
Yii2 By Example

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents
Yii2 By Example
Credits
About the Author
About the Reviewers
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?
Free access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Starting with Yii2
Requirements and tools
Installing Yii2 with Composer
Application structure
Application properties

Common application components
Handling application events
The MVC pattern in Yii2

Naming convention
Configuring the debug toolbar
Using the logger
Example – Hello world from scratch with the Yii basic template and bootstrap template

Summary
2. Creating a Simple News Reader

Creating Controller and Action
Creating a view to display a news list
How the controller sends data to view

Example – create a controller to display the static news items list and details using the
bootstrap template
Splitting the common view content into reusable views

Example – render partial in view
Creating static pages

Example – add a contact page
Sharing data between views and layout

Example – change the layout background based on a URL parameter

www.allitebooks.comwww.allitebooks.com

part0003.xhtml#aid-2RHM1
part0004.xhtml#aid-3Q281
part0005.xhtml#aid-4OIQ1
part0006.xhtml#aid-5N3C1
part0007.xhtml#aid-6LJU1
part0007.xhtml#ch00lvl1sec01
part0007.xhtml#ch00lvl2sec01
part0007.xhtml#ch00lvl2sec02
part0008.xhtml#aid-7K4G1
part0008.xhtml#ch00lvl1sec02
part0009.xhtml#aid-8IL21
part0010.xhtml#aid-9H5K1
part0011.xhtml#aid-AFM61
part0012.xhtml#aid-BE6O1
part0013.xhtml#aid-CCNA1
part0013.xhtml#ch00lvl2sec03
part0013.xhtml#ch00lvl2sec04
part0013.xhtml#ch00lvl2sec05
part0013.xhtml#ch00lvl2sec06
part0014.xhtml#aid-DB7S1
part0014.xhtml#ch01lvl1sec08
part0015.xhtml#aid-E9OE1
part0016.xhtml#aid-F8901
part0017.xhtml#aid-G6PI2
part0017.xhtml#ch01lvl2sec07
part0017.xhtml#ch01lvl2sec08
part0017.xhtml#ch01lvl2sec09
part0018.xhtml#aid-H5A42
part0018.xhtml#ch01lvl2sec10
part0018.xhtml#ch01lvl2sec11
part0018.xhtml#ch01lvl2sec12
part0019.xhtml#aid-I3QM1
part0020.xhtml#aid-J2B81
part0020.xhtml#ch02lvl1sec14
part0021.xhtml#aid-K0RQ1
part0022.xhtml#aid-KVCC2
part0022.xhtml#ch02lvl2sec13
part0023.xhtml#aid-LTSU1
part0023.xhtml#ch02lvl2sec14
part0024.xhtml#aid-MSDG1
part0024.xhtml#ch02lvl2sec15
part0025.xhtml#aid-NQU21
part0025.xhtml#ch02lvl2sec16
http://www.allitebooks.org
http://www.allitebooks.org

Layout with dynamic block
Example – add a dynamic box to display advertising info

Using multiple layouts
Example – using different layouts to create responsive and nonresponsive content layout

for the same view
Summary

3. Making Pretty URLs
Using pretty URLs
Custom URL rules

Example – list news items by year or category
Default parameters in rules

Example – the index page to display the links list
The complete URL rule parameters
The URL pattern to support the multilanguage view
Creating the rule class
Summary

4. Creating a Room through Forms
Creating a Model

Example – a Model to store room data
Using ActiveForm

Example – creating a new room from the HTML form
Format date, time, and numbers
Uploading files

Example – uploading an image of a room
Summary

5. Developing a Reservation System
Configuring a DB connection

Example – creating rooms, customers, and reservations tables
Example – test connection and executing the SQL query

Using Gii to create room, customer, and reservation models
Using ActiveRecord to manipulate data

Example – query rooms list with ActiveRecord
Working with relationships

Example – using a relationship to connect rooms, reservations, and customers
How to save a model from a form

Example – creating and updating a room from a form
Setting up the GMT time zone
Using multiple database connections

Example – configuring a second DB connection to export data to a local SQLite DB
Summary

6. Using a Grid for Data and Relations
Introduction
DataProvider for grids
Using a grid
Custom columns in a grid

Example – displaying a reservations list by clicking on a customer grid row
Filters in GridView
Displaying and filtering ActiveRecord relational data in a grid's column

www.allitebooks.comwww.allitebooks.com

part0026.xhtml#aid-OPEK1
part0026.xhtml#ch02lvl2sec17
part0027.xhtml#aid-PNV61
part0027.xhtml#ch02lvl2sec18
part0028.xhtml#aid-QMFO1
part0029.xhtml#aid-RL0A1
part0029.xhtml#ch03lvl1sec23
part0030.xhtml#aid-SJGS1
part0030.xhtml#ch03lvl2sec19
part0031.xhtml#aid-TI1E1
part0031.xhtml#ch03lvl2sec20
part0032.xhtml#aid-UGI01
part0033.xhtml#aid-VF2I1
part0034.xhtml#aid-10DJ41
part0035.xhtml#aid-11C3M1
part0036.xhtml#aid-12AK82
part0036.xhtml#ch04lvl1sec30
part0036.xhtml#ch04lvl2sec21
part0037.xhtml#aid-1394Q1
part0037.xhtml#ch04lvl2sec22
part0038.xhtml#aid-147LC1
part0039.xhtml#aid-1565U1
part0039.xhtml#ch04lvl2sec23
part0040.xhtml#aid-164MG1
part0041.xhtml#aid-173722
part0041.xhtml#ch05lvl1sec35
part0041.xhtml#ch05lvl2sec24
part0041.xhtml#ch05lvl2sec25
part0042.xhtml#aid-181NK2
part0043.xhtml#aid-190862
part0043.xhtml#ch05lvl2sec26
part0044.xhtml#aid-19UOO2
part0044.xhtml#ch05lvl2sec27
part0045.xhtml#aid-1AT9A2
part0045.xhtml#ch05lvl2sec28
part0046.xhtml#aid-1BRPS1
part0047.xhtml#aid-1CQAE2
part0047.xhtml#ch05lvl2sec29
part0048.xhtml#aid-1DOR01
part0049.xhtml#aid-1ENBI1
part0049.xhtml#ch06lvl1sec43
part0050.xhtml#aid-1FLS41
part0051.xhtml#aid-1GKCM1
part0052.xhtml#aid-1HIT82
part0052.xhtml#ch06lvl2sec30
part0053.xhtml#aid-1IHDQ2
part0054.xhtml#aid-1JFUC2
http://www.allitebooks.org
http://www.allitebooks.org

A summarized footer row in a grid
Example – extending GridView to customize the footer row in a grid

Multiple grids on one page
Example: managing the reservations and rooms grids in the same view

Summary
7. Working on the User Interface

Using Gii to generate CRUD
Example – using CRUD to manage rooms, reservations, and customers using Gii

Customize JavaScript and CSS
Example – using JavaScript and CSS to display advertising columns that disappear if not

enough space is available
Using AJAX

Example – reservation details loaded from the customers' drop-down lists
Using the Bootstrap widget

Example: using datepicker
Multiple models in the same view

Example – saving multiple customers at the same time
Saving linked models in the same view

Example – creating a customer and reservation in the same view
Summary

8. Log in to the App
Creating a user login

Example – a login form to access
Configuring user authorization

Example – creating an ACF to authorize the users
RBAC

Example – configuring RBAC to set permissions for users
Mixing ACF and RBAC

Example – managing users' roles to access rooms, reservations, and customers
Summary

9. Frontend to Display Rooms to Everyone
Using an advanced template to split frontend and backend
Configuring an application using init

Example – creating frontend for public access
Sharing ActiveRecord models among applications

Example – displaying available rooms in the frontend site
Customizing a URL in the advanced template

Example – using the advanced template in the same domain
How to use the advanced template in the shared hosting
Summary

10. Localize the App
Setting the default language
File-based translations

Example – using file-based translation for the entire website
Placeholders formatting
DB-based translations

Example – translating room descriptions using DB
Summary

www.allitebooks.comwww.allitebooks.com

part0055.xhtml#aid-1KEEU1
part0055.xhtml#ch06lvl2sec31
part0056.xhtml#aid-1LCVG1
part0056.xhtml#ch06lvl2sec32
part0057.xhtml#aid-1MBG21
part0058.xhtml#aid-1NA0K2
part0058.xhtml#ch07lvl1sec52
part0058.xhtml#ch07lvl2sec33
part0059.xhtml#aid-1O8H61
part0059.xhtml#ch07lvl2sec34
part0060.xhtml#aid-1P71O2
part0060.xhtml#ch07lvl2sec35
part0061.xhtml#aid-1Q5IA2
part0061.xhtml#ch07lvl2sec36
part0062.xhtml#aid-1R42S1
part0062.xhtml#ch07lvl2sec37
part0063.xhtml#aid-1S2JE1
part0063.xhtml#ch07lvl2sec38
part0064.xhtml#aid-1T1401
part0065.xhtml#aid-1TVKI2
part0065.xhtml#ch08lvl1sec59
part0065.xhtml#ch08lvl2sec39
part0066.xhtml#aid-1UU542
part0066.xhtml#ch08lvl2sec40
part0066.xhtml#ch08lvl2sec41
part0066.xhtml#ch08lvl3sec01
part0067.xhtml#aid-1VSLM1
part0067.xhtml#ch08lvl2sec42
part0068.xhtml#aid-20R681
part0069.xhtml#aid-21PMQ1
part0069.xhtml#ch09lvl1sec63
part0070.xhtml#aid-22O7C2
part0070.xhtml#ch09lvl2sec43
part0071.xhtml#aid-23MNU2
part0071.xhtml#ch09lvl2sec44
part0072.xhtml#aid-24L8G1
part0072.xhtml#ch09lvl2sec45
part0073.xhtml#aid-25JP21
part0074.xhtml#aid-26I9K1
part0075.xhtml#aid-27GQ61
part0075.xhtml#ch10lvl1sec69
part0076.xhtml#aid-28FAO2
part0076.xhtml#ch10lvl2sec46
part0077.xhtml#aid-29DRA1
part0078.xhtml#aid-2ACBS1
part0078.xhtml#ch10lvl2sec47
part0079.xhtml#aid-2BASE1
http://www.allitebooks.org
http://www.allitebooks.org

11. Creating an API for Use in a Mobile App
Configuring a REST app in the advanced template
Creating a controller

Example – creating a controller to manage rooms
Authentication

Example – using authentication to get a customers list
New controller action

Example – getting a rooms list for a reservation
Customizing authentication and response

Example – status response node in data received
Other forms of export – RSS

Example – creating an RSS with a list of available rooms
Summary

12. Create a Console Application to Automate the Periodic Task
Interacting with console applications
Creating a console controller

Example – setting an alarm flag for expired reservation
Formatting the output from the console
Implementing and executing cron jobs

Example – sending an e-mail with new reservations of the day
Summary

13. Final Refactoring
Creating widgets

Example – creating a widget with a carousel
Creating components

Example – creating a component that creates a backup of the MySQL database and
sends an e-mail to the administrator
Creating modules
Generating an API documentation

Example – using an API documentation to generate a doc of app and services
Summary

Index

www.allitebooks.comwww.allitebooks.com

part0080.xhtml#aid-2C9D01
part0080.xhtml#ch11lvl1sec74
part0081.xhtml#aid-2D7TI2
part0081.xhtml#ch11lvl2sec48
part0082.xhtml#aid-2E6E42
part0082.xhtml#ch11lvl2sec49
part0083.xhtml#aid-2F4UM1
part0083.xhtml#ch11lvl2sec50
part0084.xhtml#aid-2G3F82
part0084.xhtml#ch11lvl2sec51
part0085.xhtml#aid-2H1VQ1
part0085.xhtml#ch11lvl2sec52
part0086.xhtml#aid-2I0GC1
part0087.xhtml#aid-2IV0U1
part0087.xhtml#ch12lvl1sec81
part0088.xhtml#aid-2JTHG1
part0088.xhtml#ch12lvl2sec53
part0089.xhtml#aid-2KS221
part0090.xhtml#aid-2LQIK1
part0090.xhtml#ch12lvl2sec54
part0091.xhtml#aid-2MP361
part0092.xhtml#aid-2NNJO1
part0092.xhtml#ch13lvl1sec86
part0092.xhtml#ch13lvl2sec55
part0093.xhtml#aid-2OM4A1
part0093.xhtml#ch13lvl2sec56
part0094.xhtml#aid-2PKKS1
part0095.xhtml#aid-2QJ5E2
part0095.xhtml#ch13lvl2sec57
part0096.xhtml#aid-2RHM01
part0097.xhtml
http://www.allitebooks.org
http://www.allitebooks.org

Yii2 By Example

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Yii2 By Example
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1230915

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-741-1

www.packtpub.com

www.allitebooks.comwww.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org
http://www.allitebooks.org

Credits
Author

Fabrizio Caldarelli

Reviewers

Tristan Bendixen

Samuel Liew

Acquisition Editor

Vivek Anantharaman

Content Development Editor

Anand Singh

Technical Editor

Vivek Arora

Copy Editors

Ameesha Smith-Green

Laxmi Subramanian

Project Coordinator

Mary Alex

Proofreader

Safis Editing

Indexer

Tejal Soni

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Author
Fabrizio Caldarelli is an Italian programmer who started his professional career in his youth
by programming with desktop-oriented languages, the first being Visual Basic. From the year
2000 onward, he spent 5 years developing software to manage radio broadcasts. During that
period, he studied C#.NET to make porting of all software versus this new platform.

During the same period, he learned web programming, HTML, and ASP, and in 2003, he
began to develop software using PHP as the default programming language for web pages.
During those years, he collaborated as a teacher for PHP programming courses with
http://www.html.it/, an important online reference for developers in Italy.

In 2008, he added new skills to his experience by starting to develop mobile projects for Nokia
devices with Symbian C++, and a few years later, he started working on projects for iOS,
Android, and naturally Windows phone.

After many PHP-based web projects, in late 2012, he moved on to the Yii framework as his
primary framework for developing web applications.

Since then, he has built many important projects based on Yii 1 and later on Yii 2, day by day
discovering the powerful improvement that Yii provides to getting work done.

Now he lives in Sacrofano, a small town near Rome, with his wife, Serena.

I want to thank Erika Accili for supporting me during the writing and organization of this book.
I also want to thank my wife, Serena, for sustaining me during all the work, and for the rest of
her life indeed!

www.allitebooks.comwww.allitebooks.com

http://www.html.it/
http://www.allitebooks.org
http://www.allitebooks.org

About the Reviewers
Tristan Bendixen is currently pursuing a master's degree as a software engineer, having been
passionate about programming for most of his life. He has worked as a developer on diverse
projects, ranging from commercial and corporate websites to mobile phone apps and desktop
applications.

He continues to work as a software developer alongside his studies, on paid projects, as well
as some open source ones, which he helps with when time permits.

I would like to thank my beloved mother and younger brother for their love and support in my
constant endeavors to become a better developer, and my friends at Aalborg University for
being awesome sparring partners on projects and classes alike.

Samuel Liew is a full-stack web developer who enjoys producing solutions with interesting
and challenging requirements. He has experience of developing a diverse range of websites,
such as governmental sites, public utilities, real estate, investor relations, contests, touchscreen
kiosks, iPad feedback apps, blogs and magazines, and media news. He has also been involved
with creating two proprietary content management systems using C#.NET/MongoDB and
PHP/Yii/MySQL. His latest accomplishment is the development of a microstock photography
website (http://vivistock.com) using the Yii Framework, which involves e-commerce
transactions and implements heavy business logic.

www.allitebooks.comwww.allitebooks.com

http://vivistock.com
http://www.allitebooks.org
http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You
can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can
search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9
entirely free books. Simply use your login credentials for immediate access.

http://www.packtpub.com
http://www.packtpub.com
mailto:service@packtpub.com
http://www.packtpub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com

Preface
This book covers the use of the Yii2 framework from scratch up to build a complete web
application.

Yii is a high-performance PHP framework that is best for developing Web 2.0 applications that
provide fast, secure, and professional features to rapidly create robust projects. However, this
rapid development requires the ability to organize common tasks together to build a complete
application. It's all too easy to get confused about the use of these technologies.

So, walking through practical examples will help you understand how these concepts must be
used and realize a successful application.

What this book covers
Chapter 1, Starting with Yii2, provides basic knowledge about the Yii2 framework, starting
from requirements to explain every single functionality. Then, we will use debugging and
logging tools to trace our code and provides find errors. Finally, we will write our first project
based on the basic template.

Chapter 2, Creating a Simple News Reader, creates our first controllers and relative views.
We will explore static and dynamic views, learn how to render views in layout and pass data
from controller to view, and then look at reusing views through partial views and blocks.

Chapter 3, Making Pretty URLs, shows how to implement pretty URLs, which is useful for
search engine optimization. We will also create examples where we used custom rules to parse
and create the URL. Finally, we will learn how to build more customized URL rules through
Rule classes.

Chapter 4, Creating a Room through Forms, shows how to build a Model class from scratch
and send data from view to controller using form, which is created using the Yii2 ActiveForm
widget. We will also look at commonly used methods to format data and send files from the
form.

Chapter 5, Developing a Reservation System, explains how to configure a database
connection and execute SQL queries from scratch with DAO support for the framework. Next,
we will find out how to use Gii and get to know about the advantages it has in creating models
from the database table structure. Gii creates models that extend the ActiveRecord class, and,
through its use, we will finally learn how to manipulate data.

Chapter 6, Using a Grid for Data and Relations, presents the GridView widget for displaying
data, directly or relationed. A fundamental topic inside GridView is Data Provider, the way to
provide data to GridView. We will learn how to get Data Provider from ActiveRecord, Array,
or SQL, based on the available sources.

Chapter 7, Working on the User Interface, discusses the User Interface and how Yii helps us
with its core functionalities.

part0014.xhtml#aid-DB7S1
part0020.xhtml#aid-J2B81
part0029.xhtml#aid-RL0A1
part0036.xhtml#aid-12AK82
part0041.xhtml#aid-173722
part0049.xhtml#aid-1ENBI1
part0058.xhtml#aid-1NA0K2

Chapter 8, Log in to the App, shows how to apply user authentication and authorization to an
app. The first step is to create authenticated access to the application. For this purpose, we
will create a database table to manage users and associate it to the Yii user component through
a user model that extends IdentityInterface.

Chapter 9, Frontend to Display Rooms to Everyone, explains how to use Yii to build a modern
web project based on frontend and backend applications. We will find out the differences
between basic and advanced templates, installing our first advanced project based on
advanced templates.

Chapter 10, Localize the App, shows how to configure multiple languages in our app. We will
discover that there are two storage options to handle internationalization: files and databases.

Chapter 11, Creating an API for Use in a Mobile App, creates an API for use in mobile apps
through the use of powerful tools provided by Yii. We will adopt the approach of creating a
new application in order to distribute RESTful Web Services, instead of mixing web and API
controllers.

Chapter 12, Create a Console Application to Automate the Periodic Task, explains how to
write a console application and allows you to discover the main differences between web and
console apps.

Chapter 13, Final Refactoring, helps you to reuse code using widgets and components. We
will create some practical examples on how to use them.

part0065.xhtml#aid-1TVKI2
part0069.xhtml#aid-21PMQ1
part0075.xhtml#aid-27GQ61
part0080.xhtml#aid-2C9D01
part0087.xhtml#aid-2IV0U1
part0092.xhtml#aid-2NNJO1

What you need for this book
The minimum requirements for this book are: a host on the Web, local or remote, based on the
PHP 5.4 environment and having a MySQL database server installed (no specific version for
it).

For writing code, it is enough to have a simple highlighted syntax editor, such as block notes,
TextEdit, Notepad++, PSPad, Aptana, and so on.

Who this book is for
This book is intended for anyone who wants to discover the Yii Framework or master its
practical concepts. Beginner-level users will find some introductive theory in every chapter that
explains the topics treated, with a lot of code showing all their practical aspects. Advanced
users will find many examples with special cases illustrated and common mistakes solved.

Basic programming experience with PHP and object-oriented programming is required.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "Now, create the view
with this content in basic/views/my-authentication/login.php."

A block of code is set as follows:

<?php
return [
 2 => [
 'operator',
],
 1 => [
 'admin',
],
];

Any command-line input or output is written as follows:

$ curl -H "Accept: application/json" http://hostname/yiiadv/api/web/test-rest/index
[{"id":1,"name":"Albert","surname":"Einstein"},{"id":2,"name":"Enzo","surname":"Ferrari"},{"id":4,"name":"Mario","surname":"Bros"}]

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles that
you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com for
all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would
be grateful if you could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. Starting with Yii2
Yii2 is a complete rewrite of the first version of one of the most famous PHP frameworks. It is
a well-documented framework with a very active community.

Officially, we can find three types of support: a guide, for a complete navigation through
framework topics at http://www.yiiframework.com/doc-2.0/guide-index.html, a reference to
explore all classes that compose the framework at http://www.yiiframework.com/doc-
2.0/index.html, and finally forum support at http://www.yiiframework.com/forum/.

In this chapter, we will go through the following:

Requirements and tools
Installing Yii2 with Composer
Application structure
Application properties

Common application components
Handling application events
Pattern MVC in Yii2

Naming convention
Configuring debug toolbar
Using logger
Example – hello world from scratch with the Yii basic template and bootstrap
template

Requirements and tools
The basic requirements for Yii2 are a web server (local or remote) and PHP v.5.4 (or newer). It
is recommended to have a shell (or command line) access to the machine (local or remote)
where we store the code, as there are scripts that it will be very beneficial to use in the
development of complex applications. We can also develop the application locally and upload
it to the web server when we wish to test it.

For remote hosting, there are multiple options. We can use a simple web hosting service (with
PHP v.5.4 support) or we can opt for virtual or dedicated server hosting. Keep in mind that
with the former option, if the server doesn't meet the PHP requirements, it can be difficult to
change whatever is wrong.

Yii2 has a script, requirements.php, which checks whether our hosting meets the
requirements to run Yii2 application.

http://www.yiiframework.com/doc-2.0/guide-index.html
http://www.yiiframework.com/doc-2.0/index.html
http://www.yiiframework.com/forum/

Installing Yii2 with Composer
Composer is a tool for dependency management in PHP. Yii2 uses it to install itself and other
vendors' modules (for example, bootstrap).

It is also possible to install Yii2 in the old way, by downloading the complete package and
transferring it to the host, local or remote, where the framework will be installed. However,
Composer will give us many benefits, like the ability to easily update the framework and ensure
that all package dependencies are satisfied. Composer is de facto the new way to install and
maintain projects, so I recommend using it from the start. If you are unsure about using
Composer, it's worth mentioning that most users will need to learn two or three commands at
most, so it's not a steep learning curve.

Yii2 has two available templates to start with: basic and advanced. We will start with the basic
template, but we will also see in the next chapters how to use advanced templates.

So, let's look at how to install Yii2 with Composer. We need to access the folder through the
console, where the web server's httpdocs point to and launch these commands:

curl -s http://getcomposer.org/installer | php
php composer.phar global require "fxp/composer-asset-plugin:1.0.0"
php composer.phar create-project --prefer-dist yiisoft/yii2-app-basic basic

These commands are useful if we are in the Linux or Mac environment. On Windows, you
need to download Composer-Setup.exe from Composer's official website and run it.

The first command gets the http://getcomposer.org/installer URL and passes it to PHP to
create the composer.phar file.

The second command installs the Composer asset plugin, which allows us to manage bower
and npm package dependencies through Composer.

The third and final command installs Yii2 in a directory named basic. If you want, you can
choose a different directory name.

Note

During the installation, Composer may ask for our GitHub login credentials and this is normal
because Composer needs to get enough API rate limit to retrieve the dependent package
information from GitHub. If you don't have a GitHub account, this is the right moment to
create a new one!

If we are using Windows, we need to download it from https://getcomposer.org and run it.
The last two commands will be the same.

We have installed Yii2!

To test it, point to http://hostname/basic/web and we should see the My Yii Application

www.allitebooks.comwww.allitebooks.com

http://getcomposer.org/installer
https://getcomposer.org
http://www.allitebooks.org
http://www.allitebooks.org

page.

Application structure
Yii2's application structure is very clear, precise, and redundant (for advanced applications).

The contents of the basic folder should be as follows:

Folder
names Description

assets This includes the files (.js and .css) referenced in the web page and
dependencies of the app.

commands This includes the controllers used from the command line.

config This includes the controllers used from web.

mail This is the mail layout repository.

models This includes the models used in the whole application.

runtime This is used from Yii2 to store runtime data as logs.

tests This includes all the test's repositories (unit, functional, fixtures, and so on).

vendor This includes the third-party module repositories managed by Composer.

views This contains PHP files, divided into folders that refer to controller names, used
to render the main content of the page template. It is mainly called from the
controller's actions to render the display output. A folder named layout contains
the page template's PHP files.

web This is the entry point from web

Open web/index.php to view content:

<?php
// comment out the following two lines when deployed to production
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/../config/web.php');

(new yii\web\Application($config))->run();

Here, the first two constant definitions are very important.

YII_DEBUG defines whether you are in debug mode or not. If we set this, we will have more
log information and will see the detail error call stack.

YII_ENV defines the environment mode we are working in, and its default value is prod. The
available values are test, dev, and prod. These values are used in configuration files to
define, for example, a different DB connection (local database different from remote database)
or other values, always in configuration files.

Since we are at the start of our project, it is recommended to set YII_DEBUG to true, in order
to have more detailed information in case we make a mistake in our code, instead of the
unhelpful, blank.

The following table contains a list of all Yii2's objects:

Objects Description

Models,
Views, and
Controllers

These are the common objects to apply the MVC pattern to:

Models are data representation and manipulation, usually from the
database
Views are used to present data to the end user
Controllers are objects that process requests and generate responses

Components These are objects that contain logic. The user can write his own components to
create reusable functionalities.

For example, a component could be a currency converter object, which can be
used at many instances in our application.

Application
Components

They are singletons that can be called at any point in the app. Singleton means
an object instanced just one time in the entire application (so the object will
always be the same).

The difference between Application Components and Components is that the
first can have just one instance in the whole application.

Widgets These view reusable objects, containing both logic and rendering code. A
widget could be, for example, a box displaying today's weather info.

Filters These are objects that run before or after the execution of Controller actions. A
filter can be used to change the format response output of the page, for
example, from HTML to JSON.

Modules This contains all the objects of an app, such as Models, Views, Controller,
Components, and so on; we can consider them as subapp, containing reusable
sections (for example, user management).

Extensions Extensions are modules packaged, that we can easily manage using Composer.

Objects Description

Application properties
A Yii2 application can be configured through several properties.

The properties that need to be configured in any application are listed in the following table:

Properties Description

id This indicates a unique ID to distinguish this application from others. It is mainly
used programmatically. An example of this property is basic.

basePath This specifies the root directory of the application. This path is the starting point
for all the other types of application objects, such as models, controllers, and
views. An example of this property is dirname(__DIR__).

The other common properties are listed in the following table:

Properties Description

aliases This indicates an alias name for path definitions. They are defined using a
key/value array and they are very useful when we need to set a path as a
constant that live in the whole application. We type an alias preceded by an
@ character. An example of this property is '@fileupload' =>
'path/to/files/uploaded'.

bootstrap This property allows you to configure an array of components to be run
during the application bootstrap process. A common usage is to load the log
or profile component, gii, or any other component. Be careful not to load
too many components, otherwise the response performance of your pages
may degrade. An example of this property is 'log', 'gii'.

catchAll This property captures every request and it is used in the maintenance mode
of the site.

components This property points out a list of application components that you can use in
the whole application.

language This property specifies the language used to display the content. An example
of this property is 'language' => 'en'.

modules This property points out a list of application modules that can be used in the
application.

name This property indicates the name of your app. An example of this property
is 'name' => 'My App'.

params This property specifies an array of parameters, through key/value pairs. This
is a container for global params, such as the administrator's e-mail address.

timeZone This property indicates the time zone that should be used in the application.
An example of this property is 'timeZone' => 'Europe/Rome'.

charset This property points out the charset used in the application. The default
value is UTF-8.

defaultRoute This property contains a route to be used when a request does not a specify
one. This property has different default values according to the environment
we are using.

For web applications, this value will be site, so that SiteController
could be used to handle these requests.

For console applications, this value will be help, so that
yii\console\controllers\HelpController can be used invoking its
index action that will display help information.

Properties Description

Common application components
Here's a list of the most-used application components:

request: This component handles all client requests and provides methods to easily get
parameters from server global variables, such as $_SERVER, $_POST, $_GET, and
$_COOKIES.

The default state has enableCookieValidation set to true, so you need to set
cookieValidationKey parameter as shown in this example:

'request' => [
'cookieValidationKey' => 'hPpnJs7tvs0T4N2OGAY',
],

cache: This component helps you handle cache data. Yii2 defaults to the FileCache
instance for the cache, but we can also configure an ApcCache, DbCache, MemCache,
and so on.

The following is a standard installation of Yii2:

'cache' => [
'class' => 'yii\caching\FileCache',
],

user: This component deals with user authentication in the app. The most important
parameter is the identityClass parameter, which defines the class that contains the
user's model data, in order to have a specific method to log in or log out a user from the
app.

Consider the following example:

'user' => [
'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],

errorHandler: This component provides functionalities to handle uncaught errors and
exceptions. It can be configured by specifying the action to run.

Consider the following example:

'errorHandler' => [
'errorAction' => 'site/error',
],

mailer: This component configures mailer connection parameters to the system that will
send an e-mail. Usually, it is the same machine hosting our website, so the default values
are probably correct.

Consider the following example:

'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
 // send all mails to a file by default. You have to set
 // 'useFileTransport' to false and configure a transport
 // for the mailer to send real emails.
 'useFileTransport' => true,
],

log: This component is mainly used in the debug environment to log the app execution.
We can set the debug level and destination.

Consider the following example:

'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],

db: This component handles a database connection. We can have several db
configuration in our app; in this case, we can define more components with the
Connection class located at yii\db\.

Consider the following example:

db => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'dbuser'',
 'password' => 'dbpassword',
 'charset' => 'utf8',
],

Handling application events
During its lifecycle, an application can trigger many events. These events can be declared in
application configuration or programmatically. Common triggers are beforeRequest,
afterRequest, beforeAction, and afterAction, but every object can have its own
events.

For example, a common use of events is to set mysql db timezone.

To set the time zone to UTC in db component configuration, we must define a handler for the
afterOpen event:

'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=mydb',
 'username' => 'dbuser',
 'password' => 'dbpassword',
 'charset' => 'utf8',

 'on afterOpen' => function($event) {
 $event->sender->createCommand("SET time_zone = '+00:00'")->execute();
 }
],

An anonymous function, attached to on afterOpen event handlers, has an $event
parameter, which is an instance of the yii\base\ActionEvent class. This class has a
$sender object that refers to the sender of the event. In this case, $sender refers to the
instance of database components (db). This property may also be null when this event is a

class-level event.

The MVC pattern in Yii2
Yii2 is built according to the Model-View-Controller (MVC) design pattern.

Models, representing logic, are objects extended from \yii\base\Model, which offer many
features such as attribute, attribute labels, massive assignment (to fill object attributes directly
for an array), validation rules, and data exporting.

Normally, in common apps, a Model will be generated from the database, extending
yii\db\ActiveRecord that implements the Active Record design pattern, with many
methods to manipulate data. Yii2 provides Gii, a tool used to generate Model classes directly
from the database's table structure.

Controllers, the bridge between view and model, are class instances extending from
yii\base\Controller, used to process requests and generate responses.

Controllers mainly contain functions whose name starts with the action prefix that allows the
framework to recognize those functions as routes, which can be requested.

Finally, we will look at views that deal with displaying data to end users that are mainly
rendered in the page layout from controllers.

Naming convention
In order to allow auto-loading, Yii2 uses a simple standard to set names.

Routes that refer respectively to module, controller, and the action requested take the following format:

ModuleID/ControllerID/ActionID

We will look at each element in detail as follows:

The ModuleID is optional, so often the format is ControllerID/ActionID
The ModuleID must be specified in the module's configuration property, under the same name
The ControllerID and ActionID should contain only English characters in lowercase, digits, underscores,
dashes, and forward slashes

An example of route is http://hostname/index.php?r=site/index, where site is the ControllerID and
index is the ActionID.

Starting from ControllerID, it is very easy to create the Controller class name. Just turn into uppercase the first letter
of each word separated by dashes, then remove dashes and append the suffix Controller. If ControllerID contains
slashes, just apply the rules to the part after the last slash in the ID. This is possible because controllers can be
collected in subfolders, starting from app\controllers.

The following are some examples:

Shop points to app\controllers\ShopController
Preferred number points to app\controllers\PreferredNumberController
Admin/users account points to app\controllers\admin\UsersAccountController

Routes are passed to entry script basic/web/index.php through the r parameter.

Note

The default page http://hostname/basic/web/index.php is equivalent to
http://hostname/basic/web/index.php?r=site/index.

Configuring the debug toolbar
It is important to have a rich collection of tools to make development easier in displaying some useful information
about requests and responses.

For this purpose, Yii2 provides a toolbar that displays several types of info.

A common way to activate the debug toolbar is to set in config/web.php:

'bootstrap' => ['debug'],
'modules' => [
 'debug' => 'yii\debug\Module',
]

Now you can set the following values:

debug to bootstrap config node

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

debug to modules config node, using the Module class under yii\debug\

The default installation of the Yii2 basic template already enables the debug toolbar, as we can see at the bottom of
the config/web.php configuration file. The Gii module is also enabled as well, but we will work with it later.

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

This config entry is only valid in the YII_ENV_DEV mode. So, we must check whether the web/index.php
YII_ENV variable has the dev value (as shown in the default installation).

Debug toolbar closed

If we try to reload the web page at basic/web/index.php after these checks, we should see the following
screenshot:

Debug toolbar opened

The right arrow reports that the debug toolbar is active but closed. If we click on it, the complete toolbar will open.
Now, click on any item, the debug panel will be displayed.

By default, the debug toolbar can be used only in localhost. However, if we are using Yii2 in the remote hosting
environment, we set the allowedIPs property of the debug module.

$config['modules']['debug'] = [
 'class' => 'yii\debug\Module',
 'allowedIPs' => ['127.0.0.1', '::1']
];

In allowedIPs there is only localhost (in the IPv4 and IPv6 forms). We need to put our Internet connection and IP
source address here, which can be easily found using any my IP service on the Internet, such as
http://www.whatismyip.com/.

If our IP source is, for example, 1.2.3.4, we must add this entry to allowedIPs, in this way:

$config['modules']['debug'] = [
 'class' => 'yii\debug\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '1.2.3.4']
];

Remember that if we do not have an Internet connection with a static IP, this IP might change. So we need to check

http://www.whatismyip.com/

whether allowedIPs contains our current IP.

You could also use an asterisk * to allow all IP addresses, so you do not have to deal with dynamic IP issues. If you
do this, you need to remember to remove the asterisk before deployment. Finally, at the bottom of our current
configuration config/web.php, you will see the following code:

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = [
 'class' => 'yii\debug\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '1.2.3.4']
];
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Let's return to the basic/web/index.php webpage and take a look at the debug info panel.

The debug information is distributed in the menu:

Configuration: This is the installed PHP version and configuration and also the installed Yii2 framework
version.
Request: This is the info about the request just sent, displaying parameters of the request, headers of the
request and other useful data as response and session data.
Logs: This involves the actions performed by Yii2 during the execution. There are additional filters in this
section to select the types of logs to be displayed.
Performance Profiling: This includes info about timing and duration of process.
Database: This includes info about all database query occurred; we can filter for type of query to locate a
specific query.

It is possible to filter all data using internal grid filter or to filter for all, latest or selecting among the last 10 rows of the
log on top of the content pane.

Using the logger
In the Yii2 application, the debug info is stored using the log component. We can use this tool both in the development
and production environment, but for reasons of performance and security in production, we should log only the
important messages.

The default configuration file of the Yii2 basic template provides log entry in the components property of
config/web.php:

'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],

Example – Hello world from scratch with the Yii basic template and
bootstrap template
It is now time to code our first project using Yii2.

If we have not installed Yii2 yet, we will to do it now using Composer as follows:

1. Open Command Prompt to the web server.
2. Go to the document root of the web server (/var/www in a Linux machine).
3. Launch these commands (as described in the Installing Yii with Composer section):

curl -s http://getcomposer.org/installer | php
php composer.phar global require "fxp/composer-asset-plugin:1.0.0"
php composer.phar create-project --prefer-dist yiisoft/yii2-app-basic basic

Now, we need a fresh installation of Yii2 in the basic folder of the web server document root. Point the browser to
http:/hostname/basic/web and we should see Yii2's congratulations page:

An example of the Hello world page

We will create our first action to display a memorable hello world on the screen.

We know from the Application properties section, in the defaultRoute entry, that the SiteController controller
will be called when no route is specified in request.

So, we enter basic/controllers and open SiteController.php, which is the default controller.

In the SiteController class definition, we add a new method at the top, called actionHelloWorld, without
parameters.

public function actionHelloWorld()
{
 echo 'hello world'
}

Let's save the file and point to http://hostname/basic/web/index.php?r=site/hello-world.

You should see a blank page with hello world.

Note

Pay attention when using the name route convention. Uppercase letters are translated to lowercase and dashes.

This is fantastic, but now we just want to put hello world within the page template.

We must now create a view with the content of response hello world!. In order to do this, we need to create a file
named helloWorld.php as the name of the action under views/site. The naming convention need not necessarily
be the same here because the view file is not automatically called from the framework.

This file only contains the hello world text.

We update SiteController with the following code:

public function actionHelloWorld()
{
 return $this->render('helloWorld');
}

In the actionHelloWorld() method, $this refers to the SiteController's instance, and render() will insert the
views/helloWorld.php file content in the main content layout page.

The extension of the view file, .php, is automatically added from the framework to view the name parameter passed
to the render method.

What if we want to pass a parameter, such as name, to actionHelloWorld()? Formally, we need to add just one
parameter to actionHelloWorld() in SiteController as follows:

public function actionHelloWorld($nameToDisplay)
{
 return $this->render('helloWorld',
 ['nameToDisplay' => $nameToDisplay]
);
}

Then, under view/site/helloWorld.php add the following code:

Hello World <?php echo $nameToDisplay ?>

With the update of actionHelloWorld(), we will pass as a second parameter, an array of variables, that will be
visible and used in View.

When we use parameters in the action function, we must remember that they will be mandatory and we must respect
the order when passing it to the request.

To avoid this obligation, we can use the old method, parsing parameters into the function:

public function actionHelloWorld()
{
 $nameToDisplay = Yii::$app->request->get('nameToDisplay');
 // Equivalent to
// $nameToDisplay = isset($_GET['nameToDisplay'])?$_GET['nameToDisplay']:null;

 return $this->render('helloWorld',
 ['nameToDisplay' => $nameToDisplay]
);
}

With this solution, we can decide whether to pass the nameToDisplay parameter to request. The default value of the
nameToDisplay parameter will be null, but we can decide to assign a different value.

The following is a URL example passing the nameToDisplay parameter Foo:

http://hostname/basic/web/index.php?r=site/hello-world&nameToDisplay=Foo

Summary
In this chapter, we looked at a basic understanding of the Yii2 framework, starting from
requirements to explain the main features. Then we used debugging and logging tools to trace
our code and were able to find errors. Finally, we wrote our first project based on the basic
template.

Next, you will learn how to create our controllers and views, to create custom interaction with
frontend users.

Chapter 2. Creating a Simple News Reader
This chapter explains how to write your first controller in order to display news items list and details, make
interactions between controllers and views, and then customize the view's layout.

In this chapter, we will go through the following:

Creating controller and action
Creating a view to display the news list
How the controller sends the data to view

Example – create a controller to display the static news items list and details
Split the common view content into reusable views

Example – render partial in view
Creating static pages
Share data between views and layout

Example – change layout background based on the URL parameter
Layout with dynamic blocks

Example – add dynamic box to display advertising info
Using multiple layouts

Example – using different layout to create responsive and not responsive layout for the same view

Creating Controller and Action
In order to handle a request, the first thing to do is to create a new controller.

The things you must remember while creating a file controller are as follows:

The namespace at the top (in basic application usually app\controllers)
The use path for used class
The controller class must extend the yii\web\Controller class
The actions are handled from controller functions whose name starts with action and the first letter of each
word is in uppercase

Let's point to basic/controllers and create a file named NewsController.php.

Then, create a class with the same name as the file and extend it from controller; finally, create an action named
index to manage request for news/index:

<?php

// 1. specify namespace at the top (in basic application usually app\controllers);
namespace app\controllers;

// 2. specify 'use' path for used class;
use Yii;
use yii\web\Controller;

// 3. controller class must extend yii\web\Controller class;
// This line is equivalent to
// class NewsController extends yii\web\Controller
class NewsController extends Controller
{
// 4. actions are handled from controller functions whose name starts with 'action' and
the first letter of each word is uppercase;
 public function actionIndex()
 {
 echo "this is my first controller";
 }
}

If we try to point the browser to http://hostname/basic/web/index.php?r=news/index, we will see a blank
page with the notice this is my first controller.

Now, let's see which common errors can occur when we ignore those four things to remember mentioned at the top
of this chapter.

The namespace defines the hierarchical organization for names used in our application. If we forget to declare a
namespace, Yii2 with YII_DEBUG set to true in web/index.php, will display the following error message:

The missing Controller namespace

Yii2 reports an error in an excellent way, giving us the possibility to solve it by checking if we are missing the
namespace.

Then, the Use keyword is employed to specify the complete path of a class in the application. A class that has a
path/to/class/ClassName complete path, can be referenced in the app using only ClassName if we put an use
path/to/class/ClassName just after namespace declaration.

However, if we use just ClassName without defining the use declaration at the top of the file, an error such as the
following can occur:

This error is simple to explain, but harder to find, especially for beginners.

In this case, the screenshot shows that it has been used the Controller name (after the extends keyword) at row
9. Since there is no complete path for the Controller class name, Yii2 will try to look for the Controller class
under app\controllers, without finding it.

To solve this problem, we must change Controller with yii\web\Controller at row 9 and for all the next rows
that will use the Controller class name without defining a complete class path, or that insert a use declaration at the
top of the file, we must employ yii\web\Controller.

A controller is always a subclass of yii\web\Controller or simply, if we have used the keyword use, a subclass
of Controller. Action names follow the rules described in the previous chapter.

Creating a view to display a news list
Now, we will create a simple news list in a view named itemsList. We will point to this view
from NewsController, so we have to:

Create a news folder under basic/views, that NewsController will use as the base
folder to search for the views to be rendered (according to the view names' rules
explained in the previous chapter)
Create an itemsList.php file under basic/views/news

Now, open basic/views/news/itemsList.php, create an array with a list of data and
display the output with a simple table of items:

<?php
 $newsList = [
 ['title' => 'First World War', 'date' => '1914-07-28'],
 ['title' => 'Second World War', 'date' => '1939-09-01'],
 ['title' => 'First man on the moon', 'date' => '1969-07-20']
];
?>

<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <td><?php echo $item['title'] ?></td>
 <td><?php echo $item['date'] ?></td>
 </tr>
 <?php } ?>
</table>

Then, we need to create an action provided by a function named actionItemsList that will
be rendered by http://hostname/basic/web/index.php?r=news/items-list.

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for
all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

Note

Pay attention to names for routes, controllers, and actions:

The route for this action is news/items-list (lowercase and words separated by

http://www.packtpub.com
http://www.packtpub.com/support

dashes);
The controller class name is NewsController (uppercase with the word Controller in
the end);
The action function name in NewsController is actionItemsList (the function name
has action word as prefix, dashes in the route are removed, and the first letter of each
word is in uppercase);

The function to append in the NewsController class is as follows:

public function actionItemsList()
{
 return $this->render('itemsList');
}

The render() method that belongs to \yii\web\Controller, displays in the layout
content of the view passed as the first parameter. When the framework is looking for the view,
it will append .php extension to the name passed as the first parameter of the render()
method and it will look for it in basic/view/news. The last member of the path is the name
that is calling the render() method.

Now, we can point to http://hostname/basic/web/index.php?r=news/items-list,
to see our beautiful table!

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

How the controller sends data to view
In the previous paragraph, we have seen how to display the content view. However, the view should only be
responsible for displaying data, and not for manipulation. Consequently, any work on data should be done in
controller action and then passed to view.

The render() method in the action of the controller has a second parameter, which is an array whose keys are
names of variables, and values are the content of these variables available in view context.

Now, let's move all data manipulation of our itemsList example in controller, leaving out just the code to format the
output (such as HTML).

The following is the content of the actionItemsList() controller:

public function actionItemsList()
{
 $newsList = [
 ['title' => 'First World War', 'date' => '1914-07-28'],
 ['title' => 'Second World War', 'date' => '1939-09-01'],
 ['title' => 'First man on the moon', 'date' => '1969-07-20']
];

 return $this->render('itemsList', ['newsList' => $newsList]);
}

In views/news/itemsList.php, we only have the following code:

<?php // $newsList is from actionItemsList ?>
<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <th><?php echo $item['title'] ?></th>
 <th><?php echo $item['date'] ?></th>
 </tr>
 <?php } ?>
</table>

Thus, we have correctly split the working of controller and view.

Example – create a controller to display the static news items list and
details using the bootstrap template
Our next goal is to complete the news reader displaying details of single news in another page.

Since we are going to use the same data for list and detail, we will extract the $newsList data from action to a
function, in order to be reused for more actions.

In NewsController, we will have the following code:

public function dataItems()
{
 $newsList = [
 ['title' => 'First World War', 'date' => '1914-07-28'],
 ['title' => 'Second World War', 'date' => '1939-09-01'],
 ['title' => 'First man on the moon', 'date' => '1969-07-20']
];

 return $newsList;

}

public function actionItemsList()
{
 $newsList = $this->dataItems();

 return $this->render('itemsList', ['newsList' => $newsList]);
}

After this, we will create a new function in NewsController, actionItemDetail, that is used to handle requests of
detail of a news item. This function will expect a parameter, which will allow to filter the correct items from
$newsList, for example, the title.

The following is the content of actionItemDetail:

public function actionItemDetail($title)
{
 $newsList = $this->dataItems();

 $item = null;
 foreach($newsList as $n)
 {
 if($title == $n['title']) $item = $n;
 }

 return $this->render('itemDetail', ['item' => $item]);
}

Next we have to create a new view file in views/news named itemDetail.php.

The following is the content of itemDetail.php located under views/news/:

<?php // $item is from actionItemDetail ?>

<h2>News Item Detail<h2>

Title: <?php echo $item['title'] ?>

Date: <?php echo $item['date'] ?>

If we point to http://hostname/basic/web/index.php?r=news/item-detail without passing the title
parameter, we will see the following screenshot:

It displays an error that tells us that the title parameter is missing.

Try to pass First%20%World%20War as the title parameter to the URL, like this
http://hostname/basic/web/index.php?r=news/item-detail&title=First%20World%20War; the
following will be the output:

That is what we are expecting!

Finally, we want to connect together itemsList and itemDetail. In views/news/itemsList.php, we must
change the title content into an anchor element, as follows:

<?php // $newsList is from actionItemsList ?>
<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <th><a href="<?php echo Yii::$app->urlManager->createUrl(['news/item-detail' ,
'title' => $item['title']]) ?>"><?php echo $item['title'] ?></th>
 <th><?php echo $item['date'] ?></th>
 </tr>
 <?php } ?>
</table>

To build a link, there is an available component, urlManager, which allows us to create links through the
createUrl() method. The parameter in createUrl() is an array that contains the route path and variable to pass
to the URL. To learn more about this method, just refer to the link http://www.yiiframework.com/doc-2.0/yii-web-
urlmanager.html#createUrl%28%29-detail.

In our case, we have news/item-detail as the route to be called and the title parameter to be passed to the
URL.

Note

The date can be formatted using the built-in formatter component. For example, to to display a date in the d/m/Y
format, d/m/Y : Yii::$app->formatter->asDatetime($item['date'], "php:d/m/Y");.

It is advisable to use a unique identifier to pass data between routes. For this purpose, we add a third parameter,
named id, to identify a record univocally.

The following is the content of NewsController:

public function dataItems()
{
 $newsList = [
 ['id' => 1, 'title' => 'First World War', 'date' => '1914-07-28'],
 ['id' => 2, 'title' => 'Second World War', 'date' => '1939-09-01'],
 ['id' => 3, 'title' => 'First man on the moon', 'date' => '1969-07-20']
];
 return $newsList;
}

public function actionItemsList()
{
 $newsList = $this->dataItems();
 return $this->render('itemsList', ['newsList' => $newsList]);
}
public function actionItemDetail($id)

http://www.yiiframework.com/doc-2.0/yii-web-urlmanager.html#createUrl%28%29-detail

{
 $newsList = $this->dataItems();

 $item = null;
 foreach($newsList as $n)
 {
 if($id == $n['id']) $item = $n;
 }

 return $this->render('itemDetail', ['item' => $item]);
}

Then, change the parameter in the createUrl parameter in views/news/itemsList.php:

<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <th><a href="<?php echo Yii::$app->urlManager->createUrl(['news/item-detail' , 'id'
=> $item['id']]) ?>"><?php echo $item['title'] ?></th>
 <th><?php echo Yii::$app->formatter->asDatetime($item['date'], "php:d/m/Y"); ?></th>
 </tr>
 <?php } ?>
</table>

Splitting the common view content into
reusable views
Sometimes, views share the same common portion of content. In the examples made until
now, we have seen that a common area for itemsList and itemDetail could be copyright
data, which displays a disclaimer about copyright info.

In order to make this, we must put the common content in a separate view and call it using the
renderPartial() method of controller (http://www.yiiframework.com/doc-2.0/yii-base-
controller.html#renderPartial%28%29-detail). It has the same types of parameters of the
render() method; the main difference between the render() and renderPartial()
methods is that render() writes a view content in layout and renderPartial() writes only
view contents to output.

Example – render partial in view
In this example, we create a common view for both itemsList and itemDetail about
copyright data.

Create a view file named _copyright.php in views/news.

Note

Usually, in Yii2's app, a view name that starts with underscore stands for common reusable
view.

In this file, put only a text for copyright into views/news/_copyright.php:

<div>
 This is text about copyright data for news items
</div>

Now, we want to display this view inside the itemsList and itemDetail views.

Change the content in itemsList.php located at views/news/ as follows:

<?php echo $this->context->renderPartial('_copyright'); ?>
<table>
 <tr>
 <th>Title</th>
 <th>Date</th>
 </tr>
 <?php foreach($newsList as $item) { ?>
 <tr>
 <th><a href="<?php echo Yii::$app->urlManager->createUrl(['news/item-detail' , 'id' => $item['id']]) ?>"> <?php echo $item['title'] ?> </th>
 <th><?php echo Yii::$app->formatter->asDatetime($item['date'], 'php:d/m/Y'); ?></th>
 </tr>
 <?php } ?>
</table>

http://www.yiiframework.com/doc-2.0/yii-base-controller.html#renderPartial%28%29-detail

Then, change the content in itemDetail.php located at views/news/ as follows:

<?php // $item is from actionItemDetail ?>
<?php echo $this->context->renderPartial('_copyright'); ?>
<h2>News Item Detail<h2>

Title: <?php echo $item['title'] ?>

Date: <?php echo $item['date'] ?>

We have put a common code at the top of the file in both views:

<?php echo $this->context->renderPartial('_copyright'); ?>

This will render the content of the _copyright.php view without layout.

Note

Pay attention! Since renderPartial() is a method of the Controller class and $this
refers to the View class in the view file, to access from $this to renderPartial() we will
use the context member, which represents the Controller object in the View object.

Creating static pages
All websites contain static pages, whose content is static.

To create a static page in a common way, we need to:

Create a function (action) to execute action in Controller
Create a view for static content

Append the following action to Controller:

public function actionInfo()
{
 return $this->render('info');
}

Then, create a view in views/controller/action-name.php. This procedure is simple but too long and
redundant.

Yii2 provides a quick alternative, adding static pages to the actions() method of Controller as follows:

public function actions()
{
 return [
 'pages' => [
 'class' => 'yii\web\ViewAction',
],
];
}

With this simple declaration, we can put all static content under views/controllerName/pages.

Finally, we can point to the URL with route controller_name/page and the view parameter with the name of a
view file such as http://hostname/basic/web/index.php?
r=controllerName/pages&view=name_of_view.

Example – add a contact page
After we have learned how to create a static page, it is time to write a contact page.

Let's put a short static content in views/site/pages/contact.php as follows:

To contact us, please write to info@example.com

Then, let's add a page attribute in the return array from the actions() method of Controller. To simplify, we will
use SiteController that has this default implementation of the actions() method:

 public function actions()
 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
 'captcha' => [
 'class' => 'yii\captcha\CaptchaAction',
 'fixedVerifyCode' => YII_ENV_TEST ? 'testme' : null,
],
];
 }

After the last attribute, we will append the page attribute, and the following will be the result:

 public function actions()

 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
 'captcha' => [
 'class' => 'yii\captcha\CaptchaAction',
 'fixedVerifyCode' => YII_ENV_TEST ? 'testme' : null,
],
 'pages' => [
 'class' => 'yii\web\ViewAction',
],
];
 }

Now, every request to site/pages/ is routed using the ViewAction class, which handles it simply by rendering
static content of relative view.

Test it by clicking on http://hostname/basic/web/index.php?r=site/pages&view=contact, and we
should see this:

We can customize the last part of the route with these changes:

The attribute name of array returned from the actions() method of Controller
Set the viewPrefix attribute of the ViewAction class declaration with the first part of the URL that we want
to use to reach the pages
Change the name of the subfolder under views/controllerName

For example, we want to use static as the last part of the URL to reach static pages in SiteController.

We want to point to http://hostname/basic/web/index.php?r=site/static&view=contact to display the
contact view.

This will be the ViewAction node in the array from the actions() method of SiteController:

 'static' => [
 'class' => 'yii\web\ViewAction',
 'viewPrefix' => 'static'
],

We must also change the name of the static pages subfolder, renaming it from views/site/pages to
views/site/static, and we can point to http://hostname/basic/web/index.php?
r=site/static&view=contact.

Sharing data between views and layout
Yii2 provides a standard solution to share data between views and layout, through the params property of the View
component that you can use to share data among views.

Note

This is a standard solution since the params property exists in all views and it is attached to the View component.

This property, params, is an array that we can use without any restriction.

Imagine that we want to fill the breadcrumb element in the layout to track the path of navigation.

Open the main layout at views/layouts/main.php; you should find the default implementation of breadcrumb just
before declaring the footer:

 <div class="container">
 <?= Breadcrumbs::widget([
 'links' => isset($this->params['breadcrumbs']) ? $this-
>params['breadcrumbs'] : [],
]) ?>
 </div>

We need to fill the breadcrumbs property of params in view to display from any view to the layout custom path. For
example, we want to display breadcrumbs in the SiteController index.

Go to views/site/index.php and add the following code at the top of the file:

$this->params['breadcrumbs'][] = 'My website';

Note

Since we are in view file, $this refers to View component.

Go to http://hostname/basic/web/index.php?r=site/index to see the breadcrumb bar appearing at the
top of the page:

Example – change the layout background based on a URL parameter
Another example of communication between view and layout is, for instance, to change the layout background color
based on a URL parameter.

We need to change the background of route site/index passing the bckg parameter in URL.

Therefore, we must open views/site/index.php and put this code at the top:

<?php
$backgroundColor = isset($_REQUEST['bckg'])?$_REQUEST['bckg']:'#FFFFFF';
$this->params['background_color'] = $backgroundColor;

This code will set $backgroundColor to #FFFFFF (white color), if it is not passed to the bckg parameter, otherwise
it will be passed a value.

Then, set the params attribute of View component in order to write its content in layout.

Open views/layout/main.php, and, in the body tag, apply the style based on params['background_color']

passed from view.

Then, let's change the layout of the body tag with the following:

<?php
$backgroundColor = isset($this->params['background_color'])?$this-
>params['background_color']:'#FFFFFF'; ?>
<body style="background-color:<?php echo $backgroundColor ?>">

Finally, go to http://hostname/basic/web/index.php?r=site/index&bckg=yellow to have a yellow
background or to http://hostname/basic/web/index.php?r=site/index&bckg=#FF0000 to have a red
one.

Note

In this example, we are setting the background property of params only in views/site/index.php. Other views
do not set this property, so if we have not checked whether background_color property exists in the layout file, we
will receive an error of missing the attribute from the framework, which means:

$backgroundColor = isset($this->params['background_color'])?$this-
>params['background_color']:'#FFFFFF';

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Layout with dynamic block
The use of the params property to allow communication between view and layout, is advisable for simple cases, but
there are some more complex cases where we must share the block of HTML.

For example, think about the advertising box in layout (usually left or right column of the template), that could change
according to the view that is being displayed.

In this case, we need to pass the entire block of HTML code from view to layout.

For this purpose, this framework provides Block statements, where we can define entire blocks of data to send from
view to layout.

Using Blocks means to define the Block statement in view and display it in another view, usually layout.

We define the Block statement in view as follows:

<?php $this->beginBlock('block1'); ?>
...content of block1...
$this->endBlock(); ?>

Here, beginBlock and endBlock define the beginning and the end of the block1 named statement. This content is
saved into the blocks property of the view component with the block1 attribute.

We can access this block through $view>blocks[$blockID] in every view, including layout.

To render a block in layout view, if available, use the following code:

<?php if(isset($this->blocks['block1']) { ?>
 <?php echo $this->blocks['block1'] ?>
<?php } else { ?>
 … default content if missing block1 attribute
<?php } ?>

Obviously, we can define all the blocks that we want.

Example – add a dynamic box to display advertising info
In this example, we will see how to display, when available, a box with advertising info that displays data sent from
view.

The first thing to do is to add a block in layout displaying data.

Enter in views/layouts/main.php and change div with container class as follows:

<div class="container">
 <?= Breadcrumbs::widget([
 'links' => isset($this->params['breadcrumbs']) ? $this->params['breadcrumbs'] :
[],
]) ?>

 <div class="well">
 This is content for blockADV from view

 <?php if(isset($this->blocks['blockADV'])) { ?>
 <?php echo $this->blocks['blockADV']; ?>
 <?php } else { ?>
 <i>No content available</i>
 <?php } ?>
 </div>

 <?= $content ?>

</div>

We have added a div with the well class to display the content of blockADV, if available. If blockADV is available in
$this->blocks, it will display its content; otherwise, it will display no content available, as a courtesy
message.

Now, we will create a new action in NewsController, called advTest, and then will create a brand new view.

Let's start off by creating a file in views/news/advTest.php with the following content:

This is a test where we display an adv box in layout view

<?php $this->beginBlock('blockADV'); ?>

 Buy this fantastic book!

<?php $this->endBlock(); ?>

We can insert any content in a block; in this case, we have put in text.

Note

The position where block is defined in view is not important.

Then, open NewsController and add a new action advTest:

public function actionAdvTest()
{
 return $this->render('advTest');
}

Now, point the browser to http://hostname/basic/web/index.php?r=news/adv-test and we will see the
following screenshot:

All other pages will only show no content available in the screenshot.

Using multiple layouts
During the building of a website or a web application, usually it could be required to render
different views with different layouts. Think about, for example, the lists and details of news
made in this chapter.

The layout is managed by the $layout property of Controller; main is the default value for
this property.

Just set this property to change the layout file where to render the content of the view.

There are some important rules to write the value of the $layout property:

A path alias (for example, @app/views/layouts/main).
An absolute path (for example, /main) is where the layout value starts with a slash. The
actual layout file will be looked for under the application layout path, which defaults to
@app/views/layouts.
A relative path (for example, main) is where the actual layout file will be looked for under
the context module's layout path, which defaults to the views/layouts directory under
the module directory.
The Boolean value false is where no layout will be applied.

Note

If the layout value does not contain a file extension, it will use the default .php.

Example – using different layouts to create responsive
and nonresponsive content layout for the same view
In this example, we will create a new action in NewsController that will change its layout
depending on a value passed in the URL.

First, add a new action in NewsController called actionResponsiveContentTest:

public function actionResponsiveContentTest()
{
 $responsive = Yii::$app->request->get('responsive', 0);

 if($responsive)
 {
 $this->layout = 'responsive';
 }
 else
 {
 $this->layout = 'main';
 }

 return $this->render('responsiveContentTest', ['responsive' => $responsive]);
}

In this action, we get a responsive parameter from the URL and set the $responsive variable
to this value or 0 if not passed.

Then, set the $layout property of Controller to responsive or not according to the
$responsive value, and pass this variable to view.

Then, create a new view in views/news/responsiveContentTest.php:

<?php if($responsive) { ?>
 This layout contains responsive content
<?php } else { ?>
 This layout does not contain responsive content
<?php } ?>

This displays a different text block according to the $responsive value.

Finally, make a clone of main layout copying views/layouts/main.php in
views/layouts/responsive.php and change in a new file
views/layouts/responsive.php:

<div class="container"> in <div class="container-fluid" style="padding-top:60px">

This change makes the div container fluid (responsive), in other words, its content is resized
with respect to percentage available in the horizontal space (instead the fixed value).

If we point to http://hostname/basic/web/index.php?r=news/responsive-
content-test, we will see content in a fixed layout. Instead, if we pass the responsive
parameter with value 1, http://hostname/basic/web/index.php?
r=news/responsive-content-test&responsive=1, we will see the content in a full
width screen.

Summary
In this chapter, after understanding how a Yii2 app is structured, we have created our first
Controllers and relative views. We have seen static and dynamic views, we have learned how
to render views in layout and pass data from Controller to View and then we have looked at
reusing Views through partial views and blocks.

Finally, we have manipulated layouts, changing them conditionally.

In the next chapter, we will display URLs in a pretty format, which is very important for all
search engine optimization (SEO) activities on the website. Then, we will learn how to
create a custom URL handler to manage any required URL customizations.

Chapter 3. Making Pretty URLs
This chapter explains how to configure URL rules and make URLs pretty, in particular for
search engines. We will cover the following topics in this chapter:

Using Pretty URLs
Custom URL rules

Example – news items list by year or category
The default parameters in rules

Example – the index page to display list links
Complete URL rule parameters
The URL pattern to support a multilanguage view
Creating the rule class

Using pretty URLs
The URL format is very important for SEO. People do not pay attention to URLs (some
browsers does not display them at all), but search engines make correspondences between text
in the page and the URL.

Until now, we have used this type of URL index.php?r=site/index or index.php?
r=site/about, where r indicates the parameter route to follow. Now, we will see how to
change these formats in site/index and site/about, that are more easily readable and
useful for search engines.

In order to use pretty URLs, we need to configure Yii2 to handle them, and this can be done in
a couple of minutes.

First of all, we must ensure that all requests are rewritten to web/index.php. In Linux, we can
change web server configuration using Apache and insert the .htaccess file in Yii2's app root
folder, if this file does not exist. The .htaccess file allows us to override some default
configuration of the web server.

Note

In the Linux environment, the filename starting with dot indicates that this file is hidden.

The content of .htaccess is the same as Yii1:

RewriteEngine on

If a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
Otherwise forward it to index.php
RewriteRule . web/index.php

If the app root is /var/www/vhosts/yiiapp/basic, we will insert .htaccess in

/var/www/vhosts/yiiapp/basic.

The first row activates RewriteEngine of the web server; then, in the second and third rows,
the script checks whether the request is not in an existing file or folder; and finally the request
is rewritten to web/index.php. With these changes, all the requests that are not existing files
or path folders will be rewritten to web/index.php.

Note

We can also configure rewrite rules in Apache configuration instead of the .htaccess file, if
we have access to this level of Apache configuration.

If the .htaccess configuration has been ignored, check whether AllowOverride is set to
All as follows:

<Directory /var/www/path/to/folder>
 AllowOverride All
</Directory>

And that is not set to None.

The last thing to do now is to configure Yii2 in order to handle a pretty URL.

Let's open config/web.php and add these contents in the components attribute:

'urlManager' => [
 'enablePrettyUrl' => true,
],

Adding the enablePrettyUrl property, we have just configured urlManager to enable the
pretty URL, toggling the pretty URL format.

The previous URL index.php?r=site/index becomes /index.php/site/index and
index.php?r=site/about becomes /index.php/site/about.

Using the enablePrettyUrl property, we will have the prefix index.php again. We can
choose whether to keep it or not; however, to limit the URL length, it is advisable to remove it.

In order to control the presence of the index.php prefix, we use another property called
showScriptName.

If we set this property to false, we will remove the first part of the URL. This is our updated
configuration:

'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

Now, point the browser to http://hostname/basic/web/site/index to view the first
page of the Yii2 application and check whether the other links are in the pretty format.

Finally, there is another property for the urlManager component, used to enable URL parsing
based only on given URL rules, named enableStrictParsing. If this property is true, only
the rules defined in urlManager will be executed; if there is no URL that matches the request,
an error will be displayed.

Custom URL rules
Yii2 give us the opportunity to customize URL rules as we want. This can be done using the rules property in
urlManager, an array where keys are patterns and values are corresponding routes. Patterns are common regular
expression patterns, so it is necessary to have some familiarity with regular expression.

Patterns can contain parameters that will be passed to the route. In the next example, we will display a list of news
that can be filtered through year or category parameter, based on parameters passed to the URL.

Example – list news items by year or category
In this example, we will create a new Controller named News in controllers/NewsController.php. In this new
controller, we will insert a data() function containing an array with test data, and a function named
actionItemsList.

The first thing to do is to configure the rules property under the urlManager component under config/web.php:

'rules' => [
 news/<year:\d{4}>/items-list' => ' news/items-list',
 'news/<category:\w+>/items-list' => 'test-rules/items-list',
],

Here, we have two patterns:

news/<year:\d{4}>/items-list
news/<category:\w+>/items-list

The first pattern catches requests with a numeric parameter with four digits, passed to the news /items-list route
as the year GET parameter. We can request 'news/2014/items-list' or 'news/2015/items-list'.

The second pattern catches requests with the word parameter, passed to the news/items-list route as the
category GET parameter. We can request news/business/items-list or news/shopping/items-list.

Then, we create NewsController where to define the data() function, to return static data to be used as data
source, and the actionItemsList() function to handle requests to news/year/or/category/itemsList:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class NewsController extends Controller
{
 public function data()
 {
 return [
 ["id" => 1, "date" => "2015-04-19", "category" => "business", "title" => "Test news
of 2015-04-19"],
 ["id" => 2, "date" => "2015-05-20", "category" => "shopping", "title" => "Test news
of 2015-05-20"],
 ["id" => 3, "date" => "2015-06-21", "category" => "business", "title" => "Test news
of 2015-06-21"],
 ["id" => 4, "date" => "2016-04-19", "category" => "shopping", "title" => "Test news
of 2016-04-19"],
 ["id" => 5, "date" => "2017-05-19", "category" => "business", "title" => "Test news
of 2017-05-19"],
 ["id" => 6, "date" => "2018-06-19", "category" => "shopping", "title" => "Test news
of 2018-06-19"]
];

 }

 public function actionItemsList()
 {
 // if missing, value will be null
 $year = Yii::$app->request->get('year');
 // if missing, value will be null
 $category = Yii::$app->request->get('category');

 $data = $this->data();
 $filteredData = [];

 foreach($data as $d)
 {
 if(($year != null)&&(date('Y', strtotime($d['date'])) == $year)) $filteredData[] =
$d;
 if(($category != null)&&($d['category'] == $category)) $filteredData[] = $d;
 }

 return $this->render('itemsList', ['year' => $year, 'category' => $category,
'filteredData' => $filteredData]);
 }

Finally, we create a view in views/news/itemsList.php, displaying the parameter used, year or category, and a
list of results:

<?php if($year != null) { ?>
List for year <?php echo $year ?>
<?php } ?>
<?php if($category != null) { ?>
List for category <?php echo $category ?>
<?php } ?>

<table border="1">
 <tr>
 <th>Date</th>
 <th>Category</th>
 <th>Title</th>
 </tr>

<?php foreach($filteredData as $fd) { ?>
 <tr>
 <td><?php echo $fd['date'] ?></td>
 <td><?php echo $fd['category'] ?></td>
 <td><?php echo $fd['title'] ?></td>
 </tr>
<?php } ?>
</table>

Now, let's point to http://hostname/basic/web/news/2015/items-list to display the items list filtered out
by year:

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

List items filtered by year

Try to change the year between news and items list to see how the data result changes in the list. The rules that are
created allow us to display the items list filtered by category. Point to
http://hostname/basic/web/news/business/items-list to see the list filtered by business category:

List items filtered by category

We can also point to http://hostname/basic/web/news/shopping/items-list to see the list filtered by
shopping category.

Default parameters in rules
In rules, all the parameters that are declared are required; if the URL misses some parameter, the rule will not be
applied. This problem can be solved using the default property of rule.

The URL rule structure has a parameter, named defaults, containing default parameters to be passed as default.
Parameter defaults is an array, where keys are names of parameters and values are their corresponding values.

For example, change the second rule to a complete array and add ['category' => 'shopping'] as the default
property rule:

'rules' => [
 'news/<year:\d{4}>/items-list' => 'news/items-list',
 [
 'pattern' => 'news/<category:\w+>/items-list',
 'route' => 'news/items-list',
 'defaults' => ['category' => 'shopping']
]
],

Now, if we point to http://hostname/basic/web/news/items-list without specifying the year or category
parameter, the first rule will be skipped and the second one will be executed using shopping as the default value,
because the category is missing.

Example – the index page to display the links list
Now, create an index page to see how to create these custom URLs. In this page, we will display URL links to have
the data filtered by year (for the last 5 years) and links to view the data filtered by category (shopping and business).

URLs are made using yii\helpers\Url, along with the to() method, where the first parameter can be:

The first parameter can be:

An array that will be passed to the toRoute() method to generate the URL. The first item of this array is the
route to be rendered and the other items are the parameters to be passed to the route; for example,
Url::to(['news/items-list', 'year' => 2015]).
A string with a leading @; this is treated as an alias, and the corresponding aliased string will be returned
An empty string that returns the currently requested URL.
A normal string that will be returned as it is.

Create a simple actionIndex in NewsController:

public function actionIndex()
{
 return $this->render('index');
}

Then, create a view for the index action under views/news/index.php:

<?php

use yii\helpers\Url;
use yii\helpers\Html;

?>

Filter data by year:

 <?php $currentYear = date('Y'); ?>
 <?php for($year=$currentYear;$year>($currentYear-5);$year--) { ?>

 <?php echo Html::a('List items by year '.$year, Url::to(['news/items-list',
'year' => $year])) ?>
 <?php } ?>

Filter data by category:

 <?php $categories = ['business', 'shopping']; ?>
 <?php foreach($categories as $category) { ?>
 <?php echo Html::a('List items by category '.$category, Url::to(['news/items-
list', 'category' => $category])) ?>
 <?php } ?>

Point to http://hostname/news/index and it will display:

Index of the available filtered data

The complete URL rule parameters
The URL rule contains the following parameters:

defaults: As we have seen, we can declare default GET parameters that this rule
provides
encodeParams: This value indicates whether the parameters should be encoded or not
host: This is the host info part of a URL
mode: This indicates whether this rule should be used for parsing the requested URL or
creating a URL
name: This is the name of the rule
pattern: This is the pattern to be used to parse and create the path info part of a URL
route: This is the route of the controller action
suffix: This is the URL suffix used for this rule (.json, .html, and so on)
verb: This is the HTTP verb that this rule should match with (GET, POST, DELETE,
and so on)

The URL pattern to support the multilanguage
view
There are different ways to display the same view in different languages. A basic approach to support multilanguage
views could be to insert a language code at the start of the route. For example, the previous route news/index will
become en/news/index in English language, it/news/index in Italian language, fr/news/index in French
language, and so on.

Append this rule in the rules property of UrlManager:

[
 'pattern' => '<lang:\w+>/<controller>/<action>',
 'route' => '<controller>/<action>',
],

All the requests that have a language ID as the prefix in the path info, will be matched and passed to the
<controller>/<action> route with the $lang parameters passed in GET.

Now, create a new action named actionInternationalIndex in NewsController to test the multilanguage
support:

public function actionInternationalIndex()
{
 // if missing, value will be 'en'
 $lang = Yii::$app->request->get('lang', 'en');

 Yii::$app->language = $lang;

 return $this->render('internationalIndex');
}

In this action, $lang is taken from GET parameters. If the request does not contain the $lang parameter, the en
value will be used as default.

Create new view in views/news/internationalIndex.php to check the language code passed to the URL.

Requested language for this page is:

<?php echo Yii::$app->language ?>

Verify whether this action is working correctly by visiting http://hostname/news/international-index:

Setting the English language

We are visualizing this page in English because no language code was passed to the URL. Consequently, the default
language code, en, has been used. However, if we write the language code in the URL, the result will change.

For example, pointing to http://hostname/basic/web/it/news/international-index will display the
following:

Setting the Italian language

This response gives us the confirmation that we have used it as the language code.

Note

In this simple approach to support multi language, we get the $lang value from the request, as we have done in
actionInternationalIndex; however, this is redundant and has to be generalized in all the requests. We could
create a BaseController class as the base class for every Controller and then override the beforeAction()
method, where we can set the Yii::$app->language parameter.

Creating the rule class
URL rules declared in terms of pattern-route pairs can cover the majority of projects. However, it is not flexible
enough with dynamic data, where the URL could be any format and value stored in the database.

Now, we need to display item details using a URL that contains only the item title, such as
http://hostname/basic/web/news/Test news of 2015-04-19

There is no way to solve this with URL rules, as we have done until now.

A more general solution to parse and create URL requests is using Rule classes.

The Rule class extends Object and implements UrlRuleInterface.

The next example will explain how to display item details, finding it from the title (defined in data() array of objects),
and parsing and creating routes with a Rule class.

The route displayed in the browser will have the news/title format.

For this purpose, create a new folder components under the basic folder if it does not exist, and create
components/NewsUrlRule.php with the following content:

<?php

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\Object;

class NewsUrlRule extends Object implements UrlRuleInterface
{

 public function createUrl($manager, $route, $params)
 {
 if ($route === 'news/item-detail') {
 if (isset($params['title'])) {
 return 'news/'.$params['title'];
 }
 }
 return false; // this rule does not apply
 }

 public function parseRequest($manager, $request)
 {
 $pathInfo = $request->getPathInfo();

 if (preg_match('%^([^\/]*)\/([^\/]*)$%', $pathInfo, $matches)) {
 if($matches[1] == 'news')
 {
 $params = ['title' => $matches[2]];
 return ['news/item-detail', $params];
 }
 else
 {
 return false;
 }
 }
 return false; // this rule does not apply
 }
}

The first method, createUrl() receives $manager, $route, and $params. With route and params, the framework

builds the URL. In this case, we check whether the route passed is equivalent to news/item-detail and if it is so,
return the corresponding URL.

The second method, parseRequest() receives $manager and $request. A match with a custom regular
expression will be done to extract the required parts, using the $request data. The process will return the route, to
be executed.

Now, link these components to urlManager of the web.php file located at config/, appending the following lines
in the rule property of the urlManager component:

[
'class' => 'app\components\NewsUrlRule',
// ...configure other properties...
],

The next thing to do is to create actionItemDetail in NewsController, as follows:

public function actionItemDetail()
{
 $title = Yii::$app->request->get('title');

 $data = $this->data();

 $itemFound = null;

 foreach($data as $d)
 {
 if($d['title'] == $title) $itemFound = $d;
 }

 return $this->render('itemDetail', ['title' => $title, 'itemFound' => $itemFound]);
}

In this action, we simply find the item starting from the title received from the route. We pass the title and itemFound
to view.

The last file to create is view under views/news/itemDetail.php:

Detail item with title <?php echo $title ?>

<?php if($itemFound != null) { ?>
 <table border="1">
 <?php foreach($itemFound as $key=>$value) { ?>
 <tr>
 <th><?php echo $key ?></th>
 <td><?php echo $value ?></td>
 </tr>
 <?php } ?>
 </table>

 Url for this items is: <?php echo yii\helpers\Url::to(['news/item-detail', 'title'
=> $title]); ?>

<?php } else { ?>
 <i>No item found</i>
<?php } ?>

Item detail output

In this view, the item details (if the item is found) along with how to build the URL of the item detail will be displayed.

Summary
In this chapter, we saw how to implement pretty URLs, which is useful for search engine
optimization. We also created examples where we used custom rules to parse and create the
URL. Finally, we learned how to build more customized URL rules through Rule classes.

In the next chapter, we will cover the use of a database, which is a fundamental aspect of every
web application. We will start from the configuration of a database connection through to the
tools that Yii2 makes available to developers, and to build a complete reservation system based
on database data, using framework widgets.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Chapter 4. Creating a Room through
Forms
This chapter explains how to write a model class to store data that will be sent from View to
Controller using a form, with validating input, formatting data, and uploading files. In this
chapter, we will cover the following topics:

Creating a Model
Example – a model to store room data

Using ActiveForm
Example – creating a new room from the HTML form

Formatting date, time, and numbers
Uploading files

Example – uploading an image of the room

Creating a Model
The first step to manipulate data between View and Controller is to create a Model. A Model
is a class that extends the Model class located under yii\base\, the base used for data
models.

This is a suitable class for providing simple solutions in order to encapsulate data, assign
content from array (form data), and validate data using rules. The Model base class implements
the following commonly used features:

Attribute declaration: By default, every public class member is considered a model
attribute; we can access all the members using the attributes property of Model.
Attribute labels: Each attribute may be associated with a label for display purposes; we
can extend the attributeLabels() method to return labels related to public members
of Model.
Massive attribute assignment: We can fill the member's content of Model by passing
an entire array of values. This is convenient when we need to fill a model with data from
the form.
Scenario-based validation: Model provides rules to validate data. We can choose
which ones apply according to the scenario, a keyword that defines the rules to apply.

While performing data validation, Model also raises the following events:

EVENT_BEFORE_VALIDATE: This is an event raised at the beginning of validate()
EVENT_AFTER_VALIDATE: This is an event raised at the end of validate()

You can directly use Model to store model data or extend it with customization.

Example – a Model to store room data

Now, let's create Model to store room data. To create this, we choose to name all fields with
words written in lowercase characters and separated by underscores.

We can identify these fields of Model as follows:

floor: In a more generic situation, we consider this as a string member
room_number: This is an integer member
has_conditioner: This is an integer member with two values 0 and 1
has_tv: This is an integer member with two values 0 and 1
has_phone: This is an integer member with two values 0 and 1
available_from: This is a date member that it is represented with a string in PHP
price_per_day: This is a float member
assistance_email: This is a string member containing an e-mail address
description: This is a string member

Now, create the Model class, named Room as the base class, in the previous field list, creating
a file under basic/models/Room.php with the following content:

<?php
namespace app\models;
use Yii;
use yii\base\Model;
class Room extends Model {
 public $floor;
 public $room_number;
 public $has_conditioner;
 public $has_tv;
 public $has_phone;
 public $available_from;
 public $price_per_day;
 public $description;
}

The second thing to do is to append the attributeLabels() method in order to give a label
to every member. This is not necessary, but it is a useful method to get labels displayed in the
end user frontend.

public function attributeLabels()
{
 return [
 'floor' => 'Floor',
 'room_number' => 'Room number',
 'has_condition' => 'Condition available',
 'has_tv' => 'TV available',
 'has_phone' => 'Phone available',
 'available_from' => 'Available from',
 'price_per_day' => 'Price (EUR/day)',
 'description' => 'Description',
];
}

The last thing is to create rules to validate data. Rules are based on validators, whose defaults
are listed as follows:

boolean: yii\validators\BooleanValidator
captcha: yii\captcha\CaptchaValidator
compare: yii\validators\CompareValidator
date: yii\validators\DateValidator
double: yii\validators\NumberValidator
email: yii\validators\EmailValidator
exist: yii\validators\ExistValidator
file: yii\validators\FileValidator
filter: yii\validators\FilterValidator
image: yii\validators\ImageValidator
in: yii\validators\RangeValidator
integer: yii\validators\NumberValidator
match: yii\validators\RegularExpressionValidator
required: yii\validators\RequiredValidator
safe: yii\validators\SafeValidator
string: yii\validators\StringValidator
trim: yii\validators\FilterValidator
unique: yii\validators\UniqueValidator
url: yii\validators\UrlValidator

A Rule is an array whose values are in the following order:

A string or an array to define an attribute or list of attributes to apply the rule
The type of validator
The on attribute to define which scenario to use
The other parameters, depending on the validator that is used

Write the rules() method of the Room Model class:

/**
 * @return array the validation rules.
 */
public function rules()
{
 return [
 ['floor', 'integer', 'min' => 0],
 ['room_number', 'integer', 'min' => 0],
 [['has_conditioner', 'has_tv', 'has_phone'], 'integer', 'min' => 0, 'max' => 1],
 ['available_from', 'date', 'format' => 'php:Y-m-d'],
 ['price_per_day', 'number', 'min' => 0],
 ['description', 'string', 'max' => 500]
];
}

The preceding code is explained as follows:

The first rule establishes that floor is an integer, with 0 as the minimum value
The second rule establishes that room_number is an integer, with 0 as the minimum
value; we can put together floor and room in a single rule, melting them into an array as
the first parameter of a single rule
The third rule establishes that has_condition, has_tv, and has_phone are integers

with possible values between 0 and 1 (formally a Boolean value)
The fourth rule establishes that available_from is a date
The fifth rule establishes that price_per_day is a number and its minimum value is 0
The last rule establishes that description is a string with a maximum of 500 characters

These rules will be applied when the validate() method of Model is called. This method is
automatically called when we attempt to call the save() method.

Using ActiveForm
Now we will create an HTML form in view to send data from view to controller. We could build a form in the
standard way using the form tag and input fields, but Yii2 provides helper classes that simplify the building of a form
and its content.

For this purpose, we will use ActiveForm, a widget that builds an interactive HTML form for one or multiple data
models.

As for any Yii2 widget, we will indicate with the begin()static method, the moment we start using it, and with the
end()static method, the moment we stop using it, from yii\widgets\ActiveForm. The code between these
methods will be placed in the form:

$form = ActiveForm::begin();
... content here ...
ActiveForm::end();

The first method, begin(), returns an object that we can use inside the content to create the input fields. This method
accepts an array as the parameter to indicate configuration attributes to be applied. The last method, end(), marks
the end of the widget, so this can be rendered with its content.

Now, we need some input fields to insert in the code, which is done using the field() method of the ActiveForm
instance that we just created. This method requires two parameters: model and field name and returns an object of
type ActiveField. With this method, we just demand ActiveForm to create a new field; however, in this case, we
also need to specify the type of field we want.

This operation is made calling a method from ActiveField relative to the kind of input to the instance. The most
common are:

label(): This is used to generate a label tag
textInput(): This is used to generate an input field with type text
textarea(): This is used to generate a textarea tag
radio(): This is used to generate an input field with type radio
checkbox(): This is used to generate an input field with type checkbox

Example – creating a new room from the HTML form
Firstly, create a new controller, RoomsController, under basic/controllers/RoomsController.php with an
action named create:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Room;

class RoomsController extends Controller
{
 public function actionCreate()
 {
 $model = new Room();
 $modelCanSave = false;

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 $modelCanSave = true;
 }

 return $this->render('create', [
 'model' => $model,
 'modelSaved' => $modelCanSave
]);
 }
}

At the start of the create() method, we create a new instance of the Room class assigned to the $model variable.
The load() method fills the $model attributes with data taken from the key position named $model->formName()
of an array passed as parameters. By default, $model->formName() returns the class name of the object, as shown
in the following code:

$model->load(Yii::$app->request->post())

The preceding code is equivalent to:

if (isset($_POST[$model->formName()])) {
 $this->setAttributes($_POST[$model->formName()]);
}

Going back to the load()&&validate() condition, if load() returns true, validate() will also be executed and
all rules in the rules() method of model will be evaluated.

In this case, Model is ready to be saved to the data store (in the database in the next chapters). Now, it is important
to mark this condition with a simple variable named $modelCanSave, passed to the create view.

Create a file for the create view under basic/views/rooms/create.php:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\helpers\Url;
use yii\helpers\ArrayHelper;
?>

<?php if($modelCanSave) { ?>
<div class="alert alert-success">
 Model ready to be saved!
</div>
<?php } ?>

<?php $form = ActiveForm::begin(); ?>
<div class="row">
 <div class="col-lg-12">
 <h1>Room form</h1>
 <?= $form->field($model, 'floor')->textInput() ?>
 <?= $form->field($model, 'room_number')->textInput() ?>
 <?= $form->field($model, 'has_conditioner')->checkbox() ?>
 <?= $form->field($model, 'has_tv')->checkbox() ?>
 <?= $form->field($model, 'has_phone')->checkbox() ?>
 <?= $form->field($model, 'available_from')->textInput() ?>
 <?= $form->field($model, 'price_per_day')->textInput() ?>
 <?= $form->field($model, 'description')->textarea() ?>
 </div>
</div>
<div class="form-group">
 <?= Html::submitButton('Create' , ['class' => 'btn btn-success']) ?>
</div>
<?php ActiveForm::end(); ?>

If the $modelCanSave variable is true, an alert div with the green background will be displayed to notify that
$model is loaded and validate (ready to be saved in database).

For the test code, point to http://hostname/basic/web/rooms/create. The following screen should appear:

Create room HTML form

The framework automatically takes care of the validation checks on input fields, corresponding to the rules list in the
rules() method of Model. We can check this by typing characters in the Floor input. We should see the following
screenshot:

The validation check of the integer field

The validation informs us that Floor must be an integer, as required in the rules list. Once all the fields are filled with
correct values (date format, yyyy-mm-dd), just click on the Create button and we should see a box with green
background displaying Model ready to be saved.

Format date, time, and numbers
Now, let's see how to format the date, time, and numeric fields. Yii2 provides helpers for each of these types.

To format a value, we will use Yii::$app->formatter; this object belongs to the Formatter class located under
yii\i18n\ and supports many types of formatting. All the methods used for this purpose start with an as prefix.
Therefore, the asDate method will be used to format dates, and the asCurrency method will be used to format
currencies.

The first parameter of each formatting method is the value to be formatted and other fields refer to the format to be
used and other optional parameters.

Let's change the view content by adding content of the Model that is ready to be saved:

<?php if($modelCanSave) { ?>
<div class="alert alert-success">
 Model ready to be saved!

 These are values:

 Floor: <?php echo $model->floor; ?>

 Room Number: <?php echo $model->room_number; ?>

 Has conditioner: <?php echo Yii::$app->formatter->asBoolean($model-
>has_conditioner); ?>

 Has TV: <?php echo Yii::$app->formatter->asBoolean($model->has_tv); ?>

 Has phone: <?php echo Yii::$app->formatter->asBoolean($model->has_phone); ?>

 Available from (mm/dd/yyyy): <?php echo Yii::$app->formatter->asDate($model-
>available_from,'php:m/d/Y'); ?>

 Price per day: <?php echo Yii::$app->formatter->asCurrency($model-
>price_per_day,'EUR'); ?>

</div>
<?php } ?>

If $model is ready to be saved, in the box with the green background, we will have the output of each of the fields of
Model.

In this example, we have used:

The boolean formatter for has_condition, has_tv, and has_phone members uses the default
representation of false and true values; defaults are No for false and Yes for true, but we can change this
behavior setting in the $booleanFormat member of Yii::$app->formatter
The date formatter for available_from member takes the date format to be used as the second parameter;
this date format can be represented with PHP date function style or ICU standard
The currency formatter for the price_per_day member is the second parameter with three characters type
of currency to be used

This is how the box with the content of Model appears:

Show summary of Model content when validation is successful

Uploading files
The common task when data is sent from view to controller is uploading files. Also, in this
case, Yii2 provides a convenient helper to handle this task: yii\web\UploadedFile. This
class has two important methods: getInstance() (in plural form getInstances()) and
saveAs().

The first method, getInstance(), allows us to get the file from the form's input field, while
the second method, saveAs(), as its name implies, allows us to save file input field content to
the server filesystem.

Before we start with the example, it is important to create a folder that will contain the uploaded
files. The best place to create this folder is at the root directory of the application. So create a
folder named uploadedfiles under the basic/ folder.

Note

Make sure that this folder is writable.

Next, to centralize configuration, define an alias for this new folder, so that we can change this
path from app configuration. Enter in basic/config/web.php and append the aliases
property, if it does not exist, to the $config array with these lines:

'aliases' =>
[
 '@uploadedfilesdir' => '@app/uploadedfiles'
],

Note

@app is a system aliases that defines the application's root directory.

Example – uploading an image of a room
In this example, we will see how to upload an image of a room.

We need to make changes in model, view, and controller. Let's start with model.

In model, we need to add a new property, named fileImage, with its specific rule.

This is the final version of Model:

<?php
namespace app\models;
use Yii;
use yii\base\Model;
class Room extends Model
{
 public $floor;

 public $room_number;
 public $has_conditioner;
 public $has_tv;
 public $has_phone;
 public $available_from;
 public $price_per_day;
 public $description;

 public $fileImage;

 public function attributeLabels()
 {
 return [
 'floor' => 'Floor',
 'room_number' => 'Room number',
 'has_conditioner' => 'Conditioner available',
 'has_tv' => 'TV available',
 'has_phone' => 'Phone available',
 'available_from' => 'Available from',
 'price_per_day' => 'Price (Eur/day)',
 'description' => 'Description',
 'fileImage' => 'Image'
];
 }

 /**
 * @return array the validation rules.
 */
 public function rules()
 {
 return [
 ['floor', 'integer', 'min' => 0],
 ['room_number', 'integer', 'min' => 0],
 [['has_conditioner', 'has_tv', 'has_phone'], 'integer', 'min' => 0, 'max' => 1],
 ['available_from', 'date', 'format' => 'php:Y-m-d'],
 ['price_per_day', 'number', 'min' => 0],
 ['description', 'string', 'max' => 500],

 ['fileImage', 'file']
];
 }
}

In rules, for the fileImage field, we can add many types of validation; for example, check if
required, check mime type (.gif, .jpeg, and .png).

Next, we will use the static method getInstance() of the UploadedFile class in controller,
to get the file from the input file field and then use saveAs to save in the specific folder. This
is the final version of RoomsController:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Room;

class RoomsController extends Controller
{
 public function actionCreate()
 {
 $model = new Room();
 $modelCanSave = false;

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {

 $model->fileImage = UploadedFile::getInstance($model, 'fileImage');

 if ($model->fileImage) {
 $model->fileImage->saveAs(Yii::getAlias('@uploadedfilesdir/' . $model->fileImage->baseName . '.' . $model->fileImage->extension)));
 }

 $modelCanSave = true;
 }

 return $this->render('create', [
 'model' => $model,
 'modelSaved' => $modelCanSave
]);
 }
}

UploadedFile::getInstance gets the file from the $_FILES array to fill the fileImage
property of Model with its data.

The last thing to do is to update the create view content, by appending the fileInput field.
This is the final version:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\helpers\Url;
use yii\helpers\ArrayHelper;
?>

<?php if($modelCanSave) { ?>
<div class="alert alert-success">
 Model ready to be saved!

 These are values:

 Floor: <?php echo $model->floor; ?>

 Room Number: <?php echo $model->room_number; ?>

 Has conditioner: <?php echo Yii::$app->formatter->asBoolean($model->has_conditioner); ?>

 Has TV: <?php echo Yii::$app->formatter->asBoolean($model->has_tv); ?>

 Has phone: <?php echo Yii::$app->formatter->asBoolean($model->has_phone); ?>

 Available from (mm/dd/yyyy): <?php echo Yii::$app->formatter->asDate($model->available_from,'php:m/d/Y'); ?>

 Price per day: <?php echo Yii::$app->formatter->asCurrency($model->price_per_day,'EUR'); ?>

 Image:
 <?php if(isset($model->fileImage)) { ?>
 <img src="<?php echo Url::to('@uploadedfilesdir/'.$model->fileImage->name) ?>" />
 <?php } ?>
</div>
<?php } ?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]); ?>
<div class="row">
 <div class="col-lg-12">
 <h1>Room form</h1>
 <?= $form->field($model, 'floor')->textInput() ?>
 <?= $form->field($model, 'room_number')->textInput() ?>
 <?= $form->field($model, 'has_conditioner')->checkbox() ?>
 <?= $form->field($model, 'has_tv')->checkbox() ?>
 <?= $form->field($model, 'has_phone')->checkbox() ?>
 <?= $form->field($model, 'available_from')->textInput() ?>
 <?= $form->field($model, 'price_per_day')->textInput() ?>
 <?= $form->field($model, 'description')->textarea() ?>

 <?= $form->field($model, 'fileImage')->fileInput() ?>
 </div>
</div>
<div class="form-group">
 <?= Html::submitButton('Create' , ['class' => 'btn btn-success']) ?>
</div>
<?php ActiveForm::end(); ?>

Take care of the last row of this example, ActiveForm::end() that closes the body of the
$form widget defined at the top of the file using the ActiveForm::begin() method.

Note

In this example, the ActiveForm widget has been created by filling the enctype property of
the configuration array with the multipart/form-data value, which allows us to send the
binary data other than the form text parameters. However, this does not deal with Yii or PHP,
because this is an HTML requirement for notifying the browser how to send files to the server.

In this view, if the model has been validated and the fileImage property is filled, the
corresponding image will be displayed.

Summary
In this chapter, we saw how to build a Model class from scratch and send data from view to
controller using form, created using Yii2 ActiveForm widget. We also looked at the common
useful methods to format data and sent files from the form.

In the next chapter, you will learn how to work with databases and save model data from view
form to database.

Chapter 5. Developing a Reservation System
In this chapter, you will learn how to configure and manage databases, using SQL or ActiveRecord directly, then you
will see how to solve common tasks, such as saving single and multiple models from a form, and how to create data
aggregation and filtered views.

We will cover the following topics in this chapter:

Configuring a DB connection:
For example, creating rooms, customers, and reservations tables

For example, testing a connection and executing a SQL query
Using Gii to create room, customer, and reservation models
Using ActiveRecord to manipulate data:

For example, querying rooms list with ActiveRecord
Working with relationships:

For example, using relationships to connect rooms, reservations, and customers
How to save a model from a form:

For example, creating and updating a room from a form
Setting up the GMT time zone
Using multiple database connections:

For example, configuring a second DB connection to export data to a local SQLite DB

Configuring a DB connection
Yii2 offers a high-level layer to access databases, built on top of PHP Data Objects (PDO).

This framework allows us to manipulate a database table's content through the use of ActiveRecord objects. This
encapsulates methods to access single or multiple records, as well as filtering, joining, and ordering data in an intuitive
way.

Again, we can work with databases using plain SQL, but this means that we must handle dissimilarities in SQL
languages passing through different databases (MySQL, SQL Server, Postgres, Oracle, and so on), which means
losing Yii2 facilities.

A database object connection is an instance of yii\db\Connection:

$db = new yii\db\Connection([
 'dsn' => 'mysql:host=localhost;dbname=my_database',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
]);

In this example, we have a connection to a MySQL Server with a mysql connection string to the database
my_databases, setting my_username as username and my_password as password. Moreover, we set charset
to utf8 in order to guarantee standard charset use. This is a standard database connection entry.

Other common available connection strings are:

MySQL and MariaDB: mysql:host=localhost;dbname=mydatabase
SQLite: sqlite:/path/to/database/file
PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase
MS SQL Server (via mssql driver): mssql:host=localhost;dbname=mydatabase
Oracle: oci:dbname=//localhost:1521/mydatabase

Note

If we do not provide a direct driver to database and we have to use ODBC, we will have a sample of the ODBC
connection object as follows:

$db = new yii\db\Connection([
 'driverName' => 'mysql',
 'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=my_database',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
]);

For convenience, we will set the database connection as an application component because it will be adopted in many
points of the application. In basic/config/web.php:

return [
 // ...
 'components' => [
 // ...
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=my_database',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
],
],
 // ...
];

Note

In the basic template, database configuration is in a separate file, generally basic/config/db.php.

If we open basic/config/web.php, we can see that the db.php file fills the db property of the main configuration.

Example – creating rooms, customers, and reservations tables
Now, we need a MySQL database instance to work with. Open the DB administration panel as phpMyAdmin (if
provided) or access the DB directly using a console and create a new database named my_database, associated
with the username my_username and the password my_password.

In this example, we will create three database tables to manage rooms, customers, and reservations data.

A room will have the following fields:

id as an integer
floor as an integer
room_number as an integer
has_conditioner as an integer
has_tv as an integer
has_phone as an integer
available_from as the date
price_per_day as a decimal
description as text

The script of the room table will be:

CREATE TABLE `room` (
 `id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `floor` int(11) NOT NULL,
 `room_number` int(11) NOT NULL,
 `has_conditioner` int(1) NOT NULL,

 `has_tv` int(1) NOT NULL,
 `has_phone` int(1) NOT NULL,
 `available_from` date NOT NULL,
 `price_per_day` decimal(20,2) DEFAULT NULL,
 `description` text);

A customer will have the following fields:

id as an integer
name as a string
surname as a string
phone_number as a string

The script of the customer table will be

CREATE TABLE `customer` (
 `id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `name` varchar(50) NOT NULL,
 `surname` varchar(50) NOT NULL,
 `phone_number` varchar(50) DEFAULT NULL
);

A reservation will have the following fields:

id as an integer
room_id as an integer that is a reference to a room table
customer_id as an integer that is a reference to a customer table
price_per_day as a decimal
date_from as the date to specify check in
date_to as the date to specify check out
reservation_date as a timestamp of creation
days_stay as an integer

The script of the reservation table will be:

CREATE TABLE `reservation` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `room_id` int(11) NOT NULL,
 `customer_id` int(11) NOT NULL,
 `price_per_day` decimal(20,2) NOT NULL,
 `date_from` date NOT NULL,
 `date_to` date NOT NULL,
 `reservation_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
);

Finally, place basic/config/web.php in the components property:

$db = new yii\db\Connection([
 'dsn' => 'mysql:host=localhost;dbname=my_database',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
]);

Then we are ready to test the connection to the DB.

Example – test connection and executing the SQL query
Now let's see how to test the DB connection.

Put some rooms data in the database table:

INSERT INTO `my_database`.`room` (`id`, `floor`, `room_number`, `has_conditioner`,

`has_tv`, `has_phone`, `available_from`, `price_per_day`, `description`)
VALUES
(NULL, '1', '101', '1', '0', '1', '2015-05-20', '120', NULL), (NULL, '2', '202', '0',
'1', '1', '2015-05-30', '118', NULL);

Database queries are made using the yii\db\Command object, which is created statically by the
yii\db\Connection::createCommand() method.

The most important methods to retrieve data from a command are:

queryAll(): This method returns all the rows of a query, where each array element is an array that represents
a row of data; if the query returns no data, the response is an empty array
queryOne(): This method returns the first row of the query, that is, an array, which represents a row of data; if
the query returns no data, the response is a false Boolean value
queryScalar(): This method returns the value of the first column in the first row of the query result; otherwise
false will be returned if there is no value
query(): This is the most common response that returns the yii\db\DataReader object

Now we will display the room table's content in different ways.

We will update RoomsController in basic/controllers/RoomsController.php. In this file, we will append
an index action to fetch data and pass it to view:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class RoomsController extends Controller
{
 public function actionIndex()
 {
 $sql = 'SELECT * FROM room ORDER BY id ASC';

 $db = Yii::$app->db;

 $rooms = $db->createCommand($sql)->queryAll();

 // same of
 // $rooms = Yii::$app->db->createCommand($sql)->queryAll();

 return $this->render('index', ['rooms' => $rooms]);
 }
}

The content of actionIndex() is very simple. Define the $sql variable with the SQL statement to be executed,
then fill the $rooms array with the query result, and finally render the index view, passing the rooms variable.

In the view content, in basic/views/rooms/index.php, we will display the $rooms array in a table to exploit
Bootstrap CSS's advantages, and apply the table class to the table HTML tag.

This is the content of basic/views/rooms/index.php, where we can also see the data formatter used:

<table class="table">
 <tr>
 <th>Floor</th>
 <th>Room number</th>
 <th>Has conditioner</th>
 <th>Has tv</th>
 <th>Has phone</th>
 <th>Available from</th>

 <th>Available from (db format)</th>
 <th>Price per day</th>
 <th>Description</th>
 </tr>
 <?php foreach($rooms as $item) { ?>
 <tr>
 <td><?php echo $item['floor'] ?></td>
 <td><?php echo $item['room_number'] ?></td>
 <td><?php echo Yii::$app->formatter->asBoolean($item['has_conditioner']) ?></td>
 <td><?php echo Yii::$app->formatter->asBoolean($item['has_tv']) ?></td>
 <td><?php echo ($item['has_phone'] == 1)?'Yes':'No' ?></td>
 <td><?php echo Yii::$app->formatter->asDate($item['available_from']) ?></td>
 <td><?php echo Yii::$app->formatter->asDate($item['available_from'], 'php:Y-m-
d') ?></td>
 <td><?php echo Yii::$app->formatter->asCurrency($item['price_per_day'], 'EUR') ?
></td>
 <td><?php echo $item['description'] ?></td>
 </tr>
 <?php } ?>
</table>

The floor and room_number fields are directly displayed.

The next two fields has_conditioner and has_tv are shown by employing a Boolean formatter supplied by Yii2;
the Boolean formatter will use the locale defined during the configuration of Yii2.

The next field has_phone renders its value as the previous two fields; the reason for this is to indicate how to
produce the same output of a Boolean formatter in a standard PHP style.

Then, the available_from field is rendered using the date formatter in two different ways, directly and passing the
format to be used. Or, if no parameter is passed, it adopts the default format.

Again, the price_per_day field is rendered through the currency formatter, passing the currency as a parameter. If
no parameter is passed, the default value will be used. The last field description is displayed directly. Point your
browser to http://hostname/basic/web/rooms/index to see the content as follows:

A list of rooms

Using Gii to create room, customer, and reservation
models
Yii2 provides a powerful tool to generate models, controllers, and CRUD (create, read, update, and delete) actions,
forms, modules, and extensions: Gii.

At the bottom of the basic/config/web.php file, placed in the basic standard configuration, there is a block of
code that enables Gii:

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Verify that these lines are present, otherwise append them at the bottom of the web.php file before the return
$config statement. The last check is in basic/web/index.php. Verify that YII_ENV is dev, with this line:

defined('YII_ENV') or define('YII_ENV', 'dev');

Now, we can point our browser to http://hostname/basic/web/gii, and we should see this error page:

Forbidden access to Gii

This page will be displayed since access to Gii is locked by a password.

We need to add extra configuration to the gii module, passing other allowed IPs. Gii's configuration has an attribute
named allowedIPs, which consents to specify which IP addresses can access the Gii page:

 'allowedIPs' => ['127.0.0.1', '::1', '192.168.178.20']

In this extract, Gii will accept access from a localhost (in the IPv4 form with 127.0.0.1 and IPv6 form with ::1) and
from 192.168.178.20, which should be our IP address in private network.

If the Yii2 application is running on an external hosting, we will set our IP public address in this list of allowed IPs. For
example, if our IP is 66.249.64.76, this entry will be appended to existent (if we want maintain other permitted

access points):

 'allowedIPs' => ['127.0.0.1', '::1', '192.168.178.20', '66.249.64.76']

To allow access from everywhere (useful in the development stage), we can add * in this list, which means that the Gii
page can be accessed from every IP address:

'allowedIPs' => ['127.0.0.1', '::1', '192.168.178.20', '*']

Consequently, the content of gii]['gii'] = 'yii\gii\Module' is:

 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '192.168.178.20', '*']]; configuration in
basic/config/web.php will be:
if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 //$config['modules'
}

Now, we are able to access to Gii from any IP.

Refresh the browser by clicking on the page http://hostname/basic/web/gii and we can finally see its content:

Successful access to Gii

Now, click on the Start button of Model Generator; we will have a form of Model Generator where Table
Name is the unique field to fill in. When we start to type the table name, auto-suggestion will display the possible
choices. After doing this, when we move to the Model Class field, this will be automatically filled in by a framework.
The other fields can be left with the default settings.

Type room in Table Name and then click on the Model Class field. This field will be filled with Room, which is the
filename in the models folder.

Clicking on the Preview button will display the path where the file will be created and the action will be applied (it
should be the overwrite value because we created it in the previous chapter).

Finally, click on the Generate button to complete this action. A response message will give us information about the
execution of this operation.

This is the form with a successful result:

Model Generator of Gii

Repeat this operation for the other two tables: reservations and customers.

Now, we have three models in the basic/models folder: Room.php, Reservation.php, and Customer.php.

Let's explain what Gii has done. Open the basic/models/Room.php file, and we have three methods:

tableName()
rules()
attributeLabels()

The first method, tableName(), simply returns the name of table to which this model is linked:

 public static function tableName()
 {
 return 'room';
 }

The second method, rules(), is important because it contains rules validation to be checked when the validate()
method is launched (it is launched automatically in the save() method) or a massive attributes assignment as:

$model->attributes = arrayWithData;

This is the content of the rules() method:

 public function rules()
 {
 return [
 [['floor', 'room_number', 'has_conditioner', 'has_tv', 'has_phone',
'available_from'], 'required'],
 [['floor', 'room_number', 'has_conditioner', 'has_tv', 'has_phone'],
'integer'],
 [['available_from'], 'safe'],
 [['price_per_day'], 'number'],
 [['description'], 'string']
];
 }

The first rule specifies that the fields floor, room_number, has_condition, has_tv, and avaiable_from are
mandatory because they are passed to the required validator. Moreover, they must be an integer, as required by the
second rule.

Note

Fields that are not in rules, will be skipped in a massive assignment because they are considered unsafe (since they are
not present in rules). So it is necessary that when a field that has not got a validator rule, it must have an entry in the
'safe' validator.

The fourth rule specifies that the price_per_day field is a number, while the last rule states that description is a
string.

Note

These rules are read automatically from the database field type and constraint.

The last method attributeLabels() specifies the representation of fields in the display view as a form, grid, and so
on.

This is the content of attributeLabels():

 public function attributeLabels()
 {
 return [
 'id' => 'ID',
 'floor' => 'Floor',
 'room_number' => 'Room Number',
 'has_conditioner' => 'Has Conditioner',
 'has_tv' => 'Has Tv',
 'has_phone' => 'Has Phone',
 'available_from' => 'Available From',
 'price_per_day' => 'Price Per Day',
 'description' => 'Description',
];
 }

Yii2 reports—in the model—any relationship between the tables present in a database. We have the Reservation
model that has links to Room and Customer.

Follow these instructions to make the framework able to create a relationship in the model:

1. Check that the database tables use the InnoDB engine (which supports relationships and foreign keys).
2. In the Reservation table, add two indexes, respectively for the room_id and customer_id fields:

ALTER TABLE `reservation` ADD INDEX (`room_id`) ;
ALTER TABLE `reservation` ADD INDEX (`customer_id`) ;

3. In the Reservation table, add two constraints to the room and customer tables:

ALTER TABLE `reservation` ADD FOREIGN KEY (`room_id`) REFERENCES `room` (`id`) ON
DELETE RESTRICT ON UPDATE RESTRICT ;
ALTER TABLE `reservation` ADD FOREIGN KEY (`customer_id`) REFERENCES `customer`
(`id`) ON DELETE RESTRICT ON UPDATE RESTRICT ;

Note

In these constraints, we used RESTRICT for DELETE and UPDATE operations. RESTRICT avoids the deletion of
reservations that refer to customers or rooms that we are trying to delete. Therefore, to delete a customer or
room that figures in reservations, we will be required to first delete the reservations.

This behavior ensures that important data such as reservations is never deleted automatically (in a cascade)
when deleting a room or a customer. An error message will be displayed when you try to do this to a
reservation linked to the customer or room.

In other contexts, a commonly used keyword is CASCADE, which removes all data that refers to linked tables.

Open Gii again and navigate to http://hostname/basic/web/gii, then click on the Start button in Model
Generator and type room in Table Name. Click on the Preview button at the bottom of the page and this time you
will see that models/Room.php exists and the action is overwrite, unflagged.

Click on the check near 'overwrite' and then on the Generate button. In this way, we have forced to overwrite the
Room model with the relational data from the Room table.

Now, basic/models/Room.php contains a new method named getReservations at the bottom, with this
content:

 /**

 * @return \yii\db\ActiveQuery
 */
 public function getReservations()
 {
 return $this->hasMany(Reservation::className(), ['room_id' => 'id']);
 }

This method returns an ActiveQuery instance, which is used to build a query to be dispatched to the database.

Note

When called as a property, this method will return the list of reservations linked to the model.

You might encounter the case where $model is an instance of the Room class for example: $reservationsList =
$model->reservations;

In this case, fill the $reservationsList variables with a list of reservations related to this Room model.

This is not surprising, although the hasMany method returns an ActiveQuery object.

If we explore the __get() method of BaseActiveRecord (which is the base class of ActiveRecord) that handles
the property requirements, we can see these lines of code:

 $value = parent::__get($name);
 if ($value instanceof ActiveQueryInterface) {
 return $this->_related[$name] = $value->findFor($name, $this);
 } else {
 return $value;
 }

This returns linked results when the $value content is an instance of ActiveQueryInterface (which is an interface
implemented by the ActiveQuery class).

Using ActiveRecord to manipulate data
ActiveRecord offers a convenient way to access and manipulate data stored in a database. This class is linked to a
database table and represents a row of the linked table. Its attributes are the fields of the table and its methods allow
us to perform common actions on database, such as selecting, inserting, or updating SQL statements.

Many common databases are supported by ActiveRecord, such as:

MySQL
PostgreSQL
SQLite
Oracle
Microsoft SQL Server

Also, some NoSQL databases are supported, such as:

Redis
MongoDB

ActiveRecord reads the table structure every time it is instanced and makes available table columns as its properties.
Every change to the table structure is immediately available in the ActiveRecord object.

Therefore, if a table contains the fields id, floor, and room_number, and if $model is an instance of
yii\db\ActiveRecord, in order to access these fields, it will be enough to type:

$id = $model->id;
$floor = $model->floor;
$room_number = $model->room_numer;

ActiveRecord handles properties request with the __get magic method and catches the respective content of a table
column. In the previous paragraph, you saw how to create a model class from database tables to extend
yii\db\ActiveRecord with Gii. The syntax used by ActiveRecord is simple and redundant, so it is easy to
remember. Now let's look at how to query data from a database with ActiveRecord.

Data is fetched from a database through an \yii\db\ActiveQuery object to build the query, and finally calls on
one() or all() methods to get an ActiveRecord object or a list of ActiveRecord objects.

An ActiveQuery object is returned from an ActiveRecord object by calling its static method ::find().

If Room is a model (and subclasses ActiveRecord), an ActiveQuery will be returned from:

// $query is an ActiveQuery object
$query = Room::find();

ActiveQuery objects provide methods to build the query with names such as in SQL expression.

The most common ones are:

where() to add conditions
orderBy() to apply an order
groupBy() to make aggregations

Almost all of these methods support a parameter that can be a string or an array. If it is a string, it will be passed
exactly as it is to the SQL query; if it is an array, a key will be used as the column name, and a value as the
corresponding value. For example, we want to build query to find a room on the first floor:

$query = Room::find()->where('floor = 1');
// equivalent to
$query = Room::find()->where(['floor' => 1]);

For complex conditions, where() supports the operator format where the condition is an array with:

[operator, operand1, operand2, …]

For example, we want to build a query to find a room on the first floor:

$query = Room::find()->where(['>=', 'floor', 1]);
// equivalent to
$query = Room::find()->where('floor >= 1';

Other conditions can be added using andWhere() or orWhere(), by just using the and or or logical link.

An array parameter of the where() method is preferable to a string, because we can easily split the field name from
its content and set the second parameter of the where() method with an array with pair keys => values of
parameters.

After creating a query object, to get data from an ActiveQuery, we will have:

one(): This method returns an ActiveRecord object or null if not found
all(): This method returns a list of ActiveRecord objects or an empty array if not found

So, to get rooms on the first floor, we must write:

$query = Room::find()->where(['floor' => 1]);
$items = $query->all();
// equivalent to
$items = Room::find()->where(['floor' => 1])->all();

Note

There is a more concise syntax to fetch data from an ActiveRecord: the findOne() and findAll() methods, which
return a single ActiveRecord or a list of ActiveRecords. The only difference from the previous methods is that they
accept a single parameter, which can be:

A number to filter by primary key
An array of scalar values to filter by a list of primary key values (only for findAll() because findOne()
returns a single ActiveRecord)
An array of name-value pair to filter by a set of attribute values

Other common methods of ActiveRecord are:

validate(): This method is used to apply rules validation to attributes of a model
save(): This method is used to save a new model or to update one that already exists (if the save() method
is applied to a fetched ActiveRecord object)
delete(): This method is used to delete a model

Example – query rooms list with ActiveRecord
In this example, we will query the rooms list using ActiveRecord and filter through the following fields: floor,
room_number, and price_per_day with operators (>=, <=, and =).

A data filter will take place using the SearchFilter container to encapsulate all of the filter data inside a single array.

Starting from a view, create a new file with the path basic/views/rooms/indexFiltered.php.

In this view, we will put the search filter on the top and then a table to display the results.

We have three fields to filter: floor, room_number, and price_per_day, all with an operator. The data filter will
be passed to the controller and the filter selected will be kept after executing actionIndexFiltered in the
controller.

This is the content of the view concerning the filtered form:

<?php
use yii\helpers\Url;

$operators = ['=', '<=', '>='];

$sf = $searchFilter;

?>

<form method="post" action="<?php echo Url::to(['rooms/index-filtered']) ?>">
 <input type="hidden" name="<?= Yii::$app->request->csrfParam; ?>" value="<?=
Yii::$app->request->csrfToken; ?>" />

 <div class="row">
 <?php $operator = $sf['floor']['operator']; ?>
 <?php $value = $sf['floor']['value']; ?>
 <div class="col-md-3">
 <label>Floor</label>

 <select name="SearchFilter[floor][operator]">
 <?php foreach($operators as $op) { ?>
 <?php $selected = ($operator == $op)?'selected':''; ?>
 <option value="<?=$op?>" <?=$selected?>><?=$op?></option>
 <?php } ?>=
 </select>
 <input type="text" name="SearchFilter[floor][value]" value="<?=$value?>" />
 </div>

 <?php $operator = $sf['room_number']['operator']; ?>
 <?php $value = $sf['room_number']['value']; ?>
 <div class="col-md-3">
 <label>Room Number</label>

 <select name="SearchFilter[room_number][operator]">
 <?php foreach($operators as $op) { ?>
 <?php $selected = ($operator == $op)?'selected':''; ?>
 <option value="<?=$op?>" <?=$selected?>><?=$op?></option>
 <?php } ?>
 </select>
 <input type="text" name="SearchFilter[room_number][value]" value="<?=$value?
>" />
 </div>

 <?php $operator = $sf['price_per_day']['operator']; ?>
 <?php $value = $sf['price_per_day']['value']; ?>
 <div class="col-md-3">
 <label>Price per day</label>

 <select name="SearchFilter[price_per_day][operator]">
 <?php foreach($operators as $op) { ?>
 <?php $selected = ($operator == $op)?'selected':''; ?>
 <option value="<?=$op?>" <?=$selected?>><?=$op?></option>
 <?php } ?>
 </select>
 <input type="text" name="SearchFilter[price_per_day][value]" value="<?
=$value?>" />
 </div>
 </div>

 <div class="row">
 <div class="col-md-3">
 <input type="submit" value="filter" class="btn btn-primary" />
 <input type="reset" value="reset" class="btn btn-primary" />

 </div>
 </div>
</form>

Note

Pay attention:

At the beginning of the view, there is a keyword use, which explains the complete path of the Url class. If we
remove it, the framework will search the Url class requested in the <form> tag in the current namespace, that is
app/controllers.

After declaring the <form> tag, we inserted:

<input type="hidden" name="<?= Yii::$app->request->csrfParam; ?>" value="<?= Yii::$app-
>request->csrfToken; ?>" />

This is mandatory to allow the framework to verify the sender of the post data.

The $searchFilter variable is used as $sf to provide a more concise form.

Now update RoomsController in basic/controllers/RoomsController.php and add a new action named
actionIndexFiltered. Create an ActiveQuery object from Room and check whether there is content in the
SearchFilter keyword of the $_POST array.

For every present filter, a condition will be added to $query using the andWhere method, passing an operator, field
name, and value. For a more concise form of the actioned content, we put a filtered field in the loop, because they
have the same redundant structure (operator and value):

 public function actionIndexFiltered()
 {
 $query = Room::find();

 $searchFilter = [
 'floor' => ['operator' => '', 'value' => ''],
 'room_number' => ['operator' => '', 'value' => ''],
 'price_per_day' => ['operator' => '', 'value' => ''],
];

 if(isset($_POST['SearchFilter']))
 {
 $fieldsList = ['floor', 'room_number', 'price_per_day'];

 foreach($fieldsList as $field)
 {
 $fieldOperator = $_POST['SearchFilter'][$field]['operator'];
 $fieldValue = $_POST['SearchFilter'][$field]['value'];

 $searchFilter[$field] = ['operator' => $fieldOperator, 'value' =>
$fieldValue];

 if($fieldValue != '')
 {
 $query->andWhere([$fieldOperator, $field, $fieldValue]);
 }
 }
 }

 $rooms = $query->all();

 return $this->render('indexFiltered', ['rooms' => $rooms, 'searchFilter' =>
$searchFilter]);

 }

Finally, we need to display the results in a table format. So at the bottom of the view, add a table to display the
content of the filtered rooms (copied from basic/views/rooms/index.php):

<table class="table">
 <tr>
 <th>Floor</th>
 <th>Room number</th>
 <th>Has conditioner</th>
 <th>Has tv</th>
 <th>Has phone</th>
 <th>Available from</th>
 <th>Available from (db format)</th>
 <th>Price per day</th>
 <th>Description</th>
 </tr>
 <?php foreach($rooms as $item) { ?>
 <tr>
 <td><?php echo $item['floor'] ?></td>
 <td><?php echo $item['room_number'] ?></td>
 <td><?php echo Yii::$app->formatter->asBoolean($item['has_conditioner']) ?></td>
 <td><?php echo Yii::$app->formatter->asBoolean($item['has_tv']) ?></td>
 <td><?php echo ($item['has_phone'] == 1)?'Yes':'No' ?></td>
 <td><?php echo Yii::$app->formatter->asDate($item['available_from']) ?></td>
 <td><?php echo Yii::$app->formatter->asDate($item['available_from'], 'php:Y-m-
d') ?></td>
 <td><?php echo Yii::$app->formatter->asCurrency($item['price_per_day'], 'EUR') ?
></td>
 <td><?php echo $item['description'] ?></td>
 </tr>
 <?php } ?>
</table>

Now point the browser to http://hostname/basic/web/rooms/index-filtered and this should be displayed:

A list of rooms with filters

We can create tests by changing the filter values and operators as much as we want.

Working with relationships
ActiveRecord provides us with skills to work with relationships between database tables. Yii2 employs two methods
to establish the relationship between the current and other ActiveRecord classes: hasOne and hasMany, which return
an ActiveQuery based on the multiplicity of the relationship.

The first method hasOne() returns at most one related record that matches the criteria set by this relationship, and
hasMany() returns multiple related records that match the criteria set by this relationship.

Both methods require that the first parameter is the class name of the related ActiveRecord and that the second
parameter is the pair of primary keys that are involved in the relationship: the first key is relative to a foreign
ActiveRecord and the second key is related to the current ActiveRecord.

Usually, hasOne() and hasMany() are accessed from properties that identify which object (or objects) will be
returned.

The method in this example is:

class Room extends ActiveRecord
{
 public function getReservations()
 {
return $this->hasMany(Reservation::className(), ['room_id' => 'id']);
 }
}

By calling $room->reservations, framework will execute this query:

SELECT * FROM `reservation` WHERE `room_id` = id_of_room_model

The use of the hasOne() method is similar, and as an example will look like this:

class Reservation extends ActiveRecord
{
 public function getRoom()
 {
return $this->hasOne(Room::className(), ['id' => 'room_id']);
 }
}

Calling $reservation->room, framework will execute this query:

SELECT * FROM `room` WHERE `id` = reservation_id

Remember that when we call a property that contains the hasOne() or hasMany() methods, a SQL query will be
executed and its response will be cached. So, the next time that we call the property, a SQL query will not be
executed and the last cached response will be released.

This approach to get related data is called lazy loading, which means that data is loaded only when it is effectively
requested.

Now let's write an example to display the last reservation details about a room. Create a reservations model class
using Gii if you have not done so before.

First of all, we need some data to work with. Insert this record in the customer table:

INSERT INTO `customer` (`id` ,`name` ,`surname` ,`phone_number`) VALUES (NULL ,
'James', 'Foo', '+39-12345678');

In the reservation table, insert these records:

INSERT INTO `reservation` (`id`, `room_id`, `customer_id`, `price_per_day`, `date_from`,

INSERT INTO `reservation` (`id`, `room_id`, `customer_id`, `price_per_day`, `date_from`,
`date_to`, `reservation_date`) VALUES (NULL, '2', '1', '90', '2015-04-01', '2015-05-06',
NULL), (NULL, '2', '1', '48', '2019-08-27', '2019-08-31', CURRENT_TIMESTAMP);

Open the room model in basic/models/Room.php and append this property declaration at the bottom of the file:

 public function getLastReservation()
 {
 return $this->hasOne(
 Reservation::className(),
 ['room_id' => 'id']
)
 ->orderBy('id');
 }

As said before, hasOne() and hasMany() return an ActiveQuery instance. We can append any methods to
complete the relationship as we have done before by appending the orderBy() method to get the first record.

Create a new action named actionLastReservationByRoomId($room_id) in the Rooms controller, with the
following content:

 public function actionLastReservationByRoomId($room_id)
 {
 $room = Room::findOne($room_id);

 // equivalent to
 // SELECT * FROM reservation WHERE room_id = $room_id
 $lastReservation = $room->lastReservation;

 // next times that we will call $room->reservation, no sql query will be
executed.

 return $this->render('lastReservationByRoomId', ['room' => $room,
'lastReservation' => $lastReservation]);
 }
 Finally, create the view in basic/views/rooms/lastReservationByRoomId.php with this
content:<table class="table">
 <tr>
 <th>Room Id</th>
 <td><?php echo $lastReservation['room_id'] ?></td>
 </tr>
 <tr>
 <th>Customer Id</th>
 <td><?php echo $lastReservation['customer_id'] ?></td>
 </tr>
 <tr>
 <th>Price per day</th>
 <td><?php echo Yii::$app->formatter-
>asCurrency($lastReservation['price_per_day'], 'EUR') ?></td>
 </tr>
 <tr>
 <th>Date from</th>
 <td><?php echo Yii::$app->formatter->asDate($lastReservation['date_from'],
'php:Y-m-d') ?></td>
 </tr>
 <tr>
 <th>Date to</th>
 <td><?php echo Yii::$app->formatter->asDate($lastReservation['date_to'], 'php:Y-
m-d') ?></td>
 </tr>
 <tr>
 <th>Reservation date</th>
 <td><?php echo Yii::$app->formatter-
>asDate($lastReservation['reservation_date'], 'php:Y-m-d H:i:s') ?></td>
 </tr>
</table>

Point your browser to http://hostname/basic/web/rooms/last-reservation-by-room-id?room_id=2 to
visualize this frame:

A visualization of the last reservation of a room with id = 2

Only the last reservation inserted in the database will be displayed.

What about displaying all the last reservations for each room in a single table?

Here, the lazy loading approach will have performance issues because for every room, it will execute a single SQL
query to get data for the last reservation. This is a code snippet in the view:

for($roomsList as $room)
{
 // SELECT * FROM reservation WHERE room_id = $room->id
 $lastReservation = $room->lastReservation;
}

In order to complete the script's execution, it will execute as many related SQL queries as the number of rooms, and
when the number of rooms grows, this solution will not be efficient anymore.

The Yii2 framework provides another type of loading data, named eager loading, to solve this kind of problem.

Eager loading is applied using the with() method of ActiveQuery. This method's parameters can be either one or
multiple strings, or a single array of relation names and the optional callbacks to customize the relationships.

When we get a rooms list, if we apply the with() method to the query, a second SQL query will automatically be
executed and this will return the list of the last reservations for each room.

With this example, we will get a rooms list and a list of the lastReservation relation for each room entry. In this
way, when we refer to $room->lastReservation, no other SQL query will be executed:

// SELECT * FROM `room`
// SELECT * FROM `reservation` WHERE `room_id` IN (room_id list from previous select)
ORDER BY `id` DESC
$rooms = Room::find()
->with('lastReservation')
->all();

// no query will be executed

$lastReservation = $rooms[0]->lastReservation;

Let's write a complete example to get a full list of the last reservations for each room. In
basic/controllers/RoomsController.php, append a new action named
actionLastReservationForEveryRoom():

 public function actionLastReservationForEveryRoom()
 {
 $rooms = Room::find()
 ->with('lastReservation')
 ->all();

 return $this->render('lastReservationForEveryRoom', ['rooms' => $rooms]);
 }

This action will pass a list of rooms named lastReservationForEveryRoom to the view, together with the
lastReservation relation loaded using the eager loading.

Create a view named lastReservationForEveryRoom.php in
basic/views/rooms/lastReservationForEveryRoom.php:

<table class="table">
 <tr>
 <th>Room Id</th>
 <th>Customer Id</th>
 <th>Price per day</th>
 <th>Date from</th>
 <th>Date to</th>
 <th>Reservation date</th>
 </tr>
 <?php foreach($rooms as $room) { ?>
 <?php $lastReservation = $room->lastReservation; ?>
 <tr>
 <td><?php echo $lastReservation['room_id'] ?></td>
 <td><?php echo $lastReservation['customer_id'] ?></td>
 <td><?php echo Yii::$app->formatter-
>asCurrency($lastReservation['price_per_day'], 'EUR') ?></td>
 <td><?php echo Yii::$app->formatter->asDate($lastReservation['date_from'],
'php:Y-m-d') ?></td>
 <td><?php echo Yii::$app->formatter->asDate($lastReservation['date_to'], 'php:Y-
m-d') ?></td>
 <td><?php echo Yii::$app->formatter-
>asDate($lastReservation['reservation_date'], 'php:Y-m-d H:i:s') ?></td>
 </tr>
 <?php } ?>
</table>

In this view, the last reservation data will be displayed for each room. Since the first room has no reservations, an
empty row will be displayed. This is the result:

Last reservation for every room

Note

There are two variants to the with() method: joinWith() and innerJoinWith(), which apply a left join or an
inner join to a primary query.

For example, this is the use of joinWith() with:

 $rooms = Room::find()
 ->leftJoinWith('lastReservation')
 ->all();

The preceding code snippet is equivalent to:

SELECT `room`.* FROM `room` LEFT JOIN `reservation` ON `room`.`id` =
`reservation`.`room_id` ORDER BY `id` DESC

SELECT * FROM `reservation` WHERE `room_id` IN (room_id list from previous sql respone
) ORDER BY `id` DESC

Remember that the inner join selects all rows from both tables as long as there is a match between the columns in both
tables; instead, the left join returns all rows from the left table (room), with the matching rows in the right table
(reservation). The result is NULL in the right side when there is no match.

Sometimes it happens that we need more than one level of relationship between tables. For example, we could find a
customer related to a room. In this case, starting from the room, we pass through the reservation and go from the
reservation to the customer.

The relationship here will be:

room -> reservation -> customer

If we want to find out the customer object from the room object, just type:

$customer = $room->customer;

Generally, we have more levels of relationship, but in this case only two (reservation and customer).

Yii2 allows us to specify a junction table using the via() or viaTable() method. The first one, via(), is based on
an existing relationship in the model, and it supports two parameters:

Relation name
A PHP callback parameter to customize the associated relation

The second method, viaTable(), is based on direct access to a physical table in the database and supports three
parameters:

The first parameter is a relation or table name
The second parameter is the link associated with the primary model
The third parameter is a PHP callback to customize the associated relation

Example – using a relationship to connect rooms, reservations, and
customers
In this example, we will look at how to build a single view that displays the rooms, reservations, and customers lists at
the same time; when a user clicks on the Detail button of rooms record, the reservations list will be filtered with data
linked to that room. In the same way, when a user clicks on the Detail button of a reservations record, the customers
list will be filtered with data linked to that reservation.

If no parameter is passed (a condition that occurs when a page is called for the first time), either the rooms,
reservations, or customers list contains a full record of data from the respective tables.

Start writing actionIndexWithRelationships in basic/controllers/RoomsController.php. This is the
task list for this action:

Check which parameter of detail has been passed (room_id identifies that the reservations list has to be filled
in with the data filtered using room_id, while reservation_id identifies that the customers list has to be filled
with the data filtered using reservation_id)
Fill in three models: roomSelected, reservationSelected, and customerSelected to display the details
and fill in three arrays of models: rooms, reservations, and customers

This is the complete content of actionIndexWithRelationships:

 public function actionIndexWithRelationships()
 {
 // 1. Check what parameter of detail has been passed
 $room_id = Yii::$app->request->get('room_id', null);
 $reservation_id = Yii::$app->request->get('reservation_id', null);
 $customer_id = Yii::$app->request->get('customer_id', null);

 // 2. Fill three models: roomSelected, reservationSelected and customerSelected
and
 // Fill three arrays of models: rooms, reservations and customers;
 $roomSelected = null;
 $reservationSelected = null;
 $customerSelected = null;

 if($room_id != null)
 {
 $roomSelected = Room::findOne($room_id);

 $rooms = array($roomSelected);
 $reservations = $roomSelected->reservations;
 $customers = $roomSelected->customers;
 }
 else if($reservation_id != null)
 {
 $reservationSelected = Reservation::findOne($reservation_id);

 $rooms = array($reservationSelected->room);
 $reservations = array($reservationSelected);
 $customers = array($reservationSelected->customer);
 }
 else if($customer_id != null)
 {
 $customerSelected = Customer::findOne($customer_id);

 $rooms = $customerSelected->rooms;
 $reservations = $customerSelected->reservations;
 $customers = array($customerSelected);
 }
 else
 {
 $rooms = Room::find()->all();
 $reservations = Reservation::find()->all();
 $customers = Customer::find()->all();
 }

 return $this->render('indexWithRelationships', ['roomSelected' => $roomSelected,
'reservationSelected' => $reservationSelected, 'customerSelected' => $customerSelected,
'rooms' => $rooms, 'reservations' => $reservations, 'customers' => $customers]);
 }

Note

Remember to add the use keyword for Customer and Reservation classes at the top of the RoomsController

file:

use app\models\Reservation;
use app\models\Customer;

The second part of the action body requires more attention, because there are filled in selected models and list models
in this specific position.

Only one parameter at a time can be selected between $room_id, $reservation_id, and $customer_id. When
one of these three parameters is selected, three arrays of the Room, Reservation, and Customer model will be filled
in, using the relationships in the model. For this purpose, models must have all the relationships employed in the
previous code.

Let's make sure that all the relationships exist in the models.

The Room model in basic/models/Room.php must have both getReservations() and getCustomers()
defined, which both use the via() method to handle the second level of relationship:

 public function getReservations()
 {
 return $this->hasMany(Reservation::className(), ['room_id' => 'id']);
 }
public function getCustomers()
 {
 return $this->hasMany(Customer::className(), ['id' => 'customer_id'])-
>via('reservations');
 }

The Reservation model in basic/models/Reservation.php must have getCustomer() and getRoom(), both
returning a single related model:

 public function getRoom()
 {
 return $this->hasOne(Room::className(), ['id' => 'room_id']);
 }

 public function getCustomer()
 {
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }

Finally, the Customer model in basic/models/Customer.php must have getReservations() and
getRooms(), which use the via() method to handle the second level of relationship:

 public function getReservations()
 {
 return $this->hasMany(Reservation::className(), ['customer_id' => 'id']);
 }

 public function getRooms()
 {
 return $this->hasMany(Room::className(), ['id' => 'room_id'])-
>via('reservations');
 }

Now write a view file in basic/view/rooms/indexWithRelationships.php. We will split the HTML page into
three parts (three tables), using the CSS provided by Bootstrap (which we will examine widely in the next few
chapters).

The first table will be for the rooms list, the second table for the reservations list, and the last one for the customers
list:

<?php

use yii\helpers\Url;
?>

<a class="btn btn-danger" href="<?php echo Url::to(['index-with-relationships']) ?
>">Reset

<div class="row">
 <div class="col-md-4">
 <legend>Rooms</legend>
 <table class="table">
 <tr>
 <th>#</th>
 <th>Floor</th>
 <th>Room number</th>
 <th>Price per day</th>
 </tr>
 <?php foreach($rooms as $room) { ?>
 <tr>
 <td><a class="btn btn-primary btn-xs" href="<?php echo Url::to(['index-
with-relationships', 'room_id' => $room->id]) ?>">detail</td>
 <td><?php echo $room['floor'] ?></td>
 <td><?php echo $room['room_number'] ?></td>
 <td><?php echo Yii::$app->formatter->asCurrency($room['price_per_day'],
'EUR') ?></td>
 </tr>
 <?php } ?>
 </table>

 <?php if($roomSelected != null) { ?>
 <div class="alert alert-info">
 You have selected Room #<?php echo $roomSelected->id ?>
 </div>
 <?php } else { ?>
 <i>No room selected</i>
 <?php } ?>
 </div>

 <div class="col-md-4">
 <legend>Reservations</legend>
 <table class="table">
 <tr>
 <th>#</th>
 <th>Price per day</th>
 <th>Date from</th>
 <th>Date to</th>
 </tr>
 <?php foreach($reservations as $reservation) { ?>
 <tr>
 <td><a class="btn btn-primary btn-xs" href="<?php echo Url::to(['index-
with-relationships', 'reservation_id' => $reservation->id]) ?>">detail</td>
 <td><?php echo Yii::$app->formatter-
>asCurrency($reservation['price_per_day'], 'EUR') ?></td>
 <td><?php echo Yii::$app->formatter->asDate($reservation['date_from'],
'php:Y-m-d') ?></td>
 <td><?php echo Yii::$app->formatter->asDate($reservation['date_to'],
'php:Y-m-d') ?></td>
 </tr>
 <?php } ?>
 </table>

 <?php if($reservationSelected != null) { ?>
 <div class="alert alert-info">
 You have selected Reservation #<?php echo $reservationSelected->id ?>

 </div>

 <?php } else { ?>
 <i>No reservation selected</i>
 <?php } ?>

 </div>
 <div class="col-md-4">
 <legend>Customers</legend>
 <table class="table">
 <tr>
 <th>#</th>
 <th>Name</th>
 <th>Surname</th>
 <th>Phone</th>
 </tr>
 <?php foreach($customers as $customer) { ?>
 <tr>
 <td><a class="btn btn-primary btn-xs" href="<?php echo Url::to(['index-
with-relationships', 'customer_id' => $customer->id]) ?>">detail</td>
 <td><?php echo $customer['name'] ?></td>
 <td><?php echo $customer['surname'] ?></td>
 <td><?php echo $customer['phone_number'] ?></td>
 </tr>
 <?php } ?>
 </table>

 <?php if($customerSelected != null) { ?>
 <div class="alert alert-info">
 You have selected Customer #<?php echo $customerSelected->id ?>
 </div>
 <?php } else { ?>
 <i>No customer selected</i>
 <?php } ?>
 </div>
</div>

Test the code by pointing your browser to http://hostname/basic/rooms/index-with-relationships. This
should be the result of trying to filter a room on the second floor:

Rooms with relationships between reservations and customers

How to save a model from a form
Let's now look at how to save a model from a form, which could be a new or an updated model.

The steps you need to follow are:

1. In the action method, create a new model or get an existing model.
2. In the action method, check whether there is data in the $_POST array.
3. If there is data in $_POST, fill in the attributes property of the model with data from $_POST and call the

save() method of the model; if save() returns true, redirect the user to another page (the details page, for
example).

From now on, we will continue to use widgets and helper classes provided by the framework. In this case, the HTML
form will be rendered using the yii\widget\ActiveForm class.

The most simple form we can write is the following:

<?php
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'login-form',
]) ?>
 …
 …
 …
<?php ActiveForm::end() ?>

This code generates a form HTML tag with login-form as the id attribute and empty content; the method and
action attributes are respectively, by default, the post and same action URL that generated the form. Other
properties about AJAX validation and client validation can be set, as you will see further on.

The widget $form is created by employing a static method ActiveForm::begin, passing as an array that contains
attributes of a form HTML tag (id, action, method, and so on) a configuration parameter and a key named
options to specify all the extra options that we want to pass to form the HTML tag. Finally, the form will be
completed when we call the static method ActiveForm::end(). Between the begin() and end() methods of the
form, we can insert all the content needed.

In particular, the input fields of the form can be managed using the ActiveField widget. The ActiveField widget related
to an attribute of model is created by calling the field() method of the $form object:

$field = $form->field($model, 'attribute');

The object returned from the field() method is a generic field that we can specialize by simply applying other
methods to generate all the common kinds of input fields: hidden, text, password, file, and so on. This returns the
same ActiveField $field object, and consequently other methods can be applied in a cascade.

A text field input is created with:

$textInputField = $field->textInput();

Or can be created simply like this:

$textInputField = $form->field($model, 'attribute')->textInput();

This variable $textInputField is again an ActiveField (the same object of $field), so we can apply all the other
methods required to complete our input field; for example, if we need to place a hint in input field, we can use:

$textInputField->hint('Enter value');

Or we can simply use:

$textInputField = $form->field($model, 'attribute')->textInput()->hint('Enter value');

Additional framework in addition automatically takes into account the attribute's validation rules, which are defined in
the rules() method of the model class. For example, if an attribute is required and we click on it and pass it to
another field without typing anything, an error alert will be displayed reminding us that the field is required.

When an input field is created using the ActiveField widget, the id and name properties of this input will have this
format: model-class-name_attribute-name for id and model-class-name[attribute-name] for name.
This means that all the attributes of the model will be passed to the controller action when we submit the form grouped
in a container array named the same as the model class.

For example, if the $model class is Room and the attribute is floor whose content is 12, create a text field from the
$form object:

<?php echo $floorInputField = $form->field($model, 'floor')
->textInput()->hint('Enter value for floor');

This outputs the following HTML:

<input id="Room_floor" name="Room[floor]" value="12" placeholder="Enter value for floor"
/>

Example – creating and updating a room from a form
Just from following the instructions in the previous paragraph, we will try to create and update a room from the
HTML form.

We now update the previously created actionCreate() method in RoomsController with some code to
instantiate a new model object, check the content of the $_POST array, and if it is set, we call save() on the model:

 public function actionCreate()
 {
 // 1. Create a new Room instance;
 $model = new Room();

 // 2. Check if $_POST['Room'] contains data;
 if(isset($_POST['Room']))
 {
 $model->attributes = $_POST['Room'];

 // Save model
 if($model->save())
 {
 // If save() success, redirect user to action view.
 return $this->redirect(['view', 'id' => $model->id]);
 }
 }

 return $this->render('create', ['model' => $model]);
 }

To update the view in basic/views/rooms/create.php, pass:

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>

<div class="row">

 <div class="col-lg-6">

 <h2>Create a new room</h2>

 <?php $form = ActiveForm::begin(['id' => 'room-form']) ?>

 <?php echo $form->field($model, 'floor')->textInput(); ?>
 <?php echo $form->field($model, 'room_number')->textInput(); ?>
 <?php echo $form->field($model, 'has_conditioner')->checkbox(); ?>
 <?php echo $form->field($model, 'has_tv')->checkbox(); ?>
 <?php echo $form->field($model, 'has_phone')->checkbox(); ?>
 <?php echo $form->field($model, 'available_from')->textInput(); ?>
 <?php echo $form->field($model, 'price_per_day')->textInput(); ?>
 <?php echo $form->field($model, 'description')->textArea(); ?>
 <?php echo Html::submitButton('Save', ['class' => 'btn btn-primary']); ?>
 <?php ActiveForm::end() ?>
 </div>
</div>

By default, ActiveForm::begin() creates a form that has client validation enabled; therefore, the form will be
submitted only when all the validation rules are satisfied as the submit button is rendered using yii\helpers\Html.

Pay attention to the top of view that contains the use keyword to define the complete path of the classes Html and
ActiveForm:

use yii\widgets\ActiveForm;
use yii\helpers\Html;

Point your browser to http://hostname/basic/rooms/create to display the form to create a new room. The
following screenshot shows what you should display, reporting in it some particular conditions:

The form to create a new room

This screenshot presents different states of fields: the floor input has a red border because it has the wrong type of
content (it must be an integer!), the room number has a green border to indicate that is correct, and the Available
From field has a red border because it is required but the user left it blank. The framework provides a more concise
form to fill in attributes if $_POST data is available:

$model->load(Yii::$app->request->post());

This fills in the attributes of the model if the $_POST[model-class] content is available, and with this suggestion we
can change the actionCreate content as follows:

 public function actionCreate()
 {
 // 1. Create a new Room instance;
 $model = new Room();

 // 2. Check if $_POST['Room'] contains data and save model;
 if($model->load(Yii::$app->request->post()) && ($model->save()))
 {
 return $this->redirect(['detail', 'id' => $model->id]);
 }

 return $this->render('create', ['model' => $model]);
 }

This is extraordinarily concise! Similarly, we can handle the update action to save changes to an existing model.

We can make a reusable form by putting its content in an external. Create a new file in

basic/views/rooms/_form.php (the first underscore indicates that this is a view that is includable in other views)
and cut and paste the code about form generation from the create view to this new _form view:

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>
<?php $form = ActiveForm::begin(['id' => 'room-form']) ?>

<?php echo $form->field($model, 'floor')->textInput(); ?>
<?php echo $form->field($model, 'room_number')->textInput(); ?>
<?php echo $form->field($model, 'has_conditioner')->checkbox(); ?>
<?php echo $form->field($model, 'has_tv')->checkbox(); ?>
<?php echo $form->field($model, 'has_phone')->checkbox(); ?>
<?php echo $form->field($model, 'available_from')->textInput(); ?>
<?php echo $form->field($model, 'price_per_day')->textInput(); ?>
<?php echo $form->field($model, 'description')->textArea(); ?>

<?php echo Html::submitButton('Create', ['class' => 'btn btn-primary']); ?>

<?php ActiveForm::end() ?>

In the basic/views/rooms/create.php file, instead of the form code, just put the code to render the _form view
in it:

<?php echo $this->render('_form', ['model' => $model]); ?>

Note

When we modify the create view, remember to pass $model as the second parameter to render the _form view.

We are ready to build the update flow in order to update the room content from a form. Firstly, create an action in
basic/controllers/RoomsController.php named actionUpdate, passing $id as a parameter that identifies
the primary key to find the model.

In this action, we will put some code to get the model based on the id primary key, check whether the $_POST array
contains data, and then save the model:

 public function actionUpdate($id)
 {
 // 1. Create a new Room instance;
 $model = Room::findOne($id);

 // 2. Check if $_POST['Room'] contains data and save model;
 if(($model!=null) && $model->load(Yii::$app->request->post()) && ($model-
>save()))
 {
 return $this->redirect(['detail', 'id' => $model->id]);
 }

 return $this->render('update', ['model' => $model]);
 }

This is basically equivalent to the code for the create action. Now, create the update view in
basic/views/rooms/update.php with the following content:

<div class="row">

 <div class="col-lg-6">

 <h2>Update a room</h2>
 <?php echo $this->render('_form', ['model' => $model]); ?>
 </div>

</div>

From the database, check for one existing room and type the id value of this URL in your browser:
http://hostname/basic/rooms/update?id=id-found.

For example, if id of an existing room is 1, type this URL in your browser:

http://hostname/basic/rooms/update?id=1

This will show a form with the filled in field based on the model attributes' content.

This example is complete, having built the detail view, which shows the content of model attributes. Create an
action named actionDetail, passing $id as a parameter, which identifies the primary key to find the model:

 public function actionDetail($id)
 {
 // 1. Create a new Room instance;
 $model = Room::findOne($id);

 return $this->render('detail', ['model' => $model]);
 }

Then, create the detail view to display some of the model attributes' values in basic/views/rooms/detail.php:

<table class="table">
 <tr>
 <th>ID</th>
 <td><?php echo $model['id'] ?></td>
 </tr>
 <tr>
 <th>Floor</th>
 <td><?php echo $model['floor'] ?></td>
 </tr>
 <tr>
 <th>Room number</th>
 <td><?php echo $model['room_number'] ?></td>
 </tr>
</table>

Now after successfully creating or updating model, the detail view will be displayed with the content of some
attributes of the model.

Setting up the GMT time zone
It is important to set the default time zone for date/time management.

Usually, when we refer to date/time, do not pay attention to which time zone value is being
referred to.

For example, if we live in Rome and want to spend our next holiday in New York, when we
receive the check-in date/time from the hotel, we must consider which time zone time is being
referred to (whether local or remote).

When we display a date/time value that could be misunderstood, it is always recommended to
add a time zone reference to it. The time zone is expressed through positive or negative hours
compared to a reference that is usually GMT (Greenwich Mean Time).

For example, if it is 9 p.m. in Rome (GMT +1), in GMT time it will be 8 p.m. (GMT +0), 3
p.m. in New York (GMT -5), and finally 12 p.m. in Los Angeles (GMT -8).

Therefore, it is necessary to establish a common shared time value. For this purpose, it is
advisable to use GMT as the time reference for all values and operations on values.

We need to configure the time zone in two environments:

In an application, set the timeZone attribute of a configuration; this will set the default
time zone for all functions about the date and time
Some databases, such as MySQL, do not have internal management of time zones, so
every value uses the default time zone of the database or the time zone configured during
connection from the application to the database; we will set the default time zone during
the connection to the database

Complete the first step. Open basic/config/web.php and add the timeZone property with
the GMT value in the config array, for example, after the basePath property:

 'timeZone' => 'GMT',

The second step is setting the time zone for the database connections, if the database, such as
MySQL, does not provide it. This is done globally by adding this code in the on afterOpen
event. Open basic/config/db.php and append it as the last attribute in an array (usually the
last attribute is charset):

'on afterOpen' => function($event) {
$event->sender->createCommand("SET time_zone = '+00:00'")->execute();
}

This code means that once the connection with the database is opened, the SQL query SET
time_zone = +00:00 will be executed for every connection that we are going to establish
with the database, and every date/time field value and function related to the GMT (+00:00)
time zone will be considered.

Let's make a test. Create a new controller that simply displays the current date/time and time
zone, in basic/controllers/TestTimezoneController.php with an action named
actionCheck():

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class TestTimezoneController extends Controller
{
 public function actionCheck()
 {
 $dt = new \DateTime();
 echo 'Current date/time: '.$dt->format('Y-m-d H:i:s');
 echo '
';
 echo 'Current timezone: '.$dt->getTimezone()->getName();
 echo '
';
 }
}

Point your browser to http://hostname/basic/web/test-timezone/check. This is
what my browser displayed:

Current date/time: 2015-05-27 19:53:35
Current timezone: GMT

And, the local time (in Rome) was 21:53:35, because Rome was then at +02:00 GMT due to
daylight savings time.

If we comment the timeZone property in the app configuration in basic/config/web.php,
we will see the default server time zone that is in my browser:

Current date/time: 2015-05-27 21:53:35
Current timezone: Europe/Rome

This confirms that we have changed the default timezone property for all date/time functions.
The last check to perform is on the database. Create a new action named
actionCheckDatabase to verify that the database's default time zone for the current (and
every) connection is GMT:

public function actionCheckDatabase()
{
 $result = \Yii::$app->db->createCommand('SELECT NOW()')->queryColumn();

 echo 'Database current date/time: '.$result[0];
}

Point your browser to http://hostname/basic/web/test-timezone/check-
database. This is what my browser displayed:

Database current date/time: 2015-05-27 20:12:08

And the local time (in Rome) was 22:12:08, because Rome was then at +02:00 GMT.

Remember that, from now on, all date/time information displayed in a database refers to the
GMT time zone, although this specification was missing (as we can see in the previous
database's current date/time).

Tip

Another strategy to handle the GMT time zone in a database's date/time column is to store the
value as a timestamp, which is by definition an integer that indicates the number of seconds
from 01/01/1970 at 00:00:00 in the GMT (UTC) time zone; so it is immediately understandable
that field is a date/time with the GMT time zone, but remember that any database function
applied to it will be executed using the database's default time zone.

Using multiple database connections
Applications can require multiple database connections so that they can send and get data from different sources.

Using other database sources is incredibly simple. The only thing to do is to add a new database entry in the main
configuration and use ActiveRecord support. All the operations on records will be transparent for the developer.

Here are some examples of connection strings (dsn) to configure access to other databases:

MySQL and MariaDB: mysql:host=localhost;dbname=mydatabase
SQLite: sqlite:/path/to/database/file
PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase
CUBRID: cubrid:dbname=demodb;host=localhost;port=33000
MS SQL Server (via the sqlsrv driver): sqlsrv:Server=localhost;Database=mydatabase
MS SQL Server (via the dblib driver): dblib:host=localhost;dbname=mydatabase
MS SQL Server (via the mssql driver): mssql:host=localhost;dbname=mydatabase
Oracle: oci:dbname=//localhost:1521/mydatabase

Example – configuring a second DB connection to export data to a
local SQLite DB
We now want to add a new database connection to a SQLite DB. When we use a database, we have to make sure
that the PDO driver is installed in the system, otherwise PHP cannot handle it.

Open basic/config/web.php and the inner components attribute, and append a new attribute named dbSqlite
with the following attributes:

 'dbSqlite' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'sqlite:'.dirname(__DIR__).'/../db.sqlite',
],

This entry will use a DB SQLite named db.sqlite, which we can find in the
dirname(__DIR__).'/../web/db.sqlite' path, under the /basic/web folder. If this file does not exist, it will
be created (if a write permission is present in the /basic/web folder).

Note

Be sure that the /basic/web folder is writable, otherwise it will be impossible for the framework to create a
db.sqlite file.

Create a new controller to handle actions in this new database. This will be put in
/basic/controllers/TestSqliteController.php.

Insert the first action named actionCreateRoomTable in this new controller, which will create the same structure of
the Room table from MySQL in dbSqlite:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class TestSqliteController extends Controller
{
 public function actionCreateRoomTable()
 {

 // Create room table
 $sql = 'CREATE TABLE IF NOT EXISTS room (id int not null, floor int not null,
room_number int not null, has_conditioner int not null, has_tv int not null, has_phone
int not null, available_from date not null, price_per_day float, description text)';
 \Yii::$app->dbSqlite->createCommand($sql)->execute();
 echo 'Room table created in dbSqlite';
 }
}

Note

Pay attention so that in actionCreateRoomTable, the database instance is taken from: \Yii::$app->dbSqlite.

Point your browser to http://hostname/basic/web/test-sqlite/create-room-table and create a
db.sqlite file in basic/web and a room table in it.

As we have mentioned before, if the PDO driver is correctly installed, a blank page with the Room table created in
dbSqlite text will be displayed.

Now we want to clone the room table from MySQL to SQLite to make a backup of this table. We need to save the
records from MySQL to SQLite and verify the data stored to display it in a table.

Create a new action named actionBackupRoomTable() that executes these steps:

1. Create a room table (if it does not exist).
2. Delete all the records from the room in dbSqlite (alias truncate).
3. Load all the records from the room table in MySQL (using ActiveRecord).
4. Insert every single record from MySQL into SQLite.
5. Render the view to display data from SQLite with the table (to verify that the copy succeeded).

The content of the actionBackupRoomTable() action is:

 use app\models\Room;

 public function actionBackupRoomTable()
 {
 // Create room table
 $sql = 'CREATE TABLE IF NOT EXISTS room (id int not null, floor int not null,
room_number int not null, has_conditioner int not null, has_tv int not null, has_phone
int not null, available_from date not null, price_per_day float, description text)';
 \Yii::$app->dbSqlite->createCommand($sql)->execute();

 // Truncate room table in dbSqlite
 $sql = 'DELETE FROM room';
 \Yii::$app->dbSqlite->createCommand($sql)->execute();

 // Load all records from MySQL and insert every single record in dbqlite
 $models = Room::find()->all();

 foreach($models as $m)
 {
 \Yii::$app->dbSqlite->createCommand()->insert('room', $m->attributes)-
>execute();
 }

 // Load all records from dbSqlite
 $sql = 'SELECT * FROM room';
 $sqliteModels = \Yii::$app->dbSqlite->createCommand($sql)->queryAll();

 return $this->render('backupRoomTable', ['sqliteModels' => $sqliteModels]);
 }

Finally, create a view backupRoomTable in basic/views/test-sqlite/backupRoomTable.php with the

following content to display data from dbSqlite:

<h2>Rooms from dbSqlite</h2>

<table class="table">
 <tr>
 <th>Floor</th>
 <th>Room number</th>
 <th>Has conditioner</th>
 <th>Has tv</th>
 <th>Has phone</th>
 <th>Available from</th>
 <th>Available from (db format)</th>
 <th>Price per day</th>
 <th>Description</th>
 </tr>
 <?php foreach($sqliteModels as $item) { ?>
 <tr>
 <td><?php echo $item['floor'] ?></td>
 <td><?php echo $item['room_number'] ?></td>
 <td><?php echo Yii::$app->formatter->asBoolean($item['has_conditioner']) ?></td>
 <td><?php echo Yii::$app->formatter->asBoolean($item['has_tv']) ?></td>
 <td><?php echo ($item['has_phone'] == 1)?'Yes':'No' ?></td>
 <td><?php echo Yii::$app->formatter->asDate($item['available_from']) ?></td>
 <td><?php echo Yii::$app->formatter->asDate($item['available_from'], 'php:Y-m-
d') ?></td>
 <td><?php echo Yii::$app->formatter->asCurrency($item['price_per_day'], 'EUR') ?
></td>
 <td><?php echo $item['description'] ?></td>
 </tr>
 <?php } ?>
</table>

Navigate your browser to http://hostname/basic/web/test-sqlite/backup-room-table, which should
display a similar output to this:

The list of rooms from the SQLite database

We can now download the db.sqlite file from http://hostname/basic/web/db.sqlite to preserve a
backup copy of the room table!

Summary
In this chapter, you mastered how to configure a database connection and execute SQL
queries from scratch with DAO support of the framework. Next, you found out how to use Gii
and got to know about the advantages it has in creating models from the database table
structure. Gii creates models that extend the ActiveRecord class and through its use, you
finally learned to manipulate data. All the examples are accompanied with a visualization grid
that shows data, which is graphically enhanced by Bootstrap's presence in Yii2.

We carefully analyzed the common topic of tables' relationships, which must be managed in
models and then displayed in views.

At the end of the chapter, after you learned to manipulate data with ActiveRecord, you wrote a
complete flow to save data from a HTML form to a database. Finally, you learned the
importance of setting the GMT time zone in date/time fields and using other database sources
in the same application in order to make a backup of the primary database.

In the next chapter, you will learn to use and customize the grid widget to improve data
visualization.

Chapter 6. Using a Grid for Data and
Relations
We will cover the following topics in this chapter:

DataProvider for grids
Using grids
Custom columns in grids:

For example: displaying a reservations list by clicking on a customer grid row
Filters in GridView
Displaying and filtering ActiveRecord relational data in a grid's column
Summarizing the footer row in a grid:

For example: extending GridView to customize the footer row in a grid
Multiple grids on one page:

For example: managing reservations and room grids in the same view

Introduction
In the previous chapter, you learned how to get data from databases. Now it is time to use a
fundamental widget provided by framework: GridView. The first topic we'll cover is data input
format expected by a grid. Then we will analyze the default implementation of a grid and
proceed to look at customizations to display the relationship between data. Finally, you will
learn to extend the grid base class to display everything we need in a grid layout.

DataProvider for grids
GridView is the widget provided by Yii2 to display data in a grid layout.

This widget requires that data used as an input source is an extension of the abstract class
yii\data\BaseDataProvider.

To deal with a data source, DataProvider supplies some additional actions to handle pagination
and sorting.

BaseDataProvider has a method named getModels() that returns a list of items for the
current page. This means that we could also use DataProvider to paginate data from a source
and display it as we need to.

By default, the framework has three core classes that extend yii\data\BaseDataProvider:

yii\data\ActiveDataProvider
yii\data\ArrayDataProvider
yii\data\SqlDataProvider

The first one, ActiveDataProvider, uses a yii\db\Query instance from ActiveRecord as
a data source. The parameter array is passed to the constructor and the yii\db\Query object
is filled out in the query attribute:

// build an ActiveDataProvider with an empty query and a pagination with 35 items for page
$provider = new \yii\data\ActiveDataProvider([
 'query' => Room::find(),
 'pagination' => [
 'pageSize' => 35,
],
]);

// get all rooms in current page
$rooms = $provider->getModels();

ActiveDataProvider is the most used DataProvider, since it depends directly on
ActiveRecord, the best way to interact with databases.

The second point, ArrayDataProvider, uses an array of items that can be sorted or
paginated as a data source. This provider is employed when data can not be represented with
ActiveRecord, for example, when they are taken from another data source, such as a JSON
REST service or RSS feed.

The primary difference between ActiveDataProvider is that all data should be immediately
passed to a construct:

// build an ArrayDataProvider with an empty query and a pagination with 40 items for page
$provider = new \yii\data\ArrayDataProvider([
 'allModels' => Room::find()->all(),
 'pagination' => [
 'pageSize' => 40,

],
]);

// get all rooms in current page
$rooms = $provider->getModels();

In this snippet, we took data from an ActiveRecord to show the differences between
ActiveDataProvider and ArrayDataProvider. For this last provider, all the modes
should be passed to the constructor.

So, if the Room table has 10,000 records, with ActiveDataProvider 35 items at a time will
be loaded, while through ArrayDataProvider they will be loaded all from scratch (with big
performance issues).

The last one, SqlDataProvider, uses a SQL query as a data source. If we create pagination
with this provider, we will need to also pass the totalCount attribute to the constructor to
inform DataProvider how many records the SQL query should return:

// return total items count for this sql query
$itemsCount = \Yii::$app->db->createCommand('SELECT COUNT(*) FROM room')->queryScalar();

// build a SqlDataProvider with a pagination with 10 items for page

$dataProvider = new \yii\data\SqlDataProvider([
 'sql' => 'SELECT * FROM room',
 'totalCount' => $itemsCount,
 'pagination' => [
 'pageSize' => 10,
],
]);

// get the user records in the current page
$models = $dataProvider->getModels();

Using a grid
Now that we know how to get a data input source to pass to GridView, let's look at how to
implement it. Minimal implementation of GridView requires two attributes for an array passed
to a constructor: dataProvider and columns. The first parameter, dataProvider, is the
one we want to use in order to manipulate the data.

The second parameter, columns, represents the columns of the table to be displayed, for
example:

<?= \yii\grid\GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 'id',
 'floor',
 'room_number',
 'available_from:datetime',
 'price_per_day:currency',
],
]) ?>

This code will display a table with data from $dataProvider and five columns: id, floor,
room_number, available_from, and price_per_day; the last two columns are formatted
firstly using datetime and secondly using currency. Colons are used to specify the
formatter to be applied to the column data.

Note

The aspect of the table can be customized with many attributes and by default, the table layout
is rendered using Bootstrap.

Columns in the grid table can be identified using strings, but in general they are configured in
terms of yii\grid\Column classes.

Custom columns in a grid
As mentioned in the previous paragraph, the columns property of the GridView widget is mainly filled with strings.

When we need to apply a specific format, such as currency or date/time, we can append this specification to the
column name with a colon and the type used for formatting, as currency or datetime.

But the most general form of a GridView column is an object of the yii\grid\Column class, derived by the
yii\grid\DataColumn class.

A GridView column extended by the yii\grid\Column class is rendered using an array with the following keys:

 [
// can be omitted, as it is the default
'class' => 'yii\grid\DataColumn',

 'attribute', // name of model attribute
 'format', // format use to display data
 'header', // header of column
 'footer', // footer of column
 'visible', // flag to set visibility
 'content' // callback to print data
],

There are also other parameters but these ones are the most used.

Example – displaying a reservations list by clicking on a customer
grid row
We are now ready to create a customer grid that contains a reference to the linked reservation list in every row. First
of all, make sure that the structure and the data for the customer and reservation tables is the following:

--
-- Structure of Table `customer`
--

CREATE TABLE IF NOT EXISTS `customer` (
 `id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `name` varchar(50) NOT NULL,
 `surname` varchar(50) NOT NULL,
 `phone_number` varchar(50) DEFAULT NULL,
 PRIMARY KEY (`id`)
);

--
-- Data Dump of Table `customer`
--

INSERT INTO `customer` (`id`, `name`, `surname`, `phone_number`) VALUES
(1, 'James', 'Foo', '+39-12345678'),
(2, 'Bar', 'Johnson', '+47-98438923');

--
-- Structure of Table `reservation`
--

CREATE TABLE IF NOT EXISTS `reservation` (
 `id` int(11) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `room_id` int(11) NOT NULL,
 `customer_id` int(11) NOT NULL,
 `price_per_day` decimal(20,2) NOT NULL,
 `date_from` date NOT NULL,

 `date_to` date NOT NULL,
 `reservation_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `room_id` (`room_id`),
 KEY `customer_id` (`customer_id`)
);

--
-- Data Dump of table `reservation`
--

INSERT INTO `reservation` (`id`, `room_id`, `customer_id`, `price_per_day`, `date_from`,
`date_to`, `reservation_date`) VALUES
(1, 2, 1, 90.00, '2015-04-01', '2015-05-06', '2015-05-24 22:45:37'),
(2, 2, 1, 48.00, '2019-08-27', '2019-08-31', '2015-05-24 22:45:37'),
(3, 1, 2, 105.00, '2015-09-24', '2015-10-06', '2015-06-03 00:21:14');

Create a new controller named CustomersController in basic/controllers/CustomersController.php
with the actionGrid action to display a list in the grid view:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Customer;
use yii\data\ActiveDataProvider;

class CustomersController extends Controller
{
 public function actionGrid()
 {
 $query = Customer::find();

 $dataProvider = new ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' => $dataProvider]);

 }
}

This action actionGrid simply creates a data provider with all the data from the customer (unfiltered) and with a
pagination that displays ten items on a page. Finally, render the grid view.

This is the content of the grid view in basic/views/customers/grid.php:

<?php
use yii\grid\GridView;
use yii\helpers\Html;
?>

<h2>Customers</h2>

<?= GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 'id',
 'name',
 'surname',
 'phone_number',

 [
 'header' => 'Reservations',
 'content' => function ($model, $key, $index, $column) {
 return Html::a('Reservations', ['reservations/grid',
'Reservation[customer_id]' => $model->id]);
 }
],

 [
 'class' => 'yii\grid\ActionColumn',
 'template' => '{delete}',
 'header' => 'Actions',
],
],
]) ?>

The last two columns require particular explanation.

The penultimate one, Reservation, displays a link to give you access to the list of all customer reservations. We
have put Reservations as the header and filled the content property with dynamic data passed from the callback
function, which returns an HTML link to the reservations/index route with a parameter indicating customer_id
selected.

The last column headed Actions displays the ActionColumn with the single action delete to remove the selected
record.

Point your browser to http://hostname/basic/customers/grid and you should have the following output:

The Customers grid using the GridView widget

Note

The language used in GridView is configured in basic/config/web.php with the language property. This
property has a global effect on every core widget.

We can complete this example by just putting a counter near the Reservations link to indicate the number of
reservations for each customer.

For this purpose, we need to add a new relation named getReservationsCount to the Customer model in
basic/models/Customer.php, which returns the number of reservations linked to the customer:

 public function getReservationsCount()
 {
 return $this->hasMany(\app\models\Reservation::className(), ['customer_id' =>
'id'])->count();
 }

Now we can modify the penultimate column with:

 [
 'header' => 'Reservations',
 'content' => function ($model, $key, $index, $column) {
 $title = sprintf('Reservations (%d)', $model->reservationsCount);
 return Html::a($title, ['reservations/grid', 'Reservation[customer_id]'
=> $model->id]);
 }
],

If we refresh our browser now, we will see near the Reservations anchor link, the correct number of reservations
for that customer appears.

This example represents the complete reservations list displayed when a user clicks on the link Reservations.

Create ReservationsController as a new file in basic/controllers/ReservationsController.php with
an action grid and the following content:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Reservation;
use yii\data\ActiveDataProvider;

class ReservationsController extends Controller
{
 public function actionGrid()
 {
 $query = Reservation::find();

 if(isset($_GET['Reservation']))
 {
 $query->andFilterWhere([
 'customer_id' => isset($_GET['Reservation']['customer_id'])?
$_GET['Reservation']['customer_id']:null,
]);
 }

 $dataProvider = new ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' => $dataProvider]);

 }
}

In this controller, we applied an andFilterWhere condition to query whether $_GET['Reservation'] is set. The
andFilterWhere()method will apply a filter passed as a parameter only if the condition is not empty. So if
$_GET['Reservation']['customer_id'] is not set, the andFilterWhere() condition parameter will have a
null value and will not be appended to any other query condition.

Filters in GridView
GridView has a core feature of being able to simplify filter rows just by putting an additional row below the header
row.

Filters are mainly text input but in general they can be any type of control and we can customize them as much as we
want.

Filters can be activated by filling out the GridView widget property filterModel with an instance of the model class
and automatically a new row will be created below the header, containing working text inputs.

Filter text inputs have a name attribute filled with the model class name, which includes the field name. In this way, we
will pass data to a controller, including everything in a single array; a variable that can easily be used to populate a
search model massively.

Note

Automatic text input filters are created only for attributes that belong to at least one rule in the rules() method of
ActiveDataProvider; otherwise it is enough that attributes belong to the safe validator.

Let's create an example with the reservations grid.

We will fill out the filterModel property to apply filters to GridView, for example:

<?= \yii\grid\GridView::widget([
 ...
 'filterModel' => $searchModel,
 ...
?>

Here, $searchModel is an instance of the Reservation model class that we will pass to the view from the grid
action of ReservationsController.

Now let's create actionGrid() in ReservationsController in
basic/controllers/ReservationsController.php:

 <?php

public function actionGrid()
 {
 $query = \app\models\Reservation::find();

 $searchModel = new \app\models\Reservation();
 if(isset($_GET['Reservation']))
 {
 $searchModel->load(\Yii::$app->request->get());

 $query->andFilterWhere([
 'id' => $searchModel->id,
 'customer_id' => $searchModel->customer_id,
 'room_id' => $searchModel->room_id,
 'price_per_day' => $searchModel->price_per_day,
]);
 }

 $dataProvider = new \yii\data\ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' => $dataProvider, 'searchModel' =>
$searchModel]);

 }

The $searchModel instance is filled with the content of $_GET['Reservation'], in line:

 $searchModel->load(Yii::$app->request->get());

Then, $query is updated with the content of non-null attributes.

Note

Remember that the ActiveRecord's load() method will get values from the array enclosed in the model class name,
applied as the key to the array passed as the first function parameter.

Browse to http://hostname/basic/reservations/grid and type 2 in the Room ID column filter (the second
column). This should be the output:

Using filters in the GridView widget

We can also choose to customize the way we render a filter. Imagine using the Room ID column filter as a drop-
down list instead of an input textbox.

We only need to fill out the filter property of Room ID with dropDownList. It is advisable to use the Html
helper class to render dropDownList using the activeDropDownList() method. The active prefix stands for
ActiveRecord. This method dropDownList() requires three parameters: the model class, the attribute of the model
class, and finally an array key-value where key is the value attribute of the <option> tag and value is the text of the
<option> tag.

We will use yii\helpers\ArrayHelper to create the array key-value, where the key is the id attribute of the
model and the value is the return value of a callback function.

This is how the file in basic/views/reservations/grid.php changes:

<?php
$roomsFilterData = yii\helpers\ArrayHelper::map(app\models\Room::find()->all(), 'id',
function($model, $defaultValue) {
 return sprintf('Floor: %d - Number: %d', $model->floor, $model->room_number);
});

?>

<?= \yii\grid\GridView::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'columns' => [
 'id',

 [
 'header' => 'Room',
 'filter' => \Html::activeDropDownList($searchModel, 'room_id',
$roomsFilterData, ['prompt' => '--- all']),
 'content' => function($model) {
 return $model->room->floor;
 }
],

This is the expected output:

GridView with the dropdown list filter

Displaying and filtering ActiveRecord relational
data in a grid's column
Let's now focus on relational data in GridView, a common topic that is easily solved by itself.

Think about the reservations grid, which has two relational fields: room_id and customer_id, referring respectively
to room and customer tables. What if we want to immediately display the customer's surname, or room number?

At this point, our goal is to display relational data, for example, the customer's surname instead of customer_id in
GridView. Fields that refer to related data are expressed with the relation attribute.

In the reservation grid view, customer is the relation to get a related customer and surname is the field to keep.

Therefore, to display the customer's surname, it is enough to insert this column (as a string) in the reservations grid
view:

 'customer.surname'

This is equivalent to:

 [
 'attribute' => 'customer.surname'
]

A column named surname will be displayed. If we want to change column name to Customer, we use this:

 [
 'header' => 'Customer',
 'attribute' => 'customer.surname'
]

Note

We could use custom properties to get data, for example, getnameAndSurname to get the personal details of a
specific customer.

Insert a new property in the Customer model:

public function getNameAndSurname() {
 return $this->name.' '.$this->surname;
}

Then this will be the column in the GridView:

 [
 'header' => 'Customer',
 'attribute' => 'customer.nameAndSurname'
]

We now want to filter the Customer column. Since the customer.surname attribute is not in the rules() method
of the Reservation model, we need to extend this class to handle extra attributes.

So, create a new class named ReservationSearch in basic/models/ReservationSearch.php with the
following content:

<?php

class ReservationSearch extends app\models\Reservation
{
 public function attributes()
 {

 // add related fields to searchable attributes
 return array_merge(parent::attributes(), ['customer.surname']);
 }

 public function rules()
 {
 // add related rules to searchable attributes
 return array_merge(parent::rules(),[['customer.surname', 'safe']]);
 }

}

This extension simply adds a new attribute and a new rule attached to this attribute. The name of the attribute is
customer.surname.

We now have to change the actionGrid() action in ReservationsController to make a connection to the
customer table that permits us to filter based on the customer's surname.

This is the content of actionGrid() of ReservationsController in
basic/controllers/ReservationsController.php:

 public function actionGrid()
 {
 $query = \app\models\Reservation::find();

 $searchModel = new \app\models\ReservationSearch();
 if(isset($_GET['ReservationSearch']))
 {
 $searchModel->load(\Yii::$app->request->get());

 $query->joinWith(['customer']);
 $query->andFilterWhere(
 ['LIKE', 'customer.surname', $searchModel-
>getAttribute('customer.surname')]
);

 $query->andFilterWhere([
 'id' => $searchModel->id,
 'customer_id' => $searchModel->customer_id,
 'room_id' => $searchModel->room_id,
 'price_per_day' => $searchModel->price_per_day,

]);
 }

 $dataProvider = new \yii\data\ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' => $dataProvider, 'searchModel' =>
$searchModel]);

 }

Note

Be careful to ensure that $searchModel is instanced from the ReservationSearch class, as much as $_GET,
parameter used to get data is instanced from ReservationSearch instead of Reservation (because it has changed
class).

Filtering an action on the customer's surname in actionGrid() is made using these lines of code:

 $query->joinWith(['customer']);
 $query->andFilterWhere(
 ['LIKE', 'customer.surname', $searchModel-
>getAttribute('customer.surname')]
);

We make a join and if the customer.surname attribute is not null, then there will be a new filter. Browse to
http://hostname/basic/reservations/grid and type Fo in the Customer column filter. You should see this:

Filtering using relational data

A summarized footer row in a grid
One feature of GridView is that it shows summarized or statistical data, usually as a footer row
or first row, to get the data immediately (instead of scrolling down the page to the bottom of
the grid).

A column of the GridView widget has an attribute named footer to identify the last row of the
current pagination. A value filled in this attribute will be placed in the last row of the grid.

By default, showing the footer is disabled; to enable the footer, it is enough to set the attribute
showFooter of GridView to true. Then, we need to insert data in the 'footer' attribute of the
column that we want to show.

For example, we want to display the average price per day of rooms.

Add this code at the top of the grid view in basic/views/reservations/grid.php to
calculate the average of price per day:

<?php
use yii\grid\GridView;
use yii\helpers\Html;
?>

<h2>Reservations</h2>

<?php
$sumOfPricesPerDay = 0;
$averagePricePerDay = 0;

if(count($dataProvider->getModels()) > 0)
{
 foreach($dataProvider->getModels() as $m) $sumOfPricesPerDay += $m->price_per_day;
 $averagePricePerDay = $sumOfPricesPerDay / sizeof($dataProvider->getModels());
}
?>

<?php
$roomsFilterData = yii\helpers\ArrayHelper::map(app\models\Room::find()->all(), 'id', function($model, $defaultValue) {
 return sprintf('Floor: %d - Number: %d', $model->floor, $model->room_number);
});
?>

<?= app\components\GridViewReservation::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'showFooter' => true,
 'columns' => [
 'id',

 [
 'header' => 'Room',
 'filter' => Html::activeDropDownList($searchModel, 'room_id', $roomsFilterData, ['prompt' => '--- all']),
 'content' => function($model) {
 return $model->room->floor;

 }
],

 [
 'header' => 'Customer',
 'attribute' => 'customer.surname',
],

 [
 'attribute' => 'price_per_day',
 'footer' => Yii::$app->formatter->asCurrency($resultQueryAveragePricePerDay, 'EUR')
],

 'date_from',
 'date_to',

 [
 'class' => 'yii\grid\ActionColumn',
 'template' => '{delete}',
 'header' => 'Actions',
],
],
]) ?>

Be careful! In this example, count is made using the models of the current pagination. If the
grid is composed of more pages, it will only show the average value for the current page!

This count can consider all records (also filtered ones), making the calculation based not only
on the models of the current pagination but also on the result of a query. Add the average
count in actionGrid() of ReservationsController:

 public function actionGrid()
 {
 $query = \app\models\Reservation::find();

 $searchModel = new \app\models\ReservationSearch();
 if(isset($_GET['ReservationSearch']))
 {
 $searchModel->load(\Yii::$app->request->get());

 $query->joinWith(['customer']);
 $query->andFilterWhere(
 ['LIKE', 'customer.surname', $searchModel->getAttribute('customer.surname')]
);

 $query->andFilterWhere([
 'id' => $searchModel->id,
 'customer_id' => $searchModel->customer_id,
 'room_id' => $searchModel->room_id,
 'price_per_day' => $searchModel->price_per_day,

]);

 }
 $resultQueryAveragePricePerDay = $query->average('price_per_day');

 $dataProvider = new \yii\data\ActiveDataProvider([

 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
]);

 return $this->render('grid', ['dataProvider' => $dataProvider, 'searchModel' => $searchModel, 'resultQueryAveragePricePerDay' => $resultQueryAveragePricePerDay]);

 }

The average is calculated from the average() method of the $query object (so the filter will
be considered, if it is filled out) and passed to the view, so the code at the top of the view to
execute calculation is no longer needed because we have correctly moved it to the Controller
action.

Then change the footer content of the price_per_day column:

 [
 'attribute' => 'price_per_day',
 'footer' => sprintf('Average: %0.2f', $resultQueryAveragePricePerDay)
],

Now the average count will be independent of pagination.

Example – extending GridView to customize the footer
row in a grid
In a highly customized GridView, it is required to show data in positions not handled by
default by GridView, or it is required to apply specific changes (such as merging a column).

In either of these cases and when it is impossible to create the desired output with attributes of
GridView, it will be necessary to subclass the GridView widget.

The GridView widget has specific methods to render different parts of it:
renderTableBody(), renderTableFooter(), renderTableHeader(),
renderTableRow(), and so on.

Think about the previous example. Now, we also want to gather the first three columns in the
footer to display the Average label, the unique value in the price_per_day column, and the
last four columns with an empty space.

Create a new component that extends the yii\grid\GridView widget in
basic/components/GridViewReservation.php with this content:

<?php

namespace app\components;

use Yii;
use yii\web\Controller;
use yii\grid\GridView;

class GridViewReservation extends GridView
{
 public function renderTableFooter()
 {
 // Search column for 'price_per_day'
 $columnPricePerDay = null;
 foreach($this->columns as $column)
 {
 if(get_class($column) == 'yii\grid\DataColumn')
 {
 if($column->attribute == 'price_per_day') $columnPricePerDay = $column;
 }
 }

 $html = '<tfoot><tr>';
 $html .= '<td colspan="3">Average:</td>';
 $html .= $columnPricePerDay->renderFooterCell();
 $html .= '<td colspan="4"><i>this space is intentionally empty</i></td>';
 $html .= '</tr></tfoot>';

 return $html;
 }
}

This component just extends yii\grid\GridView and overrides the
renderTableFooter() method to make the required customization (mainly merging cells).
The only logic in this code is to find the price_per_day column, cycling the array of
columns given by $this->columns, where $this refers to the GridView object.

Multiple grids on one page
Every Yii2 widget has so much encapsulated in it that using multiple GridView widgets is a
simple activity that involves making few changes.

The only parameters indeed that are not customizable with the DataProvider model class are
pageParam and sortParam, which define the current page index and the parameters used to
order a grid.

Suppose, for example, that we have two GridViews filled with two different data providers,
$firstDataProvider and $secondDataProvider.

In the controller, we will set the pageParam and sortParam parameters of each DataProvider:

$firstDataProvider->pagination->pageParam = 'first-dp-page';
$firstDataProvider->sort->sortParam = 'first-dp-sort';

$secondDataProvider->pagination->pageParam = 'second-dp-page';
$secondDataProvider->sort->sortParam = 'second-dp-sort';

If we miss these definitions when changing a page or sorting a column, this action will also
affect the other GridView in the same page because we have not distinguished the two grid
view parameters.

Example: managing the reservations and rooms grids in
the same view
The purpose of this example is to display both the reservations and rooms grids in the same
page completely independent from each other.

In ReservationsController in
basic/controllers/ReservationsController.php, create a new action named
actionMultipleGrid() with the following content:

 public function actionMultipleGrid()
 {
 /**
 * Reservations
 */
 $reservationsQuery = \app\models\Reservation::find();
 $reservationsSearchModel = new \app\models\ReservationSearch();

 if(isset($_GET['ReservationSearch']))
 {
 $reservationsSearchModel->load(\Yii::$app->request->get());

 $reservationsQuery->joinWith(['customer']);
 $reservationsQuery->andFilterWhere(
 ['LIKE', 'customer.surname', $reservationsSearchModel->getAttribute('customer.surname')]
);

 $reservationsQuery->andFilterWhere([
 'id' => $reservationsSearchModel->id,
 'customer_id' => $reservationsSearchModel->customer_id,
 'room_id' => $reservationsSearchModel->room_id,
 'price_per_day' => $reservationsSearchModel->price_per_day,

]);
 }

 $reservationsDataProvider = new \yii\data\ActiveDataProvider([
 'query' => $reservationsQuery,
 'sort' => [
 'sortParam' => 'reservations-sort-param',
],
 'pagination' => [
 'pageSize' => 10,
 'pageParam' => 'reservations-page-param'
],
]);

 /**
 * Rooms
 */
 $roomsQuery = \app\models\Room::find();
 $roomsSearchModel = new \app\models\Room();

 if(isset($_GET['Room']))
 {
 $roomsSearchModel->load(\Yii::$app->request->get());

 $roomsQuery->andFilterWhere([
 'id' => $roomsSearchModel->id,
 'floor' => $roomsSearchModel->floor,
 'room_number' => $roomsSearchModel->room_number,
 'has_conditioner' => $roomsSearchModel->has_conditioner,
 'has_phone' => $roomsSearchModel->has_conditioner,
 'has_tv' => $roomsSearchModel->has_conditioner,
 'available_from' => $roomsSearchModel->has_conditioner,

]);
 }

 $roomsDataProvider = new \yii\data\ActiveDataProvider([
 'query' => $roomsQuery,
 'sort' => [
 'sortParam' => 'rooms-sort-param',
],
 'pagination' => [
 'pageSize' => 10,
 'pageParam' => 'rooms-page-param'
],
]);

 return $this->render('multipleGrid', [
 'reservationsDataProvider' => $reservationsDataProvider, 'reservationsSearchModel' => $reservationsSearchModel,
 'roomsDataProvider' => $roomsDataProvider, 'roomsSearchModel' => $roomsSearchModel,
]);

 }

We have detached the reservations declaration from the rooms declaration in order to clearly
distinguish each from the other. Be careful to ensure that you defined sortparam and
pageparam for either of the DataProvider.

Now we create a new view in basic/views/reservations/multipleGrid.php:

<?php
use yii\grid\GridView;
use yii\helpers\Html;
?>

<h2>Reservations</h2>
<?= GridView::widget([
 'dataProvider' => $reservationsDataProvider,
 'filterModel' => $reservationsSearchModel,
 'columns' => [
 'id',
 'room_id',
 'attribute' => 'customer.surname',
 'price_per_day',
 'date_from',
 'date_to'
],
]) ?>

<h2>Rooms</h2>
<?= GridView::widget([
 'dataProvider' => $roomsDataProvider,
 'filterModel' => $roomsSearchModel,
 'columns' => [
 'id',
 'floor',
 'room_number',
 'has_conditioner:boolean',
 'has_phone:boolean',
 'has_tv:boolean',
 'available_from',
],
]) ?>

The two grids are completely independent and we can now order or change a page without
interfering with other grids.

Summary
In this chapter, we presented the GridView widget to display data, directly or relational. A
fundamental topic when discussing GridView is DataProvider, which is a way to provide data
to GridView. You learned how to get DataProvider from ActiveRecord, an array, or SQL,
based on the available source.

After the first simple implementation of GridView, you comprehended the customization in a
column and displayed the relational data coming from other tables, using an extension of the
model class to add extra features as new attributes. Next, we illustrated how to filter data in
GridView to select only specific rows.

Just before the end of the chapter, you saw how to show, summarize, and customize a footer
and more in the GridView by subclassing the core widget yii\grid\GridView. Finally, the
last topic concerned the use of more than one grid in the same page, with a special focus on
the few changes that need to occur in order to avoid them interfering with each other.

In the next chapter, you will learn to customize the user interface with CSS, JavaScript,
widgets, and tools such as Gii that are directly provided from the framework.

Chapter 7. Working on the User Interface
In this chapter, you will discover how powerful Gii is as a tool. It provides support for CRUD actions, as well as
creating a controller and its respective views.

We will cover the following topics related to the user interface in this chapter:

Using Gii to generate create, read, update, and delete (CRUD) actions:
For example – using CRUD to manage rooms, reservations, and customers using Gii

Customizing JavaScript and CSS:
For example – using JavaScript and CSS to display advertising columns that disappear if there is not
enough space available

Using AJAX:
For example: reservation details loaded from customers' drop-down lists

Using the Bootstrap widget:
For example – using datepicker

Viewing multiple models in the same view:
For example – saving multiple customers at the same time

Saving linked models in the same view:
For example – creating a customer and reservation in the same view

It is now time for you to learn what Yii2 supports in order to customize the JavaScript and CSS parts of web pages.
A recurrent use of JavaScript is to handle AJAX calls, that is, to manage widgets and compound controls (such as a
dependent drop-down list) from jQuery and Bootstrap.

Finally, we will employ jQuery to dynamically create more models from the same class in the form, which will be
passed to the controller in order to be validated and saved.

Using Gii to generate CRUD
We introduced Gii in Chapter 5, Developing a Reservation System, to generate models. Now we want to use Gii to
create CRUD actions with a controller and views.

Type http://hostname/basic/web/gii in your browser to return to the Gii welcome page. Click on the Start
button of the CRUD section. We have to fill out four fields:

Model Class: This is the ActiveRecord class associated with the table where CRUD will be built; this class
should be provided using the fully qualified namespaced path, for example: app\models\ModelClass.
Search Model Class: This is the name of the search model class to be generated and extended from the
model class; this class will provide useful methods and extensions to be used when searching the record. This
should be provided using the fully qualified namespaced path, for example:
app\models\ModelClassSearch.
Controller Class: This is the name of the controller class to be generated; this class should be provided using
the fully qualified namespaced path and the CamelCase format for the name, starting with an uppercase letter,
for example: app\controller\MyCustomController.
View Path: This is the directory where the view created from the controller actions will be stored. We can use
path, alias @app/views, to indicate the base path for the views file, for example: @app/views/myCustom to
indicate the base path of the MyCustomController views, that will be filled by default to
@app/views/controller-id.

Then, we can customize BaseControllerClass, the widget used in the index page, to enable the state of I18N and
the code template, but it is okay to leave them with the default values.

Note

part0041.xhtml#aid-173722

If we check Enable I18N, we must then look after the translations in app messages for each attribute label. This will
be covered in a later chapter.

Example – using CRUD to manage rooms, reservations, and
customers using Gii
In this example, we will create complete CRUD actions to manage rooms, reservations, and customers.

In the earlier chapter, we dealt with Gii CRUD actions to create a form. We must now repeat these instructions for all
three models: the room, reservation, and customer model class. To distinguish files created with Gii from files created
manually in the previous chapters, we will append the Gii suffix to the controller's class name.

Browse to the Gii welcome page at http://hostname/basic/web/gii, click on the Start button in the CRUD
section, and fill out the fields with the following values to create CRUD actions for the Room model class:

Model Class: app\models\Room
Search Model Class: app\models\RoomSearch
Controller Class: app\controllers\RoomsWithGiiController
View Path: @app/views/rooms-with-gii

Then, repeat this operation for the Reservation model class:

Model Class: app\models\Reservation
Search Model Class: app\models\ReservationSearch
Controller Class: app\controllers\ReservationsWithGiiController
View Path: @app/views/reservations-with-gii

Finally, repeat them for the Customer model class:

Model Class: app\models\Customer
Search Model Class: app\models\CustomerSearch
Controller Class: app\controllers\CustomersWithGiiController
View Path: @app/views/customers-with-gii

Note

Make sure that the View Path has a slash (/) in the path and not a backslash (\) as the namespaced path in the
model class, search model class, and controller class.

The following screenshot shows the fields filled out to generate CRUD actions for the Room model class:

CRUD Generator from Gii

While navigating in the folder structure, you will see that Gii has created three new files in basic/controllers,
named RoomsWithGiiController.php, ReservationsWithGiiController.php, and
CustomersWithGiiController.php.

Each of these files contains five actions:

actionCreate(): This action is used to create a new model object
actionView(): This action is used to view the details of a model object
actionUpdate(): This action is used to update an existing model object
actionDelete(): This action is used to delete an existing model object
actionIndex(): This action is used to display, using the grid layout, a list of model objects

Open the basic/models folder and you will find three new files: RoomSearch.php, ReservationSearch.php
(which should already exist), and CustomerSearch.php.

Each of these files basically contains a search() method, which returns the ActiveDataProvider to be used to display
data in GridView, passing some filter conditions.

Finally, open the basic/views folder and you will find three new folders: roomsWithGii, reservationsWithGii,
and customersWithGii; each one containing six files:

_form.php
_search.php
create.php
index.php
update.php
view.php

View files that start with an underscore are considered by default in Yii2 as subviews, or rather views that are called
by other views.

The first two files start with an underscore; effectively if we open create.php and update.php, we will notice that,
at the end of these files, the render() method is called using the _form.php view. Both the create and update view
will use the same _form view to display the form to edit fields.

The last four files, create.php, index.php, update.php, and view.php are views that refer to the same actions
in the controller. By default, they all have a breadcrumb and a title for each page.

Make some tests that browse, for example, to http://hostname/basic/web/rooms-with-gii/index or
http://hostname/basic/web/rooms-with-gii/index, to see some excellent works made by Gii.

This is the index action result of RoomsWithGiiController:

The output of the RoomsWithGiiController index action

Customize JavaScript and CSS
As mentioned before, in this chapter, you will discover how to use frontend interaction. Using JavaScript and CSS is
fundamental to customize frontend output.

Differently from Yii1, where calling JavaScript and CSS scripts and files was done using the Yii::app() singleton, in
the new framework version, Yii2, this task is part of the yii\web\View class.

There are two ways to call JavaScript or CSS: either directly passing the code to be executed or passing the path file.

Note

When passing the code directly to be executed, we will use the Heredoc syntax provided by PHP to avoid handling
strings escaping.

The registerJs() function allows us to execute the JavaScript code with three parameters:

The first parameter is the JavaScript code block to be registered
The second parameter is the position where the JavaScript tag should be inserted (the header, the beginning of
the body section, the end of the body section, enclosed within the jQuery load() method, or enclosed within
the jQuery document.ready() method, which is the default)
The third and last parameter is a key that identifies the JavaScript code block (if it is not provided, the content
of the first parameter will be used as the key)

On the other hand, the registerJsFile() function allows us to execute a JavaScript file with three parameters:

The first parameter is the path file of the JavaScript file
The second parameter is the HTML attribute for the script tag, with particular attention given to the depends
and position values, which are not treated as tag attributes
The third parameter is a key that identifies the JavaScript code block (if it's not provided, the content of the first
parameter will be used as the key)

CSS, similar to JavaScript, can be executed using the code or by passing the path file.

The registerCss() function allows us to execute CSS code with three parameters:

The first one is the CSS code block to be registered
The second one is the HTML attributes for the style tag
The third and last parameter is a key that identifies the JavaScript code block (if it is not provided, the content
of the first parameter will be used as the key)

The registerCssFile() function allows us instead to execute a CSS file with three parameters:

The first one is the path file of the CSS file
The second parameter is the HTML attribute for the link tag, with particular attention given to the depends
value, which is not treated as a tag attribute
The third parameter is a key that identifies the JavaScript code block (if it's not provided, the content of the first
parameter will be used as the key)

Generally, JavaScript or CSS files are published in the basic/web folder, which is accessible without restrictions.

So, when we have to use custom JavaScript or CSS files, it is recommended to put them in a subfolder of the
basic/web folder, which can be named as css or js.

Note

By default, the folder for CSS files basic/web/css should already exist. But we still need to create basic/web/js
for JavaScript files.

In some circumstances, we might be required to add a new CSS or JavaScript file for all web application pages. The
most appropriate place to put these entries is AppAsset.php, a file located in basic/assets/AppAsset.php. In it
we can add CSS and JavaScript entries required in web applications, even using dependencies if we need to.

Example – using JavaScript and CSS to display advertising columns
that disappear if not enough space is available
This sample is suitable if you need to use JavaScript and CSS customizations together.

Think about the layout built as three vertical columns, typical of a blog system. One column of 200 pixels on the left
(usually for advertising), one central column of 1000 pixels (usually for content) and one of 200 pixels on the right
(usually again for advertising).

If the browser size is at least 1,400 pixels wide, we want all three columns to be shown (the content and two columns
for advertising).

If there is not enough space for all the columns and the browser's width size is between 1,200 and 1,400 pixels, only
the left and central columns will be shown (only a column for advertising and one for the content. Finally, if the
browser's width size is under 1,200 pixels, only the central column with content will be shown).

Also, our goal is to ensure that these columns are always centered in the browser.

Create a new controller class in basic/controllers/ThreeColumnsController.php, to handle the action to
render the view file:

<?php
namespace app\controllers;

use Yii;
use yii\web\Controller;

class ThreeColumnsController extends Controller
{
 public function actionIndex()
 {
 return $this->render('index.php');
 }
}

Furthermore, create a new view folder in basic/views/three-columns and insert index.php file in it to store
view content.

Basically, this is the content necessary to build a three column layout:

<div id="layout">
 <div id="colSx" class="column">
 Content of SX Column
 </div>
 <div id="colCenter" class="column">
 Content of Central Column
 </div>
 <div id="colDx" class="column">
 Content of DX Column
 </div>
</div>

The CSS class column will only be used to enhance cells' visibility with a black border around them.

At this point, we will center the layout and fix the columns' width using the registerCss() method at the top of the
view file:

<?php

$this->registerCss(<<< EOT_CSS

 .column
 {
 border:1px solid black;
 }

 #layout
 {
 position:relative;
 margin:0pt auto;
 width:1400px;
 }

 #colSx
 {
 width:200px;
 float:left;
 }

 #colCenter
 {
 width:1000px;
 float:left;
 }

 #colDx
 {
 width:200px;
 float:left;
 }

EOT_CSS
);

?>

Point your browser to http://hostname/basic/web/three-columns/index and you will get the following
content:

Content width split into three columns

We must handle the resize browser event through JavaScript to manage the columns visualization using the dimension
rules defined at the start of this chapter.

We will use the registerJs() method, passing only the code to be executed:

<?php
$this->registerJs(<<< EOT_JS

 function resizeLayout()
 {
 var windowWidth = $(window).width();

 if(windowWidth > 1400)
 {
 $('#colSx').css('display', 'block');
 $('#colCenter').css('display', 'block');

 $('#colDx').css('display', 'block');
 $('#layout').css('width', 1400);
 }
 else if((windowWidth>1200)&&(windowWidth<=1400))
 {
 $('#colSx').css('display', 'block');
 $('#colCenter').css('display', 'block');
 $('#colDx').css('display', 'none');
 $('#layout').css('width', 1200);
 }
 else if(windowWidth<1200)
 {
 $('#colSx').css('display', 'none');
 $('#colCenter').css('display', 'block');
 $('#colDx').css('display', 'none');
 $('#layout').css('width', 1000);
 }

 }

 $(window).resize(function() {
 resizeLayout();
 });

 $(function() {
 resizeLayout();
 });

EOT_JS
);
?>

Refresh your browser to http://hostname/basic/web/three-columns/index and resize it to the desired
width, and the columns visualization should change depending on the available space in the specific width.

Using AJAX
Yii2 provides appropriate attributes for some widgets to make AJAX calls; sometimes, however, writing a JavaScript
code in these attributes will make code hard to read, especially if we are dealing with complex codes.

Consequently, to make an AJAX call, we will use external JavaScript code executed by registerJs().

This is a template of the AJAX class using the GET or POST method:

<?php
$this->registerJs(<<< EOT_JS

 // using GET method
$.get({
 url: url,
 data: data,
 success: success,
 dataType: dataType
});

 // using POST method
$.post({
 url: url,
 data: data,
 success: success,
 dataType: dataType
});

EOT_JS
);
?>

An AJAX call is usually the effect of a user interface event (such as a click on a button, a link, and so on). So, most of
the time an AJAX call is directly connected to the .on() event of jQuery on the HTML elements (anchors, buttons,
and so on). For this reason, it is important to remember how Yii2 renders the name and id attributes of input fields.

When we call Html::activeTextInput($model, $attribute) or in the same way use <?= $form-
>field($model, $attribute)->textInput() ?>.

The name and id attributes of the input text field will be rendered as follows:

id : The model class name separated with a dash by the attribute name in lowercase; for example, if the model
class name is Room and the attribute is floor, the id attribute will be room-floor
name: The model class name that encloses the attribute name, for example, if the model class name is
Reservation and the attribute is price_per_day, the name attribute will be
Reservation[price_per_day]; so every field owned by the Reservation model will be enclosed all in a
single array

Example – reservation details loaded from the customers' drop-down
lists
In this example, there are two drop-down lists and a detail box. The two drop-down lists refer to customers and
reservations; when user clicks on a customer list item, the second drop-down list of reservations will be filled out
according to their choice.

Finally, when a user clicks on a reservation list item, a details box will be filled out with data about the selected
reservation.

Create a new action in basic/controllers/ReservationsController.php named
actionDetailDependentDropdown():

 public function actionDetailDependentDropdown()
 {
 $showDetail = false;

 $model = new Reservation();

 if(isset($_POST['Reservation']))
 {
 $model->load(Yii::$app->request->post());

 if(isset($_POST['Reservation']['id'])&&($_POST['Reservation']['id']!=null))
 {
 $model = Reservation::findOne($_POST['Reservation']['id']);
 $showDetail = true;
 }
 }

 return $this->render('detailDependentDropdown', ['model' => $model,
'showDetail' => $showDetail]);
 }

In this action, we will get the customer_id and id parameters from a form based on the Reservation model data
and if it are filled out, the data will be used to search for the correct reservation model to be passed to the view.

There is a flag called $showDetail that displays the reservation details content if the id attribute of the model is
received.

In ReservationsController, there is also an action that will be called using AJAX when the user changes the
customer selection in the drop-down list:

 public function actionAjaxDropDownListByCustomerId($customer_id)
 {
 $output = '';

 $items = Reservation::findAll(['customer_id' => $customer_id]);
 foreach($items as $item)
 {
 $content = sprintf('reservation #%s at %s', $item->id, date('Y-m-d H:i:s',
strtotime($item->reservation_date)));
 $output .= \yii\helpers\Html::tag('option', $content, ['value' => $item-
>id]);
 }

 return $output;
 }

This action will return the <option> HTML tags filled out with reservations data filtered by the customer ID passed
as a parameter.

Now let's look at the view in basic/views/reservations/detailDependentDropdown.php:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\helpers\ArrayHelper;
use yii\helpers\Url;
use app\models\Customer;
use app\models\Reservation;

$urlReservationsByCustomer = Url::to(['reservations/ajax-drop-down-list-by-customer-
id']);
$this->registerJs(<<< EOT_JS

 $(document).on('change', '#reservation-customer_id', function(ev) {

 $('#detail').hide();

 var customerId = $(this).val();

 $.get(
 '{$urlReservationsByCustomer}',
 { 'customer_id' : customerId },
 function(data) {
 data = '<option value="">--- choose</option>'+data;
 $('#reservation-id').html(data);
 }
)
 ev.preventDefault();
 });

 $(document).on('change', '#reservation-id', function(ev) {
 $(this).parents('form').submit();
 ev.preventDefault();
 });

EOT_JS
);

?>

<div class="customer-form">
 <?php $form = ActiveForm::begin(['enableAjaxValidation' => false,
'enableClientValidation' => false, 'options' => ['data-pjax' => '']]); ?>

 <?php $customers = Customer::find()->all(); ?>
 <?= $form->field($model, 'customer_id')->dropDownList(ArrayHelper::map($customers,
'id', 'nameAndSurname'), ['prompt' => '--- choose']) ?>

 <?php $reservations = Reservation::findAll(['customer_id' => $model->customer_id]);
?>
 <?= $form->field($model, 'id')->label('Reservation ID')-
>dropDownList(ArrayHelper::map($reservations, 'id', function($temp, $defaultValue) {
 $content = sprintf('reservation #%s at %s', $temp->id, date('Y-m-d H:i:s',
strtotime($temp->reservation_date)));
 return $content;
 }), ['prompt' => '--- choose']); ?>

 <div id="detail">
 <?php if($showDetail) { ?>
 <hr />
 <h2>Reservation Detail:</h2>
 <table>
 <tr>
 <td>Price per day</td>
 <td><?php echo $model->price_per_day ?></td>
 </tr>
 </table>
 <?php } ?>
 </div>

 <?php ActiveForm::end(); ?>

</div>

At the top of the view, there are handlers for changes in the customers and reservations drop-down list.

If the customer drop-down list is changed, the detail div will be hidden, an AJAX call will get all the reservations
filtered by customer_id, and the result will be passed as content to the reservations drop-down list. If the
reservations drop-down list is changed, a form will be submitted.

Next in the form declaration, we can find first of all the customer drop-down list and then the reservations list, which
uses a closure to get the value from the ArrayHelper::map() methods. We could add a new property in the
Reservation model by creating a function starting with the prefix get, such as getDescription(), and put in it
the content of the closure, or rather:

public function getDescription()
{
$content = sprintf('reservation #%s at %s', $this>id, date('Y-m-d H:i:s',
strtotime($this>reservation_date)));
 return $content;
}

Or we could use a short syntax to get data from ArrayHelper::map() in this way:

 <?= $form->field($model, 'id')->dropDownList(ArrayHelper::map($reservations, 'id',
'description'), ['prompt' => '--- choose']); ?>

Finally, if $showDetail is flagged, a simple details box with only the price per day of the reservation will be
displayed.

Point your browser to http://hostname/basic/web/reservations/detail-dependent-dropdown:

Dynamic reservation details being loaded from the customer drop-down list

Using the Bootstrap widget
Yii2 supports Bootstrap as a core feature. Bootstrap framework CSS and JavaScript files are injected by default in
all pages and we could even use this feature to only apply CSS classes or call our own JavaScript function provided
by Bootstrap.

However, Yii2 embeds Bootstrap as a widget, and we can access this framework's capabilities like any other widget.

The most used are:

Class name Description

yii\bootstrap\Alert This class renders an alert Bootstrap component

yii\bootstrap\Button This class renders a Bootstrap button

yii\bootstrap\Dropdown This class renders a Bootstrap drop-down menu component

yii\bootstrap\Nav This class renders a nav HTML component

yii\bootstrap\NavBar This class renders a navbar HTML component

For example, yii\bootstrap\Nav and yii\bootstrap\NavBar are used in the default main template.

This is an extract from the main layout view (in basic/views/layouts/main.php):

 <?php
 NavBar::begin([
 'brandLabel' => 'My Company',
 'brandUrl' => Yii::$app->homeUrl,
 'options' => [
 'class' => 'navbar-inverse navbar-fixed-top',
],
]);
 echo Nav::widget([
 'options' => ['class' => 'navbar-nav navbar-right'],
 'items' => [
 ['label' => 'Home', 'url' => ['/site/index']],
 ['label' => 'About', 'url' => ['/site/about']],
 ['label' => 'Contact', 'url' => ['/site/contact']],
 Yii::$app->user->isGuest ?
 ['label' => 'Login', 'url' => ['/site/login']] :
 ['label' => 'Logout (' . Yii::$app->user->identity->username .
')',
 'url' => ['/site/logout'],
 'linkOptions' => ['data-method' => 'post']],
],
]);
 NavBar::end();
 ?>

Example: using datepicker
Yii2 also supports, by itself, many jQuery UI widgets through the JUI extension for Yii2, yii2-jui.

If we do not have the yii2-jui extension in the vendor folder, we can get it from Composer using this command:

php composer.phar require --prefer-dist yiisoft/yii2-jui
In this example, we will discuss the two most used widgets: datepicker and autocomplete. First let's have a look
at the datepicker widget. This widget can be initialized using a model attribute or by filling out a value property. The
following is an example made using a model instance and one of its attributes:

echo DatePicker::widget([
 'model' => $model,
 'attribute' => 'from_date',
 //'language' => 'it',
 //'dateFormat' => 'yyyy-MM-dd',
]);

And here is a sample of the value property's use:

echo DatePicker::widget([
 'name' => 'from_date',
 'value' => $value,
 //'language' => 'it',
 //'dateFormat' => 'yyyy-MM-dd',
]);

Now create a new controller named JuiWidgetsController in
basic/controllers/JuiWidgetsController.php:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\Reservation;

class JuiWidgetsController extends Controller
{
 public function actionDatePicker()
 {
 $reservationUpdated = false;

 $reservation = Reservation::findOne(1);

 if(isset($_POST['Reservation']))
 {
 $reservation->load(Yii::$app->request->post());

 $reservation->date_from = Yii::$app->formatter->asDate(
date_create_from_format('d/m/Y', $reservation->date_from), 'php:Y-m-d');
 $reservation->date_to = Yii::$app->formatter->asDate(
date_create_from_format('d/m/Y', $reservation->date_to), 'php:Y-m-d');

 $reservationUpdated = $reservation->save();
 }

 return $this->render('datePicker', ['reservation' => $reservation,
'reservationUpdated' => $reservationUpdated]);
 }
}

In this action, we define the $reservation model, picking from the reservations database table with id 1.

When data is sent via POST, the date_from and date_to fields will be converted from the d/m/y to the y-m-d
format to make it possible for the database to save data. Then the model object is updated through the save()

method. Using the Bootstrap widget, an alert box will be displayed in the view after updating the model.

Create the datePicker view in basic/views/jui-widgets/datePicker.php:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\jui\DatePicker;

?>

<div class="row">
 <div class="col-lg-6">
 <h3>Date Picker from Value
(using MM/dd/yyyy format and English language)
</h3>
 <?php
 $value = date('Y-m-d');

 echo DatePicker::widget([
 'name' => 'from_date',
 'value' => $value,
 'language' => 'en',
 'dateFormat' => 'MM/dd/yyyy',
]);
 ?>
 </div>
 <div class="col-lg-6">

 <?php if($reservationUpdated) { ?>
 <?php
 echo yii\bootstrap\Alert::widget([
 'options' => [
 'class' => 'alert-success',
],
 'body' => 'Reservation successfully updated',
]);
 ?>
 <?php } ?>

 <?php $form = ActiveForm::begin(); ?>

 <h3>Date Picker from Model
(using dd/MM/yyyy format and italian language)
</h3>

 <label>Date from</label>
 <?php
 // First implementation of DatePicker Widget
 echo DatePicker::widget([
 'model' => $reservation,
 'attribute' => 'date_from',
 'language' => 'it',
 'dateFormat' => 'dd/MM/yyyy',
]);
 ?>

 <?php
 // Second implementation of DatePicker Widget
 echo $form->field($reservation, 'date_to')-
>widget(\yii\jui\DatePicker::classname(), [
 'language' => 'it',

 'dateFormat' => 'dd/MM/yyyy',
]) ?>

 <?php
 echo Html::submitButton('Send', ['class' => 'btn btn-primary'])
 ?>

 <?php $form = ActiveForm::end(); ?>

 </div>
</div>

The view is split into two columns, left and right. The left column simply displays a DataPicker example from the
value (fixed to the current date). The right column displays an alert box if the $reservation model has been updated
and the next two kinds of widget declaration too; the first one without using $form and the second one using $form,
both outputting the same HTML code.

In either case, the DatePicker date output format is set to dd/MM/yyyy through the dateFormat property and the
language is set to Italian through the language property.

Point your browser to http://hostname/basic/web/jui-widgets/date-picker to see the following output:

Using datepicker

Multiple models in the same view
Often, we can find many models of same or different class in a single view. First of all, remember that Yii2
encapsulates all the views' form attributes in the same container, named the same as the model class name. Therefore,
when the controller receives the data, these will all be organized in a key of the $_POST array named the same as the
model class name.

If the model class name is Customer, every form input name attribute will be Customer[attributeA_of_model]
This is built with: $form->field($model, 'attributeA_of_model')->textInput().

In the case of multiple models of the same class, the container will again be named as the model class name but every
attribute of each model will be inserted in an array, such as:

Customer[0][attributeA_of_model_0]
Customer[0][attributeB_of_model_0]
…
…
…
Customer[n][attributeA_of_model_n]
Customer[n][attributeB_of_model_n]

These are built with:

$form->field($model, '[0]attributeA_of_model')->textInput();
$form->field($model, '[0]attributeB_of_model')->textInput();
…
…
…
$form->field($model, '[n]attributeA_of_model')->textInput();
$form->field($model, '[n]attributeB_of_model')->textInput();

Note

Notice that the array key information is inserted in the attribute name!

So, when data is passed to the controller, $_POST['Customer'] will be an array composed by the Customer
models and every key of this array, for example, $_POST['Customer'][0] is a model of the Customer class.

Example – saving multiple customers at the same time
Now let's see how to save three customers at once. We will create three containers, one for each model class that will
contain some fields of the Customer model.

Create a view in basic/views/customers/createMultipleModels.php that contains a block of input fields
repeated for every model passed from the controller:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $model app\models\Room */
/* @var $form yii\widgets\ActiveForm */
?>

<div class="room-form">

 <?php $form = ActiveForm::begin(); ?>

 <div class="model">

 <?php for($k=0;$k<sizeof($models);$k++) { ?>
 <?php $model = $models[$k]; ?>
 <hr />
 <label>Model #<?php echo $k+1 ?></label>
 <?= $form->field($model, "[$k]name")->textInput() ?>
 <?= $form->field($model, "[$k]surname")->textInput() ?>
 <?= $form->field($model, "[$k]phone_number")->textInput() ?>
 <?php } ?>

 </div>

<hr />

 <div class="form-group">
 <?= Html::submitButton('Save', ['class' => 'btn btn-primary']) ?>
 </div>

 <?php ActiveForm::end(); ?>

</div>

For each model all the fields will have the same validator rules of the Customer class, and every single model object
will be validated separately.

Next create a new action in the customers controller in basic/controllers/CustomersController.php, named
actionCreateMultipleModels. If the $_POST['Customer'] content is set, and if they are all validated and
finally redirected to the grid action, it will save them all together; otherwise it will create three models of the Customer
class:

 public function actionCreateMultipleModels()
 {
 $models = [];

 if(isset($_POST['Customer']))
 {
 $validateOK = true;

 foreach($_POST['Customer'] as $postObj)
 {
 $model = new Customer();
 $model->attributes = $postObj;
 $models[] = $model;

 $validateOK = ($validateOK && ($model->validate()));
 }

 // All models are validated and will be saved
 if($validateOK)
 {
 foreach($models as $model)
 {
 $model->save();
 }

 // Redirect to grid after save
 return $this->redirect(['grid']);
 }
 }
 else
 {
 for($k=0;$k<3;$k++)
 {
 $models[] = new Customer();
 }
 }

 return $this->render('createMultipleModels', ['models' => $models]);
 }

It can be useful to create models in the controller because a large number of them and other validation checks are
configured here.

Browse to http://hostname/basic/web/customers/create-multiple-models to see the complete page:

Multiple models in the same view

Saving linked models in the same view
It could be convenient to save different kind of models in the same view. This approach allows us to save time and to
navigate from every single detail until a final item that merges all data is created. Handling different kind of models
linked to each other it is not so different from what we have seen so far. The only point to take care of is the link
(foreign keys) between models, which we must ensure is valid.

Therefore, the controller action will receive the $_POST data encapsulated in the model's class name container; if we
are thinking, for example, of the customer and reservation models, we will have two arrays in the $_POST variable,
$_POST['Customer'] and $_POST['Reservation'], containing all the fields about the customer and reservation
models.

Then all data must be saved together. It is advisable to use a database transaction while saving data because the
action can be considered as ended only when all the data has been saved.

Using database transactions in Yii2 is incredibly simple! A database transaction starts with calling
beginTransaction() on the database connection object and finishes with calling the commit() or rollback()
method on the database transaction object created by beginTransaction().

To start a transaction:

$dbTransaction = Yii::$app->db->beginTransaction();

Commit a transaction, to save all the database activities:

$dbTransaction->commit();

Rollback a transaction, to clear all the database activities:

$dbTransaction->rollback();

So, if a customer was saved and the reservation was not (for any possible reason), our data would be partial and
incomplete. Using a database transaction, we will avoid this danger.

Example – creating a customer and reservation in the same view
We now want to create both the customer and reservation models in the same view in a single step. In this way, we
will have a box containing the customer model fields and a box with the reservation model fields in the view.

Create a view in basic/views/reservations/createCustomerAndReservation.php, with the fields from the
customer and reservation models:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;
use yii\helpers\ArrayHelper;
use \app\models\Room;
?>

<div class="room-form">

 <?php $form = ActiveForm::begin(); ?>

 <div class="model">

 <?php echo $form->errorSummary([$customer, $reservation]); ?>

 <h2>Customer</h2>
 <?= $form->field($customer, "name")->textInput() ?>
 <?= $form->field($customer, "surname")->textInput() ?>

 <?= $form->field($customer, "phone_number")->textInput() ?>

 <h2>Reservation</h2>
 <?= $form->field($reservation, "room_id")-
>dropDownList(ArrayHelper::map(Room::find()->all(), 'id', function($room, $defaultValue)
{
 return sprintf('Room n.%d at floor %d', $room->room_number, $room->floor);
 })); ?>
 <?= $form->field($reservation, "price_per_day")->textInput() ?>
 <?= $form->field($reservation, "date_from")->textInput() ?>
 <?= $form->field($reservation, "date_to")->textInput() ?>

 </div>

 <div class="form-group">
 <?= Html::submitButton('Save customer and room', ['class' => 'btn btn-primary'])
?>
 </div>

 <?php ActiveForm::end(); ?>

</div>

We have created two blocks in the form to fill out the fields for the customer and the reservation.

Now, create a new action named actionCreateCustomerAndReservation in ReservationsController in
basic/controllers/ReservationsController.php:

 public function actionCreateCustomerAndReservation()
 {
 $customer = new \app\models\Customer();
 $reservation = new \app\models\Reservation();

 // It is useful to set fake customer_id to reservation model to avoid validation
error (because customer_id is mandatory)
 $reservation->customer_id = 0;

 if(
 $customer->load(Yii::$app->request->post())
 &&
 $reservation->load(Yii::$app->request->post())
 &&
 $customer->validate()
 &&
 $reservation->validate()
)
 {

 $dbTrans = Yii::$app->db->beginTransaction();

 $customerSaved = $customer->save();

 if($customerSaved)
 {
 $reservation->customer_id = $customer->id;
 $reservationSaved = $reservation->save();

 if($reservationSaved)
 {
 $dbTrans->commit();
 }
 else {
 $dbTrans->rollback();
 }
 }
 else {

 $dbTrans->rollback();
 }
 }

 return $this->render('createCustomerAndReservation', ['customer' => $customer,
'reservation' => $reservation]);
 }

Ensure you pay attention to these two matters:

$reservation->customer_id = 0: With this code, we avoid the validation error relating to the
customer_id requirement that appears when $reservation is validated
The database transaction will be committed only if the customer model and reservation model's save action are
completed

Browse to http://hostname/basic/web/reservations/create-customer-and-reservation to see the
complete page:

A customer and reservation created together

Summary
In this chapter, we discussed about the user interface and how Yii helps us with its core
functionalities. The first important tool that Yii provides is Gii, which facilitates CRUD actions
and views' creation, which we used in Gii to manage rooms, reservations, and customers, for
example.

Next we saw how to embed JavaScript and CSS in a layout and views, with file content or an
inline block. This was applied to an example that showed you how to change the number of
columns displayed based on the browser's available width; this is typically a task for websites
or web apps that display advertising columns.

Again on the subject of JavaScript, you learned how to implement direct AJAX calls, taking an
example where the reservation detail was dynamically loaded from the customers drop-down
list.

Next we looked at Yii's core user interface library, which is built on Bootstrap and we
illustrated how to use the main Bootstrap widgets natively, together with DatePicker (probably
the most commonly used jQuery UI widget).

Finally, the last topics covered were multiple models of the same and different classes. We
looked at two examples on these topics: the first one to save multiple customers at the same
time and the second to create a customer and reservation in the same view.

In the next chapter, we will explain how to set up login authentication and authorization, and
will reach these goals from scratch.

Chapter 8. Log in to the App
This chapter will explain how to set up login authentication and authorization. Logging in is a fundamental step to
protect our application and you will learn how to reach these goals from scratch, using the web management free
extension that is broadly available on the Internet.

We will cover the following topics in this chapter:

Creating a user login:
For example: creating login form to access

Configure a user authorization
For example: creating an access control filter to authorize

Role Based Access Control (RBAC)
For example: configuring RBAC to set permissions for users

Mixing Access Control Filter (ACF) and RBAC
For example: managing users' roles to access rooms, reservations, and customers

The first step will be creating an authenticated access to our app using a database table to manage users and associate
it to the Yii user component, through a user model that extends IdentityInterface. We will provide an example
of how to use it: building a login form to authenticate the user.

The next step will be to control what actions a user can perform, using ACF and RBAC. We will follow some
examples using ACF and RBAC, and in the latter case we will build a complete authorization manager from scratch.

Creating a user login
The application's security starts with two well distinguished phases of the same user login: authentication and
authorization.

The first one, authentication, is the process of verifying a user's identity, usually using a username and password, or
email and password, process. Authentication is completed when the user has been recognized and their state has been
preserved for further requests.

The second one, authorization, is the process of verifying that the user has the permission to execute a specific action.

Note

Since http requests are stateless, we need to preserve the login status, which means that there is no data context
sharing among them. This limit is solved by sessions, mainly files where the web server stores the data. A filename is
used as a session identifier and passed to the browser through a cookie or URL parameter of links contained in the
HTML response. In this way, the browser keeps the session active by sending the session identifier to the web server
through a cookie or a parameter in the request URL, and the web server knows which file contains the session data.

A database table can be used instead of files with the same functionalities.

Yii2 implements authentication through the yii\web\User component, which manages the user authentication status
and also contains a reference to the identityClass that represents the concrete object that we are referring to.

An identityClass class should implement five methods:

findIdentity(): This method looks for an instance of an identity class using the ID provided as parameter.
It is commonly used when we need to keep the login status via a session.
findIdentityByAccessToken(): This one looks for an instance of the identity class using the access token
provided by the parameter. It is commonly used when we need to authenticate using a single secret token.
getId(): This one returns the ID of the identity instance.
getAuthKey(): This method returns the key used to verify the cookie-based login when the login has been

completed using a cookie sent by the browser (when Remember me is checked during the login).
validateAuthKey(): This method verifies that the provided authKey passed as a parameter is correct (in
the cookie-based login).

Often the identityClass class corresponds to a record of the User database table. For this reason, usually the
identityClass class implements IdentityInterface and extends ActiveRecord.

It is now time to implement authentication. The first thing to do is to configure yii\web\User components and its
identityClass. Open the basic/config/web.php file and add the user property to components if it does not
already exist:

 'components' => [
 …
 …
 'user' => [
 'identityClass' => 'app\models\User',
],
],

Next, we have to create a database table where we store the users' records:

CREATE TABLE `user` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `username` varchar(255) NOT NULL,
 `auth_key` varchar(32) NOT NULL,
 `password_hash` varchar(255) NOT NULL,
 `access_token` varchar(100) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

Note

Notice that we do not have a password field, but we have a password_hash field. This because passwords are
stored using the hashing method. In models, we will have a setter setPassword() method that gets plain text
passwords to fill in the password_hash field.

Finally, let's update the basic/models/User class that handles the login status by implementing
IdentityInterface and connect it to the user table of database. This is a common implementation for
basic/models/User:

<?php
namespace app\models;

use Yii;
use yii\base\NotSupportedException;
use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
 public static function tableName()
 {
 return 'user';
 }

 public static function findIdentity($id)
 {
 return static::findOne(['id' => $id]);
 }

 public static function findIdentityByAccessToken($token, $type = null)
 {
 return static::findOne(['access_token' => $token]);

 }

 public static function findByUsername($username)
 {
 return static::findOne(['username' => $username]);
 }

 public function getId()
 {
 return $this->getPrimaryKey();
 }

 public function getAuthKey()
 {
 return $this->auth_key;
 }

 public function validateAuthKey($authKey)
 {
 return $this->getAuthKey() === $authKey;
 }

 public function validatePassword($password)
 {
 return Yii::$app->security->validatePassword($password, $this->password_hash);
 }

 public function setPassword($password)
 {
 $this->password_hash = Yii::$app->security->generatePasswordHash($password);
 }

 public function generateAuthKey()
 {
 $this->auth_key = Yii::$app->security->generateRandomString();
 }

}

Note

If our application also uses a cookie-based authentication, we need to fill in the auth_key field too, as this will be
passed to the client in the http response. It is convenient to populate the auth_key field automatically when a new
user is inserted by overriding the beforeSave() method in the \app\models\User model:

 public function beforeSave($insert)
 {
 if (parent::beforeSave($insert)) {
 if ($this->isNewRecord) {
 $this->auth_key = \Yii::$app->security->generateRandomString();
 }
 return true;
 }
 return false;
 }

User components provide methods to log in, log out, and access the identityClass, and they verify the
effectiveness of the user authentication.

To verify whether the user is well authenticated, use the following:

// whether the current user is a guest (not authenticated)
$isGuest = Yii::$app->user->isGuest;

When a user is authenticated and we have an instance of the \app\models\User model, we could complete the

authentication by calling:

// find a user identity with the specified username.
// note that you may want to check the password if needed
$userModel = User::findOne(['username' => $username]);

// logs in the user
Yii::$app->user->login($userModel);

Then, when we need to access the identity class:

// access to identity class that it is equivalent to $userModel
$identity = Yii::$app->user->identity;

Finally, to log the user out:

Yii::$app->user->logout();

Example – a login form to access
In this example, we will create a login form and complete the user authentication. To proceed it is necessary to create
a user database table from a SQL query, as described in the previous paragraph.

To add a user, just insert a new record in the user table, with foo as the username and foopassword as the
password:

INSERT INTO `user` (
`username` ,
`password_hash` ,
)
VALUES (
'foo',
'$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW'
);

Note

A password is hashed using the bcrypt method and cost with value 12, available on the Internet through a quick
Google search.

Then, create a new controller named MyAuthentication in
basic/controllers/MyAuthenticationController.php and ensure it contains two actions: actionLogin
and actionLogout.

The actionLogin method gets the username and password data from $_POST and uses an $error variable to pass
an error description to the view. If the username and password data is filled in, the user will be found in the database
table and the inserted password will be validated, and after that the user will be logged in.

Finally, actionLogout simply logs the user out from the session and redirects the browser to the login page:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

use app\models\User;

class MyAuthenticationController extends Controller
{
 public function actionLogin()
 {

 $error = null;

 $username = Yii::$app->request->post('username', null);
 $password = Yii::$app->request->post('password', null);

 $user = User::findOne(['username' => $username]);

 if(($username!=null)&&($password!=null))
 {
 if($user != null)
 {
 if($user->validatePassword($password))
 {
 Yii::$app->user->login($user);
 }
 else {
 $error = 'Password validation failed!';
 }
 }
 else
 {
 $error = 'User not found';
 }
 }

 return $this->render('login', ['error' => $error]);
 }
 public function actionLogout()
 {
 Yii::$app->user->logout();
 return $this->redirect(['login']);
 }

}

Now, create the view with this content in basic/views/my-authentication/login.php. Before a user can log
in, a form with the username and password to be filled in will be displayed. When the username and password match
an entry in the user database table, a confirmation message and a logout button will be displayed:

<?php
use \yii\bootstrap\ActiveForm;
use \yii\helpers\Html;
use \yii\bootstrap\Alert;
?>

<?php
if($error != null) {
 echo Alert::widget(['options' => ['class' => 'alert-danger'], 'body' => $error
]);
}
?>

<?php if(Yii::$app->user->isGuest) { ?>

 <?php ActiveForm::begin(); ?>

 <div class="form-group">
 <?php echo Html::label('Username', 'username'); ?>
 <?php echo Html::textInput('username', '', ['class' => 'form-control']); ?>
 </div>

 <div class="form-group">
 <?php echo Html::label('Password', 'password'); ?>
 <?php echo Html::passwordInput('password', '', ['class' => 'form-control']); ?>
 </div>

 <?php echo Html::submitButton('Login', ['class' => 'btn btn-primary']); ?>

 <?php ActiveForm::end(); ?>

<?php } else { ?>

 <h2>You are authenticated!</h2>

 <?php echo Html::a('Logout', ['my-authentication/logout'], ['class' => 'btn btn-
warning']); ?>

<?php } ?>

Test it by pointing the browser to http://hostname/basic/web/my-authentication/login and after filling
out the form with foo as the username and foopassword as the password, this should be displayed:

Login form to access

After clicking on the Login button, you should see:

Successful authentication

This method does not provide error handling for the fields, because we are not using a model to create form fields. If
we had created a form model with username and password fields, we could have added rules validation to this model
and seen input error handling (such as missing field value, wrong field length, and so on). Fortunately, Yii2 has a login

form model ready to use in basic/models/LoginForm.php.

If we had wanted to use this model, we would have created a new action named actionLoginWithForm in
MyAuthenticationController that handles login fields through the model instead of parameters from $_POST:

 public function actionLoginWithModel()
 {
 $error = null;

 $model = new \app\models\LoginForm();
 if ($model->load(Yii::$app->request->post())) {
 if(($model->validate())&&($model->user != null))
 {
 Yii::$app->user->login($model->user);
 }
 else
 {
 $error = 'Username/Password error';
 }
 }

 return $this->render('login-with-model', ['model' => $model, 'error' =>
$error]);
 }

This is the content of basic/views/my-authentication/login-with-model.php:

<?php
use \yii\bootstrap\ActiveForm;
use \yii\helpers\Html;
use \yii\bootstrap\Alert;
?>

<?php
if($error != null) {
 echo Alert::widget(['options' => ['class' => 'alert-danger'], 'body' => $error
]);
}
?>
<?php if(Yii::$app->user->isGuest) { ?>

 <?php $form = ActiveForm::begin([
 'id' => 'login-form',
]); ?>

 <?= $form->field($model, 'username') ?>

 <?= $form->field($model, 'password')->passwordInput() ?>

 <div class="form-group">
 <?= Html::submitButton('Login', ['class' => 'btn btn-primary', 'name' => 'login-
button']) ?>
 </div>

 <?php ActiveForm::end(); ?>

<?php } else { ?>
 <h2>You are authenticated!</h2>

 <?php echo Html::a('Logout', ['my-authentication/logout'], ['class' => 'btn btn-
warning']); ?>
<?php } ?>

We can look at the output by pointing our browser to http://hostname/basic/web/my-
authentication/login-with-model.

If we try to submit the form without filling out all the fields, we will immediately get errors because they are activated
by the form client-side validation:

Login error using the model

We can customize the LoginForm model class as we want if standard behavior is not enough for our purposes.

Configuring user authorization
Yii has two methods to authorize users: ACF and RBAC.

The first one, ACF, is used in applications that require a minimal and simple access control. Basically, its behavior is
based on five parameters:

allow: This parameter specifies whether this is an allow or deny rule; possible values are allow or deny
actions: This parameter specifies which actions this rule matches, and they are declared using an array of
string
roles: This parameter specifies which user roles this rule matches; possible values are ?' and @, which mean
respectively guest user and authenticated user
ips: This parameter specifies which client IP address this rule matches; the IP address that can contain * as a
wildcard
verbs: This parameter specifies which verb (request method) this rules matches

By default, if no rule matches, access will be denied.

ACF is enabled by overwriting the behaviors() method of Controller and populating its access property with
the content of some (or every one) of the preceding parameters.

 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['login', 'logout', 'signup', 'index'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'signup', 'index'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],
],
],
];
 }

In this example, the login, logout, signup, and index actions are enabled for guest users (all users) and the
logout action is enabled only for authenticated ones.

ACF has many other parameters that can be defined, such as controllers , to define which controllers this rule
matches (if it is empty, this means all controllers); matchCallback whose value is a PHP callable function called to
verify whether this rule can be applied or not; and finally denyCallback, whose value is a PHP callable function used
when this rule will deny access.

When a rule is denied, there are two different behaviors according to the role of the user. If a guest is denied, a denied
rule will call the yii\web\User::loginRequired() method to redirect the user's browser to the login page; if the
user is authenticated, it will throw a yii\web\ForbiddenHttpException exception.

This behavior can be customized using the denyCallback property mentioned earlier, and by defining the correct
callable PHP function.

Obviously, any detail about the logged in user is not considered by this type of authorization. During configuration in

the behaviors() method, in fact, no detail about the user ever appears (for example, role). So we cannot define
more precisely which conditions a user can execute or not a controller action.

ACF suggests only if we have to limit access to an authenticated user, without needing some other details to allow the
controller action to be executed.

But in all those cases in which it is enough to limit access based on the condition that the user is logged in or not, it is
the best approach. In the REST API with limited access (where only the authenticated users are able to make calls),
ACF is probably the best solution.

Example – creating an ACF to authorize the users
Now let's look at how to create an ACF to authorize the user to display or not display the page content.

We have two actions: actionPrivatePage and actionPublicPage. The first one is accessible only from an
authenticated user and the second one is publically accessible.

In MyAuthenticationController.php, let's add the behaviors() method with the following content:

 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['public-page', 'private-page'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['public-page'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['private-page'],
 'roles' => ['@'],

],
],

 // Callable function when user is denied
 'denyCallback' => function($rule, $data) {
 $this->redirect(['login']);
 }
],
];
 }

This method applies an ACF to only two actions, actionPublicPage and actionPrivatePage (based only on
the property value) and restricts access for private pages that specify the roles as @.

Then, we added the denyCallback property to indicate how the behavior should appear when access is denied to
the user. In this case, we set it so that the user should be redirected to the login action of
MyAuthenticationController.

RBAC
RBAC is the right choice when we need more granularity of authorization controls.

RBAC involves two parts:

The first one is to build up the RBAC authorization data
The second one is to use the authorization data to perform further access controls

We'll start now by building up the RBAC authorization data. RBAC can be initialized in two ways: through
PhpManager, instancing the yii\rbac\PhpManager component that will store RBAC data in the @app/rbac
folder, and through DbManager, instancing the yii\rbac\DbManager component, which will use four database
tables to store its data.

We need to configure the authManager application component in the main configuration file using one of the
authorization managers, yii\rbac\PhpManager or yii\rbac\DbManager.

The following code shows how to configure authManager in basic/config/web.php using the
yii\rbac\PhpManager class:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
],
 // ...
],
];

The following code shows how to configure authManager in basic/config/web.php using the
yii\rbac\DbManager class:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\DbManager,
],
 // ...
],
];

Both these methods are based on three objects: permissions, roles, and rules. The permissions method
represents actions that can be controlled; roles are a set of permissions to which the target can be enabled or less;
and rules are extra validations that will be executed when a permission is checked. Finally, permissions or roles
can be assigned to users and identified by the IdentityInterface::getId() value of the Yii::$app->user
component.

When access permissions do not change, we could create a console command to launch in case, or once, permissions
are changed. However, we will not discuss that now as you will see the console command in-depth in the next
chapters.

Instead, we will write permissions using a fake action to only execute permissions, roles, and assignments settings.

In basic/controllers/MyAuthenticationController.php, add this action named
actionInitializeAuthorizations:

 public function actionInitializeAuthorizations()
 {
 $auth = Yii::$app->authManager;

 // Reset all
 $auth->removeAll();

 // add "createReservation" permission
 $permCreateReservation = $auth->createPermission('createReservation');
 $permCreateReservation->description = 'Create a reservation';
 $auth->add($permCreateReservation);

 // add "updatePost" permission

 $permUpdateReservation = $auth->createPermission('updateReservation');
 $permUpdateReservation->description = 'Update reservation';
 $auth->add($permUpdateReservation);

 // add "operator" role and give this role the "createReservation" permission
 $roleOperator = $auth->createRole('operator');
 $auth->add($roleOperator);
 $auth->addChild($roleOperator, $permCreateReservation);

 // add "admin" role and give this role the "updateReservation" permission
 // as well as the permissions of the "operator" role
 $roleAdmin = $auth->createRole('admin');
 $auth->add($roleAdmin);
 $auth->addChild($roleAdmin, $permUpdateReservation);
 $auth->addChild($roleAdmin, $roleOperator);

 // Assign roles to users. 1 and 2 are IDs returned by IdentityInterface::getId()
 // usually implemented in your User model.
 $auth->assign($roleOperator, 2);
 $auth->assign($roleAdmin, 1);
 }

Note

Before calling this action from your browser, make sure that the folder in basic/rbac already exists and that it is
writable.

In order to start this action from the beginning, two permissions and two roles are created, then the
createReservation permission is added as a child to the operator role and the updateReservation permission
is added as a child to the admin role, together to the operator role.

If we check the createReservation permission for the user with the roleOperator role, it will be successfully
confirmed. The same happens if we check the user with adminOperator. But when we check the
updateReservation permission on the user with the roleOperator role, it will be denied since that permission is
not assigned to that specific role.

Note

Permissions and role names can be chosen without restrictions, because they are used as parameters when checking
permissions.

Now let's point our browser to http://hostname/basic/my-authentication/initialize-
authorizations in order to launch the permissions creation.

The content of files created through this action in the basic/rbac folder are simply arrays. This is the content of the
items.php file:

<?php
return [
 'createReservation' => [
 'type' => 2,
 'description' => 'Create a reservation',
],
 'updateReservation' => [
 'type' => 2,
 'description' => 'Update reservation',
],
 'operator' => [
 'type' => 1,
 'children' => [
 'createReservation',
],
],

 'admin' => [
 'type' => 1,
 'children' => [
 'updateReservation',
 'operator',
],
],
];

This is the content of assignments.php:

<?php
return [
 2 => [
 'operator',
],
 1 => [
 'admin',
],
];

Finally, to check the user authorization, it is enough to call the yii\web\User::can() method:

if (\Yii::$app->user->can()) {
 // create reservation permission is enabled to current user
}

Example – configuring RBAC to set permissions for users

In this example, we will create a user permissions management system from scratch, based on RBAC. We will create
a new controller named AuthorizationManagerController in
basic/controllers/AuthorizationManagerController.php that will display all the users and all the available
permissions and roles from the database. This example is based on the user database table already used in the
previous paragraphs.

Let's take a look at its structure again:

CREATE TABLE `user` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `username` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `auth_key` varchar(32) COLLATE utf8_unicode_ci NOT NULL,
 `password_hash` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `access_token` varchar(100) COLLATE utf8_unicode_ci DEFAULT NULL,
 PRIMARY KEY (`id`)
)

We will truncate the database table and insert these records, five items, to be used in the next examples:

TRUNCATE user;

INSERT INTO `user` (`id`, `username`, `auth_key`, `password_hash`, `access_token`)
VALUES
(1, 'foo', '', '$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW', NULL),
(2, 'userA', '', '$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW', NULL),
(3, 'userB', '', '$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW', NULL),
(4, 'userC', '', '$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW', NULL),
(5, 'admin', '', '$2a$12$hL0rmIMjxhLqI.xr7jD1FugNWEgZNh62HuJj5.y34XBUfBWB4cppW', NULL);

Now that we have data to work with, we can pass to write code.

The first method to create in this controller is initializeAuthorizations(), which has to initialize all the available
authorizations in the system:

 <?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use yii\filters\AccessControl;
use app\models\User;
use app\models\LoginForm;

class MyAuthenticationController extends Controller
{

public function initializeAuthorizations()
 {
 $auth = Yii::$app->authManager;

 $permissions = [
 'createReservation' => array('desc' => 'Create a reservation'),
 'updateReservation' => array('desc' => 'Update reservation'),
 'deleteReservation' => array('desc' => 'Delete reservation'),

 'createRoom' => array('desc' => 'Create a room'),
 'updateRoom' => array('desc' => 'Update room'),
 'deleteRoom' => array('desc' => 'Delete room'),

 'createCustomer' => array('desc' => 'Create a customer'),
 'updateCustomer' => array('desc' => 'Update customer'),
 'deleteCustomer' => array('desc' => 'Delete customer'),
];

 $roles = [
 'operator' => array('createReservation', 'createRoom', 'createCustomer'),
];

 // Add all permissions
 foreach($permissions as $keyP=>$valueP)
 {
 $p = $auth->createPermission($keyP);
 $p->description = $valueP['desc'];
 $auth->add($p);

 // add "operator" role and give this role the "createReservation" permission
 $r = $auth->createRole('role_'.$keyP);
 $r->description = $valueP['desc'];
 $auth->add($r);
 if(false == $auth->hasChild($r, $p)) $auth->addChild($r, $p);
 }

 // Add all roles
 foreach($roles as $keyR=>$valueR)
 {
 $r = $auth->createRole($keyR);
 $r->description = $keyR;
 $auth->add($r);

 foreach($valueR as $permissionName)
 {
 if(false == $auth->hasChild($r, $auth->getPermission($permissionName)))
$auth->addChild($r, $auth->getPermission($permissionName));
 }

 }

 // Add all permissions to admin role
 $r = $auth->createRole('admin');
 $r->description = 'admin';
 $auth->add($r);

 foreach($permissions as $keyP=>$valueP)
 {
 if(false == $auth->hasChild($r, $auth->getPermission($permissionName)))
$auth->addChild($r, $auth->getPermission($keyP));
 }
 }
}

At the top of this method, we created a permissions and roles list, then we assigned them to the Yii authorization
component. Take care to ensure that, after calling this method for the first time, you check whether any children
already exist by calling the hasChild method on every addChild() insert attempt.

Note

We have created a role for each permission, because assign() and revoke() take a role and not a permission as a
first parameter, so we are required to replicate a role for every permission.

Next, we can create actionIndex(), which launches the previous initialize authorizations, getting all the users and
populating an array with all the permissions assigned to every user. This is the content of the actionIndex()
method:

 public function actionIndex()
 {
 $auth = Yii::$app->authManager;

 // Initialize authorizations
 $this->initializeAuthorizations();

 // Get all users
 $users = User::find()->all();

 // Initialize data
 $rolesAvailable = $auth->getRoles();
 $rolesNamesByUser = [];

 // For each user, fill $rolesNames with name of roles assigned to user
 foreach($users as $user)
 {
 $rolesNames = [];

 $roles = $auth->getRolesByUser($user->id);
 foreach($roles as $r)
 {
 $rolesNames[] = $r->name;
 }

 $rolesNamesByUser[$user->id] = $rolesNames;
 }

 return $this->render('index', ['users' => $users, 'rolesAvailable' =>
$rolesAvailable, 'rolesNamesByUser' => $rolesNamesByUser]);
 }

Follow the content of the index action view in basic/views/authorization-manager/index.php:

<?php
use yii\helpers\Html;
?>

<table class="table">
 <tr>
 <td>User</td>
 <?php foreach($rolesAvailable as $r) { ?>
 <td><?php echo $r->description ?></td>
 <?php } ?>

 </tr>

 <?php foreach($users as $u) { ?>
 <tr>
 <td><?php echo $u->username ?></td>

 <?php foreach($rolesAvailable as $r) { ?>
 <td align="center">
 <?php if(in_array($r->name, $rolesNamesByUser[$u->id])) { ?>
 <?php echo Html::a('Yes', ['remove-role', 'userId' => $u->id,
'roleName' => $r->name]); ?>
 <?php } else { ?>
 <?php echo Html::a('No', ['add-role', 'userId' => $u->id, 'roleName'
=> $r->name]); ?>
 <?php } ?>
 </td>
 <?php } ?>
 </tr>
 <?php } ?>

</table>

This loops for each user's content of the $rolesAvailable array. To see this output, point your browser to
http://hostname/basic/web/authorization-manager/index:

Users/Permissions table

Every permission status is a link to the actions of adding a role or removing a role (depending on the current status).

Now we must create the last two actions: add a role and revoke a role to the user:

 public function actionAddRole($userId, $roleName)
 {
 $auth = Yii::$app->authManager;

 $auth->assign($auth->getRole($roleName), $userId);

 return $this->redirect(['index']);
 }

 public function actionRemoveRole($userId, $roleName)
 {
 $auth = Yii::$app->authManager;

 $auth->revoke($auth->getRole($roleName), $userId);

 return $this->redirect(['index']);
 }

Mixing ACF and RBAC
ACF contains a property named role that is usually filled with ? to indicate that access is
available for all users, and @ to indicate that access is restricted to authenticated ones. But there
is a third option that refers its content to the role name of the RBAC system.

For each controller, therefore, it is enough to overwrite behaviors() by specifying the roles
that can access the actions inside the controller and then to associate users to the role, in order
to allow or deny access.

Example – managing users' roles to access rooms,
reservations, and customers
In this example, we will show you how to manage the access to the controller actions using
ACF and RBAC.

We will use the foo user to simulate an authenticated user for RoomsController. The first
thing to do is to extend the behaviors() method of RoomsController in
basic/controller/RoomsController.php with this content:

Use yii\filters\AccessControl;

 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'rules' => [
 [
 'allow' => true,
 'actions' => ['create'],
 'roles' => ['operator'],
],
 [
 'allow' => true,
 'actions' => ['index'],
],
],

],
];
 }

With this code, we will guarantee access to the create action only to users with the
operator role, while the index action access is given to all users and all other actions are
denied to everyone.

So, if we try to browse to http://hostname/basic/web/rooms/create, we should see
an error page with a forbidden error. This is because we are trying to access a page with
insufficient permissions.

Now, we can execute the authentication simply by going to
http://hostname/basic/web/my-authentication/login and typing foo as the
username and foopassword as the password, since we already created a user with these
credentials in the database in the previous chapter. We should see a successfully logged in
page.

The last thing to do is to assign the operator role to the foo user. We can use the
authorization manager just created in http://hostname/basic/web/authorization-
manager/index. Now, click on the cell referring to the foo user and the operator role. In
this way, we have assigned the operator role to the foo user.

Finally, we can refresh the rooms creation page at
http://hostname/basic/web/rooms/create. We can see now the create action page of
the rooms controller.

Summary
In this chapter, you learned how to apply user authentication and authorization to an app. The
first step was to create an authenticated access to the application. For this purpose, we created
a database table to manage users and associated it to the Yii user component through a user
model that extends IdentityInterface.

The first example in this chapter was building a login form to authenticate the user. The next
step was to control which actions a user can perform or not, and this was the case for the
authorization phase too. As you saw, Yii provides two solutions for this matter: ACF and
RBAC. We configured a controller to use ACF and then you saw how RBAC is a more
powerful tool to manage user authorization with more granularity. Finally, we built an
authorization manager all by ourselves.

In the next chapter, we will cover topics such as installing and using an advanced template and
having multiple apps in the same context.

Chapter 9. Frontend to Display Rooms to
Everyone
This chapter will cover topics about using templates to have multiple apps in the same context.

Yii, indeed, allows you to have an advanced installation able to contain multiple instances of an
Yii application. Therefore, every folder in the project is actually a new Yii application.

We will see how to install and configure the project, share data between them, and finally
customize the URL to make them pretty for the search engine.

We will cover the following topics in this chapter:

Using an advanced template to split frontend and backend
Configuring an application using init

Example – creating frontend for public access
Sharing ActiveRecord models among applications

Example – displaying available rooms in frontend site
Customizing a URL in an advanced template

Example – using advanced templates in the same domain
How to use advanced templates in shared hosting

Using an advanced template to split
frontend and backend
Until now, we have seen simple applications with only one single entry point to access.
However, a single entry point isn't enough for more general applications. In advanced web
applications, in fact, we have not just a single entry point but often three: frontend, backend,
and a common area used as shared zone for every entry point.

The frontend entry point is a public access that is available to all users without restrictions.

On the other hand, the backend entry point is a restricted access available only for
authenticated users that have administration roles for managing content in the web application.

Finally, the common entry point is used to share data between entry points.

Think about a reservation system, where frontend is the website displaying room availability
and prices, while backend is the administration area, where operators can manage rooms.

In the same way, another example of frontend and backend could be a newspaper website that
comprises a frontend area with news publically visible to all users, and a backend area where
journalists can insert news.

Now that we know the differences between frontend and backend and their aim, we will create

an advanced Yii application.

The steps to install an advanced template of the Yii application are similar to the ones to install
basic templates.

Note

It is highly recommended, at this point, to have a console access the host, where we can put
files.

Locate the web hosting document root folder in the web hosting. Starting from it, we will
launch commands to create the advanced application in a new subfolder named yiiadv,
which stands for Yii installation with the advanced template.

We will install the Yii advanced template using Composer as it is the most recommended way.
If we have not installed Composer as the global application yet, we can install it now in the
yiiadv folder.

The following are the instructions to install Yii advanced template starting from document root
folder:

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar global require "fxp/composer-asset-plugin:~1.0.0"
$ php composer.phar create-project --prefer-dist yiisoft/yii2-app-advanced yiiadv

By opening the yiiadv subfolder, we can see some new folders beside the basic template,
which are as follows:

backend: This folder is the entry point for the backend application of the project
common: This folder is the entry point for the application containing common data for the
other applications in the project
console: This folder is the entry point for the console application of the project
frontend: This folder is the entry point for the frontend application of the project

This structure is the result of the experience on developing the web application. Backend and
frontend entry points have been formerly discussed; the common entry point is an area where
to put data (common models, components, and so on) shared among all the other applications
in the project.

Note

Every application in the project (backend, frontend, common, and console) is considered as a
single namespace in the web application. So, when we refer to RoomsController in the
frontend, the complete class namespace will be
frontend/controllers/RoomsController.

This installation is still raw and requires an initialization using the init command. However, if
we try to open any of these applications, we can recognize the same basic template structure

with assets, config, controllers, models, runtime, views, and web subfolders. So, a
basic template application can be considered the only unique application in an advanced
template one.

Finally, in the advanced template properties, every application starting point is always in
web/index.php. For example, for the frontend application, the starting point is
frontend/web/index.php.

Configuring an application using init
Apart from having multiple kinds of configuration, we can have multiple entry points in
advanced applications.

In advanced web applications, in fact, we also have a different approach in the development
stage. We usually have two environments: development and production. In the first one, we
make tests using fake users, data, and so on, while in the second one we must take care to
guarantee the proper functioning of the project.

Therefore, we will have different sets of configuration files and parameters based on
environments where we will work in.

We could wish, in fact, to test the application using the development database instead of the
production database, or specific parameters available only in a specific environment.

Indeed, the init command offers this capability to switch different configuration and
parameters for different environments. Basically, there are two environments: development and
production.

Note

A first initialization is needed to make sure that the project could work.

The init command can be launched both in interactive mode as well as in noninteractive
(silent) one.

In the interactive mode, starting from the yiiadv folder:

$ php init

And in a noninteractive (silent) mode:

$ php init --env=Development --overwrite=All

In both modalities, we need to specify only the target environment if we want to overwrite all
the current configuration files.

This command will simply copy the content of the chosen environment (according to the type
of selected environment) in the respective application folder, with the same name starting from
root.

For example, open the folder in environments/dev/backend. We will see two folders:
config and web, containing the first two configuration files and the other files index.php
and index-test.php. These files will overwrite the corresponding files in the backend
folder starting from the root folder of the project.

So, if we launch the preceding command with parameters of init, the content of the folders in
environments/dev (the backend, common, console, and frontend folders) will be
copied in the backend, common, console, and frontend folders starting from the root
folder of the project.

Also, with this command, other operations such as making some folders writable or applying
specific values to configuration properties, are accomplished. However, the init command is
mainly used to switch different configurations and index.php files.

Starting from any application of the project (backend, frontend, common, and console),
configuration values and parameters taken from the top of any application's index.php file
(backend, frontend, common, or console) are read in the following sequence:

common/config/main.php
common/config/main-local.php
config/main.php
config/main-local.php

This means that the config parameters are initially read firstly from
common/config/main.php then from common/config/main-local.php, then again from
application config/main.php, and finally from application config/main-
local.php. The properties with same name will be overwritten during the reading of other
configuration files.

Therefore, if the same configuration property is declared in all four configuration files, its value
will be the same as config/main-local.php, which is the last configuration file to be read.

Since, we locally have a last chance to apply differences towards a specific property of
configuration with the -local version of files, the content of environment subfolders will be
only about the -local version of a specific file. For example, if we open
environments/dev/backend/config path, we will see only main-local.php and
params-local.php, practically the last two filenames that index.php will read in sequence.

So if we change the database connection parameters in
environments/dev/backend/config/main-local.php and then apply init with the
dev target environment, this file will overwrite backend/config/main-local.php. This is
the last configuration file that backend/web/index.php will read during its bootstrap (if we
browse /backend/web/index.php).

Now that we have executed the init command in the dev environment, we can point the
browser to http://hostname/yiiadv/frontend/web and we should see the same
congratulations page of the basic template.

In the same way, the backend entry point is also available pointing to
http://hostname/yiiadv/backend/web, where a login form is displayed by default (this
is because it is a restricted area).

Note

If we want to add a new application in the project, it is enough to copy the content of frontend
or backend folder to another new folder in the project.

Example – creating frontend for public access
As we have seen, the frontend application is a reachable pointing browser to
http://hostname/yiiadv/frontend/web.

However, the first thing to set in the frontend access is URL-friendly customization; this is
because it is important that our public website is well positioned in the search engine.

As we have done in the basic template, we can render pretty URLs in the advanced template
too, following these two steps:

1. Create the .htaccess file in yiiadv/frontend/web.
2. Add the urlManager component in yiiadv/frontend/config/main.php.

In step 1, it is enough to create a file in yiiadv/frontend/web/.htaccess with the
following content:

RewriteEngine on

If a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
Otherwise forward it to index.php
RewriteRule . index.php

This code will make the web server URL rewrite work, rewriting all requests to the index.php
file in yiiadv/frontend/web.

While, in step 2, we must add the urlManager property in
yiiadv/frontend/config/main.php:

 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

Now we can refresh the web browser to http://hostname/yiiadv/frontend/web and
navigation to the URL link on the top, and we can see, for instance, that URL is in pretty form.

We can consider the frontend folder as a Yii standalone application and we can create
controllers, views, models, and so on.

Sharing ActiveRecord models among applications
Although every folder in the main Yii project could be considered a Yii standalone application, with its own
controllers, models, views, and so on, it is conventionally accepted that all shared data are located in the common
folder.

So every shared model (such as User, Room, Reservation, and Customer) that could be used in other Yii
applications, should be inserted in common/models, under the common\models namespace.

From my point of view, when an application needs to use an ActiveRecord from common/models, I rather prefer to
point to an extended version in its namespace, so as to have a chance again to add custom methods or properties to
model for that application.

For example, consider we have the Room model in common/models:

<?php
namespace common\models;
class Room extends ActiveRecord
{
….
….
}

In the backend application, we will create an empty extension to the Room class from common namespace:

<?php
namespace backend\models;
class Room extends \common\models\Room
{
}

In this way, we have the possibility to add custom methods or properties to that specific application (namespace), if
needed.

Therefore, every controller, view, or model in backend namespace will point to \backend\models\Room, when it
needs to refer to the Room ActiveRecord.

Example – displaying available rooms in the frontend site
This example will emphasize the few differences between basic and advanced applications occurring in the developing
phase.

The first thing to do is to check whether the database configuration is right, since we have just initialized an advanced
application.

Note

The database configuration on the production server can be found in common/config/main.php, whereas the
database configuration on the developing server is located in common/config/main-local.php, which overwrites
the configuration in common/config/main.php.

Open common/config/main.php and add the db property to the configuration array:

 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii_db',
 'username' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
],

Change the database properties (host, username, and password) according to our configuration parameters.

Note

Remember to comment out the database configuration in common/config/main-local.php to avoid overwriting
configurations.

In this way, we will have complete access to the database and tables previously created, and to rooms' data, indeed.

Now, we are ready to create:

1. The Room model.
2. The Rooms controller.
3. View of index action of the Rooms controller.

The first step requires the use of Gii. By default, Gii is enabled with basic configuration in the frontend application
(only from localhost).

We will overwrite this configuration so as to use Gii from everywhere. Therefore, in the frontend local configuration
(frontend/config/main-local.php), which has the following lines:

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';

Replace them with these ones:

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['*']
];

Now, we can finally access Gii from everywhere. Using the browser, go to
http://hostname/yiiadv/frontend/web/gii; a welcome page should be displayed.

Go to Model Generator and fill the first field, Table Name, with room, the name of model we are creating, just as
we have done in the previous chapters.

Since, we are working with the advanced template, model files (like other objects created by Gii) will be created in
the frontend namespace, or rather in frontend/models.

Therefore, it is necessary to change the first field of Model Generator, Namespace, so as to switch from
app/models to common/models, the shared area of common data:

Gii model generator in advanced template

In common/models, there should be a Room.php file containing the model of the Room table.

The second step it is to create the controller and the action of the controller to display the rooms list.

Let's create the controller under frontend/controllers/RoomsController.php with the following content:

<?php
namespace frontend\controllers;

use Yii;
use yii\web\Controller;
use yii\data\ActiveDataProvider;
use common\models\Room;

class RoomsController extends Controller
{
 public function actionIndex()
 {
 $dataProvider = new ActiveDataProvider([
 'query' => Room::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);

 return $this->render('index', [

 'dataProvider' => $dataProvider,
]);
 }
}

Make sure that the namespace declaration on top is frontend\controllers, since every application in the web
project has its own namespace (in this case, frontend).

Note

We should never directly subclass yii\web\Controller, instead we should create a custom controller for each
application, for example, frontend\controllers\BaseController, and then subclass it from every controller
that we will create in frontend\controllers.

Finally, the third step is to create view content of index action in frontend/views/rooms/index.php:

<div class="row">
<?php foreach($dataProvider->getModels() as $model) { ?>
 <div class="col-md-3" style="border:1px solid gray; margin-right:10px;
padding:20px;">
 <h2>Room #<?= $model->id ?></h2>
 Floor: <?= $model->floor ?>

 Number: <?= $model->room_number; ?>
 </div>
<?php } ?>
</div>

This will produce the following output with the data available in the database:

Rooms availability in the frontend

Customizing a URL in the advanced
template
When working with multiple applications in the same project, you might require access from an
application to another, for example, from the backend to a frontend link. This is because we
want to display public page rendering in the frontend after inserting data in the backend.

The urlManager property is customized with references about the application where it is
defined. However, we can add specific properties to refer to the respective application.

Therefore, in common/config/main.php, we can add these two properties:

 'urlManagerFrontend' => [
 'class' => 'yii\web\urlManager',
 'baseUrl' => '/yiiadv/frontend/web',
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

 'urlManagerBackend' => [
 'class' => 'yii\web\urlManager',
 'baseUrl' => '/yiiadv/backend/web',
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

For example, we can get a URL to frontend from everywhere. It is enough to write this code
echo Yii::$app->urlManagerFrontend->createUrl(...) to create a URL from
frontend.

Note

It is necessary to put the .htaccess file in the web folder of each application that has the
enablePrettyUrl property in the urlManager configuration.

Yii also provides convenient aliases to application paths, other than the default aliases of the
basic template:

@common: This is the common directory
@frontend: This is the frontend web application directory
@backend: This is the backend web application directory
@console: This is the console directory

Example – using the advanced template in the same
domain
We have seen that the advanced template creates more applications in the same web
application than we can reach using /frontend or /backend or any other application name

prefix in the URL. However, it is not advisable, especially for frontend, that all URLs contain a
/frontend prefix.

We want to have this URL format for frontend: http://hostname/yiiadv/; and this one
for backend: http://hostname/yiiadv/admin (we can choose the name we want).

All requests have to be managed on the /yiiadv folder level. So, we will add an .htaccess
file in the /yiiadv folder that it will dispatch to the correct route.

Here is a list of the actions that must be performed:

1. Configure .htaccess in /yiiadv to handle all requests.
2. Configure the backend application to customize its baseUrl.
3. Configure the frontend application to customize its baseUrl.

It is obvious that steps 2 and 3 must be repeated for any other application, for which we want
to manipulate the base URL.

For step 1, let's put the .htaccess file with the following content in the /yiiadv folder:

RewriteEngine on
For Backend
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_URI} ^/yiiadv/admin
RewriteRule ^admin(/.+)?$ /yiiadv/backend/web/$1 [L,PT]
For Frontend
RewriteCond %{REQUEST_URI} !index.php
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ /yiiadv/frontend/web/$1

Therefore, in the Backend block of .htaccess, we catch requests in /yiiadv/admin and
redirect them to the yiiadv/backend/web/ base URL.

For step 2, the backend requests capture is completed when we also make these changes in
backend configuration, adding the request property in backend/config/main.php:

 'request' => [
 // !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
 'cookieValidationKey' => '2OofX7Q9e-EQLSK5BEk70_07fUXkka8y',
 'baseUrl' => '/yiiadv/admin',
],

Now, point the browser to http://hostname/yiiadv/admin and if we did everything
correctly we should finally be able to see the login page.

Note

Make sure there is a request attribute in the configuration array in backend/config/main-
local.php; we need to comment this otherwise it will overwrite request in the
backend/config/main.php file that we have just changed.

Finally, just like we have done with backend requests, in step 3, we need to change the
request property for frontend requests under frontend/config/main.php in the
configuration:

 'request' => [
 // !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
 'cookieValidationKey' => 'ear8GcRjBGXQgKVwfEpbApyj7Fb0UKXk',
 'baseUrl' => '/yiiadv',
],

Now, point the browser to http://hostname/yiiadv and if we did everything correctly, we
should see the congratulation page of the frontend.

As the last part of this example, if we want to reach the frontend to the http://hostname
URL and backend to the http://hostname/admin URL, we must put an .htaccess file in
the document root folder with this content:

RewriteEngine on
For Backend
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_URI} ^/admin
RewriteRule ^admin(/.+)?$ /yiiadv/backend/web/$1 [L,PT]
For Frontend
RewriteCond %{REQUEST_URI} !index.php
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ /yiiadv/frontend/web/$1

Then, we must change the request property of the frontend configuration in
frontend/config/main.php with:

 'request' => [
 // !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
 'cookieValidationKey' => 'ear8GcRjBGXQgKVwfEpbApyj7Fb0UKXk',
 'baseUrl' => '',
],

Finally, change the request property of the backend configuration in
backend/config/main.php with:

 'request' => [
 // !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
 'cookieValidationKey' => '2OofX7Q9e-EQLSK5BEk70_07fUXkka8y',
 'baseUrl' => '/admin',
],

In this way, the frontend is now reachable pointing the browser to http://hostname and the
backend to http://hostname/admin.

How to use the advanced template in the
shared hosting
In my opinion, almost all applications should use the advanced template, since it provides the
right project structure from the very start, so as to immediately handle frontend and backend
occurring in every web project.

However, we have also seen that the advanced template requires a console access to execute
installation and initialization commands. So, if we have a remote hosting without this capability,
it could be difficult for us to install and use Yii with the advanced template.

If we cannot add the console capability to remote hosting, we have two possibilities:

Create the project in the local environment where we can install what we want and need; it
is enough to locally install a WAMP or a LAMP distribution (based on the operating
system of the hosting machine) and then launch the composer command to install Yii
Launch the init command to initialize the project (it could be initialized from start in
production mode so that no other changes are needed)

Therefore, the project is ready to be uploaded to remote hosting. Remember that project
environment is in production mode, but in this way, we do not have to change the
configuration manually if we want to pass from development to production mode.

Summary
In this chapter, we saw how to use Yii to build a modern web project based on frontend and
backend applications. We have found out differences between basic and advanced templates,
installing our first advanced project based on advanced templates.

Then we have used the init command to customize development or production environment
in which to make the application run. Then we have written an example to display in the
frontend rooms list, similar to what we have done in the previous basic template.

Finally, we customized URLs to make them pretty also in the advanced template, to refer to
frontend and backend without URL application prefix. We also learned how to use advanced
templates in shared hosting that does not have access to the console.

In the next chapter, we will explain how to write a multilingual app, adapt, and render the app in
different languages without changes to the source code.

Chapter 10. Localize the App
This chapter explains how to write a multilingual app. Localization, also known as
Internationalization (I18N), takes care that a software application can be adapted and rendered
in different languages without changes in the source code. This is particularly important in a
web application where users speak different languages.

Yii provides powerful tools to handle this task, choosing from the file or database approach
(according to the application's complexity). We will cover the following topics:

Setting the default language
File-based translations

Example – using file-based translation for the entire website
Placeholders formatting
DB-based translations

Example – translating the room's description using DB

Setting the default language
A Yii application uses two kinds of languages: source language and target language.

Source language specifies the language employed to write the source code; the default setting
is en-US, and it is advisable not to change this value since English is the most used and known
language in software development. On the other hand, there is a target language used to display
content to end users, and we are going to work specifically on this aspect.

This language can be set in the configuration file using the language property:

return [
 // set target language to be Italian
 'language' => 'it-IT',

];

Alternatively, you can use the following code:

// change target language to Italian
\Yii::$app->language = 'it-IT';

Now, let's see how to handle app localization in practice.

File-based translations
This is the most simple way to translate text messages from one language to another. Basically,
there are one or more files for each language containing keywords with text representations; we
will put these keywords in the source code where the framework will replace them with text.

The pairs of keyword-text translations are grouped by categories representing the filenames
where they are stored. These pairs are array keys-values, where key indicates keywords, and
value indicates text translations.

By default, the path folder containing translations for a specific language is in
@app/messages/<language>/<category>.php. Therefore, if we are writing translations
for the app category and the en-US language, for example, the complete path for the
translation file will be in @app/messages/en-US/app.php.

Going to the source code, translations are activated using the Yii::t() static method that
accepts four parameters, but only the first two are required; the first one is the category, and
the second one is the message to translate.

Now, we want to make an example where we will write a classic Hello World! in two
languages: English and Italian. However, it will be just as easy to translate it in any other
language.

Working on the previous basic templated project, write a new controller named
FileTranslatorController in
basic/controllers/FileTranslatorController.php with the following content:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;

class FileTranslatorController extends Controller
{
 public function actionIndex()
 {
 \Yii::$app->language = 'en-US';
 $englishText = \Yii::t('app', 'Hello World!');

 \Yii::$app->language = 'it-IT';
 $italianText = \Yii::t('app', 'Hello World!');

 return $this->render('index', ['englishText' => $englishText, 'italianText' => $italianText]);
 }
}

The first two source code rows in actionIndex() will set the app language to en-US, and
then they will store the content of Hello World! key of the basic/messages/en-
US/app.php file in the $englishText variable.

In the same way, the last two source code rows in actionIndex() will set the app language
to it-IT, and then they will store the content of Hello World! key of the
basic/messages/it-IT/app.php file in the $italianText variable.

The view content in basic/views/file-translator/index.php is simply as follows:

Display Hello World! in two language: English and Italian

In English:
<?= $englishText ?>

In Italian:
<?= $italianText ?>

Now, we need to define file languages for English and Italian translations.

If the messages folder does not exist in basic/messages, we will just create it; then, create
two new folders named en-US and it-IT. In each folder, add a new file named app.php.

For the file with the English translations in basic/messages/en-US/app.php, let's write:

<?php

return [
 'Hello World!' => 'Hello world!',
];

?>

While for Italian translations in basic/messages/it-IT/app.php, let's write:

<?php

return [
 'Hello World!' => 'Ciao Mondo!',
];

?>

You can browse to http://hostname/basic/file-translator/index to view the
output.

Example – using file-based translation for the entire
website
Applying translations to the entire website is tedious, and, above all, there is a high possibility
that you will miss some translations. Yii provides a powerful tool to automatically produce the
message's PHP files for all the languages we want.

Note

This powerful tool is a console command named message; therefore, we require a console
access.

This command requires two steps:

1. Creating a configuration file where we will indicate the languages property, or which
languages we want to support in the project and the messagePath property, or rather,
where to store translated messages.

2. Launching the message command.

For step 1, go to the console, in the project's root folder, where the yii file is located.

If we are working on a basic template, we will launch the following command:

$./yii message/config config/i18n.php

The first parameter, message/config, is the action config invoked on the controller
message, and the second parameter is the file path where we want to save the configuration (in
this case, config/i18n.php, but we can write anything).

If we are working on an advanced template, we will launch the following command:

./yii message/config common/config/i18n.php

The only difference is that, in the last command, we specified that the configuration file for
message command translations is in common/config instead of the config folder.

Now, if we open config/i18n.php, we should see the default configuration file for the
message command that should look like this:

<?php

return [
 // string, required, root directory of all source files
 'sourcePath' => __DIR__ . DIRECTORY_SEPARATOR . '..',
 // array, required, list of language codes that the extracted messages
 // should be translated to. For example, ['zh-CN', 'de'].
 'languages' => ['de'],
 // string, the name of the function for translating messages.
 // Defaults to 'Yii::t'. This is used as a mark to find the messages to be
 // translated. You may use a string for single function name or an array for
 // multiple function names.
 'translator' => 'Yii::t',
 // boolean, whether to sort messages by keys when merging new messages
 // with the existing ones. Defaults to false, which means the new (untranslated)
 // messages will be separated from the old (translated) ones.
 'sort' => false,
 // boolean, whether to remove messages that no longer appear in the source code.

 // Defaults to false, which means each of these messages will be enclosed with a pair of '@@' marks.
 'removeUnused' => false,
 // array, list of patterns that specify which files/directories should NOT be processed.
 // If empty or not set, all files/directories will be processed.
 // A path matches a pattern if it contains the pattern string at its end. For example,
 // '/a/b' will match all files and directories ending with '/a/b';
 // the '*.svn' will match all files and directories whose name ends with '.svn'.
 // and the '.svn' will match all files and directories named exactly '.svn'.
 // Note, the '/' characters in a pattern matches both '/' and '\'.
 // See helpers/FileHelper::findFiles() description for more details on pattern matching rules.
 'only' => ['*.php'],
 // array, list of patterns that specify which files (not directories) should be processed.
 // If empty or not set, all files will be processed.
 // Please refer to "except" for details about the patterns.
 // If a file/directory matches both a pattern in "only" and "except", it will NOT be processed.
 'except' => [
 '.svn',
 '.git',
 '.gitignore',
 '.gitkeep',
 '.hgignore',
 '.hgkeep',
 '/messages',
],

 // 'php' output format is for saving messages to php files.
 'format' => 'php',
 // Root directory containing message translations.
 'messagePath' => __DIR__,
 // boolean, whether the message file should be overwritten with the merged messages
 'overwrite' => true,

 /*
 // 'db' output format is for saving messages to database.
 'format' => 'db',
 // Connection component to use. Optional.
 'db' => 'db',
 // Custom source message table. Optional.
 // 'sourceMessageTable' => '{{%source_message}}',
 // Custom name for translation message table. Optional.
 // 'messageTable' => '{{%message}}',
 */

 /*
 // 'po' output format is for saving messages to gettext po files.
 'format' => 'po',
 // Root directory containing message translations.
 'messagePath' => __DIR__ . DIRECTORY_SEPARATOR . 'messages',
 // Name of the file that will be used for translations.
 'catalog' => 'messages',
 // boolean, whether the message file should be overwritten with the merged messages
 'overwrite' => true,
 */
];

The configuration is very clear to read, so we will only explain its main properties: languages,
messagePath, and except.

The languages property defines which languages are supported in the web project. For
example, we could write:

'languages' => ['en', 'it', 'fr'],

The preceding command supports and autogenerates messages for the English, Italian, and
French languages.

The messagePath property defines where autogenerated messages should be saved. It is
advisable to point to the messages folder (that must be created if it does not exist); in this
way, we can write the following in the basic template:

'messagePath' => __DIR__ . DIRECTORY_SEPARATOR . '..' . DIRECTORY_SEPARATOR . 'messages',

Here, __DIR__ refers to the config file folder, while in the basic template, it is the
basic/config folder.

Once we have launched the message command, it will look for all folders and subfolders
containing .php files, as indicated in the only property (only .php files will be processed).

Therefore, in the project's root folder, there are some folders, such as vendor, not relevant for
our purpose.

So, we will add the /vendor value to the except property, in order to indicate that the
message command will not look inside this folder, in this way:

 'except' => [
 '.svn',
 '.git',
 '.gitignore',
 '.gitkeep',
 '.hgignore',
 '.hgkeep',
 '/messages',
 '/vendor'
],

For step 2, we will now try to launch the command:

$./yii message config/i18n.php

It will find the Yii::t marker, defined in the translator property, in all the files in the
folders and subfolders specified in the sourcePath property, considering the except
property to exclude files and folders where we do not want to look.

The translated messages will be created (if they do not exist) in the messagePath folder, in
our case, in the messages folder starting from the project's root folder.

If there are no Yii::t markers in all the searched files, the relative language's subfolder will be
empty.

For example, open SiteController in basic/controller/SiteController.php and

change the actionIndex content as follows:

 public function actionIndex()
 {
 $message = \Yii::t('app', 'this message must be translated!');

 return $this->render('index');
 }

Now, relaunch the message command:

$./yii message config/i18n.php

Then, check the basic/messages/en folder. We will find an app.php file that contains the
this message must be translated key to which we must fill the value to specify the
translation.

Placeholders formatting
The Yii:t method is not only limited to replace strings with their translation in other
languages, but it handles the specific formatting of source strings to support many kinds of
generalization.

Firstly, Yii:t() supports placeholders in the following two formats:

String in the {nameOfPlaceholder} format
Integer in the {0} format, and this type of placeholder is zero-based

Value arrays to replace the placeholder are passed as the third parameter to the Yii:t()
method.

For example, we want to display a page with only Hello World, I'm ... by appending the
custom name to the text.

Create basic/controllers/FileTranslatorController.php:

 public function actionHelloWorldWithName($name='')
 {
 $text = \Yii::t('app', 'Hello World! I\'m {name}', ['name' => $name]);

 return $this->render('helloWorldWithName', ['text' => $text]);
 }

Now, create the view in basic/views/file-translator/helloWorldWithName.php
simply with the following command:

<?= $text ?>

It will display the $text value passed from the controller.

Test it by pointing the browser to http://hostname/basic/web/file-
translator/hello-world-with-name, also passing the ?name= parameter, otherwise
there will be no name at the end of the text.

Translations can be prepared using the message command that we have just seen:

$./yii message config/i18n.php

This will automatically create a new marker Hello World! I\'m {name} in the
basic/messages subfolders.

The placeholders can be specialized with two other attributes: ParameterType and
ParameterStyle, adding a comma after PlaceholderName. So, the full form to specify a
placeholder will be as follows:

{PlaceholderName, ParameterType, ParameterStyle}

Here, ParameterType can be:

number : The ParameterStyle can be an integer, currency, percent, or custom pattern (for
example, 000)
date: The ParameterStyle can be short, medium, long, full, or custom pattern (for
example, dd/mm/yyyy)
time: The ParameterStyle can be short, medium, long, full or custom pattern (for
example, hh:mm)
spellout: There is no ParameterStyle
ordinal: There is no ParameterStyle
duration: There is no ParameterStyle

The most used message formatting is probably plural, and that allows us to specify different
key strings based on the number passed as a parameter.

Consider the following code as an example:

// if $n = 0, it shows "There are no books!"
// if $n = 1, it shows "There is one book!"
// if $n = 4, it shows "There are 4 books!"

echo \Yii::t('app', 'There {n, plural, =0{are no books} =1{is one book} other{are # books}}!', ['n' => $n]);

Here, =0 stands for the message to be displayed when $n is 0, =1 stands for the message to
be displayed when $n is 1, and other stands for the message to be displayed when $n is
other than 0 and 1.

DB-based translations
Yii also supports database as a storage option for message translations.

It has to be explicitly configured in the config/web.php file if we are working in the basic
template, or in common/config/main.php, if we are working in the advanced template.

Next, we need to add two more database tables to manage message sources and message
translations.

Start by creating database tables, as suggested in Yii's official documentation at
http://www.yiiframework.com/doc-2.0/yii-i18n-dbmessagesource.html:

CREATE TABLE source_message (
 id INTEGER PRIMARY KEY AUTO_INCREMENT,
 category VARCHAR(32),
 message TEXT
);

CREATE TABLE message (
 id INTEGER,
 language VARCHAR(16),
 translation TEXT,
 PRIMARY KEY (id, language),
 CONSTRAINT fk_message_source_message FOREIGN KEY (id)
 REFERENCES source_message (id) ON DELETE CASCADE ON UPDATE RESTRICT
);

Note

Table names can be customized in the configuration file.

Table source_message will store all messages written with the source language; table
message will store all translations; both tables are joined together by the id field.

In the next example, let's insert one record for each table:

INSERT INTO `source_message` (`id`, `category`, `message`) VALUES
(1, 'app', 'Hello World from Database!');

INSERT INTO `message` (`id`, `language`, `translation`) VALUES
(1, 'it', 'Ciao Mondo dal Database!');

Now, it is time to apply some changes to the configuration. We need to insert the i18n
property in the components section of the configuration in config/web.php (based on the
basic template):

'components' => [
 // ...
 'i18n' => [
 'translations' => [
 'app' => [

http://www.yiiframework.com/doc-2.0/yii-i18n-dbmessagesource.html

 'class' => 'yii\i18n\DbMessageSource',
 //'messageTable' => 'message,
 //'sourceMessageTable' => 'source_message,

],
],
],
],

This component, i18n, uses yii\i18n\PhpMessageSource as a class by default, and has
employed itself for file-based translation.

Now, we want to display the message in Italian. Create a new action in
basic/controllers/FileTranslatorController.php named
actionHelloWorldFromDatabase(), with the following content:

 public function actionHelloWorldFromDatabase()
 {
 \Yii::$app->language = 'it';
 $text = \Yii::t('app', 'Hello World from Database!');

 return $this->render('helloWorldFromDatabase', ['text' => $text]);
 }

The view in basic/views/file-translator/helloWorldFromDatabase will show the
$text content:

<?= $text ?>

Test it by pointing the browser to http://hostname/basic/web/file-
translator/hello-world-from-database. If all is correct, we should see Ciao Mondo
dal Database!, which is the Italian version of Hello World from Database!.

Example – translating room descriptions using DB
This example will show you how to translate the room's description using the database as the
storage option. We will create models for message and source_message database tables,
since we are going to use ActiveRecord to manage records in all the tables that control
translations.

Firstly, we are going to create models for message and source_message database tables
using Gii. In the basic template, point the browser to http://hostname/basic/web/gii,
and then go to the model generator. Gii will create Message and SourceMessage models in
the basic/models folder.

Next, we want to create a form that contains descriptions both in the original language and in all
other translations.

For this purpose, we will create a view in
basic/views/rooms/indexWithTranslatedDescriptions.php, as follows:

<?php

use yii\helpers\Url;
use yii\widgets\ActiveForm;
?>

<div class="row">
 <div class="col-md-4">
 <legend>Rooms with translated descriptions</legend>

 <?php $form = ActiveForm::begin([]); ?>
 <table class="table">
 <tr>
 <th>#</th>
 <th>Floor</th>
 <th>Room number</th>
 <th>Description - English</th>
 <th>Description - Italian</th>
 <th>Description - French</th>
 </tr>
 <?php for($k=0;$k<count($rooms);$k++) : ?>
 <?php $room = $rooms[$k]; ?>
 <input type="hidden" name="Room[<?= $k ?>][id]" value="<?= $room->id ?>" />
 <tr>
 <td><?php echo $k+1 ?></td>
 <td><?php echo $room->floor ?></td>
 <td><?php echo $room->room_number ?></td>
 <td><input type="text" name="Room[<?= $k ?>][description][en]" value="<?= $room->description ?>" /></td>
 <td><input type="text" name="Room[<?= $k ?>][description][it]" value="<?= Yii::$app->i18n->translate('app', $room->description, [], 'it') ?>" /></td>
 <td><input type="text" name="Room[<?= $k ?>][description][fr]" value="<?= Yii::$app->i18n->translate('app', $room->description, [], 'fr') ?>" /></td>
 </tr>
 <?php endfor; ?>
 </table>

 <input type="submit" class="btn btn-primary" value="Submit descriptions" />
 <?php ActiveForm::end(); ?>
 </div>
</div>

We will check for other language translations using the Yii::$app->i18n->translate
method that accepts:

Category
Message to be translated
Parameters of messages
Language

It is now time to add actionIndexWithTranslatedDescriptions() in
basic/controllers/RoomsController.php:

 public function actionIndexWithTranslatedDescriptions()
 {
 if(isset($_POST['Room']))
 {
 $roomsInput = $_POST['Room'];
 foreach($roomsInput as $item)
 {
 $sourceMessage = \app\models\SourceMessage::findOne(['message' => $item['description']]);

 // If null, I need to create source message
 if($sourceMessage == null)
 {
 $sourceMessage = new \app\models\SourceMessage();
 }
 $sourceMessage->category = 'app';
 $sourceMessage->message = $item['description']['en'];
 $sourceMessage->save();

 $otherLanguages = ['it', 'fr'];

 foreach($otherLanguages as $otherLang)
 {
 $message = \app\models\Message::findOne(['id' => $sourceMessage->id, 'language' => $otherLang]);
 if($message == null)
 {
 $message = new \app\models\Message();
 }
 $message->id = $sourceMessage->id;
 $message->language = $otherLang;
 $message->translation = $item['description'][$otherLang];
 $message->save();
 }

 // Room to update
 $roomToUpdate = \app\models\Room::findOne($item['id']);
 $roomToUpdate->description = $item['description']['en'];
 $roomToUpdate->save();
 }
 }

 $rooms = Room::find()
 ->all();

 return $this->render('indexWithTranslatedDescriptions', ['rooms' => $rooms]);
 }

Note

If we have trouble accessing the URL, check the access property returned by the
behaviors() method of this controller to ensure that this action is allowed.

On top of this code, we will check whether the $_POST array is filled; in this case, we will get
the $sourceMessage object from descriptions passed from the view. Next, we can create or
update the message model for whatever language we want. In the end, we will also save the
room object, eventually with its description field changed.

With this solution, anytime we want to change a description, a new record will be created since
the text has been changed.

Summary
In this chapter, we have seen how to configure multiple languages in our app. We have found
out that there are two storage options to handle internationalization: file and database. File is
suggested for small projects and database for bigger ones.

We have discovered how to grab placeholders from the entire website through the 'message'
command from the console and how to create placeholders that contain formatting
information.

Finally, we have configured the database as a storage target for translations, and we have
created a complete example to handle room description in different languages.

In the next chapter, we will learn how to create RESTful web services using the new integrated
management of Yii 2.

Chapter 11. Creating an API for Use in a
Mobile App
In this chapter, you will learn how to create RESTful Web Services with the new integrated
management of Yii 2.

You will learn how to create a new application to manage the api environment and how to
create a controller using the default base classes provided by the framework.

Then, we will cover authentication methods and you'll learn how to customize the response
output format. We'll also discuss:

Configuring the REST app in the advanced template
Creating a controller:

For example: creating a controller to manage rooms
Authentication:

For example: using authentication to get a customers list
New controller actions:

For example: getting a rooms list for a reservation
Customizing authentication and the response

For example: status response node in received data
Other forms of export – RSS:

For example: creating RSS with a list of available rooms

Configuring a REST app in the advanced
template
Before using the advanced template, it is advisable to configure RESTful Web Services, since,
as you saw in previous chapters, this configuration allows you to easily add a new application
in the same project.

Yii provides many built-in features to create RESTful Web Services and it reduces the code
needed to implement it that is always structured with models, controllers, and actions.

These are its main features:

Default actions (index, view, create, update, delete, and options) in
yii\rest\ActiveController, which is the base controller suggested to override
A response format selectable from input
Customized authentication and authorization
Caching and rate limiting

Yii applies well-established knowledge about RESTful Web Services creation, such as how to
present metadata in the response output. So, it is advisable that we follow the framework

guidelines as far as possible; in this way, we will write commonly manageable REST APIs.

The first thing to do with an advanced template is to create a new application in the same
project, for example renaming it api. Yii has not got a built-in functionality to create a new
application, but it only takes a few steps to complete this task.

Starting from the root of our project, we will create, as well as for other applications (common,
backend, frontend, and console), a new folder named api with the following command:

$ mkdir api

Now, enter in api and let's create these five subfolders:

$ mkdir config
$ mkdir web
$ mkdir controllers
$ mkdir runtime

We must only create files for the first two folders, and the others will be left temporarily empty.

Note

Another possible solution would be to copy complete content from other applications, such as
frontend or backend, to the new application destination folder and then to clear content that
is not useful.

In the config folder, we must create two files: main.php and params.php. The second file,
params.php, will be temporarily empty as we have not got any parameters to store in it, such
as:

<?php
return [
];

The content of api/config/main.php will, instead, be:

<?php
$params = array_merge(
 require(__DIR__ . '/../../common/config/params.php'),
 require(__DIR__ . '/../../common/config/params-local.php'),
 require(__DIR__ . '/params.php')
);

return [
 'id' => 'app-api',
 'basePath' => dirname(__DIR__),
 'controllerNamespace' => 'api\controllers',
 'bootstrap' => ['log'],
 'modules' => [],

 'components' => [

 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
],

 'user' => [
 'identityClass' => '\common\models\User',
 'enableSession' => false,
 'loginUrl' => null
],

 'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],

],
 'params' => $params,
];

Then, we will create an index.php file in the web folder with the following content:

<?php
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/../../vendor/autoload.php');
require(__DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');
require(__DIR__ . '/../../common/config/bootstrap.php');

$config = yii\helpers\ArrayHelper::merge(
 require(__DIR__ . '/../../common/config/main.php'),
 require(__DIR__ . '/../../common/config/main-local.php'),
 require(__DIR__ . '/../config/main.php')
);

$application = new yii\web\Application($config);
$application->run();

Still in the web folder, we will create the .htaccess file to handle a pretty URL:

RewriteEngine on

If a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
Otherwise forward it to index.php
RewriteRule . index.php

Finally, we have to add a new alias in common/config/bootstrap regarding the api
application:

Yii::setAlias('api', dirname(dirname(__DIR__)) . '/api');

Our job is complete, as we finally have a brand new application from scratch.

Note

Be sure to make the runtime folder writable, since the framework will write in it runtime data
such as log files.

Creating a controller
Yii provides two base classes: \yii\rest\Controller and \yii\rest\ActiveController that we can extend
when we are creating a new controller for RESTful web services.

Both of these classes contain the following useful common features, in execution order:

1. The response output as required from the request (content negotiator).
2. The HTTP method validation.
3. Authentication.
4. Rate limiting.

The second class \yii\rest\ActiveController adds more functionalities through ActiveRecord, such as
handling user authorization and a set of already existing actions: index, view, create, update, delete, and
options.

We will see that Yii provides all the necessary information to get the response status and content through the body
and HTTP header.

Let's create a controller to extend \yii\rest\Controller or rather without ActiveRecord. Create a new
controller in api/controllers/TestRestController.php:

<?php
namespace api\controllers;

use yii\rest\Controller;

class TestRestController extends Controller
{
 private function dataList()
 {
 return [
 ['id' => 1, 'name' => 'Albert', 'surname' => 'Einstein'],
 ['id' => 2, 'name' => 'Enzo', 'surname' => 'Ferrari'],
 ['id' => 4, 'name' => 'Mario', 'surname' => 'Bros']
];
 }

 public function actionIndex()
 {
 return $this->dataList();
 }
}

In the preceding code, we have a method dataList, which returns an array of objects, and an actionIndex
method that provides the index action for TestRestController and returns that list.

Note

Many examples can be executed using a web browser (requested by employing the GET verb). Generally, however,
we need a specific tool to test RESTful web services, such as Postman for example, an excellent extension for the
Chrome browser or the curl command for advanced users.

The first feature of \yii\rest\Controller is to arrange the response output format, dynamically based on the
request, which is also called content negotiation.

Indeed, we can try to launch this request through http://hostname/yiiadv/api/web/test-rest/index in our
browser, or through specific tools using the GET verb and the Accept HTTP header set to application/xml, or

by using curl, as follows:

$ curl -H "Accept: application/xml" http://hostname/yiiadv/api/web/test-rest/index
<?xml version="1.0" encoding="UTF-8"?>
<response><item><id>1</id><name>Albert</name><surname>Einstein</surname></item><item>
<id>2</id><name>Enzo</name><surname>Ferrari</surname></item><item><id>4</id>
<name>Mario</name><surname>Bros</surname></item></response>
In these cases, we will get a response based on the XML data:

The XML data response to test-rest/index

However, if we change the Accept header to application/json, we will get a response based on the JSON data:

$ curl -H "Accept: application/json" http://hostname/yiiadv/api/web/test-rest/index
[{"id":1,"name":"Albert","surname":"Einstein"},
{"id":2,"name":"Enzo","surname":"Ferrari"},{"id":4,"name":"Mario","surname":"Bros"}]
In these cases, we will get a response based on the JSON data:

The JSON data response to test-rest/index

The same data will be rendered in different ways according to the Accept header sent from the client.

The second feature, HTTP method validation, allows you to specify which verbs are available for a resource. Verbs

are defined in the behaviors() method, which must be extended to modify this setting:

 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['verbs'] = [
 'class' => \yii\filters\VerbFilter::className(),
 'actions' => [
 'index' => ['get'],
],
];
 return $behaviors;
 }

In this case, we only set the GET verb to the index action, because keys of the actions attribute of
behaviors['verbs'] are the actions and the value is an array containing supported HTTP methods.

If we launch http://hostname/yiiadv/api/web/test-rest/index using the GET verb (as a browser
request), we will continue to display the result. However, if we change the HTTP method to the POST verb, for
example, we will get an exception error:

An exception error using the wrong verb

This is because only the GET verb is supported by the index action.

In the next sections, we will explain the third and fourth features, authentication and rate limiting.

Example – creating a controller to manage rooms
With this example, we will apply the concepts dealt with in the previous chapter, in this case using
\yii\rest\ActiveController as the base class instead of \yii\rest\Controller, since we are going to
employ an ActiveRecord class to manipulate data.

Create a new controller in api/controllers/RoomsController.php:

<?php
namespace api\controllers;

use yii\rest\ActiveController;

class RoomsController extends ActiveController
{
 public $modelClass = 'common\models\Room';
}

This controller implicitly contains these actions:

actionIndex that returns a list of models, accessible only with GET and HEAD HTTP methods
actionView that returns details about the mode, accessible only with the GET and HEAD HTTP methods by
passing the id parameter
actionCreate that creates a new model, accessible only with the POST HTTP methods
actionUpdate that updates an existing model, accessible only with the PUT and PATCH HTTP methods
actionDelete that deletes an existing model, accessible only with the DELETE HTTP method
actionOptions that returns the allowed HTTP methods

Now, let's try to launch all these methods.

Launch actionIndex at http://hostname/yiiadv/api/web/rooms using the GET method:

[
{
 "id": 1,
 "floor": 1,
 "room_number": 101,
 "has_conditioner": 1,
 "has_tv": 0,
 "has_phone": 1,
 "available_from": "2015-05-20",
 "price_per_day": "120.00",
 "description": "description 1"

},

 {
 "id": 2,
 "floor": 2,
 "room_number": 202,
 "has_conditioner": 0,
 "has_tv": 1,
 "has_phone": 1,
 "available_from": "2015-05-30",
 "price_per_day": "118.00",
 "description": "description 2"
 }
]

We will get all the records in the database as an array of the JSON object and HTTP header, along with the
successful status code and pagination details:

X-Pagination-Current-Page: 1
X-Pagination-Page-Count: 1
X-Pagination-Per-Page: 20
X-Pagination-Total-Count: 2

If we launch the same URL using the HEAD HTTP method, we will only get the HTTP HEADER response without a
body, so we will get only the pagination information.

Finally, if we launch the same URL with an unsupported HTTP method, for example the PUT method, we will get
two important HTTP headers:

The status code header set to 405 Method Not Allowed
The Allow header set to GET, HEAD

The status code header says that a method is not supported, and the Allow header returns a list of supported
HTTP methods for that action.

Now, launch actionView on http://hostname/yiiadv/api/web/rooms/view?id=1 using the GET method:

{
 "id": 1,
 "floor": 1,
 "room_number": 101,
 "has_conditioner": 1,
 "has_tv": 0,
 "has_phone": 1,
 "available_from": "2015-05-20",
 "price_per_day": "120.00",
 "description": "description 1"
}

If we try to launch a nonexistent ID, for example http://hostname/yiiadv/api/web/rooms/view?id=100,

using the GET method, we will get this body response:

{
 "name": "Not Found",
 "message": "Object not found: 100",
 "code": 0,
 "status": 404,
 "type": "yii\\\\web\\\\NotFoundHttpException"
}

The HTTP status code header will be set to 404 Not Found to specify that the requested item (id=100) does
not exist. Using only the HEAD HTTP method, we will get information from the HTTP status code set to 404. The
Create and Update actions require that the client sends body content of the object to be created or updated.

By default, Yii recognizes only the application/x-www-form-urlencoded and multipart/form-data input
formats. In order to enable the JSON input format, we need to configure the parsers property of the request's
application component in the api/config/main.php file:

'request' => [
 'parsers' => [
 'application/json' => 'yii\web\JsonParser',
]
]

After configuring the JSON input parser, we can call http://hostname/yiiadv/api/web/rooms/create using
the POST HTTP method to create a new room and pass, for example, this JSON:

 {
 "floor": 99,
 "room_number": 999,
 "has_conditioner": 1,
 "has_tv": 1,
 "has_phone": 1,
 "available_from": "2015-12-30",
 "price_per_day": "48.00",
 "description": "description room 999"
 }

If no error occurred, we will get:

201 Created as HTTP Header Status Code
Object just created as body content
If we are missing some required fields and there are validation errors, we will get:

422 Data Validation Failed
An array of field-message to indicate which validation errors occurred
The same thing needs to be done for an update action, in this case, however, we will call
http://hostname/yiiadv/api/web/rooms/update and pass the id URL parameter using the PUT or PATCH
HTTP method. In this case, only the HTTP header status code 200 OK will be a successful response and the update
object will be returned as body content.

Finally, actionDelete is used by calling http://hostname/yiiadv/api/web/rooms/delete, by passing the
id URL parameter, and using the DELETE HTTP method. A successful execution will return 204 No Content as
the HTTP status code; otherwise, it will be 404 Not Found.

Authentication
There are three kinds of authentication:

HTTP Basic Auth (the HttpBasicAuth class): This method uses the WWW-
Authenticate HTTP header to send the username and password for every request
Query parameter (the QueryParamAuth class): This method uses an access token
passed as query parameter in the API URL
OAuth 2 (the HttpBearerAuth class): This method uses an access token that is
obtained by the consumer from an authorization server and sent to the API server via
HTTP bearer tokens

Yii supports all the methods mentioned, but we can also easily create a new one.

To enable authentication, follow these steps:

1. Configure the user application component in the configuration, setting enableSession
to false in order to make user authentication status not persistent using a session across
requests. Next, set loginUrl to null to show the HTTP 403 error instead of redirecting
it to the login page.

2. Specify which authentication method we want to use, configuring the authenticator
behavior in API controller classes.

3. Implement yii\web\IdentityInterface::findIdentityByAccessToken() in
the user identity class.

Note

The first step ensures that REST requests are really stateless, but if you need to persist or
store session data, you can skip this step.

Step 1 can be configured in api/config/main.php:

 'components' => [
 ...
 'user' => [
 'identityClass' => 'common\models\User',
 'enableSession' => false,
 'loginUrl' => null
],
];

Step 2 requires that we extend the behaviors() controller method, specifying a single
authenticator:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => yii\filters\auth\HttpBasicAuth::className(),

];
 return $behaviors;
}

Or we can do this by specifying multiple authenticators:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => yii\filters\auth\CompositeAuth::className(),
 'authMethods' => [
 yii\filters\auth\HttpBasicAuth::className(),
 yii\filters\auth\HttpBearerAuth::className(),
 yii\filters\auth\QueryParamAuth::className(),
],
];
 return $behaviors;
}

Finally, step 3 requires the implementation of findIdentityByAccessToken() of the
identityClass specified in the configuration file.

In a simple scenario, the access token can be stored in a column of the User table and then
retrieved:

 public static function findIdentityByAccessToken($token, $type = null)
 {
 return static::findOne(['access_token' => $token]);
 }

At the end of the configuration, every request will try to authenticate the user in the
beforeAction() method of the same controller.

Now, let's take a look at the first authentication method, HTTPBasicAuth. This method
requires us to set the auth property to the callable PHP function; if it is not set, the username
will be used as the access token passed to the \yii\web\User::loginByAccessToken()
method.

The basic implementation of the HttpBasicAuth authentication is:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => yii\filters\auth\HttpBasicAuth::className(),
 'auth' => function($username, $password) {
 // return null or identity interface
 // For example search by username and password
 return \common\models\User::findOne(['username' => $username, 'password' => $password);
 }

 /*
 'auth' => [$this, 'httpBasicAuthHandler'],
 */
];

 return $behaviors;
}

public function httpBasicAuthHandler($username, $password)
{
 // For example search by username and password
 return \common\models\User::findOne(['username' => $username, 'password' => $password]);
}

The callable PHP function stored by the auth property can be represented as an inline
function, or as an array, whose first value is the object and the second is the function name to
be called, by passing $username and $password parameters.

Check how PHP is running through phpinfo(). If you display CGI/FCGI, then you need to
add SetEnvIf Authorization .+ HTTP_AUTHORIZATION=$0 in .htaccess to use
HTTP Auth from PHP.

The second authentication method is query parameter, by using the QueryParamAuth class.
With this method, a query parameter named access-token must be passed to the URL.
Then, it will call the \yii\web\user::loginByAccessToken() method, passing access-
token as the first parameter. This function will return an IdentityInterface or null.

The URL parameter name can be changed using tokenParam in the authentication declaration:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => yii\filters\auth\QueryParamAuth::className(),
 'tokenParam' => 'myAccessToken'
];
 return $behaviors;
}

With this configuration, the URL must be http://hostname/url?myAccessToken=...

The last authentication method, OAuth 2, requires an authorization server from which we will
get the bearer token to pass to the REST API server, which is similar to QueryParamAuth.

Example – using authentication to get a customers list
In this example, we are going to authenticate ourselves by using two methods at the same time:
HTTPBasicAuth and QueryParamAuth. When using QueryParamAuth with an access
token, we will first call a publically accessible action to get an access token that the user will
pass to all the other actions as the query URL parameter.

We will start by creating a new model from the Customer database table and putting it into the
common/models folder. Then, we will create a new user in the User database table using, for
example, foo as the username and
$2a$12$xzGZB29iqBHva4sEYbJeT.pq9g1/VdjoD0S67ciDB30EWSCE18sW6 as the
password (this is equivalent to the hashed bar text).

Create a new controller in api/controllers/CustomersController.php that only
extends the behaviors() method to implement HTTPBasicAuth and QueryParamAuth:

<?php
namespace api\controllers;

use yii\rest\ActiveController;
use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\QueryParamAuth;

class CustomersController extends ActiveController
{
 public $modelClass = 'common\models\Customer';

 public function behaviors()
 {
 $behaviors = parent::behaviors();

 $behaviors['authenticator'] = [
 'class' => CompositeAuth::className(),
 'authMethods' => [
 [
 'class' => HttpBasicAuth::className(),
 'auth' => function($username, $password)
 {
 $out = null;
 $user = \common\models\User::findByUsername($username);
 if($user!=null)
 {
 if($user->validatePassword($password)) $out = $user;
 }
 return $out;
 }
],
 [
 'class' => QueryParamAuth::className(),
]
]
];

 return $behaviors;
 }
}

In HTTPBasicAuth, we implement the auth property inside the configuration array by
checking $username and then validating the password. If the username and password match
each other, it will return the user found or will otherwise be null.

QueryParamAuth, instead, does not need any property other than the class, since we will use
access-token as the query parameter name. Nevertheless, to complete this task, we need an
action that will return the related user's access token after passing both the username and
password.

For this purpose, we will add the actionAccessTokenByUser() method, which looks for
the user with the $username and $password parameters passed. If the user already exists, its

access_token property will be updated with a random string, so every time we call this
action, access_token will change and the previous one will be cancelled:

 public function actionAccessTokenByUser($username, $passwordHash)
 {
 $accessToken = null;

 $user = \common\models\User::findOne(['username' => $username, 'password_hash' => $passwordHash]);
 if($user!=null)
 {
 $user->access_token = Yii::$app->security->generateRandomString();
 $user->save();
 $accessToken = $user->access_token;
 }
 return ['access-token' => $accessToken];
 }

Finally, to test HTTPBasicAuth, we need to pass the WWW-Authentication header by calling
the http://hostname/yiiadv/api/web/customers/index URL.

If we want to use QueryParamAuth, we need to:

Get access-token returned from
http://hostname/yiiadv/api/web/customers/access-token-by-user, by
passing the username and hashed password
Call http://hostname/yiiadv/api/web/customers/index?access-token, by
passing the access-token property value received from the previous request

QueryParamAuth calls the findIdentityByAccessToken() function of
IdentityInterfaces(the user mode). So, check that the method is implemented, and if it's
not, implement it as follows:

public static function findIdentityByAccessToken($token, $type = null)
 {
 return User::findOne(['access_token' => $token]);
 }

Pay attention, as this way of using access tokens allows the use of the REST API with the
same credentials for only one client at a time. This is because any time an access-token-
by-user is called, a new access-token will be created. Therefore, it should be created a
relation one-to-many between users and access-token in order to provide multiple clients
with access using the same username/password credentials.

New controller action
It is very simple to add new actions to the REST API controller. We only need to remember
three differences in the web controller:

Verb setting for the new action
Authenticate the setting for the new action
Output for the new action

The first two steps are configured in the behaviors() method of the controller:

 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['verbs'] = [
 'class' => \yii\filters\VerbFilter::className(),
 'actions' => [
 'myCustomAction' => ['get', 'head'],
],
];

 $behaviors['authenticator'] = [
 'except' => 'myCustomAction',
 'class' => HttpBasicAuth::className(),
];

 return $behaviors;
 }

public function actionMyCustomAction()
{
 …
 …

}

In the first part of the behaviors() method, we will only set the get and head HTTP
methods to call the myCustomAction action. If we try to call this action with other HTTP
methods, we will get a not supported exception.

In the last part of the behaviors() method, we will set it so that myCustomAction has not
got authentication, since it is in the except property.

The third difference, output for the new action, states that we have different ways to return
data. We can use:

A key-value pair array to create a single object from scratch
An ActiveRecord instance to create a single object
An ActiveRecord array to create a list of objects
A data provider

In this last case, the framework will automatically output pagination information and links to

other pages (if present).

Example – getting a rooms list for a reservation
In this example, we need to create a Reservation model in the common/models folder using
Gii.

Then, we create a new controller in api/controllers/ReservationsController.php:

<?php
namespace api\controllers;

use Yii;
use yii\rest\ActiveController;
use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\QueryParamAuth;

class ReservationsController extends ActiveController
{
 public $modelClass = 'common\models\Reservation';

 public function actionIndexWithRooms()
 {
 $reservations = \common\models\Reservation::find()->all();

 $outData = [];
 foreach($reservations as $r)
 {
 $outData[] = array_merge($r->attributes, ['room' => $r->room->attributes]);
 }
 return $outData;
 }

}

Now, let's call http://hostname/yiiadv/api/web/reservations/index-with-
rooms, where we will display a list of reservations, in each of which the room property is
expanded together with the content of room object related to the reservation.

Note

Take care to ensure that the room relation already exists in the Reservation model. If not, we
must add this relation to the Reservation model:

 public function getRoom()
 {
 return $this->hasOne(Room::className(), ['id' => 'room_id']);
 }

However, this solution is inefficient since we always get all the rows and if there are too many
of them, this can result in it being too expensive for us. To solve this problem, we could use a
DataProvider created from a set of data found, or better yet, a more simple solution

automatically provided by Yii.

Indeed, Yii provides some easy ways to display relations and filter returned fields. For
example, there could be fields that we do not want to show, such as a password, private data,
and so on.

Models have these methods:

fields(): By default, classes that extend yii\base\Model::fields() return all the
model attributes as fields, while classes that extend
yii\db\ActiveRecord::fields() only return the attributes that have been populated
from the DB
extraFields(): By default, classes that extend yii\base\Model::extraFields()
return nothing, while classes that extend yii\db\ActiveRecord::extraFields()
return the names of the relations that have been populated from the DB

The first method, fields(), is a key-value array where the key is the name of the field
returned. The value can be empty if the returned content is the attribute with the same name as
the key, a string indicating which attribute to get the returned value from, or a callable PHP
function to manipulate the returned value.

The second method, extraFields(), is a string array whose values are relations defined in
the model class.

Finally, to dynamically filter the requested field, we append the fields parameter to the
requested URL and the expand parameter to get a list of relations from the models.

So, if we call http://hostname/yiiadv/api/web/reservations/index?
expand=room, we will get the same result but we will also have the pagination and loaded
models that are only necessary for that page.

However, it would be more convenient for us to distribute an URL without special parameters,
such as the expand and fields, for example, in order to avoid confusion among developers
who will use these APIs.

We can use actionIndexWithRooms as a wrapper for actionIndex with an expanded
parameter in this way:

 public function actionIndexWithRooms()
 {
 $_GET['expand'] = 'room';
 return $this->runAction('index');
 }

With this solution, the http://hostname/yiiadv/api/web/reservations/index-
with-rooms URL is simply a wrapper for
http://hostname/yiiadv/api/web/reservations/index?expand=room but this
prevents developers from having to remember which parameters to pass to the URL to obtain
the necessary nodes in the response.

Customizing authentication and response
Yii allows us to quickly create a custom authentication method for our application. This is useful because in some
cases, the previously mentioned authentications are not sufficient.

A custom authentication model can be made by extending the yii\filters\auth\AuthMethod class, which
implements yii\filters\auth\AuthInterface that requires overriding the authenticate ($user, $request,
and $response) method:

<?php

namespace api\components;

use yii\filters\auth\AuthMethod;
use Yii;

class CustomAuthMethod extends AuthMethod {

 public function authenticate($user, $request, $response) {
 …
 …
 …
}
…
…
…
}

Even though the REST API should be stateless, or rather should not save session data, it could be necessary to store
some information or preferences during a session across requests.

So, if we need to support a session, we can start it through the authenticate() method called in the
beforeAction() event. The idea is to use QueryParamAuth using access-token as the session ID to identify the
current session.

For this purpose, we will create a new folder in api\components to store the custom SessionAuth method.

This is the content of the api/components/SessionAuth.php file where the query URL parameter is named sid:

<?php

namespace api\components;

use yii\filters\auth\AuthMethod;
use Yii;

class SessionAuth extends AuthMethod {
 public $tokenParam = 'sid';

 public function authenticate($user, $request, $response) {
 $accessToken = $request->get($this->tokenParam);

 if (is_string($accessToken)) {

 Yii::$app->session->id = $accessToken;

 $identity = isset(Yii::$app->session['loggedUser'])?Yii::$app-
>session['loggedUser']:null;

 if ($identity !== null) {
 return $identity;
 }
 }

 if ($accessToken !== null) {
 $this -> handleFailure($response);
 }
 return null;
 }

}

It is also necessary to create an action to start the session; otherwise, the user will not be stored in the session.

So, create a new controller called UsersController in api/controllers/UsersController.php to handle the
login:

<?php
namespace api\controllers;

use Yii;
use yii\rest\ActiveController;
use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\QueryParamAuth;
use api\components\SessionAuth;
use common\models\User;

class UsersController extends ActiveController
{
 public $modelClass = 'common\models\User';

 public function behaviors()
 {
 $behaviors = parent::behaviors();

 $behaviors['authenticator'] = [
 'except' => ['login'],
 'class' => SessionAuth::className(),
];

 return $behaviors;
 }

 public function actionLogin($username, $passwordHash)
 {
 $dataOut = null;

 $user = User::findOne(['username' => $username, 'password_hash' =>
$passwordHash]);
 if($user != null)
 {
 $session = Yii::$app->session;
 $session->open();

 $session['loggedUser'] = $user;

 $sid = $session->id;

 $dataOut = ['sid' => $sid];
 }

 return $dataOut;
 }
}

As earlier defined, in the behaviors() method, the actions of this controller, except for login, will authenticate
against the SessionAuth component that checks primarily whether a user has successfully executed the login action.

We now call http://hostname/yiiadv/api/web/users/login?username=&passwordHash= and fill out the
username and passwordHash fields. It returns the session ID to access the session data. Also, the loggedUser
property is filled out in the session with the user model data.

Now, we can store shared information among requests as a typical web application.

Now, let's see how to customize a response in RESTful Web Services. First of all, this operation could be needed
when we have to add, for example, extra information, such as explicit error messages to display in the client or
operation status code.

The custom response must extend \yii\web\Response and override the send() method, as follows:

<?php
namespace api\components;

use yii\rest\ActiveController;
use Yii;
use yii\web\Response;

class ApiResponse extends \yii\web\Response
{

 public function send()
 {
 ..
 ..
 ..
 }
}

This send() method manipulates data stored in the object properties, mainly in the $this->data variable.

This customization, which we will see in detail in the next example, is incomplete, as the send() method should
implement all the manipulations of data made from the \yii\web\Response version. We must remember that Yii
returns data based on the Accept HTTP header passed from the client and many other convenient functionalities.

It is possible to maintain this behavior simply by calling parent::send() before returning from the send() function,
as follows:

 public function send()
 {
 ..
 ..
 parent::send();
 }

Because, as said before, send() uses the $this->data variable as a container for data to be sent.

Example – status response node in data received
Now, let's apply the concepts seen in the previous chapter to add extra data into a response. This practice is useful
when we need to return to client information about the operation status and extra data such as detailed error
messages.

The purpose of this example is to return a response with two attributes:

The status attribute containing three properties: response_code with an integer value indicating the
operation state, response_message with a string value representation of response_code and
response_extra with a custom text string
The data attribute containing the expected output data

We will use a class containing all the integer codes and their text representations as a response code, since the integer
value will be used to fill in the response_code property and a string representation to fill in the response_message
property.

Create a new class file in api/components/ApiResponseCode.php with this content:

<?php
namespace api\components;

class ApiResponseCode
{
 const ERR_OK = 0;
 const ERR_LOGIN_REQUIRED = 1;
 const ERR_METHOD_NOT_FOUND = 2;
 const ERR_NOT_FOUND = 3;
 const ERR_NOT_SAVED = 4;
 const ERR_DUPLICATE = 5;
 const ERR_INPUT_DATA_FORMAT = 6;

 public static function responsesExtras()
 {
 return [
 ApiResponseCode::ERR_OK => '',
 ApiResponseCode::ERR_LOGIN_REQUIRED => 'Login required to use this
interface',
 ApiResponseCode::ERR_METHOD_NOT_FOUND => 'Interface not found',
 ApiResponseCode::ERR_NOT_FOUND => 'Record not found',
 ApiResponseCode::ERR_NOT_SAVED => 'Error in saving',
 ApiResponseCode::ERR_DUPLICATE => 'Duplicated record',
 ApiResponseCode::ERR_INPUT_DATA_FORMAT => 'Input data format incompatible',
];
 }

 public static function responseExtraFromCode($rc)
 {
 $al = ApiResponseCode::responsesExtras();
 return (isset($al[$rc]))?$al[$rc]:null;
 }

 public static function responseMessages()
 {
 return [
 ApiResponseCode::ERR_OK => 'OK',
 ApiResponseCode::ERR_LOGIN_REQUIRED => 'ERR_LOGIN_REQUIRED',
 ApiResponseCode::ERR_METHOD_NOT_FOUND => 'ERR_METHOD_NOT_FOUND',
 ApiResponseCode::ERR_NOT_FOUND => 'ERR_NOT_FOUND',
 ApiResponseCode::ERR_NOT_SAVED => 'ERR_NOT_SAVED',
 ApiResponseCode::ERR_DUPLICATE => 'ERR_DUPLICATED',
 ApiResponseCode::ERR_INPUT_DATA_FORMAT => 'ERR_INPUT_DATA_FORMAT',
];
 }

 public static function responseMessageFromCode($rc)
 {
 $al = ApiResponseCode::responseMessages();
 return (isset($al[$rc]))?$al[$rc]:null;
 }
}

In this component, we defined a list of constants that represent all response codes that can be sent to a client. For
each response code, there will be a relative text representation returned by the responseMessage() static method.
Then, there will also be an array of extra text messages returned by responseExtras() that will fill the
response_extra property if no specific text extra is passed.

Finally, we must write the component that extends \yii\web\Response named ApiResponse in
api/components/ApiResponse.php. In this component, we will define three custom properties:
statusResponseCode, statusResponseMessage, and statusResponseExtra, which we are going to fill with
content composing in the status property.

In this way, we will have a convenient method, fillStatusResponse(), based on the $code parameter, which will
automatically fill in both the statusResponseExtra and statusResponseMessage properties.

The core of this component is the overridden send() method that will return status with ERR_OK as response
message and 0 as response code by default if there are no client errors (as authentication, not found, and so on.). This
is unless a developer changes the values of statusResponseCode, statusResponseExtra, and
statusResponseMessage, or manually or automatically calls its properties with fillStatusResponse().

Otherwise, if there are some client errors, we will support Not Authenticated and Not Found errors.

This is the content of the api/components/ApiResponse.php file:

<?php
namespace api\components;

use Yii;
use yii\web\Response;

class ApiResponse extends Response
{
 public $statusResponseCode;
 public $statusResponseMessage;
 public $statusResponseExtra;

 /**
 * Set response code and extra from code.
 *
 * Response extra will be filled based on $extraData value
 * If $extraData is null, response extra will be value from
ApiResponseCode::responseExtraFromCode($code)
 * If $extraData is string, response extra will be filled with this value
 */
 public function fillStatusResponse($code, $extraData=null)
 {
 $responseExtra = ApiResponseCode::responseExtraFromCode($code);
 $responseMessage = ApiResponseCode::responseMessageFromCode($code);

 if($extraData == null)
 {
 $statusResponseExtra = $responseExtra;
 }
 else
 {
 $statusResponseExtra = $extraData;
 }

 $this->statusResponseCode = $code;
 $this->statusResponseMessage = $responseMessage;
 $this->statusResponseExtra = $statusResponseExtra;
 }

 /**
 * Override send() method.
 *
 * $this->data member contains data released to client.
 */
 public function send()
 {
 $responseMessage = ApiResponseCode::responseMessageFromCode($this-

>statusResponseCode);

 if($this->isClientError)
 {
 $dataOut = $this->data;

 if($this->statusCode == 401) { // Not authorized
 $dataOut = null;

 $this->fillStatusResponse(ApiResponseCode::ERR_LOGIN_REQUIRED);
 }
 else if($this->statusCode == 404) { // Non found
 $dataOut = null;

 $this->fillStatusResponse(ApiResponseCode::ERR_METHOD_NOT_FOUND);
 }

 $this->data = ['status' => ['response_code' => $this->statusResponseCode,
'response_message' => $this->statusResponseMessage, 'response_extra' => $this-
>statusResponseExtra], 'data' => $dataOut];

 }
 else
 {
 $this->data = ['status' => ['response_code' => $this->statusResponseCode,
'response_message' => $responseMessage, 'response_extra' => $this->statusResponseExtra
], 'data' => $this->data];
 }

 parent::send();
 }

 public function init()
 {
 parent::init();

 $this->statusResponseCode = ApiResponseCode::ERR_OK;
 }

}

Finally, we have to change the configuration file api/config/main.php by adding the response property as a
component to indicate to use a custom response class:

 'response' => [

 'format' => yii\web\Response::FORMAT_JSON,
 'charset' => 'UTF-8',
 'class' => '\api\components\ApiResponse',

],

Let's make some attempts. Try to call the non-existent URL
http://hostname/yiiadv/api/web/reservations/index-inexistent.

This will be the output, correctly returning data as null and the status with the error explained:

The response with an error after calling a non-existent URL

Then, try to call a URL that requires authentication: http://hostname/yiiadv/api/web/customers/index,
which we already implemented in the previous paragraphs.

This will be the output, correctly returning data as null and the status with the error explained:

The response with an error when calling the URL with authentication

Finally, we try to call a URL that returns data: http://hostname/yiiadv/api/web/rooms/index, which is
already implemented in the previous paragraphs.

This will be the output, correctly returning data as filled and successful as the status:

A response with a successful output

Other forms of export – RSS
Yii allows us to create a custom format response to output data. The response format can be changed based on the
Accept HTTP header sent by the client or done programmatically. When Yii receives a request, it searches for an
available response formatter based on the Accept HTTP header value and finally calls the format ($response)
method of the response formatter found.

Therefore, there are three steps to create custom responses:

1. Implementing the yii\web\ResponseFormatterInterface interface.
2. Adding a new custom formatter response property in the configuration file.
3. Extending the behaviors() method of the controller to handle specific Accept HTTP header values.

The first step requires us to implement the yii\web\ResponseFormatterInterface interface and extend its
method format ($response). Data to be formatted is stored in the $response->data property, and the response
to client must be filled out in the $response->content property:

<?php
namespace api\components;

use yii\web\ResponseFormatterInterface;

class RssResponseFormatter implements ResponseFormatterInterface
{
 public function format($response)
 {
 $response->getHeaders()->set('Content-Type', 'application/rss+xml; charset=UTF-
8');
 if ($response->data !== null) {
 $response->content = "<rss></rss>";
 }
 }
}

The second step requires us to add a reference to the custom response formatter. For this purpose, we will use the
formatters property of response, which is an array where keys are the format names, and the array values are the
corresponding configurations to create formatter objects:

 'response' => [
 'formatters' => [

 'rss' => [
 'format' => 'raw',
 'charset' => 'UTF-8',
 'class' => '\api\components\RssResponseFormatter',
],

]

],

The third step requires us to extend the behaviors() method of the controller in order to handle specific Accept
HTTP header values and indicate to the framework which response formatter to use according to the Accept HTTP
header value, for example:

 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['contentNegotiator']['formats']['application/rss+xml'] = 'rss';
 return $behaviors;
 }

When a client sends a request with the Accept HTTP header set to application/rss+xml, this controller will use
the rss formatter (read from the configuration file) to prepare the response. If we specify a formatter that does not
exist in the configuration file, we will get InvalidConfigException.

Example – creating an RSS with a list of available rooms
Now, let's look at how to create an RSS response formatter for the available rooms.

First of all, we must create the complete response formatter component in
api/components/RssResponseFormatter.php:

<?php
namespace api\components;

use yii\web\ResponseFormatterInterface;

class RssResponseFormatter implements ResponseFormatterInterface
{
 public function format($response)
 {
 $response->getHeaders()->set('Content-Type', 'application/rss+xml; charset=UTF-
8');
 if ($response->data !== null) {
 $rssOut = '<?xml version="1.0" encoding="UTF-8"?>';
 $rssOut .= '<rss>';
 $rssOut .= '<channel>';
 foreach($response->data as $d)
 {
 $rssOut .= '<item>';
 $rssOut .= sprintf('<title>Room #%d at floor %d</title>', $d['id'],
$d['floor']);
 $rssOut .= '</item>';
 }
 $rssOut .= '</channel>';
 $rssOut .= '</rss>';

 $response->content = $rssOut;;
 }
 }
}

The RSS response formatter must implement the format ($response) method to correctly implement
yii\web\ResponseFormatterInterface. When the format ($response) method is invoked, it will set the
Content-Type HTTP header to application/rss+xml, use data that is ready to be sent from the $response-
>data property, and fill in the $response->content property, which is the final content received by the client.

Then, we must change the api/config/main.php file to add the response property with the support of the new
response formatter:

 'response' => [
 'formatters' => [

 'rss' => [
 'format' => 'raw',
 'charset' => 'UTF-8',
 'class' => '\api\components\RssResponseFormatter',
],

]
],

The formatter property is an array of the response formatter where the keys are the format names and the values
are the corresponding configurations to create formatter objects.

In this case, we configured a new formatter called rss that represents the
\api\components\RssResponseFormatter component.

Finally, we have to configure the behaviors() method in the controller to handle the Accept HTTP header with the
application/rss+xml value.

Open the RoomsController file in api/controllers/RoomsController.php and add the extension to the
behaviors() method:

 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['contentNegotiator']['formats']['application/rss+xml'] = 'rss';
 return $behaviors;
 }

Starting from the base configuration of $behaviors inherited from parent::behaviors(), the
contentNegotiator attribute contains a reference to formats for the Accept HTTP header value. The array keys
are the Accept HTTP header value that is supported, and the values are the corresponding response formatter.

If we try to make the following request:

GET /yiiadv/api/web/rooms/index HTTP/1.1
Host: hostname
Accept: application/rss+xml

We should display the following response:

The RSS response output

We can also use the response formatter programmatically. It is enough to set the format of the Yii::$app-
>response application component to a configured response formatter in the configuration file.

For example, we can add a new action named actionIndexRss in RoomsController that will output data using
RssResponseFormatter in this way:

 public function actionIndexRss()
 {
 \Yii::$app->response->format = 'rss';

 $provider = new \yii\data\ActiveDataProvider([
 'query' => \common\models\Room::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);

 return $provider;
 }

Summary
In this chapter, we created api for use in a mobile app through the use of the powerful tools
provided by Yii. We adopted the approach of creating a new application in order to distribute
RESTful web services, instead of mixing web and api controllers. For this purpose, at the
beginning of the chapter, we configured a new REST application using the advanced template.

After configuring the RESTful web service environment, we discovered two kinds of api
controllers that Yii provides by default, then we created controllers with custom data and data
from ActiveRecord.

Next, we found out the default authentication methods for RESTful Web Services provided by
framework and you learned how to use them.

Finally, we focused on how to customize the response output format, taking an example of
how to create an RSS version of the available data.

In the next chapter, you will learn how to write a console application and will look at the
differences between web and console apps.

Chapter 12. Create a Console Application
to Automate the Periodic Task
In this chapter, we will learn how to write a console application and will discover the main
differences between web and console apps.

Then, we will create our first console controller, using a practical example to illustrate how to
update a database table.

In the final paragraphs, we will see how to set output colors and text formats and how to
implement a complete periodic task, such as sending an e-mail with daily reservations. We will
cover the following topics in this chapter:

Interacting with console applications
Creating a console controller

Example – setting an alarm flag for expired reservation
Formatting the output from the console
Implementing and executing cron jobs

Example – sending an e-mail with new reservations of the day

Interacting with console applications
The console is the third application installed by default with the advanced template.

This app is configured to launch commands through a console access, and it has the same
application structure of those already seen in the previous chapters. Therefore, in this section,
we require a console access to the host.

Compared to the web and API applications used until now, there are some differences.

The public properties of a controller, in fact, are visible from the command line as option.
It is required to extend the option() method of the controller to make those properties
available. Also, based on specific action, action parameters are passed as arguments of the
command line.

Finally, a console controller action can return an exit code, a number where 0 indicates that
everything is OK, a best practice for console application development.

Here is a typical usage of the console application starting from a shell:

yii <route> [--option1=value1 --option2=value2 ... argument1 argument2 ...]

The elements of the preceding code are explained as follows:

route: This indicates the controller/action path to be called

option: This indicates the accessible public properties of the controller for that
specific action; we can access only the public properties returned by the options()
method of the controller
argument: This indicates the arguments to be passed to the controller action

Note

There is an option always available, appconfig, to indicate which path of the
configuration files you must use. If it is not set, the default configuration file will be
adopted.

Yii provides a set of core console applications, which we can access by calling the help
controller (being a web application, the default action will be index), so as to display
everything concerning the list of available console controllers or details about a single
controller or action controller.

Let's consider an example; open the command line (in this case, a Linux shell) and type the
following from the project root:

$./yii help

This will display an output similar to the following (partially displayed):

This is Yii version 2.0.4.
The following commands are available:
- asset Allows you to combine and compress your JavaScript and CSS files.
 asset/compress (default) Combines and compresses the asset files according to the given configuration.
 asset/template Creates template of configuration file for [[actionCompress]].
- cache Allows you to flush cache.
 cache/flush Flushes given cache components.
 cache/flush-all Flushes all caches registered in the system.
 cache/flush-schema Clears DB schema cache for a given connection component.
 cache/index (default) Lists the caches that can be flushed.
…
…

Here, the first grouping level represents the controller names (with relative descriptions on the
right), and the second level includes the actions of the relative controller. We will require a
more deep response when passing the name of controller to help it:

$./yii help message

To display the controller description and the list of the actions, we can also require help about
the complete route (controller/action) typing:

$./yii help message/config

This returns an output containing the description of the action, its usage, and the options
available:

DESCRIPTION
Creates a configuration file for the "extract" command.
The generated configuration file contains detailed instructions on
how to customize it to fit for your needs. After customization,
you may use this configuration file with the "extract" command.
USAGE
yii message/config <filePath> [...options...]
- filePath (required): string
 output file name or alias.
OPTIONS
--appconfig: string
 custom application configuration file path.
 If not set, default application configuration is used.
--color: boolean, 0 or 1
 whether to enable ANSI color in the output.
 If not set, ANSI color will only be enabled for terminals that support it.
--interactive: boolean, 0 or 1 (defaults to 1)
 whether to run the command interactively.

Creating a console controller
A console controller is totally similar to the web controllers that we created earlier. It extends
the \yii\console\Controller base class and can return an integer value indicating the
status response of the action (0 stands for successful execution of the action), also named
exit code.

The public properties of the controller can be made available as an option only if their names
are returned by the options() method that accepts actionID as the parameter; so the
response can be customized according to actionID.

The response of the options() method is an array of text string that represents the public
property names of the controller.

Starting from the advanced template application that we previously installed in the yiiadv
folder, let's create a new console controller named MyExampleController in
console/controllers/MyExampleController.php with the following content:

<?php

namespace console\controllers;

use \yii\console\Controller;

/**
 * This is an example controller
 */
class MyExampleController extends Controller
{
 public $option1;
 public $option2;

 public function options($action)
 {
 return ['option1'];
 }

 /**
 * Simply return a welcome text
 */
 public function actionTest($param1)
 {
 echo 'this is my first controller using console application';
 echo "\n";
 echo "You have passed param1 with value: ".$param1;
 echo "\n";
 echo "Value of option1 is: ".$this->option1;
 echo "\n";

 // equivalent to return 0;
 return Controller::EXIT_CODE_NORMAL;
 }

}

?>

This controller contains two public properties, but only option1 will be usable from the
console, since it is returned by the options() method. We will display the result of the
following command:

$./yii help my-example

The preceding command will return the following output:

DESCRIPTION
This is an example controller
SUB-COMMANDS
- my-example/test Simply return a welcome text
To see the detailed information about individual sub-commands, enter:
 yii help <sub-command>

If we need other details about the test action, we can launch the preceding command
specifying the complete route:

$./yii help my-example/test

Now, try to launch the command with the route my-example/test, without any parameter:

$./yii my-example/test

We will receive an error about missing param1. The following is the correct syntax:

$./yii my-example/test "this is value for param1"

The preceding command will return the following output without any value for option1:

this is my first controller using console application
You have passed param1 with value: this is value for param1
Value of option1 is:.

We can also pass the value option1 by appending --option1 to the command, as follows:

$./yii my-example/test "this is value for param1" --option1="this is value for option1"

The preceding command will return a complete output, as follows:

this is my first controller using console application
You have passed param1 with value: this is value for param1
Value of option1 is: this is value for option1

Example – setting an alarm flag for expired reservation
Now, let's consider an example to illustrate how to use console commands to execute
maintenance operations.

In console controllers, we can access all the models, components, and extensions available in
the project, as well as what we have done in the web application. Therefore, we will manipulate
data in the same way as we should do for a web application.

Starting from the reservation database table used in the previous chapters, we will add a new
Boolean field, named expired, to set which reservations are out of the end date.

This is the structure of the reservation table to store data in the MySQL Server:

CREATE TABLE `reservation` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `room_id` int(11) NOT NULL,
 `customer_id` int(11) NOT NULL,
 `price_per_day` decimal(20,2) NOT NULL,
 `date_from` date NOT NULL,
 `date_to` date NOT NULL,
 `reservation_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `expired` int(1) NOT NULL DEFAULT '0',
 PRIMARY KEY (`id`)
)

Now, let's insert some records to make a simulation. We will update the expired field with
value 1 if today is after date_to value; otherwise, it will be 0.

These are the records to insert in the reservation database table:

INSERT INTO `reservation` (`id`, `room_id`, `customer_id`, `price_per_day`, `date_from`, `date_to`, `reservation_date`, `expired`) VALUES
(1, 2, 1, 90.00, '2015-02-10', '2015-05-23', '2015-05-24 22:45:37', 0),
(2, 2, 1, 48.00, '2019-08-27', '2019-08-31', '2015-05-24 22:45:37', 0),
(3, 1, 2, 105.00, '2015-09-24', '2015-10-06', '2015-06-03 00:21:14', 0),
(4, 1, 2, 150.00, '2015-06-22', '2015-06-28', '2015-06-21 22:24:25', 0),
(5, 1, 2, 150.00, '2015-07-22', '2015-08-28', '2015-06-21 22:24:34', 0);

Note

Make sure that users exist in user database table

Now, create a new console controller in
console/controllers/ReservationsController.php with the following content:

<?php

namespace console\controllers;

use \yii\console\Controller;

/**
 * Manage reservations
 */
class ReservationsController extends Controller
{
 /**
 * Update 'expired' field of reservations
 */
 public function actionUpdateExpired()
 {
 $models = \common\models\Reservation::find()->all();

 foreach($models as $m)
 {
 echo sprintf('Check reservation #%d - date_to = %s - status : %s', $m->id, $m->date_to, (strtotime($m->date_to)<=time())?'OK':'Expired');
 echo "\n";
 // Set expired field. I'll for every model because if we could have changed 'date_to' value.
 $m->expired = (strtotime($m->date_to)<=time())?0:1;
 $m->save();
 }
 // equivalent to return 0;
 return Controller::EXIT_CODE_NORMAL;
 }
}
?>

In actionUpdateExpired, we display for each model some data to the console, such as id,
date_to, and status. Then, we will set for each model the value of the expired field,
based on the date_to value.

Finally, we will launch this command:

$./yii reservations/update-expired

This will return the following output:

Check reservation #1 - date_to = 2015-05-23 - status : OK
Check reservation #2 - date_to = 2019-08-31 - status : Expired
Check reservation #3 - date_to = 2015-10-06 - status : Expired
Check reservation #4 - date_to = 2015-06-28 - status : OK
Check reservation #5 - date_to = 2015-08-28 - status : OK

Formatting the output from the console
The base class console controller yii\console\Controller supports methods to display
colored and formatted output.

There are two standard methods to display the output, which are as follows:

stdout: This prints a string to STDOUT
strerr: This prints a string to STDERR

Both these methods support more parameters: the first is the text string to be displayed, and
the other includes the formatting options that can be passed to make a pretty output.

There are formatting options for colors and typing; these are defined by constants from
\yii\helpers\Console; for example, BG_CYAN for cyan background color, BG_RED for
red background color, and UNDERLINE for underlined text.

Let's see an example using the following code:

$this->stdout("Hello?\n", Console::BOLD);

This will display Hello? (with a carriage return) with bold font. Sometimes, it could be
possible that no effect will be displayed, since our terminal does not support colors.

In this case, a method of the console controller will help us verify our terminal capabilities:
isColorEnabled() returns a Boolean indicating whether the terminal supports ANSI colors.

Both the methods strout and strerr are applied to the whole text string and are passed as
the first parameter. If we want to apply some features only to a single part of the text, we must
use the ansiFormat method that returns an ANSI-formatted string.

Let's take an example. Create a controller to check whether the console supports ANSI or not,
and try to print the colored text if this feature is supported.

Then, create a new controller named ColorController in
console/controllers/ColorController.php with this content:

<?php

namespace console\controllers;

use \yii\console\Controller;
use \yii\helpers\Console;

/**
 * Colors dedicated controller
 */
class ColorController extends Controller
{
 /**
 * Simply return a welcome text

 */
 public function actionIsClientEnabled()
 {
 if($this->isColorEnabled())
 {
 $this->stdout('OK, terminal supports colors!');
 }
 else
 {
 $this->stdout('NOT OK, terminal does not support colors!');

 }

 $this->stdOut("\n");

 // equivalent to return 0;
 return Controller::EXIT_CODE_NORMAL;
 }

 public function actionPrintColouredText()
 {
 $colouredText = $this->ansiFormat('This text is coloured', Console::FG_RED);
 $normalText ="This text is normal";

 $this->stdout(sprintf("%s - %s\n", $normalText, $colouredText));
 }

}

?>

We call launch to check if client supports ANSI colors or not:

$./yii color/is-client-enabled

And to display colored text (if the client supports it):

$./yii color/print-coloured-text

The Console class under \yii\helpers\ contains many other useful methods to format text
and output, such as confirm() or prompt() to get input from the user, or progress to create
a progress bar to display the execution state.

Implementing and executing cron jobs
The main usage of console applications consists in the execution of periodic tasks using cron
job (on Linux or Unix machines).

We can use console applications to send massive e-mails to perform system maintenance or to
check a specific status of the application.

In the next example, we will see how to send an e-mail with a summary of the reservations
made in the current date.

Example – sending an e-mail with new reservations of the
day
This example illustrates how to send an e-mail with a summary of new daily reservations.

First of all, let's configure the mailer component in console/config/main.php, if it is not
already configured.

It is enough to pass a few parameters to the component:

 'components' => [
 ..
 ..

 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
 'viewPath' => '@common/mail',
 // send all mails to a file by default. You have to set
 // 'useFileTransport' to false and configure a transport
 // for the mailer to send real emails.
 'useFileTransport' => true,
],
..
..
],
];

The class parameter indicates the class that handles the component, viewPath, which
indicates where views of the e-mail, or rather e-mail templates, are stored; the last parameter
useFileTransport indicates the e-mail sending method.

Now, in ReservationsController, under
console/controllers/ReservationsController.php, add the method,
actionReservationsOfTheDay, which sends the content of daily reservations:

 public function actionReservationsOfTheDay($currentDate=null)
 {
 if($currentDate == null) $currentDate = date('Y-m-d');
 $models = \common\models\Reservation::find()->where('DATE(reservation_date) = "'.$currentDate.'"')->all();
 \Yii::$app->mailer->compose(['html' => 'reservationsOfTheDay-html', 'text' => 'reservationsOfTheDay-text'], ['models' => $models, 'currentDate' => $currentDate])

 ->setFrom('myemail@example.com')
 ->setTo('administrator@example.com')
 ->setSubject('Reservations of the day: '.$currentDate)
 ->send();

 }

Note

It is advisable to put the from e-mail parameter, for example, in a params.php file, which
contains all the global parameters available in the whole application.

This method simply gets the currentDate parameter from the input so that we can change
the evaluation date as we need; the action body finds reservations for the input date and passes
them to the e-mail view reservationsOfTheDay in the html and text format.

Now, we must create the content of the e-mail format, creating two files in common/mail:
reservationsOfTheDay-html.php and reservationsOfTheDay-text.php.

This is the content of the HTML version:

There are <?= count($models) ?> reservations for the date <?= $currentDate ?>

<?php if(count($models)>0) { ?>
 This is a summary:

 <table>
 <tr>
 <td>Reservation #</td>
 <td>Room</td>
 <td>Customer</td>
 <td>Price per day</td>
 <td>Date from</td>
 <td>Date to</td>
 </tr>

 <?php foreach($models as $m) { ?>
 <tr>
 <td><?= $m->id ?></td>
 <td><?= $m->room->floor.' '.$m->room->number ?></td>
 <td><?= $m->customer->surname.' '.$m->customer->name ?></td>
 <td><?= $m->price_per_day ?></td>
 <td><?= $m->date_from ?></td>
 <td><?= $m->date_to ?></td>
 </tr>
 <?php } ?>

 </table>
<?php } else { ?>
 <i>There is no summary for current date</i>
<?php } ?>

This is the corresponding content in text format (not required for the HTML e-mail client):

There are <?= count($models) ?> reservations for the date <?= $currentDate ?>

<?php if(count($models)>0) { ?>
 This is a summary

 <?php foreach($models as $m) { ?>
 Reservation #: <?= $m->id ?> - Room: <?= $m->room->floor.' '.$m->room->number ?> - Customer: <?= $m->customer->surname.' '.$m->customer->name ?> - Price per day: <?= $m->price_per_day ?> - Date from: <?= $m->date_from ?> - Date to: <?= $m->date_to ?>
 <?php } ?>
<?php } else { ?>
 There is no summary for the current date
<?php } ?>

The command can be executed by launching:

$./yii reservations/reservations-of-the-day

We can also call the pass date parameter to change the date to check, for example, to check
the reservations made on 2015-08-05:

$./yii reservations/reservations-of-the-day "2015-08-05"

The last thing to do is to attach that command to a periodic task scheduler according to the
operating system, for instance, cron in the Linux or Unix environment.

Summary
In this chapter, we have discussed the third kind of default application installed with Yii's
advanced template, the console application.

We have seen the primary differences between console and web applications, and we have
learned how to create our first console controller, handling options and parameters to pass to
the actions. Then, we have applied a console application with a concrete example, such as
making maintenance operation to the reservation table in order to update the status of the
reservations to expired.

Then, we focused on how the console application can make pretty outputs, using colors and
text formatting features.

Finally, we have mastered how to create a complete periodic task with a console controller
action to send a daily summary e-mail containing reservations made in current date.

In the final chapter, we will see the final stage of our development, where we have to make the
code reusable but, especially, maintainable.

Chapter 13. Final Refactoring
This is the final stage of our development. Now that we have written all the working code, we
must make it reusable but most importantly, maintainable. This chapter will help you to reuse
code by means of widgets and other components. We will see some practical examples on
how to use them. Then, we will deal with documentation, an important aspect of app
development that allows everyone to quickly learn how a project is structured and built.

For the documentation, we are going to use the two most important tools provided by the
framework in order to build API and guide references, making a real-life example. We will
cover the following topics:

Creating widgets
Example – creating a widget with a carousel

Creating components
Example – creating a component that creates a backup of the MySQL database and
sends an e-mail to the administrator

Creating modules
Generating the API documentation

Example – using API documentation to generate doc of the app

Creating widgets
A widget is a reusable client-side code (containing JavaScript, CSS, and HTML) with minimal
logic wrapped in a yii\base\Widget object that we can easily insert and apply in any view.

Building a widget requires you to extend two methods of yii\base\Widget:

The init() method initializes the object
The run() method executes the object

In order to instance a widget, it is enough to call the static widget() method that accepts just
one parameter or better still an array containing values for its public properties.

The following is an example:

 MyWidget::widget(['prop1' => 'value of prop1', …])

This returns a string containing widget output, passing its value value of prop1 for its
prop1 public properties.

If we need to insert an extra code in a widget's execution (for example, in the ActiveForm
widget), we have a more complex way of instantiating the widget, using the begin() and
end() methods.

The first method, begin(), accepts a function parameter with a configuration array to pass to
the widget, and it will return the widget object.

When the second method, end(), is called, the code between these two methods will be
displayed and simultaneously, the end() method directly echoes the output of the widget
run() method:

 $widget = MyWidget::begin(['prop1' => 'value of prop1', …]);

 ..
 .. I can use $widget object here ..
 ..

 MyWidget::end();

As for any other views, in the run() method, we can refer to a view file, through the
render() method, in order to display the widget output.

For example, a widget could be a real-time date/time clock. For this purpose, we will build a
clock based on a block containing the date/time string updated by the JavaScript code. We can
pass to widget construct time some values concerning for example, the color of the border
box.

To make an instance, let's start with the basic template app (but this is obviously also valid for
the advanced template app). Create a new folder (if it does not exist) named components in
the root of the project at the same level of controllers, models, views, and so on, which
will contain all the widgets we want to build.

Then, in this folder, we will create a new file named ClockWidget.php with the complete
path basic/components/ClockWidget.php:

<?php

namespace app\components;

use yii\base\Widget;

class ClockWidget extends Widget
{

 public function init()
 {
 \yii\web\JqueryAsset::register($this->getView());
 }

 public function run()
 {
 return $this->render('clock');
 }

}

In the init() method, we have also made references to the jQuery asset to request the
framework to load the jQuery plugin, since we need it in the view file.

In the run() method, we have rendered the clock view, whose content will be discussed in
next rows.

So, create a new folder at basic/components/views and, within it, a new file named
clock.php with the following code:

<?php

$this->registerJs(<<< EOT_JS

 function ClockWidget_refresh_datetime()
 {
 var dateTimeString = new Date().toString();
 $('#ClockWidget_realtime_clock').html(dateTimeString);
 }

 setInterval(ClockWidget_refresh_datetime,1000);

 ClockWidget_refresh_datetime();
EOT_JS
);

?>

<div style="border:1px solid black;padding:5px;width:200px;text-align:center">

</div>

This code simply displays a box with a string containing real-time values of the current date
and time, updated every second.

Finally, we can use our widget in any view using this code:

<?= \app\components\ClockWidget::widget(); ?>

Example – creating a widget with a carousel
In this example, we will create a widget that consists of a carousel with some rooms (we can
choose which one to display by passing them to the widget with the public property). Again,
we will use a basic template application; however, everything is equally applicable to the
advanced template apps.

For this example, we will create a new controller to use its view as a widget container.

So, let's create this new controller named TestCarouselController at
basic/controller/TestCarouselController.php. From here, we will pass the
models property, consisting of a list of maximum three rooms:

<?php

namespace app\controllers;

use yii\web\Controller;
use app\models\Room;

class TestCarouselController extends Controller
{

 public function actionIndex()
 {
 $models = Room::find()->limit(3)->all();

 return $this->render('index', ['models' => $models]);
 }
}

Next, we will create the view at basic/views/test-carousel/index.php with the widget
output as follows:

This is a carousel widget with some rooms:
<?= \app\components\CarouselWidget\CarouselWidget::widget(['models' => $models, 'options' => ['style' => 'border:1px solid black;text-align:center;padding:5px;']]); ?>

This builds the widget filling and its public properties models and options.

Now it is time to create our widget. To isolate the widget from another code as much as
possible, we create a specific widget folder at the basic/components folder, under a
subfolder named CarouselWidget inside of which we will create the widget file named
CarouselWidget.php.

This widget includes a public property, models that contains the room's model that has been
passed from the container view. It is necessary to pass these models to the Carousel widget at
\yii\bootstrap\Carousel as an array of this kind:

items => [
['content' => '...', 'caption' => '...'],
['content' => '...', 'caption' => '...'],
['content' => '...', 'caption' => '...'],
...
];

In this way, in the init() method, we will create an internal representation of the models
according to the Bootstrap Yii2 widget expectation.

Finally, in the run() method, we will output the view now in the views folder at
basic/components/CarouselWidget/views. This is the widget content; remember that it
is stored in CarouselWidget.php at basic/components/CarouselWidget:

<?php

namespace app\components\CarouselWidget;

use yii\base\Widget;

class CarouselWidget extends Widget
{
 public $carouselId = 'carouselWidget_0';
 public $options = [];
 public $models = [];

 private $carouselItemsContent;

 public function init()

 {
 // It is not necessary because yii bootstrap Carousel widget will load it automatically
 // \yii\jui\JuiAsset::register($this->getView());

 $this->carouselItemsContent = [];
 foreach($this->models as $model)
 {
 $caption = sprintf('<h1>Room #%d</h1>', $model->id);
 $content = sprintf('This is room #%d at floor %d with %0.2f€ price per day', $model->id, $model->floor, $model->price_per_day);
 $itemContent = ['content' => $content, 'caption' => $caption];
 $this->carouselItemsContent[] = $itemContent;
 }

 }

 public function run()
 {
 return $this->render('carousel', ['carouselItemsContent' => $this->carouselItemsContent]);
 }

}

The widget view, called in the run() method, will be stored in the carousel.php file at
basic/components/CarouselWidget/views:

<?php $styleOption = isset($this->context->options['style'])?$this->context->options['style']:''; ?>
<div id="<?php echo $this->context->id ?>" style="<?php echo $styleOption ?>">
 <?php
 echo \yii\bootstrap\Carousel::widget([
 'id' => $this->context->carouselId,
 'items' => $carouselItemsContent

]);
 ?>

</div>

Browsing to http://hostname/basic/web/test-carousel/index, we will see the
carousel widget (only text, but we can also insert some images within).

Creating components
A component is a reusable object that should contain only logic, and it is callable from every
point of the app. In a component, we put all the functions that are usable in more than one
place of the app.

Technically, a component extends yii\base\Component that implements the property, event
and behavior features. We can have two kinds of component: component and application
component. The only difference between them is that the second has to be also configured in
the configuration file of the app in the components property and it is available as a property
from the Yii::$app object. Examples of application components are db, user, and so on.

Usually, components are stored in the components folder starting from the root folder of the
project.

Let's see how to create a simple custom component:

namespace app\components;

use Yii;
use yii\base\Component;

class MyComponent extends Component
{
..
..
}

We can instantiate this component as follows:

$myCmp = new \app\components\MyComponent();

Then, we will have a new instance of the MyComponent object.

If we want to render this component into the application component and access to it through
Yii::$app->myComponent, we must update the configuration file, web.php, at
basic/config:

'components' => [
 ..
 ..
 'myComponent' => [
 'class' => '\app\components\MyComponent'
],
]

At this point, we can call myComponent using:

Yii:$app->myComponent

Note

Remember that an application component is a single and shared instance of the same object.

We can make custom initializations when a component is instantiated by overriding the init()
method of the component.

A concrete example of the component (or the application component, according to our needs)
could be sending an SMS to the SMS gateway for the app.

The component could be:

namespace app\components;

use Yii;
use yii\base\Component;

class SmsGateway extends Component
{
 public function send($to, $text)
 {
 ..
 ..
 ..
 }
}

This example is suitable to use this component as an application component:

'components' => [
 ..
 ..
 'smsgw' => [
 'class' => '\app\components\SmsGateway
],
]

That is usable directly from:

Yii:$app->smsgw->send('+3913456789', 'hello world!');

Another common example for an application component could be an object to send push
notifications to mobile devices, which is made in the same way as the previous SMS gateway
object.

Example – creating a component that creates a backup of
the MySQL database and sends an e-mail to the
administrator
This example will show a common task concerning the creation of backup copies for the main
database and the alert messages that the administrator receives once complete.

A backup will be taken using the command line MySQL tool.

Maintenance operations should be executed in a console environment since they can be
scheduled (every day, every week, two days a week, and so on), and they could cause a web
server timeout (usually, if an operation is not finished, the web server will return a timeout error
after 30 seconds) if this operation takes longer than the maximum time available. So we will
start by creating a console controller in the advanced template that we previously installed.

Remember that the project root folder for the advanced template is yiiadv.

Create a new component in Maintenance.php at yiiadv/common/components with this
content:

<?php
namespace common\components;

use Yii;
use yii\base\Component;

class Maintenance extends Component
{
 public function launchBackup($database, $username, $password, $pathDestSqlFile)
 {
 $cmd = sprintf('mysqldump -u %s -p%s %s > %s', $username, $password, $database, $pathDestSqlFile);
 $outputLines = [];
 exec($cmd, $outputLines, $exitCode);

 return ['cmd' => $cmd, 'exitCode' => $exitCode, 'outputLines' => $outputLines];
 }
}
?>

The launchBackup() method will launch mysqldump (which should be installed in the
system) by passing the username, password, database, and the destination file path where the
SQL output of this command is to be stored.

Then, it will return an array with these values: command, exit code of command, and its
possible output text. Now let's create the console controller that we will use to launch the
command. We could also launch it from a web controller, for example after clicking on a
button.

Let's create the console controller in MaintenanceController.php at
yiiadv/console/controllers:

<?php

namespace console\controllers;

use \yii\console\Controller;
use \yii\helpers\Console;
use \common\components\Maintenance;

class MaintenanceController extends Controller
{
 public function actionBackupDatabase()
 {
 $tmpfname = tempnam(sys_get_temp_dir(), 'FOO');

 $obj = new Maintenance();
 $ret = $obj->launchBackup('username', 'password', 'database_name', $tmpfname);

 if($ret['exitCode'] == 0)
 {
 $this->stdOut("OK\n");
 $this->stdOut(sprintf("Backup successfully stored in: %s\n", $tmpfname));
 }
 else
 {
 $this->stdOut("ERR\n");
 }

 // equivalent to return 0;
 return $ret['exitCode'];
 }

}

?>

Let's make some considerations:

We could set the launchBackup() method of the maintenance component as static by
avoiding to create an instance of the object; however, if we keep it nonstatic, we could
also use it as application component. Otherwise, if we mark the method as static, and
then use it as application component when calling the static method launchBackup()
from the object, we will receive a warning from PHP.
We could move the file creation inside the launchBackup() method because in this
case it is a temporary file, but generally we could use a specific file path.
We could avoid passing database info and get it from Yii parameters, if we store them in
the parameters file.

A more complete action is to back up and send an e-mail to the administrator, containing the
backup result and eventually, if needed, also the backup file:

 public function actionBackupDatabaseAndSendEmail()
 {
 $tmpfname = tempnam(sys_get_temp_dir(), 'FOO'); // good
 $obj = new Maintenance();
 $ret = $obj->launchBackup('username', 'password', 'database_name', $tmpfname);

 $emailAttachment = null;
 if($ret['exitCode'] == 0)
 {
 $this->stdOut("OK\n");
 $this->stdOut(sprintf("Backup successfully stored in: %s\n", $tmpfname));

 $textEmail = 'Backup database successful! Find it in attachment';
 $emailAttachment = $tmpfname;
 }
 else
 {
 $this->stdOut("ERR\n");

 $textEmail = 'Error in backup database! Check it!';

 }

 $emailMsg = Yii::$app->mailer->compose()
 ->setFrom('from@example.com')
 ->setTo('to@example.com')
 ->setSubject('Backup database')
 ->setTextBody($textEmail);

 if($emailAttachment!=null) $emailMsg->attach($emailAttachment, ['fileName' => 'backup_db.sql']);
 $emailMsg->send();

 // equivalent to return 0;
 return $ret['exitCode'];
 }

Creating modules
A module is practically an application inside the main application. In fact, it is organized as a
directory that is called the base path of the module. Within the directory, there are folders
containing its controllers, models, views, and other code, just like in an application.

Follow the typical structure of a module:

myCustomModule/
 Module.php the module class file
 controllers/ containing controller class files
 DefaultController.php the default controller class file
 models/ containing model class files
 views/ containing controller view and layout files
 layouts/ containing layout view files
 default/ containing view files for DefaultController
 index.php the index view file

The module class file is instanced when a module is being accessed and it is used to share
data and components for code, such as application instances.

The module class file has these characteristics:

It is by default named Module.php
It is instanced once during the code execution
It is located directly under the module's base path
It extends from yii\base\Module

Let's look at an example of a module class for myCustomModule (under the
app\modules\myCustomModule namespace):

namespace app\modules\myCustomModule;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->params['foo'] = 'bar';
 // ... other initialization code ...
 }
}

As a standard application, a module can have its own configuration based on a config file that
has the same contents of a standard application:

<?php
return [
 'components' => [
 // list of component configurations
],
 'params' => [

 // list of parameters
],
 ..
 ..
 ..
];

We load this in the init() method of the module:

public function init()
{
 parent::init();
 // initialize the module with the configuration loaded from config.php
 \Yii::configure($this, require(__DIR__ . '/config.php'));
}

Then, we create and use controllers, models, and views in the same way we do with a normal
application.

Note

We always have to take care to specify the right namespace at the top of every file.

Finally, to use a module in an application, we simply configure the application by listing the
module in the module's property of the application. The following code in the application
configuration uses the forum module:

[
 'modules' => [
 'myCustomModule' => [
 'class' => 'app\modules\myCustomModule\Module',
 // ... other configurations for the module ...
],
],
]

Generating an API documentation
Documentation is definitively one of the most important aspects of an app, since it provides information about its flows
and structures. Unfortunately, it is often omitted due to lack of time.

Yii give us a powerful tool to automatically generate a pretty documentation. Basically, it uses all the documentation
comments present in the app, those starting with /** instead of the classic /*.

Therefore, we have the advantage that comments in the code are used to produce a complete documentation.

Inside these comments, there are few keywords that are usable according to the context—file, class, or
function/method.

In case of a file, the most common keywords to put on top are:

@link url, where url is the reference URL linked to the file
@copyright text, where text is the content of copyright
@license url, where url is the reference to license content

In case of a class, the most common keywords to put on top are:

@author name, where name is the name of the author
@since version, where version is the version of the project in which this class has been included

In case of a function/method, the most common keywords to put on top are:

@param type name, where type is the type of parameter and name is the name of the parameter passed as an
argument of the function
@return type, where type is the returned type
@throws class, where class is the exception class thrown by the exception

Besides API documentation, Yii provides tools to create pretty guide files that are in the .md format (typical of
GitHub). It is easy to find information on formatting a .md file by surfing the Internet.

Example – using an API documentation to generate a doc of app and
services
Let's now see which commands automatically produce a documentation from the Yii app.

There are two kinds of documentation:

API documentation, which is a reference of each .php file in the project, completed with doc comments
referred to a single file, class, or function
Guide, which is a pretty manual for the app, created using the .md files that Yii renders in pretty .html files

The first step is to install api-doc, if it is not already present.

Point to the project root folder and launch this command:

$ php composer.phar require --prefer-dist yiisoft/yii2-apidoc
This will install the yii2-apidoc extension.

Note

If this command is not properly complete, launch also a Composer update as follows:

$ php composer.phar update
Now we can launch the command to produce an API documentation starting from the project root folder:

$ vendor/bin/apidoc api ./ ../app-doc
The parameters are as follows:

The first parameter, api, identifies the command to execute
The second parameter, ./, identifies the path of the source files to scan
The third parameter, ../app-doc, identifies the destination folder of the created documentation

After launching the command, going to the ../app-doc folder on a browser will show us the API documentation
created by the framework.

When we make any changes in the source file, it is necessary to relaunch the command to update the API
documentation. The second kind of documentation is the guide, a set of .html files produced by .md files.

So we need to create a folder, starting from the project root folder, for example, the folder named guide, where we
will put all the .md files that we want to convert into .html pretty files from the command guide.

Now we are ready to launch the command to create our guide, which is totally similar to the previously made API
command:

$ vendor/bin/apidoc guide ./guide ../app-doc
This command will convert all the .md files present in the ./guide folder into .html files, storing them in the
../app-doc folder (together with the API documentation files).

Let's make a concrete example. Starting with the basic template project, create a new controller named
TestDocController in TestDocController.php at basic/controllers:

<?php

/**
 * This file contains a controller to demonstrate api documentation tool.
 *
 * @link http://www.example.com/
 * @copyright Copyright (c) 2015
 * @license http://www.example.com/license/
 */

namespace app\controllers;

use Yii;
use yii\web\Controller;

/**
 * This is a controller class to demonstrate api documentation tool.
 *
 * @author Fabrizio Caldarelli
 * @since 1.0
 */
class TestDocController extends Controller
{
 /**
 * Make sum of the operands
 *
 * @param float $a first operand
 * @param float $b second operand
 * @return float sum of parameters

 * @author
 */
 public function makeSum(float $a, float $b)
 {
 return $a+$b;
 }
}

Now open a shell console on host, and from the project root folder, launch the command to generate the API
documentation:

$ vendor/bin/apidoc api ./ ../app-doc
This will create the documentation for all files starting with the root folder (./) and storing the HTML result files in
../app-doc.

Now, on your browser, go to http://hostname/app-doc and we will display the API documentation index page.
Search for TestDocController.php in the side menu and click on it. This should be the output:

TestDocController API documentation

Now, we want to demonstrate the second kind of documentation—guide documentation.

Create a folder from the project root folder named app-guide. In it, put a new file named test-doc-
controller.md with the following content:

TestDoc Controller

This is the guide for TestDoc Controller.

Functionalities

It is provided makeSum function, that makes a sum of two values passed as parameter

```
$a = 10;
$b = 20;
$c = $this->makeSum(float $a, float $b)     // $c = 30;
```

Go to the shell console of the hosting and from the project root folder, launch the command to generate the guide
documentation:

$ vendor/bin/apidoc guide ./app-guide ../app-doc
This will create the guide documentation for all .md files in the ./app-guide folder and will store .html results in
../app-doc.

On your browser go to http://hostname/app-doc/guide-test-doc-controller.html, you should see the
following screen:

TestDocController guide documentation

Summary
In this final chapter, you learned how to make reusable and easily maintainable code, using
widgets and components. Talking about reusable view code (HTML, JavaScript, and CSS),
we introduced widgets, defined and focused on the benefits they add to the project. Next, you
learned to build and use them, and finally, we did a practical example by building a new widget
from scratch. Talking of reusable logic code, we discovered its components, distinguished
between components and application components, and also did some practical examples by
building useful components for real-life problems.

Then we mastered the documentation generator, specifically API and guide documentation.
You learned how to launch and use the tools provided by Yii. Finally, we built a controller
class to explain, with a practical example, how to build the API reference and the guide
reference for that controller.

Index
A

ACF
creating, for user authorization / Example – creating an ACF to authorize the users

ACF, and RBAC
mixing / Mixing ACF and RBAC

action
creating / Creating Controller and Action

actions
adding, to REST API controller / New controller action

ActiveForm
using / Using ActiveForm, Example – creating a new room from the HTML form

ActiveRecord
used, for manipulating data / Using ActiveRecord to manipulate data
methods / Using ActiveRecord to manipulate data
rooms list, querying with / Example – query rooms list with ActiveRecord

ActiveRecord models
sharing, among applications / Sharing ActiveRecord models among applications

ActiveRecord relational data
displaying, in grid's column / Displaying and filtering ActiveRecord relational data in
a grid's column

advanced template
used, for splitting frontend / Using an advanced template to split frontend and
backend
used, for splitting backend / Using an advanced template to split frontend and
backend
URL, customizing in / Customizing a URL in the advanced template
using, in same domain / Example – using the advanced template in the same domain
using, in shared hosting / How to use the advanced template in the shared hosting
REST app, configuring in / Configuring a REST app in the advanced template

AJAX
using / Using AJAX

alarm flag
setting, for expired reservation / Example – setting an alarm flag for expired
reservation

API documentation
generating / Generating an API documentation
used, for generating doc of app and services / Example – using an API
documentation to generate a doc of app and services

application
configuring, init used / Configuring an application using init

application components
request / Common application components
cache / Common application components

part0066.xhtml#aid-1UU542
part0067.xhtml#aid-1VSLM1
part0020.xhtml#aid-J2B81
part0083.xhtml#aid-2F4UM1
part0037.xhtml#aid-1394Q1
part0037.xhtml#aid-1394Q1
part0043.xhtml#aid-190862
part0043.xhtml#aid-190862
part0043.xhtml#aid-190862
part0071.xhtml#aid-23MNU2
part0054.xhtml#aid-1JFUC2
part0069.xhtml#aid-21PMQ1
part0069.xhtml#aid-21PMQ1
part0072.xhtml#aid-24L8G1
part0072.xhtml#aid-24L8G1
part0073.xhtml#aid-25JP21
part0080.xhtml#aid-2C9D01
part0060.xhtml#aid-1P71O2
part0088.xhtml#aid-2JTHG1
part0095.xhtml#aid-2QJ5E2
part0095.xhtml#aid-2QJ5E2
part0070.xhtml#aid-22O7C2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2

user / Common application components
errorHandler / Common application components
mailer / Common application components
log / Common application components
db / Common application components

application events
handling / Handling application events

application properties
about / Application properties
id / Application properties
basePath / Application properties
aliases / Application properties
bootstrap / Application properties
catchAll / Application properties
components / Application properties
language / Application properties
modules / Application properties
name / Application properties
params / Application properties
timeZone / Application properties
charset / Application properties
defaultRoute / Application properties

applications
ActiveRecord models, sharing among / Sharing ActiveRecord models among
applications

authentication
about / Authentication
HTTP Basic Auth / Authentication
query parameter / Authentication
OAuth 2 / Authentication
enabling / Authentication
used, for obtaining customers list / Example – using authentication to get a
customers list

available rooms
displaying, in frontend site / Example – displaying available rooms in the frontend
site

B
backend

splitting, advanced template used / Using an advanced template to split frontend and
backend

basic folder, Yii2's application structure
assets / Application structure
commands / Application structure
config / Application structure
mail / Application structure

part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0017.xhtml#aid-G6PI2
part0071.xhtml#aid-23MNU2
part0082.xhtml#aid-2E6E42
part0082.xhtml#aid-2E6E42
part0082.xhtml#aid-2E6E42
part0082.xhtml#aid-2E6E42
part0082.xhtml#aid-2E6E42
part0082.xhtml#aid-2E6E42
part0071.xhtml#aid-23MNU2
part0069.xhtml#aid-21PMQ1
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901

models / Application structure
runtime / Application structure
tests / Application structure
vendor / Application structure
views / Application structure
web / Application structure

bootstrap template
used, for creating controller / Example – create a controller to display the static
news items list and details using the bootstrap template

Bootstrap widget
using / Using the Bootstrap widget

C
cache component

about / Common application components
carousel

widget, creating with / Example – creating a widget with a carousel
commands, for retrieving data

queryAll() / Example – test connection and executing the SQL query
queryOne() / Example – test connection and executing the SQL query
queryScalar() / Example – test connection and executing the SQL query
query() / Example – test connection and executing the SQL query

common view content
splitting, into reusable views / Splitting the common view content into reusable
views

components
creating / Creating components, Example – creating a component that creates a
backup of the MySQL database and sends an e-mail to the administrator

Composer
about / Installing Yii2 with Composer
Yii2, installing with / Installing Yii2 with Composer
URL / Installing Yii2 with Composer

console
output, formatting from / Formatting the output from the console

console applications
interacting with / Interacting with console applications

console controller
creating / Creating a console controller

contact page
adding / Example – add a contact page

content negotiation
about / Creating a controller

controller
creating / Creating Controller and Action, Creating a controller
data, sending to view / How the controller sends data to view
creating, for static news items list display / Example – create a controller to display

part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0022.xhtml#aid-KVCC2
part0061.xhtml#aid-1Q5IA2
part0017.xhtml#aid-G6PI2
part0092.xhtml#aid-2NNJO1
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0023.xhtml#aid-LTSU1
part0093.xhtml#aid-2OM4A1
part0093.xhtml#aid-2OM4A1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0089.xhtml#aid-2KS221
part0087.xhtml#aid-2IV0U1
part0088.xhtml#aid-2JTHG1
part0024.xhtml#aid-MSDG1
part0081.xhtml#aid-2D7TI2
part0020.xhtml#aid-J2B81
part0081.xhtml#aid-2D7TI2
part0022.xhtml#aid-KVCC2
part0022.xhtml#aid-KVCC2

the static news items list and details using the bootstrap template
creating, for room management / Example – creating a controller to manage rooms

createUrl() method
reference link / Example – create a controller to display the static news items list and
details using the bootstrap template

cron jobs
implementing / Implementing and executing cron jobs
executing / Implementing and executing cron jobs

CRUD
generating, Gii used / Using Gii to generate CRUD
used, for managing rooms / Example – using CRUD to manage rooms,
reservations, and customers using Gii
used, for managing reservations / Example – using CRUD to manage rooms,
reservations, and customers using Gii
used, for managing customers / Example – using CRUD to manage rooms,
reservations, and customers using Gii

CSS
used, for displaying advertising columns / Example – using JavaScript and CSS to
display advertising columns that disappear if not enough space is available

custom authentication method
creating, for application / Customizing authentication and response

custom columns
displaying, in grid / Custom columns in a grid

customer and reservation models
creating, in same view / Example – creating a customer and reservation in the same
view

customers list
obtaining, authentication used / Example – using authentication to get a customers
list

customize CSS / Customize JavaScript and CSS
customize JavaScript / Customize JavaScript and CSS
custom responses

creating / Other forms of export – RSS
custom URL rules

about / Custom URL rules
example / Example – list news items by year or category, Example – the index page
to display the links list

D
data

sharing, between views and layout / Sharing data between views and layout
manipulating, ActiveRecord used / Using ActiveRecord to manipulate data

DataProvider, for grids
about / DataProvider for grids

date
formatting / Format date, time, and numbers

part0081.xhtml#aid-2D7TI2
part0022.xhtml#aid-KVCC2
part0090.xhtml#aid-2LQIK1
part0090.xhtml#aid-2LQIK1
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0058.xhtml#aid-1NA0K2
part0059.xhtml#aid-1O8H61
part0084.xhtml#aid-2G3F82
part0052.xhtml#aid-1HIT82
part0063.xhtml#aid-1S2JE1
part0082.xhtml#aid-2E6E42
part0059.xhtml#aid-1O8H61
part0059.xhtml#aid-1O8H61
part0085.xhtml#aid-2H1VQ1
part0030.xhtml#aid-SJGS1
part0030.xhtml#aid-SJGS1
part0031.xhtml#aid-TI1E1
part0025.xhtml#aid-NQU21
part0043.xhtml#aid-190862
part0050.xhtml#aid-1FLS41
part0038.xhtml#aid-147LC1

datepicker
using / Example: using datepicker

DB
used, for translating room descriptions / Example – translating room descriptions
using DB

DB-based translations
about / DB-based translations

db component
about / Common application components

DB connection
testing / Example – test connection and executing the SQL query

DB connection configuration
about / Configuring a DB connection
rooms, creating / Example – creating rooms, customers, and reservations tables
customers, creating / Example – creating rooms, customers, and reservations tables
reservations, creating / Example – creating rooms, customers, and reservations
tables
data, exporting to local SQLite DB / Example – configuring a second DB
connection to export data to a local SQLite DB

debug toolbar
configuring / Configuring the debug toolbar

default language
setting / Setting the default language

documentation
about / Generating an API documentation

dynamic box
adding, for advertising info display / Example – add a dynamic box to display
advertising info

E
e-mail

sending, with summary of new daily reservations / Example – sending an e-mail with
new reservations of the day

errorHandler component
about / Common application components

expired reservation
alarm flag, setting for / Example – setting an alarm flag for expired reservation

F
file-based translations

about / File-based translations
using, for entire website / Example – using file-based translation for the entire
website

file controller
creating / Creating Controller and Action

part0061.xhtml#aid-1Q5IA2
part0078.xhtml#aid-2ACBS1
part0078.xhtml#aid-2ACBS1
part0017.xhtml#aid-G6PI2
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0041.xhtml#aid-173722
part0047.xhtml#aid-1CQAE2
part0018.xhtml#aid-H5A42
part0075.xhtml#aid-27GQ61
part0095.xhtml#aid-2QJ5E2
part0026.xhtml#aid-OPEK1
part0090.xhtml#aid-2LQIK1
part0017.xhtml#aid-G6PI2
part0088.xhtml#aid-2JTHG1
part0076.xhtml#aid-28FAO2
part0076.xhtml#aid-28FAO2
part0020.xhtml#aid-J2B81

files
uploading / Uploading files
image of room, uploading / Example – uploading an image of a room

filters, in GridView
about / Filters in GridView

footer row customization
GridView, extending for / Example – extending GridView to customize the footer
row in a grid

form
room, creating from / Example – creating and updating a room from a form
room, updating from / Example – creating and updating a room from a form

frontend
splitting, advanced template used / Using an advanced template to split frontend and
backend
creating, for public access / Example – creating frontend for public access

frontend site
available rooms, displaying in / Example – displaying available rooms in the frontend
site

G
Gii

used, for creating room model / Using Gii to create room, customer, and reservation
models
used, for creating customer model / Using Gii to create room, customer, and
reservation models
used, for creating reservation model / Using Gii to create room, customer, and
reservation models
used, for generating CRUD / Using Gii to generate CRUD

GMT (Greenwich Mean Time) / Setting up the GMT time zone
GMT time zone

setting up / Setting up the GMT time zone
grid

using / Using a grid
custom columns, displaying in / Custom columns in a grid

GridView
about / Introduction, DataProvider for grids
extending, for footer row customization / Example – extending GridView to
customize the footer row in a grid

H
Hello world example, with Yii basic template and bootstrap template / Example – Hello
world from scratch with the Yii basic template and bootstrap template
HTTP Basic Auth

about / Authentication

part0039.xhtml#aid-1565U1
part0039.xhtml#aid-1565U1
part0053.xhtml#aid-1IHDQ2
part0055.xhtml#aid-1KEEU1
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0069.xhtml#aid-21PMQ1
part0070.xhtml#aid-22O7C2
part0071.xhtml#aid-23MNU2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0058.xhtml#aid-1NA0K2
part0046.xhtml#aid-1BRPS1
part0046.xhtml#aid-1BRPS1
part0051.xhtml#aid-1GKCM1
part0052.xhtml#aid-1HIT82
part0049.xhtml#aid-1ENBI1
part0050.xhtml#aid-1FLS41
part0055.xhtml#aid-1KEEU1
part0018.xhtml#aid-H5A42
part0082.xhtml#aid-2E6E42

I
identityClass class

methods / Creating a user login
init

used, for configuring application / Configuring an application using init

J
JavaScript

used, for displaying advertising columns / Example – using JavaScript and CSS to
display advertising columns that disappear if not enough space is available

L
layout

with dynamic block / Layout with dynamic block
layout background

modifying, based on URL parameter / Example – change the layout background
based on a URL parameter

lazy loading / Working with relationships
linked models

saving, in same view / Saving linked models in the same view
log component

about / Common application components
logger

using / Using the logger
login form

creating, example / Example – a login form to access

M
mailer component

about / Common application components
message command / Example – using file-based translation for the entire website
methods, ActiveRecord

validate() / Using ActiveRecord to manipulate data
save() / Using ActiveRecord to manipulate data
delete() / Using ActiveRecord to manipulate data

methods, identityClass class
findIdentity() / Creating a user login
findIdentityByAccessToken() / Creating a user login
getId() / Creating a user login
getAuthKey() / Creating a user login
validateAuthKey() / Creating a user login

Model

part0065.xhtml#aid-1TVKI2
part0070.xhtml#aid-22O7C2
part0059.xhtml#aid-1O8H61
part0026.xhtml#aid-OPEK1
part0025.xhtml#aid-NQU21
part0044.xhtml#aid-19UOO2
part0063.xhtml#aid-1S2JE1
part0017.xhtml#aid-G6PI2
part0018.xhtml#aid-H5A42
part0065.xhtml#aid-1TVKI2
part0017.xhtml#aid-G6PI2
part0076.xhtml#aid-28FAO2
part0043.xhtml#aid-190862
part0043.xhtml#aid-190862
part0043.xhtml#aid-190862
part0065.xhtml#aid-1TVKI2
part0065.xhtml#aid-1TVKI2
part0065.xhtml#aid-1TVKI2
part0065.xhtml#aid-1TVKI2
part0065.xhtml#aid-1TVKI2

creating / Creating a Model, Example – a Model to store room data
Model-View-Controller (MVC) design pattern, Yii2

about / The MVC pattern in Yii2
Model base class, features

attribute declaration / Creating a Model
attribute labels / Creating a Model
massive attribute assignment / Creating a Model
scenario-based validation / Creating a Model

modules
creating / Creating modules

multiple customers
saving, at same time / Example – saving multiple customers at the same time

multiple database connections
using / Using multiple database connections

multiple grids
displaying, on one page / Multiple grids on one page

multiple layouts
using / Using multiple layouts
example / Example – using different layouts to create responsive and nonresponsive
content layout for the same view

multiple models
finding, in same view / Multiple models in the same view

N
naming convention

about / Naming convention
numeric fields

formatting / Format date, time, and numbers

O
OAuth 2

about / Authentication
objects, Yii2

Models / Application structure
Views / Application structure
Controllers / Application structure
Components / Application structure
Application Components / Application structure
Widgets / Application structure
Filters / Application structure
Modules / Application structure
Extensions / Application structure

output
formatting, from console / Formatting the output from the console

part0036.xhtml#aid-12AK82
part0036.xhtml#aid-12AK82
part0017.xhtml#aid-G6PI2
part0036.xhtml#aid-12AK82
part0036.xhtml#aid-12AK82
part0036.xhtml#aid-12AK82
part0036.xhtml#aid-12AK82
part0094.xhtml#aid-2PKKS1
part0062.xhtml#aid-1R42S1
part0047.xhtml#aid-1CQAE2
part0056.xhtml#aid-1LCVG1
part0027.xhtml#aid-PNV61
part0027.xhtml#aid-PNV61
part0062.xhtml#aid-1R42S1
part0018.xhtml#aid-H5A42
part0038.xhtml#aid-147LC1
part0082.xhtml#aid-2E6E42
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0089.xhtml#aid-2KS221

P
parameters, URL rule

defaults / The complete URL rule parameters
encodeParams / The complete URL rule parameters
host / The complete URL rule parameters
mode / The complete URL rule parameters
name / The complete URL rule parameters
pattern / The complete URL rule parameters
route / The complete URL rule parameters
suffix / The complete URL rule parameters
verb / The complete URL rule parameters

PHP Data Objects (PDO)
about / Configuring a DB connection

placeholders formatting
about / Placeholders formatting

Pretty URLs
using / Using pretty URLs

public access
frontend, creating for / Example – creating frontend for public access

Q
query parameter

about / Authentication

R
RBAC

overview / RBAC
configuring, for setting permissions / Example – configuring RBAC to set
permissions for users

relationships
working with / Working with relationships
used, for connecting rooms, reservations, and customers / Example – using a
relationship to connect rooms, reservations, and customers, How to save a model
from a form

renderPartial() method
reference link / Splitting the common view content into reusable views

render partial, in view
example / Example – render partial in view

request component
about / Common application components

reservation
rooms list, obtaining for / Example – getting a rooms list for a reservation

reservation details

part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0041.xhtml#aid-173722
part0077.xhtml#aid-29DRA1
part0029.xhtml#aid-RL0A1
part0070.xhtml#aid-22O7C2
part0082.xhtml#aid-2E6E42
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0044.xhtml#aid-19UOO2
part0044.xhtml#aid-19UOO2
part0045.xhtml#aid-1AT9A2
part0023.xhtml#aid-LTSU1
part0023.xhtml#aid-LTSU1
part0017.xhtml#aid-G6PI2
part0083.xhtml#aid-2F4UM1

loading, from customers' drop-down lists / Example – reservation details loaded
from the customers' drop-down lists

reservations, and rooms grids
managing, in same view / Example: managing the reservations and rooms grids in the
same view

reservations list
displaying, by clicking on customer grid row / Example – displaying a reservations
list by clicking on a customer grid row

response
returning, with attributes / Example – status response node in data received

REST API controller
actions, adding to / New controller action

REST app
configuring, in advanced template / Configuring a REST app in the advanced
template

reusable views
common view content, splitting into / Splitting the common view content into
reusable views

room descriptions
translating, DB used / Example – translating room descriptions using DB

rooms list
querying, with ActiveRecord / Example – query rooms list with ActiveRecord
obtaining, for reservation / Example – getting a rooms list for a reservation

RSS response formatter
about / Other forms of export – RSS
creating, for available rooms / Example – creating an RSS with a list of available
rooms

rule class
creating / Creating the rule class

S
shared hosting

advanced template, using in / How to use the advanced template in the shared
hosting

SQL query
executing / Example – test connection and executing the SQL query

static pages
creating / Creating static pages

summarized footer row, in grid / A summarized footer row in a grid

T
time

formatting / Format date, time, and numbers

part0060.xhtml#aid-1P71O2
part0056.xhtml#aid-1LCVG1
part0052.xhtml#aid-1HIT82
part0084.xhtml#aid-2G3F82
part0083.xhtml#aid-2F4UM1
part0080.xhtml#aid-2C9D01
part0023.xhtml#aid-LTSU1
part0078.xhtml#aid-2ACBS1
part0043.xhtml#aid-190862
part0083.xhtml#aid-2F4UM1
part0085.xhtml#aid-2H1VQ1
part0085.xhtml#aid-2H1VQ1
part0034.xhtml#aid-10DJ41
part0073.xhtml#aid-25JP21
part0041.xhtml#aid-173722
part0024.xhtml#aid-MSDG1
part0055.xhtml#aid-1KEEU1
part0038.xhtml#aid-147LC1

U
URL

customizing, in advanced template / Customizing a URL in the advanced template
URL pattern

multilanguage view support / The URL pattern to support the multilanguage view
URL rule

parameters / The complete URL rule parameters
user authorization

configuring / Configuring user authorization
ACF, creating for / Example – creating an ACF to authorize the users

user component
about / Common application components

user login
creating / Creating a user login

users' roles
managing, for controller actions access / Example – managing users' roles to access
rooms, reservations, and customers

V
view

creating, for news list display / Creating a view to display a news list

W
WhatIsMyIP.com

URL / Configuring the debug toolbar
widgets

about / Creating widgets
creating / Creating widgets
creating, with carousel / Example – creating a widget with a carousel

Y
Yii

reference link, for database tables / DB-based translations
Yii2

tools / Requirements and tools
requisites / Requirements and tools
installing, with Composer / Installing Yii2 with Composer
application structure / Application structure
objects / Application structure
Model-View-Controller (MVC) design pattern / The MVC pattern in Yii2

part0072.xhtml#aid-24L8G1
part0033.xhtml#aid-VF2I1
part0032.xhtml#aid-UGI01
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0017.xhtml#aid-G6PI2
part0065.xhtml#aid-1TVKI2
part0067.xhtml#aid-1VSLM1
part0021.xhtml#aid-K0RQ1
part0018.xhtml#aid-H5A42
part0092.xhtml#aid-2NNJO1
part0092.xhtml#aid-2NNJO1
part0092.xhtml#aid-2NNJO1
part0078.xhtml#aid-2ACBS1
part0014.xhtml#aid-DB7S1
part0014.xhtml#aid-DB7S1
part0015.xhtml#aid-E9OE1
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0017.xhtml#aid-G6PI2

	Yii2 By Example
	Table of Contents
	Yii2 By Example
	Yii2 By Example
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Note
	Tip

	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Chapter 1. Starting with Yii2
	Requirements and tools
	Installing Yii2 with Composer
	Note

	Application structure
	Application properties
	Common application components
	Handling application events
	The MVC pattern in Yii2

	Naming convention
	Note
	Configuring the debug toolbar
	Using the logger
	Example – Hello world from scratch with the Yii basic template and bootstrap template
	Note

	Summary
	Chapter 2. Creating a Simple News Reader
	Creating Controller and Action
	Creating a view to display a news list
	Tip
	Note

	How the controller sends data to view
	Example – create a controller to display the static news items list and details using the bootstrap template
	Note

	Splitting the common view content into reusable views
	Example – render partial in view
	Note
	Note

	Creating static pages
	Example – add a contact page

	Sharing data between views and layout
	Note
	Note
	Example – change the layout background based on a URL parameter
	Note

	Layout with dynamic block
	Example – add a dynamic box to display advertising info
	Note

	Using multiple layouts
	Note
	Example – using different layouts to create responsive and nonresponsive content layout for the same view

	Summary
	Chapter 3. Making Pretty URLs
	Using pretty URLs
	Note
	Note

	Custom URL rules
	Example – list news items by year or category

	Default parameters in rules
	Example – the index page to display the links list

	The complete URL rule parameters
	The URL pattern to support the multilanguage view
	Note

	Creating the rule class
	Summary
	Chapter 4. Creating a Room through Forms
	Creating a Model
	Example – a Model to store room data

	Using ActiveForm
	Example – creating a new room from the HTML form

	Format date, time, and numbers
	Uploading files
	Note
	Note
	Example – uploading an image of a room
	Note

	Summary
	Chapter 5. Developing a Reservation System
	Configuring a DB connection
	Note
	Note
	Example – creating rooms, customers, and reservations tables
	Example – test connection and executing the SQL query

	Using Gii to create room, customer, and reservation models
	Note
	Note
	Note
	Note

	Using ActiveRecord to manipulate data
	Note
	Example – query rooms list with ActiveRecord
	Note

	Working with relationships
	Note
	Example – using a relationship to connect rooms, reservations, and customers
	Note

	How to save a model from a form
	Example – creating and updating a room from a form
	Note

	Setting up the GMT time zone
	Tip

	Using multiple database connections
	Example – configuring a second DB connection to export data to a local SQLite DB
	Note
	Note

	Summary
	Chapter 6. Using a Grid for Data and Relations
	Introduction
	DataProvider for grids
	Using a grid
	Note

	Custom columns in a grid
	Example – displaying a reservations list by clicking on a customer grid row
	Note

	Filters in GridView
	Note
	Note

	Displaying and filtering ActiveRecord relational data in a grid's column
	Note
	Note

	A summarized footer row in a grid
	Example – extending GridView to customize the footer row in a grid

	Multiple grids on one page
	Example: managing the reservations and rooms grids in the same view

	Summary
	Chapter 7. Working on the User Interface
	Using Gii to generate CRUD
	Note
	Example – using CRUD to manage rooms, reservations, and customers using Gii
	Note

	Customize JavaScript and CSS
	Note
	Note
	Example – using JavaScript and CSS to display advertising columns that disappear if not enough space is available

	Using AJAX
	Example – reservation details loaded from the customers' drop-down lists

	Using the Bootstrap widget
	Example: using datepicker

	Multiple models in the same view
	Note
	Example – saving multiple customers at the same time

	Saving linked models in the same view
	Example – creating a customer and reservation in the same view

	Summary
	Chapter 8. Log in to the App
	Creating a user login
	Note
	Note
	Note
	Example – a login form to access
	Note

	Configuring user authorization
	Example – creating an ACF to authorize the users
	RBAC
	Note
	Note
	Example – configuring RBAC to set permissions for users
	Note

	Mixing ACF and RBAC
	Example – managing users' roles to access rooms, reservations, and customers

	Summary
	Chapter 9. Frontend to Display Rooms to Everyone
	Using an advanced template to split frontend and backend
	Note
	Note

	Configuring an application using init
	Note
	Note
	Example – creating frontend for public access

	Sharing ActiveRecord models among applications
	Example – displaying available rooms in the frontend site
	Note
	Note
	Note

	Customizing a URL in the advanced template
	Note
	Example – using the advanced template in the same domain
	Note

	How to use the advanced template in the shared hosting
	Summary
	Chapter 10. Localize the App
	Setting the default language
	File-based translations
	Example – using file-based translation for the entire website
	Note

	Placeholders formatting
	DB-based translations
	Note
	Example – translating room descriptions using DB
	Note

	Summary
	Chapter 11. Creating an API for Use in a Mobile App
	Configuring a REST app in the advanced template
	Note
	Note

	Creating a controller
	Note
	Example – creating a controller to manage rooms

	Authentication
	Note
	Example – using authentication to get a customers list

	New controller action
	Example – getting a rooms list for a reservation
	Note

	Customizing authentication and response
	Example – status response node in data received

	Other forms of export – RSS
	Example – creating an RSS with a list of available rooms

	Summary
	Chapter 12. Create a Console Application to Automate the Periodic Task
	Interacting with console applications
	Note

	Creating a console controller
	Example – setting an alarm flag for expired reservation
	Note

	Formatting the output from the console
	Implementing and executing cron jobs
	Example – sending an e-mail with new reservations of the day
	Note

	Summary
	Chapter 13. Final Refactoring
	Creating widgets
	Example – creating a widget with a carousel

	Creating components
	Note
	Example – creating a component that creates a backup of the MySQL database and sends an e-mail to the administrator

	Creating modules
	Note

	Generating an API documentation
	Example – using an API documentation to generate a doc of app and services
	Note

	Summary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

