · , Otx).

Step 3. Set S1 = S2 = · · · = Sn = Φ.

Step 4. Choose a binary matrix Bn,t = [bi,j ].

Step 5. For j = 1 to
(
n
t

)
Set y = 1;
For i = 1 to n
If bi,j = 1 then Ôij=O

y
y and y = y + 1.

else Ôij=Φ.

Step 6. S1 =
⋃

0@ n
t

1A
j=1 Oij , i=1,2,· · · ,n

The binary matrix Bn,t = [bi,j ] is a n×
(
n
t

)
matrix, where bi,j ∈ [0, 1],

1 ≤ i ≤ n, and 1 ≤ i ≤
(
n
t

)
. Every column vector has a Hamming weight

t. For example, the matrix Bn,t=B4,3 of a (3, 4)-SSIS scheme is

B4,3=


b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

 =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
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The corresponding matrix [Ôij ] is created as follows.

[Ôij ]=


Ô1

1 Ô1
2 Ô1

3 Ô1
4

Ô2
1 Ô2

2 Ô2
3 Ô2

4

Ô3
1 Ô3

2 Ô3
3 Ô3

4

Ô4
1 Ô4

2 Ô4
3 Ô4

4

 =


O1

1 O1
2 O1

3 φ
O2

1 O2
2 φ O4

1

O3
1 φ O2

3 O2
4

φ O3
2 O3

3 O3
4


Then, four shadows S1, S2, S3, and S4 are generated as follows.

S1 = Ô1
1 ∪ Ô1

2 ∪ Ô1
3 ∪ Ô1

4= O1
1 ∪O1

2 ∪O1
3 ∪ φ=O1

1 ∪O1
2 ∪O1

3;

S2 = Ô2
1 ∪ Ô2

2 ∪ Ô2
3 ∪ Ô2

4= O2
1 ∪O2

2 ∪ φ ∪O1
4=O2

1 ∪O2
2 ∪O1

4;

S3 = Ô3
1 ∪ Ô3

2 ∪ Ô3
3 ∪ Ô3

4= O3
1 ∪ φ ∪O2

3 ∪O2
4=O3

1 ∪O2
3 ∪O2

4;

S4 = Ô4
1 ∪ Ô4

2 ∪ Ô4
3 ∪ Ô4

4= φ ∪O3
2 ∪O3

3 ∪O3
4=O3

2 ∪O3
3 ∪O3

4;

15.4 Wang et al.’s Scheme

In this section, we describe in detail Wang et al.’s scheme [10] to introduce
the standard method of polynomial-based image sharing. Some notations in
Wang et al.’s scheme have been trimmed for easy description. Also, the Galois
Field GF (28) operations are applied to their scheme such that the all gray-
level values 0∼255 can be completely represented. Therefore, the secret image
is completely lossless. The detailed approaches in Wang et al.’s scheme are
introduced in the following subsections.

15.4.1 Secret Image Sharing

Based on the study in the literature [8], a secret image sharing technique was
applied in our scheme. In their proposal, the size of shadows could be dra-
matically reduced, with n shares being embedded into n different host images
to avoid the attention of hackers. However, if malicious participants deliver
fake stego-images, the receivers may recover a fake secret image, thus mislead-
ing those participating in the secret sharing scheme, due to poor detection.
Thus, yet another secret sharing function was invented, that we also applied
in our proposal, using detection authentication to enhance security. Below,
a revised algorithm is presented to achieve both high capacity and extended
applications, where participants can recover two or more secret images from a
stego-image. The notations for the Revised Algorithm of High-Capacity and
Applications (RAHA for short) are given prior to all the steps shown.
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Notations:

S: The target secret image with size m×m.

t: More than or equal to t shadows possessed by the participants that can
recover the target secret image.

n: The number of participants.

Si: Each pixel of the target secret image S, i = 1, 2, · · · ,m2.

Bi,j : The gth block (size of 1×8) in the jth cover image, where j = 1, 2, · · · , n
and g = 1, 2, · · · ,

⌈
m2

t

⌉
. Each block is made of 8 pixels.

B
(d)
g,j : The dth pixel of block Bi,j . The bit string of each pixel B(d)

g,j is shown
as the form (xd1, xd2, · · · , xd7, xd8) where 1 ≤ d ≤ 8.

B̂g,j : The gth block in the jth stego-image.

fj : The feature value of the jth stego-image (or the jth cover image) when the
block B(d)

g,j (orBg,j) is processed, where the stego-image size is of 2m× 2m.
fj = (x11, x12, x13, x14, x21, x22, x23, x24) is created from the first two pixels
in block B

(d)
g,j (orBg,j), for j = 1, 2, · · · , n. If fj is equal to one of feature

values f1, f2, · · · , fj−1, keep looking at the next possible pair of pixels in
block B(d)

g,j (orBg,j) following a fixed order. (Note that there are C(8, 2)× 2
= 56 possible choices in a block.)

PV y
(g)
j : The gth pixel in jth shadows, g = 1, 2, · · · ,

⌈
m2

t

⌉
and j =

1, 2, · · · , n. The bit-string format of PV y
(g)
j is (yg1, yg2, · · · , yg8).

p: 256 for the Galois Field GF (28).

Revised Algorithm of High-Capacity and Applications (RAHA)
Part I: Aim at the high capacity approaching:
For g = 1, 2, · · · ,

⌈
m2

t

⌉
, do a loop as follows:

Step 1. Generate the polynomial qg(x) of t− 1 degrees as follows:
q(x) = (a0 + a1x+ a2x

2 + ...+ ai−1x
i−1)

where a0 = Si, a1 = Si+1, · · · , at−1=Si+t−1, i = (g−1)t, and all operations
are over the Galois Field GF (28).

Step 2. Get block Bg,j from the jth cover image. Set fj as the feature value
of block Bg,j , j = 1, 2, · · · , n.

Step 3. Compute PV y
(g)
j = qg(fi), j = 1, 2, ..., n.

Step 4. Assign each PV y
(g)
j to the jth shadow, j = 1, 2, · · · , n.

© 2012 by Taylor & Francis Group, LLC



414 Visual Cryptography and Secret Image Sharing

FIGURE 15.4
Demonstration of steps in RAHA.

The steps stated in RAHA are also demonstrated in Figure 15.4.

Part II. Aim at the recovery of the original secret image.

Step 1. Collect at least t shadows among n shadows. Renumber t of them as
1, 2, · · · , t in order.
For g = 1, 2, · · · ,

⌈
m2

t

⌉
, do a loop of the following steps:

Step 2. Chose the t feature value fj , j = 1, 2, · · · , t forms the collected stego-
images.

Step 3. Let xj = fj , for j = 1, 2, · · · , t. Reconstruct qg(x)by using the pair
of (xj , PV y

(g)
j ) as follows:

qg(x) =
∑t
b=1 PV y

(g)
b

∏t
j=1,j 6=b

x−xj

xb−xj
modp

Step 4. Restore t pixels of the secret image from the t coefficients in the
polynomial function qg(x) = (a0 + a1x+ · · ·+ at−1x

t−1).

15.4.2 Set-Up Authentication

In Thien and Lin’s proposal [8], the size of shadows could be dramatically
reduced, with n shares being embedded into n different host images to avoid
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the attention of hackers. However, if malicious participants deliver fake stego-
images, the receivers may recover a fake secret image, thus misleading those
participating in the secret sharing scheme, due to poor detection. Thus, yet
another secret sharing function was invented in Wang et al.’s scheme to en-
hance security by introducing an authentication procedure. The CRC (Cyclic
Redundancy Code Check) and hash function are therefore considered to pre-
vent the fake shares from the malicious participants who offer in the course of
revealing the secret image, where the CRC is implemented by CRC-8. Based
on the CRC adoption, once the participants receive the stego-image, the CRC
will be launched to check all pixels in the stego-image prior to the reconstruc-
tion of secret image. The CRC-based detecting authentication procedure for
each block in the stego-image is presented as follows:

Step 1. Let G(x) be the polynomial generator. Set/Reset the authentication
code of CRC-8 as Cg = (cg1, cg2, · · · , cg8) = “00000000,” g = 1, 2, · · · ,

⌈
m2

t

⌉
.

MAC (Message Authentication Code) with hash implementation is used
as Hk(B̂g,j ||g||IDstego−image||yg8), where K is a secret key. Set B(x) =
(B̂g,j ||Hk(B̂g,j ||g||IDStego−image||yg8))(x), where B̂g,j is the stego-block,
and IDstego−image is the identity of a stego-image, i.e., the block message
B̂g,j is then followed by the MAC of Hk(B̂g,j ||g||IDstego−image||yg8).

Step 2. Obtain remainder polynomial R(x) = B(x)modG(x).

Step 3. Assign the coefficient of R(x) to Cg.

Step 4. Store Cg to the block B̂g,j of the stego-image.

Step 5. Compare the R(x) and Cg. If the result is the same, the block B̂g,j
of the stego-image is a legal one. Otherwise reject it whenever the compared
result is different.

Example 2.
Consider a gray-level block with a size of 8 pixels. Assume that the B̂g,j =
”A1A2A3A4” (it is caught by up-to-down and left-to-right in order), where Cg
= ”00000000”, and the output of HMAC is Hk(B̂g,j ||g|| IDstego−image||yg8)
= ”D08932564F74499D4EC45CA9EBD54B64”. Set Bx =
(B̂g,j ||Hk(B̂g,j ||g||IDstego−image||yg8))(x) = (A1A2A3A4D08932564F74499D4
EC45CA9EBD54B64)(x). Let the generator polynomialG(x) = 100110001(x)=
x8 + x5 + x4 + 1. The CRC code is then generated as Cg = R(x) =
B(x)modG(x) = (cg1, cg2, · · · , cg8) = ”00110000”. Then store Cg into B̂g,j
of the stego-image. In the request of detecting the stego-image, pick up the
embedded Cr and Let T = Cr = ”00110000” and reset Cg = ”00000000.”
Run the CRC-based detecting authentication procedure again to obtain
R(x) = (00110000)(x). Compare if T is equal to the coefficient of R(x) as
”00110000.” Clearly, in this case, they are consistent with each other. In a
word, the block B̂g,j of the stego-image remains the safe one from the mali-
cious attacks.
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15.4.3 Main Algorithms

In this subsection, Wang et al.’s main algorithm, Secret Embedding and De-
tecting Algorithm (SEDA for short) and Target Secret Image Recovery Al-
gorithm (TSIRA) are presented. More notations are given together with the
above-mentioned notations as follows.
Notations:

Ij : The jth cover image with the size 2m× 2m pixels.

Îj The jth stego-image with the size of 2m× 2m.

B
(d)
g,j The dth pixel value of the gth block Bg,j in the jth cover image.

B̂
(d)
b,j The dth pixel value of the gth block B̂g,j in the jth stego-image.

K: A secret key K used in the hash function.

Secret Embedding and Detecting Algorithm: The SEDA aims at
the secret embedding and detecting authentication.

Input: S, Ij , j = 1, 2, · · · , n, k.

Output: Îj , j = 1, 2, · · · , n.

Step 1. Get the distinct feature-value fj = (x11, x12, x13, x14, x21, x22, x23, x24)
from Bg,j of the cover image Ij , where j = 1, 2, · · · , n. If fi is equal to one
of the feature-values f1, f2, · · · , fj−1, then keep looking for the next pair of
pixels in block Bg,j .

Step 2. Call RAHA to compute PV y
(g)
j = qg(fi) and let each PV y

(g)
j be

the bit-string format as (yg1, yg2, · · · , yg8).

Step 3. Apply IPLA to generate a pattern-string. Inspecting each block
B̂g,j , set the bit string of (yr1, yr2, · · · , yr8) to be the input of IPLA,

for g = 1, 2, · · · ,
⌈
m2

t

⌉
. The output of IPLA, a k-bit pattern-string of

(p1, p2, · · · , pm2
t

) is then generated after
⌈
m2

t

⌉
blocks B̂′g,js are given.

Step 4. According to CRC-based detecting authentication procedure, gener-
ate
⌈
m2

t

⌉
authentication codes of (cg1, cg2), · · · , c′g8s , for g = 1, 2, · · · ,

⌈
m2

t

⌉
.

Step 5. Arrange all pixels in block B̂g,j , for g = 1, 2, · · · ,
⌈
m2

t

⌉
, as the fol-

lowing rule:
B̂1
g,j = (x11, · · · , x16, yg1, cg1),

B̂2
g,j = (x21, · · · , x26, yg2, cg2),

B̂3
g,j = (x31, · · · , x36, yg3, cg3),

B̂4
g,j = (x41, · · · , x46, yg4, cg4),
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FIGURE 15.5
A secret sharing system with target secret embedding of high capacity and
detection authentication: (a) Flowchart of target secret embedding procedures;
(b) Recovery of target secret forms the stego-images in our secret sharing
systems.

B̂5
g,j = (x51, · · · , x56, yg5, cg5),

B̂6
g,j = (x61, · · · , x66, yg6, cg6),

B̂7
g,j = (x71, · · · , x76, yg7, cg7),

B̂8
g,j = (x81, · · · , x86, yg8, cg8),

Step 6. Construct Îj by gaining
⌈
m2

t

⌉
blocks B̂g,j in order, g =

1, 2, · · · ,
⌈
m2

t

⌉
.

Target Secret Image Recovery Algorithm: The TSIRA aims at the
recovery of the original secret image.

Input: A set of at least t stego-images and a secret key K.

Output: A target secret image S if all the stego-images are authenticated to
be genuine.

Step 1. Renumber t of the inputted stego-images as Îj , j = 1, 2, · · · , t, in
order.
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Step 2. Use a secret key K and call the CRC-based detecting authentication
procedure in the stego-image Îj . If the comparison for the authentication
code Cg is then correct, proceed to the next step, otherwise, a fake stego-
image is detected.

Step 3. For each PV y
(g)
j and block B̂g,j , apply IPLA to compute

the pattern-string (p1, p2, · · · , Pm2
t

) in the IPLA. Follow the sign of

p1, p2, · · · , Pm2
t

to recover the bit-string of (yg1, yg2, · · · , yg8) of in the B̂g,j ,

for g = 1, 2, · · · ,
⌈
m2

t

⌉
.

Step 4. Pick up fj and calculate PV y
(g)
j in B̂g,j , j = 1, 2, · · · , t. Follow

RAHA to recover the polynomial with the t pairs of (fj , PV y
(g)
j )′s, j =

1, 2, · · · , t.

Step 5. Call RAHA to recover the polynomial with the t pair of
(fj , PV y

(g)
j )′s, j = 1, 2, · · · , t. Obtain secrets Si, i = (g − 1)t + 1, (g −

1)t+ 2, · · · , (g − 1)t+ (t− 1).

Step 6. Combine all Si in order to reveal the target secret image S.

Wang et al.’s scheme with the proposed algorithms to fulfill the sharing
system with the target secret high capacity and detection authentication are
sketched as shown in Figure 15.5.

15.5 Experimental Results

Capacity and detecting authentication procedure are presented and discussed
in this section via the observations of experiments for benchmark images.
Two samples of (2, 4)-threshold and (4, 6)-threshold schemes are taken into
consideration, in order to highlight the contributions made by Wang et al.’s
proposed method.

15.5.1 Fidelity Analysis

The target secret image is shown as Figure 15.6 (a). The benchmarks of the
cover images are Bridge, Butterfly, Toys, and Airplane, respectively, shown in
Figures 15.6 (b) − (e). The size of the target secret image is 1

4 of each cover
image mentioned above. The corresponding four stego-images are shown in
Figures 15.6 (b′)− (e′) after SEDA, where the cover images still look the same
as the stego-images to the human eye. The measurements of peak signal noise
ratio (PSNR) to discriminate between cover images in Figures 15.6 (b)−(e) and
stego-images in Figures 15.6 (b′)− (e′) were evaluated as 43.42, 43.43, 43.41,
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and 43.44, respectively. The target secret image, shown in Figure 15.6 (a) could
be revealed when the (2, 4)-threshold was applied, via the four stego-images
shown in Figures 15.6 (b′)–(e′). The experiments to embed Figure 15.6 (a) and
the resulting PSNR are summarized in Table 1. In addition, the revelation
of the target secret image was the same as Figure 15.6(a) when the (2, 4)-
threshold was applied in the stego-images, as shown in Figure 15.6(b′)–(e′)
and offered in Wang et al.’s scheme. It can be seen that significantly improved
fidelity was achieved in Wang et al.’s scheme with the higher PSNRs, when
compared to other studies [4, 12].

Now considering another case, the (4, 6)-threshold scheme is used to embed
two target secret images, as shown in Figure 15.7 (a) and (b). The six cover
images are shown in Figure 15.7 (c) − (h). The size of each target secret
image is 1

4 of each cover image. After SEDA, the corresponding six stego-
images can be seen in Figure 15.7 (c′)–(h′). The PSNR measurements for the
discriminations between the six cover images in Figure 15.7 (c)–(h) and stego-
images in Figure 15.7 (c′)–(h′) were evaluated as 43.39, 43.43, 43.42, 43.39,
42.95 and 43.05, respectively, as shown in Table 2. Accordingly, the quality of
the stego-image was visually acceptable, when compared to the corresponding
cover images upon the high PSNRs. On the other hand, the target secret
images, shown in Figures 15.7 (a) and (b) could also be exactly revealed when
the (4, 6)-threshold was applied, via the six stego-images shown in Figures
15.7 (c′)–(h′).

As seen below, colored benchmark images are further considered to the
embedding system via SEDA. The target secret image is shown in Figure 15.8
(a). These show the experimental results, using full color cover images. The
PSNR measurements were evaluated as 43.39, 43.12, 43.41, and 43.40, respec-
tively, for the discriminations between the cover and stego-images, shown in
Figures 15.8 (b)–(e) and (b′)–(e′). The comparisons, between the PSNR mea-
surements in Wang et al.’s and some other studies are presented in Table 15.3.
The (2, 4)-threshold scheme was applied, in this case, among the stego-images
shown in Figures 15.8 (b′)–(e′). The target secret image can be seen to be
totally revealed, and identical to the original, shown in Figure 15.8(a).

TABLE 15.1
PSNR comparisons for past schemes and our scheme.

Bridge Butterfly Toys Airplane
Lin-Tsai-scheme (PSNR) 39.11 39.13 39.23 39.16
Yang et al. scheme (PSNR) 41.61 41.46 41.44 41.69
Wang et al. scheme (PSNR) 43.42 43.43 43.41 43.44

15.5.2 Evaluating Authentication

In this section, the detection ability of the Lin-Tsai scheme, Yang et al.’s
scheme and Wang et al.’s are discussed. These are then compared, as shown
in Figures 15.9–15.11.
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FIGURE 15.6
(a) the target secret images; (b)–(e) the four cover-images; (b′)–(e′) the four
stego-images.

FIGURE 15.7
(a) and (b) the target secret images; (c)–(h) the four cover-images; (c′)–(h′)
the four stego-images.
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TABLE 15.2
PSNR measurements when embedding the two target secret
images in Figure 15.5 (a) and (b) comparisons for past
schemes and our scheme.

Ball House Bridge Butterfly Toys Airplane
PSNR 43.39 43.43 43.2 43.39 42.95 43.05

TABLE 15.3
PSNR comparisons with the Lin-Tsai scheme.

Milk Tiffany Baboon Airplane
Lin-Tsai-scheme 39.07 39.08 39.08 39.07
Wang et al. scheme 43.39 43.12 43.41 43.40

FIGURE 15.8
(a) the target images; (b)–(e) the four cover images; (b′)–(e′) the four stego-
images.

FIGURE 15.9
Minor bit adjustments in the stego-image of ”airplane.” (a) Lin-Tsai scheme,
(b) Yang et al. scheme, and (c) our scheme.
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FIGURE 15.10
Partial area adjustments in the stego-images of ”sailboat.” (a) Lin-Tsai
scheme, (b) Yang et al.’s scheme, and (c) our scheme.

FIGURE 15.11
Replacement of ”airplane” stego-image with ”pepper.” (a) original stego-
image of ”Airplane”, (b) replaced by ”pepper” Lin-Tsai scheme, (c) replaced
by ”pepper” in Yang et al.’s scheme, and (c) detected in our scheme.

Case I. Minor bit adjustments in the stego-images, with results compared in
Figure 15.9.

Case II. Partial area adjustment of a fake stego-image that can succeed the
fake scenarios in [4, 12], but this case is blocked in Wang et al.’s scheme, as
shown in Figure 15.10.

Case III. Replacement of a fake stego-image that was visually imperceptible
was detected in Wang et al.’s , shown in Figure 15.11. As observed in Figures
15.9–15.11, the three cases not detected by the schemes in [4, 12] were easily
made out when Wang et al.’s was applied. The probability of passing a fake
stego-image, in the scheme of Yang et al. [12], was (1

2 )m
2

, where one bit

parity-check and hash were applied in a block (4-pixel) and (4m)2

4 = m2 non-
overlapping blocks were set in the stego-image. On the other hand, in Wang
et al.’s, a block had an 8-pixel format, such that the probability of this block
succeeding was ( 1

2 )8 while the probability of a fake stego-image succeeding in
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Wang et al.’s method-2 was (( 1
2 )8)

m2
2 = ( 1

2 )4m2
only, where there were4m2

8 =
m2

2 blocks in total in the stego-image.The summary comparisons are shown
in Table 15.4.

TABLE 15.4
PSNR comparisons with the Lin-Tsai scheme.

High Techniques used Probability of cheating
capacity in authentications (Numerical analysis)

Thien-Lin scheme [8] YES N/A N/A
Lin-Tsai scheme [4] N/A Parity bit check N/A

Yang et al. scheme [12] N/A Hash Function (1/2)m2

Wang et al. scheme [10] YES CRC and Hash fuction (1/2)4m2

15.6 Conclusions

In this chapter, we introduce some polynomial-based image sharing schemes
as well as our proposed scheme. These image sharing schemes are based on
the (t, n)-threshold scheme to share the secret image to n participants. Some-
times, some authentication approaches and steganographic approaches were
applied. Algorithms, such as IPLA, RAHA, SEDA, and TSIRA, were incor-
porated into our scheme; the RAHA and IPLA were applied [8, 11], aiming
to guarantee higher capacity, and SEDA and TSIRA were used to enable the
robust authentication requirement, to reveal the original target secret image.
Compared to some other studies [4, 8, 12], Wang et al.’s scheme behaved bet-
ter in the terms of capacity with secret embedding in a stego-image and in
detection/authentication to block offers of fake shares.
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16.1 Introduction

More and more data are being transmitted via the public access network, the
Internet, due to its favorable characteristics such as low cost, speed, and reli-
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ability. Although the Internet is a public access network, certain data require
secrecy, such as commercial or military images, to protect them from illegiti-
mate users during transmission. Steganography is a technique for transmitting
secret data without being noticed. This technique hides secret messages into
cover media to avoid malicious attacks. The cover media can be digital images,
digital videos, source codes, or even HyperText Markup Language (HTML)
codes. The digital image used to embed the secret data is called a cover im-
age, which becomes a stego-image once the secret data are embedded. With
steganography, malicious attackers do not know that a stego-image carries se-
cret data. Therefore, they will not try to extract the data or otherwise trespass
on it. However, there is a weakness common to all steganographic techniques.
If one of the stego-media is lost or corrupted, the secret data cannot be re-
vealed exactly and completely. Therefore, several secret sharing techniques
have been proposed to overcome this weakness. With regard to the concept of
secret sharing, the well-known (k, n)-threshold schemes pioneered by Shamir
[20] and Blakley [2], respectively, have four characteristics in common:

(1) k ≤ n.

(2) The secret is shared among n participants.

(3) Only k or more participants can reconstruct the original secret.

(4) When the number of participants is (k − 1) or less, they cannot
recover the original secret.

Based on the (k, n )-threshold schemes, in 1995 Naor and Shamir [17] devel-
oped the first secret image sharing technique to safeguard and share image-
based secrets. Their approach, called visual secret sharing (VSS), makes it
possible to publicly transmit secret images efficiently and safely. The detailed
principles of such a technique follow:

(1) The secret image is divided into n noise-like images, called shadows
or shares, with each noise-like shadow containing no original image
information.

(2) n noise-like shares can be transmitted to n participants via the In-
ternet instead of the secret image itself, so that each participant
keeps only one single share. Thereby, VSS can prevent attackers
from gaining access to the secret image directly.
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(3) When any k or more shadows are brought together co-operatively,
the secret image can be restored without any computations based
on the properties of the human visual system.

Following this pioneering research, many VSS schemes have been proposed
over the past decade. Shamir’s polynomial-based secret sharing approach was
adopted into secret image sharing by Thien and Lin in 2002 [23]. Then, Wang
and Su [25] made some improvements to decrease the size of the shared images
based on Thien and Lin’s scheme [23]. Studies in secret image sharing have
focused on different active topics: decreasing share size [4,5,25], dealing with
attacks by malicious users, and detecting fake shadows [14,18,29]. The research
domain has been also extended from gray images to color images [1,3,4,6,7,21].
And, the generated shares become meaningful instead of noise-like from the
start [24]. Aside from these issues, Yang [27], Cimato et al. [8], and Wang et
al. [26] separately proposed a new VSS scheme, called a ProbVSS scheme, to
deal with problems such as pixel expansion and computational complexity that
typically arise in image sharing. The ProbVSS scheme is based on probabilistic
concepts and is designed solely for binary images. By taking advantage of
Boolean operations, this scheme overcomes the shortcomings inherent in high
computational complexity and large pixel expansion at the same time.

In 2004, Lin and Tsai proposed another kind of secret sharing scheme in-
corporating both steganography and authentication [15]. In Lin-Tsai’s scheme,
the secret image is divided into shadows and data hiding is used to embed the
shares and corresponding authentication codes into the cover image. During
the reconstruction and verifying phase, the hidden authentication codes are
then extracted to verify the integrity of the stego-image. However, the size
of the cover image becomes fourfold that of the secret image. The Lin-Tsai
scheme combines steganography and authentication features to avoid trans-
mitting an erroneous stego-image or intentionally providing a false image by
using a parity check bit. However, by the principle of the parity check itself,
the authentication ability is weak.

Yang et al. proposed a new scheme to overcome some of the weaknesses in
the Lin-Tsai scheme in 2007 [28]. Their objective was to prevent cheating by
participants. They also improved the authentication ability and the quality
of the reconstructed grayscale secret image. Although the Yang et al. scheme
can restore a distortion-free secret image, it allows for a significant probabil-
ity that a fake stego-image can be authenticated successfully, and the cover
image size is still four times that of the original secret image. Building on
their predecessors’ experience, in 2008 Chang et al. proposed a secret shar-
ing scheme that incorporates authentication based on the Chinese Remainder
Theorem (CRT) [9]. They successfully improved authentication capability by
combining CRT. However, in Chang et al.’s scheme, pixel expansion remains
a problem and the size of the cover image should be at least twice that of the
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secret image. In addition, generating authentication bits with CRT increased
computational complexity.

This chapter proposes an enhanced scheme with the aim of maintaining
the effective authentication but eliminating the pixel expansion problem while
retaining an acceptable computational cost. Our scheme uses two techniques in
combination to reduce cover image size. The first is an error diffusion technique
[13,22] that helps to transform a grayscale image into a binary image. The
second, called ELUT, is an edge lookup inverse halftoning technique that relies
on edge detection and a lookup table to generate a reconstructed grayscale
image from a halftone image [11]. Inverse halftoning is a kind of commonly
used technique to reconstruct grayscale images from halftone images. In 2005,
a new edge-based lookup table scheme for inverse halftoning was proposed
by Chung and Wu [11], by which, the quality of the reconstructed grayscale
images was improved. In this chapter we call Chung and Wu’s scheme ELUT
for short.

Experimental results confirm that no pixel expansion occurs in the pro-
posed scheme and the visual quality of the stego-image carrying the shadows
is much better. Moreover, the proposed scheme successfully reduces compu-
tational complexity while maintaining an acceptable authentication ability,
which is much better than the performance of either Lin-Tsai’s scheme [15] or
Yang et al.’s scheme [28].

The rest of this chapter is organized as follows. In Section 16.2, we briefly
introduce the Lin-Tsai scheme [15], the Yang et al. scheme [28], and the Chang
et al. scheme [9]. In Section 16.3, we briefly review the techniques adopted
in the proposed scheme. Full details of our proposed scheme are explained
in Section 16.4. Section 16.5 gives some experimental results. Finally, our
conclusions are presented in Section 16.6

16.2 Related Work

In this section three existing schemes, the Lin-Tsai scheme [15], Yang et al.’s
scheme [28] and Chang et al.’s scheme [9] are introduced, in turn.

16.2.1 Lin and Tsai’s Scheme

Lin-Tsai’s scheme is a (k,n)-threshold polynomial-based scheme that combines
steganography and authentication to enable the sharing of secret images [15].
Their scheme uses parity check to achieve authentication, and each pixel in a
secret image is used to produce n shared pixels for n participants by using
the polynomial function in Equation 16.1.

F (x) = (c0 + c1x+ ...+ ck−1x
k−1) mod p. (16.1)
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Later, both the parity check bits and the shared pixels are embedded into
the corresponding four-pixel blocks in the cover image. For simplicity, assume
that Iij is the ij-th pixel in the secret image and B1

ij , B
2
ij , ..., B

n
ij are the n

cover blocks in the cover image, where Bkij is the block with position (i, j )
in the k-th cover for 1 ≤ k ≤ n, which contains four pixels, Y kij , V

k
ij , W

k
ij , and

Zkij , as shown in Figure 16.1.

FIGURE 16.1
The ij-th block Bkij of the k-th cover.

Here, the binary representations of the pixels Y kij , V
k
ij ,W

k
ij and Zkij , are (y1

y2 ...y8 ), (v1 v2 ...v8), (w1 w2...w8) and (z1 z2...z8), respectively. The steps
in this scheme are as follows.

Step 1: Set the modulus p used in the polynomial in 16.1 to 251. If the pixel
Iij ≥ 250, it is directly truncated to 250. Apparently, this operation
can distort the secret image.

Step 2: Take the pixel Iij as the coefficient c0 and choose k − 1 inte-
gers as other coefficients c1, c2, ..., ck−1 randomly to construct a
polynomial in Equation 16.1. Then takes the pixel value Y kij for
1 ≤ k ≤ n as the input x of the polynomial to compute the shared
pixel F(Y kij) = Skij = (s1 s2...s8), where (s1 s2...s8) means eight bits
of the shared pixel Skij .

Step 3: Embed the shared pixel Skij into the block Bkij by replacing the eight
bits v7 v8, w6 w7 w8 and z6 z7 z8 with s1 s2...s8 as shown in Figure
16.2.
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Step 4: Generate a check bit b according to parity check policy to achieve
the authentication capability shown in Figure 16.2.

FIGURE 16.2
The block of the k-th stego-image in Lin-Tsai’s scheme.

Unfortunately, in Lin-Tsai’s scheme, the parity bit of the upper-right pixel
shown in Figure 16.2 is chosen to make this pixel an even or odd parity as
a binary parity sequence. Dishonest participants can derive the parity in-
formation from their own stego-images, and thus can easily and maliciously
counterfeit a stego-image. For instance, assume that the upper-right pixel V̄ kij
= (11011 111). A dishonest participant can modify it to (11011 010), which
still meets the odd parity, but the 8-bit input of (k-1)-degree polynomial be-
comes changed. Thus, it successfully passes authentication but the (k-1)-degree
polynomial cannot be obtained. In addition, the dishonest participant can also
modify three other pixels, Ȳ kij , W̄

k
ij , and Z̄kij , to change the input and output

of (k-1)-degree polynomial without influencing the upper-right pixel V̄ kij , thus
passing authentication. Therefore, their scheme has a weak authentication
process, which may allow a fake stego-image to pass the authentication check
quite easily.

16.2.2 Yang et al.’s Scheme

To overcome the weaknesses in Lin-Tsai’s scheme, Yang et al. [28] proposed
an improved version in 2007. In Yang et al.’s scheme, the modulus value p is
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set to the Galois Field GF(28), that is, p = g(x) = x8 + x4 + x3 + x1 + x0.
This approach allows the acquisition of a secret image without distortion.

FIGURE 16.3
The cover blocks used in Yang et al.’s scheme.

FIGURE 16.4
The block of a stego-image in Yang et al.’s scheme.

In Yang et al’s scheme, let the pixel Iij of the secret image be used to
produce the n shared pixels S1

ij , S
2
ij ,...,S

n
ij , to be embedded into the cover

blocks C1
ij ,C

2
ij ,...,C

n
ij , where each cover block is represented as Ckij = {V kij ,

Y kij , Z
k
ij , U

k
ij } for 1 ≤ k ≤ n as shown in Figure 16.3. Pixel Iij of the secret

image is first embedded into the coefficient c0 to construct a polynomial as
shown in Equation 16.1. Next, the shared pixel Skij is computed by taking the
pixel value V kij of the corresponding cover image block Ckij as the input x of
the polynomial shown in Equation 16.1. Let the binary representation of the
shared pixel Skij be (s1 s2...s8). Hence, the shared pixel Skij is embedded into
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its corresponding cover image block Ckij by replacing the eight bits v1 v0 y1

y0 z1 z0 u1 u0 with s1 s2 ...s8, and at the same time, the bits z3 z2 of pixel
Zkij are replaced by v1v0 of pixel V kij in order to keep the complete pixel value
V kij for recovering the corresponding secret pixel as shown in Figure 16.4.

However, Yang et al.’s scheme cannot avoid the fact that four least sig-
nificant bits (LSBs) of the pixel value Zkij in each block must be modified.
Such modification may make the stego-images different from the cover images
visually and the risk of being observed by attackers is increased.

To further improve Lin-Tsai’s authentication ability, Yang et al. used the
hash-based message authentication code (HMAC) in Equation 16.2.

Hk((C̄kij − b)‖id), (16.2)

where id is the block ID; Ckij is 31 bits except the check bit b; H( ) and k denote
a one-way hash function and the secret key, respectively. Next, as shown in
Equation 16.3, the 160-bit HMAC output and executes the XOR operation to
obtain the authentication bit b.

b = Hk((C̄kij − b)‖id) (16.3)

However, the average probability of detecting any malicious modification is
just 50% because of the characteristic of the parity check itself. In other words,
the fake stego-images still have a very high probability of being authenticated
successfully.

16.2.3 Chang et al.’s Scheme

In 2008, Chang et al. proposed an enhanced secret sharing scheme based on
Lin-Tsai’s scheme and Yang et al.’s scheme. They used the concept of Thien
and Lin’s secret image sharing [23] to ensure that no distortion is introduced
into the secret image and applied the concept of the Chinese Remainder The-
orem (CRT) to improve authentication ability. As a result, their scheme can
achieve high authentication ability. The flowchart of Chang et al.’s scheme [9]
is shown in Figure 16.5.

Four check bits p1, p2, p3, p4 can be calculated and embedded into the
stego-block (shown in Figure 16.5). The details are shown in the steps below.

Step 1: The residues set of the block C̄kij in Figure 16.6 is determined.
Rkij,1=(x7x6x5x4x3s1s2);
Rkij,2=(v7v6v5v4s3s4);
Rkij,3=(w7w6w5w4w3s5s6);
Rkij,4=(z7z6z5z4z3s7s8);
Rkij,5= i;
Rkij,6= j.

© 2012 by Taylor & Francis Group, LLC



Image Sharing with Steganography and Authentication 433

FIGURE 16.5
The block of a stego-image in Chang et al.’s scheme.

Step 2: Decide six moduli that are pairwise relatively prime Mk
ij,1, Mk

ij,2,
Mk
ij,3,..., and Mk

ij,6, where each modulusMk
ij,a, for 1 ≤ a ≤ 6 , is the

prime number greater than Rkij,a.

Step 3: Calculate the Y kij integer by Equation 16.4. Suppose that the binary
representation of the Y kij is (y1y2...ye). Note that the number of
binary bits of Y kij has to be a multiple of 4.

Y = (
r∑
i=1

Ri ×
M

Mi
× Ii) (16.4)

Step 4: Four interim authentication bits a1, a2, a3, and a4 are computed by
Equation 16.5.

a1a2a3a4 = (y1y2y3y4)⊕(y5y6y7y8)⊕...⊕(ye−3ye−2ye−1ye). (16.5)

Step 5: Denote b1, b2, b3, and b4 as the current four watermark bits; four
check bits p1, p2, p3, and p4 can be computed by Equation 16.6.

p1p2p3p4 = (a1a2a3a4)⊕ (b1b2b3b4). (16.6)

Step 6: Replace the four LSBs x0v0w0z0 with the computed check bits p1

p2 p3 p4 as presented in Figure 16.6.
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FIGURE 16.6
The flowchart of Chang et al.’s scheme.

16.3 Adopted Techniques in the Proposed Scheme

To give sufficient background knowledge, this section briefly introduces the
related techniques adopted in our proposed scheme, including error diffusion,
interpolation, canny edge detector, and edge lookup inverse halftoning as well
as the Shamir scheme for secret sharing, respectively.

16.3.1 Error Diffusion Technique

The error diffusion technique is typically used to convert a multiple-level color
image into a two-level color image. There are many kinds of idiographic error
diffusion strategies. The common concept behind diffusion is the diffusion
of errors to neighboring pixels; in this way, no image luminance is lost. The
diffused image generated based on an error diffusion strategy is called an error
filter. Each error filter has a set of kernel weights. Assume that GI(x,y) is the
value of a pixel in position (x,y) in a grayscale secret image. Figure 16.7 is a
flowchart of the error diffusion technique.

In the proposed scheme, the Floyd and Steinberg error diffusion strategy is
adopted and the kernel weights are Wr = 7

16 ,Wb = 5
16 ,Wbl = 3

16 ,Wbr = 1
16 ,

as shown in Figure 16.8.
After the quantization procedure, a pixel GI(x,y) at position (x,y) in

grayscale image GI becomes HI(x,y) and has a value of either 0 or 255. Dur-
ing the quantization procedure, a threshold TH is used to determine HI(x,y)
according to Equation 16.7 and the quantization error is determined by Equa-
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FIGURE 16.7
Error diffusion architecture.

FIGURE 16.8
The kernel weights of Floyd and Steinberg’s error filter.

tion (5.8).

HI(x, y) =
{

255, ifGI(x, y) ≥ TH
0, otherwise

(16.7)

E(x, y) = GI(x, y)−HI(x, y) (16.8)

Next, error E(x,y) is diffused over four neighboring pixels, GI(x, y+1), GI(x+1,
y-1), GI(x+1, y), and GI(x+1, y+1), according to Equation 16.9 and the kernel
weights (denoted as W) of the error filter are shown in Figure 16.8.

GI(x+ i, y + j) = GI(x, y) + E(x, y)×W, (16.9)

where i, j ∈ {0, 1}, W ∈ { 1
16 ,

3
16 ,

5
16 ,

7
16}.

Based on Figure 16.8 and Equation 16.9, we can see that when pixels are
on the border of the grayscale image, special cases occur. The four kinds of
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pixels listed below should be considered in distinguishing these cases.

Case 1: The pixels located at (x, 1), where x = 1, 2,..., H-1.
Case 2: The pixels located at (H, y), where y = 1, 2,... , W-1.
Case 3: The pixels located at (x, W), where x = 1, 2,..., H-1.
Case 4: The pixel located at (H, W).

The positions of all four kinds of pixels are represented in Figure 16.9, with
the white squares showing the positions of the pixels located at the border
of an image. To deal with these special cases, we adopt a special skill, called
”excursion” in the procedure, as shown in Figure 16.10.

FIGURE 16.9
The positions of pixels located at the border in an image.

When applied to these pixels, Floyd and Steinberg’s error filter is slightly
modified to ignore the nonexistent pixels because the number of these pixels is
small compared with the total number of pixels in the whole image. To give a
clearer explanation, the following paragraphs give one instance for each case.

At first, set E(1, 1) = 0. For case 1, the pixels at position (x, 1), where x =
1, 2,..., H-1 are considered. We take the pixel at position (1, 1) for example.
The value of HI(1, 1) is determined by Equation 16.7. However, there is no
pixel at position (2, 0) corresponding to GI(x+1, y-1). Thus, the neighboring
pixels that accepted error diffusion are shown in Figure 16.11 for Case 1.

For Case 2, we take the pixel at position (H, 1) for example. The pixel at
position (H, 1) is called GI(H, 1) and has an error value of E(H, 1). However,
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FIGURE 16.10
The ”excursion” skill.

there are no pixels at positions (H+1, 0), (H+1, 1), and (H+1, 2) correspond-
ing to GI(x+1, y-1), GI(x+1, y), and GI(x+1, y+1). Thus, the neighboring
pixels that accepted error diffusion are shown in Figure 16.12 for Case 2.

For Case 3, we take the pixel at position (1, W) for example. There are no
pixels at positions (1, W+1) and (2, W+1) corresponding to GI(x, y+1) and
GI(x+1, y+1). Thus, the neighboring pixels that accepted error diffusion are
shown in Figure 16.13 for Case 3.

And last, for Case 4, the pixel GI(H, W) at position (H, W), there are
no pixels at positions (H, W+1), (H+1, W-1), (H+1, W), and (H+1, W+1)
corresponding to GI(x, y+1), GI(x+1, y-1), GI(x+1, y), and GI(x+1, y+1).
Thus, there are no neighboring pixels that accepted error diffusion for this
case.

We next describe how to use the Floyd and Steinberg error diffusion strat-
egy to transform a gray-scale image into a binary image. The detailed steps
are set forth as follows:

Input: A gray-scale secret image GI sized H ×W .

Output: A binary image HI sized H ×W .

Step 1: Set a threshold TH = 127

Step 2: for i=1 H, j=1:W
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FIGURE 16.11
The neighboring pixels that accepted error diffusion for Case 1.

FIGURE 16.12
The neighboring pixels that accepted error diffusion for Case 2.

Loop: if (i = 1) or i = H + 2)|(j = 1) or (j= W+2)→ EGI(i,j) = 0;
else EGI(i, j) = GI(i− 1, j − 1);

Step 3: for i = 2:H + 1, j = 2:W + 1
Loop: if EGI(i, j) ≥ TH →EHI(i,j) = 255;
else EHI(i,j) = 0;
E(i,j) = EGI(i,j)-EHI(i,j);
EGI(i,j + 1) = EGI(i,j + 1) +E(i, j)×Wr;
EGI(i + 1,j) = EGI(i,j + 1) +E(i, j)×Wb;
EGI(i + 1,j + 1) = EGI(i + 1,j + 1) +E(i, j)×Wb;
EGI(i + 1,j - 1) = EGI(i + 1,j - 1) + E(i, j)×Wbl;

Step 4: for i = 1:H, j = 1:W
HI(i,j) = EHI(i + 1, j + 1).
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FIGURE 16.13
The neighboring pixels that accepted error diffusion for Case 3.

16.3.2 Interpolation Technique

In computer computations, a discrete number system rather than a real num-
ber system is applied due to the limitations of machine representation. There-
fore, a continuous signal must be sampled for computer storage and calcula-
tion. However, sampling is always destructive to the original information and
new samples often must be reselected when the sampling scale is changed. Let
us denote R as a real signal performed in the real number system as shown
in Figure 16.14(a); denote D as the digital signal created by R, which is per-
formed in the discrete number system shown in Figure 16.14 (b). The digital
signal D′ shown in Figure 16.14(c) is generated by sampling digital signal D.

FIGURE 16.14
Example of sampling an image: (a) Real signal R; (b) Sampled signal D of R;
(c) Sampled signal D’ of D.

Figure 16.14 shows that the re-sampled signal D′ can be easily retrieved
when the real signal R is always available. However, the original signal is
usually discarded after receiving the digital signal D. As a result, the resampled
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signal D′ must be created from the former signal D. Interpolation is a classical
solution for calculating the new samples from another digital signal. Take
bilinear interpolation for example. A new sample in signal D′ is expected to
be an average value of the two neighboring original samples in D. Assuming
that (x, f(x)) and (y, f(y)) are two neighboring samples in D, we can calculate
a new sample (z, f (z)) in D’ according to Equation 16.10.

f(z) =
y − z
y − x

× f(x) +
z − x
y − x

× f(y). (16.10)

16.3.3 Canny Edge Detector

Edge detection is a kind of commonly used technique in image processing.
The areas in an image with strong intensity contrasting from one pixel to the
next are called edges. The purpose of edge detection is filtering out useless
information in an image and significantly reducing the amount of data, while
preserving the important structural properties.

Since the pioneering work by Roberts in 1965 [19], a mass of schemes have
been developed for detecting edges. The Canny edge detection algorithm is
known to many as the optimal edge detector proposed by J. Canny in 1986
[12], which finds edges by looking for local maxima of the gradient of the input
image. The gradient is calculated using the derivative of a Gaussian filter. The
Canny edge detector contains several adjustable parameters, listed as follows,
which can affect the computation time and effectiveness of the algorithm itself.
The first parameter is the size of the Gaussian filter, the smoothing filter used
in the first stage, which directly affects the results of the Canny detection
algorithm. Generally, smaller filters cause less blurring, and allow detection of
small, sharp lines. On the contrary, larger filters cause more blurring, smearing
out the value of a given pixel over a larger area of the image. Two thresholds
are the other parameters. Actually, a too high threshold may make missing
important information. On the other hand, a threshold set too low will falsely
identify irrelevant information as important. Therewith, the detection would
be more likely to be fooled by noise. The Canny edge detection method uses
two thresholds, to detect strong and weak edges, and includes the weak edges
in the output only if they are connected to strong edges.

The Canny edge detector works in a multistage process. First of all, the
image is smoothed by Gaussian convolution. Afterwards, to highlight regions
of the image with high first spatial derivatives, a simple 2-D first derivative
operator is applied to the smoothed image and edges give rise to ridges in the
gradient magnitude image. Then, the algorithm tracks along the top of these
ridges and sets to zero all pixels that are not actually on the ridge top so as
to give a thin line in the output, a process known as nonmaximal suppression.
The tracking process exhibits hysteresis controlled by two thresholds, denoted
by T1 and T2, where T1 > T2. Tracking can only begin at a point on a ridge
higher than T1 and then continues in both directions out from that point until
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the height of the ridge falls below T2. The Canny edge detector is more likely
to detect true weak edges and less likely than the others to be fooled by noise.

16.3.4 Edge Lookup Inverse Halftoning Technique

The inverse halftoning technique is used to reconstruct a gray-scale image from
an input halftone image. Based on the lookup table (LUT) [10,16] technique,
in 2005 Chung and Wu [11] proposed a new edge-based lookup table (LUT)
scheme that improves the quality of the reconstructed grayscale image. In
the following paragraphs we call Chung and Wu’s scheme ELUT for short.
The ELUT scheme first applies the LUT-based inverse halftoning scheme as a
preprocessing step to transform the input halftone image to a base grayscale
image, and then the edges are extracted and classified from the base grayscale
image. According to these classified edges, a novel edge-based LUT is built up
to reconstruct the grayscale image, i.e., the ELUT scheme. Figure 16.15 is a
flowchart of Chung and Wu’s ELUT scheme.

FIGURE 16.15
The flowchart of Chung and Wu’s ELUT scheme.

Input: A set of n training image pairs (GIi, HIi), where GIi and HIi are
denoted as the i-th grayscale image and its corresponding halftone
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image, respectively.

Step 1: Generate the lookup table (LUT) by using the five substeps that
follow. An array LUT[ ] is used to map the given halftone image to
the corresponding grayscale image.

(a) For initialization, i = 1, LUT[k] = 0, where 0 ≤ k ≤ 216−1.

(b) Divide images double HIi and GIi into overlapping 4 × 4
blocks and denote them as BHij and BGij . In other words,
BHij and BGij are the j-th halftone block of halftone im-
age HIi and the j-th grayscale block of grayscale image
GIi, respectively.

(c) Calculate index k for each halftone block BHij and update
the value of the intermediate LUT[k] by using Equation
16.10. Here, BGij(3, 3) is a representative pixel for each
grayscale block.{

k =
∑4
u=1

∑4
v=1 2(v−1)+4×(u−1) ×BHij(u, v)

LUT [K] = LUT [K] +BGij(3, 3)
,

(16.11)

(d) i = i + 1. If i ≤ n, go to Step b. Otherwise, compute and
archive the final LUT[ ]. N[k] is another array used to store
the number of halftone blocks that obtain the same index
value k.

(e) For 0 ≤ k ≤ 216 − 1, LUT [k] = LUT [k]
N [k] .

Step 2: Replace the element BHij(3, 3) in every block BHij by LUT[k],
where k is the index value of block BHij calculated in Step c. When
the replacement procedure is finished, retrieve the grayscale image
with pixel values corresponding to LUT[k].

Step 3: After applying Step 2 to a set of n training images in succession,
a set of reconstructed grayscale images called GI ′i, i = 1, 2,..., n,
can be retrieved. Adopt Canny’s edge detector to each reconstructed
grayscale image GI ′i to generate an edge map EMi, for i = 1, 2,..., n.
Each edge map EMi consists of a set of 4×4 blocks. Therefore, the
j-th block of the edge map EMi is denoted as BEij . By combining
the lookup table LUT generation procedure described in Step 1 with
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a set of edge maps EMi, an edge-based LUT, called an ELUT,
is generated. Note that in this step, we call the edge map EM.
The order of the edge pattern of the ij-th block is denoted as BEij .
The index value for ij-th block is Iij for 0 ≤ k ≤ 216−1. Finally, the
mean grayscale value can be derived from ELUT[Iij , BEij ], where
0 ≤ EMij ≤ 38 based on the number of edge patterns reported
by Chung and Wu [11]. In Chung and Wu’s scheme, the value of
GI ′ij(3, 3) is determinate as Equation 16.12.

GI ′ij(3, 3) = ELUT [Iij , BEij ] (16.12)

Step 4: Input a halftone image HI, which will be converted to the grayscale
image GI′ . The detailed procedure is shown in Figure 16.16.

FIGURE 16.16
Procedure for generating final grayscale image in Step 4.

16.3.5 Shamir Scheme for Secret Sharing

The proposed scheme for secret image sharing is based on the (k,n)-threshold
secret sharing scheme proposed by Shamir (1979) [20]. In this section we
describe how to use the Shamir scheme to generate secret sharing. In the
following steps we use the (k-1)-degree polynomial shown in Equation 16.16
to generate n shares for a group of n secret sharing participants from a secret
integer value s for the threshold k.

F (xi) = s+ a1 × x1
i + a2 × x2

i + ...+ ak−1 × xk−1
i (16.13)
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where i = 1, 2,...,n.

Step 1: Select the number k, k ≤ n.

Step 2: Choose the (k-1) integers a1, a2, ..., ak−1 randomly.

Step 3: For the i-th secret sharing participant, choose a value of xi freely, i
= 1, 2,..., n. Note that all xi must be distinct from one another.

Step 4: For each chosen xi, compute the corresponding F (xi) by using
Equation 16.13.

Step 5: Deliver each pair of (xi, F (xi)) as a secret share to each participant.

In this secret sharing process, the values of ai, i = 1, 2, ..., k − 1, need not be
kept after all secret shares are generated. As well as the secret value s, each
ai can be recovered from the n secret shares in the secret recovery steps listed
below.

Step 1: Collect at least k secret shares from the n ones to form a system of
equations as shown in Equation 16.13. Note that the xi and F (xi)
in Equation 16.13 with i =1, 2, ..., k can all be extracted from the
k secret shares.

Step 2: Use a polynomial interpolation technique, e.g., Lagrange scheme, to
solve s and ai, i = 1, 2, ..., k − 1. Reconstruct the (k − 1)-degree
polynomial F(x) described by Equation 16.14.

F (x) = F (x1)
(x− x2)(x− x3)...(x− xk)

(x1 − x2)(x1 − x3)...(x1 − xk)

+ F (x2)
(x− x1)(x− x3)...(x− xk)

(x2 − x1)(x2 − x3)...(x2 − xk)
+ ...

+ F (xk)
(x− x1)(x− x2)...(x− xk−1)

(xk − x1)(xk − x2)...(xk − xk−1)

(16.14)

Step 3: Compute the solution for the secret value s by Equation 16.15.
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s = F (0)

=F (x1)
(x− x2)(x− x3)...(x− xk)

(x1 − x2)(x1 − x3)...(x1 − xk)

+F (x2)
(0− x1)(0− x3)...(0− xk)

(x2 − x1)(x2 − x3)...(x2 − xk)
+...

+F (xk)
(0− x1)(0− x2)...(0− xk−1)

(xk − x1)(xk − x2)...(xk − xk−1)

= (−1)k−1[F (x1)
x2x3...xk

(x1 − x2)(x1 − x3)...(x1 − xk)

+F (x2)
x1x3...xk

(x2 − x1)(x2 − x3)...(x2 − xk)
+...

+F (xk)
x1x2...xk−1

(xk − x1)(xk − x2)...(xk − xk−1)
]

(16.15)

16.4 Proposed Scheme

Following on the details described in the previous discussions, this section
presents a detailed and complete description of the proposed scheme. In our
scheme, a halftone image HI is created from the grayscale secret image GI,
sized H×W with 8 bits per pixel, by using an error diffusion technique called
EDT. The transmitted stego-image is called SI and the reconstructed grayscale
secret image is called GI′. The proposed scheme includes two procedures: the
first is the sharing and embedding phase, and the second is the reconstruction
and verifying phase. General flowcharts of the phases of our scheme appear in
Figure 16.17 and Figure 16.18.

16.4.1 Sharing and Embedding Phase

A detailed algorithm for the sharing and embedding phase is described in this
section.

Input: The secret grayscale image GI and cover image CI.

Output: Stego-image SI.

Step 1: Apply the error diffusion technique (EDT) to the grayscale im-
age GI to retrieve a halftone image HI. Obviously, the width and
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FIGURE 16.17
The flowchart of the work by the sender.

FIGURE 16.18
The flowchart of the work by the recipient.

© 2012 by Taylor & Francis Group, LLC



Image Sharing with Steganography and Authentication 447

height of HI are W and H. Moreover, each pixel in halftone image
HI contains only 1 bit.

Step 2: Divide halftone image HI into Z nonoverlapping 6-bit blocks,
Z = bH×W6 c. HIz (z = 1,2,...,Z) is the z-th block of HI and the
value of HIzis denoted as Pz illustrated in Figure 16.19.

FIGURE 16.19
The z-th block of GI and the corresponding HIz,Pz.

Step 3: This is the basic process for secret image sharing with Pz as the
secret, z = 1, 2 ,..., Z, Z = bH×W6 c . This procedure contains five
substeps, which are performed as follows.

(a) Take the value Xi formed from 2-MSBs (Most Significant
Bits) of the four pixels of each cover CBi as the value x
specified in Equation 16.16, i = 1, 2 , ..., n, as shown in
Figure 16.20, Xi = (c7c6d7d6g7g6h7h6)D.

F (xi) = (s+ a1 × x1
i + a2 × x2

i + ...+ ak−1 × xk−1
i ) mod 26

(16.16)
(b) Take the secret Pz as the value s specified in Equation

16.16.

(c) With a random number generator, generate a set of k − 1
integers a1, a2, ..., ak−1 in Equation 16.16, where k ≤ n.

(d) For each Xi, compute the corresponding value of F(Xi) by
Equation 16.16 to form a secret share (Xi, F(Xi)) for each
participant in the secret sharing group, F(Xi) = f5 f4 f3

f2 f1 f0.

(e) Hide the six data bits of F(Xi) in the Least Significant Bits
of the four pixels Ci, Di, Gi, and Hi of the corresponding
cover block CBi as shown in Figure 16.21.
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FIGURE 16.20
The four pixels of each cover block CBi.

Step 4: To prevent illicit attempts, a simple authentication ability is
added here. Compute check bits pi by using Equation 16.17 and
embed pi into the remaining LSBs of Ci, Di, Gi, Hi from the
same cover block CBi, where i = 1, 2, ..., t. Note that t is the
total number of check bits, which is discretionary and could be
decided by the sender according to authentication strength. For
simplicity, we take t = 2 as an example to explain the procedure
as shown in Figure 16.22. Figure 16.23 illustrates a flowchart of

FIGURE 16.21
Hiding the six data bits of F(Xi).
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this phase.

 T = c7c6c5c4c3c2f5f4 ‖ d7d6d5d4d3d2f3f2 ‖ g7g6g5g4g3g2f1 ‖ h7h6h5h4h3h2f0

P = T mod 2t

P = {pi | i ∈ {1, 2, ...t}, pi ∈ {0, 1}}
,

(16.17)

FIGURE 16.22
Hiding the check bits p1,p2.

16.4.2 Reconstruction and Verifying Phase

This section describes the proposed secret recovery scheme and authentication
scheme. Recall that after performing the secret sharing process for a group of
n participants, each participant obtains one stego-image SI ′j . The proposed
process for stego-image authentication and secret image recovery is summa-
rized in the following paragraphs.

Input: The random number generator used to generate integers
a1, a2, ..., ak−1 in Equation 16.16, the secret key t used for gen-
erating the check bits (e.g., t = 2), and a set of at least k stego-
images SI ′j , say m ones, with k ≤ m ≤ n , j = 1, 2, ..., m.

Output: A report of failure of secret reconstruction, or the recovered secret
image GI′ if all the stego-images are authenticated as genuine.

Step 1: Use the random number generator to generate a1, a2, ..., ak−1 in
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FIGURE 16.23
The flowchart of Step 4.

Equation 16.16.

Step 2: Divide each received stego-image SI ′j , j = 1, 2,..., m, into 2 × 2
blocks CB′1, CB′2, ..., CB′z and denote the four pixels in each
block CB′z as C ′z, D′z, G′z, and H ′z as shown in Figure 16.24.

Step 3: For each stego-image SI ′j from participant j, j ∈ {1, 2, ...,m} ,
perform the following substeps for stego-image authentication.

(a) t = 2, extract the 2-bit check bits from each block CB′z, as
shown in Figure 16.25. P2 = g′1, P1 = h′1.

(b) Calculate the data for verification according to Equation
16.18.
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FIGURE 16.24
The four pixels of each stego block CB′j.

 T = C ′z ‖ D′ ‖ G′z − g′1 ‖ Hz′ − h′1
P = T ′ mod 2t

P ′ = {p′i | i ∈ {1, 2, ...t}, p′i ∈ {0, 1}}
, (16.18)

(c) If for each block, P ′2 = p2, P ′1 = p1, then regard the stego-
image as having passed authentication and continue; other-
wise, decide that the stego-image has been tampered with.

FIGURE 16.25
The 2-bit check bits carried in CB’z when t = 2.
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FIGURE 16.26
The bits of Xi and F (Xi) carried in the stego block.

Step 4: If m′ stego-images have passed authentication in Step 3, and
m′ ≥ k , then continue. For each collected stego-image SI ′i, SI

′
i

= SIi; otherwise, stop the program and report failure of the se-
cret recovery step.

Step 5: For each z =1, 2, ..., Z, Z = bH×W6 c, perform the following sub-
steps to recover the secret data Pz.

(a) For each SI ′i,i ∈ {1, 2, ...m′} , extract the 2 most significant
bits (MSBs) of the four pixels of each cover as the value Xi

specified in Equation 16.16, X = (c′7c
′
6d
′
7d
′
6g
′
7g
′
6h
′
7h
′
6)D; ex-

tract the data bits of F(Xi) from the LSBs of pixels C ′i, D
′
i,

G′i, and H ′i, as shown in Figure 16.26, as a value of F(Xi)
appearing in Equation 16.16.

(b) By using the scheme described in Section 16.3.5, compute
the corresponding value of y as the value Pz.

(c) For each z = 1, 2, ..., Z, Z = bH×W6 c, perform last steps to
obtain all of the Pz for the blocks of halftone image HI of
the secret image GI.

Step 6: Apply the edge- and LUT-based inverse halftoning algorithm
(ELUT, introduced in Section 16.3.4) to the halftone image HI
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to retrieve the gray-scale image GI′, i.e., the secret image.

16.5 Experimental Results

The feasibility of the proposed scheme was confirmed by the experimental
results discussed in this section. We conducted three experiments, one to esti-
mate the visual quality of the stego-images; the second to estimate the visual
quality of the reconstructed secret images; and the last to evaluate the ca-
pability of identifying the tampered region. The test images shown in Figure
16.27 are four grayscale images ”Jet-F16”, ”Baboon”, ”Lena”, and ”Pepper”.

For our experiments, we chose the peak-signal-to-noise ratio (PSNR) as
the criterion to measure the visual quality of the grayscale images, which is
defined in Equation 16.19 and Equation 16.20.

PSNR = 10log10
2552

MSN
(16.19)

MSN =
1

H ×W

H∑
h=1

W∑
w=1

(Phw − P ′hw)2 (16.20)

H and W is the height and width of the images P and P ′ respectively. Phw
and P ′hw are the corresponding pixel values, and MSE is the mean-square-error
between the two images.

In the first experiment, to compare the visual quality (i.e., PSNRs) between
the cover images and the corresponding stego-images in Lin-Tsai’s scheme,
Yang et al.’s scheme, Chang et al.’s scheme, and ours, we took the image ”Jet-
F16” as the secret image and the images ”Lena”, ”Pepper”, and ”Baboon” as
the cover images, as shown in Figure 16.27. Figure 16.28 demonstrates the
experimental results. The PSNRs of different schemes reveal that the visual
quality of the stego-images generated by our scheme is the best of the schemes
compared in our experiments.

To evaluate the visual quality of the recovered gray-scale images, we com-
pared the PSNRs of the reconstructed grayscale images and the original secret
image in Figure 16.29. From Figure 16.29, we can see the PSNR of Jet-F16,
which is extracted from ”Lena”, ”Baboon” and ”Pepper”, is larger than 30 dB.
It means that not only does the revealing function of our scheme work well
but also that the visual quality of the secret grayscale image is acceptable.

In addition, storage space and stego-image transmission time are important
issues in secret sharing. Consequently, the pixel expansion problem should be
eliminated or minimized with any useful secret image sharing scheme. In other
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FIGURE 16.27
The test images.

words, the size of the cover images used in the sharing algorithm should be no
larger than that of their secret images. However, the cover images produced
during previous research, which are based on a polynomial approach [9,15,28],
are much larger than their secret images. The cover-to-secret image size ratios
of the existing schemes and the proposed scheme are listed in Table 16.1 for
comparison. From Table 16.1, we can see the cover size/secret size of our
scheme is the smallest and the most satisfactory.

To evaluate the capacity to identify a region of the secret image that has
been tampered with, we compared the proposed scheme, Lin-Tsai’s scheme,
Yang et al.’s scheme, and Chang et al.’s scheme using some manipulated stego-
images that satisfy the parity check policy (shown in Figure 16.30).

Both Figure 16.30 and Table 16.2 show the experimental results for the
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FIGURE 16.28
The experimental results for comparing the PSNR among the past work and
ours.
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FIGURE 16.29
The visual quality of the reconstructed grayscale image.

various schemes. These results reveal that, among Lin-Tsai’s scheme, Yang et
al.’s scheme, and the proposed scheme, our scheme provides the best authen-
tication capability. In Lin-Tsai’s scheme, there is only one pixel for each block
undergoing parity check. As a result, the authentication capability is not very
good.

In Yang et al.’s scheme, four pixels of each block all undergo the procedure
using a hash function. However, their final check bit is computed by using an
XOR operation. So, their probability of successful authentication should re-
main at 50%. In our scheme, two check bits are adopted and the probability
of successful authentication could be increased to 75%. On the other hand,
compared with Chang et al.’s scheme, in which four check bits are adopted
and authentication is implemented by using CRT (the Chinese Remainder
Theorem), our proposed scheme has a lower detection ratio while maintaining
lower computation complexity. However, because the set of shadows and the
reconstructed secret image are generated through simple operations, no com-
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FIGURE 16.30
Three tampered stego-images.
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TABLE 16.1
The cover-to-secret image size ratios of the
existing schemes and the proposed scheme.

Schemes Cover size / secret size
Lin-Tsai’s scheme 4
Yang et al.’s scheme 4
Chang et al.’s scheme 2
Our scheme 2 / 3

TABLE 16.2
The detection ratios of different schemes.

Schemes Detection ratios (DR)
Lin-Tsai’s scheme 0%
Yang et al.’s scheme 52%
Chang et al.’s scheme 97%
Our scheme 79%

putational complexity or pixel expansion occurs with our scheme. Moreover,
in practice, the nearly 80% detection ratio is sufficiently effective.

16.6 Conclusions

In this chapter, we propose a novel secret image sharing and authentication
scheme in which the set of shadows and the reconstructed secret image are
generated through simple operations, and no computational complexity or
pixel expansion occur. The PSNR value of the reconstructed secret image is
larger than 30 dB, and the visual quality of the reconstructed secret gray-scale
image is acceptable.

Some research reported in the literature uses steganography as with
Shamir’s secret sharing scheme [9,15,28]. However, with these approaches the
cover images must be many times larger than their secret images. For a se-
cret image of H ×W pixels, for earlier schemes (introduced in Section 16.2),
the cover image should be 2H × 2W pixels or 2H ×W pixels in size. Such a
restriction requires more storage capacity in the cover image and consumes a
larger bandwidth during transmission. Experimental results confirm that each
shadow generated by our scheme is six times smaller than the secret image.
Moreover, the ratio of cover image size and secret image size is reduced to 2/3.
This is the primary advantage of our scheme over past work. To compare vi-
sual quality between cover images and their corresponding stego-images with
the earlier schemes and our proposed scheme, we used several images for our
experiments. The experimental results are shown in Figure 16.29. The PSNRs
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of the various schemes compared demonstrate that the visual quality of the
stego-images generated by our scheme is the best. This is the second advan-
tage of our scheme over earlier work. The third advantage of our scheme over
past work is that, based on the check bits embedded, our scheme provides an
effective solution for verifying the reliability of the set of collected shadows
in the context of low computational complexity. Furthermore, experiments
confirm that our proposed scheme is suitable for real-time applications.
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17.1 Introduction

An image secret sharing scheme (ISSS) divides a secret image into some
shadow images (referred to as shadows) in a way that requires the shadows
in a certain privileged coalitions for the secret reconstruction. However, the
secret image cannot be revealed if they are not combined in the prescribed
way. A typical ISSS is often a (k, n)-threshold scheme, where k is the thresh-
old value to reveal the secret and n is the number of total shadows. One can
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reconstruct a secret image by k or more shadows, while he cannot conjecture
any information from less than k shadows. There are two major categories
in ISSS: one is the visual cryptography scheme (VCS) and the other is the
polynomial-based ISSS (PISSS).

In the (k, n)-VCS, a secret image is encrypted into n shadows by expand-
ing each secret pixel into m (the pixel expansion) subpixels. Notice that the
difference between the pixel and the subpixel is that the ”pixel” denotes the
secret pixel located in the secret image, and the ”subpixel” means the pixel
located in shadows. Actually, the size of a subpixel is the same as that of the
secret pixel. Therefore, shadows are, in general, expanded. Any k participants
may photocopy their shadows on transparencies and stack them on an over-
head projector to visually decode the secret through the human visual system
(HVS) without hardware and computation. However, stacking k − 1 or fewer
shadows will not gain any information. The first VCS encrypted a halftone
(black-and-white) secret image into noise-like shadows [11]; subsequently, most
VCSs were dedicated to reducing the pixel expansion [5, 7, 16, 17, 18, 2].

Indeed the visual quality of the VCS is poor, which comes from its intrinsic
property using the OR-operation for decoding. Contrarily, the PISSS can re-
cover the secret image without any distortion, while it needs the computation.
By directly adopting Shamir’s secret sharing scheme [12], a (k, n)-ISSS takes
the secret pixel as the constant term in (k−1)-degree polynomials to share the
secret. To gain small shadows, Thien and Lin used all coefficients in a (k−1)-
degree polynomial to generate shadows with size 1/k times to the secret image
[13]. Afterwards, Wang and Su [15] further reduced the shadow size by using
the Huffman code. Shadows in [13, 15] are noise-like, which shadows are of-
ten suspect to censors. It would be better to design a (k, n)-ISSS with the
ability of steganography, i.e. shadows look like a cover image (a pre-selected
meaningful image). Actually, we can construct a (k, n)-ISSS being provided
with meaningful and meaningless shadows according to our need. Some (k,
n)-ISSSs with meaningful shadows were proposed [14, 21, 8, 19, 1, 4, 6]. For
example, two user-friendly (k, n)-ISSSs [14, 21] produced the shadow with a
shrunken secret image on it. However, the portrait on shadows had already
leaked the secret information, and thus this scheme is, strictly speaking, not
a secret sharing scheme. Other (k, n)-ISSSs [8, 19, 1, 4] can present any cover
images on shadows. Lin and Tsai’s scheme [8] had the authentication capabil-
ity to detect the faked shadows. The schemes in [19, 1, 4] improved Lin and
Tsai’s scheme to solve the dishonest participant problem of authentication,
enhance the detection ratio of manipulated shadows, and improve the visual
qualities of shadows.

A new type of ISSS with two decoding options was introduced recently,
where the secret image is revealed both by stacking the transparencies and
by computation. This scheme is referred to as two-in-one ISSS (TiOISSS).
TiOISSS can decode secret images for preview by the HVS when a computer
is temporarily unavailable. When the computer is available during the decod-
ing scene, we then spend more computation to obtain a high-quality image for
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high-end applications. Two TiOISSSs [6, 9] have been proposed. Both schemes
can stack shadows to decode a halftone secret image by the HVS in the first
stage, and then can perfectly reconstruct the gray-level secret image in the
second stage. A possible application scenario of TiOISSS is described below.
In a distributed multimedia system, n shadows of PISSS can be delivered in
a distributed system where each shadow is stored in any distributed storage
node. The failure of (n− k) shadows during transmission does not affect the
reconstruction phase, as the secret image can be perfectly restored using k
shadows. Suppose a fake shadow is received. The receiver spends consider-
able computation and finally finds the received shadow is wrong. Because the
reconstruction phase of PISSS is very computationally intensive, we can ap-
ply the TiOISSS to save the computational time for verifying the validity of
shadows. The receiver can first verify the shadows by visually previewing the
secret without computation. After the successful verification, the receiver then
recovers the original gray-level secret image by computation. In this chapter,
we will briefly describe two TiOISSSs [6, 9], and also introduce our recent
research result on TiOISSS published in [20].

17.2 Preliminaries

17.2.1 PISSS

A polynomial-based (k, n) secret sharing scheme was first proposed by Shamir
[12], in which the secret data is encrypted into n shadows. Any k shadows can
be used to reconstruct the secret, but any k − 1 or fewer shadows learn no
information. By taking the secret data as g0 (constant term) in the following
(k−1)-degree polynomial g(x) where p is a prime number, we could construct
n shadows (xi, g(xi)) by choosing n different xi, i ∈ [1, n].

g(x) = (g0 + g1x+ ...+ gk−1xk−1) mod p. (17.1)

Any k shadows (without loss of generality, we use k shadows (xi, g(xi)), i ∈
[1, k]) can be used to reconstruct the (k − 1)-degree polynomial g(x) by La-
grange interpolation as follows. Afterwards, the secret data g0 can be deter-
mined from g0 = g(0).

g(x) = g(x1) (x−x2)(x−x3)...(x−xk)
(x1−x2)(x1−x3)...(x1−xk)

+ g(x2) (x−x1)(x−x3)...(x−xk)
(x2−x1)(x2−x3)...(x2−xk)

+ · · ·+ g(xk) (x−x1)(x−x2)...(x−xk−1)
(xk−x1)(xk−x2)...(xk−xk−1) mod p.

(17.2)

Through Shamir’s secret sharing scheme, we could take every secret pixel
as g0 in a (k − 1)-degree polynomial g(x) to construct n random grayscale
values in shadows to construct a (k, n)-PISSS. At this time, the prime number
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p = 251 is chosen such that g(x) is constrained between 0 and 250 and suitable
to represent the conventional 8-bit grayscale or color images. Notice that the
possible values of an 8-bit gray pixel are from 0 to 255, so the grayscale values
(> 250) need to be modified to 250 and will cause distortion. Obviously, we
can use the Galois Field GF (28) rather than the ordinary arithmetic (mod
251) to achieve a lossless scheme. Thien and Lin further reduced shadows with
size 1/k times that of the secret image [13] by embedding the secret data in all
coefficients of g(x). The formal encoding of Thien and Lin’s scheme is briefly
described below.

A secret image is first divided into τ non-overlapping k -pixel blocks,
and every j -th (0 ≤ j ≤ τ − 1) block includes the secret pixel values
pjk, pjk+1, ..., pjk+k−1 . The (k − 1)-degree polynomial Sj(x) represents a
shadow pixel associated with the j -th block on shadows.

Sj(x) = (pjk + pjk+1x+ pjk+2x
2 + ...+ pjk+k−1x

k−1)inGF (28), (17.3)

where x is often an image identification and 0 ≤ j ≤ τ −1. The value of Sj(x)
is generated using the original pixel values pjk, pjk+1, ..., pjk+k−1 included in
the j -th block. In this chapter, the Galois Field GF (28) was chosen to achieve
a lossless secret image. Because k pixels are processed each time, the size of
the shadow image is 1/k of the secret image. By reversing the encoding, the
polynomial in (17.3) can be reconstructed from k shadow pixels; hence, the
blocks can be recovered and finally the secret image is reconstructed.

17.2.2 VCS

The first VCS was Naor–Shamir’s (k, n)-VCS to encrypt a halftone secret im-
age into noise-like shadows. The authors used the whiteness (the number of
white subpixels in a m-subpixel block) to distinguish the black color from the
white color, i.e., ”m − h”B”h”W (respectively ”m − l”B”l”W) represents a
white (respectively black) color, where h > l. A black-and-white (k, n)-VCS
can be designed using two base n × m matrices B1 and B0 with elements
”1” and ”0” denoting black and white subpixels. When sharing a black (re-
spectively white) secret pixel, the dealer randomly chooses one row of the
matrix in the set C1 (respectively C0), which includes all matrices obtained
by permuting the columns in B1 (respectively B0) to a relative shadow. Let
OR (Bi|r), i = 0, 1, denote the ”OR”-ed vector of any r rows in Bi, and H(·)
be the Hamming weight of a vector. The base matrices of the (k, n)-VCS
should satisfy the following conditions:

(V-1). H (OR (B1|r)) ≥ (m− l) and H (OR (B0|r)) ≤ (m− h)) for r = k,
where 0 ≤ l < h ≤ m.

(V-2). H (OR (B1|r)) = H (OR (B0|r)) for r ≤ (k − 1).
The first condition is often referred to as the contrast condition, and the

secret image can be recognized due to their different contrasts of black and
white colors. The second condition is the security condition that assures the
(k, n)-VCS of perfect secrecy.
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Example 1. Construct a (2, 2)-VCS of h = 1, l = 0, and m = 2 using

B1 =
[

10
01

]
and B0 =

[
10
10

]
. The secret is a printed-text image VCS .

A (2, 2)-VCS with B1 =
[

10
01

]
and B0 =

[
10
10

]
has H (OR (B1|2)) = 2,

H (OR (B0|2)) = 1, and H (OR (B1|1)) = H (OR (B0|1)) = 1, which satisfy
(V-1) and (V-2) conditions. In the reconstructed image, the black color is
2B0W and the white color is 1B1W (or 1W1B). However, each shadow con-
tains 1B1W and 1W1B with the same frequencies so that one cannot see
anything from his own shadow. Figure 17.1(a) is a black-and-white secret
image VCS . Two noise-like shadows (Shadow 1, Shadow 2) and the recon-
structed image by stacking two shadows (Shadow 1 + Shadow 2) are shown
in Figures 17.1(b), 17.1(c) and 17.1(d). The printed-text secret VCS can be
revealed by HVS. 2

(a) (b) Shadow 1 (c) Shadow 2

(d) Shadow 1+Shadow 2

FIGURE 17.1
A (2, 2)-VCS of h = 1, l = 0, and m = 2: (a) the secret image (b) and (c) two
shadows (d) the reconstructed image.

© 2012 by Taylor & Francis Group, LLC



468 Visual Cryptography and Secret Image Sharing

17.3 Previous Works

Two TiOISSSs [6, 9] are briefly reviewed in the sequel. Jin and Lin’s scheme [6]
applied VCS on a halftone secret image, which is obtained from a prescribed
halftoning transformation. Lin and Lin’s scheme [9] combined the VCS and
PISSS. Both TiOISSSs have stacking-to-see capability. By computation, both
schemes could reconstruct the original gray-level secret image. The TiOISSSs
in this chapter can be extended to share the chromatic secret image by ap-
plying the approaches on C (cyan), M (magenta), and Y (yellow) bit planes,
respectively. So, we only discuss the gray-level secret image.

17.3.1 Jin et al.’s TiOISSS

In [6], the gray-level secret image is transformed into a binary image by a
digital halftoning method, in which every secret pixel is represented by nine
black-and-white pixels (pc, p0, p1, . . . , p7) in a 3×3-block as shown. Excluding
the center pixel pc, every 8-tuple (p0, p1, . . . , p7) is uniquely decoded to the
256 possible grayscale values (0 to 255), and simultaneously the pattern of
nine pixels can simulate shades of gray. This halftoning method is most simi-
lar to a patterning technique, which uses the black dots in a block to represent
the intensity levels. The color of the center pixel pc can be chosen according
to the halftone version of the original grayscale image to enhance the resolu-
tion. Afterwards, the (k, n)-VCS is performed on this halftone secret image
to construct n shadows. Suppose the gray-level secret image and the halftone
images are I and I ′. We first obtain I

′
from I by the halftoning technique

(see Table 2 in [6], which provides the complete mapping between I and I
′
,

also gives the nine grayscale levels in I
′

to simulate the grayscale levels), and
then arrange the pixels in a 3 × 3-block. Thus, we have |I ′ | = 9 × |I|. Apply
a (k, n)-VCS with the pixel expansion m on I

′
, and then every shadow of Jin

et al’s TiOISSS has the image size 9 ×m × |I|. Jin et al’s TiOISSS has two
decoding options. The first is stacking any k out of n shadows to get a vague
halftone image by VCS, and the second is to reconstruct the gray-level secret
image by a look-up table from the arrangement of (p0, p1, . . . , p7).

Because we have two secret images (I and I
′

), we herein define the pixel
expansion of TiOISSS as the ratio of shadow size relative to the size of the
original gray-level secret image. So, the pixel expansion of Jin et al’s (k, n)-
TiOISSS is

mJIN = 9m. (17.4)

17.3.2 Lin and Lin’s TiOISSS

Jin et al.’s TiOISS scheme has a terrible pixel expansion 9m. For example, Jin
et al.’s (2, 2)-TiOISS has the pixel expansion 9m = 18 when using (2, 2)-VCS
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with m=2. Recently, Lin and Lin proposed a TiOISSS [9] based on the VCS
and PISSS to reduce the pixel expansion. A halftone secret image is encrypted
into n shadows by (k, n)-VCS with the pixel expansion m, which every row
contains b ”1” and w ”0” and m = b+w. It is obvious that every m-subpixel

has
(
m
w

)
combinations, and it can be used to represent about log2

(
m
w

)
bits. Notice that in the conventional VCS, we can randomly permute all m

columns in matrices. However, when using the
(
m
w

)
combinations to rep-

resent the information and simultaneously satisfy the security condition, we
could only randomly choose the combination for one shadow and the remaining
(n−1) shadows are then determined according to the base matrices. Therefore,

in a shadow, only (|I ′|/n) digits can be used to share log2

(
m
w

)
bits. On the

other hand, we need (8× |I|/k) bits to share the gray-level secret image I by
(k, n)-PISSS. To assure we have enough space to hide the secret, the gray-level
secret image is compressed by Jpeg or other compression techniques to reduce
the information as (8× |I|/(k ×R)) bits where R is the compression ratio. In
[9], the authors consider the case in which the halftone secret image and the
gray-level secret image have the same size, i.e., |I| = |I ′ |.

As a result, (|I ′|/n)× log2

(
m
w

)
≥ (8× |I|/(k ×R)), and thus the com-

pression ration R should satisfy the following requirement to hide all informa-
tion of a gray-level secret image.

R ≥
(

8n
/
k × log2

(
m
w

))
(17.5)

Since |I| = |I ′ |, finally, the pixel expansion of Lin and Lin’s (k, n)-TiOISSS
is

m
(C)
LIN = m. (17.6)

For example, the pixel expansion of Lin and Lin’s (2, 2)-TiOISSS when
using (2, 2)-VCS with m = 2 is m(C)

LIN = 2 less than mJIN = 18. However, the
gray-level secret image can be perfectly reconstructed in Jin and Lin’s scheme,
while Lin and Lin’s scheme only recovers the compressed image. The greater
compression ratio will degrade the visual quality of the secret image.

Example 2. Construct Lin and Lin’s (2, 4)-TiOISSS and Jin and Lin’s

(2, 4)-TiOISSS using B1 =


1100
0110
0011
1001

 and B0 =


1100
1100
1100
1100

.

Since
(
m
w

)
=
(

4
2

)
= 6 (there are six combinations: (1100), (0011),

(1010), (0101), (1001), (0110)), log2

(
m
w

)
= log26 = 2.585 bits. Suppose
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the secret image I is a 512 512 gray-level image. Lin and Lin’s TiOISS (2,

4) scheme needs a compression ratio R =
(

8n
/
k × log2

(
m
w

))
= 32/(2×

2.585) = 6.19. We first compress the gray-level secret image I to a compressed
image IC to obtain the less embedded bits. Notice that even though |IC | has a
lesser file size (the embedded bits), it has the same physical size of the original
image |I|. Finally, the shadow size of Lin and Lin’s (2, 4)-TiOISSS is 1024 1024
(note: m×|I ′ |), and the pixel expansion is m(C)

LIN = m = 4. On the other hand,
we need a 1536× 1536(9× |I|) halftone image for Jin et al.’s (2, 4)-TiOISSS.
The shadow size of Jin et al.’s (2, 4)-TiOISSS is 3072 × 3072(9m × |I|), and
the pixel expansion is mJIN = 9m = 36. 2

17.4 A New (k, n)-TiOISSS

The VCS and PISSS have their respective features. As is known, the VCS has
the vague reconstructed image and PISSS has a perfect reconstruction. The
VCS has the distinctive stacking-to-see capability, while PISSS spends the
computation for reconstruction. It is reasonable to adopt the stacking-to-see
property of the VCS into PISSS to achieve a two-in-one scheme where the
secret image is revealed both by stacking the transparencies and by compu-
tation. Our new TiOISSS [20] is also a combination of the VCS and PISSS,
which is somewhat similar to Lin and Lin’s scheme, but the way is completely
different to that in Lin and Lin’s scheme.

Jin et al.’s TiOISSS is a lossless version (i.e., no distortion in the secret
image) but has a large pixel expansion. Lin and Lin’s TiOISSS is a compress-
ible version. It compresses the secret image such that the shadow size has
enough space to hide the information of a compressed image. Although Lin
and Lin’s scheme reduces the pixel expansion of Jin et al.’s scheme, the re-
constructed image has distortion. Obviously, Lin and Lin’s approach can be
extended to the lossless version by expanding the halftone image with the size

|I ′| = (n/k) × |I| × 8/log2

(
m
w

)
to hide the original secret image. For the

lossless version of Lin and Lin’s TiOISSS, the pixel expansion m
(L)
LIN is

m
(L)
LIN = (n/k)×m× 8/log2

(
m
w

)
. (17.7)

For example, the pixel expansion of Lin and Lin’s (2, 4)-TiOISSS in Example
2 (i.e. k = n = 2, m = 4, w = 2) is m(L)

LIN=24.76.
Jin et al.’s scheme cannot be used in a compressible version because it

uses a look-up table to recover the grayscale value of the pixel. The proposed
TiOISSS has two versions—the lossless version and the compressible version.
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For simplicity, we first describe the proposed TiOISSS, which reconstructs a
lossless secret image. The compressible version is just an easy extension of the
lossless TiOISSS, and will be discussed in Section 17.4.2.

17.4.1 Design Concept

Our design concept adopts the gray subpixel into the VCS, and this grayscale
values simultaneously represents the output of the (k − 1)-degree polynomial
in PISSS. In VCS, it is evident that when a subpixel is stacked by the white
subpixel, its intensity is kept unchanged. While stacking two gray subpixels,
we get a grayer color (a dark version of the color). Therefore, if we replace black
subpixels with gray subpixels in the shadow, we still can use the whiteness in
every m subpixel to distinguish the black color from the white color in the
reconstructed image. Here, we adopt the widely accepted definition of color
superimposition in [10] to define the color mixing function C(·) when stacking
two subpixels with the grayscale values between 0 and 255.

The grey level of the resultant pixel by stacking the two pixels can be
expressed (approximately) as follows, in which each mixed color is produced
by a color mixing function C(·).

g3 = C (g1, g2) = Int ((g1 × g2)/255) ,

where Int(·) function maps a real number to the nearest integer. The values
of g1, g2, g3 are any grayscale values between 0 and 255, and ”0” (respectively
”255”) is a black (respectively, white) color.

It is easy to verify g3 < g1 and g3 < g2, and this implies that stacking
two gray pixels of g1 and g2 results in a grayer pixel of g3. For example,
g1 = C (g1, 255) shows the grayscale value unchanged when stacking with the
white pixel and 255 = C (255, 255) shows that the stacked result is a white
color when stacking two white pixels.

Example 3. Consider Example 1, and randomly use gray subpixels gi ∈
[0, 255] instead of black subpixels in B1 and B0 and do not change the white
subpixel.

As a replacement in B1 and B0, we have B′1 =
[
gi0
0gj

]
and B′0 =

[
gi0
gj0

]
,

respectively. In the reconstructed image, it is observed that the stacked result
in the black area (using B′1) is 1gi1gj and the stacked result in the white area
(using B′0) is 1gk1W or 1W1gk, where gk < gi and gk < gj . Through the
whiteness, we can still visually reveal the secret. Each shadow contains 1gi1W
(or 1W1gi) which is a gray-and-white and noise-like image, so that one cannot
see anything from any shadow. In Figure 17.2(a) and Figure 17.2(b) are two
noise-like shadows (Shadow 1, Shadow 2) and Figure 17.2(c) shows the recon-
structed image (Shadow 1 + Shadow 2). It is observed that the secret VCS
is also revealed but is a little blurred when compared with Figure 17.1(d). 2

We call this VCS with the matrices B′1 and B′0 the gray-subpixel based
VCS (GVCS). Matrices B′1 and B′0 are the same as B1 and B0 except that the
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(a) Shadow 1 (b) Shadow 2

(c) Shadow 1+Shadow 2

FIGURE 17.2
A (2, 2)-GVCS of h = 1, l = 0, and m = 2: (a) and (b) two shadows (c) the
reconstructed image.

gray subpixels replaced the black subpixels. Hence, GVCS holds the contrast
and security conditions (V-1) and (V-2), and it is still a VCS. In this chapter,
we use the notation (k, n,m, g)-GVCS, to denote a (k, n)-GVCS with B′1 and
B′0, in which every row has g gray subpixels and (m− g) white subpixels. The
whiteness, (m− g) white subpixels in every m-subpixel block, can be used to
distinguish the black color from the white color. In GVCS, the grayness of
the nonwhite subpixels in the reconstructed image is different from the pure
blackness in the VCS, and it will distort the clarity (see Figure 17.1(d) and
Figure 17.2(c)).

In order to design a TiOISSS based on GVCS and PISSS, we should care-
fully observe the distinguishing characteristics of both image secret sharing
schemes. All characteristics of GVCS and PISSS are opposite; hence, combin-
ing GVCS and PISSS creates the following problem. It is obvious that we need
two secret images—a halftone secret image for GVCS and a gray-level secret
image for PISSS. In our TiOISSS, the gray-level secret image is shared by
PISSS. Then, we divide the halftone secret image into shadows by GVCS, in
which the grayscale values in B′1 and B′0 are chosen according to the outputs
of the (k − 1)-degree polynomials in PISSS. Also, we need to determine the
sizes of both secret images such that there are enough gray subpixels in GVCS
to represent the outputs of PISSS.
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17.4.2 The Lossless TiOISSS

We construct a (k, n)-TiOISSS based on a (k, n)-PISSS and a (k, n,m, g)-
GVCS to share a gray-level secret image I. For the lossless version, we first
determine (8× |I|/k) bits by PISSS. So, |I|/k gray supixels in each shadow of
(k, n,m, g)-GVCS are required to hide (8× |I|/k) bits. Since there are g gray
subpixels in every m subpixels of (k, n,m, g)-GVCS, the halftone secret image
I
′

for GVCS should be |I ′ | = |I|/(k × g). So, the shadow size is m× |I ′ |. For
the lossless version, the pixel expansion of our (k, n)-TiOISSS m

(L)
PRO is

m
(L)
PRO = m/(k × g). (17.8)

The formal encoding and decoding algorithms are described as follows.
Some notations are defined first.

Notation Used

P(·) encryption of (k, n)-PISSS.
P-1 (·) decryption of (k, n)-PISS.
I the gray-level secret image with the size |I|, which is used as the input

of P(·).
Pi the output shadows of P(I ), i ∈ [1, n], with the size (|I|/k).
G(·) encryption of (k, n,m, g)-GVCS with B′1 and B′0, and the values

of gray subpixels are chosen according to the gray pixels in Pi.
G-1(·) decryption of (k, n,m, g)-GVCS (stack shadows and visually de-

code the secret by HVS).
H(·) halftoning function, transform and resize a gray-level image to a

halftone image.
I
′

a halftone secret image with the size |I ′ | = |I|/(k×w) obtained from
I
′
=H(I ).
Gi the output shadows of G(I

′
), i ∈ [1, n], with the size

((m× |I|)/(k × g)).

Encryption Algorithm of the Lossless Version of Our (k, n)-
TiOISSS

Input: the gray-level secret image I ; the parameters k, n,m, g; matrices
B′1 and B′0.

Output: n shadows Gi, i ∈ [1, n].
1-1) Encrypt the secret image to obtain Pi= P(I ), i ∈ [1, n].
1-2) Obtain I

′
from I

′
=H(I ) .

1-3) Output n shadows Gi=G(I
′
), i ∈ [1, n].

Decryption Algorithm of the Lossless Version of Our (k, n)-
TiOISSS

Input: any k out of n shadows Gi1 , Gi2 , . . . , Gik .
Output: the halftone secret image I

′
(Phase 1); the gray-level secret image

I (Phase 2).
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/* Phase 1: does not need computation; visually decode the secret I
′

by
stacking k shadows;

Phase 2: needs computation; decode the secret I by using Lagrange inter-
polation */

Phase 1 (preview phase):
2-1) G-1 (Gi1 , Gi2 , . . . , Gik);
/* stack k shadows to visually preview the halftone secret image */
Phase 2 (perfect-reconstruction phase):
2-2) Obtain (Pi1 , Pi2 , . . . , Pik) from (Gi1 , Gi2 , . . . , Gik) by discarding the

white subpixels.
2-3) I = P-1 (Pi1 , Pi2 , . . . , Pik).
/* use Lagrange interpolation to reconstruct the gray-level secret image

*/
Our TiOISSS contains two decoding phases: the preview phase and the

perfect-reconstruction phase. A halftone secret image can be visually pre-
viewed by simply stacking shadows in Phase 1. The preview phase may be
used when a computer is temporarily not available, or in a scenario verifying
whether the shadows are correct or not in a distributed multimedia system,
as mentioned in the introduction. On the other hand, by extracting the gray
subpixels from shadows we may perfectly reconstruct the gray-level secret
image when the computer finally is available (or after successful verification
in a distributed multimedia system). We call the second decoding phase the
perfect-reconstruction phase because we can gain a lossless secret image.

Considering security, the proposed (k, n)-TiOISSS is a combination of two
(k, n)-threshold schemes: the GVCS and the PISSS. So our scheme still retains
the threshold property. An attacker could not stack less than k shadows to
retrieve the black-and-white secret. Also, he cannot use the gray values of less
than k shadows to reconstruct the (k−1)-degree polynomial. Thus, combining
these two ISSSs together assures the secrecy of the threshold scheme.

Example 4 shows the proposed (2, 2)-TiOISSSs using different w and m
to demonstrate different shadow sizes and the resolutions of the reconstructed
images in the preview phase.

Example 4. Construct two (2, 2)-TiOISSSs using base matrices: (1) B1 =[
10
01

]
and B0 =

[
10
10

]
(2) B1 =

[
110
101

]
and B0 =

[
110
110

]
, respectively.

The secret image is 512× 512 Lena from the USC-SIPI image database.
A 512 × 512 gray-level Lena image I is shown in Figure 17.3(a). By (2,

2)-PISSS, we obtain two 512 × 256 gray-level noise-like shadows P1 and P2,
as shown in Figure 17.3(b) and Figure 17.3(c).

Case (1) B1 =
[

10
01

]
, B0 =

[
10
10

]
:

Since m = 2 and g = 1, we then resize and halftone I to get a halftone
image I

′
by H(·), and the size is |I ′ | = |I|/(k × g) = |I|/2. This 512 × 256

halftone Lena is shown in Figure 17.4(a). Output two shadows Gi=G(I
′
),

i=1, 2, by using (2, 2, 2, 1)-GVCS, and the values of gray subpixels are chosen
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(a) I (b) P1

(c) P2

FIGURE 17.3
A (2, 2)-PISSS: (a) 512×512 gray-level Lena secret image (b) and (c) 512×256
gray-level noise-like shadows.
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(a) I
′

(b) G1

(c) G2 (d) G1 + G2

FIGURE 17.4
The proposed (2, 2)-TiOISSS using base matrices with h = 1, l = 0, and
m = 2: (a) 512×256 halftone image (b) and (c) two 512×512 gray-and-white
shadows (d) the previewed image.
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(a) G1 (b) G2 (c) G1 + G2

FIGURE 17.5
The proposed (2, 2)-TiOISSS using base matrices with h = 1, l = 0, and
m = 3: (a) and (b) two 512× 512 gray-and-white shadows (c) the previewed
image.

according to the gray pixels in P1 and P2. In Figure 17.4(b) and Figure 17.4(c)
are two gray-and-white shadows G1 and G2 of the size m×|I ′ | = |I| (512×512-
pixels). Figure 17.4(d) is the previewed image by stacking G1 and G2 without
computation. In the second phase of decoding, we can obtain P1 and P2 from
the gray pixels of G1 and G2, and then reconstruct the gray-level Lena in
Figure 17.4(a) by I = P-1(P1, P2).

Case (2) B1 =
[

110
101

]
, B0 =

[
110
110

]
:

Since m = 3 and g = 2, we need a halftone image I
′

of the size is |I ′ | =
|I|/(k × g) = |I|/4. Output two shadows Gi = G(I

′
), i = 1, 2, by using

(2, 2, 3, 2)-GVCS, and the values of gray subpixels are chosen according to
the gray pixels in P1 and P2. In Figure 17.5(a) and Figure 17.5(b) are two
gray-and-white shadows G1 and G2 of the size m×|I ′ | = 0.75×|I| (512×384-
pixels). Figure 17.5(c) is the stacked result by stacking G1 and G2. By the
same approach in Case (1), we can also reconstruct the original gray-level
Lena I. 2

All the above schemes can visually reveal the secret by simply stacking
shadows in the preview phase. The original gray-level secret image can be
perfectly reconstructed in the perfect-reconstruction phase. Of two (2, 2)-
TiOISSSs in Example 4, Figure 17.4(d) possess the better resolution of the
previewed result, but Figure 17.5(c) has a lesser shadow size of 512 × 384
pixels.

Because our TiOISSS uses PISSS in Phase 2 for decoding, we can use
the compression approach in [9] to hide the compressed image into shadows.
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Suppose J(·) is a Jpeg-compression function, where IC=J(I ), and the com-
pression ratio is R = (the number of bits in I/the number of bits in IC)≥ 1.
At this time, the gray-level secret image I is compressed to IC such that the
information bits in IC can be embedded into the halftone secret image I

′
.

By replacing I with IC in our lossless TiOISSS, we could get the compress-
ible TiOISSS. The formal encoding/decoding algorithm of the compressible
version of our (k, n)-TiOISSS is omitted for brevity.

In the lossless version of the proposed TiOISSS, since |I ′ | = |I|/(k × g),
k ≥ 2 and g ≥ 1, then |I ′ | < |I|. This observation implies that our TiOISSS
could embed all information bits of lossless I into I

′
, where |I ′ | < |I|, for any

values of (k, n,m, g). So, actually, our TiOISSS does not need compression on
I. However, to be fairly compared with the compressible version of Lin and

Lin’s scheme, we use a compression ratio R = RLIN = (n/k)× 8/log2

(
m
w

)
such that we have the same image quality of the reconstructed image (a Jpeg-
compressed version) as Lin and Lin’s scheme; at this time the size of our
halftone secret image can be further reduced to |I ′ | = |I|/(k × g ×R). Then,
the shadow size is m × |I ′| = (m× |I|/(k × g ×R)) and the pixel expansion
of the compressible version m

(C)
PRO is

m
(C)
PRO = m/(k × g ×R). (17.9)

17.5 Experimental Results and Comparisons

Example 5 shows three (2, 4)-TiOISSSs, Jin et al.’s scheme [6], Lin and Lin’s
scheme [9] and our scheme [20], respectively; this example demonstrates the
lossless version. The compressible versions of Lin and Lin’s (2, 4)-TiOISSS
and our (2, 4)-TiOISSS are given in Example 6, where a compression ratio

R = 6.5 > RLIN=(4/2)× 8/log2

(
4
2

)
=6.19 is used.

Example 5. Construct three lossless versions of (2, 4)-TiOISSSs: (1) Jin
et al.’s scheme (2) Lin and Lin’s scheme (3) our scheme (the lossless version)

using B1 =


1100
0110
0011
1001

 and B0 =


1100
1100
1100
1100

.

A 512×512 gray-level Lena in Figure 17.3(a) is used as a secret image. By
(2, 4)-PISSS, we first obtain four 512 × 256 gray-level shadows P1 − P4. To
share all information bits in Pi, Jin et al’s scheme and Lin and Lin’s scheme
need the 1274×1274 halftone secret image and the 1536×1536 halftone image,
while our scheme needs the 256× 256 halftone secret image (since k = g = 2,
so |I ′ | = |I|/(k × g) = |I|/4). The shadow sizes of Jin et al.’s scheme, Lin
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and Lin’s scheme and our scheme are 3072 × 3072 pixels, 2548 × 2548 pixels
and 512 × 512 pixels, respectively. Finally the pixel expansions are mJIN =
(3072× 3072)/(512× 512) = 36, m(L)

LIN = (2548× 2548)/(512× 512) = 24.76
and m

(L)
PRO = (512× 512)/(512× 512) = 1. 2

Example 6. Consider Lin and Lin’s scheme and our scheme in Example
5 but use the compressible versions with a compression ratio R = 6.5.

By J(·), we compress the original Lena into the compressed image IC with
PSNR = 38.88 dB. Now, Lin and Lin’s (2, 4)-TiOISSS has enough space in
I
′
(|I ′ | = |I|) to embed the information of IC . By using IC as the original gray-

level secret image in our TiOISSS, we only need the 201× 201 halftone secret
images for sharing information bits. For the compression version, the pixel
expansions of (2, 4)-TiOISSS arem(C)

LIN = m = 4 andm(C)
PRO = m/(k×g×R) =

1/R = 1/6.5 = 0.154. 2
When comparing the pixel expansions among these three TiOISSSs [6, 9,

20], we consider the lossless version. This is a fair approach since all three
schemes can reconstruct the same quality of the reconstructed image. From
Equations (17.4), (17.7), and (17.8), it is obvious that our pixel expansion
m

(L)
PRO < mJIN (since k ≥ 2 and g ≥ 1, so m/(k × g) < m/2 < 9m). When

comparing m(L)
LIN and m

(L)
PRO, one can verify that our TiOISSS has the lesser

pixel expansion than Lin and Lin’s TiOISSS for most values of k, n, and m.
In the following theorem, we theoretically prove that m(L)

PRO < m
(L)
LIN when

both TiOISSSs use Naor–Shamir optimal (n, n)-VCS, Naor–Shamir optimal
(3, n)-VCS, and Naor–Shamir (2, n)-VCS [11].

Theorem: The pixel expansion m(L)
PRO = m/(k×g) of the proposed (k, n)-

TiOISSS is lesser than the pixel expansion m(L)
LIN = (n/k)×m×8/log2

(
m
w

)
of Lin and Lin’s TiOISSS when using Naor–Shamir optimal (n, n)-VCS, Naor–
Shamir optimal (3, n)-VCS, and Naor–Shamir (2, n)-VCS.

Proof: When using Naor–Shamir optimal (n, n)-VCS (note: k = n) with
m = 2(n−1), w = g = m/2, we have

m
(L)
LIN = (n/k)×m× 8/log2

(
m
w

)
= m× 8/log2

(
m
w

)
= 8m/log2

(
m!

(m/2)!×(m/2)!

)
= 8m/log2

(
m×(m−1)×···×(m/2+1)
(m/2)×(m/2−1)×···×1

)
> 8m/log2

(
mm/2

)
= 8m/ ((m/2)× log2 (m)) = 16/

(
log2

(
2(n−1)

))
= 24/(n− 1) > 2/n = m/(k × g) = m

(L)
PRO (since g = m/2 and k = n).

(17.10)
When using Naor–Shamir (3, n)-VCS with m = 2n− 2, w = g = m/2, we
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have

m
(L)
LIN = (n/3)×m× 8/log2

(
m
w

)
= ((8×m× n)/3) /log2

(
m
m/2

)
= ((8×m× n)/3) /log2

(
m×(m−1)×···×(m/2+1)
(m/2)×(m/2−1)×···×1

)
> ((8×m× n)/3) /log2

(
mm/2

)
= (16n/3) /log2 (m) = (16n/3) /

(log2 (2n− 2))
> ((4n− 4)/3) / (log2 (2n− 2)) = (2/3)× (2n− 2) / (log2 (2n− 2))
> 2/3 = m/(k × g) = m

(L)
PRO (since g = m/2 and k = 3).

(17.11)
When using Naor–Shamir (2, n)-VCS with m = n,w = m − 1, g = 1, we

have

m
(L)
LIN = (n/2)×m× 8/log2

(
m
w

)
= (4×m×m) /log2

(
m

m− 1

)
=
(
4m2

)
/log2 (m) = (4m) (m/log2 (m)) > 4m

> m/2 = m/(k × g) = m
(L)
PRO (since g = 1 and k = 2).

(17.12)
From Equations (17.10), (17.11), and (17.12), we obtain m

(L)
LIN > m

(L)
PRO.

The proof is completed. 2
Table 17.1 lists the pixel expansions of some (k, n)-TiOISSSs. Our scheme

(respectively, Lin and Lin’s scheme) could choose different g (respectively, w)
in the same m to reduce the shadow size. For example, both (2, 2)-TiOISSSs

can use B1 =
[

110
101

]
, B0 =

[
110
110

]
instead of B1 =

[
10
01

]
, B0 =

[
10
10

]
to

reduce the pixel expansions from m
(L)
PRO = 1 and m(L)

LIN = 16 to m(L)
PRO = 3/4

and m
(L)
LIN = 15.14, respectively. Our (2, 3)-TiOISSS could reduce the pixel

expansion from 3/2 to 3/4 by replacing B1 =

 100
010
001

, B0 =

 100
100
100

 with

B1 =

 110
011
101

, B0 =

 110
110
110

, but the pixel expansion m(L)
PRO = 22.71 of Lin

and Lin’s scheme cannot be further reduced since
(
m
w

)
=
(

3
2

)
=
(

3
1

)
.

Our pixel expansions m(L)
PRO = m/(k × g). when using Naor–Shamir (2, n)-

VCS, (3, n)-VCS and (n, n)-VCS, are n/2, 2/3 and 2/n, respectively. From
Equations (17.4), (17.7), and (17.8), it is observed that m(L)

LIN is n-intensive
and the value will increase when n increases whereas the other two schemes
are n-invariant. On the other hand, Lin and Lin’s scheme and our scheme
obtain more effective performance for large k than Jin et al.’s scheme because
their pixel expansions are inversely proportional to the value of k.

File sizes of shadows in Table 17.1 are represented in bits when using a
512 × 512 gray-level secret image. The values in parentheses imply that we
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send the raw data (use one bit ”1” (or ”0”) denoting the black (or white)
color) to transmit the black-and-white shadows for Jin et al.’s scheme and
Lin and Lin’s scheme. For example, when using the bitmap file format, the
number of bits per pixel, which is the color depth of the image, typically can
be 1, 4, 8, 16, 24, and 32. Even though both schemes use the color depth 1,
our TiOISSS (use the color depth 8) still has the lesser file sizes of shadows for
all cases in Table 17.1. For example, the file sizes of shadows for Jin et al.’s (3,
6)-TiOISSS and Lin and Lin’s (3, 6)-TiOISSS are 23592960 bits (≈23.6 Mbits)
and 5258608 bits (≈5.3 Mbits) when using one bit to represent the color, while
our (3, 6)-TiOISSS just needs only 1398101 bits (≈1.4 M Kbits) when using 8
bits to represent the color to transmit a gray-and-white shadow. Notice that
when all schemes are using the same file format of the color depth 8, Jin
et al.’s (3, 6)-TiOISSS and Lin and Lin’s (3, 6)-TiOISSS require 188743680
bits (≈188.7 Mbits) and 42068864 bits (≈42.1 Mbits), respectively, which are
significantly larger than 1.4Mbits.

By the contrast definition ((h− l)/(m+ l)) of VCS in [3], the contrasts of
the previewed images are calculated and shown. Since the previewed image is
used for verification in a distributed multimedia system; therefore, our primary
task is to choose the suitable m and g to obtain the reduced shadow size to
make the transmission and storage more efficient.

To elucidate on the good results of the proposed scheme among the exist-
ing TiOISSSs, some properties are evaluated: (1) the resolution of the recon-
structed image, (2) the decoding complexity, (3) the shadow images (including
the image pattern, the shadow size, the file size of shadow), and (4) the pixel
expansion. A comparison among three TiOISSSs in [6, 9, 20] is listed in Ta-
ble 17.2. All three schemes have dual modes of decoding—one for preview (or
when a computer is temporarily unavailable) and the other for perfectly recon-
structing the original gray-level secret image. Also, they all have a distinctive
stacking-to-see property. Our scheme and Lin and Lin’s scheme use Lagrange
interpolation for perfect reconstruction with the computational complexity
O(k) and no additional memory space, while Jin et al.’s scheme uses a 8× 8
ROM lookup table for reconstruction without computation. Our gray-and-
white shadows have the benefit of reducing the physical size and the file size
of the shadow when compared with other two TiOISSSs.

17.6 Conclusion

Our TiOISSS is a hybrid—half is the VCS and half is PISSS—with each spe-
cialties employed: the easy decoding of the VCS in Phase 1 and the perfect
reconstruction of PISSS in Phase 2. Our combination of the VCS and PISSS
is different from that in Lin and Lin’s TiOISSS [9]. Lin and Lin use the com-
binations in the m-subpixel block to represent the output value of PISSS,
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TABLE 17.1
Pixel expansions, file sizes of shadows, and contrasts of the previewed images for some (k, n)-TiOISSSs

(k, n) B1 B0 (m, w, g)
Jin et al’s TiOISSS#1 Lin and Lin’s TiOISSS#2 the proposed TiOISSS contrast of

previewed
image#4m#1 file size of shadow m#2 file size of shadow m#3 file size of shadow

(2, 2)#5

»
10
01

– »
10
10

–
(2, 1, 1) 18 37748736

(4718592)
16 33554432

(4194304)
1 2097152 1/2

(2, 2)

»
110
101

– »
110
110

–
(3, 1, 2) 27 56623104

(7077888)
15.14 31750880

(3968860)
3/4 1572864 1/3

(2, 3)#5

"
100
010
001

# "
100
100
100

#
(3, 2, 1) 27 56623104

(7077888)
22.71 47626320

(5953290)
3/2 3145728 1/4

(2, 3)

"
110
011
101

# "
110
110
110

#
(3, 1, 2) 27 56623104

(7077888)
22.71 47626320

(5953290)
3/4 1572864 1/3

(2, 4)#5

264 1000
0100
0010
0001

375
264 1000

1000
1000
1000

375 (4, 3, 1) 36 75497472
(9437184)

32 67108864
(8388608)

2 4194304 1/6

(2, 4)

264 1100
0110
0011
1001

375
264 1100

1100
1100
1100

375 (4, 2, 2) 36 75497472
(9437184)

24.76 51925480
(6490685)

1 2097152 1/5

(3, 3)#6

"
1001
0101
0011

# "
1010
1100
0110

#
(4, 2, 2) 36 75497472

(9437184)
12.38 25962736

(3245342)
2/3 1398101 1/4

(3, 4)#6

264 111000
110100
110010
110001

375
264 000111

001011
001101
001110

375 (6, 3, 3) 54 113246208
(14155776)

14.81 31058816
(3882352)

2/3 1398101 1/7

(3, 4)

264 111111000
111100110
111010101
111001011

375
264 011111100

011110011
011001111
000111111

375 (9, 3, 6) 81 169869312
(21233664)

15.02 31499216
(3937402)

1/2 1048576 1/9
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(3, 5)#6

264 11110000
11101000
11100010
11100001

375
264 00001111

00010111
00011011
00011110

375 (8, 4, 4) 72 150994944
(18874368)

17.40 36490440
(4561305)

2/3 1398101 1/11

(3, 6)#6

266664
1111100000
1111010000
1111001000
1111000100
1111000010
1111000001

377775
266664

0000011111
0000101111
0000110111
0000111011
0000111101
0000111110

377775(10, 5,
5)

90 188743680
(23592960)

20.06 42068864
(5258608)

2/3 1398101 1/14

(4, 4)#7

264 10001110
01001101
00101011
00010111

375
264 01001101

01100011
00111001
00010111

375 (8, 4, 4) 72 150994944
(18874368)

10.44 21894264
(2736783)

1/2 1048576 1/8

#1: mJIN =9m#2:m
(L)
LIN = (n/k)×m× 8 / log2

„
m
w

«
#3:m

(L)
PRO = m/(k × g)#4: contrast=((h− l)/(m + l))

#5: Naor–Shamir (2, n)-VCS #6: Naor–Shamir (3, n)-VCS #7: Naor–Shamir (n, n)-VCS
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TABLE 17.2
A comparison among three TiOISSSs.

TiOISSS Our scheme
[20]

Jin et al.’s
scheme [6]

Lin
and
Lin’s
scheme
[9]

the resolution
Phase 1 U U U

Phase 2 ∞ ∞ ∞

the decoding
complexity

Phase 1 H H H

Phase 2
the space complexity NO L-T

(8×8 ROM)
NO

the computational
complexity

L-I
(O(k))

NO L-I
(O(k))

the shadow
images

the pattern G-W B-W B-W

the shadow size S M L

the file size S M L

the pixel expansion S M L

the progressive decryption YES YES YES

Notation: ∞: Perfect reconstruction of the original image (note: for lossless version); U:
the unacceptable image quality of reconstructed image; H: stack shadows and use HVS to
preview the secret; L-I: use Lagrange interpolation for reconstruction; L-T: use a lookup table
for reconstruction; G-W: gray-and-white noise-like shadows; B-W: black-and-white noise-like
shadows; S, M, L: the values of shadow size, file size, and pixel expansion are small, medium,
and large scales, respectively.

while the value is embedded into GVCS to construct our TiOISSS. Finally,
our scheme reduces the shadow size and the file size of the shadow.
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105
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reconstructed image, 26
scheme robustness, 20
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security condition, 8
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visual cryptography, 2–3
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cryptography
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approaches for image sharing,
389–396

color image sharing based on
Lagrange interpolation,
389–392

color image sharing based on
moving lines, 392–396

improved algorithm, 399
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edge-based lookup table, 441
excursion skill, 437
experimental results, 453–458
Floyd and Steinberg error

diffusion strategy, 434
Gaussian filter, 440
HyperText Markup Language,

426
least significant bits, 432
lookup table, 441
most significant bits, 452
pixels

binary representations of, 429

© 2012 by Taylor & Francis Group, LLC



494 Index

positions of, 436
proposed scheme, 445–452
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Lin and Tsai’s scheme,
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Yang et al.’s scheme, 430–432

visual secret sharing, 426
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410
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FIGURE 2.1
Pixels superposition: black and white (left) and colored (right).

FIGURE 2.2
Electromagnetic spectrum.

FIGURE 2.3
Additive color model with primaries red, green, and blue.
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FIGURE 2.4
Subtractive color model with primaries cyan, magenta, and yellow.

FIGURE 2.5
Examples of pixels superposition.

FIGURE 2.6
More examples of pixels superposition.
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FIGURE 2.9
The vv trick for the case of 4 colors. Subpixels with different colors are never
superposed.

(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 7.9
Results of Steps 1 and 2 of Algorithm 8 for VCRG-3 with respect to color
image P in Experiment 3: (a) P ; (b) P c, (c) Pm, (d) Py; (e) P c, (f) Pm, (g)
Py.
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(a)

(b) (c) (d)

(e) (f) (g)

FIGURE 7.10
Results of Step 3 of Algorithm 8 with respect to Pm where Ey-
crypt cVCRG(Pm, m, 3) was based upon Algorithm 4: (a) Rm

1 , (b) Rm
2 ,

(c) Rm
3 ; (d) Rm

1 ⊗Rm
2 , (e) Rm

1 ⊗Rm
3 , (f) Rm

2 ⊗Rm
3 ; (g) Rm

1 ⊗Rm
2 ⊗Rm

3 .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 7.11
Results of Algorithm 8 for VCRG-3 with respect to P : (a) R1, (b) R2, (c)
R3; (d) R1 ⊗R2, (e) R1 ⊗R3, (f) R2 ⊗R3; (g) R1 ⊗R2 ⊗R3 (based upon
Algorithm 4); (h) R

′

1⊗R
′

2⊗R
′

3 (based upon Algorithm 5); (i) R
′′

1 ⊗R
′′

2 ⊗R
′′

3

(based upon Algorithm 6).
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(a) (b) (c)

(d) (e) (f)

(g)

FIGURE 7.13
Results of Algorithms 8 where Encrypt cVCRG(P x, x , 4) was based upon
Algorithm 4 for VCRG-4 with respect to P (Figure 7.9(a)): (a) R1, (b) R2,
(c) R3, (d) R4; (e) R1 ⊗R2; (f) R1 ⊗R2 ⊗R3; (g) R1 ⊗R2 ⊗R3 ⊗R4.
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(a) Original image and shares 1 and 2

(b) Original image and shares 1, 2, and 3

FIGURE 14.3
Experimental results of image sharing based on the Lagrange interpolation in
(a) and (b).

(a) Original image (b) Shares 1 (c) Shares 2

FIGURE 14.4
The image sharing by using a high degree polynomial interpolation in (a)-(c).
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FIGURE 14.8
The experimental results of image sharing by moving lines.

FIGURE 14.9
The experimental results of image sharing by moving lines.

FIGURE 14.10
The experimental results of image sharing by moving lines.

FIGURE 14.11
Breaking the correlation of neighboring blocks in an image.
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