
www.allitebooks.com

http://www.allitebooks.org

Visualforce Developer's Guide

Learn the latest developments in Salesforce with this
hands-on pocket guide

W.A.Chamil Madusanka

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Visualforce Developer's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1161013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-981-8

www.packtpub.com

Cover Image by Aashish Variava (aashishvariava@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
W.A.Chamil Madusanka

Reviewers
Aruna Lambat

Rahul Sharma

Niket Soral

Acquisition Editor
Rubal Kaur

Commissioning Editors
Shreerang Deshpande

Shaon Basu

Technical Editor
Krishnaveni Haridas

Project Coordinator
Akash Poojary

Proofreaders
Dirk Manuel

Stephen Copestake

Indexer
Tejal Soni

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

W.A.Chamil Madusanka is a Salesforce.com certified Force.com developer. He
has been working on Force.com projects since 2011. He is working as a developer
for many custom applications built on Force.com and has also trained end users and
new Salesforce developers in his current company (Attune Lanka (pvt) Ltd.) and
former company (Sabre Technologies (pvt) Ltd.). He has won the Salesforce New
Year Resolution 2013 challenge which was rolled out by Salesforce. He is an active
member of the Force.com community and he has been contributing to the Force.com
community through various channels. He is avid about Force.com and shares his
knowledge on Force.com technologies through his blog (http://salesforceworld.
blogspot.com/). He is a super-contributor on the Force.com discussion board
and shares his knowledge and experience on Force.com by providing effective
solutions to developer questions. He is the initiator and the group leader of the
Sri Lanka Salesforce Platform Developer User Group. His contribution to the Sri
Lanka Salesforce community has led to an increase in Salesforce competency in Sri
Lanka. He completed his B.Sc in Computer Science from the University of Colombo
School of Computing, Sri Lanka (UCSC). His areas of interest include Cloud
computing, semantic web technologies, and Ontology-based systems. Hailing from
Polonnaruwa, which is an ancient city in Sri Lanka, he currently resides in Gampaha
which is located in the Western province of Sri Lanka. His interests include reading
technology books and technology blog posts, and playing cricket. Chamil can be
reached via Twitter (@chamilmadusanka), Skype (chamilmadusanka), and e-mail
(chamil.madusanka@gmail.com).

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to express my gratitude to many people who saw me through this
book; to all those who provided support, read and offered their comments, allowed
me to quote their remarks, and proofread. I would like to thank Chandima Cooray,
Sriyangi Perera, and Asitha Siriwardhana who introduced me to the Salesforce path.
Their support and guidance has been a great strength when I started to work on
Salesforce technologies. I want to thank my family, who supported and encouraged
me and accepted the moments when I was away from them. I would like to thank
Packt Publishing for giving me the opportunity to write my first book. I would like
to thank Daniel D'Abreo, Ameya Sawant, Siddhant Shetty, Shreerang Deshpande,
Akash Poojary, Shaon Basu, and Krishnaveni Nair from Packt Publishing for helping
me throughout the process of completing the book. I would like to thank Aruna
Lambat, Rahul Sharma, and Niket Soral for their technical review of this book
and Udaya K. Jayawardhana, Priyanke Wijesekara, and Pushpani Nawarathna
for proofreading this book and for their valuable comments.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Aruna Lambat is a profound Technical Lead working on Salesforce.com
technology with an insightful understanding of software design and development.
She is passionate about building better products and providing excellent services
leading to healthier customer satisfaction. She started working on the Salesforce.
com platform in 2008. She entered into IT acquaintance in 2004 as a student. She
completed her Master's degree in Computer Applications from Maharashtra, India.
She is associated with the IT industry since 2007, having started her carrier as a Java
developer and later shifted her focus to Cloud computing specifically in Salesforce.
com. She has been a Salesforce Certified Developer (DEV401), Administrator
(ADM201) and Advanced Administrator (ADM301/211), providing regular
contributions to the Salesforce developer community. She is also certified for her
knowledge in Java as a Sun Certificated Java developer (SCJP) and Web component
developer (SCWCD). Before contributing to this book as a reviewer, she worked
previously as a technical reviewer for two Salesforce books: Visualforce Development
Cookbook and Force.com Tips and Tricks. She helped the author by citing an example
in the Force.com Developer Certification Handbook (DEV401) book. Aruna works with
a reputed India-based IT group MNC, which is primarily engaged in providing
a range of outsourcing services, business process outsourcing, and infrastructure
services. Aruna works as a Lead Consultant / Salesforce Application Architect in
the Salesforce.com technology-based customer services. Aruna resides in Pune, the
cultural capital of Maharashtra also known for its educational facilities and relative
prosperity. She is from Nagpur, the Orange city, and her parents stay in the heart
of Orange City. She completed her education in this city and achieved success at
different points in her carrier with immense support from her parents. Aruna loves
travelling (nature visits), reading fiction books, playing Pool, and roaming with
friends during her free time.

My special thanks to my parents Mr. and Mrs. Anandrao Lambat,
for always being there with me, for their immense help and
support, and for guiding me through each and every step making
it so enlightened.

www.allitebooks.com

http://www.allitebooks.org

Rahul Sharma has been working on Force.com projects since 2009. He is working
as a developer, analyst, and consultant for many custom applications built on Force.
com. He is an active member of the Force.com community and has completed his
Bachelor of Engineering. He resides in Mumbai (India). He participates in various
online coding challenges for learning new platforms and technologies.

Niket Soral is a Salesforce consultant from India having more than four years
of experience. In addition to Salesforce, he has good technical skills in Microsoft
Dynamics, data migration, integration through web services, and so on. He has also
developed some AppExchange products. He has done BSc (Bachelor of Science) and
MCA (Master of Computer Applications). He writes technical blogs and contributes
to community sites in his spare time. He is fond of listening to music and social
networking.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Visualforce	 7

The MVC model	 8
Understanding Visualforce	 8
The Visualforce architecture	 9
Advantages of Visualforce	 11
Visualforce development tools	 13
Summary	 13

Chapter 2: Controllers and Extensions	 15
Standard controllers	 16

How to use a standard controller with a Visualforce page	 16
Standard controller actions	 17

Standard list controllers	 20
How to use a standard list controller with Visualforce	 20
Standard list controller actions	 21

Custom controllers and controller extensions	 23
Understanding custom controllers	 23
Building a custom controller	 23
Understanding controller extension	 26
Building a controller extension	 27
Controller methods	 28

Getter methods	 29
Setter methods	 29
Action methods	 31

Working with large sets of data on the Visualforce page	 31
Order of execution of a Visualforce page	 32

Order of execution for a Visualforce page's get requests	 32
Order of execution for a Visualforce page's postback requests	 33

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Validation rules and standard controllers/custom controllers	 34
Using the transient keyword	 35
Considerations for creating custom controllers and
controller extensions	 36
Summary	 36

Chapter 3: Visualforce and Standard Web Development
Technologies	 37

Styling Visualforce pages	 38
Salesforce styles	 38
Custom styles	 38

Using JavaScript in Visualforce pages	 42
Accessing Visualforce components in JavaScript	 42
JavaScript remoting for Apex controllers	 44

Using jQuery in Visualforce pages	 47
HTML5 and Visualforce pages	 49
Summary	 50

Chapter 4: Visualforce Custom Components	 51
Understanding Visualforce custom components	 51
Creating and using a custom component	 52
Custom attributes and custom controllers	 54
Summary	 56

Chapter 5: Dynamic Visualforce Bindings	 57
Using dynamic references with standard objects and custom objects	 57
Referencing Apex Maps and Lists	 61
Working with field sets	 64
Summary	 64

Chapter 6: Visualforce Charting	 65
Limitations and considerations of Visualforce charting	 66
How does Visualforce charting work	 66

Providing chart data	 68
Using the controller method	 69
Using a JavaScript function	 69
Using a JavaScript array	 70

A complex chart with Visualforce charting	 71
Summary	 74

Table of Contents

[iii]

Chapter 7: Visualforce for Mobile	 75
Understanding Salesforce Mobile	 75

Salesforce Mobile and Visualforce Mobile supporting devices	 76
Capabilities and limitations of the mobile application	 77
Using Visualforce Mobile	 78

Developing and mobilizing Visualforce pages	 78
Best practices for building Visualforce Mobile pages for iPhone
and BlackBerry	 78
iPhone considerations	 80
BlackBerry considerations	 80
Developing cross-platform compatible pages	 81
Using the JavaScript library	 83
Building a mobile-ready Visualforce tab	 85
Creating the mobile configuration	 85

Summary	 86
Chapter 8: Best Practices for Visualforce Developments	 87

Accessing component IDs	 88
Page block components	 88
Controllers and controller extensions	 89
Improving Visualforce's performance	 89
Static resources	 92
Rendering PDFs	 92
Using component facets	 93
Summary	 94

Appendix: Security Tips for Apex and Visualforce Development	 95
Security scanning tools	 95

Force.com Security Source Scanner	 96
Cross-site scripting (XSS)	 97
Cross-site request forgery (CSRF)	 98
SOQL injection	 98
Data access control	 100
Summary	 100

Index	 101

Preface
Visualforce Developer's Guide is a practical, hands-on pocket guide that provides a
clear and simple guidance to develop Visualforce pages for the Force.com platform
and for mobile applications. It also contains a single, continuous, real-world example
with code samples. This book explains the Visualforce concepts and technical
aspects in a simple manner.

Visualforce Developer's Guide covers the main topics, starting with the development of
Visualforce for the Force.com platform, and continuing on to developing Visualforce
pages for Mobile applications quickly and painlessly.

The Force.com platform can automatically generate user interfaces (standard pages),
but in some cases you might need to build a more customized UI. Visualforce allows
developers to build sophisticated and customized user interfaces that can be hosted
natively on the Force.com platform. Visualforce is a framework that includes a
tag-based markup language similar to HTML.

What this book covers
Chapter 1, Getting Started with Visualforce, explains the MVC model and the
Visualforce architecture. We will be introduced to Visualforce pages. We will
understand MVC architecture and discuss about Visualforce pages. Further we will
understand the architecture of Visualforce pages. We will define the advantages of
Visualforce pages and will get an idea about Visualforce development tools.

Chapter 2, Controllers and Extensions, introduces the types of controllers and
extensions which can be used for Visualforce pages. We will understand the
controller types, and see some examples of these.

Preface

[2]

Chapter 3, Visualforce and Standard Web Development Technologies, explains how to
develop Visualforce pages with standard web development technologies such as
CSS, JavaScript, jQuery, and HTML5. The usage of static resource for CSS, JavaScript,
and jQuery are also included in the chapter.

Chapter 4, Visualforce Custom Components, gives an overview of Visualforce custom
components and further explains how to create a custom component and the usage
of custom components.

Chapter 5, Dynamic Visualforce Bindings, explains the usage of dynamic references
with standard objects and custom objects, how to reference Apex Maps and Lists,
and how to work with field sets.

Chapter 6, Visualforce Charting, discusses Visualforce charting, which is a collection
of components that provides a simple and intuitive way to create charts in your
Visualforce pages and custom components.

Chapter 7, Visualforce for Mobile, covers how to extend applications built on the Force.
com platform to mobile devices by using Visualforce Mobile.

Chapter 8, Best Practices for Visualforce Developments, explains the best practices for
Visualforce and Apex developments. We will look at how to improve the user
experience, and examine some coding standards for Visualforce development.

Appendix, Security Tips for Apex and Visualforce Developments, provides some security
tips for Visualforce and Apex developments. We will look at some tools to scan our
code for security and quality and will learn some security vulnerabilities.

What you need for this book
The prerequisites for the Force.com platform are as follows:

•	 Basic knowledge of Internet/websites
•	 A free Developer Force account (if you don't have one, please visit:

https://events.developerforce.com/signup)
•	 Basic knowledge of Visualforce

Preface

[3]

Who this book is for
Visualforce Developer's guide is not a complete reference or a bible for Visualforce
development. This is a time-saving pocket guide for Visualforce which includes
the most needed and used technical aspects of Visualforce developments.
Therefore, this book is suitable for the Force.com developers who have a
basic knowledge of Visualforce.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can reference a static resource
by name in page markup by using the $Resource global variable instead of
hardcoding document ID."

A block of code is set as follows:

<apex:page controller="TransientExampleController">
 Non Transient Date: {!t1}

 Transient Date : {!t2}

 <apex:form >
 <apex:commandLink value="Refresh"/>
 </apex:form>
</apex:page>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this:

"The Component Reference is the best place to explore different components and
their uses".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book, clicking
on the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be
uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
Visualforce

Cloud computing has made significant changes to the IT/software development
industry. Cloud platforms are one of the important directions of cloud computing.
Cloud platforms allow the developers to develop apps and run them on the Cloud,
including platforms for building on-demand applications and platforms as services
(PaaS). Salesforce.com has introduced the first on-demand platform called
Force.com.

This chapter will introduce you to Visualforce. We will go through the MVC
architecture and Visualforce. Furthermore, we will look at the architecture of
Visualforce pages. We will define the advantages of Visualforce pages and will
get an idea about Visualforce development tools.

This chapter covers the following topics:

•	 The MVC model
•	 Understanding Visualforce
•	 Visualforce architecture
•	 Advantages of Visualforce
•	 Visualforce development tools

So let's get started and step into Visualforce.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Visualforce

[8]

The MVC model
The Force.com platform uses the Model View Controller (MVC) architectural
pattern for developing an application. MVC splits the application development
tools as follows:

•	 Model: This defines the structure of the data. In Force.com, objects define the
data model. Salesforce has designed the platform by mapping every entity to
some object.

•	 View: This defines how the data is represented. In Force.com, page layouts
and Visualforce pages come under this category.

•	 Controller: This defines the business logic. The rules and actions which
manipulate the data controls the view. In Force.com, Apex classes, triggers,
workflows, approvals, and validation rules are under this category.

Controller

Standard ontrollersc

Custom ontrollersc
(Apex)

Model

Standard bjectso

Custom bjectso

View

Visualforce
pages/ omponentsc

Standard pages

The MVC Architecture

Understanding Visualforce
In the Force.com platform, we can develop Force.com applications with custom
objects and standard objects. Every object has a standard user interface with one
or more page layouts. But we cannot use standard page layouts for sophisticated
requirements. Here, Visualforce comes into play.

Chapter 1

[9]

Visualforce is a web-based UI framework, which can be used for building
sophisticated, attractive, and dynamic custom user interfaces. Visualforce allows
the developer to use standard web development technologies such as jQuery,
JavaScript, CSS, and HTML5. Therefore, we can build rich UIs for any app including
mobile apps. We'll be discussing about Visualforce with standard web development
technologies and Visualforce for mobile in more depth later. Similar to HTML, the
Visualforce framework includes a tag-based markup language.

A Visualforce page has two major elements called Visualforce markup and
Visualforce controller. Visualforce markup consists of Visualforce tags with the
prefix apex:, and there can be HTML tags, JavaScript, or any other standard
web development code. Visualforce controller consists of a set of instructions to
manipulate data and schema with the user interaction. It controls the interface as
well. A standard controller, which is created along with the object can be used as
Visualforce controller. A standard controller has the same logic and functionality
which is used in standard pages. But when we need to use a different logic or
functionality, we can write our own Apex controller class, and we can also write
extensions to standard controllers or custom controllers using the Apex language.
AJAX components, expression language formula for actions, and component binding
interactions are there in Visualforce.

The Visualforce architecture
Visualforce is a markup language similar to HTML. Visualforce pages run on
the Force.com platform and it can integrate with standard web development
technologies such as JavaScript, jQuery, and styling by CSS. It allows us to build
more rich and animated UIs. Each page can be identified by a unique page name.
Therefore a Visualforce page has a unique URL for accessing the page. A developer
can create a Visualforce page by entering the page name in the address bar, as shown
in the following screenshot:

Create a Visualforce page from a URL

Getting Started with Visualforce

[10]

After creating the page, we can access the page by using the same URL. The
Visualforce markup has a special set of components which is similar to the tag
library system of other markups. These components allow us to create complicated
components with a single tag. These components are processed and rendered on
servers and finally delivered to the client. This methodology has higher performance
and enriched functionality when compared to the client-only methods. A Visualforce
page runs on the platform shown in following diagram:

Force.com Platform

Application Server

Compiled Page
Page Compiler

Page Renderer Metadata
Repository

Internet

Uncompiled Page

Page Errors

HTML ResultDeveloper
User

Execution flow while saving Visualforce on a server

The preceding digram illustrates that every time a developer saves a Visualforce
page on a platform, the platform compiles the markup and related controllers.
On successful compilation, markup is converted into an abstract set of instructions
that can be understood by the Visualforce renderer. If there are any compilation
errors, then it stops saving the page and returns the errors to the developer. If
the saving attempt successfully finished, then the instructions are saved to the
metadata repository and sent to the Visualforce renderer. The renderer converts
the instructions into HTML, which can be understood by the browsers, and then
refreshes the page as shown in the following diagram:

Chapter 1

[11]

Force.com Platform

Application Server

Page Request

Page Renderer Metadata
Repository

Internet

Page Request

HTML Result
End User

Compiled Page

i

Execution flow of Visualforce page

The preceding diagram illustrates that when a non-developer user requests a
Visualforce page, the application server retrieves the page from the metadata
repository and then sends to the Visualforce renderer for HTML conversion.
There is no compilation because the page has already been compiled into
instructions during its development.

Advantages of Visualforce
The following are the advantages of Visualforce for a developer:

•	 Model-View-Controller development style: Visualforce adheres to the
MVC pattern by providing the View of the application in the Force.com
platform. A View is defined by user interfaces and Visualforce markup.
The Visualforce controller which can be associated with Visualforce markup
takes care of the business logic. Therefore, the designer and the developer
can work separately, while the designer focuses on user interface and the
developer focuses on business logic.

•	 User-friendly development: A developer (with an administrator profile) user
can have a Visualforce editor pane at the bottom of every Visualforce page.
This editor pane is controlled by the Development Mode option of the user
record. This feature allows us to edit and see the resulting page at the same
time and in the same window. This Visualforce editor has the code-saving
feature with auto compilation and syntax highlighting.

Getting Started with Visualforce

[12]

•	 A broad set of ready-to-serve Visualforce components: Visualforce has
a set of standard components in several categories. There are output
components, for example, <apex:outputPanel>, <apex:outputField>,
<apex:outputText>, <apex:pageBlock>,and so on. There are input
components, for example, <apex:inputFile>, <apex:inputField>,
<apex:inputText>, <apex:selectList>, and so on. These input and output
components have a feature called data-driven defaults. For an example, when
we specify the <apex:inputField> component in a particular Visualforce
page, the <apex:inputField> tag provides the edit interface for that field
with data-type-related widgets (for example, the Date field has the calendar,
and the e-mail/phone fields have their particular validations). There are also
AJAX components, for example, <apex:actionStatus>. AJAX components
allow the user to enhance the level of interactivity for a particular interface.

•	 Tightly integrated with Salesforce / Extends with custom components:
A Visualforce page can have a custom controller as well as a standard
controller. A standard controller is created while creating the object and can
be used for the Visualforce controller. A standard controller has the same
logic and functionality which is used in standard pages. Visualforce pages
adhere to these standardized methods and functionality. And we can also
extend the standard components with custom components. For example,
we can use an extension class for extending the standard controller of a
particular Visualforce page. We can create our own Visualforce custom
components instead of Visualforce in-built components for example,
<apex:inputFile>, <apex:inputField>, <apex:outputField>, and so on.
In the next two chapters we will discuss more about Visualforce controllers
and Visualforce custom components.

•	 Flexible and customizable with web technologies: The Visualforce
markup is more flexible and more customizable through the use of web
technologies, for example, JavaScript, CSS, jQuery, Flash, and so on because
it is eventually rendered into HTML. A designer can use the Visualforce
tags with these web technologies.

Chapter 1

[13]

Visualforce development tools
We can edit and view Visualforce pages from the set-up area by navigating to Your
Name | Setup | Develop | Pages.

But, that's not the best way to develop Visualforce pages. There are a few other ways
to build Visualforce pages, which are as follows:

•	 The Visualforce editor pane: This is discussed under the advantages of
Visualforce.

•	 The Force.com IDE: This IDE is used for creating and editing Visualforce
pages, custom Visualforce components, static resources, and controllers.

•	 The Eclipse plugin for Force.com: This is same as the Force.com IDE, we can
use it to create and edit Visualforce pages, custom Visualforce components,
static resources, and controllers are some of the major features of the
Force.com IDE.

Summary
In this chapter we became familiar with the MVC model and Visualforce. We saw
the Visualforce architecture and the advantages of Visualforce, and also the various
Visualforce development tools.

Controllers and Extensions
A set of instructions that can react on the user's interaction with Visualforce markup
(for example, a button click or a link click) is called as a controller. A controller can
control the behavior of a page and it can be used to access the data which should be
displayed on the page.

This chapter will introduce you to a few types of controllers and extensions
that can be used for Visualforce pages. We will learn the types of controllers
with examples.

This chapter covers the following topics:

•	 Standard controllers
•	 Standard list controllers
•	 Custom controllers and controller extensions
•	 Working with large sets of data on a Visualforce page
•	 Order of execution of a Visualforce page
•	 Validation rules and standard controllers or custom controllers
•	 Using the transient keyword
•	 Considerations for creating custom controllers and controller extensions

Let's look closer at controllers and extensions…

Controllers and Extensions

[16]

This chapter includes a set of examples to explain the important elements and
features of Visualforce. Starting from this chapter we will build an order processing
application. There are four custom objects (API names: Customer__c, Item__c,
Order__c, Order_Line__c) in this application. The following is the E-R diagram
of an order processing application which we will create on the Force.com platform:

The E-R diagram of an order processing application

Standard controllers
The Force.com platform provides a few types of controllers. The first one is standard
controller and every sObject has a standard controller. They have the same logic
and functionality as they are originally used in standard pages. Therefore we can use
standard controllers with Visualforce pages. For example, if we use Contact standard
controller for a Visualforce page, we can implement the standard Save method for
Contact without writing any additional Apex code. This behavior is the same as
implementing the Save method on the standard Contact edit page.

How to use a standard controller with a
Visualforce page
The <apex:page> tag has an attribute called standardController which is
used to associate a standard controller with a Visualforce Page. The value of
the standardController attribute would be the API name of an sObject:

<apex:page standardController="Customer__c">
</apex:page>

Chapter 2

[17]

The preceding code shows the usage of the standardController attribute.

You cannot use the standardController and controller attributes
at the same time.

Standard controller actions
In Visualforce pages, we can define the action attribute for the following standard
Visualforce components:

•	 <apex:commandButton>: This component creates a button that calls an action
•	 <apex:commandLink>: This component creates a link that calls an action
•	 <apex:actionPoller>: This component periodically calls an action
•	 <apex:actionSupport>: This component makes an event (such as onclick,

onmouseover, and so on) on another named component and calls an action
•	 <apex:actionFunction>: This component defines a new JavaScript function

that calls an action
•	 <apex:page>: This component calls an action when the page is loaded

An action method can be called from the page using the {!} notation. For
example, if your action method's name is MyFirstMethod, then you can use the
{!MyFirstMethod} notation for calling the action method from the page markup.

This action method can be from a standard controller or a custom
controller or a controller extension.

A standard controller has a few standard action methods, as follows:

•	 save: This method inserts/updates a record. Upon successful completion it
will be redirected to the standard detail page or a custom Visualforce page.

•	 quicksave: This method inserts/updates a record. There are no redirections
to a detail page or custom Visualforce page.

•	 edit: This method navigates the user to the edit page for current record.
Upon successful completion it will be returned to the page that invoked
the action.

•	 delete: This method deletes the current record. It redirects the user to the list
view page by selecting the most recently viewed list filter.

www.allitebooks.com

http://www.allitebooks.org

Controllers and Extensions

[18]

•	 cancel: This method cancels an edit operation. Upon successful completion
it will be returned to the page that invoked the edit action.

•	 list: This method redirects to the list view page by selecting the most
recently-viewed list filter.

For example, the following page allows us to insert a new customer or update an
existing customer record. If we are going to use this page to update a customer
record, then the URL must be specified with the ID query string parameter. Every
standard controller has a getter method that returns the record specified by the ID
query string parameter in the page URL. When we click on Save, the save action is
triggered on the standard controller, and the details of the customer are updated. If
we are going to use this page to insert a customer record, then the URL must not be
specified as a parameter. In this scenario, when we click on Save, the save action is
triggered on the standard controller, and a new customer record is inserted.

<apex:page standardController="Customer__c">
 <apex:form >
 <apex:pageBlock title="New Customer" mode="edit">
 <apex:pageBlockButtons >
 <apex:commandButton action="{!save}" value="Save"/>
 </apex:pageBlockButtons>
 <apex:pageBlockSection title="My Content Section"
columns="2">
 <apex:inputField value="{!Customer__c.Name}"/>
 <apex:inputField value="{!Customer__c.Email__c}"/>
 <apex:inputField value="{!Customer__c.Address__c}"/>
 <apex:inputField value="{!Customer__c.Telephone__c}"/>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:form>
</apex:page>

The page markup allows you to access fields of a particular sObject by
using {!sObjectAPIName.FieldAPIName}. For example, if you
want to access the Email field of the Customer object, the page that
uses the Customer__c standard controller can use {!Customer__c.
Email__c} to return the value of the Email field of the customer who is
in the current context.

Chapter 2

[19]

The following page allows us to view a customer record. In this page also, the
URL must be specified in the ID query string parameter. The getter method of the
Customer__c standard controller returns the record specified by the ID query string
parameter in the page URL:

<apex:page standardController="Customer__c">
 <apex:form >
 <apex:pageBlock title="Customer" mode="edit">
 <apex:pageBlockButtons >
 <apex:commandButton action="{!save}" value="Save"/>
 </apex:pageBlockButtons>
 <apex:pageBlockSection title="Customer Details"
columns="2">
 <apex:outputField value="{!Customer__c.Name}"/>
 <apex:outputField value="{!Customer__c.Email__c}"/>
 <apex:outputField value="{!Customer__c.Address__c}"/>
 <apex:outputField value="{!Customer__c.
Telephone__c}"/>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:form>
</apex:page>

To check the accessibility of a particular object for the logged user,
you can use the {!$ObjectType.objectname.accessible}
notation. This expression returns a Boolean value. For a example, if you
want to check the accessibility of the Customer object, you can use
{!$ObjectType.Customer__c.accessible}.

<apex:page standardController="Customer__c">
 <apex:form >
 <apex:pageBlock title="New Customer" mode="edit">
 <apex:pageBlockButtons >
 <apex:commandButton rendered="{!$ObjectType.
Customer__c.accessible}" action="{!save}" value="Save"/>
 </apex:pageBlockButtons>
 <apex:pageBlockSection title="Customer Details"
columns="2">
 <apex:inputField value="{!Customer__c.Name}"/>
 <apex:inputField value="{!Customer__c.Email__c}"/>
 <apex:inputField value="{!Customer__c.Address__c}"/>
 <apex:inputField value="{!Customer__c.Telephone__c}"/>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:form>
</apex:page>

Controllers and Extensions

[20]

The preceding code explains the usage of object accessibility. According to the
example, you can see the Save button, only if the particular user has security
permission to access the customer record.

Standard list controllers
The second controller type is the standard list controller which can be used for
displaying or performing an action on a set of records (including related lists, list
pages, and mass action pages). It allows us to filter records on a particular page.
We can use standard list controllers for Account, Asset, Campaign, Case, Contact,
Contract, Idea, Lead, Opportunity, Order, Product2, Solution, User, and all the
custom objects.

How to use a standard list controller with
Visualforce
Similar to the standard controller, we can specify the standardController attribute
of the <apex:page> component. Additionally, we need to specify the recordSetVar
attribute of the <apex:page> component.

The standardController attribute specifies the type of records that we
want to access. The recordSetVar attribute indicates that the page uses
a list controller and the variable name (used to access data in the record
collection) of the record collection.

The following markup explains how the page can access a list of records when the
page is associated with a list controller. In the following example, you can refer to a
list of customer records.

<apex:page standardController="Customer__c" recordSetVar="customers"
sidebar="false">
 <apex:pageBlock >
 <apex:pageBlockTable value="{!customers}" var="a">
 <apex:column value="{!a.name}"/>
 </apex:pageBlockTable>
 </apex:pageBlock>
</apex:page>

Chapter 2

[21]

The following screenshot illustrates the result of the preceding code:

The result page of the customer list example

Standard list controller actions
All the standard Visualforce components that have the action attribute can be
used with a Visualforce page with a standard list controller. The usage of those
components is same as for a standard controller. The following action methods
are supported by all standard list controllers:

•	 save: This action method inserts/updates a record. Upon successful
completion it will be redirected to the standard detail page or custom
Visualforce page.

•	 quicksave: This method inserts/updates a record. There are no redirections
to a detail page or a custom Visualforce page.

•	 List: This method redirects to the list view page by selecting the most
recently viewed list filter when the filter ID is not specified by the user.

•	 cancel: This method cancels an edit operation. Upon successful completion
it will be returned to the page which invoked the edit action.

•	 first: This method displays the first page of records in the set.
•	 last: This method displays the last page of records in the set.
•	 next: This method displays the next page of records in the set.
•	 previous: This method displays the previous page of records in the set.

List views in Salesforce standard pages can be used for filtering records that are
displayed on the page. For example, on the customer home page, you can select start
with c view from the list view dropdown and view the customers whose name starts
with the letter c. You can implement this functionality on a page associated with a
list controller.

Pagination can be added to a page associated with a list controller. The pagination
feature allows you to implement the next and previous actions.

Controllers and Extensions

[22]

For example, to create a simple list of customers with a list view and pagination,
create a page with the following markup:

<apex:page standardController="Customer__c" recordSetvar="customers">
 <apex:form id="theForm">
 <apex:pageBlock title="Viewing Customers">
 <apex:pageBlockSection >
 <apex:selectList value="{!filterid}" size="1">
 <apex:selectOptions value="{!listviewoptions}"/>
 <apex:actionSupport event="onchange"
rerender="list"/>
 </apex:selectList>
 </apex:pageBlockSection>

 <apex:pageBlockSection id="list">
 <apex:dataList var="a" value="{!customers}" type="1">
 {!a.name}
 </apex:dataList>
 </apex:pageBlockSection>

 <apex:panelGrid columns="2">
 <apex:commandLink action="{!previous}"
rerender="list">Previous</apex:commandlink>
 <apex:commandLink action="{!next}"
rerender="list">Next</apex:commandlink>
 </apex:panelGrid>
 </apex:pageBlock>
 </apex:form>
</apex:page>

The result of the preceding code is shown in the following screenshot:

Viewing customer list with pagination

Chapter 2

[23]

By default, a list controller returns 20 records per page. To control the
number of records displayed on each page, use a controller extension to
set the pageSize attribute.

Custom controllers and controller
extensions
Custom controllers are used to implement the logic and functionality without
using a standard controller and controller extensions are used to extend the logic
and functionality of a standard controller or a custom controller. Custom controllers
and Controller extension are written using Apex.

Understanding custom controllers
Custom controllers are used to implement logic and functionality without using a
standard controller. Custom controllers are written using Apex. The following are
the instances where you might want to use use a custom controller:

•	 Implement a completely different functionality without relying on the
standard controller's behavior

•	 Override existing functionality
•	 Make new actions for the page
•	 Customize the navigation
•	 Use HTTP callouts or web services
•	 Use a wizard
•	 Have a greater control over accessing information on a page
•	 Run your page without applying permissions

Only one controller can be used in a particular page.

Building a custom controller
You can build a custom controller via the Setup page and theVisualforce editor. All
the administrator and developer functionality are included in the Setup page, and
you can find the Setup page from the menu which appears after clicking on your
name (at the top of the page).

Controllers and Extensions

[24]

The Visualforce editor allows us to edit the markup of a Visualforce page in the
same window and we can see that the result of the page will also be displayed on the
same page. This editor has important functionality such as autocompletion, syntax
highlighting, quick fix features (developers can create components on the fly),
and compile on save using the following methods:

•	 Via the Setup page: This can be done by navigating to Your Name | Setup |
Develop | Apex Classes | New.

•	 Via the Visualforce editor: After creating the page you can specify the custom
controller's name in the controller attribute of the <apex:page> tag and then
click on the Save button. Then, if you are a developer, the page will be asking
you to create the class with the name that you entered. Then, the newly-
created controller will be shown on the Visualforce editor, as shown in the
next screenshot.

You have the choice to write controller classes using the sharing
or without sharing keyword, which is influenced to run the
particular page in the system mode or user mode.

Creating a custom controller via the Visualforce editor

Chapter 2

[25]

The following class is an example of custom controllers. This custom controller
has the functionality for retrieving the existing item list from the Item__c custom
object and adding a new item record. insertNewItem is the action method of
ItemController. ExistingITems is a list of item properties which is used to
retrieve the existing item records. The ExistingITems property has an overriden
get method:

public with sharing class ItemController {
 //public item property for new insertion
 public Item__c NewItem{get;set;}
 public ItemController(){
 NewItem = new Item__c();
 }

 //get existing items to show in a table
 public List<Item__c> ExistingITems{
 get{
 ExistingITems = new List<Item__c>();
 ExistingITems = [SELECT Id, Name, Item_Name__c, Unit_
Price__c FROM Item__c LIMIT 100];
 return ExistingITems;
 }
 set;
 }

 public PageReference insertNewItem() {
 try{
 insert NewItem;
 //reset public property for new insert
 NewItem = new Item__c();
 }catch(DmlException ex){
 ApexPages.addMessages(ex);
 }
 return null;
 }
}

A custom controller uses a nonparameterized constructor. You cannot
create a constructor that includes parameters for a custom controller.

Controllers and Extensions

[26]

The preceding controller is associated with the following Visualforce page. This
page has two <apex:pageBlock> components: one for displaying the existing
item records table and other for inserting new items:

<apex:page controller="ItemController">
 <apex:form >
 <apex:pageBlock title="Existing Items">
 <apex:pageBlockTable value="{!ExistingITems}"
var="oneItem" rendered="{!ExistingITems.size > 0}">
 <apex:column value="{!oneItem.Item_Name__c}"/>
 <apex:column value="{!oneItem.Unit_Price__c}"/>
 </apex:pageBlockTable>
 <apex:outputText value="No records to display"
rendered="{!ExistingITems.size == 0}"></apex:outputText>
 </apex:pageBlock>
 <apex:pageBlock title="New Item">
<apex:pageMessages ></apex:pageMessages>
 <apex:pageBlockSection >
 <apex:inputField value="{!NewItem.Item_Name__c}"/>
 <apex:inputField value="{!NewItem.Unit_Price__c}"/>
 </apex:pageBlockSection>
 <apex:pageBlockButtons >
 <apex:commandButton action="{!insertNewItem}"
value="save"/>
 </apex:pageBlockButtons>
 </apex:pageBlock>
 </apex:form>
</apex:page>

Understanding controller extension
Controller extensions are used to extend the logic and functionality of a standard
controller or a custom controller. A controller extension cannot be on a page without
a standard controller or a custom controller. Controller extensions are written using
Apex. Use controller extensions when you want to:

•	 Keep the majority of functionality of a standard or custom controller as it,
is and add more functionality

•	 Build a Visualforce page that should run according to the user's permissions

Chapter 2

[27]

Building a controller extension
We can build a controller extension in the same way as for building the
custom controller.

Extensions cannot live by themselves on a page. They can be used on
a Visualforce page with a custom controller or a standard controller.

The following class is a simple example of a controller extension. This
controller extension is used to extend the logic and the functionality of the
Order__c custom object's standard controller. In this extension, we have a one-
parameterized constructor to fetch the order record from the standard controller.
getRecord() is the method for fetching records from the standard controller. The
prepareFullOrder() method is a custom method that is implemented for querying
the order lines of a particular order:

public with sharing class OrderViewExtension{
 public Order__c CurrentOrder{get;set;}
 public List<Order_Line__c> OrderLines{get;set;}

 public OrderViewExtension(ApexPages.StandardController controller)
{
 CurrentOrder = new Order__c();
 this.CurrentOrder = (Order__c)controller.getRecord();
 prepareFullOrder();
 }

 public void prepareFullOrder(){
 OrderLines = new List<Order_Line__c>();
 OrderLines = [SELECT Id, Name, Price__c, Item__c, Item__r.
Unit_Price__c,Item__r.Item_Name__c, Order__c, Quantity__c FROM Order_
Line__c WHERE Order__c =: this.CurrentOrder.Id];
 }
}

A controller extension uses one-parameterized constructor with the
ApexPages.StandardController type of argument or a custom
controller type.

www.allitebooks.com

http://www.allitebooks.org

Controllers and Extensions

[28]

The following Visualforce page uses the preceding controller extension. On the page,
we have a page block with two sections. The first section shows us the order header
details. The second section is there to show the order lines of a particular order:

<apex:page standardController="Order__c" extensions="OrderViewExtensi
on">
 <apex:form >
 <apex:pageBlock >
 <apex:pageBlockSection title="Order Header">
 <apex:outputField value="{!Order__c.Name}"/>
 <apex:outputField value="{!Order__c.Customer__c}"/>
 <apex:outputField value="{!Order__c.Planned_Delivery_
Date__c}"/>
 </apex:pageBlockSection>
 <apex:pageBlockSection title="Order Lines" columns="1">
 <apex:pageBlockTable value="{!OrderLines}" var="line">
 <apex:column value="{!line.Name}"/>

 <apex:column headerValue="Item">
 <apex:outputLink value="/{!line.Item__c}"
target="_blank">{!line.Item__r.Item_Name__c}</apex:outputLink>
 </apex:column>
 <apex:column value="{!line.Item__r.Unit_Price__c}"/>
 <apex:column value="{!line.Quantity__c}"/>
 <apex:column value="{!line.Price__c}"/>
 </apex:pageBlockTable>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:form>
</apex:page>

Controller methods
There are three types of methods which can be used within a custom controller or a
controller extension:

•	 Getter methods
•	 Setter methods
•	 Action methods

Chapter 2

[29]

Getter methods
Developers can use getter methods to display a database or other computed values
in the Visualforce markup. This means that getter methods are used to pass data
from Apex controllers to the Visualforce page. There are two ways to define
getter methods.

Typically, getter methods are named as getVariable, where the variable is the name
of the attribute that is returned by the getter method:

public class GetterSetterExample{
 String GetterVariable;

 public String getGetterVariable() {
 return GetterVariable;
 }

}

A getter method can define an attribute by using the default getter and
setter methods:

public class GetterSetterExample{
 public String GetterVariableDefault{get;set;}
}

The variable can be accessed on the Visualforce page with the {!} expression.

Setter methods
Setter methods are used to pass user-defined values to the Apex controller. Setter
methods are defined in the same way as getter methods are defined. The following
example uses default getter and setter methods to search for items that are already in
the database:

public with sharing class SearchItemController {

 public List<Item__c> ExistingItems{get;set;}
 public String Keyword{get;set;}

 public SearchItemController(){
 ExistingItems = new List<Item__c>();
 }
 public void SearchItems(){
 ExistingItems = [SELECT Id, Name, Item_Name__c, Unit_Price__c
FROM Item__c WHERE Item_Name__c LIKE: ('%'+Keyword+'%')];
 }
}

Controllers and Extensions

[30]

The following is the Visualforce page that uses the preceding controller. The Keyword
attribute has the default getter and setter methods for the <apex:inputText>
component, which is used to acquire the user's input. The ExistingItems list
attribute also has the default getter and setter methods to search and display the
search result. When the user enters a keyword to search for and clicks on the Search
button, the SearchItems() action method will be executed and this will acquire
the keyword search text and run the query to search for the items. Before the action
method executes, the keyword setter method will be executed. Then the query result
will be collected to the ExistingItems list attribute and then the ExistingItems
getter method will be executed and the page will display the search result:

<apex:page controller="SearchItemController">
 <apex:form >
 <apex:pageBlock >
 <apex:pageBlockSection >
 <apex:pageBlockSectionItem >
 <apex:outputLabel value="Item Name Or keyword"></
apex:outputLabel>
 <apex:inputText value="{!Keyword}"/>
 </apex:pageBlockSectionItem>
 <apex:commandButton value="Search" action="{!SearchIte
ms}"/>
 </apex:pageBlockSection>
 </apex:pageBlock>

 <apex:pageBlock title="Search Result" id="searchResult">
 <apex:pageBlockTable value="{!ExistingItems}"
var="oneItem" rendered="{!ExistingItems.size > 0}">
 <apex:column value="{!oneItem.Item_Name__c}"/>
 <apex:column value="{!oneItem.Unit_Price__c}"/>
 </apex:pageBlockTable>
 <apex:outputText value="No records to display"
rendered="{!ExistingItems.size == 0}"></apex:outputText>
 </apex:pageBlock>
 </apex:form>
</apex:page>

Chapter 2

[31]

Action methods
Action methods are used to implement our custom or extended logic and
functionality in a custom controller or a controller extension. Action methods
can be triggered on page events such as button clicks or JavaScript events. In
Visualforce pages, we can define the action attribute in many standard Visualforce
components. The components are <apex:commandButton>, <apex:commandLink>,
<apex:actionPoller>, <apex:actionSupport>, <apex:actionFunction>, and
<apex:page>. The preceding item search example has an action method called
SearchItems. SearchItems is used to query items according to the user input
given for item search.

Working with large sets of data on the
Visualforce page
On a Visualforce page, we have to work with a single record as well as large sets
of data. When we work with large sets of data, we may use iteration components
such as <apex:pageBlockTable>, <apex:repeat>, and <apex:dataTable>. These
iteration components are limited to a maximum of 1000 items in a collection. Refer
the search item example for the usage of the iteration component. We have used
<apex:pageBlockTable> in the previous search item example.

Custom controllers and controller extensions adhere to the
Apex governor limits.

Visualforce provides the "read-only mode" feature to overcome the limit on the
number of rows that can be queried within one request and the limit on the number
of collection items that can be iterated on the page. There are two ways to set up the
Visualforce's read-only mode feature, which are as follows:

•	 Setting the read-only mode for controller methods: For this setting, we can
define Visualforce controller methods with the @ReadOnly annotation. This
read-only mode relaxes the number of records queried within one query
from 50,000 to 1 million rows. The @ReadOnly annotation for the read-only
mode is used in JavaScript remoting as the target of remote JavaScript call to
load the data set for the <apex:chart> component and display some values
in a component.

Controllers and Extensions

[32]

•	 Setting the read-only mode for an entire page: This read-only mode can
be enabled by adding a true value for the readOnly attribute, which is on
<apex:page>. This read-only mode relaxes the number of records queried
within one query from 50,000 to 1 million. It also increases the maximum
number of items in a collection for an iteration component. Because this
is a read-only mode, you have to note that the page cannot execute any
DML operation.

Order of execution of a Visualforce page
A Visualforce page has a life cycle or life-time. This time is defined as the period
between the creation of the page and its destruction during the user session. The life
cycle is defined by the type of Visuaforce page request and the content of the page.
There are two types of Visualforce page requests, which are as follows:

•	 Get request
•	 Postback request

Order of execution for a Visualforce page's
get requests
When we request a new page by entering a URL or by clicking on a button or a link,
a get request is created. The following diagram illustrates how a Visualforce page
interacts with a custom controller or a controller extension during a get request:

Custom
compon
ent on
page

2 Evaluate
constructors

on controllers,
extensions, &
expressions
on attribute
definitions

Evaluate
constructors
on controller

and
extensions

1

Evaluate
expressions,

<apex:page>
action

attribute, and
other method

calls

3

Yes

No

<apex:f
orm>

On
page>

4
Create view

state

Send HTML to
browser

5

Yes

No

Order of Execution for Visualforce page's get requests

Chapter 2

[33]

The order of execution is as follows:

1.	 Constructor methods are called by initiating the controller objects.
2.	 If there are any custom components, they are created and constructor

methods are called on their associated class. If any attribute is specified in
a component using an expression, those expressions are also evaluated.

3.	 Any assignTo attributes and expressions are evaluated. After that, the
action attribute on the <apex:page> component is evaluated and all the
getter or setter methods are called.

4.	 If the page contains an <apex:form> tag, then all of the information
representing the state of the database is encrypted and saved in the view
state between page requests. Whenever the page is updated, that view state
is also updated.

5.	 Finally, the resultant HTML is sent to the browser. If there are any client-side
technologies (such as JavaScript, and CSS), the browser executes them.

Order of execution for a Visualforce page's
postback requests
Some user interactions (for example, a save action triggered by the user's button
click) require page updates, typically those page updates are performed by postback
requests. The following diagram illustrates how a Visualforce page interacts with a
custom controller or a controller extension during a postback request:

Decode view
state

1 2 Evaluate
expressions

and all method
calls, including

those on custom
component
controllers

All methods
complete
successful

ly?

3
Evaluate

action that
triggered the

postback

All
methods
complete
successful

ly?

4

Send HTML to
browser

Update data
and redirect

user or
update view

state

Yes

Yes

No

No

Order of execution for a Visualforce page's postback requests

Controllers and Extensions

[34]

The order is as follows:

1.	 The view state is decoded and used as the basis for updating the values on
the page during a postback request.

2.	 Expressions are evaluated and setters are executed.
3.	 The action is executed. On its successful completion, the data is updated.

If the postback request redirects the user to the same page, the view state
is updated.

4.	 The results are sent to the browser.

If we want to execute an action without performing validations on the
input or data changes on the page, we can use an immediate attribute
with the true value for a particular component.

The postback request can end with a page redirect and sometimes the custom
controller or the controller extension may be shared on both the originating page and
the redirected page. If the postback request contains an <apex:form> component,
only the ID query parameter is returned.

The action attribute of the <apex:page> component is evaluated
only during a get request. Once the user is redirected to another page,
the view state and controller objects are deleted.

Validation rules and standard controllers/
custom controllers
Validation rules can be applied to custom or standard objects for validating data on
insert and update operations. When we perform such operations on a Visualforce
page, it uses a standard controller or a custom controller, and that record may
cause a validation rule error, which we can display on the Visualforce page as we
do on standard pages. A validation rule has two options to select the position for
displaying the error for a particular field. If we choose top of the page, the error can
be displayed by using the <apex:pageMessages> or <apex:messages> component
within the <apex:page> component. If we choose the field option, the error will be
shown in the associated field residing next to the <apex:inputField> component.
For an example, you can see the sample page given in the Building a custom
controller section.

Chapter 2

[35]

You can try the example by entering a non-numeric character for the Unit Price field.
An error message will be displayed near to the Unit_Price__c field, related to the
<apex:inputField> component.

Using the transient keyword
The transient keyword is used for declaring variables, and is used in Apex classes.
Declaring a variable as transient reduces the view state size. Variables with the
transient keyword cannot be saved and should not be transmitted as a part of the
view state of the particular Visualforce page. Transient variables are needed only for
the duration of a page request.

The transient keyword is used in a serializable Apex class, which means the classes
that implement the Batchable or Schedulable interfaces. The following Apex
objects are natively considered as transient:

•	 PageReference

•	 XmlStreamClasses

•	 Collections (only if the type of object that they hold is automatically
marked as transient)

•	 Most objects generated by system methods such as Schema.
getGlobalDescribe

•	 Static variables
•	 Instances of the JSONParser class

The following example has a transient datatime variable and a non-transient
datatime variable. This example shows the major feature of transient variables,
which is that they cannot be saved and should not be a part of the view state.
When we click on the Refresh button, the transient date will be recreated but
the non-transient date will have its original value:

<apex:page controller="TransientExampleController">
 Non Transient Date: {!t1}

 Transient Date : {!t2}

 <apex:form >
 <apex:commandLink value="Refresh"/>
 </apex:form>
</apex:page>

public with sharing class TransientExampleController {
 DateTime t1;
 transient DateTime t2;
 public String getT1() {
 if (t1 == null) t1 = System.now();

Controllers and Extensions

[36]

 return '' + t1;
 }

 public String getT2() {
 if (t2 == null) t2 = System.now();
 return '' + t2;
 }

Considerations for creating custom
controllers and controller extensions
When you are creating custom controllers and controller extensions, keep the
following consideration in mind:

•	 The most important thing to keep in your mind is Apex governor limits.
•	 Apex classes can be run in the system mode and user mode by using

without sharing and with sharing respectively. Sensitive data can
be exposed without sharing controllers.

•	 The webservice methods must be defined as global. All other methods
are public.

•	 Try to access the database in less time by using sets, maps, or lists.
This will increase the efficiency of your code.

•	 Apex methods and variables are not instantiated in a guaranteed order.
•	 You cannot implement Data Manipulation Language (DML) in the

constructor method of a controller.
•	 You cannot define the @future annotation for any getter method, setter

method, or constructor method of a controller.
•	 Primitive data types (String, Integer, and so on) are passed by value and

non-primitive Apex data types (list, maps, set, sObject, and so on) are
passed by the reference to a component's controller.

Summary
In this chapter, we became familiar with types of controllers and extensions. We
learned the differences and the usage of standard controller, standard list controller,
custom controller, and controller extension. We learned how to handle the code in
order work with a large set of data. Further, we have seen the order of execution of
a Visualforce page, usage of the transient keyword, and the interconnection between
validation rules and controllers.

Visualforce and Standard
Web Development

Technologies
The combination of native Visualforce markup and standard web development
technologies can be used to build rich UIs for Force.com applications. However
HTML rendering of Visualforce is complicated and there are many ways to change
Visualforce's generated default HTML by using additional resources such as CSS
and JavaScript.

This chapter teaches how to develop Visualforce pages with standard web
development technologies such as CSS, JavaScript, jQuery, and HTML5. The usage
of static resources for CSS, JavaScript, and jQuery are also included in the chapter.
The following topics will be covered in this chapter:

•	 Styling Visualforce pages
•	 Using JavaScript in Visualforce pages
•	 Using jQuery in Visualforce pages
•	 HTML5 and Visualforce pages

Let's build rich user interfaces.

www.allitebooks.com

http://www.allitebooks.org

Visualforce and Standard Web Development Technologies

[38]

Styling Visualforce pages
We use Visualforce pages to accomplish both simple UI requirements and
sophisticated UI requirements. In the case of implementing sophisticated scenarios,
we cannot meet such requirements by using only Salesforce's standard styles. We
can customize the look and feel of a Visualforce page by using our own stylesheets
or styles.

Many standard Visualforce components have the style and/or styleClass
attribute. We can use either of these attributes to customize the page by using
CSS. This allows us to change the default style (width, height, color, and font) of
components. There are two types of styles in Visualforce, which are as follows:

•	 Salesforce styles
•	 Custom styles

Salesforce styles
Salesforce standard pages have standard styles that can be used on Visualforce
pages. When we use standard Visualforce components such as <apex:inputField>,
<apex:pageBlock>, <apex:pageBlockTable>, and <apex:detail>, they acquire
the default styles provided by Salesforce. The tabStyle attribute in the <apex:page>
or <apex:apgeBlock> component can specify the style of a particular object tab. It
will change the color scheme of the preceding components. When we use a standard
controller, Visualforce page components inherit the styles of the associated objects.
When we use a custom controller, we can use the styles of any of Salesforce's
standard tabs by using the tabStyle attribute on the <apex:page> tag.

Custom styles
We can extend the Salesforce styles by using custom styles. Custom styles can be
added to a Visualforce page by using the style and/or styleClass attribute. The
style attribute and the styleClass attribute are available on most Visualforce
components. The style attribute allows you to add inline custom CSS statements.
The styleClass attribute allows you to add custom styles via a class name which
is specified in a CSS file.

In the following example, the sample Visualforce page has custom styles that have
been added via the style and styleClass attributes:

<apex:page >
<style>
 .sample {font-weight: bold;}
</style>

Chapter 3

[39]

<apex:outputText value="This text is styled via style attribute"
style="font-weight: bold;"/>

<apex:outputText value="This text is styled via styleClass attribute"
styleClass="sample"/>
</apex:page>

In the preceding example, we have implemented CSS on the Visualforce page. But, if
we use the same style in multiple locations, we have to add that particular CSS file to
every Visualforce page. We can use static resources to overcome this problem. This is
another way to bind custom styles to the Visualforce markup.

Static resources are uploaded to the Force.com platform via the Setup screen. The
Force.com platform allows us to upload images, stylesheets, JavaScript, and archives
(.zip and .jar files). The following is the stylesheet (CSS filename: main.css) we
have used above Visualforce page:

.sample {font-weight: bold;}

Let's see how we can upload this stylesheet into static resources. The resource
name is CusomMainStyle which must be unique. The resource can be created by
navigating to the following path:

Your Name | Setup | Develop | Static Resources | New

Use static resources to store CSS file

Visualforce and Standard Web Development Technologies

[40]

We can refer to the CustomMainStyle static resources in a Visualforce page as
follows. The <apex:stylesheet> tag can be used to include a stylesheet. The
resource name is used to refer the static resource in a Visualforce page as given
in the following code:

<apex:page>
<apex:stylesheet value="{!$Resource.CustomMainStyle}"/>

<apex:outputText value="This text is styled via styleClass attribute
via static resources" styleClass="sample"/>
</apex:page>

If you want to remove the Salesforce standard styles entirely, you
have to set a false value to the standardStylesheets , sidebar,
and showHeader attributes on the <apex:page> tag. If you stop
loading standard Salesforce stylesheets, you can reduce the size of your
Visualforce page:

<apex:page sidebar="false" showHeader="false"
standardStylesheets="false">

</apex:page>

We have mentioned earlier that the Force.com platform allows us to upload archive
files (such as ZIP and JAR files) as static resources. In such a scenario, a ZIP file can
contain resources such as images, CSS files and JavaScript files. In this case, we can
refer an individual resource within the ZIP file by using the URLFOR function. The
URLFOR function has two parameters. The first parameter is the name of the static
resource, which we provide while uploading a static resource. The second parameter
is the path to the particular file within the ZIP file. The static resource that is used
in the following example is a ZIP file that has the main.css stylesheet in a directory
called CustomStyleZipFolder.

Upload zip file as a static resource

Chapter 3

[41]

<apex:page >
<apex:stylesheet value="{!URLFOR($Resource.CustomStyleZip,'/
CustomStyleZipFolder/main.css')}"/>

<apex:outputText value="This text is styled via styleClass attribute
via static resources" styleClass="sample"/>

<apex:outputText value="Following image is loaded via css class"/>

<apex:outputPanel styleClass="imageCls">

</apex:outputPanel>

<apex:outputText value="Following image is loaded directly from static
resource"/>

<apex:image value="{!URLFOR($Resource.CustomStyleZip,'/
CustomStyleZipFolder/images/sfLogo.png')}" width="100" height="50"/>

</apex:page>

There is a special scenario with the static resources where you can use relative paths
of files in static resource. This allows us to refer to other contents within the archive
in a relative manner. For example, the Main.css file has the following style:

.sample {font-weight: bold;}

.imageCls {background:url(images/sfLogo.jpg) no-repeat top left;
 width: 100px;
 height: 100px;
 display: block;
 }

In the preceding style code, the image's path needs to be specified relatively to the
Main.css file. In this scenario, we prepare our CustomStyleZipFolder directory,
that contains the Main.css file and the images folder. Here, the sfLogo.jpg image
present in Images is referred in Main.css.

Then we only need to include the Main.css file into a Visualforce page. We do not
need to worry about the relative path in the stylesheet, because the static resource
contains both the stylesheet and the image.

Maximum size of a single static resource is 5 MB. Maximum size of static
resources that we can have in an organization is 250 MB.

Visualforce and Standard Web Development Technologies

[42]

Using JavaScript in Visualforce pages
JavaScript is one of the key browser technologies for Visualforce pages. JavaScript
provides the framework for communicating between other JavaScript objects,
HTML elements, and the Visualforce controller. We can use JavaScript libraries
as well as some Visualforce components (such as <apex:actionFunction>,
<apex:actionSupport>, <apex:commandButton>, <apex:commandLink>)
with Visualforce pages. JavaScript code can be written in a Visualforce page and
can be included in a Visualforce page by using a static resource. This is the best
method to use to include a JavaScript library in a Visualforce page. We can use
the <apex:includeScript> component to include a JavaScript library from static
resources. For example:

<apex:includeScript value="{!$Resource.MyJSFile}"/>

Accessing Visualforce components in
JavaScript
When we refer Visualforce components in the JavaScript code, the ID attribute comes
into play. Every Visualforce component has an ID attribute. The ID attribute must be
specified with a particular component to refer it in JavaScript, and it is used to bind
the two components together. When the page is rendered, this ID attribute is a part
of DOM ID for a particular component. The ID attribute must be unique as well.
The following code snippet shows a way of binding two components using the
id attribute:

<apex:outputLable value="Label Name" for="item"/>
<apex:inputField id="item" value="{!item__c.Name}">

The following example provides an idea about the way to handle JavaScript in a
Visualforce page. This page has been implemented to change the pick list value by
checkbox through JavaScript. The JavaScript code is included within the <script>
tag. The JavaScript function has two arguments. The first argument is the element
that triggered the event (input) and the second one is the DOM ID (id) of the target
pick list field. The {!$Component.inputStatus} expression obtains the DOM ID
of the HTML element generated by the <apex:inputField id="inputStatus"
value="{!order.Status__c}"/> component:

<apex:page controller="OrderStatusUpdate" id="pageId">
 <script type="text/javascript">
 function updateStatus(input,id) {

 if(input.checked){
 document.getElementById(id).value="Processing";
 //alert(document.getElementById(id).value);
 }else{

Chapter 3

[43]

 document.getElementById(id).value="New";
 //alert(document.getElementById(id).value);
 }
 }
 </script>
 <apex:form id="formId">
 <apex:pageBlock id="pageBId">
 <apex:pageBlockTable id="tableId" value="{!Orders}"
var="order">
 <apex:column value="{!order.Name}"/>
 <apex:column value="{!order.Customer__c}"/>
 <apex:column id="checkId" headerValue="Status">
 <apex:inputField id="inputStatus" value="{!order.
Status__c}" />
 </apex:column>
 <apex:column headerValue="Started Processing" >
 <apex:selectCheckboxes onclick="updateStatus(this,'{!$
Component.inputStatus}');" >

 </apex:selectCheckboxes>
 </apex:column>

 </apex:pageBlockTable>
 </apex:pageBlock>
 </apex:form>

</apex:page>

The following code is the associated controller class for the preceding Visualforce
page. It retrieves the existing orders as follows:

public with sharing class OrderStatusUpdate {

 public List<Order__c> Orders{get;set;}

 public OrderStatusUpdate(){
 Orders = new List<Order__c>();
 Orders = [SELECT id, Name, Customer__c, Status__c, Planned_
Delivery_Date__c, Delivered__c FROM Order__c LIMIT 1000];
 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Visualforce and Standard Web Development Technologies

[44]

JavaScript remoting for Apex controllers
Javascript remoting is the process that provides support for some methods in APEX
controllers that are to be called via JavaScript. This feature allows us to implement
complex and dynamic behaviors that cannot be accomplished using standard
Visualforce Ajax components. JavaScript remoting was released as a Developer
Preview in Spring '11. Since the Summer '11 release, JavaScript remoting provides
support for additional return data types. Also, the references to the same objects are
no longer duplicated in the response. JavaScript remoting has three main parts:

•	 The JavaScript code which is used to invocate a remote method
•	 The remote method in the Apex controller
•	 The callback function (written in JavaScript) in a Visualforce page

To use JavaScript remoting, your request must take the following form:

[<namespace>.]<controller>.<method>([params...,]
<callbackFunction>(result, event)
{
// callback function logic
}, {escape:true});

The description of the preceding code is as follows:

•	 namespace: This is your organization's namespace. This is only required if
the class comes from an installed package.

•	 controller: This is the name of your Apex controller.
•	 method: This is the name of the Apex method you're calling.
•	 params: This is a comma-separated list of parameters that your method takes.
•	 callbackFunction: This is the name of the function that handles the

response from the controller. It returns the status of the call and the
method result.

•	 escape: This specifies whether your response should be escaped (by default,
true) or not (false).

The remote method must begin with the @RemoteAction annotation as follows:

@RemoteAction
global static String getItemId(String objectName) { ... }

Chapter 3

[45]

The remote method can have the following data types as arguments:

•	 Apex primitives (String, Integer, and so on)
•	 Collections (Set, List, Map)
•	 sObject (Standard objects and custom objects)
•	 User-defined Apex classes and interfaces

The remote method can return the following data types:

•	 Apex primitives (String, Integer, and so on)
•	 sObjects (standard objects and custom objects)
•	 Collections (Set, List, Map)
•	 User-defined Apex classes and enums
•	 SelectOption

•	 PageReference

•	 SaveResult

•	 UpsertResult

•	 DeleteResult

The remote method must be uniquely identified by the name and
number of parameters. For example, we cannot write a remote
method with the same method name and equal number of arguments
and different type of arguments.

The following example shows how to use JavaScript remoting in a Visualforce page
and the Apex controller:

<apex:page controller="JavaScriptRemotingController" id="pageId">
 <script type="text/javascript">
function updateStatus(input,id) {
var inputStatus=id;
JavaScriptRemotingController.doStartShipping(inputStatus,function(res
ult,event){

},{escape:true});
}</script>

 <apex:form id="formId">
 <apex:pageBlock id="pageBId">

Visualforce and Standard Web Development Technologies

[46]

 <apex:pageBlockTable id="tableId" value="{!Orders}"
var="order">
 <apex:column value="{!order.Name}"/>
 <apex:column value="{!order.Customer__c}"/>
 <apex:column id="checkId" headerValue="Status">
 <apex:inputField id="inputStatus" value="{!order.
Status__c}" />
 </apex:column>
 <apex:column headerValue="Started Processing" >
 <apex:selectCheckboxes onclick="updateStatus(this,'{!
order.Id}');">
 </apex:selectCheckboxes>
 </apex:column>

 </apex:pageBlockTable>
 </apex:pageBlock>
 </apex:form>
</apex:page>

This is the associated Apex controller:

global with sharing class JavaScriptRemotingController {

 public List<Order__c> Orders{
 get{
 Orders = new List<Order__c>();
 Orders = [SELECT id, Name, Customer__c, Status__c, Planned_
Delivery_Date__c, Delivered__c FROM Order__c LIMIT 1000];
 return Orders;
 }
 set;
 }

 public JavaScriptRemotingController(){

 }

@RemoteAction
global static Item__c doStartShipping(String para){
 Order__c updateOrder;
 try{
 updateOrder=[SELECT id, Name, Customer__c, Status__c, Planned_
Delivery_Date__c, Delivered__c FROM Order__c Where Id =: para];
 updateOrder.Status__c = 'Shipping';
 update updateOrder;

Chapter 3

[47]

 }catch(DMLException e){
 ApexPages.addMessages(e);
 return null;
 }
return null;
}
}

Using jQuery in Visualforce pages
jQuery is an open source JavaScript library which allows us to implement client-side
scripting of HTML. jQuery has been designed to be capable of extending the main
libraries with new plugins for introducing a wide variety of new features. And also
it allows us to navigate a document, select a DOM element, create animations, event
handling, and develop Ajax applications.

When we develop Visualforce pages, jQuery can be used to simplify the UI
developments. For example, jQuery is used to simplify the DOM manipulations
and give access to the library of UI elements, and simplify the Ajax techniques
and technologies of mobile devices.

The following example shows the jQuery version of our previous example. This is
used to explain the JavaScript code in Visualforce. This example uses the Order__c
standard controller. This page needs the ID parameter with an order id:

https://c.ap1.visual.force.com/apex/JQueryExample?id=a02900000086Hlr

This page renders the order detail page. We are using jQuery to fulfill our
requirement. Therefore, the Visualforce page needs to include the jQuery library for
jQuery implementations. In the following example we used an online reference of the
main jQuery library:

 <apex:includeScript value="https://ajax.googleapis.com/ajax/libs/
jquery/1.7.2/jquery.min.js" />

You can also use static resources to include the jQuery library. The usage is same as
in the JavaScript and CSS examples.

There are other JavaScript libraries with the same default global
variable name ($). If we also use the same global variable name, there
will be a conflict at the client side. Our jQuery functions will not work.
To eliminate that conflict, we can use jQuery.noConflict() and
assign it to another global variable and use that new global variable in
our jQuery code.

www.allitebooks.com

http://www.allitebooks.org

Visualforce and Standard Web Development Technologies

[48]

<apex:page StandardController="Order__c" id="pageId">
 <apex:includeScript value="https://ajax.googleapis.com/ajax/libs/
jquery/1.7.2/jquery.min.js" />

 <script type="text/javascript">
 j$ = jQuery.noConflict();
 j$(document).ready(function() {
 j$('.checkBox').click(function () {
 j$('.inputStatus').val('Processing');
 });

 });
 </script>
 <apex:form id="formId">
 <apex:pageBlock id="pageBId">
 <apex:pageBlockSection id="pBlockSection">
 <apex:outputField value="{!Order__c.Name}"/>
 <apex:outputField value="{!Order__c.Customer__c}"/>
 <apex:inputField styleClass="inputStatus"
value="{!Order__c.Status__c}" />
 <apex:pageBlockSectionItem id="pbSectionItem">
 <apex:outputLabel value="Mark as Started
Processing"></apex:outputLabel>
 <apex:selectCheckboxes styleClass="checkBox" >
 </apex:selectCheckboxes>
 </apex:pageBlockSectionItem>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:form>
</apex:page>

If we don't use an id attribute for a particular component, Visualforce
uses a dynamically-generated id, for example, j_id0, j_id0:j_
id1. Consider an example, we have specified the id attribute for
<apex:inputField id="inputOne"/>. But we haven't specified
any id attribute for parent components of inputOne. We can select
such a component using jQuery. It is called partial selectors.
For example: j$('[id*= inputOne]')

Chapter 3

[49]

HTML5 and Visualforce pages
HTML5 is the new standard of HTML. The previous version of HTML is HTML 4.01.
HTML5 has new features such as new elements, new attributes, video and audio
support, 2D/3D graphic support, full CSS3 support, local storage, local SQL database
support, and featuring web applications. With these features, we can reduce the use
of external plugins. There are also are more markups to replace scripting. HTML5
has better error handling mechanism.

When it comes to the Force.com developments, we can use HTML5 for Visualforce
page developments and develop mobile web applications. In the Force.com platform,
HTML5 plays a major role in developing web-based mobile applications. For
example, recently Salesforce has released touch.salesforce.com, which uses HTML5.

By default, Visualforce pages are functioned with docType of HTML 4.01
transitional. Since the Winter '12 version, Visualforce pages are supported to
change the docType attribute in the <apex:page> tag. In a pure HTML5 page,
the <!DOCTYPE html> tag must be specified at the top of the page. The docType
attribute of <apex:page> achieves that requirement.

The following is the example usage for the docType Visualforce attribute on the
<apex:page> component:

<apex:page docType="html-5.0"><!-- HTML5 --></apex:page>
<apex:page docType="html-4.0.1-transitional"><!-- HTML 4.0.1
Transitional --></apex:page>
<apex:page docType="xhtml-5.0.1-strict"><!-- XHTML 5.0.1 Strict--></
apex:page>

The following example is a Visualforce page with drag-and-drop functionality by
using HTML5. Here we have a rectangle and an image which is referring from static
resources. We can drag the image into the rectangle:

<apex:page docType="html-5.0" sidebar="false" showHeader="false"
standardStylesheets="false" cache="true" >

<html>
<head>
<style type="text/css">
#div1 {width:400px;height:400px;padding:10px;border:1px solid
#aaaaaa;}
</style>
<script>
function allowDrop(ev)
{
ev.preventDefault();

Visualforce and Standard Web Development Technologies

[50]

}

function drag(ev)
{
ev.dataTransfer.setData("Text",ev.target.id);
}

function drop(ev)
{
ev.preventDefault();
var data=ev.dataTransfer.getData("Text");
ev.target.appendChild(document.getElementById(data));
}
</script>
</head>
<body>

<p>Drag the Salesforce logo into the rectangle:</p>

<div id="div1" ondrop="drop(event)" ondragover="allowDrop(event)"></
div>

<img id="drag1" src="{!URLFOR($Resource.CustomStyleZip,'/
CustomStyleZipFolder/images/sfLogo.png')}" draggable="true"
ondragstart="drag(event)" width="400" height="400"/>

</body>
</html>
</apex:page>

Summary
In this chapter we became familiar with the combined usage of native Visualforce
markup and standard web development technologies. We have seen the way to build
rich UIs in the Force.com platform by using CSS, JavaScript, jQuery, and HTML5.
We have learned the usage of static resources for CSS, JavaScript, and jQuery.

Visualforce Custom
Components

Salesforce has a large collection of standard Visualforce components such
as <apex:detail>, <apex:pageBlock>, <apex:pageBlockTable>, and
<apex:relatedList>. They are ready to be used in Visualforce pages, and
the Force.com platform allows us to build our own Visualforce components
which can be used in Visualforce pages.

This chapter serves as an overview of Visualforce custom components and further
explains how to create a custom component. This chapter covers the following topics:

•	 Understanding Visualforce custom components
•	 How to create and use a custom component in a Visualforce page
•	 Custom attributes and custom controllers

Let's build our own Visualforce custom components.

Understanding Visualforce custom
components
There are lots of standard Visualforce components (such as <apex:detail>,
<apex:pageBlock>, <apex:pageBlockTable>, and <apex:relatedList>)
which can be reused in Visualforce pages. A standard Visualforce component
is a pre-built, encapsulated code segment. These standard Visualforce components
are built according to common usage.

Visualforce Custom Components

[52]

The Force.com platform allows us to develop custom Visualforce components
that can be reused within a particular application. Custom components can be
developed using both Apex and Visualforce. For example, suppose we want to
create a customer summary with recent orders and we need to use this functionality
in different locations in our order processing app. We also need to specify the
number of recent orders. According to the specified number, the number of
recent orders displayed in the customer's summary will be changed. The use of
Visualforce custom components becomes the best choice for implementing such
a specific requirement.

A Visualforce custom component can have zero or more attributes to pass as
parameters into the component. A custom component with attributes is like a
parameterized Apex method. We can change the value of an attribute during
the final usage level (in a Visualforce page).

Creating and using a custom component
We can create a Visualforce component to use in a Visualforce page. Navigate to the
following path to create a new Visualforce component:

Your Name | Setup | Develop | Components | New

Create new Visualforce components

Chapter 4

[53]

We need to specify the following properties while creating a custom component:

•	 Label: This custom component will be identified in the setup tools by using
the label.

•	 Name: This custom component will be identified in Visualforce markup by
using name. This must be unique within the organization.

•	 Description: This gives the description of the custom component.
•	 Body: The Visualforce markup must be placed within the body section.

The name of the custom component should begin with a letter, and it
should not end with an underscore. Further, spaces or two consecutive
underscores should not be included in the name.
The maximum amount of data that a custom component can contain is 1
MB, or approximately 1,000,000 characters.
We can specify the version of Visualforce and the API used with the
particular component by using the version setting.

Visualforce Custom Components

[54]

The body of a custom component can be defined as follows:

<apex:component
 <!—Desire markup here-->
</apex:component>

The component markup is same as other Visualforce pages. It can be a
combination of Visualforce and HTML tags. We can also add customized
CSS and JavaScript.

All the markup should be defined within the <apex:component> tag. Our custom
component example is a customer's summary with recent orders. Suppose our
custom component name is customerSummary, we can use this component in
multiple Visualforce pages. The usage is as follows:

<apex:page>
 <c: customerSummary />
</apex:page>

Custom attributes and custom
controllers
When we are creating complex custom components, we need to use some other
features to build custom components. Mainly, we have to use custom attributes
and custom controllers for custom components. The attributes can be defined in
<apex:component> for passing values from the Visualforce page (the page that
used the component) to the custom component or to the component's controller.

We have implemented the example explained from the beginning of this chapter.
The following is the component markup and it contains the attribute's and the
component's definitions. We have two attributes to be passed, which are customer
ID and the number of recent orders that we want to show in the page. These two
parameters are used to pass the values to the component's controller:

<apex:component controller="CustomerSummaryComponenetController">
 <!-- Attribute Definitions -->
 <apex:attribute name="customerId" Type="String" required="true"
description="customer id" assignTo="{!CusID}"/>
 <apex:attribute name="noOfRecentOrders" Type="Integer"
required="true" description="Number of recent orders"
assignTo="{!RecentNo}"/>
 <!-- Attribute Definitions : End -->

Chapter 4

[55]

 <!-- Component Definition -->
 <apex:componentBody >
 <apex:pageBlock >
 <apex:pageBlockSection title="Customer Details">
 <apex:outputField value="{!CurrentCustomer.Name}"/>
 <apex:outputField value="{!CurrentCustomer.
Address__c}"/>
 <apex:outputField value="{!CurrentCustomer.
Email__c}"/>
 </apex:pageBlockSection>

 <apex:pageBlockSection title="Recent Order Details">
 <apex:pageBlockTable value="{!RecentOrderList}"
var="order">
 <apex:column value="{!order.Name}"/>
 <apex:column value="{!order.Planned_Delivery_
Date__c}"/>
 <apex:column value="{!order.Status__c}"/>
 </apex:pageBlockTable>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:componentBody>
 <!-- Component Definition : End -->

</apex:component>

The following code snippet shows the custom controller that is associated with
the cutomerSummary custom component. This controller is used to manipulate the
attribute's values. In this example, we have queried the customer record and the recent
order details of the particular customer. The query results of CurrentCustomer and
RecentOrderList depend on the CusID and RecentNo values:

public class CustomerSummaryComponenetController{
 public String CusID{get;set;}
 public Integer RecentNo{get;set;}
 public Customer__c CurrentCustomer{
 get{
 CurrentCustomer = new Customer__c();
 CurrentCustomer = [SELECT Id, Name, Address__c, Email__c,
Telephone__c FROM Customer__c WHERE Id =: CusID];
 return CurrentCustomer;
 }
 set;
 }
 public List<Order__c> RecentOrderList{

Visualforce Custom Components

[56]

 get{
 RecentOrderList = new List<Order__c>();
 RecentOrderList = [SELECT Id, Name, Customer__c,
Delivered__c, Planned_Delivery_Date__c, Status__c FROM Order__c WHERE
Customer__c =: CusID ORDER BY CreatedDate DESC LIMIT :RecentNo];
 return RecentOrderList;
 }
 set;
 }
}

This is the way of using our custom component. Here, we have passed the customer
ID and the number of recent orders values that we want to see:

<apex:page StandardController="Customer__c">
 <c:CustomerSummary customerId="{!Customer__c.Id}"
noOfRecentOrders="3"></c:CustomerSummary>
</apex:page>

The following screenshot shows the result of the customerSummary
custom component:

Summary
In this chapter, we saw an overview of Visualforce custom components. We now
have the knowledge to create and use Visualforce custom components. With the
usage of Visualforce custom components, we learned the mechanisms for reusing
code in Visualforce. We have seen how to build more customizable custom
components by using custom attributes and custom controllers.

Dynamic Visualforce Bindings
The dynamic Visualforce binding is one of the greatest features of the Spring '11
release. We can use this feature to build generic Visualforce pages without thinking
which record fields have to be shown on the page. The record fields are determined
at runtime rather than compile time. This is a powerful feature which allows us to
minimize the code (Visualforce and Apex code). Otherwise, we have to write more
queries, and have to populate lists of records, and render more fields. Using the
dynamic Visualforce binding, we can develop a single page that renders differently
for various users based on their authorizations or preferences.

This chapter covers the following topics:

•	 Using dynamic references with standard objects and custom objects
•	 Referencing Apex Maps and Lists
•	 Working with field sets
•	 Dynamic references to global variables

Let's learn about dynamic Visualforce binding…

Using dynamic references with standard
objects and custom objects
Dynamic Visualforce binding is supported for both standard and custom objects in
Salesforce. We can use dynamic binding in the following form:

reference[expression]

www.allitebooks.com

http://www.allitebooks.org

Dynamic Visualforce Bindings

[58]

Let's discuss the preceding form in detail:

•	 reference: This can be an sObject, an Apex class, or a global variable.
•	 expression: This can be the name of the field or a related object. If it is a

related object, then recursively-selected fields or further related objects can
be used.

Dynamic bindings can be used in the page where formula expressions
are valid. It is used with the {!} notation. If it is referenced from an Apex
class, then the particular attribute (sObject or variable) must be public
or global.

Defining relationships: If there are object relationships to be evaluated
in expressions, they become complex expressions. Consider our
example, where the Order__c custom object has a relationship with the
Customer__c custom object. The relationship between these two objects
is called Orders__r. The Customer__c object has the Email__c
field. The same Email__c field will be returned by the following
dynamically-cast lookups:

•	 Order__c.Customer__c['Email__c']

•	 Order__c['Customer__c.Email__c']

•	 Order__c['Customer__c']['Email__c']

•	 Order__c.Orders__r[Email__c]

•	 Order__c[Orders__r.Email__c]

•	 Order__c[Orders__r][Email__c]

A dynamic Visualforce page must have a standard controller and further
implementations can be done in an associated controller extension. The reason is that
Visualforce automatically handles the optimization of the SOQL queries performed
by the page's StandardController or StandardSetController object by loading
only the used fields.

Chapter 5

[59]

When we create a page with static references, the page can identify the fields
and objects during compilation. Then the StandardController object will
transform the particular fields and objects into SOQL queries. But the dynamic
references are evaluated at runtime and not at compile time. This means that
the dynamic references are evaluated after performing the SOQL query of the
StandardController object. Therefore, when we use dynamic references and we
have to provide some extra information to the controller extension, we can use the
addFields() method to add any number of additional fields. This method will pass
a list of additional fields to StandardController and those fields will load without
giving runtime errors. The usage of the addField() method is as follows:

public DynamicOrderExtension(ApexPages.StandardController controller)
{
controller.addFields(editableFields);
}

The following example shows the usage of dynamic Visualforce binding. This
page shows an order record with some editable fields. Some fields are related to
object(Customer__c). We can understand the usage of dynamic reference with
object relationship traversing.

<apex:page standardController="Order__c" extensions="DynamicOrderExte
nsion">
 <apex:pageMessages />

 <apex:form >
 <apex:pageBlock title="Edit Order" mode="edit">
 <apex:pageBlockSection columns="1">
 <apex:inputField value="{!Order__c.Name}"/>
 <apex:repeat value="{!editableFields}" var="f">
 <apex:inputField value="{!Order__c[f]}"/>
 </apex:repeat>
 </apex:pageBlockSection>
 </apex:pageBlock>
 </apex:form>
</apex:page>

Dynamic Visualforce Bindings

[60]

The following code is the controller extension of the preceding Visualforce page.
The DynamicOrderExtension controller extension has a list of strings called
editableFields and this string list contains some fieldnames of the Order__c
object and some fields of related object (Customer__c) of Order__c. In this example,
editable fields are hardcoded. But we can get information for your dynamic
references by using the Apex's Schema.sObjectType methods. This will make
a more dynamic and powerful reference. For example, Schema.SobjectType.
Order__c.fields.getMap() returns a map with the name of the Order__c fields.
The preceding markup has the <apex:repeat> tag, which is used to loop the
editableFields string list and the <apex:inputField> tag which displays that
particular returned string. It represents the field names of the order and the related
object's field names. The following markup line displays the dynamic reference:

<apex:inputField value="{!Order__c[f]}"/>

public with sharing class DynamicOrderExtension {
 public final Order__c orderDetails { get; private set; }

 public DynamicOrderExtension(ApexPages.StandardController
controller) {
 String qid = ApexPages.currentPage().getParameters().
get('id');
 String theQuery = 'SELECT Id, ' + joinList(editableFields, ',
') +
 ' FROM Order__c WHERE Id = :qid';
 this.orderDetails = Database.query(theQuery);
 controller.addFields(editableFields);
 }

 public List<String> editableFields {
 get {
 if (editableFields == null) {
 editableFields = new List<String>();
 editableFields.add('Delivered__c');
 editableFields.add('Customer__c');
 editableFields.add('Planned_Delivery_Date__c');
 editableFields.add('Status__c');
 editableFields.add('Customer__r.Email__c');
 }
 return editableFields ;
 }
 private set;
 }

 private static String joinList(List<String> theList, String
separator) {

 if (theList == null) {

Chapter 5

[61]

 return null;
 }

 if (separator == null) {
 separator = '';
 }

 String joined = '';
 Boolean firstItem = true;

 for (String item : theList) {
 if(null != item) {
 if(firstItem){
 firstItem = false;
 }
 else {
 joined += separator;
 }
 joined += item;
 }
 }
 return joined;
 }
}

This page needs to be accessed with the ID of a valid case record specified as the id
query parameter. For example, https://c.ap1.visual.force.com/apex/Dynamic
BindingExample?id=a02900000086Hlr.

Referencing Apex Maps and Lists
Apex Maps and Lists can be dynamically refered in a Visualforce page. Apex Lists
are vastly used with the <apex:pageBlockTable> and <apex:repeat> tags. In our
preceding example (under the Using Dynamic references with Standard objects and
custom object section) we have already seen the dynamic references of Apex List. The
following example shows the dynamic reference of an Apex Map. This is the markup
of the DynamicExampleListMap page:

<apex:page controller="DynamicBindingsMapListExample">
 <apex:form >
 <apex:actionFunction name="reDisplayCustomers" rerender="cust" />
 <apex:pageBlock title="Criteria">
 <apex:outputLabel value="Starting Letter"/>
 <apex:selectList value="{!selectedKey}" size="1" onchange="reDi
splayCustomers()">
 <apex:selectOptions value="{!keys}" />
 </apex:selectList>

Dynamic Visualforce Bindings

[62]

 </apex:pageBlock>
 <apex:pageBlock title="Customers">

 <apex:outputPanel id="cust">
 <apex:pageBlockTable value="{!customerMap[selectedKey
]}" var="cus">
 <apex:column value="{!cus.name}"/>
 <apex:column value="{!cus.Address__c}"/>
 <apex:column value="{!cus.Email__c}"/>

 </apex:pageBlockTable>
 </apex:outputPanel>
 </apex:pageBlock>
 </apex:form>
</apex:page>

The following is the related custom controller. The customerMap object
contains the customer's records and the pick list is dynamically filled with the
appropriate values from the Map. We can select a letter from the pick list and the
customer list, and then rearrange the result according to the selected letter. The
customerMap object returns the corresponding customer list at runtime by using the
{!customerMap[selectedKey]} dynamic reference:

public class DynamicBindingsMapListExample
{
 public Map<string, List<Customer__c>> customerMap{get; set;}
 public List<selectoption> keys {get; set;}
 public String selectedKey {get;set;}
 public Map<string, Customer__c> custByName {get;set;}

 public Set<string> getMapKeys()
 {
 return customerMap.keySet();
 }

 public DynamicBindingsMapListExample()
 {
 custByName = new Map<string, Customer__c>();
 List<string> sortedKeys=new List<string>();
 customerMap = new Map<string, list<Customer__c>>();

Chapter 5

[63]

 customerMap.put('All', new List<Customer__c>());
 List<Customer__c> customers = [SELECT Id, Name, Email__c,
Address__c FROM Customer__c ORDER BY Name asc];

 for (Customer__c tempCustomer : customers)
 {
 customerMap.get('All').add(tempCustomer);
 String start = tempCustomer.Name.substring(0,1);
 List<Customer__c> custFromMap = customerMap.get(start);
 if (custFromMap == null)
 {
 custFromMap =new List<Customer__c>();
 customerMap.put(start, custFromMap);
 }
 custFromMap.add(tempCustomer);
 custByName.put(tempCustomer.name, tempCustomer);
 }

 keys=new List<selectoption>();
 for (String key : customerMap.keySet())
 {
 if (key != 'All')
 {
 sortedKeys.add(key);
 }
 }
 sortedKeys.sort();
 sortedKeys.add(0, 'All');

 for (String key : sortedKeys) {
 keys.add(new SelectOption(key, key));
 }
 selectedKey='All';
 }
}

Dynamic Visualforce Bindings

[64]

Working with field sets
A field set is a group of fields which can be defined in a declarative manner. Field
sets are available in Visualforce pages in the API Version 21.0. These field sets can be
displayed on a Visuaforce page by dynamic binding. For example, suppose we have
created a field set (field set name: CustomerDetails) with the Email__c, Name, and
Address__c fields of the customer object. We can refer to the CustomerDetails field
set in Visualforce as follows:

<apex:page standardController="Customer__c">
 <apex:repeat value="{!$ObjectType.Customer__c.FieldSets.
CustomerDetails}" var="f">
 <apex:outputText value="{! Customer__c [f]}" />

 </apex:repeat>
</apex:page>

When we want to create a managed package or add/ remove/reorder fields in the
field set, we can accomplish that without modifying any code.

A Visualforce page can have up to 50 field sets.

Summary
In this chapter, we learned about the powerful feature of dynamic binding,
which was released by Spring'11. We became familiar with the usage of standard
and custom object dynamic references. And we acquired a good knowledge of
referencing Apex Maps/List and the way of using field sets. We have also seen
the usage of dynamic reference of global variables. With all these, we learned the
mechanisms of minimizing the Visualforce and Apex code.

Visualforce Charting
Visualforce charting is one of the best features from the Winter '13 release. It is
a collection of components which provides a simple way to create charts on our
Visualforce pages and Visualforce custom components. This feature gives us the
facility to customize charts that are based on our data sets from SOQL queries, and
create custom charts (such as pie, bar, and line charts) on our Visualforce pages.
We can create charts with Visualforce and Apex, and the charting component takes
care of all of the JavaScript code for us. Visualforce charts are rendered by using
JavaScript on the client side and it allows us to build animated and visually excited
charts on the Visualforce pages.

Sometimes, the standard Salesforce charts and dashboards may be insufficient to
meet our requirements. This is where Visualforce charting comes into play. When
we cannot fulfill our requirement with Visualforce charting we can use Google
charts in Visualforce.

This chapter explains Visualforce charting, which is a collection of components that
provides a simple and intuitive way to create charts in your Visualforce pages and
custom components. The following topics will be covered in this chapter:

•	 Limitations and considerations of Visualforce charting
•	 How does Visualforce charting work
•	 A complex chart with Visualforce charting

Let's build some exciting Visualforce charts…

Visualforce Charting

[66]

Limitations and considerations of
Visualforce charting
When Force.com released the Visualforce charting feature, they announced a few
known limitations and considerations for Visuaforce charting, which are as follows:

•	 Visualforce charting can be rendered only in Scalable Vector Graphics
(SVG) supported browsers.

•	 Visualforce charts cannot be displayed in pages rendered as PDFs because
Visualforce charting uses JavaScript to draw the charts.

•	 Visualforce charting is not used in e-mail messages or e-mail templates
because e-mail clients do not support JavaScript's execution in
e-mail messages.

•	 When we develop a Visulforce page with Visualforce charting, we need to
use a JavaScript debugging tool such as Firebug to track errors and messages
returning from Visualforce charting to the JavaScript console.

•	 Dynamic Visualforce charting (Apex-generated) is still (as of Spring 2013) not
supported by the Force.com platform. However, this feature is supposed to
be released soon.

How does Visualforce charting work
Visualforce charting relies on Apex, Visualforce, and JavaScript. When we create
Visualforce charts, we need an Apex method to prepare or query data to use as the
source of the chart. Then we need to define our chart by using Visualforce charting
components. The chart data that is prepared in the Apex method is bound to the
chart component and the JavaScript draws the chart in the browser.

A Visualforce chart needs a chart container that has at least one data series
component. We have the ability to add additional series, chart axes, and labeling
components (such as legend, chart labels, and tool tips for data points).

Chapter 6

[67]

The following example creates a simple pie chart that contains the number of items
that are delivered to customers. In this example, we have hardcoded values for the
chart data source. The following is the markup of a pie chart example:

<apex:page controller="VFChartController" title="Pie Chart">
 <apex:chart height="350" width="450" data="{!chartData}">
 <apex:pieSeries dataField="data" labelField="name"/>
 <apex:legend position="right"/>
 </apex:chart>
</apex:page>

Here is the associated custom controller, which prepares the data source for the
chart. The chart container is defined by the <apex:chart> component and data
binding is done by the getChartData() controller method. The <apex:pieSeries>
component defines the label and data field from the returned data as follows:

public class VFChartController {

 public List<PieChartData> getChartData () {
 List<PieChartData> data = new List<PieChartData>();
 data.add(new PieChartData('RAM', 30));

 data.add(new PieChartData('Hard Disk', 15));
 data.add(new PieChartData('VGA Card', 10));
 data.add(new PieChartData('Mouse', 20));
 data.add(new PieChartData('USB Drive 16BG', 20));
 data.add(new PieChartData('USB Drive 32BG', 5));
 return data;
 }
 // Wrapper class
 public class PieChartData {
 public String name { get; set; }
 public Integer data { get; set; }

 public PieChartData(String name, Integer data) {
 this.name = name;
 this.data = data;
 }
 }
}

Visualforce Charting

[68]

The resultant chart of the preceding example is shown in the following screenshot:

The resultant pie chart

The preceding example illustrates the following points:

•	 PieChartData: This is an inner class which has a set of properties to define
the label (the name property) and the data (the data property) of the chart.

•	 getChartData(): This method returns a list of wrapper objects of
PieChartData. These list elements create the data points for the chart.

•	 <apex:pieSeries>: This component defines the label and data field from
the returned data (objects of PieChartData).

Providing chart data
The following are the three different ways to provide data source to the chart:

•	 Using the controller method
•	 Using a JavaScript function
•	 Using a JavaScript array

Chapter 6

[69]

Using the controller method
This technique has been illustrated in our simple pie chart example. This is a
server-side technique and here we have used a controller method to return a list of
objects. This object list can be our own Apex wrapper objects (as in our previous
example), AggregateResult objects. or sObjects. The result of the method
is serialized to JSON on the server side, and the result is directly used by the
<apex:chart> component on the client side. Refer to the simple pie chart
example for this technique.

Using a JavaScript function
There is another way to provide data to the chart component that is via a JavaScript
function. We can use the name of the JavaScript function in the <apex:chart>
component. This JavaScript function is the data provider and it can be defined in
the Visualforce page or linked to the Visualforce page. We can use this JavaScript
function to manipulate the data before sending it to the <apex:chart> component.
See the JavaScript Remoting for Apex Controllers section for more information about
using JavaScript remoting in Visualforce. The following is a simple example of a
JavaScript function with the <apex:chart> component:

<apex:page controller="VFRemoteChartController" title="Pie Chart">
 <script>
 function getRemoteChartData(callback) {
 VFRemoteChartController.getRemotePieChartData(function(result,
event) {
 if(event.status && result && result.constructor === Array) {
 callback(result);
 }
 });
 }
 </script>
 <apex:chart height="350" width="450" data="getRemoteChartData">
 <apex:pieSeries dataField="data" labelField="name"/>
 <apex:legend position="right"/>
 </apex:chart>
</apex:page>

Visualforce Charting

[70]

The following class is the associated custom controller of the preceding page. We
have defined the remote method with the @RemoteAction annotation. That remote
method transforms the data into the chart component:

public class VFRemoteChartController {

 @RemoteAction
 public static List<PieChartData> getRemotePieChartData() {
 List<PieChartData> data = new List<PieChartData>();
 data.add(new PieChartData('RAM', 30));

 data.add(new PieChartData('Hard Disk', 15));
 data.add(new PieChartData('VGA Card', 10));
 data.add(new PieChartData('Mouse', 20));
 data.add(new PieChartData('USB Drive 16BG', 20));
 data.add(new PieChartData('USB Drive 32BG', 5));
 return data;
 }

 // Wrapper class
 public class PieChartData {
 public String name { get; set; }
 public Integer data { get; set; }

 public PieChartData(String name, Integer data) {
 this.name = name;
 this.data = data;
 }
 }
}

Using a JavaScript array
Another way of providing data is by using a JavaScript array. We can use Visualforce
charting without using any custom controller by using a JavaScript array which
can be Salesforce data or non-Salesforce data. We can query the Salesforce data in
JavaScript code by using the Ajax Toolkit API which is a JavaScript wrapper around
the API and we can build non-Salesforce data sources by using a JavaScript array
in our own JavaScript code. Then we can use the array in the chart component by
providing the name of the array to the <apex:chart> component. This method is
useful when your data source relies only on the client side, and not on the server
side. The following example illustrates how to define a Visualforce chart with a
JavaScript array:

Chapter 6

[71]

<apex:page >
 <script>
 // Build the chart data array in JavaScript
 var dataArray = new Array();
 dataArray.push({'data':15,'name':'Hard Disk'});
 dataArray.push({'data':10,'name':'VGA Card'});
 dataArray.push({'data':20,'name':'Mouse'});
 dataArray.push({'data':20,'name':'USB Drive 16BG'});
 dataArray.push({'data':5,'name':'USB Drive 32BG'});
 </script>
 <apex:chart height="350" width="450" data="dataArray">
 <apex:pieSeries dataField="data" labelField="name"/>
 <apex:legend position="right"/>
 </apex:chart>
</apex:page>

Visualforce charts are more customizable. We can customize the look and
feel of elements, markers, the opacity of fill colors/lines, and can combine
various data sources.

A complex chart with Visualforce
charting
We can use Visualforce charting to build complex charts that represent various data
series in one chart. For example, we can build a chart with multiple data series. The
following example shows the number of items sold in three different years. The code
shows the custom controller the custom controller. The getComplexChartData()
method prepares the data for the chart component. This controller also has a
@RemoteAction method to get the data to the chart component. But this example
hasn't used the JavaScript remoting. It illustrates the way of reusing the data
generation method for both server-side and JavaScript remoting methods.

public class ComplexChartController{

 // Return a list of data points for a chart
 public List<ChartData> getVFChartData() {
 return ComplexChartController.getComplexChartData();
 }

 // Make the chart data available via JavaScript remoting
 @RemoteAction

Visualforce Charting

[72]

 public static List<ChartData> getRemoteVFChartData() {
 return ComplexChartController.getComplexChartData();
 }

 //prepare data sources
 public static List<ChartData> getComplexChartData() {
 List<ChartData> data = new List<ChartData>();
 data.add(new ChartData('RAM', 1300, 1275, 2534));
 data.add(new ChartData('Hard Disk', 1234, 2431, 1534));
 data.add(new ChartData('VGA Card', 2634, 2500, 2376));
 data.add(new ChartData('Mouse', 1765, 2000, 1432));
 data.add(new ChartData('USB D 16BG', 967, 932, 1450));
 data.add(new ChartData('USB D 32BG', 500, 765, 1768));
 return data;
 }
 // Wrapper class
 public class ChartData{
 public String name { get; set; }
 public Integer data1 { get; set; }
 public Integer data2 { get; set; }
 public Integer data3 { get; set; }

 public ChartData(String name, Integer data1, Integer data2,
Integer data3) {
 this.name = name;
 this.data1 = data1;
 this.data2 = data2;
 this.data3 = data3;
 }
 }
}

Chapter 6

[73]

The following screenshot represents a chart with three line series. This chart
illustrates the number of items sold in three different years:

The output of the complex chart example

The x and y axes need to be defined in line and bar charts.

The markup of the complex chart example is as follows:

<apex:page controller="ComplexChartController">
 <apex:chart height="400" width="700" data="{!vFChartData}">

 <apex:axis type="Numeric" position="left" fields="data1"
title="Items Sold Quantity" grid="true"/>
 <apex:axis type="Category" position="bottom" fields="name"
title="Item"> </apex:axis>

Visualforce Charting

[74]

 <apex:lineSeries axis="left" fill="true" xField="name"
yField="data1" markerType="cross" markerSize="4"
markerFill="#FF0000"/>
 <apex:lineSeries axis="left" xField="name" yField="data2"
markerType="circle" markerSize="4" markerFill="#8E35EF"/>
 <apex:lineSeries axis="left" xField="name" yField="data3"
markerType="circle" markerSize="8" markerFill="#FFFFFF"/>
 </apex:chart>
</apex:page>

Summary
In this chapter, we became familiar with Visualforce charting which allows us to
build customized charts based on our data. We learned that Visualforce charting
is a JavaScript-based feature. Therefore, we have learned about the limitations and
considerations of Visualforce charting. We have also seen how to create simple and
complex charts by using Visualforce charting components.

Visualforce for Mobile
Using Visualforce and Apex we can build complex, dynamic, and powerful native
applications on the Force.com platform. Nowadays, users are not satisfied only
with only a web application, due to the competition in the industry. When it comes
to applications on the Force.com platform, we can extend them to mobile devices
by using Visualforce Mobile. Visualforce Mobile is a hybrid of client-side and
on-demand programming. This allows us to extend applications for mobile
devices with offline data access flexibility. We can rapidly build apps for mobile
devices by using Visualforce and Apex.

This chapter covers how to extend applications built on the Force.com platform
for mobile devices, and how developers can use Visualforce Mobile. The following
topics will be covered in this chapter:

•	 Understanding Salesforce Mobile
•	 Developing and mobilizing Visualforce pages

Let's build Visualforce for mobiles.

Understanding Salesforce Mobile
Salesforce Mobile is a client application provided by Salesforce. Salesforce Mobile
is used to extend applications which are built on the Force.com platform. This
allows us to access the Salesforce data from BlackBerry, iPhone, or Windows
Mobile devices. The Salesforce Mobile client application has the following features:

•	 Makes the interaction with Salesforce via wireless carrier networks
•	 Stores a local copy of user's data on the mobile device. It uses its

own database.

Visualforce for Mobile

[76]

A set of parameters which is called as Mobile configuration is determined by
the data sent to the mobile device. It defines the relevant subset of the user's
Salesforce records.

If we access the Salesforce data via a mobile device, we need a
separate Salesforce Mobile user license for a particular user. The
Developer and Ultimate editions have only one mobile license.
Others must be purchased separately.

Salesforce Mobile and Visualforce Mobile
supporting devices
Salesforce Mobile is supported on BlackBerry, iPhone, and Windows Mobile.
Currently, Windows Mobile is not supported for Visualforce Mobile. BlackBerry
and iPhone devices must have following requirements:

•	 BlackBerry configurations are as follows:
°° Supported OS versions 4.3 through 7.0 and for better performance

versions 4.6 through 4.7
°° A minimum of 5 MB of free memory should be available on

the device
°° The mobile client application is supported on BlackBerry 8100 Series

(Pearl), BlackBerry 8300 Series (Curve), BlackBerry 8800 Series,
BlackBerry 8900 Series (Javelin), BlackBerry 9000 Series (Bold),
and BlackBerry 9500 Series (Storm)

You don't need to own an iPhone or a BlackBerry device to
develop and test applications. You can use simulators.

•	 iPhone configurations are as follows:

°° Supported for latest iPhone OS
°° A minimum of 5 MB of free memory should be available on

the device
°° The mobile client application is supported on iPhone, iPhone 3G,

iPhone 3GS, and iPod Touch

Chapter 7

[77]

Capabilities and limitations of the mobile
application
The native client application of Salesforce Mobile has an embedded browser which
is used to communicate between a client application and a Visualforce page. There
are a few concerns to consider when we are using Salesforce Mobile, which are
as follows:

•	 Accounts, assets, contacts, opportunities, tasks, leads, events, price books,
products, cases solutions, and custom objects can be mobilized.

•	 Custom links, s-controls, mashups, merge fields, and image fields cannot
be mobilized.

•	 Workflow rules, validation rules, formula fields, and Apex triggers are not
suitable to be run on the mobile device. However, they can be run on the
server side after a record is saved and submitted to Salesforce.

•	 User permissions, record types, and page layouts are inherited from
Salesforce. However, the administrator can change them to restrict the
permissions of mobile users.

•	 When we add a child data set to a parent data set, the object becomes a
related list on the mobile device.

•	 Reports are available only in a BlackBerry client application, but dashboards
are available in both iPhone and BlackBerry.

•	 Sorting, summaries, subtotals, or grouping are not supported in the report
viewer of the mobile application.

•	 Custom views of Salesforce can be accessed by iPhone and BlackBerry users,
but the custom views can be created only by BlackBerry users.

•	 In the mobile application, custom views are limited to two columns.
•	 Mobilized Visualforce tabs and web tabs can be accessed in the client

application by both iPhone and BlackBerry users.

The embedded browser communicates with Salesforce using the device's
internet connection; the native client application communicates with
Salesforce asynchronously through the SOAP API. The embedded
browser can execute JavaScript, but the native client application cannot.

Visualforce for Mobile

[78]

Using Visualforce Mobile
When we use mobile applications, they are client-side applications and they
need an installation. The mobile applications need a periodic connection to send
and receive data. When compared with the mobile on-demand applications, the
mobile client applications are dependent upon network connection and speed.
Mobile client applications can be used to work offline as well. When we come to
speed, wireless data networks are still very slow. But client applications are
highly responsive.

There are situations where a native client application cannot satisfy the customer's
needs. Therefore, we can use Visualforce Mobile in the following situations:

•	 Integrating with other web APIs, for example, Google Maps
•	 Rebuilding the functionality which are not available in client applications,

such as responding to an approval request
•	 Mobilizing a standard Salesforce object which is not supported in a

client application
•	 Integrating with peripheral devices, such as Bluetooth or embedded GPS
•	 Overriding the action of the standard buttons on the detail page

Developing and mobilizing Visualforce
pages
Developing a Visualforce page for a Salesforce Mobile is different from developing
pages for Salesforce, especially as the user experiences on desktop browsers and
mobile browsers are different.

Best practices for building Visualforce Mobile
pages for iPhone and BlackBerry
The following are the best practices:

•	 Controllers: Salesforce Mobile supports custom objects and many standard
objects. Standard layouts and styles of a standard page are too complex for a
mobile browser. When developing pages for the mobile application, the best
practice is to use custom controllers for the page. If your controller has a very
complex business logic, it may slow down the loading of the page.

Chapter 7

[79]

•	 Header and sidebar: Remove the header and the sidebar from the
Visualforce Mobile pages because they may lead to long loading times and
there won't be sufficient space to display them on the mobile screen. They
can be removed by using the following code:

<apex:page showHeader="false" sidebar="false">

•	 Page styles: The standard stylesheets of Salesforce pages are too complex
for the mobile browser. We have to stop loading the standard stylesheets by
using the standardStylesheets attribute of the <apex:page> tag as follows:
<apex:page showHeader="false" sidebar="false"
standardStylesheets="false">
 <style type="text/css">
<!—your custom styles here-->
 </style>
</apex:page>

The best approach to add a stylesheet to your page is to include a
<style> section just below the <apex:page> tag.

•	 Reuse: In a mobile client application, reusing is a key component. We can
create a Visualforce page with custom styles and reuse that page in other
Visualforce pages using the <apex:include> component. For example, if the
preceding page's name is myStylePage and we have implemented a custom
style on that page, then we can include the preceding page with styles
as follows:

<apex:page standardStylesheets="false"/>
<apex:include pageName="myStylePage"/>
</apex:page>

We can create mobile-optimized stylesheet as a static resource and
we can refer to the same stylesheet in non-mobile pages. We can
increase the page's loading time by using the stylesheet as a
static resource.

•	 Lookups: Lookups doesn't work properly on BlackBerry and iPhone.
Therefore the best practice is to validate the entry in the lookup upon
saving the record. We can use an Apex trigger for validation. And we
can also change the file type occasionally.

Visualforce for Mobile

[80]

iPhone considerations
While developing pages for the iPhone, we must consider following things:

•	 Page zoom: To maximize the compatibility with a broad range of websites,
the iPhone browser sets the page width to 980 pixels. Using the <meta> tag,
the iPhone browser can identify the width to display the page. The following
tag definition is only valid for the iPhone browser, other browsers ignore
this tag:
<meta name="viewport" content="width=device-width, initial-
scale=1.0, maximum-scale=1.0, user-scalable=no" />

•	 URL targets: The embedded browser doesn't support the target="_blank"
attribute. The page will not load with this attribute.

•	 Screen rotation: Rotating the screen will not cause the page to flip and resize.
•	 Static resource caching: The embedded browser doesn't support caching.
•	 File access: The embedded browser does not natively offer access to the

filesystem, camera, location, or other device data.

General rule for mobile development
We shouldn't use components with JavaScript to perform an action on
components that depend on Salesforce stylesheets. If we can see the
<script> tag that refers to a JavaScript (.js) file or a <link> tag that
refers to a stylesheet (.css) in the HTML source of our page, the page can
fall under the preceding category.

BlackBerry considerations
When developing pages for BlackBerry smartphones, the following considerations
are applied:

•	 JavaScript Support: Inline DOM events doesn't work in the BlackBerry
browser. The BlackBerry browser has limited JavaScript support. When
developing Visualforce pages for BlackBerry, avoiding JavaScript is the
best option.

Chapter 7

[81]

•	 Forms and view state: If you want to use the <apex:form> tag in your
Visualforce Mobile page, use standard HTML forms instead of <apex:form>.
If we use the <apex:form> tag, the view state of the page will be too large for
the BlackBerry browser. When we use a standard HTML tag, we have to do
the following things manually and we cannot use the <apex:commandLink>
tag and <apex:commandButton> components:

°° Maintaining state between pages
°° Redirecting to another page

Parameters sent from the form can be retrieved using the
ApexPages.currentPage().getParameters() map in
the controller.

•	 Page styles: We have to follow the best practices for building Visualforce
Mobile pages for iPhone and BlackBerry. Additionally, we must know
that the BlackBerry browser ignores some CSS properties, for example,
margin-left.

•	 Line breaks: The
 tag is ignored unless there is something on the line.
•	 Navigation: There isn't any in-built navigation in the embedded browser

of a BlackBerry client application. We have to provide the navigation links.

Developing cross-platform compatible pages
When we build Visualforce Mobile pages to perform well on both iPhone and
BlackBerry browsers, we need to follow the following approaches which are
provided by Salesforce:

•	 Separation and redirection: We can build the Visualforce Mobile pages
to redirect to a suitable optimized page (iPhone-optimized or BlackBerry-
optimized) by using JavaScript. For that, we have to build pages separately
for iPhone and BlackBerry. When the connecting device is not a BlackBerry
device, the page will redirect the page to an iPhone-optimized page, as given
in the following code:
<apex:page>
<language="javascript" type="text/javascript">
if(!window.blackberry){
window.location.href='{!$Page.iPhoneOptimizedVersion}';
}
</script>
 </apex:page>

Visualforce for Mobile

[82]

•	 Conditional code: The server identifies the connecting device (iPhone or
BlackBerry) by using the user agent string in the header, which is the user
agent string that is passed by the browser to the server. Therefore, we can
build device-conditional code and styles for well-performing pages on
both iPhone and BlackBerry devices. The advantage is that the markup is
interpreted on the server side and the user gets only the suitable markup
which is selected by the conditional code. The disadvantage is that the code
can be more complex due to the conditional code. The following example
shows the way of handling conditional code and the markup. The markup
has two <apex:outputPanel> components, each of which renders the
markup for a particular device:
<apex:page controller="ConditionalCodeController">
 <apex:outputPanel rendered="{!deviceType = 'BlackBerry'}">
 <apex:outputText value="This is BlackBerry"></apex:outputText>
 </apex:outputPanel>

 <apex:outputPanel rendered="{!deviceType = 'iPhone'}">
 <apex:outputText value="This is iPhone"></apex:outputText>
 </apex:outputPanel>
</apex:page>

The controller of the preceding markup is as follows and it evaluates the user
agent and prepares the deviceType attribute in order to render a correct
output panel:

public class ConditionalCodeController {
 public String deviceType { get; set; }

 public ConditionalCodeController() {
 String userAgent = ApexPages.currentPage().getHeaders().
get('USER-AGENT');
 if(userAgent.contains('iPhone')) {
 deviceType = 'iPhone';
 }
 else if(userAgent.contains('BlackBerry')) {
 deviceType = 'BlackBerry';
 }
 }
}

•	 Lowest common denominator: Build to the lowest common denominator
and include only minimal, unobtrusive JavaScript, avoiding scripts with
inline events in the tags. Depending on the devices in the customer's
organization, you might need to avoid JavaScript all together. On older
BlackBerry smartphones, using any JavaScript code can malfunction
the page.

Chapter 7

[83]

Using the JavaScript library
The JavaScript library contains commands for trigger actions in Salesforce Mobile.
This JavaScript library can be used to build seamless user experience between a
native client application and Visualforce Mobile pages.

The JavaScript commands work only on JavaScript-enabled devices.

The following are the functions in the JavaScript library:

•	 mobileforce.device.sync(): This function forces the mobile client
application to synchronize with Salesforce, which updates data records on
the device.

•	 mobileforce.device.close(): This function closes the embedded browser
containing the Visualforce page and returns the user to the original/previous
tab or record.

•	 mobileforce.device.syncClose(): This function forces the mobile client
application to synchronize with Salesforce and closes the embedded browser
containing the Visualforce page.

•	 mobileforce.device.getLocation(): This function obtains the GPS
coordinates of the device's current location.

The following example has the usage of all the commands available in the
JavaScript library:

<apex:page showheader="false">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Visualforce Mobile Trigger Test</title>
 <!-- <meta name="viewport" content="width=device-width;
initial-scale=1.0; maximum-scale=1.0; user-scalable=0;" />-->

 <!-- Using static resource -->
 <script type="application/x-javascript" src="/mobileclient/
api/mobileforce.js">
 </script>
 <script>
 function sync() {
 mobileforce.device.sync();
 return false;
 }
 function doClose() {

Visualforce for Mobile

[84]

 mobileforce.device.close();
 return false;
 }
 function syncClose() {
 mobileforce.device.syncClose();
 return false;
 }
 updateLocation = function(lat,lon) {
 document.getElementById('lat').value = lat;
 document.getElementById('lon').value = lon;
 }
 function getLocation(){
 mobileforce.device.getLocation(updateLocation);
 return false;
 }
 </script>
 </head>
 <body>
 <h2>Triggers:</h2>
 <p>
 JS sync

 JS close

 JS sync and
close

 HTML sync

 HTML close

 HTML sync and close</
a>

 </p>
 <h2>Location:</h2>
 <p>Latitude: <input type="text" disabled="disabled" id="lat"
name="lat" value=""/></p>
 <p>Logitude: <input type="text" disabled="disabled" id="lon"
name="lon" value=""/></p>
 Get location</
a>

 </body>
 </html>
</apex:page>

Chapter 7

[85]

Building a mobile-ready Visualforce tab
After building the Visualforce Mobile pages, we have to do some configuration to
access these pages via Salesforce Mobile. To mobilize the Visualforce page, we can
create web and Visualforce tabs using the Mobile Ready attribute. After navigating
to the following path and clicking on New in the Visualforce tab we will be directed
to a page where we will create a mobile-ready Visualforce tab:

YourName | Setup | Create | Tab

Building a mobile-ready Visualforce tab

The Mobile Ready checkbox is used to specify whether the Visualforce page
displays and functions properly in a mobile browser. By selecting the Mobile
Ready checkbox, we can add the tab to the list of available tabs for our
mobile configuration.

Creating the mobile configuration
When we use Salesforce Mobile, we have to determine the mobile user's data and the
permissions given to mobile users. Mobile configuration is a set of parameters. An
organization can have multiple mobile configurations for different kinds of mobile
users. When we create a mobile configuration, a particular user must be assigned to
a mobile license.

Visualforce for Mobile

[86]

If the user account's Mobile User checkbox is checked, then this
means that the user is already identified as a mobile user, unless we
give the Manage Mobile Configurations permission to the user's
profile or the permission set.

To create a mobile configuration, navigate to:

YourName | Setup | Mobile Administration | Salesforce Mobile | Configuration
| New Mobile Configuration

Only the active mobile configuration will be available for use. Optionally, we
can select the Mobilize Recent Items option to mark recently the used records in
Salesforce for device synchronization and the Mobilize Recent Items option to select
a value from the Maximum Number of Recent Items drop-down list. In the mobile
configuration, we can add an individual user or we can use a profile to give the
permissions. We don't sync if the data size exceeds property to avoid overloading
of mobile device. To do that, we have to specify the maximum size of data that is
allowed for all data sets combined in this mobile configuration.

Salesforce.com will not synchronize any data sets if the combined
data size exceeds this limit.

After creating the mobile configuration, we can define the data set by adding objects
and records, and automatically synchronizing the mobile devices.

After developing Visualforce Mobile pages, we have to test them for checking the
functionality and the appearance. For that, we can install the mobile application on
a BlackBerry or an iPhone device or we can use the iPhone or BlackBerry simulator.

Summary
In this chapter, we learned about Salesforce Mobile and the usage of Salesforce
Mobile. We became familiar with the way of extending applications built on the
Force.com platform to mobile devices and how we can use Visualforce Mobile.
We understood how to develop and mobilize Visualforce pages. We have seen
the supporting configurations of mobile devices for a Visualforce Mobile.

Best Practices for Visualforce
Developments

Visualforce pages are the replacement for Salesforce standard pages. When we use
Visualforce pages, the delay experiences and unexpected behaviors must not be
there. Therefore, we have to follow the best practices to improve the user experience
and coding standards during the Visualforce developments, in order to improve
the user experience. There are some situations and components where we can apply
some best practices. This chapter will cover the following topics:

•	 Accessing component IDs
•	 Page block components
•	 Controllers and controller extensions
•	 Improving Visualforce's performance
•	 Static resources
•	 Rendering PDFs
•	 Using component facets

Let's build Visualforce pages with super performance…

Best Practices for Visualforce Developments

[88]

Accessing component IDs
When we refer Visualforce components in JavaScript, the ID attribute plays a major
role. Every Visualforce component has an ID attribute. The ID attribute must be
specified to a particular component in order to refer to it in JavaScript and it is used
to bind the two components together. When the page is rendered, this ID attribute is
a part of DOM ID of the particular component. The ID attribute must be unique as
well. The following best practices are applied for accessing component IDs:

•	 Use the $Component global variable to simplify access. For an example,
when we have an input field with id="inputOne" within a page block
with id="blockOne", we can access the input field with the $Component.
blockOne.inputOne expression.

•	 No need to specify an ID for a component you want to access if it is
an ancestor or sibling to the $Component variable in the Visualforce
component's hierarchy.

Page block components
The <apex:pageBlockSectionItem> component can have only two child
components. With the customer requirements and the developing requirements,
there can be more than two child elements inside <apex:pageBlockSectionItem>.
Using <apex:outputPanel> we can add more than two elements in
<apex:pageBlockSectionItem> as follows:

<apex:pageBlock>
 <apex:pageBlockSection>
 <apex:pageBlockSectionItem>
 <apex:outputLabel value="LabelName"/>
 <apex:outputPanel>
<!—We can add our extra child components here within the
apex:outputPanel -->
 </apex:outputPanel>
 </apex:pageBlockSectionItem>
 </apex:pageBlockSection>
</apex:pageBlock>

Chapter 8

[89]

Controllers and controller extensions
When we are developing controllers and controller extensions that are associated to
Visualforce pages, we need to adhere to the following best practices:

•	 By using the with sharing keyword, we can enforce the sharing rules in
controllers. Then the code will execute in the user mode instead of the
system mode.

•	 We must not depend on the setter method to be executed before the
constructor.

•	 We must not depend on the execution order or side effects while creating
custom methods in a custom controller or a controller extension.

•	 Do not use DML operations inside a loop.
•	 While performing record filtering, add filters in the following order:

°° In SOQL
°° In Apex
°° In Visualforce

•	 If possible, calculations must be performed in SOQL instead of Apex.

Improving Visualforce's performance
The performance of a Visualforce page is a key factor to consider in development
because performance is a reason that effects the end user's satisfaction of the
application. The following are the best practices to improve Visualforce's performance:

•	 Use only one <apex:form> tag per Visualforce page because each
<apex:form> tag adds a view state to the page. A Visualforce page has a
limit for view state size that is 135 KB. We can decrease the loading time
of a Visualforce page by reducing the view state size.

•	 Try to use the transient keyword in custom controller as much as possible.
The state is not maintained for transient instance variables. If a particular
instance is used only in the page request, then it must not be a part of view
state. It will help to reduce the view state size.

•	 When using an SOQL query to refer data of a particular object, use only the
relevant data in the SOQL query.

Best Practices for Visualforce Developments

[90]

•	 When designing the Visualforce page, do not overload the page with
excessive functionality and more data. Overloaded pages will increase the
view state, page size, heap size, and risk hitting the governor limits for the
view state.

•	 To decrease the loading time of a Visualforce page:
°° Do not use SOQL queries in getter methods
°° Frequently-used or global data must be cached
°° Reduce the number of records displayed in the page by using the

built-in pagination of standardSetControllers or limiting the data
in SOQL queries

•	 We can increase the time interval for calling the Apex controller by using
the <apex:actionPoller> component to reduce the delays in multiple
concurrent requests.

•	 Use the SOQL OFFSET to implement the pagination of a specific subset of
results within SOQL.

•	 If we have large quantities of read-only data in an organization, then we
must use a custom object or custom setting to store that data.

•	 Use <apex:repeat> to iterate over large collections.
•	 Do not hardcode pick list values in the Visualforce page, and use the

controller to add them to a selectOption list.
•	 Use the lazy loading approach to reduce or delay the loading of data

according to the essentiality. In lazy loading, the essential features will be
loaded first and others will be delayed until the user's action. To lazy load,
we can:

°° Use the rerender attribute to perform a partial page load
°° Use JavaScript remoting to call actions in the controller

•	 When using CSS in Visualforce pages, we have to be careful. The
performance of Visualforce is directly affected by the optimization of
the Visualforce. Here are some tips to increase the performance of CSS:

°° Use separate CSS files and refer to them in the Visualforce page
(instead of writing the CSS code in the page itself). This will
reduce the file size.

°° Use a single CSS file instead of using multiple CSS files. This will
reduce the number of HTTP requests.

°° Refer to CSS files via static resources because it has a in-built
caching mechanism.

Chapter 8

[91]

°° When creating pages that have totally customized CSS (not using
Salesforce CSS), do not forget to set the attribute of showHeaders and
standardStylesheets of the <apex:page> tag to false.

•	 When using JavaScript in Visualforce pages, we have to optimize them to
increase the performance of Visualforce. Here are some tips to increase the
performance of JavaScript:

°° Use separate JavaScript files and refer to them in the Visualforce page
(instead of writing JavaScript in the page itself). This will reduce the
size of individual pages taking advantage of browser caching.

°° Use a single JavaScript file instead of using multiple JavaScript
files. This will reduce the number of HTTP requests and remove
duplicate functions.

°° Use customized versions of JavaScript libraries which include only
the required functions. This will reduce the file size.

°° If possible, use the <script> tag to include JavaScript in the
Visualforce page and place it right before the </apex:page> closing
tag. This will avoid loading of JavaScript before any other content in
the Visualforce page.

°° Eliminate unwanted comments and whitespaces to reduce the file
size and for faster downloads.

•	 Use the escapeSingleQuotes method to avoid SOQL and SOSL
injection attacks.

•	 Images frequently play a major role in a Visualforce page. Therefore we have
to optimize the usage of images in Visualforce pages using the following tips:

°° Use the CSS sprites instead of individual images. Using sprites, we
can combine images (similar sized) into a single file. This will reduce
the number of images used in the page and reduce the number of
HTTP requests.

°° If possible, try to reduce the use of images and motivate the use
of CSS.

°° Use static resources to refer to images in a Visualforce page.

View state cannot be viewed with tools such as Firebug because
the view state data is encrypted.

Best Practices for Visualforce Developments

[92]

Static resources
Static resources have an in-built caching feature and use the content distribution
network built into Salesforce. The following are the advantages of using static
resources to refer to CSS files, images, and JavaScript:

•	 Use a static resource to display the content of another static resource with the
action attribute of the <apex:page> tag. By doing this we can redirect from
a Visualforce page to a static resource. Suppose we have a PDF as a static
resource (named as helpPdf) and we use that static resource in the action
attribute of the <apex:page> tag as follows:
<apex:page sidebar="false" showHeader="false"
standardStylesheets="false" action="{!URLFOR($Resource.helpPdf)}">
</apex:page>

•	 The URLFOR function plays a major role here. The redirection will not work
properly without the URLFOR function. This is not limited to PDF; we can use
any static resource to redirect.

<apex:page sidebar="false" showHeader="false"
standardStylesheets="false" action="{!URLFOR($Resource.
helpStaticResource, 'index.htm')}">
</apex:page>

Rendering PDFs
When we use components in a Visualforce page and the page is rendered as a PDF,
these components do not always work. We must not use components that depend
on JavaScript actions and Salesforce standard stylesheets.

•	 The following components are safe to use in PDF rendering:
°° <apex:composition> (as long as the page contains PDF-safe

components)
°° <apex:facet>

°° <apex:dataList>

°° <apex:define>

°° <apex:include> (as long as the page contains PDF-safe components)
°° <apex:insert>

°° <apex:image>

°° <apex:repeat>

°° <apex:outputLabel>

Chapter 8

[93]

°° <apex:outputLink>

°° <apex:outputPanel>

°° <apex:outputText>

°° <apex:page>

°° <apex:panelGrid>

°° <apex:panelGroup>

°° <apex:param>

°° <apex:stylesheet> (as long as the URL isn't directly referencing
Salesforce stylesheets)

°° <apex:variable>

•	 The following components can be used with caution in rendering PDF
(others are not safe to be used in PDF rendering):

°° <apex:attribute>

°° <apex:column>

°° <apex:component>

°° <apex:componentBody>

°° <apex:dataTable>

Using component facets
The <apex:facet> component is used to specify content in an area of a
Visualforce page and it provides information about the data in the parent
component. For example, we can use a facet component in the header or footer of a
<apex:dataTable>. We can override the default facet of a Visualforce component by
using the <apex:facet> component. The advantages and disadvantages of the facet
component are as follows with an example:

•	 The <apex:facet> component cannot be used directly in Apex; it must be
a child component of another Visualforce component. We can use that in a
dynamic component.

•	 Facets only allow a single child within the start and close tags.
•	 The following is an example of the <apex:facet> component that is used

with the <apex:dataTable> component:
<apex:page standardController="Item__c">
 <apex:pageBlock>
 <apex:dataTable value="{!item}" var="i">

Best Practices for Visualforce Developments

[94]

 <apex:facet name="caption"><h1>This is {!item.Item_
Name__c}</h1></apex:facet>
 <apex:column>
 <apex:facet name="header">Name</apex:facet>
 <apex:outputText value="{!i.Item_Name__c}"/>
 </apex:column>
 <apex:column>
 <apex:facet name="header">Unit Price</apex:facet>
 <apex:outputText value="{!i.Unit_Price__c }"/>
 </apex:column>
 </apex:dataTable>
 </apex:pageBlock>
</apex:page>

•	 We can use the facet component with <apex:actionSatus>. It is
used to extend the displaying status indicator. This is explained in
the following example:

<apex:page>
 <apex:form >
 <apex:commandButton value="Facet with action Status"
status="Status" rerender="rerenderBlock"/>
 <apex:pageBlock id="rerenderBlock">
 </apex:pageBlock>
 <apex:actionStatus id="Status">
 <apex:facet name="start">

 </apex:facet>
 </apex:actionStatus>
 </apex:form>
</apex:page>

Summary
This chapter was dedicated for explaining the best practices of Visualforce
developments. In this chapter we became familiar with the best practices to follow
in order to avoid unexpected behaviors, reduce the delay experience for accessing
component IDs, page block components, controllers and controller extensions,
improving Visualforce performance, static resources, rendering PDFs, and
using component facets. We have seen the way to improve user experience
and coding standards.

Security Tips for Apex and
Visualforce Development

Security is an important part of web-based applications. This important part applies
for the Force.com applications as well. We create custom pages with Visualforce
markup and Apex, and this allows us to provide fully-customized functionality to
the client. When we use these programming languages, we must be careful with the
security aspects.

The Force.com platform has some in-built security assistance, such as user
management, profile management, role hierarchy, organization wide defaults
(OWD), permission sets, public groups, sharing settings, field accessibility, password
policies, session settings, network access, login access policies, certificate and key
management, single sign-on Settings, Auth. Providers, Identity Provider, View Setup
Audit Trail, Expire All Passwords, Delegated Administration, Remote Site Settings
and HTML Documents and Attachments Settings. But when we create custom pages
with Apex and Visualforce, we must be careful because there are many ways to
bypass the in-built security defenses on the Force.com platform. There can be general
security vulnerabilities as well as Apex and Visualforce specific vulnerabilities.

Security scanning tools
Before we add an application to AppExchange, we have to get the certification for
the security aspects. A developer must be aware of these security concerns. There are
some tools available to scan our code for security and quality for example, the Force.
com Security Source Scanner.

Security Tips for Apex and Visualforce Development

[96]

Force.com Security Source Scanner
The Force.com Security Source Scanner is a cloud-based code analysis tool for
the Force.com platform. This is a free tool for Force.com developers and the code
is scanned on a first-come-first-serves basis. The file size, queue size, and the
complexity of the code directly affects the time for getting the scan results. For
scanning a particular Salesforce.com user account, we must have the "Author Apex"
permission and the particular code must not be contained within a package. We can
submit the code for scanning at http://security.force.com/security/tools/
forcecom/scanner. This tool scans every possible code flow and checks for security
vulnerabilities and quality of the Apex code. The Force.com Security Source Scanner
can detect the following security vulnerabilities.

•	 Cross-site scripting
•	 SOQL injection
•	 SOSL injection
•	 Frame spoofing
•	 Access control issues

The Force.com Security Source Scanner can detect following code and design issues:

•	 DML statements inside loops
•	 SOQL/SOSL inside loops
•	 Not bulkifying Apex methods
•	 Asynchronous (@future) methods inside loops
•	 Hardcoding IDs
•	 Hardcoding Trigger.new[0]
•	 Hardcoding Trigger.old[0]
•	 Referencing static resources
•	 Queries with no Where clause or no LIMIT clause
•	 Multiple triggers on the same object

Appendix

[97]

Cross-site scripting (XSS)
Cross-site scripting attacks web applications where there is malicious client-side
scripting or HTML. If the web application includes a malicious script, then the
attacker can use the web application as an intermediate layer and make the
trusted user a victim of the attack. A cross-site scripting weakness occurs when
dynamically-generated web pages display invalidated, unfiltered, and non-encoded
user input, allowing an attacker to embed malicious scripts into the generated page.
This can be leveraged to execute the scripting code as if it came from the site's server
on to the computer of anyone who used the site.

The Force.com platform has several methods to protect from XSS attacks, which are
as follows:

•	 Unescaped output and formulas in Visualforce pages: There can be
Visualforce pages which depend on the user input, and further functionality
will proceed with that user input. There are some encoding functions to stop
XSS vulnerabilities, which are as follows:

°° HTMLENCODE: This function encodes the text and the merged field
values to reserved HTML characters. For example, the greater than
sign(>) into >.

°° JSENCODE: This function encodes the text and merged field values by
inserting escape characters.

°° JSINHTMLENCODE: This function does the tasks of both the
HTMLENCODE and JSENCODE functions.

°° URLENCODE: This function encodes the text and merged field values
by replacing illegal characters in URLs. For example, blank spaces are
replaced by %20.

All the standard Visualforce components (starting with <apex>)
are anti-XSS. They have a filter to stop the XSS attacks. Optionally,
we can disable the escape on Visualforce components by setting the
value of the escape attribute to false.

Security Tips for Apex and Visualforce Development

[98]

Cross-site request forgery (CSRF)
The Web does not, and cannot, sufficiently verify whether a well-formed, valid,
consistent request was intentionally provided by the user who submitted the request.
In effect, when a server receives a request it has no ability to determine whether that
was initiated by a valid user or an attacker, leading to potential escalation of the
privilege or theft of data attacks.

The Force.com platform has implemented an anti-CSRF in standard controllers.
Each page has random characters as a hidden field. When we load the next page,
the validity will be checked and the command will be executed after the value
matches with the expected value.

The following code has bypassed the anti-CSRF controls in a custom method called
AutoRun. There aren't any in-built anti-CSRF controls for such scenarios in the Force.
com platform. There are workarounds that will add an intermediate confirmation
page before executing the action and shortening the idle session timeout for
an organization:

<apex:page controller="SecurityIssuesController" sidebar="false"
action="{!AutoRun}">

public class SecurityIssuesController{
public Pagereference AutoRun(){
 Id id = ApexPages.currentPage().getParameters().get('id');
 Item__c singleItem = [select id, Name FROM Item__c WHERE id = :id];
 delete singleItem;	
 return null;
}
}

SOQL injection
The most popular injection attacks occur when the user's input is directly involved
with the query or command. Therefore, the attacker can pass an untrusted date to
execute a particular functionality or command. Then the attacker will get the access
to unauthorized data.

Apex uses SOQL as the query language and it has limited functionality than SQL.
But the SOQL injection attacks are similar to SQL injection attacks. The Salesforce.
com users are willing to put their sensitive data into Salesforce because Salesforce.
com is a secure platform. Therefore, when we build custom pages and custom
controllers, we must pay more attention to prevent such attacks. In Force.com,
SOQL injections occur with dynamic SOQL queries.

Appendix

[99]

Dynamic SOQL is used to create the SOQL query string at the runtime of
Apex code and allows us to build more flexible functionality (for example, the
search functionality which depends on the user's input). Using the Database.
query(queryString) method, we can create dynamic queries that return a single
sObject or a list of sObjects. The SOQL injection can be implemented in Apex if the
application proceeds with the user's input to build a dynamic SOQL and we haven't
handled the input properly.

The Force.com platform provides a method called escapeSingleQuotes to
prevent SOQL injections. Using this method, we can handle the user's input by
adding the escape character (\) to all single quotations in the user input string.
Basically, this method considers all the single quotation as enclosing strings
instead of database commands.

The following example illustrates the SOQL injection's vulnerability in Apex.
This query returns order records which are not delivered and the customer's
name (cusName) for the specific order is found according to the user input.

String queryString = 'SELECT Id FROM Order__c WHERE (Delivered__c =
false and Customer__r.Name like \'%' + cusName + '%')';

If the user input is chamil, the executing query string would be as follows:

queryString = SELECT Id FROM Order__c WHERE (Delivered__c = false and
Customer__r.Name like '% chamil %')

That's a clean input. But the problem is that users can enter malicious inputs,
for example, chamil%' or Customer__r.Name like '. Then the query
string would look as follows:

queryString = SELECT Id FROM Order__c WHERE (Delivered__c = false and
Customer__r.Name like '%chamil%') or (Name like '%')

In this case, the result of the query will not return selective orders but will deliver all
the orders from the database This is the impact of SOQL injections. There is a way to
protect from such SOQL injection attacks. We can use a string variable to assign the
user input to, and add that particular variable to the dynamic query. The following is
the fixed code snippet for the preceding vulnerability:

String userInput = '%' + cusName + '%';
String queryString = 'SELECT Id FROM Order__c WHERE (Delivered__c =
false and Customer__r.Name like: userInput)';

Security Tips for Apex and Visualforce Development

[100]

Data access control
The Force.com platform allows us to configure object permissions (read, create,
edit, and delete) and create data sharing rules. We can implement security controls
using those features. The standard controllers adhere to these security settings. But
the custom controllers and controller extensions can access all the data during the
execution. This is the default behavior, but we can control the data access from
Apex classes using the with sharing keyword. The keyword is used as follows:

public with sharing class ExampleController {
 public void methodOne()
{
 List<Item__c> = [Select Id, Name FROM Item__c WHERE Id IN:
itemIds];
}
}

The with sharing keyword forces the Apex class to consider the security sharing
permissions of the logged user.

Summary
We have learned the importance of securing an application. We became familiar
with the possible vulnerabilities, solution for those vulnerabilities, and security
scanning tools.

Every start has an end, and thus we have reached the end of the book. We have
covered the most important topics that will help you to improve the knowledge
of Visualforce development. Further, you can use Force.com resources such as
the Force.com discussion board (you can obtain help on technical issues), by
using #askforce on Twitter and https://blogs.developerforce.com.

May the force be with you!

Index
Symbols
$Component global variable 88
<apex:actionFunction> component 17
<apex:actionPoller> component 17, 90
<apex:actionSatus> component 94
<apex:actionSupport> component 17
<apex:chart> component 67
<apex:commandButton> component 17
<apex:commandLink>component 17
<apex:dataTable> component 93
<apex:detail> component 38, 51
<apex:facet> component 93
<apex:form> tag 89
<apex:inputField> component 38
<apex:outputPanel> component 88
<apex:pageBlock> component 38, 51
<apex:pageBlockSectionItem> component

88
<apex:pageBlockTable> component 38, 51
<apex:page> component 17
<apex:page> tag 16, 92
<apex:pieSeries> component 67
<apex:relatedList> component 51
<apex:repeat> component 90
<apex:stylesheet> tag 40
@RemoteAction method 71

A
action methods 31
action methods, standard controller

cancel 18
delete 17
edit 17
list 18

quicksave 17
save 17

action methods, standard list controller
about 21
cancel 21
first 21
last 21
List 21
next 21
previous 21
quicksave 21
save 21

addField() method 59
addFields() method 59
Apex 52
Apex classes 8
Apex language 9
Apex Maps

about 61
referencing 61, 62

architecture, Visualforce 9-11
AutoRun method 98

B
BlackBerry configurations, Salesforce

Mobile 76

C
cancel method 18, 21
chart data, providing

about 68
controller method, using 69
JavaScript array, using 70
JavaScript function, using 69

Cloud 7

[102]

cloud computing 7
complex chart example, Visualforce charting

71-73
component facets

using 93, 94
component IDs

accessing 88
components, Visualforce

<apex:actionFunction> 17
<apex:actionPoller> 17
<apex:actionSupport> 17
<apex:commandButton> 17
<apex:commandLink> 17
<apex:page> 17

controller 8, 15
controller extension

about 26
building 27, 28

controller extension development
best practices 89
considerations 36

controller methods
about 28
action methods 31
getter methods 29
setter methods 30
used, for providing chart data 69

controllers development
best practices 89

cross-platform compatible pages
developing 81, 82

Cross-site request forgery. See CSRF
Cross-site scripting attacks. See XSS attacks
CSRF 98
CSS 9, 37
custom attributes, Visualforce 54-56
custom component, Visualforce

about 51, 52
creating 52-54
using 52-54

custom controllers, Visualforce 54-56
about 23
building 23-26
considerations 36

custom objects
dynamic references, using with 57-61

custom styles 38-41

D
data access control 100
Data Manipulation Language (DML) 36
delete method 17
development tools, Visualforce

about 13
Eclipse plugin, for Force.com 13
Force.com IDE 13
Visualforce editor pane 13

dynamic bindings
about 58

dynamic references
using, with custom objects 57-61
using, with standard objects 57-61

dynamic Visualforce binding 57

E
Eclipse plugin for Force.com 13
edit method 17
encoding functions, for stopping XSS

vulnerabilities
HTMLENCODE 97
JSENCODE 97
JSINHTMLENCODE 97
URLENCODE 97

escapeSingleQuotes method 91, 99

F
field sets

about 64
working with 64

first method 21
Force.com

about 8
MVC model 8

Force.com IDE 13

G
getChartData() method 67
getComplexChartData() method 71
getter methods 29

[103]

H
HTML 4.01 49
HTML5

about 9, 49
and Visualforce pages 49

HTMLENCODE function 97

I
iPhone configurations, Salesforce Mobile 76

J
JavaScript

about 9, 37, 42
using, in Visualforce pages 42
Visualforce components, accessing 42, 43

JavaScript array
used, for providing chart data 70

JavaScript function
used, for providing chart data 69

Javascript remoting
about 44
for Apex controller 44, 45

jQuery
about 9, 47
using, in Visualforce pages 47, 48

JSENCODE function 97
JSINHTMLENCODE function 97

L
last method 21
list method 18
List method 21
Lists

about 61
referencing 61, 62

M
Manage Mobile Configurations permission

86
Mobile configuration 76
mobileforce.device.close() function 83
mobileforce.device.getLocation() function

83

mobileforce.device.syncClose() function 83
mobileforce.device.sync() function 83
mobile-ready Visualforce tab

building 85
model 8
MVC model (Model View Controller)

about 8
controller 8
model 8
view 8

N
next method 21

O
organization wide defaults (OWD) 95

P
page block components 88
pagination feature 21, 22
PDFs rendering 92, 93
performance

improving, of Visualforce 89-91
platforms as services (PaaS) 7
previous method 21

Q
quicksave method 17, 21

R
relationships 58

S
Salesforce.com 7
Salesforce Mobile

about 75
BlackBerry configurations 76
capabilities 77
iPhone configurations 76
limitations 77

Salesforce styles 38
save method 17, 21

[104]

Save method 16
Scalable Vector Graphics (SVG) 66
security 95
security scanning tools

about 95
Security Source Scanner 96

Security Source Scanner 96
setter methods 30
sObject 16
SOQL injection 98, 99
SOQL query 59
StandardController object 58
standard controllers

about 16
example 19
using, with Visualforce page 16

standard list controller
about 20
using, with Visualforce 20

standard objects
dynamic references, using with 57-61

StandardSetController object 58
static resources 92
styleClass attribute 38
styles, Visualforce

custom styles 38-41
Salesforce styles 38

T
tag-based markup language 9
transient keyword

about 35
using 35

U
URLENCODE function 97
URLFOR function 92

V
validation rules 34
view 8
Visualforce

about 7, 8, 52
advantages, for developer 11, 12
architecture 9-11

custom attributes 54-56
custom components 51, 52
custom controllers 23, 54-56
development tools 13
performance, improving 89-91

Visualforce charting
about 65
complex chart example 71, 73
considerations 66
limitations 66
working 66-68

Visualforce components
accessing, in JavaScript 42, 43

Visualforce editor pane 13
Visualforce Mobile

using 78
Visualforce pages

about 87
and HTML5 49
developing 78
JavaScript library, using 83
JavaScript, using in 42
jQuery, using in 47, 48
mobile configuration, creating 85
mobile-ready Visualforce tab, building 85
mobilizing 78
order, of execution 32-34
standard controller, using with 16
standard list controller, using with 20
styling 38
working with large datasets 31, 32

Visualforce pages, for BlackBerry
best practices 78, 79
considerations 80, 81

Visualforce pages, for iPhone
best practices 78, 79
considerations 80

W
with sharing keyword 89, 100

X
XSS attacks 97

Thank you for buying
Visualforce Developer’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Force.com Developer
Certification Handbook (DEV401)
ISBN: 978-1-84968-348-7 Paperback: 280 pages

A comprehensive handbook to guide Force.com
developers through important fundamentals and
prepare them for the DEV401 exam

1.	 Simple and to-the-point examples that can be
tried out in your developer org

2.	 A practical book for professionals who want to
take the DEV 401 Certification exam

3.	 Sample questions for every topic in an exam
pattern to help you prepare better, and tips to
get things started

Salesforce CRM: The Definitive
Admin Handbook
ISBN: 978-1-84968-306-7 Paperback: 376 pages

A comprehensive, power-packed guide for all
Salesforce Administrators covering everything from
setup and configuration, to the customization of
Salesforce CRM

1.	 Get to grips with tips, tricks, best-practice
administration principles, and critical design
considerations for setting up and customizing
Salesforce CRM

2.	 Master the mechanisms for controlling access
to, and the quality of, data and information
sharing

3.	 Take advantage of the only guide with real-
world business scenarios for Salesforce CRM

Please check www.PacktPub.com for information on our titles

Force.com Tips and Tricks
ISBN: 978-1-84968-474-3 Paperback: 224 pages

A quick reference guide for administrators and
developers to get more productive with Force.com

1.	 Tips and tricks for topics ranging from
point-and-click administration, to fine
development techniques with Apex &
Visualforce

2.	 Avoids technical jargon, and expresses concepts
in a clear and simple manner

3.	 A pocket guide for experienced Force.com
developers

Salesforce CRM Admin Cookbook
ISBN: 978-1-84968-424-8 Paperback: 266 pages

Over 40 recipes to make effective use of Salesforce
CRM with the use of hidden features, advanced user
interface techniques, and real-world solutions

1.	 Implement advanced user interface techniques
to improve the look and feel of Salesforce CRM

2.	 Discover hidden features and hacks that extend
standard configuration to provide enhanced
functionality and customization

3.	 Build real-world process automation, using the
detailed recipes to harness the full power of
Salesforce CRM

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Visualforce
	The MVC model
	Understanding Visualforce
	Visualforce architecture
	Advantages of Visualforce
	Visualforce development tools
	Summary

	Chapter 2
: Controllers and Extensions
	Standard controllers
	How to use a standard controller with a Visualforce page
	Standard controller actions

	Standard list controllers
	How to use a standard list controller with Visualforce
	Standard list controller actions

	Custom Controllers and Controller Extensions
	Understanding custom controllers
	Building a custom controller
	Understanding controller extension
	Building a controller extension
	Controller methods
	Getter methods
	Setter methods
	Action methods

	Working with large sets of data on the Visualforce page
	Order of execution of a Visualforce page
	Order of execution for a Visualforce page's get requests
	Order of execution for a Visualforce page's postback requests

	Validation rules and standard controllers / custom controllers
	Using the transient keyword
	Considerations for creating custom controllers and controller extensions
	Summary

	Chapter 3
: Visualforce and Standard Web Development Technologies
	Styling Visualforce pages
	Salesforce styles
	Custom styles

	Using JavaScript in Visualforce pages
	Visualforce components access in JavaScript
	JavaScript remoting for Apex controllers

	Using jQuery in Visualforce pages
	HTML5 and Visualforce pages
	Summary

	Chapter 4
: Visualforce Custom Components
	Understanding Visualforce custom components
	Creating and using a custom component
	Custom attributes and custom controllers
	Summary

	Chapter 5
: Dynamic Visualforce Bindings
	Using dynamic references with standard objects and custom objects
	Referencing Apex Maps and Lists
	Working with field sets
	Summary

	Chapter 6
: Visualforce Charting
	Limitations and considerations of Visualforce charting
	How does Visualforce charting work
	Providing chart data
	Using the controller method
	Using a JavaScript function
	Using a JavaScript array

	A complex chart with Visualforce charting
	Summary

	Chapter 7
: Visualforce for Mobile
	Understanding Salesforce Mobile
	Salesforce Mobile and Visualforce Mobile supporting devices
	Capabilities and limitations of the mobile application
	Using Visualforce Mobile

	Developing and mobilizing Visualforce pages
	Best practices for building Visualforce Mobile pages for iPhone and BlackBerry
	iPhone considerations
	BlackBerry considerations
	Developing cross-platform compatible pages
	Using the JavaScript library
	Building a mobile-ready Visualforce tab
	Creating the mobile configuration

	Summary

	Chapter 8
: Best Practices for Visualforce Developments
	Accessing component IDs
	Page block components
	Controllers and controller extensions
	Improving Visualforce's performance
	Static resources
	Rendering PDFs
	Using component facets
	Summary

	Appendix:
Security Tips for Apex and Visualforce Development
	Security scanning tools
	The Force.com Security Source Scanner

	Cross-site scripting (XSS)
	Cross-site request forgery (CSRF)
	SOQL injection
	Data access control
	Summary

	Index

