
M A N N I N G

Brendan G. Lim
Martin Conte Mac Donell

www.allitebooks.com

http://www.allitebooks.org

iOS 7 in Action

BRENDAN G. LIM
MARTIN CONTE MAC DONELL

M A N N I N G
SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Copyeditor: Linda Recktenwald
PO Box 261 Proofreader: Alyson Brener
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291425
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 BASICS AND NECESSITIES. ..1

1 ■ Introduction to iOS development 3
2 ■ Views and view controller basics 24
3 ■ Using storyboards to organize and visualize your views 50
4 ■ Using and customizing table views 78
5 ■ Using collection views 103

PART 2 BUILDING REAL-WORLD APPLICATIONS121
6 ■ Retrieving remote data 123
7 ■ Photos and videos and the Assets Library 145
8 ■ Social integration with Twitter and Facebook 178
9 ■ Advanced view customization 204

10 ■ Location and mapping with Core Location and MapKit 224
11 ■ Persistence and object management with Core Data 248

PART 3 APPLICATION EXTRAS ..281
12 ■ Using AirPlay for streaming and external display 283
13 ■ Integrating push notifications 303
iii

14 ■ Applying motion effects and dynamics 316

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
preface xi
acknowledgments xii
about this book xiv
about the cover illustration xvii

PART 1 BASICS AND NECESSITIES1

1 Introduction to iOS development 3
1.1 Developing for iOS 4

Different kind of design interaction 4 ■ Getting ready
to develop for iOS 5

1.2 Creating your first iOS application 5
Creating the Hello Time application in Xcode 5 ■ Creating the
application interface 7 ■ Connecting your user interface
to your code 11 ■ Implementing the clock functionality 12
Building and running your application 13

1.3 iOS development fundamentals 14
Object-oriented programming 15 ■ Objective-C syntax and
message passing 15 ■ The Model-View-Controller pattern 17
Frameworks introduction 17
v

www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi

1.4 Overview of Apple’s development tools 18
Creating different types of projects in Xcode 18 ■ Getting familiar
with Xcode’s workspace 19 ■ iOS Simulator 20

1.5 Summary 23

2 Views and view controller basics 24
2.1 Enhancing Hello Time 25

Switching between night and day modes 25 ■ Adding support
for landscape mode 30

2.2 Introducing views 31
Screens, windows, and views 32 ■ Views and the coordinate
system 33 ■ User interface controls 35 ■ Responding to actions
and events 35 ■ Custom tint colors 38

2.3 View controller basics 38
Introducing view controllers 38 ■ The view controller lifecycle 39
Different types of view controllers 41 ■ Different status
bar styles 43

2.4 Supporting different orientations 45
Enabling support for portrait and landscape 45
Updating your views for different orientations 47

2.5 Summary 48

3 Using storyboards to organize and visualize your views 50
3.1 Building a task management app 51

Creating the Tasks app project in Xcode 51 ■ Creating the
interface for listing tasks 51 ■ Adding a navigation
controller 56 ■ Creating and viewing a task 58
Connecting your views within the storyboard 62

3.2 Exploring Xcode’s interface editor 67
Overview of Xcode’s interface editor 67
The inspector sections 68

3.3 Using storyboards to manage your views 71
How does storyboarding benefit you? 71 ■ Scenes within
storyboards 73 ■ Transitioning between scenes with segues 73
Passing data between view controllers with segues 75
Problems with using storyboarding 76

3.4 Summary 77
www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii

4 Using and customizing table views 78
4.1 Introduction to table views 79

Anatomy of a table view 80

4.2 Using table views to display data 82
Setting up your Albums application 82 ■ Providing data
through a data source 86 ■ Custom table view cells
with prototype cells 90

4.3 Managing selection and deletion within a table view 96
Deleting rows within a table view 97 ■ Handling the selection
and deselection of rows 100

4.4 Summary 101

5 Using collection views 103
5.1 Introducing collection views 104
5.2 Using collection views to display data 106

Adding a UICollectionViewController as a new scene 107
Supplying a collection view with data 107 ■ Creating a custom
collection view cell 113

5.3 Customizing a collection view layout 116
Collection view flow layouts 117 ■ Using the flow layout
delegate protocol 118

5.4 Summary 120

PART 2 BUILDING REAL-WORLD APPLICATIONS121

6 Retrieving remote data 123
6.1 Retrieving data using NSURLSession 124
6.2 Understanding data serialization and interacting with

external services 131
6.3 Advanced HTTP requests 134
6.4 Using web views to display remote pages 138
6.5 Popular open source networking libraries 142

AFNetworking 143 ■ RestKit 143

6.6 Summary 144
www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

7 Photos and videos and the Assets Library 145
7.1 Overview of the Assets Library framework 146

The Assets Library, groups, and individual assets 147
Setting up the Media Info project 150

7.2 Retrieving photos and videos with the image picker 155
Preparing and presenting the image picker controller 156
Selecting assets from the image picker 159

7.3 Capturing photos and videos with the camera 161
Checking for camera availability 162 ■ Taking photos
and videos with the camera 164 ■ Saving newly captured
photos and videos to the Assets Library 166

7.4 Retrieving assets and accessing metadata 169
Setting up your view to display the metadata 169
Retrieving an asset from the Assets Library 171
Accessing metadata for photos and videos 173

7.5 Summary 176

8 Social integration with Twitter and Facebook 178
8.1 Accessing accounts with the Accounts framework 179

Accessing Twitter accounts and account properties 180
Accessing Facebook accounts 186

8.2 Using the Social framework to post content 189
Posting to Twitter using the Tweet Composer view 190
Posting to Facebook 196

8.3 Making API requests with the Social framework 196
Retrieving a Twitter stream using an SLRequest 197
Retrieving a Facebook news feed 200

8.4 Summary 203

9 Advanced view customization 204
9.1 Going beyond the Interface Builder

with custom views 205
9.2 Creating basic animations 212
9.3 Using advanced animation techniques 219
9.4 Summary 223
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

10 Location and mapping with Core Location and MapKit 224
10.1 Introduction to the Core Location framework 225

Representing a location with CLLocation 226 ■ The location
manager 227 ■ Setting up Speed Map in Xcode 230

10.2 Retrieving location, heading, and speed 233
Retrieving your current location with the location manager 233
Geocoding a location 237

10.3 Introduction to the MapKit framework 240
Using the map view to display a map 240 ■ Retrieving user
location using MapKit 242 ■ Using annotations in a map 242
Adding a map to your application 244

10.4 Summary 247

11 Persistence and object management with Core Data 248
11.1 Introduction to Core Data 249

Differences between Core Data and traditional databases 250
What Core Data doesn’t do well 251 ■ Setting up your
application 252

11.2 Managed objects, entities, relationships 255
Managed object models and contexts 256 ■ Entities and
managed objects 258 ■ Relationships between entities 261
Generating managed object classes for your entities 263

11.3 Working with managed objects 265
Creating, updating, and deleting managed objects 266
Using fetch requests to retrieve managed objects 268
Filtering results using predicates 269 ■ Using a fetched
results controller to manage results in a table view 270
Adding and removing tasks from a list 274

11.4 Summary 280

PART 3 APPLICATION EXTRAS.....................................281

12 Using AirPlay for streaming and external display 283
12.1 Introduction to AirPlay 284

Examples of AirPlay integration 284 ■ Setting up
your application 286
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

12.2 Controlling and enabling AirPlay output 290
Enabling AirPlay support using built-in media players 290
Displaying an AirPlay controller to a view 291 ■ Streaming audio
to an AirPlay destination in your application 292

12.3 Using external screens with AirPlay 295
Creating a custom view controller for external screens 296
Displaying content on an external screen 298

12.4 Summary 301

13 Integrating push notifications 303
13.1 Apple’s Push Notification service 304
13.2 Configuring your app to send and receive

push notifications 306
13.3 Sending push notifications 309
13.4 Registering and scheduling local notifications 313
13.5 Summary 315

14 Applying motion effects and dynamics 316
14.1 Creating your application 317
14.2 Using motion effects 318

Adding the parallax effect 318

14.3 Using UIKit Dynamics 322
Introduction to UIKit Dynamics 322 ■ Applying the
gravity behavior 323 ■ Applying a collision behavior 325
Adding dynamic behavior 325 ■ Creating a custom
UIDynamicBehavior subclass 328

14.4 Summary 329

appendix 331

index 342

preface
We wrote this book as a guide that you can count on and refer to as you develop your
own apps for iOS using the iOS 7 SDK. We tried to cover topics in a simple and immer-
sive way—a way that allows you to learn by getting your hands dirty. It’s always easier to
learn something new by doing, and that’s exactly what you’ll find in this book, and
that’s what defines books in the In Action series. The book will allow you to learn at
your own pace by building real-world applications for each of the topics covered in
each of the chapters.

 We assume that you’re already motivated to write your own iOS apps and want to
get started right away, so we won’t spend much time convincing you. If you’ve never
created an app before, rest assured that you will have created your very first one after
the first chapter. This book will act as your trusted guide whether you want to dive into
iOS development, or only want to learn how to use the new features available in iOS.

 You’ll learn what makes up an iOS application and thus gain a deep understanding
of its different components. These many components have to come together to make
an app truly great. As you go along, the topics you’ll learn will give you the knowledge
you need to build more impressive apps on your own. And then we will have suc-
ceeded in what we set out to do!
xi

acknowledgments
Many people helped bring this book to fruition—mentors, colleagues, reviewers, edi-
tors, friends, and family. We thank you all.

 The reviewers who read the manuscript in various stages of its development and
provided invaluable feedback: Albert Choy, Andreas Walsh, Brent Stains, Chris Catalfo,
Daniel Zajork, David Cabrero, Ecil Teodor, Gavin Whyte, John D. Lewis, Jonathan
Twaddell, Mayur Patil, Moses Yeung, Richard Lebel, Stephen Wakely, Steve Tibbett,
Yousef Ourabi, and Zorodzayi Mukuya.

 The readers of Manning’s Early Access Program (MEAP) for their comments and
their corrections to our chapters as they were being written. You helped make this a
better book.

 Our technical proofreader, Joe Smith, who reviewed the manuscript one last time
shortly before it went into production.

 Finally, the team at Manning who worked with us and supported us, and allowed
one of us (Brendan) to do this for a second time: Marjan Bace, Scott Meyers, Jennifer
Stout, Kevin Sullivan, Linda Recktenwald, Alyson Brener, and the many others who
helped along the way.

BRENDAN LIM
I’d like to dedicate this book to my extremely loving and supportive wife, Edelweiss.
Knowing what the experience would be like from the first book I wrote, she still had
the patience to encourage me to finish my second. To my father, Chhorn, who has
always pushed me to work hard and has been the best role model anybody could ask
xii

ACKNOWLEDGMENTS xiii

for: I can only hope to have a few of the many accomplishments you have achieved. To
my mother, Brenda, who is the nicest and most caring and loving person I’ll ever
know: I strive to be as loving and caring as you are, and to carry myself with the same
smile that you always have on your face. Without the two of you, I wouldn’t be in this
world, and I owe everything to you both. To my two brothers, Chhorn and Chhun,
who have always been so supportive of me. To my niece, Madelyn and my nephew,
Bryent and to the other members of my family: Edwin, Leticia, Mark, Beth, and Lisa.
To all of my friends who have contributed directly and indirectly to the book.

MARTIN CONTE MAC DONELL

The following (and not limited to this book) is dedicated to the memory of my little
mentor, the one who taught me how to fight the unbearable and taught me The
Meaning. To you and your life: you’re still teaching me how to be a better man. With-
out a word. As it should be. I’d also like to thank Victoria, who opened the gate to the
garden and whom I admire and love profoundly. To my dear father, Juan José, my
lovely mother, Maria Teresa, my wonderful sister, Lucia, and to my dearest friend,
Ezequiel. These four incredible human beings have shaped me to be who I am today:
thank you very much.

about this book
If you’re interested in developing apps for iOS, then this book is for you.

 There are a few prerequisites to be able to use the book effectively. First, you need to
be interested in developing apps for iOS. You should have a Mac or at least a computer
that’s running OS X. Also, although object-oriented methodologies and Objective-C
are covered in the appendix, it’s helpful to have an understanding of both.

 With the prerequisites out of the way, this book is beneficial for developers new
to iOS or those who are experienced iOS developers who want to learn more about
creating apps for iOS. The book is structured so that you can skip a chapter if you
already have a good understanding of the topic. Most of the chapters and the apps
we create in them are atomic to allow you to read just the ones you need if you’re
already experienced.

Roadmap
This book has 14 chapters and is divided into 3 parts.

 Chapter 1 gets your development environment up and running, teaches you about
iOS fundamentals, and lets you build your first application.

 Chapter 2 gives you an in-depth look at views, controls, and the view coordinate
system. You also take a look at view controllers and how to support multiple orienta-
tions. This is done while enhancing the application that you built in the first chapter.

 Chapter 3 teaches you how to use storyboarding to organize the view controllers in
your application. We’ll use different scenes and show you how to transition and pass
data between them by creating a task management app.
xiv

ABOUT THIS BOOK xv

 Chapter 4 introduces you to table views, table view controllers, and prototype cells
so that you can organize and present data as lists. You’ll use a table view of albums in
the Photos application.

 Chapter 5 looks at collection views and custom collection view cells. You’ll also use
custom collection view flow layouts to organize photos in an application you create to
display your photos.

 Chapter 6 goes into retrieving remote data using iOS and custom third-party librar-
ies. You’ll learn how to use web views to display web pages within an application.

 Chapter 7 takes an in-depth look at the Assets Library framework, which allows you
to access all of the media on your device. You’ll learn how to retrieve assets, display
them, and capture photos and videos with the image picker. By the end of the chapter
you’ll have an application that can display the metadata for a photo.

 Chapter 8 introduces you to the Accounts and Social frameworks by creating an
application for access to Twitter and Facebook feeds.

 Chapter 9 explores advanced view customization by going beyond Interface
Builder. You’ll learn how to create custom views and animations by creating your own
animated clock application.

 Chapter 10 gives you an introduction to Core Location and MapKit. Using these
two frameworks, you’ll learn how to retrieve your current location and heading and
how to geocode location data. By the end of the chapter you’ll build an app that
shows your current speed and location.

 Chapter 11 looks at persistence and object management by utilizing Core Data.
You’ll find out the differences between Core Data and traditional databases and use
this knowledge to build a Core Data–backed task management application.

 Chapter 12 teaches you how to use AirPlay for streaming media and to display con-
tent on external screens. You’ll learn how to create your own music application that
streams and displays song information through an Apple TV.

 Chapter 13 explores how to notify users of your app by sending them push notifi-
cations. This chapter goes in depth on how to configure your app to send and receive
remote push notifications and how to schedule local notifications.

 Chapter 14 explores adding the parallax effect and realistic animations such as
gravity, bouncing, elasticity, and friction to views in your applications. You’ll see how
easy it is to add these effects using iOS 7’s APIs for motion and UIKit Dynamics.

Code conventions and downloads
There are many code examples throughout this book. These examples always appear
in a fixed-width code font like this. If we want you to pay special attention to a
part of an example, it appears in a bolded code font. Any class name or method
within the normal text of the book appears in code font as well.

 Some of the lines of code are long and break due to the limitations of the printed
page. Because of this, line-continuation markers (➥) may be included in code listings

ABOUT THIS BOOKxvi

when necessary. Code annotations accompany some of the code listings, highlighting
important concepts.

 Not all code examples in this book are complete. Often we show only a method or
two from a class to focus on a particular topic. Complete source code for the applica-
tions found throughout the book can be downloaded from the publisher’s website at
www.manning.com/iOS7inAction.

 An Intel-based Macintosh running OS X 10.7 or higher is required to develop iOS 7
applications. You also need to download the iOS SDK, but this is freely downloadable
as soon as you sign up with Apple.

Author Online
Purchase of iOS 7 in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/iOS7inAction. This page
provides information on how to get on the forum once you’re registered, what kind of
help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/lim2/
http://www.manning.com/lim2/

about the cover illustration
The figure on the cover of iOS 7 in Action is captioned “Morning Habit of a Russian
Lady in 1764.” The illustration is taken from Thomas Jefferys’s A Collection of the
Dresses of Different Nations, Ancient and Modern (4 volumes), London, published
between 1757 and 1772. The title page states that these are hand-colored copper-
plate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was
called “Geographer to King George III.” He was an English cartographer who was the
leading map supplier of his day. He engraved and printed maps for government and
other official bodies and produced a wide range of commercial maps and atlases,
especially of North America. His work as a map maker sparked an interest in local
dress customs of the lands he surveyed and mapped; they are brilliantly displayed in
this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phe-
nomena in the eighteenth century and collections such as this one were popular,
introducing both the tourist as well as the armchair traveler to the inhabitants of
other countries. The diversity of the drawings in Jeffreys’s volumes speaks vividly of
the uniqueness and individuality of the world’s nations centuries ago. Dress codes
have changed, and the diversity by region and country, so rich at one time, has
faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellec-
tual and technical life.
xvii

ABOUT THE COVER ILLUSTRATIONxviii

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of national costumes two centuries ago, brought back to
life by Jeffreys’s pictures.

Part 1

Basics and necessities

When the water’s cold, it’s better to jump in without hesitation. You’ll be
doing just that as you learn the important principles necessary for iOS develop-
ment. These are many of the core principles and tools you’ll be utilizing when
you start creating more advanced applications.

 In chapter 1 you’ll be introduced to iOS, the development environment, and
will even create your own Hello World application called Hello Time.

 Chapter 2 takes an in-depth look at the user interface layer of an iOS app.
You’ll learn about views, controls, and view controllers. Chapter 3 expands on
views and view controllers by going into storyboarding and scenes. By using story-
boards you’ll be able to organize and transition among multiple view controllers
in your application.

 In chapter 4 you’ll tackle the common problem of organizing data into a list.
You’ll do this by using table views. We’ll then segue into chapter 5, where you’ll
learn how to organize data using collection views.
www.allitebooks.com

http://www.allitebooks.org

Introduction
to iOS development
Developing iOS apps is something that many people wish they knew how to do.
How many times have you heard people say, “If only there was an app for...”? By the
end of this book you’ll be able to create those apps and possibly create one that
could be downloaded by millions of people around the world. Even by the end of
this chapter, you’ll be able to call yourself an iOS developer after we create our first
iOS application together.

 Many people who want to develop for iOS get scared away by the perceived com-
plexity of the platform. You’ll soon learn that once you focus on just the essentials,
you won’t feel overwhelmed as most people do with other iOS books. It’s also cru-
cial to be able to apply what you’ve learned by using that knowledge to create
something tangible. The best way to learn is by doing, and that’s just what you’re

This chapter covers
■ Introduction to iOS development
■ Designing applications for the mobile paradigm
■ Building and running your first iOS application
■ Objective-C and MVC primer
■ Overview of Apple’s development tools
3

going to do.

4 CHAPTER 1 Introduction to iOS development

 Instead of just reading about these topics, you’ll be
building useable applications so that you can see first-
hand how they work and how you can use them in real-
world applications. Throughout this book we’ll be cov-
ering core iOS topics and many of the great new things
in iOS like UIKit Dynamics, AirPlay, Social framework,
table and collection views, auto layout, animation, Core
Data, and much more. By creating focused applications
based on each topic, you’ll have a better understanding
of what you’ve just learned. Within this chapter is a
quick overview of iOS and then you'll quickly jump into
making your first iOS app, as shown in figure 1.1.

 You’ll be creating an app called Hello Time, which
is a fully functioning clock application that tells the cur-
rent time. While creating Hello Time you’ll become
familiar with the ins and outs of iOS development. You’ll
then review exactly what you did while creating the app
and learn more iOS development fundamentals.

1.1 Developing for iOS
iOS 7 is the seventh major release of Apple’s iOS Soft-
ware Development Kit. The SDK provides many frame-
works and tools used to create applications for iPhone,
iPad, and iPod touch devices that you can release in
Apple’s App Store. As you go through this book, you’ll
learn why developing for iOS is different than developing for the web or desktop, and
you’ll go through the steps of setting up your development environment to create
your own iOS apps.

1.1.1 Different kind of design interaction

The iPhone’s release brought a new type of device into the mainstream that relied
on fingertips for input with capacitive screens. It also allowed us to use natural
multitouch gestures with our fingers that mimicked those once only found in the
movies. It’s this type of interactive design that makes developing for iOS quite differ-
ent from developing for desktop and web applications. It’s also this amazing level of
interaction and ease of use that allows toddlers and young children to interact with
iOS apps.

 On iOS devices, when browsing the web through Safari, you flick the screen upward
with the tips of your fingers to scroll down. To go to the next photo in the Photos app,
you flick to the left. When you use the Maps app, you pinch the screen to zoom out-
ward. To zoom in, you could pinch outward or double-tap with one finger. If you want to

Figure 1.1 Hello Time, a fully
functioning clock application
that tells the time, which we’ll
build together by the end of
this chapter
“click” a button, you tap it. Other gestures allow you to interact with apps to reveal

5Creating your first iOS application

options for a particular item. For example, the Mail app displays a context menu after
swiping to the left on an email.

 App developers also have to take into account that everything needs to be dis-
played on a small 3.5”–4” device. You’re limited with screen real estate, which requires
you to present information to your users in a reasonable manner. You also need to
take into account expected usage patterns and interactions. Almost everybody who
uses apps on their phone uses them for short periods of time. You not only have to
limit what’s presented on a screen of this size but also limit the number of interactions
required to accomplish a particular task. It’s difficult to make something simple, but
this type of design interaction can make your apps more successful than those of your
competitors.

1.1.2 Getting ready to develop for iOS

To develop for iOS you’ll need to have an Intel-based Mac running at least Mac OS
X v10.8.4 (Mountain Lion). You’ll have to install Xcode 5, Apple’s integrated devel-
opment environment (IDE), to create iOS applications. Xcode is available for free,
and you can find it by searching for it in the Apple App Store or by going to http://
developer.apple.com/xcode/. Once you’ve downloaded and installed it, you’ll be
ready to start creating your first application.

1.2 Creating your first iOS application
Ready to create your first iOS app? Instead of a basic Hello World application, you’ll
create something with more functionality that can serve as the base of a real-world
application. You could even submit it to the App Store if you decided to spend a little
more time on it. You’re going to create an application called Hello Time, which will
be a fully functional clock that will show you the current time.

1.2.1 Creating the Hello Time application in Xcode

Before continuing, make sure that Xcode has finished installing. Once it’s installed,
open it by choosing Applications > Xcode. Then you can start creating a new project
by going to the application menu and choosing File > New > Project. You’ll then be
presented with many different application templates to choose from. Choose Single
View Application and click Next, as shown in figure 1.2.

 You’ll then be prompted to fill out the name of the project, organization, company
identifier, and class prefix. The name of the project should be Hello Time. The organi-
zation name and company identifier as well as the class prefix are for you to decide.
We’ll be using the prefix IA throughout the rest of the book to stand for “In Action.”
This will help you identify your own files that are related to your project, which is impor-
tant when you import other libraries into your projects. This is shown in figure 1.3.

 After clicking Next, you’ll be prompted to save the project on your computer. Con-
sider creating a new folder on your computer that holds all of your iOS applications.

This will keep your projects organized and make them easy to find in the future. Once

http://developer.apple.com/xcode/
http://developer.apple.com/xcode/

6 CHAPTER 1 Introduction to iOS development

Figure 1.2 Choosing Single View Application as the template for your Hello Time project

Figure 1.3 Options you need to specify when creating your new project

7Creating your first iOS application

you’ve created your project, you’ll be taken to the main project window within Xcode.
You can see all of the different files that were automatically created for you on the left
side of the window in figure 1.4.

 Let’s get started piecing together the application, beginning with the interface.

1.2.2 Creating the application interface

On the left side of the window, click Main.storyboard to bring up Xcode’s interface
editor. Your interface will be fairly simple and straightforward because you’re showing
only one piece of information on the screen, which is the current time. You’re going
to add a label to the view in the scene that was created for you in your app’s story-
board. This label will be used to display the current time.

 On the bottom right of the window you’ll see the Object Library. To make sure
you’re able to see this, you can also manually show it by selecting View > Utilities >
Show Object Library within the application menu (Control-Option-Command-3).
Once you have the Object Library showing, find the Label object. You can do this by
scrolling down through the list or by searching for it in the search field underneath, as
shown in figure 1.5.

 Note that you may be in the icon view instead of the list view. You can change this
by clicking the icon to the left of the search field. Drag this label into the blank view

Figure 1.4 Our newly created Hello Time project within Xcode

8 CHAPTER 1 Introduction to iOS development

with the white background. Try to arrange it so that it is aligned in the center of the
view, as shown in figure 1.6.

 You’re going to change the appearance of this text to make it look much better
than the default label styling. With the label still selected within your view, go to the
application menu and choose View > Utilities > Show Attributes Inspector (Option-
Command-4). This will load a new window on the right that you can use to edit the
object that’s currently selected. You can see this in figure 1.7.

 Change the font to System Bold with a size of 30.0. Also change the alignment so
that the text is centered. After doing this your label might not appear correctly
because the width of the label is too small to hold the default text, as shown in fig-
ure 1.8.

 Change the width of the label by clicking and dragging the two center anchors on
the left and right sides of the label. Drag them so that the label’s width is the exact
same width as the view it’s contained within. The height also needs some adjustment.
Drag the middle anchor on the top of the label to make it taller. It should look similar
to what’s shown in figure 1.9.

 You’re almost finished with your view. The most important aspect is the ability to
have your code communicate with different parts of your view.

Figure 1.5 Find the Label object in the bottom-right corner of the interface editor.

9Creating your first iOS application

Figure 1.6 Drag the label into the view and align it so that it is centered horizontally and vertically.

Figure 1.7 The attributes inspector after dragging the label into our view

10 CHAPTER 1 Introduction to iOS development

Figure 1.8 Changing the font and alignment of your label within the attributes inspector

Figure 1.9 Adjust the width and height of
the label to ensure that the text fits after

changing the font size.

11Creating your first iOS application

1.2.3 Connecting your user interface to your code

You’re going to create a connection between your interface and your code. This con-
nection will enable your code to communicate with the label you’ve just created. We’ll
spend more time on this in the next chapter, but it’s important to note that this is
something that you’ll be using with every application we create together.

 Open the assistant editor in Xcode by going to the top right of the window and
choosing the middle tab within Editors. You can also open it by choosing View > Assis-
tant Editors > Show Assistant Editor (Option-Command-4). The assistant editor auto-
matically opens IAViewController.m for you because you were working on its view.
Change this to show IAViewController.h, as shown in figure 1.10.

 You’ll now create the connection between your label and your code, which is
referred to as an outlet. You’ll be learning more about outlets and their importance in
the next chapter. Create an outlet for your label by holding down Control on your
keyboard, clicking your label, and dragging a connection to IAViewController in the
assistant editor, as shown in figure 1.11.

 Once you let go, you’ll see a popup that will ask you what you want to name your
label. Call it timeLabel and click Connect. This will create a property for you within
IAViewController.h that you can use within your code to make changes to your label—

Figure 1.10 Opening the assistant editor while working on the view will bring up the associated
view controller.
www.allitebooks.com

http://www.allitebooks.org

12 CHAPTER 1 Introduction to iOS development

in this case, to display the current time. The code that will be inserted into your code
should look like the following:

@property (weak, nonatomic) IBOutlet UILabel *timeLabel;

Now that your view is connected to your view controller, you can start working on
implementing the clock functionality.

1.2.4 Implementing the clock functionality

You’ll now implement the functionality needed for a basic working clock. Find IAView-
Controller.m to open the implementation of your view controller. Add the following
method within Xcode’s code editor:

- (void)checkTime:(id)sender
{
 NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
 [formatter setDateFormat:@"h:mm:ss a"];
 [self.timeLabel setText:[formatter stringFromDate:[NSDate date]]];

 [self performSelector:@selector(checkTime:) withObject:self
 ➥ afterDelay:1.0];
}

Figure 1.11 Clicking and dragging a connection from our label to our view controller to create
an outlet
This code can be seen added to IAViewController in figure 1.12.

13Creating your first iOS application

This method will get the current date and format it so that you’re displaying only the
time. It will then change the text of timeLabel by calling setText:. The last line tells
your controller to call this method again every second. This will cause the time to be
updated on your label every second, just like a regular clock.

 The last thing you need to do is have this method called when your view loads.
Luckily there’s a method called viewDidLoad that was already prepopulated for you
when you created your project. This method is triggered after your view has finished
loading and is the perfect place for you to trigger the checkTime: method. Add the
following to the bottom of the viewDidLoad method:

[self checkTime:self];

Adding that line to call the checkTime: method will kick-start your clock, which will
have it updating the time every second. After doing this, you won’t have to do any-
thing else. Why’s that? Well, because you’ve already finished creating your first iOS
application! Your interface has been set up and connected to your code. Your code
will update the label in your view with the current time every second. You’ve created a
fully functional clock application that tells the time.

1.2.5 Building and running your application

You can finally build and run your application to see just what we’ve built together.

Figure 1.12 The checkTime: function added to IAViewController’s implementation
This is extremely simple to do. If you look at the top left of the Xcode window, you

14 CHAPTER 1 Introduction to iOS development

should see a button with a “play” icon on it and with the label Run underneath. Once
you click it, Xcode will automatically build your application and then launch it within
the iOS Simulator. If there is a problem building your application, the compiler will
inform you of any errors it encountered.

 Click the Run button to build and run your application, as shown in figure 1.13.
 Once your application launches, you should see it running in the iOS Simulator. It

will show the current time and update itself every second, as shown in figure 1.14.
 It’s amazing that you’ve already created your first iOS application. You’ve created

the interface, connected an outlet between your label and your code, and added func-
tionality to set the current time. How about we dig deeper into iOS development by
exploring its fundamentals?

1.3 iOS development fundamentals
When creating your application you didn’t need to write much Objective-C. Knowing
Objective-C is just one piece of iOS development. It’s the same as knowing all the words
of a particular language. If you know the meaning of all of the words in the English dic-
tionary but don’t know how to form sentences, it’s like knowing Objective-C but not
knowing how to use Apple’s APIs. Cocoa Touch is Apple’s API for creating iOS apps.

 We’ll give you a quick introduction to object-oriented programming, Objective-C
syntax, MVC, and frameworks. There are whole books written on these topics, so we’ll
just touch on a few important things that you should be familiar with before moving
forward. If you’re interested in learning about these items in more detail, please take

Figure 1.13 Click the Run button to build and launch your application.
a look at the appendix.

15iOS development fundamentals

1.3.1 Object-oriented programming

In a nutshell, object-oriented programming (OOP) is a
concept in programming in which objects and their
structure are generally more important than the logic
needed to manipulate the objects. Before OOP was
introduced, programs were seen as recipes or proce-
dures with a set of instructions that you could follow
from start to finish. As soon as programs started to
become more complex, a new method was needed to
reduce this complexity. Object-oriented programming
helps solve this complexity by allowing you to break
down and flesh out your logic in a more natural way.

 When things are broken out into objects, they are
easier to understand; we relate to them because they
are similar to the world around us. Objects can be
named anything to represent something that would
hold data within your program. An object could be a
person defined by different properties such as name,
age, sex, gender, and so on. It could also be a home with
properties like address, city, state, price, bedrooms, bath-
rooms, and the like. Your Hello Time application could
be changed to have a clock object that has the time.
Instead, your Hello Time app has a Label object in its
view that has a text property. You modified this text
property on this object to display the current time.

 Every object in Objective-C is a child, or subclass, of NSObject. Objects are defined
as classes, and they can have children and parents. Much like in the real world, sub-
classes, or children, inherit the properties of their parents. For instance, you could
have a class called Automobile with properties make and model. You could then create
a subclass of Automobile called Truck that would represent a different type of auto-
mobile. You wouldn’t need to re-create or redefine the make and model properties
because it would inherit them from its parent. You could, however, add properties
that are specific to a truck like the bed size, whether or not it has four-wheel drive,
and so on.

 The concepts found in object-oriented programming are easily transferred from
one language to the next. Even though we haven’t gone through many specifics and
intricacies of OOP, you should have an understanding of what to expect and enough
background to be able to move forward.

1.3.2 Objective-C syntax and message passing

The common response for people new to Objective-C is that the syntax makes the lan-

Figure 1.14 Our Hello Time
application running within the
iOS Simulator
guage look daunting and confusing. They are often thrown off by the use of brackets

16 CHAPTER 1 Introduction to iOS development

everywhere. Once you understand why and just how the syntax works, it will all make
sense and become easy to read.

 Messages are passed to a particular object. Generally, whatever is declared on the left
side within a set of brackets is the object, and whatever is on the right side is the message
you’re passing to it.

[object message];

The message you’re passing to it has to be a predefined method or function that has
been defined on that particular object. If one hasn’t been defined, you’ll get an error
telling you that the object doesn’t know how to respond.

 You can even pass in an argument or a parameter with a message:

[object message:parameter];

Many people get confused when they see multiple parameters being passed in a
method. The previous example has one parameter. Imagine if you had a method defi-
nition that looked like the following:

-(void) message:(id)parameterOne secondParam:(id)parameterTwo;

You would call this method by passing in the parameters as such:

[object message:paramOne secondParam:paramTwo];

As you can see, the whole name of the method, or the message you’re calling, is
message:secondParam:. The parameters are declared after each colon defined in the
method name.

 Let’s now take a look at creating a new instance of a real object in Objective-C.
Here you’re creating a new instance of an NSString object.

[[NSString alloc] init];

This is the standard way of creating a new object instance. Don’t be confused by the
multiple brackets. You can break this down to see how these messages are being
passed. You’re first calling [NSString alloc] in the first set of brackets. Then you’re
calling init. You could break this into two lines:

NSString *string = [NSString alloc];
[string init];

This is perfectly fine except that it’s much easier to do [[NSString alloc] init] instead
of breaking it into two separate lines. The takeaway here is that whatever is returned
within the inner set of brackets is then passed a message by the outer brackets.

 From the previous example you can also see that you’re returning a reference to a
new NSString object and storing it as an instance variable called string. You did the
same thing within the checkTime: method that you created in your Hello Time app
when you needed to create something to format the time for you.

NSDateFormatter *formatter = [[NSDateFormatter alloc] init];

[formatter setDateFormat:@"h:mm:ss a"];

17iOS development fundamentals

You created an instance of NSDateFormatter and stored a reference to it in the vari-
able named formatter. You then passed it a message to set the date format property
by passing in a string value as the parameter.

1.3.3 The Model-View-Controller pattern

The Model-View-Controller (MVC) pattern is a design pattern that assigns objects in
an application to one of three different roles. These roles are a model, a view, and a
controller, as shown in figure 1.15. You may already be familiar with this pattern,
because many other frameworks often implement MVC.

 Using MVC, models encapsulate data and logic specific to an application. You
didn’t have any models in your Hello Time application; it wasn’t necessary because of
its lack of complexity. A view object is something whose main purpose is to visually dis-
play information to the user. View objects learn through controllers about the model,
which contains the data that they can display. You created your view by modifying the
storyboard within the interface editor. Controllers act as the intermediary between
view and model objects. You connected your view to your controller, and your control-
ler made the changes to your label to display the current time every second.

1.3.4 Frameworks introduction

Frameworks are compiled libraries that you can use to add functionality to your appli-
cations. By default, when you create a new iOS project in Xcode, it automatically
includes the frameworks UIKit, Foundation, and CoreGraphics. UIKit provides classes
to create and manage user interfaces. Foundation provides the base layer of Objective-C
classes. Core Graphics provides functionality based on the Quartz drawing engine. It
aids with image manipulation, color management, gradients, shadings, and the like.
These three frameworks give you the basic functionality to create iOS applications.

 If you wanted to access all of the photos and videos on your iOS device, you could
use the Assets Library framework, which contains classes that allow you to do just that.
If you were to build a web browser, you’d use the WebKit framework. You’ll be using
various frameworks to add in functionality to the apps that you build in the book.
You’ve now had a general overview and introduction to OOP, Objective-C syntax, mes-
sage passing, MVC, and frameworks. Because you’ll be spending most of your time in
Xcode, let’s go over it in more detail so that you become more comfortable with your

Controller

ModelView

User action Notify

Update Update Figure 1.15 Communication
between models, views, and
controllers within MVC
development environment.

18 CHAPTER 1 Introduction to iOS development

1.4 Overview of Apple’s development tools
You’ll be spending almost all of your development time within Xcode and the iOS
Simulator. If you’re not already familiar with these tools, this quick introduction
should help you get started. Apple has a few other tools that you can use for develop-
ment, but these are the two that you’ll be using 99% of the time. Let’s get started by
getting familiar with Xcode and creating our first app together.

1.4.1 Creating different types of projects in Xcode

When we created the Hello Time application, we chose to use a Single View Applica-
tion project template. There are many other project templates you can choose from
when creating a new project in Xcode. We chose the one that best suited our needs
because there’s only one view in the application.

 Take a look at figure 1.16, which shows all of the different application project tem-
plates available when you create a new project within Xcode.

 Each project template serves a purpose for any applications that you could be
building. Table 1.1 shows a run-down of the default templates available for iOS. Note
that this differs depending on which version of the iOS SDK you’re using.

Figure 1.16 Drop-down window shown in Xcode that lets you choose from multiple application
templates when creating a new project

19Overview of Apple’s development tools

If you don’t want Xcode to create anything for you beyond a basic application with no
pregenerated views, you could choose the Empty Application template.

 After choosing and creating the project, you’re dropped into Xcode’s main work-
space window. You’ll soon become more familiar with the different sections contained
within this window.

1.4.2 Getting familiar with Xcode’s workspace

Xcode’s workspace window consists of four different sections. These sections include
the editor, the navigator, the utilities, and the debug area. In figure 1.17 you can see
these sections separated and labeled.

 The left side contains the navigator area, which lets you view and access all of the
files contained within your project. The editor area is where you’ll be diving into code
as well as working with visual interfaces for your apps. You can have multiple panes
showing different files within the editor area. The bottom center of the screen is the
debug area, where you can view log output from your app as well as perform deep
application debugging. The right side is the utility area, which is made up of the
library and the inspector pane.

 When you were creating the interface for the Hello Time app, you clicked
Main.storyboard to launch the interface editor. You can see an example of a view
being edited inside a storyboard in figure 1.18.

 This storyboard handles all of the scenes within your application and how they
interact with one another. Xcode’s interface editor is a true drag-and-drop interface.
You can drag and drop UI elements from the library pane within the utility area

Table 1.1 Default iOS application templates for new projects in Xcode

Template Description

Empty Application The most basic application template. Provides just an application delegate
and a window.

Master-Detail Application Provides a split-view–based application template for the iPad with a naviga-
tion controller.

OpenGL Game Provides a starting point for an OpenGL ES-based game. Comes with a
view to render an OpenGL ES scene and a timer to animate the view.

Page-Based Application Provides an application setup to use a page-view controller.

Single View Application Provides a single view and a view controller to manage the view.

Tabbed Application For applications that need to use a tab bar. Provides a tab bar controller
and view controllers for the tab bar items.

Utility Application Provides a main view and an alternate view. For iPhone an Info button is
set up to flip the main view to the alternate view. For iPad it uses a pop-
over to show the alternate view.
directly onto your views. Modifying these UI elements can be done within the inspector

20 CHAPTER 1 Introduction to iOS development

pane, which is located within the utility area on the right side of the window. Xcode’s
interface editor also allows you to edit XIBs (pronounced as “nibs” because the exten-
sion used to be .nib instead of .xib). We’ll be going deeper into views and storyboards
in the chapters to come.

 When you ran your application, you used it within the iOS Simulator. You’ll be
using the Simulator to run and build every application that we build together.

1.4.3 iOS Simulator

Another big part of the iOS SDK is the iOS Simulator. The Simulator allows you to run
iOS apps on your computer without the need for a physical device. You have the
option of running the Simulator as an iPhone or iPad with or without retina displays.
This makes it easy for you to simulate your applications on multiple devices.

 The quickest way for you to open the Simulator is to build and run your applica-
tion. When you built and ran Hello Time, you clicked the Run button on the top left
of Xcode’s workspace window, as shown in figure 1.19.

2. Navigation 3. Debug area

4. Utilities

1. Standard editor1

1

2

2

3

4

3

4

Figure 1.17 The different sections of Xcode’s workspace window

21Overview of Apple’s development tools

When your application is launched, you are presented with a window that looks
exactly like an iPhone. You can click the Home button on the bottom of the Simulator
just like on a real device. Once you do this, you’ll have access to many preinstalled
apps. You can also see that the Simulator has different hardware choices on its applica-
tion menu, as shown in figure 1.20.

Figure 1.18 Editing a view from a storyboard within Xcode’s interface editor

Figure 1.19 Building and
launching the application will
launch the iOS Simulator.
www.allitebooks.com

http://www.allitebooks.org

22 CHAPTER 1 Introduction to iOS development

These different hardware choices allow you to see how your application would appear
if run on different-sized iPads, iPhones, and even retina and non-retina devices.

 Instead of having to build and run an application to get the Simulator to run, you
can also launch it manually. To do this, you can find the application bundle for the
Simulator at the following path in Finder or within the Terminal application.

<Xcode Path>/Platforms/iPhoneSimulator.platform/Developer/Applications

While using the Simulator, you can mimic different scenarios that would occur on a real
physical device. The Simulator can be rotated in any direction; calls can be simulated, as
well as your current location. There is also an option to trigger a memory warning to
see how your app would respond under such circumstances.

Figure 1.20 iOS Simulator and
the menu option to choose
different hardware types

23Summary

 Now that we’ve taken a look at the tools you’ll be using, you should be more com-
fortable working with them. You’ll be using Xcode and the iOS Simulator throughout
the rest of the book. As you go along, you’ll learn more about Xcode and how you can
use it to create complex iOS applications.

1.5 Summary
Within this chapter you’ve had an overview of iOS and the differences when creating
touch-based applications. You also jumped right into creating your first iOS applica-
tion, Hello Time, a functioning clock app. You also got a primer on Objective-C, mes-
sage passing, and MVC. Finally, you took a look at Xcode and Apple’s development
tools. Now you’re ready to tackle the rest of the book and jump into the many differ-
ent parts of iOS development.

■ Designing mobile applications requires a shift in thinking compared to other
paradigms, such as web or desktop applications.

■ Interacting with an application through the use of gestures increases the num-
ber of ways someone can interact with your applications.

■ Limited real-estate screen space means you should be conscious about how you
present information.

■ You’ll spend all of your application development time within Xcode.
■ You can write code as well as create an app’s interface within Xcode.
■ You can make connections, such as outlets, between your interface and your code.
■ Your apps can be run on the iOS Simulator, which comes bundled with Xcode.
■ The iOS SDK has many frameworks that can be used to add functionality.
■ Xcode has various templates you can use to generate a new project.
■ You can create a basic but functional iOS application, such as Hello Time, quickly

with a minimal amount of code.

Views and
view controller basics
You’ve all used apps on your mobile devices. The way you interact with them is
much different than the way you use apps on your laptops or desktop computers.
Why is that? The amount of space available to present information on mobile
screens is much smaller than on desktop applications. Only a limited amount of
data can be displayed on the screen at once to ensure a good visual experience.

 You also interact with your apps differently. Instead of using peripherals such as
a keyboard and mouse as input devices, you use your fingers. The appearance and
design should feel natural to users. You should take all of this into account when
creating and designing the views that make up your apps.

 In this chapter we’ll go over the different parts of what you see in an app—its

This chapter covers
■ Enhancing your Hello Time app
■ Views and the view coordinate system
■ User interface controls and responding

to events
■ View controller lifecycle and creating views

programmatically
■ Supporting multiple orientations
24

windows, its views, and the view controllers that manage them. You’ll learn about

25Enhancing Hello Time

the different controls you can use within each view of your app, such as buttons,
labels, and text fields. You’ll then learn how to visually arrange and organize the views
within your application, better known as storyboarding. First, we’ll revisit the Hello
Time app you created in chapter 1 and add more functionality to it.

2.1 Enhancing Hello Time
When you created Hello Time in the previous chapter, the goal was to have a simple
application that would act as a clock. In this chapter, you’ll be giving it a few enhance-
ments, as shown in figure 2.1.

 First, you’ll be adding a button to the view that will enable a night mode. This
mode should make Hello Time easier on the eyes when you’re using it at night. You’ll
also need a way to switch back to day mode. Next, you’ll ensure that Hello Time
appears properly when the device it’s running on is rotated into landscape mode.

2.1.1 Switching between night and day modes

To begin, launch Xcode and open the Hello Time project. Because you’re adding a
night mode, you need a way for someone to turn it on. You’ll be adding a button below
the label that you’re using to display the time. In the project navigator (View > Navigators
> Show Project Navigator, or press Command-1), choose Main.storyboard to bring up the
interface editor. You should see everything just as you left it, as shown in figure 2.2.

 Locate the Object Library on the bottom right of your workspace window. Search
for “button” to locate Button and drag it underneath the label you’ve just added, as

Figure 2.1 The updated Hello Time application after adding more functionality to it
shown in figure 2.3.

26 CHAPTER 2 Views and view controller basics

Figure 2.2 The interface for Hello Time just as you left it in the previous chapter

Figure 2.3 Dragging a button from the Object Library onto the bottom of your view

27Enhancing Hello Time

Next, you can change the text of this button from “Button” to “Night.” On the right
side of your workspace window, with your button selected, look for the Title property
and change its entry to “Night.” You can see this in figure 2.4.

 You’ve now finished adding the button to your interface. The next step is to con-
nect the button so that the code you’re going to write can interact with it. First, open
the assistant editor by choosing View > Assistant Editor > Show Assistant Editor
(Option-Command-Return) in the application menu. This should bring up IAView-
Controller.h on the right side of your workspace. Hold down the Control key on your
keyboard and drag an outlet into IAViewController, as shown in figure 2.5.

 When you let go, you’ll be prompted to set a name for this new connection. Call it
modeButton. Once you make the connection, the following code will be inserted:

@property(weak, nonatomic) IBOutlet UIButton *modeButton;

This will allow you to make changes to the button such as modifying the label you’re
using to display the current time. What about when someone taps the button? How do
you know when that happens? Let’s create something to handle that event.

 In the same way that you dragged a connection to create an outlet, hold down
Control and drag the connection into the assistant editor. In the pop-up that appears,
change the connection to Action, change the event to Touch Up Inside, and set the
name to toggleMode, as shown in figure 2.6.

Figure 2.4 Change the title of the button to “Night” by editing the Title property in the inspector.

28 CHAPTER 2 Views and view controller basics

Figure 2.5 Drag a connection from the button in your view to IAViewController’s interface.

Figure 2.6 Create an action for the Touch Up Inside event called toggleMode.

29Enhancing Hello Time

Once the connection is made, Xcode will generate a toggleMode: method that will
serve as an action that will be triggered when your button is touched. Let’s add the
code for this action that will enable or disable night mode.

 Go back to the standard editor by selecting the application menu and choosing
View > Standard Editor > Show Standard Editor (Command-Return). Next, select the
project navigator and choose IAViewController.m. Inside the editor you’ll see a blank
toggleMode: method that Xcode generated. Replace it with the code shown in the fol-
lowing listing.

- (IBAction)toggleMode:(id)sender {
 if ([self.modeButton.titleLabel.text isEqualToString:@"Night"]) {
 self.view.backgroundColor = [UIColor blackColor];
 self.timeLabel.textColor = [UIColor whiteColor];
 [self.modeButton setTitle:@"Day" forState:UIControlStateNormal];
 } else {
 self.view.backgroundColor = [UIColor whiteColor];
 self.timeLabel.textColor = [UIColor blackColor];
 [self.modeButton setTitle:@"Night" forState:UIControlStateNormal];
 }
}

If you take a look at figure 2.7, you’ll see this code added to IAViewController.

Listing 2.1 Toggling between night and day modes
Figure 2.7 Your code added to the toggleMode: action within IAViewController

30 CHAPTER 2 Views and view controller basics

This will take care of switching between night and day modes. The next thing you’re
going to add to Hello Time is support for landscape mode.

2.1.2 Adding support for landscape mode

If you were to view your application in landscape mode right now, it would look pretty
strange. The time label and the button don’t reposition themselves properly when the
orientation changes. You can see this in figure 2.8.

 You’ll alleviate this by adding support for landscape mode. You’ll make the label
appear in the center of the view and make the button disappear. This will make tog-
gling between night and day modes possible only within portrait mode.

 Jump back into Xcode and into IAViewController.m. You’re going to add two new
methods. One of them will declare the orientations that you’ll support. The other will
adjust your view so that it appears different in landscape versus portrait mode. Add
the two methods in the following listing to the bottom of IAViewController.m.

- (void) willAnimateRotationToInterfaceOrientation:
(UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration
{
 CGRect timeFrame = self.timeLabel.frame;
 float viewHeight = self.view.frame.size.height;
 float viewWidth = self.view.frame.size.width;
 float fontSize = 30.0f;
 BOOL hideButton = YES;

 if (UIInterfaceOrientationIsLandscape(self.interfaceOrientation)) {
 fontSize = 40.0f;
 timeFrame.origin.y = (viewWidth / 2) - timeFrame.size.height;
 timeFrame.size.width = viewHeight;
 } else {
 hideButton = NO;
 timeFrame.origin.y = (viewHeight / 2) - timeFrame.size.height;
 timeFrame.size.width = viewWidth;
 }

Listing 2.2 Changing the view depending on orientation

Figure 2.8 The Hello Time
app currently doesn’t support
landscape orientation. You’re
going to fix this.

31Introducing views

 [self.modeButton setHidden:hideButton];
 [self.timeLabel setFont:[UIFont boldSystemFontOfSize:fontSize]];
 [self.timeLabel setFrame:timeFrame];
}

- (NSUInteger) supportedInterfaceOrientations
{
 return UIInterfaceOrientationMaskPortrait |

➥ UIInterfaceOrientationMaskLandscape;
}

You can see these two methods added to IAViewController by taking a look at fig-
ure 2.9.

 That’s it! You’ve finished adding enhancements to your Hello Time app. You’ll be
referencing what you’ve done throughout the chapter. But first, we should take a
closer look at what views are and how they are used within an app.

2.2 Introducing views
It’s important to familiarize yourself with the basic components that make up the visual
layer of your application. These include screens, windows, views, and controls. You’ll
learn what you’re actually seeing in an iOS app and how apps work inside and out.
Figure 2.9 Adding two methods to IAViewController to support two different orientations

www.allitebooks.com

http://www.allitebooks.org

32 CHAPTER 2 Views and view controller basics

2.2.1 Screens, windows, and views

Everything you see in an app is primarily made up of views. These views are displayed
within a window, and that window is contained within a screen. Take a look at the anat-
omy of a view you’d see within your Hello Time application by focusing on figure 2.10.

 Two items are shown on the screen of the iPhone in figure 2.10—a label and a but-
ton. Labels (UILabel) and buttons (UIButton) are known as controls—as are text
fields (UITextField), images (UIImageView), and the like. These controls are all sub-
classes of UIView.

 Notice how these two controls are contained within a white area? This white area is
a view (UIView) that has a property that specifies its background color. We changed
this background property when switching to night mode using the following code.

self.view.backgroundColor = [UIColor blackColor];

This view is contained within a single window (UIWindow), which is contained within a
screen (UIScreen). You generally have only one screen or window when working with
an application. You may have more screens and windows if you’re using video-out or
AirPlay to display something on a different screen or device. Here’s an overview of
these three types of classes:

■ UIScreen—Represents the physical screen of the device
■ UIWindow—Provides drawing support for displaying views on a UIScreen
■ UIView—Represents a user interface element within a rectangular area

As you learned in the previous chapter, every class is a subclass of an NSObject. A UIView

UIScreen UIWindow

UIView

UILabel UIButton

Figure 2.10 The Hello Time app, which has a label and button within a view, which
is contained within a window inside a screen
also inherits from UIResponder, which means it’s capable of responding to actionable

33Introducing views

events. A UIButton’s direct parent is UIControl, which is a subclass of UIView. UIControl
subclasses are views that you directly interact with, like buttons, labels, or text fields.
Views can also be nested or layered within a hierarchy. View controls, like a label or
button that you’re using in Hello Time, are nested as subviews of a parent view.

 Views can also be animated, which is used heavily in iOS. Almost every time you
transition from one view to another in an app, the current view slides out to the left
while the new view slides in from the right. When a modal-style view appears, it comes
in from the bottom of the screen and slides upward until it’s fully in view. When you
delete an item from the Mail app, the row that contains the email you’re deleting
slides out. When you delete a photo from the Photos app, the UIImageView that con-
tains your photo gets sucked into the trashcan button. Animations can be applied as
changes to properties of a particular view for a specific duration. You’ll learn more
about animations in a later chapter. Next, you’ll learn about the coordinate system
and how views are represented within a window.

2.2.2 Views and the coordinate system

When you lay out your views, you do so by providing X and Y coordinates as well as a
width and height. These coordinates are placed within a view coordinate system with
the point (0,0) at the top left of the screen. The X coordinate, Y coordinate, width,
and height are contained within a CGRect and are referred to as a view’s frame. You
can provide a view with a frame either programmatically or by using Interface Builder.

 Most initializer methods for a UIView ask for a frame to be provided. For example,
let’s say you want to create a UIView that is 200 x 200 and positioned at the X coordi-
nate 10 and the Y coordinate 10. You would use the initWithFrame: method and sup-
ply a CGRect as your parameter by using the CGRectMake() function. This function
takes four parameters: x, y, width, and height:

CGRect frame = CGRectMake(10,10,200,200);
UIView *foo = [[UIView alloc] initWithFrame:frame];

Let’s give your view a red background to make it stand out. A white view on top of
another white view would make it impossible to see.

[foo setBackgroundColor:[UIColor redColor]];

Your view will appear on the top-left corner of its parent view. You can see this in fig-
ure 2.11.

 This is because the coordinate system for iOS assumes (0,0) to be at the top-left
corner. The coordinate system is also relative to the parent of the view. For instance, if
you were to add a view within the red UIView shown in figure 2.11 at (10,10), it would
appear 10 points to the right and to the bottom of the red view’s top-left corner. This
is because (0,0) of the red view is at its absolute top-left corner. To visualize this, take a
look at figure 2.12.

 Here we’ve added a white view at (10,10) with a size of 150 x 150 as a subview of

our red view. Instead of appearing at the exact same position as the original red view

34 CHAPTER 2 Views and view controller basics

Y

X (0,0)

(0,0)

Figure 2.11 A view at coordinates (10,10)
and measuring 200 x 200 will appear at the
top left of its parent view.

Y

X (0,0)

Figure 2.12 A view added as a
subview to our red view at (10,10)

with a size of 150 x 150

35Introducing views

shown in figure 2.11, it assumes a new coordinate system relative to its parent. This
means that the origin point (0,0) is at the very top left of the red view.

 When you rotate the Hello Time app, you’re retrieving the frame of timeLabel
and editing its Y origin. The new Y origin point was calculated by referencing the
height of its parent view. By editing its frame you’re able to change its vertical posi-
tioning to center it within the view depending on the orientation.

 Now that you’ve learned about the view coordinate system, you can learn more
about different UI controls.

2.2.3 User interface controls

User interface controls (or simply controls) are represented by the UIControl class. Con-
trols are interface elements that a user can view and interact with. You’ve interacted
with many different types of controls when using iOS apps. Examples of different types
of controls include labels, buttons, sliders, text fields, selectors, activity indicators, and
search bars. Various controls as listed within Xcode are shown in figure 2.13.

 To visualize the hierarchy of a control, take a look at figure 2.14.
 When you created the Hello Time app, you used the Single View Application tem-

plate. This created a single view controller that had a view attached to it. You’ve been
editing this view within Main.storyboard. When you were dragging in your label and
your button to this view, you were adding them as subviews.

 By doing this programmatically you can see what goes into adding a subview. You’d
need to pass in a frame to the alloc:initWithFrame: method, which is found on
most UIView subclasses:

CGRect frame = CGRectMake(0,0,100,20);
UILabel *label = [[UILabel alloc] initWithFrame:frame];

To add this label to its parent view within a view controller, all you have to do is use the
addSubView: function.

[self.view addSubView:label];

This will add the label as a subview and position it at (0,0) with a width of 100 and height
of 20. You can make changes to this frame as you did in Hello Time by retrieving the
frame, making a change to its size or origin, and then resetting its frame property:

CGRect frame = label.frame;
frame.origin.x = 10;
frame.size.width = 200;
[label setFrame:frame];

In this example, you’re retrieving the frame, and setting it’s X origin to 10 and its width
to 200. You’re then resetting the label’s frame property with the newly modified frame.

2.2.4 Responding to actions and events

In Hello Time you created an action for the button that you used to toggle between

night and day modes. This button triggered an action you defined, called toggleMode:,

36 CHAPTER 2 Views and view controller basics

whenever the button was touched. The specific event you used was Touch Up Inside, which
is the default event to respond to when someone touches a button. You used Xcode’s inter-
face tools by dragging an action connection from the button to your view controller.

 Take a second look at the toggleMode: action that you have within IAView-
Controller. In the method definition it’s specified as an IBAction.

Figure 2.13 List of different user interface controls as shown in Xcode’s interface builder
- (IBAction) toggleMode:(id) sender

37Introducing views

It also takes in one parameter named sender. The object that triggered the action
usually fills the sender parameter. For instance, your button, modeButton, would
be accessible through the sender parameter within that action because it triggered
its execution. If you wanted it to trigger another action for a specific event, you
could create another connection through the interface tools, or you could do it
programmatically.

 By doing it programmatically you can see what’s being done to trigger an action
for a specific event. Say, for instance, you have another action called turnRed:, which
changes the color of your label to red. If you want this to happen when your button is
touched, you could add the following code:

[self.modeButton addTarget:self action:@selector(turnRed:)

➥ forControlEvents:UIControlEventTouchUpInside];

This will call the turnRed: method on your current class when the Touch Up Inside
event is triggered. You’ll also notice that for the action parameter, you’re using
@selector(turnRed:) instead of just turnRed:. The @selector() function returns
a SEL, or selector, which allows you to reference a particular method or action. A
selector is essentially a pointer to a method. For example, the previous code exam-
ple could be written as follows:

SEL turnRedSelector = @selector(turnRed:)
[self.modeButton addTarget:self action:turnRedSelector

➥ forControlEvents:UIControlEventTouchUpInside];

As we go along, you’ll be using controls other than buttons and responding to differ-

NSObject

UIResponder

UIView UIViewController UIApplication

UIControl

UIButton UILabel UITextField

Figure 2.14 Class hierarchy of a
UIResponder as well as subclasses
of a UIView and UIControl
ent types of actions.

38 CHAPTER 2 Views and view controller basics

2.2.5 Custom tint colors

iOS 7 introduced tint colors to UIViews, which are used to define key colors that are
used to represent interactivity for user interface elements. Adding a tint color to a
view also changes the tint color for all of its subviews. Without manually setting a tint
color, the default color will be blue, as you can see in the Hello Time application. The
controls that you’ve added are all shown using the default tint color.

 To change the tint color of a view, you just have to modify its tintColor property.
Shown here is how you’d set the tint color of a particular view and its subviews
to red:

view.tintColor = [UIColor redColor];

If you wanted to change the tint color of an entire application, you could just update
the tint color in its UIWindow. This is because the UIWindow contains all of the subviews
within an application. This is shown in the following code example:

self.window.tintColor = [UIColor redColor];

It’s also possible to change the tint color of a view within the interface editor in
Xcode. By selecting a view, you can modify its tint color in the attributes inspector.
Next, let’s take a closer look at view controllers.

2.3 View controller basics
View controllers manage each separate view in your application, which are the screens
you see in an iOS application. Although managing views is what a view controller does,
that’s not its only responsibility. View controllers also handle transitions between
other view controllers and transferring data between them. When you tap a button or
any other type of control and are transitioned from one view to another, a view con-
troller handles that transition.

2.3.1 Introducing view controllers

Simply put, a view controller manages your views and segues between view controllers.
They are a core component of each iOS app and act as the glue between your views
and your models. They initialize and set up your models and populate your views.
View controllers are also the controller objects in the MVC pattern.

 If you go back to the Hello Time project in Xcode, you’ll see that two methods
were already declared for you: viewDidLoad and didReceiveMemoryWarning. Both
names are self-explanatory. One is for handling when the view has already been
loaded, and the other is for when you need to handle a situation where you received a
memory warning. These two methods help with the view controller’s lifecycle. Let’s
explore this, and you’ll see how you can override certain methods to help manage
your controllers.

39View controller basics

2.3.2 The view controller lifecycle
Understanding the lifecycle of a view controller allows you to properly manage the
models and views contained within it. It helps you understand when your view will be
ready for you to manipulate and when you should have to clean things up when your
view is about to be removed. Having a deep knowledge of the view lifecycle is a core
part of becoming a great iOS developer because everything revolves around view con-
trollers and using them effectively.

 When any part of your application asks a specific view controller for its view prop-
erty, it will kick off a chain of events. If the view property for this view controller is not
yet loaded into memory, it will call a method called loadView. Once this view is fully
loaded, it will call the viewDidLoad method. This is where you can start initializing any
data needed for your views. You can see this flow in figure 2.15.

 Looking at the flow for retrieving and setting up a view in a view controller, you
can see that you can override the loadView function to programmatically create a
UIView to set as the view controller’s view property. This is opposed to loading it from
a nib or from a storyboard, as you’ve been doing in Hello Time.

 There are a few more methods throughout the lifespan of a view controller that
are triggered by various view events. These methods give you more precise control
throughout a view controller view’s different states. They are listed in table 2.1.

Naming conventions for view controllers
It’s good practice to use very specific names for view controllers throughout your proj-
ect. This makes maintenance and reusability much easier to manage. It also makes
it easy to work with other developers. In your Hello Time project, you’re using IAView-
Controller for your main view. This is because it was generated for you using the
Single View Application template. You can change its name if you want to. If you were
building a photo-picker controller for a photo-sharing application, you could name it
something like IAPhotoSelectionViewController.

Table 2.1 Methods related to the lifecycle of a UIViewController

Method Description

loadView Creates or returns a view for the view controller.

viewDidLoad View has finished loading.

viewWillAppear: View is about to appear with or without animation.

viewDidAppear: View did appear with or without animation.

viewWillDisappear: View is about to disappear with or without animation.

viewDidDisappear: View did disappear with or without animation.

viewWillLayoutSubviews View is about to lay out its subviews.

viewDidLayoutSubviews View did lay out its subviews.
didReceiveMemoryWarning View detected low memory conditions.

40 CHAPTER 2 Views and view controller basics

Because of the verbosity of Cocoa’s method names, it’s rather simple to understand
when each of these methods is called. Within IAViewController in your Hello Time
project, you added a call to checkTime: at the end of the viewDidLoad method. This was
added here because you want to trigger the time check after your view is ready to be used.

 Let’s go one step further and add something else to the bottom of viewDidLoad.
You’ll add a log statement so you can see when it’s being triggered. Add the following
code to the bottom, underneath the call you added to check the time:

NSLog(@"viewDidLoad called");

Now override viewWillAppear: and viewDidAppear: by adding the following code:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 NSLog(@"viewDidAppear: called");
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 NSLog(@"viewWillAppear: called");

loadView
No

No No

Yes Yes Yes

Run loadView

View property
accessed

Return view viewDidLoad

Load from
toryboards

Empty viewStoryboard?
loadView

overrided?

View
exists?

Figure 2.15 The flow for retrieving and setting up a view in a view controller
}

41View controller basics

Run the application and look at the console within Xcode. You can activate the con-
sole by pressing Shift-Command-C or by choosing View > Debug Area > Activate Con-
sole. You’ll then see the following output:

Hello Time [12139:c07] viewDidLoad called
Hello Time [12139:c07] viewWillAppear: called
Hello Time [12139:c07] viewDidAppear: called

From this you can see that the first method that’s called is viewDidLoad, followed by
viewWillAppear:, and then finally viewDidAppear:. Before viewDidLoad is triggered,
your view controller checks to see if loadView has been overridden. In this case it’s not
because it’s being loaded from the storyboard. You could also go one step further and
add in calls to see when your view disappears by adding log statements to viewWill-
Disapear: and viewDidDisappear:. These would normally be triggered when you
decided to load another view controller in your application.

 You’ve used only a basic view controller, but there are many different types to
choose from. Apple provides many for you to use for different types of applications.

2.3.3 Different types of view controllers

There are different types of view controllers that you can use without having to write
your own from scratch. Some of these view controllers help you manage data by laying
it out in a table or grid format. Others manage other view controllers that allow you to
display them in a tab-based layout or in a hierarchical structure. All of these view con-
trollers are listed in table 2.2.

You’ve encountered most of these while using other iOS apps. Let’s take a quick
high-level look at each of these to see how they differ, starting with UINavigation-
Controllers.

NAVIGATION CONTROLLERS

Navigation controllers (UINavigationController) handle the display of data hier-
archically using multiple view controllers within a stack. The first view controller
within a navigation controller is referred to as the root view controller. When dis-
playing a view, you can push another view onto the stack. The navigation controller

Table 2.2 Different out-of-the-box subclasses of UIViewController in iOS

UIViewController subclass Description

UINavigationController Manages navigation of hierarchical view controllers

UITabBarController Represents and manages multiple view controllers as tabs

UITableViewController Presents and manages data represented as a table

UICollectionViewController Presents and manages data represented as a collection
allows you to go back by popping the current view off the stack until you reach the

www.allitebooks.com

http://www.allitebooks.org

42 CHAPTER 2 Views and view controller basics

root view. Figure 2.16 shows a navigation controller in action within the default Set-
tings app.

 As you can see in the figure, the Settings app uses a navigation controller. By tap-
ping on Twitter, a new view is pushed onto the navigation controller and brought into
display. A back button with the label Settings is also added to this newly pushed view.
From there you can go one level deeper by clicking a Twitter account, which pushes
yet another view.

TAB BAR VIEW CONTROLLERS

Tab bar view controllers (UITabBarViewController) offer a simple way to segment
different view controllers for your users. The identifying element of a tab bar control-
ler is, of course, the tab bar. The tab bar view controller is used in Apple’s App Store
application, as shown in figure 2.17.

 This tab bar (UITabBar) can contain several tab bar items (UITabBarItem).
These tab bar items contain an icon and a title used to represent a specific view that
it will display once activated. Each tab contains a single view controller, which can
have its own hierarchy. For example, a view controller contained within a tab can be
a UINavigationController.

TABLE VIEW CONTROLLERS

Table view controllers (UITableViewController) contain a single table view. Table
views allow you to display data as a list of rows represented by table view cells. These
rows of data can also be visually separated and sectioned into groups.

Figure 2.16 A navigation controller in action within the default Settings app

43View controller basics

A table view controller does much of the table view
setup for you and doesn’t make you worry about manu-
ally plugging in the right methods to feed your table
view with data. It’s common to use a regular view con-
troller and manually add a table view to it without relying
on a table view controller to do it for you. Depending on
the kind of data you’re displaying or the complexity of
your app, you may want more control over how your
data is set up.

 Figure 2.18 shows how a table view controller would
look if it contained a grouped table view with multiple
sections.

 It’s virtually impossible to tell the difference between
a table view controller and a regular view controller
with a single table view attached because they both
display a table view.

 So far you’ve dealt with both portrait and landscape
orientations in the Hello Time app. Now you’ll learn
more about supporting different types of orientations.

2.3.4 Different status bar styles
The status bar includes the time, battery charge, net-

Active view

Tab bar

Active tab bar button

Figure 2.17 UITabBarViewController used in Apple’s App Store application

Figure 2.18 Table view shown
within a table view controller as
work, and Wi-Fi information. In iOS 6 the status bar seen in the Settings application

44 CHAPTER 2 Views and view controller basics

had a specific tint that was separate from the view directly underneath it. In iOS 7
this changed because the status bar is transparent and shows the view behind it.
Different status bar styles are available that you can specify using a UIStatus-
BarStyle constant. One specifies whether the content should be dark (UIStatus-
BarStyleDefault) or light (UIStatusBarStyleLightContent). This is shown in
figure 2.19.

 The status bar style can be globally set in the project’s settings in the General tab
within Xcode. There are times where you might not want to have your status bar be
the same style throughout each view controller in your application. For example, you
could have one view where you’re showing light content and another where you’re
showing dark content. To do this you’d first have to set the UIViewControllerBased-
StatusBarAppearance key to YES in your application’s plist file.

 Next, you’d need to implement the preferredStatusBarStyle method in your
view controller. This method expects to return a UIStatusBarStyle constant, which
means if you wanted to use a status bar for a screen with light content, you’d return
UIStatusBarStyleLightContent, as shown here:

- (UIStatusBarStyle)preferredStatusBarStyle
{
 return UIStatusBarStyleLightContent;
}

To trigger this method, you’ll have to call [self setNeedsStatusBarAppearance-
Update] within your view controller. You can do this within viewDidLoad or anywhere
else that would warrant a new status bar style. Next, we’ll explore how to support dif-
ferent types of orientations.

UIStatusBarStyleDefault

UIStatusBarStyleLightContent

Figure 2.19 Different status bar styles that should be used depending on the type of
content shown

45Supporting different orientations

2.4 Supporting different orientations
An iOS app can be used in either portrait or landscape mode. Portrait mode is the
default mode for any new application you create for Xcode. Landscape mode is more
popularly used for viewing photos or videos in full screen. Depending on the type of
application you’re building and the type of device (iPhone or iPad), you could choose
to support either orientation or just one. When supporting both orientations you have
to add in functionality so that your views react accordingly to the change in width and
height of the new orientation.

2.4.1 Enabling support for portrait and landscape

There are four different types of orientations you can choose to support: portrait,
upside-down portrait, landscape left, and landscape right. In Hello Time you’re sup-
porting three different types of orientations by default. You can see this by going to
the project navigator in Xcode and viewing your target’s general settings, as shown
in figure 2.20.

 By default, upside-down portrait is not supported, but you can easily enable it by
clicking it inside your target’s Summary tab in Xcode. By doing this, all of your views
won’t automatically resize when the device’s orientation changes. You also still need to
specify in each specific view controller what orientations are supported. This is
because you may have certain view controllers where you would like to support only
portrait and another where you may want to play video and support portrait and land-
scape. In Hello Time you specified which orientations you support by adding the fol-
lowing code using the supportedInterfaceOrientations method:

- (NSUInteger) supportedInterfaceOrientations
{
 return UIInterfaceOrientationMaskPortrait |

➥ UIInterfaceOrientationMaskLandscape;
}

You could have used the UIInterfaceOrientation enumerable type to specify each
specific orientation. All of these are listed in table 2.3.

Extended layout support in iOS 7
In iOS 7 content extends from edge to edge of the screen as opposed to iOS 6.
Content is also displayed underneath navigation and tab bars so that it fills the
screen. It’s possible to not have your content go from edge to edge by updating
the edgesForExtendedLayout property on a UIViewController. You could set
this to UIRectEdgeNone if you don’t wish to support extended layout or to UIRect-
EdgeAll if you do.

46 CHAPTER 2 Views and view controller basics

In Hello Time, you used a mask to represent the supported orientations. This allowed
you to combine all portrait and landscape orientations instead of writing them all out.
These orientation bit masks are used to represent multiple orientation combinations,
as shown in table 2.4.

Table 2.3 UIInterfaceOrientation enumerable for representing different orientations

UIInterfaceOrientation Orientation description

UIInterfaceOrientationPortrait Portrait

UIInterfaceOrientationPortraitUpsideDown Upside-down portrait

UIInterfaceOrientationLandscapeLeft Left landscape

UIInterfaceOrientationLandscapeRight Right landscape

Table 2.4 UIInterfaceOrientationMask enumerable for representing different orientation
combinations

UIInterfaceOrientationMask UIInterfaceOrientations supported

UIInterfaceOrientationMaskPortrait Portrait

UIInterfaceOrientationMaskPortraitUpsideDown Upside-down portrait

Figure 2.20 The three different orientations supported by Hello Time

47Supporting different orientations

If you wanted to support just portrait (and not also upside-down portrait) within your
view controller, you’d add the following:

-(NSUInteger) supportedInterfaceOrientations
{
 return UIInterfaceOrientationPortrait;
}

If you wanted to support both portrait and landscape orientations, you could change
the supportedInterfaceOrientations method to the following:

-(NSUInteger) supportedInterfaceOrientations
{
 return UIInterfaceOrientationMaskAll;
}

2.4.2 Updating your views for different orientations
When you added support for landscape, your views didn’t support the new orientation
automatically. When you first positioned the label and button for your views, you did it
for the portrait orientation. After adding support for the landscape orientation, you
saw how they looked when the device was rotated, as shown in figure 2.21.

 You then added a method to your view controller that allowed you to know when
the orientation of your view controller changed. Adding the willAnimateRotation-
ToInterfaceOrientation:toInterfaceOrientation:duration: method gave you the
opportunity to make adjustments to the positioning of your views:

UIInterfaceOrientationMaskLandscapeLeft Left landscape

UIInterfaceOrientationMaskLandscapeRight Right landscape

UIInterfaceOrientationMaskPortraitAll Portrait, upside-down portrait

UIInterfaceOrientationMaskLandscapeAll Left landscape, right landscape

UIInterfaceOrientationMaskAll Portrait, upside-down portrait, left
landscape, right landscape

Table 2.4 UIInterfaceOrientationMask enumerable for representing different orientation
combinations (continued)

UIInterfaceOrientationMask UIInterfaceOrientations supported

Figure 2.21 The views in the
Hello Time application didn’t
automatically support the

landscape orientation.

48 CHAPTER 2 Views and view controller basics

- (void) willAnimateRotationToInterfaceOrientation:

➥ (UIInterfaceOrientation)toInterfaceOrientation

➥ duration:(NSTimeInterval)duration
{
 CGRect timeFrame = self.timeLabel.frame;
 float viewHeight = self.view.frame.size.height;
 float viewWidth = self.view.frame.size.width;
 float fontSize = 30.0f;
 BOOL hideButton = YES;

 if (UIInterfaceOrientationIsLandscape(self.interfaceOrientation)) {
 fontSize = 40.0f;
 timeFrame.origin.y = (viewWidth / 2) - timeFrame.size.height;
 } else {
 hideButton = NO;
 timeFrame.origin.y = (viewHeight / 2) - timeFrame.size.height;
 }

 [self.modeButton setHidden:hideButton];
 [self.timeLabel setFont:[UIFont boldSystemFontOfSize:fontSize]];
 [self.timeLabel setFrame:timeFrame];
}

This method is automatically called in your view controller when the device is about to
be rotated. In this method you checked to see what orientation your view was in and
adjusted your label’s frame accordingly. You also took the opportunity to change the
background color of your main view and to hide the mode button. Something you
could have done to avoid having to adjust the frame of each view as you did was to use
auto layout.

 Auto layout was introduced in iOS 6 and is helpful with situations like this. It allows
you to specify certain constraints on your views so that they can reposition themselves
depending on screen size or orientation. There are still times when you’ll want to do
more to your views when viewing them in a different orientation. You’ll learn about
auto layout and storyboarding in the next chapter.

2.5 Summary
We’ve only skimmed the surface of views and view controllers. As we progress, we’ll be
diving deeper into different ways of working with views and using advanced view con-
trollers to help you make more immersive, rich applications.

■ You saw how to position views within the view coordinate system.
■ Views can be added and modified programmatically and even nested within

one another.
■ By knowing your view controller’s lifecycle, you know how and when to properly

manage the models and views it contains.
■ Custom tint colors can be applied to a UIView, which will be applied to all of

its subviews.
■ Different types of view controllers are available to you out of the box, such

as the UITableViewController, UITabBarViewController, and UINavigation-

Controller.

49Summary

■ You can create actions and connect them to respond to a specific event on a
UIControl such as a button.

■ You can specify different status bar styles per view controller.
■ You can support two different types of portrait and landscape orientations.
■ It’s possible to alter your views depending on the orientation of the device.
■ You updated your Hello Time application by adding a separate night mode as

well as support for landscape orientation.

Using storyboards
to organize and

visualize your views
Until recently, every view controller in iOS needed its own separate file for its inter-
face (known and phonetically pronounced as NIBs but having the extension .xib).
NIBs are individual interface files that allow you to create interfaces graphically
instead of programmatically. You would need to edit these independently of other
view controllers within the same application. Some developers would even choose
to skip NIBs altogether and create their views programmatically. Those who did this
often felt that they needed more control or were uncomfortable using Xcode’s
built-in interface tools. Even though these two approaches to creating interfaces
are radically different, they do have a few things in common. For one, with either
solution, no single file encompasses all of the interfaces for the application. They
also lack the ability to visually see how each view controller interacts with others
within their application.

This chapter covers
■ Creating a task management app
■ Overview of Xcode’s interface tools
■ Using storyboarding in your applications
■ Transitioning between scenes using segues
■ Passing data between view controllers
50

51Building a task management app

 Since the release of iOS 5, Apple has included
an entirely new way to create, organize, and con-
nect a collection of views within an app into a sin-
gle file: storyboarding. Storyboarding also lets you
manage the way views segue between each other.
Above all, storyboards can help you cut down on
the amount of code you have to write and make it
easier for you to create your apps. In this chapter
you’ll become familiar with Xcode’s interface
tools, learn to use storyboarding, and even work
with table views. Within this chapter you’ll be
building your very own task management app, as
shown in figure 3.1.

 To begin you’ll create your app, which is aptly
named Tasks. After you’ve finished creating your
application, we’ll go over the process.

3.1 Building a task management app
When you created Hello Time in chapter 1, you
used the Single View Application template. This
served you well, and you had only one view
throughout the application. You’ll be using the
same template for your Tasks application, but this
time you’ll be creating an application with more
views and have them interact with one another.
Follow along, and we’ll come back and explain
the process after you’ve finished creating the
Tasks app.

3.1.1 Creating the Tasks app project in Xcode

To create a new project for your Tasks app, start by opening Xcode. Choose File > New
Project and choose the Single View Application project template. Name the applica-
tion Tasks, as shown in figure 3.2.

 Once you’ve created your project, you should have a file called Main.storyboard in
the project navigator. Click this file to open the interface editor.

3.1.2 Creating the interface for listing tasks

Let’s add a table view that will be used to list the tasks that you want to display. With
Main.storyboard selected and the interface editor open, look through the Object
Library on the bottom right of the workspace window to find the table view, as shown
in figure 3.3.

 Using the mouse, click and drag the table view from the Object Library onto the

Figure 3.1 The task management
app we’ll be building together using
storyboarding
view in the editor area. As the table view is being dragged in, the sides of the table view

www.allitebooks.com

http://www.allitebooks.org

52 CHAPTER 3 Using storyboards to organize and visualize your views

Figure 3.2 Creating a new project in Xcode named Tasks targeted for the iPhone

Search for table view
Figure 3.3 Searching for the table view in the Object Library to add to the view

53Building a task management app

will snap to the bounds of the view you’re dragging it into. Once you’ve dragged the
table view into your view and selected it, open the size inspector by choosing View >
Utilities > Show Size Inspector. From here you can check the X and Y origin points for
the table view. The origins should be set to 0 for both, as shown in figure 3.4.

 You can now make an outlet from the user interface to the IAViewController
class. First, open the assistant editor by choosing View > Assistant Editor > Show Assis-
tant Editor (Command-Option-Return) in the application menu and bring up the
header file. With the table view selected in your interface, hold down the Control key
while clicking and dragging from the table view to your IAViewController’s class def-
inition in the assistant editor. If you don’t hold down the Control key, you will end up
dragging the element around the screen. Once you’ve finished dragging and let go, a
modal will appear asking you to name the outlet you’re setting on your class for this
table view. Name it tableView, as shown in figure 3.5, and then click Connect.

 Once your outlet has been connected, Xcode will add the following property:

@property (weak, nonatomic) IBOutlet UITableView *tableView;

There are two other quick outlets you need to add for your table view before we move
on. A table view needs a delegate and a data source to respond to actions and to sup-
ply it with data, and you can set this right from the interface editor. Delegates and data
sources are very important topics in Cocoa development. We won’t go into detail with

Figure 3.4 Dragging a table view into the view and positioning it so that the X and Y coordinates are
set to 0, as shown in the size inspector
them yet, but we will in the next chapter.

54 CHAPTER 3 Using storyboards to organize and visualize your views

Go back into the interface editor and make sure your table view is selected. Open the
Connections Inspector tab by choosing View > Utilities > Show Connections Inspector
(Command-Option-6) in the application menu. You should see two outlets that have
not yet been connected: dataSource and delegate. Click the circle to the right of both
of these outlets and drag to View Controller in the scene list on the left side of the
window, as shown in figure 3.6.

 After setting both of these, hop back into IAViewController.h by opening the assis-
tant editor again. You need to declare your controller as a class that conforms to a
UITableView’s data source and delegate protocols. On top of the outlets you’ve made,
your table view will check to see if you’ve set this in your class definition. Change the
top class definition line in IAViewController.h to the following:

@interface IAViewController : UIViewController <UITableViewDelegate,

➥ UITableViewDataSource>

You should notice the addition of <UITableViewDelegate, UITableViewDataSource>.

Figure 3.5 Set the name of the outlet for the table view to tableView and then click Connect.
This declares that your view controller conforms to these two protocols. If you’ve done

55Building a task management app

Java development before, this is similar to specifying that a class implements a specific
interface. You’ll need to implement the methods that are required by these protocols
to be able to use your table view.

 Let’s add a property that you’ll use to represent a mutable array of tasks. Each task
will just be an NSString, and you’ll store these within a tasks property. Add it directly
underneath the property that you created for the table view:

@property (strong, nonatomic) NSMutableArray *tasks;

Now go to IAViewController.m, and add the following to the bottom of the viewDid-
Load method to initialize your tasks array:

self.tasks = [[NSMutableArray alloc] init];

This allocates and then initializes a new NSMutableArray for the tasks property,
which you’ll be using to store each individual task that’s created. Next, you need to set
up the methods needed for your table view to feed it data and respond to methods
that belong to the UITableViewDelegate and UITableViewDataSource protocols.

 Let’s start adding two required UITableViewDataSource methods by adding a

Drag outlets for dataSource and
delegate to View Controller.

Figure 3.6 Creating outlets to specify the data source and delegate of the table view as the
view controller
method called tableView:numberOfRowsInSection:. This method returns the number

56 CHAPTER 3 Using storyboards to organize and visualize your views

of rows within each section of your table view. For your application, you will always
have just one section, so you will just return the total number of tasks in your array:

- (NSInteger) tableView:(UITableView *)tableView

➥ numberOfRowsInSection:(NSInteger)section
{
 return [self.tasks count];
}

Next, add tableView:cellForRowAtIndexPath:, which will return a UITableView-
Cell to represent each task for each row in the table view. You will keep this basic and
have it set the title property of UITableViewCell to the title of your task, as shown in
the following listing.

- (UITableViewCell *) tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if(cell == nil)
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier];#C

 cell.textLabel.text = self.tasks[indexPath.row];

 return cell;
}

In this method you set a static cell identifier named "Cell" B. You then retrieve a cell
using the dequeueReusableCellWithIdentifier: method c. This method will try to
retrieve an existing cell so that it doesn’t waste resources and time creating a new one
for each row you’re displaying. If an unused cell doesn’t exist, you create a new one d.
You then set text on the cell to be of the specific task of the row you’re displaying e.
Finally, you return the cell f.

3.1.3 Adding a navigation controller

You’ll be using a navigation controller because you want to be able to drill down into a
task from your tasks list. To embed a view within a navigation controller, all you have
to do is select your view controller, go to the menu bar, and choose Editor > Embed In
> Navigation Controller, as shown in figure 3.7.

 Your view will now be embedded in a navigation controller. You’ve also inherited
the navigation bar that comes with a navigation controller. It doesn’t have a title right
now, and you should fix this so that your users know what this view is. To let your users
know that this will show them their tasks, click this bar, select the attributes inspector,

Listing 3.1 Returning a cell for each row you’re displaying

Create static
cell identifier.

b

Attempt to dequeue
reusable cell.

c

If cell is nil,
create a new cell.d

Set the text label
on the cell.e

Return the cell.f
and set its title to Tasks, as shown in figure 3.8.

57Building a task management app

Figure 3.7 Embedding an existing view into a navigation controller is extremely
simple when using storyboards.

Figure 3.8 Set the title of the navigation bar to Tasks to let your users know that this view will list all

of their tasks.

58 CHAPTER 3 Using storyboards to organize and visualize your views

Now add a button to the top right of this view, within your navigation bar, which will
be used to create a new task. In the Object Library on the bottom right, locate Bar
Button Item and drag it to the far right side of the navigation bar. Next, go to the attri-
butes inspector and change its identifier to Add, as shown in figure 3.9.

 Next up, you’re going to add two new view controllers to the project—one for cre-
ating a new task and one for viewing a task.

3.1.4 Creating and viewing a task

You’ll need to add two new files to the two view controllers for creating and viewing a
task. In the project navigator, right-click the Tasks group and choose New File. In the
dialog that appears, choose Objective-C class as the file template, and name the first
one IANewTaskViewController. Ensure that it’s a subclass of UIViewController, as
shown in figure 3.10.

 Repeat these steps to create another view controller named IATaskViewController.
This will serve as the view controller for an individual task. You can now add these two
scenes to your storyboard.

 Jump back into Main.storyboard by choosing it in the project navigator. Find View
Controller in the object library and drag it to the right of the scene you’ve been work-
ing with for listing your tasks. Your storyboard will now contain three scenes, as shown
in figure 3.11.

Figure 3.9 Adding a bar button item to your navigation controller that will later be used to create a
new task

59Building a task management app

Currently, the view controller isn’t tied to one of the classes that you’ve just created.
Open the identity inspector (View > Utilities > Show Identity Inspector) and set its
class to IANewTaskViewController. You can now fill out the view with a text field and
a button.

Figure 3.10 Create a new view controller called IANewTaskViewController as a subclass
of UIViewController.

Figure 3.11 The storyboard after dragging in a new view controller

60 CHAPTER 3 Using storyboards to organize and visualize your views

Starting with the text field, find a text field in the Object Library and drag it into your
view. Line it up so that it’s close to the top and almost the whole width of the view, like
in figure 3.12.

 Add a button underneath the text field that will allow users to save a new task. In
the Object Library find Button and then drag it into your view so that it’s underneath
the text field. Adjust the width of the button so that it matches the width of the text
field. Next, go into the attributes inspector and change the title to Save. Your scene
should now look like figure 3.13.

 Open the assistant editor and create a new outlet connection for the text field
called textField. Next, create an action connection for your button called saveTask.
This will be triggered for the Touch Up Inside event, as shown in figure 3.14.

 This action will be triggered when someone taps the Save button. While you still
have IANewTaskViewController.h open in the assistant editor, you need to add another

Figure 3.12 Add a text field to your view that’s responsible for creating a new task. Position it toward
the top and make its width almost fill up the view.

61Building a task management app

property. This property will be used to maintain a reference to the controller that dis-
plays and holds your tasks. Add the following code:

@property (weak, nonatomic) id delegate;

After adding this property, close the assistant editor and reopen Main.storyboard.
You have one more scene to add that will be used to display a task that you’ve
selected from the tasks list. This scene will contain two controls: a text view to dis-
play the task and a button to mark it as completed. First, add a new view controller
into your storyboard and set its class to IATaskViewController. Grab a label from
the Object Library and drag it to the view in the same position as the text field in
your previous scene. Next, add a button underneath it titled Completed, as shown
in figure 3.15.

Figure 3.13 Adding a button underneath the text field and setting its title to Save

62 CHAPTER 3 Using storyboards to organize and visualize your views

Open the assistant editor and create an outlet for the label called taskLabel. Next,
create an action for your button named completeTask. You’ll also need to add two
custom properties. Add the following code underneath the properties you created for
taskLabel and completeTask:

@property (weak, nonatomic) NSString *task;
@property (weak, nonatomic) id delegate;

Once completed, IATaskViewController.h should look like figure 3.16.
 The task property will be used to reference the task that you need to display and

the delegate property to reference the controller that holds your tasks.

3.1.5 Connecting your views within the storyboard

Jump back into your storyboard and select the + button that you added to the tasks list
scene. In the same way that you created outlets, click the button with your mouse,
hold down Control on your keyboard, and then drag a connection to the new task
scene. Once you let go, you’ll see a popover that asks you what type of segue you want
to create, as shown in figure 3.17.

 Choose modal as the type of segue you want to create. This segue will open the
new task scene when you tap the + bar button. Create another segue by Control-
dragging from your scene (the Tasks View Controller) to the scene you’ve created
for viewing an individual task. Instead of choosing modal, choose push. You want
this to be triggered when someone clicks a row within the table view. To do this

Figure 3.14 Create an action by dragging into the assistant editor, just as if
you were creating an outlet, but change the connection type to Action.

63Building a task management app

you’ll need some way to identify this segue and give it a name. Click the arrow
between the two scenes, and go to the attributes inspector. Here you can set the
identifier to taskSegue.

Figure 3.15 Label and button added to a new scene to display each task and mark as completed

64 CHAPTER 3 Using storyboards to organize and visualize your views

Figure 3.16 The interface for IATaskViewController with properties and actions defined

Figure 3.17 Choose a modal segue when creating a segue from the button in the navigation bar to
the new task scene.

65Building a task management app

Next, jump into IAViewController.m and add the two methods shown in the follow-
ing listing.

-(void) tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [self performSegueWithIdentifier:@"taskSegue"

➥ sender:self.tasks[indexPath.row]];
}

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 UIViewController *destination = segue.destinationViewController;

 if ([segue.identifier isEqualToString:@"taskSegue"])
 [destination setValue:sender forKeyPath:@"task"];
 else
 destination = [segue.destinationViewController

➥ topViewController];

 [destination setValue:self forKeyPath:@"delegate"];
}

Jump back into your storyboard and select the new task view controller. Go to the applica-
tion menu and choose Editor > Embed In > Navigation Controller to embed it within a
UINavigationController. The view will now have inherited the navigation bar. Drag a bar
button item from the Object Library to the top left of the navigation bar and change the
title to Close. Also set the title of the navigation bar to New Task, as shown in figure 3.18.

Listing 3.2 Performing a segue when a row is selected
Figure 3.18 Adding a Close button and title to the New Task scene’s navigation bar

66 CHAPTER 3 Using storyboards to organize and visualize your views

The Close button that you’ve added isn’t hooked up yet. Open the assistant editor and
add an action called close. Go into IANewTaskViewController.m and implement the
close: and saveTask: actions that you’ve created.

 First, you need to import the interface from IAViewController by adding the fol-
lowing import statement to the top of your class. This is a very important step, and
without doing this you won’t be able to reference it within one of the methods you’re
going to create.

#import "IAViewController.h"

Next, add the code from the following listing.

- (IBAction)close:(id)sender
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

- (IBAction)saveTask:(id)sender
{
 if ([self.textField.text length] == 0)
 return;

 IAViewController *tasksListView =

➥ (IAViewController *)self.delegate;
 [tasksListView.tasks addObject:self.textField.text];
 [self close:sender];
}

Next, open IAViewController.m from the project navigator. You need to make sure
that your table view reloads with the newly added task when the view appears. You’ll
do this by making a little change to the viewWillAppear: method.

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 [self.tableView reloadData];
}

This will cause your table view to reload its data once the view appears.
 The last thing you need to do is hook up the view that loads when you click a task

within the tasks list. Jump into IATaskViewController.m by finding it in the project nav-
igator. Then add the following import to the top of the class:

#import "IAViewController.h"

Next, replace the code in viewDidLoad with the following code:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.taskLabel.text = self.task;

Listing 3.3 Closing or saving a new task
}

67Exploring Xcode’s interface editor

This will set the label’s text to the appropriate task that you need to display. The action
to complete a task also hasn’t been hooked up yet. You’ll need to add the complete-
Task: action to the following code to be able to remove the task from the tasks list:

- (IBAction)completeTask:(id)sender
{
 IAViewController *tasksListView = self.delegate;
 [tasksListView.tasks removeObject:self.task];
 [self.navigationController popViewControllerAnimated:YES];
}

First, you get a reference to the tasks list view, and
then you remove the task from its tasks array.
Finally, you call popViewControllerAnimatedYes:
on the navigation controller to go back to the pre-
vious view.

 Go ahead and run the application, and try to
add a task and complete it. Once a task has been
marked as completed, it should be removed from
the tasks list. Take a look at what we’ve created
together in figure 3.19.

 Great job! You’ve just created an application
to manage your tasks using storyboards. You’ve
created this application using things you’ve never
used before. You’ve been using Xcode’s interface
editor this whole time when creating your views.
Let’s identify the specific different sections you’ve
come across along the way.

3.2 Exploring Xcode’s interface editor
We’ve spent more time in Xcode’s interface
editor than its code editor in this chapter. The
interface editor has allowed you to make many
changes to specific views in the Tasks app with-
out having to dive into the code. This just shows
you how powerful a tool it is, but it also means
that you need to understand what the different
sections are used for. Although you’ve already
used many of these sections to create your app, let’s take a closer look at each of
them again.

3.2.1 Overview of Xcode’s interface editor

The interface editor has a few distinct sections. They can be used for viewing the hier-

Figure 3.19 The finished Tasks
application with a few tasks displayed
archy of objects within a single view, adjusting properties on a single view, or for adding

68 CHAPTER 3 Using storyboards to organize and visualize your views

new objects to an interface. Take a look at figure 3.20 to see an overview of the inter-
face editor when working with storyboards.

 The interface editor has a few distinct sections. On the left side is the scene list.
Each view controller is referred to as a view controller scene in a storyboard. All of the
scenes within your storyboard are listed here.

 The Object Library is located on the bottom right of the window in the utility area.
The Object Library holds the different types of view controllers or UI controls that you
can drag into the editor area. You’ve used this to find text fields, buttons, table views,
and anything else you need when adding something new to your interface. The sec-
tion right above it is the inspector.

 The inspector is used to edit many different types of attributes of a particular
selected object. There are many different sections within the inspector that can be
used to adjust different types of properties of an object. You’ve used it to adjust titles,
sizes, class representations, and the like. We’ll take a closer look at the attributes
inspector by identifying its various sections.

3.2.2 The inspector sections
We’ll explore the inspector area because you used many different sections of it while
creating the Tasks app. This is where you did most of the customization for your inter-

Scene list Inspector

Scene Object Library

Figure 3.20 The interface editor within Xcode editing a storyboard. All scenes for an app are listed on
the left, with an overview of all scenes in the middle editor area. The Object Library is on the bottom
right below the attribute inspector.
face. Table 3.1 lists the six buttons on the top right of the window within the inspector.

69Exploring Xcode’s interface editor

The first tab in the inspector, file helper, shows you all the file details related to this
one view. The second tab, quick help, shows you quick help documentation related to
view controllers. The content that is shown here will change depending on what type
of object is currently selected. The third tab within the inspector, also known as the
identity inspector, lets you see and change the class that represents the view controller
for this particular scene. This is shown in figure 3.21.

 This tab within the inspector is particularly important because you’ll be using it
whenever you want to point a UI control to a custom class you’ve created within your
project. For instance, when you added the two view controllers for creating and view-
ing a new task, you used this section within the inspector to set the class to IATask-
ViewController and IANewTaskViewController.

Table 3.1 Sections of the attributes inspector

Section Description

File helper Provides information about the currently selected file in the project navigator

Quick help Provides documentation for the currently selected object in the interface

Identity Lets you set custom classes and identifiers to represent the selected object

Attributes Allows you to adjust specific attributes for the selected object

Size Lets you adjust framing and constraints for the selected object

Connections Lets you create connections to outlets and actions for the selected object

Identity inspector

Figure 3.21 The third tab within the inspector, known as the identity inspector, allows you to change
the class for the selected object. For view controllers in storyboards, it also allows you to specify a
specific storyboard identifier.

70 CHAPTER 3 Using storyboards to organize and visualize your views

Below the Custom Class section you’ll see the Identity settings. These settings allow
you to specify a unique ID for this particular view controller that you can later use to
retrieve it from the storyboard.

 The fourth tab, the attributes inspector, allows you to change any attribute on the
currently selected object. The content within this tab changes depending on the object
you have selected. You commonly use this section to change titles of buttons and other
visible properties on an object. With a UIButton selected in figure 3.22, you can see
the different editable attributes within the attributes inspector.

 The next section is the size inspector. Within the size inspector you can modify all
aspects of a view’s framing, as shown in figure 3.23.

Figure 3.22 Clicking any object will show its relevant attributes within the attributes inspector.

Figure 3.23 The size inspector allows you to modify anything related to a view’s framing as well as its

constraints.

71Using storyboards to manage your views

Below that is a section called Constraints, which you used to set the auto-layout
constraints.

 The last tab is the connections inspector section, as shown in figure 3.24.
 With certain views or objects that you’ve created in your controller, you needed to

make connections to allow for your code to communicate with your interface. In fig-
ure 3.24 you can see the outlet connections we made for the tableView property on
the view controller as well as the table view’s delegate and dataSource properties.

 You used these interface tools to help create the storyboard for your Tasks applica-
tion. What exactly is storyboarding, though? How does it help you when creating
applications, and how do scenes interact with one another?

3.3 Using storyboards to manage your views
You made good use of storyboarding with the Tasks application. You added multiple
scenes and connected them with segues. While doing so you worked with only one file
because everything was contained within one storyboard.

3.3.1 How does storyboarding benefit you?

By definition, a storyboard is a series of panels or sketches that are used to outline a
scene or sequence of actions. A common use of storyboarding is to plan shots for a film.
In software, storyboarding is also a very common practice. When designing an applica-
tion you normally don’t dive headfirst and start coding without any idea of what
you’re about to create. Even if you don’t do any formalized planning with paper and
pen, you have an idea in your mind of what you want to create and the flow of events
to proceed from one action to the next. Take a look at figure 3.25 to see some of the
planning we’ve done at my company for our iPhone application.

Figure 3.24 The connections inspector allows you to connect views, objects, and actions to the code
you’ve written in your controllers.

72 CHAPTER 3 Using storyboards to organize and visualize your views

Before storyboarding, each of the views for these controllers would have been done in
separate interface files. There was no visual representation of how they interact with
one another, nor was there a way to visualize the whole application. With storyboard-
ing you can alleviate all of this by being able to edit all of the views for a particular flow
within one file and visualize how they interact with one another. Figure 3.26 shows the
view of the storyboard we created for the Tasks app.

 By looking at the storyboard you can have a clear understanding of the application
without even running it. Here you can see the different views we created for the appli-
cation. You can see how each view is connected to each other. Each view controller we
added to the storyboard is represented as a scene.

Figure 3.25 Real-world planning and storyboarding used to create an iPhone application

Figure 3.26 The storyboard we created for Tasks shows you how the different scenes are connected
to one another.

73Using storyboards to manage your views

3.3.2 Scenes within storyboards

Scenes in a storyboard represent content shown within one screen in your applica-
tion. A scene involves a view controller and the views that make up its interface.
There’s not much involved with creating a new scene. When you dragged a view con-
troller object onto the storyboard, you were creating a new scene.

 There’s also no limit as to how many scenes you can have within one storyboard.
You used a storyboard for your Hello Time app, and it consisted of only one scene.
Your Tasks application has three distinct scenes: one for viewing a list of tasks, one for
creating a new task, and another for viewing a task. If you have many scenes that are
part of a distinctly different part of your application, you could also separate them out
into another storyboard file. Separate storyboards can be loaded programmatically.
For instance, if you had a storyboard file named OtherStoryboard.storyboard, you
could load it by using the following command:

UIStoryboard *newStoryboard = [UIStoryboard

➥ storyboardWithName:@"OtherStoryboard" bundle:nil];

With a reference to the OtherStoryboard, you can then retrieve a scene’s view control-
ler by referencing its scene identifier using the instantiateViewControllerWith-
Identifier: method. The scene’s identifier is its storyboard ID, which is set within
the identity inspector, as shown in figure 3.27.

 Scenes within a storyboard are connected by using segues. We’ll explore transition-
ing between different scenes via segues.

3.3.3 Transitioning between scenes with segues

Segues allow you to easily transition from scene to scene. Segues are represented by
the UIStoryboardSegue class. You created two segues within your Tasks application.
One of them was triggered automatically to display the scene to create a new task. The
Figure 3.27 You can set the storyboard ID for a particular scene in the identity inspector.

74 CHAPTER 3 Using storyboards to organize and visualize your views

segue you created for displaying the scene for viewing an individual task was triggered
programmatically. Segues can be identified within a storyboard, as shown in figure 3.28.

 There are a few built-in segues that you can choose from. When working with an
iPhone application you can choose from push, modal, or custom. For the iPad you’re
given an extra choice of using a popover segue.

Modal segues slide a scene from the bottom to the top and appear to be on top
of the parent scene. You used a modal segue when showing your scene to create a
new task. Push segues are used to transition the new scene in from the right. In
a push segue the original scene that prompted the segue then goes away by sliding
out to the left. You used this type of segue when tapping on a task from the tasks list
to show the task view.

Popover segues overlay only part of the parent view within a popover.
 You can create custom segues by creating your own UIStoryboardSegue class. This

gives you full control over the transition and appearance of the new scene.
 You create segues in your storyboard by using your mouse to drag a connection

from one scene or an actionable object to another, as shown in figure 3.29.
 When creating a segue from an actionable object like a button, the segue is auto-

matically triggered when the button is tapped with the Touch Up Inside event.
 Segues can be triggered programmatically, as you did with the segue from your

tasks list to the individual task scene. You had to set an identifier for it, taskSegue, so

Figure 3.28 The two segues that we created to display two separate scenes within the Tasks
application
that you could reference it in your code by calling performSegueWithIdentifier:

Get r
to
co

you’r
to pass

75Using storyboards to manage your views

from the originating view controller. You chose to trigger it when a row in your table
view was selected.

-(void) tableView:(UITableView *)tableView

➥ didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [self performSegueWithIdentifier:@"taskSegue"

➥ sender:self.tasks[indexPath.row]];
}

3.3.4 Passing data between view controllers with segues

Segues also allow you to pass data to the next view controller before completing the
transition. You do this by overriding the prepareForSegue:sender: method from
the originating view controller, as shown here:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 UIViewController *destination = segue.destinationViewController;

Figure 3.29 You create a segue by dragging from one scene or actionable object to another scene.

eference
the view
ntroller
e about

Check to
see if you’re
preparing
for the
correct
segue.
 if ([segue.identifier isEqualToString:@"taskSegue"]) data to.

as

76 CHAPTER 3 Using storyboards to organize and visualize your views

 [destination setValue:sender forKeyPath:@"task"];
 else
 destination = [segue.destinationViewController

➥ topViewController];

 [destination setValue:self forKeyPath:@"delegate"];
}

You first retrieve a reference to the view controller that you want to pass data to. You
then set the delegate property to the instance of the controller you’re calling this
from and apply this to all segues. You then check to see if the segue identifier is equal
to "taskSegue" because you want to pass in only the selected task for this particular
segue. When you call performSegueWithIdentifier:sender:, you also pass in the
task as the sender. You set a task property on IATaskViewController to represent an
NSString. It’s because of this that you’re setting sender as the task key value for the
destination view controller.

 By understanding scenes and how to use segues to transition between them, you
can utilize storyboards to build your apps more efficiently. There are a few minor
downsides to storyboarding to consider, though.

3.3.5 Problems with using storyboarding

Storyboarding allows you to manage all of your scenes, connections, and segues within
one file. It also gives you an overview of the flows within your application. With all of
the benefits that storyboarding offers, it does come with a few downsides, though.

 The biggest problem with storyboarding is that it’s extremely difficult to use when
working with a team that uses source code revision and management tools like Git,
Subversion, or Mercurial. If you open a storyboard file within a text editor, you’ll see
that it’s essentially an XML file that maintains all of your views, outlets, segues, posi-
tioning, and so on. When multiple teammates make changes to the same storyboard,
it becomes problematic. Source code revision tools won’t be able to properly merge
the changes, and Xcode won’t be able to open the storyboard file until the changes
have been merged successfully. You’ll be forced to do a deep dive into the XML to fix
it yourself.

 Another problem is that it forces older developers, who have been comfortable
using NIBs and creating and managing views programmatically, to change their
ways. People generally don’t like change, and when working with a team, everybody
will have to be comfortable with storyboarding because it’s not a good practice to
mix conventions.

 Although there are problems, Apple has made it clear that storyboarding is here to
stay. All of their sample applications and documentation have been updated to use
storyboarding. They’ve also made a huge effort to support it within their own tools.
Many of the problems with storyboarding will become a thing of the past as Apple fig-
ures out a way to alleviate these issues.

Setting the sender
the task property

Get destination
controller if not
taskSegue.

Set your current view controller
as the delegate property.

77Summary

3.4 Summary
Working with interfaces in Xcode is made simple thanks to the tools that Apple has
provided. Storyboarding allows you to streamline all of the views in your application
by giving you a single file to manage and visualize how they interact with one another.
Although there may be some drawbacks with storyboarding, especially when working
on a team, these issues will definitely be mitigated as time goes on.

■ Storyboarding allows you to streamline all of the views in your application by giv-
ing you a single file to manage and visualize how they interact with one another.

■ Segues allow you to transition from one scene to another within a storyboard.
■ Different types of segues can be used, depending on the way you want to pres-

ent the new scene.
■ Although there may be some drawbacks with storyboarding, it’s better and eas-

ier in the long run to use it in your applications.
■ Dragging a new view controller into your storyboard will create a new scene.
■ By overriding prepareForSegue:sender:, you can pass data from one view con-

troller to another when using segues.
■ Xcode’s interface editor has many tools that allow you to customize and con-

nect your views to your code.
■ You created a task-management application using a storyboard with multiple

scenes connected by segues.

Using and
customizing table views
It’s inevitable that you’ll need to organize and display something as either a list or a
grid. If you think of the applications you often use, you’ll realize that almost all of
them have views where information is displayed to you in this manner. Our Hello
Time app is one of the very few examples where you don’t display anything in a list
or grid format. The Photos app shows a grid of all of your photos or videos using a
collection view. The Contacts app shows a list of the people in your address book
using a table view. The Settings app also uses a table view but lists different options
you can choose from. These can be seen in figure 4.1.

 Earlier, you had a chance to use a table view when you created your Tasks
application when exploring storyboarding. Now you’ll be able to spend more

This chapter covers
■ Using table views and table view controllers
■ Implementing prototype table view cells
■ Handling selection of rows within the table view
■ Utilizing the Assets Library framework to

retrieve photos
■ Using table views to list photo albums
78

time specifically focusing on table views. As you’ve realized, almost all of the apps

79Introduction to table views

you use need to display information within a list or grid. By knowing the ins and
outs of table views, you’ll be able to cover most of your bases. You’ll learn how to use
table views in this chapter by using them in a single application to display albums
and photos.

 Another application that does just this is Apple’s own Photos application. You’ll
essentially be making your own version of this app to display the exact same data.
While doing this you’ll also use your first framework, the Assets Library. Your applica-
tion will retrieve all of your albums and list them in a table view, as shown in figure 4.2.

 This chapter is just the first part of your Albums application, though. You’ll add
even more functionality to make it feature complete in the next chapter.

4.1 Introduction to table views
This will be your second chance to use table views but your first time to really under-
stand what’s going on under the hood. Imagine writing a list of information on a
whiteboard or piece of paper. Each line within a list typically has one important item.
The items you choose to write are distinctly separated because they’re on different

Contacts Settings

Figure 4.1 The Contacts app and Settings app both use table views to display information
as a list.
lines. This is just like a grocery list or a real-world to-do list.

80 CHAPTER 4 Using and customizing table views

 With the Tasks application you created a basic
table view that displayed a list of tasks. For your pur-
poses, a table view was the best way to represent your
data. Imagine a task application that did not arrange
your tasks into a list. Hard to picture, isn’t it? On the
other hand, imagine if all of the photos in your Pho-
tos app were organized into a table view with only
one photo per row. You could argue that this would
result in too much wasted space because you could
organize your photos in a grid to maximize the
space you have available.

4.1.1 Anatomy of a table view

Let’s look at a table view and examine its different
parts. Table views are represented by the UITable-
View class. The data is displayed by using a list of
rows. Each individual row is contained within its own
section. A table view can also have one or more dif-
ferent sections. You can see an example of a table
view with its different parts labeled in figure 4.3.

 A UITableViewCell is used to represent each
row within a table view. This view may contain any
other views you want to use to display your data. In
figure 4.3, each cell has a UILabel that is used to
display the name of a contact. You can easily cus-
tomize and create your own cells, as you’ll see later
in this chapter.

 Figure 4.3 contains only a single section. Table view cells can belong to only one
section. The most common use for sectioning is to visually separate and group
rows. A great example of this is the Settings application, which uses different sec-
tions to separate the different setting options into relevant groups. Take a look at it
in figure 4.4.

 As you can see, the table views shown in figures 4.3 and 4.4 look fairly different
from one another. This is because two different types of styles can be applied to a table
view. Each of these styles changes the way that sections in your table views are visually
represented. They are represented as the enumerables UITableViewStylePlain and
UITableViewStyleGrouped. The Contacts application uses UITableViewStylePlain,
whereas the Settings application uses UITableViewStyleGrouped. When you create
your table view in Xcode, you’ll have the chance to choose either style.

 For your application, you’ll be using a table view on your first screen to show a list
of albums that you have stored on your device. You’ll create the application in Xcode,

Figure 4.2 Preview of the Albums
application that you’ll be creating
throughout this chapter
add your table view, and continue from there.

81Introduction to table views

Table view

Section

Row

Figure 4.3 A table view with rows
contained within one section as
shown in the Contacts application

1

3

2

Figure 4.4 The Settings app uses
sections to visually separate relevant
setting options. Each of the numbers
represents a separate section. This
figure shows three sections separating

the rows within this table view.

82 CHAPTER 4 Using and customizing table views

4.2 Using table views to display data
Your Albums app will list all of the albums you have within a table view. Once you tap a
specific album, you’ll see the photos contained within that album. It’ll be very similar
to Apple’s own Photos application, except you’ll be building it all by yourself. First,
you’ll need to do some setup for your new Albums application.

4.2.1 Setting up your Albums application
Hop into Xcode and create a new single-view application project called Albums, as
shown in figure 4.5.

 You use the Single View Application template because it creates a base view con-
troller for you, as well as a storyboard for your application. You’ll make some changes in
the view controller that it creates by removing it and adding one based on a UITable-
ViewController. Right-click both IAViewController.h and IAViewController.m in the
project navigator, and then click Delete to move them to the trash. Next, click
Main.storyboard to open the storyboard in your interface editor. There should be one
scene in there already. Delete it by selecting the scene and clicking the Delete button.
You should end up with an empty storyboard when you’ve finished doing this.

 You can now add your new view controller that will take the spot as the first view in
your storyboard. Right-click the top-level Albums group within the project navigator
and choose New File. Select Objective-C Class as the new file template. Name this new
class IAAlbumsViewController and set it as a subclass of UITableViewController, as
shown in figure 4.6.
Figure 4.5 Creating a new single-view application project called Albums within Xcode

83Using table views to display data

This will generate a new subclass of UITableViewController that will provide you
with many autogenerated methods. You can now add this to your project’s storyboard.
Open Main.storyboard, find Table View Controller from the Object Library, and drag
it into your storyboard. Next, while it’s still selected, go to the Application menu and
choose Editor > Embed In > Navigation Controller to wrap it in a navigation control-
ler. Finally, but most important, you need to set the table view controller’s class as
IAAlbumsViewController, as shown in figure 4.7.

 Also, to inform your users that what you’re displaying in this scene are albums,
change the title in the navigation bar of this scene to Albums. You’ve taken care of
much of the boilerplate work for your first view. Next, you have to create a new class in
preparation for accessing your photos.

 You’ll need to add a framework to this project that will help you access the media,
or assets, stored on a device. Frameworks are compiled libraries that you can use to
add functionality to your applications. By default, all new iOS apps created in Xcode
include the frameworks UIKit, Foundation, and CoreGraphics. These three frame-
works provide the basic functionality to create iOS applications. You’re going to add a
new framework that will allow you to access media assets.

 The framework you’ll need to add is the Assets Library framework. Go to the Gen-
eral tab for your target and scroll down to Linked Frameworks and Libraries, as shown
in figure 4.8.

 Click the + button and choose AssetsLibrary.framework. Then click the Add but-

Figure 4.6 Create a new class called IAAlbumsViewController as a subclass of
UITableViewController.
ton, as shown in figure 4.9.

84 CHAPTER 4 Using and customizing table views

Figure 4.7 Setting the custom class for the table view controller to IAAlbumsViewController

Figure 4.8 Go to the General tab of your target, scroll to Linked Frameworks and Libraries, and click
the + button to add a new framework to your project.

85Using table views to display data

This will give you the ability to utilize this framework in your project to access all of
your photos and the albums that they belong to.

 You’re now going to use the assets library by creating a new class that will act as a
singleton instance of an ALAssetLibrary. An ALAsset represents assets such as photos
or videos. Its parent is an asset library (ALAssetLibrary). Each instance of an ALAsset
will keep a reference to its parent library. If this parent goes missing or is different, the
ALAsset becomes useless and you’ll be throwing your hands in the air wondering why
your app is crashing. This is why you need one ALAssetLibrary singleton instance
throughout your application that you can always use to retrieve assets.

 Right-click the Albums group in the project navigator and choose New File again.
Name this file IAAssetsLibrary and make it a subclass of ALAssetsLibrary. Once
the file is created, click IAAssetsLibrary.h. At the top of the class add the following
import statement:

 #import <AssetsLibrary/AssetsLibrary.h>

Within the interface declaration add the following, which will describe the class
method you’re about to add:

+ (IAAssetsLibrary *) defaultInstance;

You can immediately jump into the implementation by clicking IAAssetsLibrary.m in

Figure 4.9 Choose Assets Library.framework and click the Add button to add it to your project.
the project navigator, and add the following method:

86 CHAPTER 4 Using and customizing table views

+ (IAAssetsLibrary *) defaultInstance
{
 static IAAssetsLibrary *singleton = nil;
 static dispatch_once_t oncePredicate;
 dispatch_once(&oncePredicate, ^
 {
 singleton = [[super alloc] init];
 });

 return singleton;
}

This will return a singleton instance of IAAssetsLibrary by calling the default-
Instance class method you’ve just created. You’ll be using this when you retrieve the
albums or photos you want to display. First, let’s look at how you can provide a table view
with the information it needs by conforming to its delegate and data source protocols.

4.2.2 Providing data through a data source

To supply a table view with data, you need to conform to its UITableViewDataSource.
These protocols have a set of required and optional methods that you need to imple-
ment within the class that supplies your table view with the data it needs. For instance,
the table view will need to know how many sections there are and how many rows to
display within each section. The purpose of the data source is, you guessed it, to sup-
ply your table view with data.

 You’re using a UITableViewController as the parent class of your IAAlbumsView-
Controller class. By doing this, you don’t need to specify anything special to let your
class know that it conforms to the UITableViewDataSource protocol. If this wasn’t the
case, you’d specify that you adhered to this protocol by doing the following in your
class’s header file:

@interface ExampleViewController : UIViewController <UITableViewDataSource>
 ...
@end

Let’s look at the important required methods in the UITableViewDataSource proto-
col, as shown in table 4.1.

The first method is tableView:numberOfRowsInSection:, which returns the total
number of rows that the table view should display. In most cases, you’d store the data

Table 4.1 Required methods for the UITableViewDataSource protocol

Method Description

tableView:numberOfRowsInSection: Total number of rows to display within a section

tableView:cellForRowAtIndexPath: Return a UITableViewCell for a row at a speci-
fied index path
that you want to display within an NSArray. Say you had an array called assets and

87Using table views to display data

you wanted to display it in a table view. When you specify how many rows you want to
display, you return the number of items you have in your array:

- (NSInteger)tableView:(UITableView *)tableView

➥ numberOfRowsInSection:(NSInteger)section
{
 return [self.albums count];
}

By calling [self.albums count] you are returning the total number of items in the
assets array. Also notice that the method passes in a specific section parameter.
Depending on what you’re showing in a table view, you can choose to display a differ-
ent set of data and can perform the necessary calculations on your side to determine
how many rows you should display. In the previous code example, you’re assuming
that there’s only one section in which you want to show all items in the assets array.

 Depending on the number of items to display, your table view will ask you for a
UITableViewCell to display for a given index path. An index path is represented by
the NSIndexPath class, which just contains a section and a row parameter. This brings
you to the next required method, tableView:cellForRowAtIndexPath:. This method
will be called by your table view and gives you the opportunity to provide it with a
UITableViewCell that you want to display at that specific index path:

- (UITableViewCell *)tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView

➥ dequeueReusableCellWithIdentifier:CellIdentifier];
 if(cell == nil)
 cell = [[UITableViewCell alloc]

➥ initWithStyle:UITableViewCellStyleDefault

➥ reuseIdentifier:CellIdentifier];

 // Customize cell

 return cell;
}

Within this method, you specify a cell identifier that you use to pull back a specific
type of UITableViewCell from your table view. It’s up to you to choose the cell identi-
fier name you want to use for the cell you’re displaying. You can set this within
Xcode’s interface tools when preparing a prototype cell for your table view. The pur-
pose of using this cell identifier is to call the method dequeueReusableCellWith-
Identifier:forIndexPath: on your table view. This is used for performance reasons.
Instead of creating a brand-new UITableViewCell to display each time, you can pull
back one that has already been created and change it to display whatever content is
relevant at the specified index path.

 You’ll put all of this together by updating your Albums app to display all of its

albums within its table view. Before you can display albums, you first need to retrieve

88 CHAPTER 4 Using and customizing table views

them. Hop back into Xcode and open IAAlbumsViewController.h. You’re going to
add a property that will store all of your albums:

@property(nonatomic, strong) NSMutableArray *albums;

Next, open IAAlbumsViewController.m and add the following import statement to
import the IAAssetsLibrary class:

#import "IAAssetsLibrary.h"

Now you can add a method to retrieve all of the albums from the assets library. Add
the loadAlbums method, as shown in the following listing.

- (void)loadAlbums
{
 IAAssetsLibrary *library = [IAAssetsLibrary defaultInstance];
 [library enumerateGroupsWithTypes:ALAssetsGroupAll

➥ usingBlock:^(ALAssetsGroup *group, BOOL *stop)
 {
 if(group)
 {
 [self.albums addObject:group];
 }
 else
 {
 [self.tableView

➥ performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:YES];
 }
 failureBlock:^(NSError *error)
 {
 NSLog(@"Problem loading albums: %@", error);
 }];
}

The loadAlbums method will iterate through different groups of type ALAssets-
GroupAll. This retrieves all of the albums in the assets library. You’re adding each
album to your assets array and, once finished, calling reloadData to tell your table
view that it needs to load the data and display it.

 Once you’ve added this method, you need to initialize the albums array and call
loadAlbums after your view has finished loading. You can do this by appending the fol-
lowing two lines to the bottom of the viewDidLoad method:

self.albums = [NSMutableArray array];
[self loadAlbums];

Take a look at the code added to the IAAlbumsViewController class, as shown in fig-
ure 4.10.

 You can now implement two data source methods for your table view that will tell it

Listing 4.1 Load all albums from the assets library
just what to display when reloadData is called. First, you’ll tell your table view how

89Using table views to display data

many rows it needs to display by implementing tableView:numberOfRowsInSection:
and having it return the number of albums within the albums array property:

- (NSInteger)tableView:(UITableView *)tableView

➥ numberOfRowsInSection:(NSInteger)section
{
 return [self.albums count];
}

You’re returning the number of items within the albums array by calling the NSMutable-
Array count method. Next, you’ll implement tableView:cellForRowAtIndexPath:
to return a UITableViewCell with the name of each album in the albums array, as
shown in the next listing.

- (UITableViewCell *)tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView

➥ dequeueReusableCellWithIdentifier:CellIdentifier];
 if(cell == nil)
 cell = [[UITableViewCell alloc]

➥ initWithStyle:UITableViewCellStyleDefault

➥ reuseIdentifier:CellIdentifier];

 ALAssetsGroup *group = self.albums[indexPath.row];
 cell.textLabel.text = [group

Listing 4.2 Create a UITableViewCell for each album

Figure 4.10 Initializing your albums array and setting up and triggering your loadAlbums method

Retrieve
ALAssetsGroup
from albums array
using the row of
indexPath.

Set the text label on
the cell to the name
➥ valueForProperty:ALAssetsGroupPropertyName]; of the album.

90 CHAPTER 4 Using and customizing table views

 return cell;
}

You’re using the row property on indexPath, which is passed into this method, to
retrieve the appropriate ALAssetsGroup from your albums array for this specific row.
You’re then setting the cell’s textLabel to the name of your album.

 By looking at figure 4.11 you can see these two data source methods added to
IAAlbumsViewController.

 You can now try to run the application to see what you’ve just accomplished. If you
don’t have any albums on your device, you can create them by going to Apple’s own
Photos application and clicking the + button, as shown in figure 4.12.

 With a few albums in place, your Albums application will look like what’s shown in
figure 4.13.

 For your table view cells, you’re just setting the titleLabel to the name of the
album. You can make this look much better by using a custom cell of your own using a
prototype cell.

4.2.3 Custom table view cells with prototype cells

Prototype cells allow you to easily create custom table view cells right within Xcode’s
interface editor. This allows you to create new table view cells with custom layouts
from within your storyboard. You’re going to customize the cell used to display an
album in your Albums app by using prototype cells. Back when you added your table
view controller to your storyboard, you may have noticed it within the table view itself.
It can be seen in figure 4.14.
Figure 4.11 Table view data source methods added to IAAlbumsViewController

91Using table views to display data

You’re going to be creating your own custom table view cell using the prototype cell
within the interface editor. Hop back into Xcode, open Main.storyboard, and locate
the prototype cell within the scene that contains your table view.

 The first thing you’re going to do is change the height of the cell. With the cell
selected, go to the size inspector and change the row height to 50. Next, go to the Object
Library and locate an Image View. Drag it to the very left corner (0,0) of the cell and
make its size 50 x 50. This will be used to show an image preview of each album. Now
go back to the Object Library, find a Label, and drag it to the right of your image view.
Change the font within the attributes inspector by making it bold and of size 18. This
label will be used to display the album name.

 With the prototype table view cell selected, you need to change the field named
Identifier within the attributes inspector. Set this to albumCell. You’ll be referenc-
ing this special identifier for this prototype cell when you revise the way you cre-
ate the table view cell in your controller. It’s crucial to be able to set this correctly,
because you’ll be using this identifier to specify that this is the view that you want
to use for your table view cell. Take a look at the identifier being set within fig-
ure 4.15.

Figure 4.12 Go to Apple’s Photos
application and click the + button
to add a few albums of your own.

Figure 4.13 Our Albums
application showing the albums
on our device

92 CHAPTER 4 Using and customizing table views

Lastly, select the table view itself and go to the size inspector. From here you should set
the row height to 50 because you changed your cell to be of the same height, as shown
in figure 4.16.

Figure 4.14 Prototype cells can be edited from within a table view inside a storyboard.

Figure 4.15 Our customized prototype cell with image view and label to better display an album. The

identifier is also set to albumCell.

93Using table views to display data

To be able to customize this cell, you’ll create a new UITableViewCell subclass for
your prototype cell. Hop into the project navigator, right-click the Albums group
folder, and choose New File. Choose Objective-C Class, click Next, and then name it
IAAlbumTableViewCell and specify UITableViewCell as the subclass.

 Go back into your storyboard and set the prototype cell’s class to IAAlbum-
TableViewCell in the identity inspector. Once you’ve done this, open the assistant
editor so you can create two outlets for the image view and label that you have in this
cell. Make sure that IAAlbumTableViewCell.h is selected in the assistant editor before
making the connections. Start with the image view by dragging out an outlet connec-
tion and name it albumImageView. Next, drag an outlet connection for the label and
name it albumTitleLabel.

 You’ll need to add the following to import the Assets Library framework so that
your IAAlbumTableViewCell class knows what an ALAssetsGroup is:

#import <AssetsLibrary/AssetsLibrary.h>

Also, within the assistant editor for IAAlbumTableViewCell, declare the following
method, which you’ll set up shortly:

- (void)setFromAlbum:(ALAssetsGroup *)album;

Once finished, the interface for IAAlbumTableViewCell should look like what’s
shown in figure 4.17.

 The method setFromAlbum: that you declared in your class’s interface will be used

Figure 4.16 Setting the cell’s custom class to IAAlbumTableViewCell
to populate the image view and label using a specified album (ALAssetsGroup). Add

94 CHAPTER 4 Using and customizing table views

this method into your implementation by opening IAAlbumTableViewCell.m in the
project navigator and inserting the following method:

- (void) setFromAlbum:(ALAssetsGroup *)album
{
 self.albumImageView.image = [UIImage

➥ imageWithCGImage:album.posterImage];
 self.albumTitleLabel.text = [album

➥ valueForProperty:ALAssetsGroupPropertyName];
}

Next, you’ll update IAAlbumsViewController so that it supports your new custom
table view cell. Open IAAlbumsViewController.m from the project navigator and
add the following import statement to give you access to the new IAAlbumTable-
ViewCell class:

#import "IAAlbumTableViewCell.h"

You can now replace your tableView:cellForRowAtIndexPath: method with a newly
revised version that supports your custom table view cell:

- (UITableViewCell *)tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

Figure 4.17 Creating outlets and declaring a method in IAAlbumTableViewCell’s interface
 static NSString *CellIdentifier = @"albumCell";

95Using table views to display data

 IAAlbumTableViewCell *cell = [tableView

➥ dequeueReusableCellWithIdentifier:CellIdentifier];
 [cell setFromAlbum:self.albums[indexPath.row]];

 return cell;
}

Notice that it’s shortened quite a bit from what you had previously. You’re taking
advantage of the identifier that you specified as albumCell and are using the set-
FromAlbum: method to populate your views. You can now run your application and see
your new custom cell in action, as shown in figure 4.18.

Table view cells also have an accessory view. The
accessory view for a table view cell can act as a visual
cue to a user. If there is something more to see by
tapping a row, you can use an accessory view to con-
vey this. If a row has a selected state, you could even
show a checkmark as the accessory view. Right now,
you don’t have an accessory view for the cells repre-
senting each of your albums. It would let users know
that they can click a cell in a row to progress further.
A few different types of accessory views are available,
as shown in figure 4.19.

 The disclosure indicator (UITableViewAccessory-
DisclosureIndicator) accessory view is the most
commonly used accessory view, which you’ve seen in
many other apps. It’s normally used to tell users that
after clicking this row, they’ll be presented with
another view that contains another table or collec-
tion view.

 The detail button (UITableViewAccessoryDetail-
Button) accessory view tells users that they’ll be pre-
sented with a detail about the cell’s contents. This
control itself is clickable. There’s also a detail disclosure
button (UITableViewAccessoryDetailDisclosure-
Button), which contains the same button but with a
disclosure indicator on the right.

Adding photos to the iOS Simulator
By default you won’t have any photos in the iOS Simulator. A quick way to add photos
is to use the Safari application on the Simulator itself. Navigate to a website that has
photos, and tap and hold on one to save it.

Figure 4.18 Albums application
with our custom table view cell
being used to display each album

96 CHAPTER 4 Using and customizing table views

If you were to create an interface where you could select one or multiple items before
continuing to another view, you’d use the checkmark (UITableViewAccessoryCheck-
mark) accessory type.

 For your purposes, you’ll be using the disclosure indicator since you’ll be present-
ing another view in which a user will be able to eventually dig down further. Jump into
Main.storyboard, select your table view cell, and go to the attributes inspector. Under
the Accessory field, choose Disclosure Indicator, as shown in figure 4.20.

 Since you’ve added this accessory view to your cell, your albums should display the
disclosure indicator to the right of the album title. This subtle change will make a big
difference because it will convey to your users that there is more to see once they click
an album within a row. You can see our accessory view in action in figure 4.21.

 You’ve supplied your table view with the data it needs to display the albums within
your assets library. What you haven’t done yet is handle the different events when a
user performs an action on your table view. How do you know when a row is tapped
and selected or deselected?

4.3 Managing selection and deletion within a table view
Different actions can take place on a row within a table view; the most common ones are
selection and deselection. When you tap a row, you expect something to happen, espe-

None

Disclosure indicator

Detail disclosure button

Checkmark

Detail button

Figure 4.19 Different types of accessory views that are available
cially if there’s an accessory view that tells you there’s more to be seen. Luckily, you have

97Managing selection and deletion within a table view

control over this if you implement the UITableViewDelegate protocol. Within the pro-
tocol are various methods that are triggered when a variety of these events occur.

 You’ve already used the UITableViewDataSource protocol to provide your table
view with the data it needed. Much like how you implemented various methods to sup-
ply it with data, your controller can implement various methods to respond to actions.
Unlike the data source protocol, there are no methods that you are required to imple-
ment. Everything is purely optional and up to you. You decide what you want to
respond to and how you want to do it.

4.3.1 Deleting rows within a table view

There are times when you’d want someone to be able to slide to delete a row within a
table view. For instance, if you wanted a quick way to delete tasks that you’ve entered
in the Tasks app you previously created, you could allow users to swipe to delete. In
your Albums app, you’re only allowing users to view what they have in their assets
library. If you wanted to implement deletion, you could do so by implementing a few

Figure 4.20 Select the table view cell and set its accessory view to Disclosure Indicator within the
attributes inspector.
methods in your view controller.

98 CHAPTER 4 Using and customizing table views

 Let’s go ahead and implement it without actually
deleting anything permanently. You’ll just be visually
removing the rows and not actually deleting any
photo albums that you’ve created. So don’t worry—
none of the photos you have on your device will
actually be removed. First, you need to enable
deletion on your table view by adding one specific
UITableViewDataSource method. Open Xcode,
choose IAAlbumsViewController.m, and add the fol-
lowing method:

- (BOOL)tableView:(UITableView *)tableView

➥ canEditRowAtIndexPath:(NSIndexPath *)indexPath
{
 return YES;
}

This method tells your table view that any row can
be edited because you’re returning YES no matter
what index path is passed in. If you wanted only a
few rows to be editable, you could do so by condi-
tionally returning YES or NO depending on the index
path. Next, you’ll have to implement the method
tableView:editingStyleForRowAtIndexPath:. This
method expects a return type of UITableViewCell-
EditingStyle. You can choose to have no editing
style (UITableViewCellEditingStyleNone), deletion
(UITableViewCellEditingStyleDelete), or inser-
tion (UITableViewCellEditingStyleInsert). For
your purposes you’ll support only deletion. Add the following delegate method to
IAAlbumsViewController:

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView

➥ editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath
{
 return UITableViewCellEditingStyleDelete;
}

Next, you’ll need to perform an action when a cell is deleted. You guessed it: there’s
a delegate method for this as well—although this method is actually part of the
UITableViewDataSource protocol. Add the following code to your view controller.

 - (void)tableView:(UITableView *)tableView

➥ commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

➥ forRowAtIndexPath:(NSIndexPath *)indexPath
{

Listing 4.3 Deleting a row from a table view

Figure 4.21 The disclosure
indicator shown to the right of
each album name within our
Albums application

Check if
editing style is
 if (editingStyle == UITableViewCellEditingStyleDelete) for deletion.

99Managing selection and deletion within a table view

 {
 [self.albums removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:@[indexPath]

➥ withRowAnimation:UITableViewRowAnimationFade];
 }
}

Within this method you’re first checking to see if the editing style is for deletion,
because you know that a table view can support multiple editing styles. You’re then
removing the object from your albums array and removing the row from the table
view. You’re removing the object from the array because your table view will still think
that there are X number of rows to display, even after your row has been deleted.
Because you are returning the number of rows to display depending on the size of
your albums array, you need to update your array to reflect the change.

 Once finished, your code controller should contain these three new methods, as
shown in figure 4.22.

 Try to run the application and see how it works. Once your albums are showing,
swipe from left to right on a specific row. A Delete button should appear on the right
side of the table view cell. If you tap the Delete button, the cell should be removed
from your table view, as shown in figure 4.23.

 One remarkable thing is that you didn’t need to write code to detect the left-to-
right swipe gesture. You also didn’t need to implement your own Delete button or
even the animation for removing a row in a table view. This is all handled for you with
minimal effort.

 How about when you want to select a row? Let’s see what delegate method you
need to implement to be able to respond to this.

Remove object
from albums
array.

Remove row
from table view.

Figure 4.22 Three new methods to support deletion added to IAAlbumsViewController

100 CHAPTER 4 Using and customizing table views

4.3.2 Handling the selection and deselection of rows

Probably the most important method to implement is the one that is called by your
table view when a row is selected or deselected. You want to be able to respond when
someone taps a row within your table view. The method within the UITableView-
Delegate protocol that you’d use to handle this action is tableView:didSelectRow-
AtIndexPath:. Let’s see what it looks like:

- (void)tableView:(UITableView *)tableView

➥ didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 // Perform an action
}

The second parameter that’s passed in is an NSIndexPath, which lets you know the sec-
tion and the row for the cell that’s been selected. In this case, this lets you know which
album was selected by using the position of the row to locate the album within the
albums array.

ALAssetsGroup *group = self.albums[indexPath.row];

Within this method you can programmatically trigger a segue to load a new scene for
this album. You did something similar in the Tasks app that we built together in the
previous chapter. When a row was selected, you loaded another scene that showed a
specific task.

 In the next chapter you’ll expand on this application and add a view that you can

Figure 4.23 Swipe to delete a specific row in the table view within the Albums application.
display when a row is selected. For now you’ll add a log statement so that you know

101Summary

when a row has been selected. While you’re at it, you can also deselect the row so that
it doesn’t stay highlighted after you’ve finished tapping it. Add the following code to
the IAAlbumsViewController implementation.

- (void)tableView:(UITableView *)tableView

➥ didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 IAAlbumTableViewCell *cell = (IAAlbumTableViewCell *)

➥ [tableView cellForRowAtIndexPath:indexPath];
 NSLog(@"Selected %@", cell.albumTitleLabel.text);
 [self.tableView deselectRowAtIndexPath:indexPath

➥ animated:YES];
}

Within this method you first retrieve the cell that was selected by using the index path
passed in. You then log that you’ve selected a specific album by specifying the album
title to be shown within the log. Last, you deselect this cell and specify that you want
the deselection to be animated.

 If you run the application and select a row for an album named Camera Roll, you
should see the following log statement printed to the debug area (View > Debug Area
> Show Debug Area, or press Shift-Command-Y) within Xcode. The selected row
should also deselect itself after this log statement is printed:

Selected Camera Roll

You’re now able to respond to taps on a specific row within a table view. Don’t worry;
there’s much more to come with this. You’ll expand on row selection within your
Albums application when you get to the next chapter.

4.4 Summary
Table views are used throughout iOS to display data within an organized list. You’ve
learned how to add a table view first-hand by adding one to your own application. You
provided the table view with data using the UITableViewDataSource protocol. Also
you created your own custom table view cells and learned how to remove rows and
how to respond to row selection. Along the way you also created the first part of an
application that lets you list the albums that you have on your iOS device.

■ You can use table views to present information in a list using cells that can be
contained within different sections.

■ Content within each row of a table view is contained within a UITableViewCell.
■ To improve performance, you can give prototype cells cell identifiers that can

allow them to be reused when drawing a table view.
■ You can choose different accessory views for a table view cell that can be used to

provide users with visual triggers depending on the appropriate action you want

Listing 4.4 Handling selection of a row within a table view

Retrieve the cell that
was selected from the
index path.

Log that you’ve
selected a specific
album.

Deselect the selected row
with a fade animation.
them to take.

102 CHAPTER 4 Using and customizing table views

■ Table views rely on a data source to provide them with the data that they
should display.

■ You use the delegate of a table view to respond to specific actions that take
place within the table view.

■ You created an application that lists all of the photo albums you have on your
device within a table view.

Using collection views
When you created a table view for your Albums application, you used it to display a
list of albums represented as rows. This worked well because you needed to display
only an album’s thumbnail and its title beside it. One vital piece that it was missing
was the ability to click an album and view all of the photos contained within it. The
one thing you’ll need to display for each photo in the album is its thumbnail. You’ll
use collection views to display all of the photos within a specific album. By using
collection views, you’ll be able to put the thumbnails of each photo side by side
using rows and columns.

 Although you’ll be using a collection view to display photos in a grid, you’ll
learn that they allow quite a bit of flexibility. You’ll be starting where you left off in
the previous chapter so that you can finish your Albums application. Once you’ve
finished, you’ll have a nice app that can allow you to view the albums and the photos
you’ve stored on your phone, as shown in figure 5.1.

This chapter covers
■ Using a collection view to display photos
■ Implementing custom collection view cells
■ Customizing collection view flow layouts
■ Adding a collection view to your Albums app
103

104 CHAPTER 5 Using collection views

Let’s get started by learning what makes up a collection view.

5.1 Introducing collection views
In many ways collection views are similar to the table views that you’ve already used.
They both use delegates, a data source, and cells to display your data. There’s also a
special view controller provided in UIKit that makes it easy for you to integrate a col-
lection view in your application, much like the UITableViewController class. Things
start getting pretty different when you explore how to visually lay out the cells within
your collection view, as you’ll soon see. You can start by breaking down the different
parts of a collection view and then integrating them into your Albums application.

 You’ve seen collection views used in a variety of apps within iOS. They’re most
commonly used for displaying data in a grid. This can be seen in figure 5.2, which
shows a collection view used to display photos within the Photos application.

 Within the view shown in figure 5.2, there’s one collection view but many cells used
to represent photos. Note that each photo is a separate collection view cell. There are
multiple columns and rows within this view. This is very similar to what you’re going to
be creating.

 The UICollectionView class is used to represent a collection view. Each collection

Figure 5.1 Our finished Albums application after we added a collection
view to view photos within an album
view has a few properties that are required to supply and respond to actions, such as

105Introducing collection views

delegate and dataSource, just like a table view. These two protocols are conveniently
named UICollectionViewDelegate and UICollectionViewDataSource. The content
displayed within a collection view is also referred to as a cell (UICollectionView-
Cell). The way that these cells are presented within a collection view is dramatically
different from a table view, though.

 When presenting content within a collection view, layout objects are used. These
layout objects allow you to dynamically position items within the collection view. With
table views, rows are presented one after the other. Each row within the table view can
have a different height, but they all have the same width. Because collection views
allow you to display content using grids and rows, a wider variety of customization is
needed, especially because cells can be a different height and width. Take a look at fig-
ure 5.3, which shows the exact same photos within the Photos application using the
iPad Simulator.

 On the iPad, the Photos app displays cells with varying height and width depend-
ing on the proportion of the images. In the Photos app for iPhone, the thumbnails
are shown as squares with the same height and width for each cell. Collection views
give you a large amount of flexibility with layout objects. You’ll be controlling the lay-
out with the collection view used in your Albums app later in this chapter. But for now,
let’s focus on how to start using collection views by adding one to your app.

Collection view cell

Collection view

Figure 5.2 Collection view
used within Apple’s Photos
application

106 CHAPTER 5 Using collection views

5.2 Using collection views to display data
To be able to display anything within a collection view, the view needs to be told
what it should display. You’re going to be adding a new scene to the storyboard
within your Albums application that will be shown when someone taps an album
they want to view. This scene will contain the collection view you’ll be using to dis-
play photos within a particular album. After setting up this scene within your Albums
application using a UICollectionViewController, you’ll populate it with the data it
should display.

Figure 5.3 Photos shown in a collection view within the iPad Simulator. The
cells are of varying height and width compared to the collection view in the
Photos app for iPhone.

107Using collection views to display data

5.2.1 Adding a UICollectionViewController as a new scene

You’re going to be starting right where you left off in
the previous chapter with your Albums application.
The most that you were able to do was list all of the
albums within a table view. You can see these albums
listed within figure 5.4.

 When you tap an album you’ll need to segue to a
new scene that shows all of its photos. You’ll be creat-
ing a UICollectionViewController subclass to han-
dle this for you.

 To get started, jump back into Xcode and open the
Albums project. Within the project navigator, create a
new file within the Albums group. Choose Objective-C
class as the file template, and then click Next. Let’s
call this new class IAAlbumPhotosViewController and
make it a subclass of UICollectionViewController,
as shown in figure 5.5.

 Once you’ve created your new class, jump into
your storyboard by selecting Main.storyboard from
the project navigator. You’re going to add a new scene
for your newly created class. Go to the Object Library
and find Collection View Controller, and drag it into
the storyboard. Once you’ve dragged it in, you’ll set
its class to IAAlbumPhotosViewController by chang-
ing it within the identity inspector. You can see this in
figure 5.6.

 To be able to transition to this scene when an album is selected you’ll trigger a
segue when a row is tapped in your album table view. Create a push segue by selecting
and then dragging from your album table view cell to your newly created collection
view scene. Once the segue has been created, select it and go to the attributes inspec-
tor. From there you can set the name of its identifier to albumPhotosSegue, as shown
in figure 5.7.

 You now have your segue set up to transition to your new scene. Before you go fur-
ther, click the collection view and set its background color to white within the attri-
butes inspector. Now that it’s set, you need to supply your collection view with the data
it needs before you proceed further.

5.2.2 Supplying a collection view with data

Just like a table view, a collection view requires a data source to provide it with data to
display. The data source has to implement a few required methods so that it knows the
number of sections, total number of items within each section, and what cell to display

Figure 5.4 Our Albums application,
with its single scene to display
albums within a table view as we
left it in the previous chapter

108 CHAPTER 5 Using collection views

at a particular index path. These methods are defined within the UICollectionView-
DataSource protocol. Table 5.1 lists the methods you’ll be using.

 Before you add these methods to your controller, you’ll lay some groundwork so
that you can retrieve photos from an album to display within a table view. You need to
add two properties: one that will represent the album you’re going to display as well as

Figure 5.5 Create a new Objective-C class called IAAlbumPhotosViewController as a
subclass of UICollectionViewController.

Figure 5.6 Add a Collection View Controller as a new scene in your storyboard and set its class
to IAAlbumPhotosViewController.
an array to store all of the album’s photos.

109Using collection views to display data

You’ll be adding an NSMutableArray property to the IAAlbumPhotosViewController
class to store the photos contained within an album. To be able to reference the album
that you’re viewing, you’ll create a property that holds an instance of an ALAssetsGroup.
You’ll set these up first within the interface for the IAAlbumPhotosViewController
class by opening IAAlbumPhotosViewController.h. First, you should import the Assets
Library framework because the ALAssetsGroup class is part of that framework. To do
this, add the following import statement:

#import <AssetsLibrary/AssetsLibrary.h>

Next, add the following two properties that will be used to store a reference to your
photos and the album that they belong to:

@property(nonatomic, strong) ALAssetsGroup *album;

Table 5.1 Three UICollectionViewDataSource protocol methods you’ll be implementing

Section Description

numberOfSectionsInCollectionView: Number of sections within the collection view

collectionView:numberOfItemsInSection: Number of items to display within a particu-
lar section

collectionView:cellForItemAtIndexPath: UICollectionViewCell for a particu-
lar index path

Figure 5.7 Create a segue from your album table view cell to your new collection view scene. Set the
name of the identifier to albumPhotosSegue in the attributes inspector.
@property(nonatomic, strong) NSMutableArray *photos;

g
th of
 row
view

rieving
 album

ums

ay

Se
the al

proper
IAAlb

PhotosV
Control
110 CHAPTER 5 Using collection views

Once you’ve finished, your code should look like that shown in figure 5.8.
 To be able to supply your collection view with the album it needs to use to fetch

photos, you need to add the prepareForSegue:sender: delegate method to IAAlbums-
ViewController. This method will allow you to pass necessary data to the view control-
ler that’s about to load. Within this method you’ll set the album property before the
segue takes place.

 Open IAAlbumsViewController.m from the project navigator to get started. First,
import IAAlbumPhotosViewController.h by adding the following line, because you’ll
be referencing it in your code shortly:

#import "IAAlbumPhotosViewController.h"

Next, remove the tableView:didSelectRowAtIndexPath: method that you added in
the previous chapter: you’re not going to need this anymore because you’re automati-
cally triggering the segue when your table view cell is tapped. Also, in that method you
were deselecting the selected table view row. You’ll need this to remain selected so that
you can use it to pass the appropriate album to the IAAlbumPhotosViewController.

 Next, add the prepareForSegue:sender: method, as shown in the following listing.

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 NSIndexPath *selectedIndex = [self.tableView

➥ indexPathForSelectedRow];
 ALAssetsGroup *album = self.albums[selectedIndex.row];
 [(IAAlbumPhotosViewController *)[segue destinationViewController]

➥ setAlbum:album];
 [self.tableView deselectRowAtIndexPath:selectedIndex animated:YES];
}

Within this method you’re first retrieving the NSIndexPath of the currently selected
row in your table view B. The row property within selectedIndex will give you the

Listing 5.1 Passing a reference to the selected album using prepareForSegue:sender:

Figure 5.8 Adding two properties to the interface of your
IAAlbumPhotosViewController class to store a reference to your
photos and the album that they belong to

Retrievin
index pa
selected
in table

b

Ret
the
from
alb
arrc

tting
bum

ty for
um-
iew-
ler

d

Deselecting the currently
selected row in table view e
correct index to use to retrieve the album within your albums array c. You’re then

-
od

o.
111Using collection views to display data

setting the album property on the IAAlbumPhotosViewController d. Last, you’re
deselecting the currently selected view e.

 Let’s jump into IAAlbumsPhotoViewController.m and retrieve the photos that
belong to the album that you’re passing in when you perform the segue. First, add the
following import statement because you’ll be referencing your IAAssetsLibrary sin-
gleton that you created in the previous chapter.

#import "IAAssetsLibrary.h"

Next, within the viewDidLoad method, add the following three lines of code:

self.title = [self.album valueForProperty:ALAssetsGroupPropertyName];
self.photos = [NSMutableArray new];
[self loadPhotos];

The first line is to set the title of your view to the name of the album you’re viewing.
The second line is added to initialize the NSMutableArray that you’ll be using to
store the photos contained within an album. The third line is used to call a method
called load_Photos that you’re about to add. The goal of this method is to retrieve all
of the photos that belong to the ALAssetsGroup stored within your album property.
Add the loadPhotos method shown in the following listing.

- (void)loadPhotos
{
 [self.album enumerateAssetsUsingBlock:^(ALAsset *result,

➥ NSUInteger index, BOOL *stop)
 {
 if ([result valueForProperty:ALAssetPropertyType] ==

➥ ALAssetTypePhoto)
 [self.photos addObject:result];
 }];

 [self.collectionView reloadData];
}

To be able to load all of the assets within an album (ALAssetsGroup) you use the
enumerateAssetsUsingBlock: method B. Within the block you’re passing in, you
check to see if the ALAsset named result is of type ALAssetTypePhoto c. If it is,
you add it to the photos array d. The last thing you do is reload the collection view by
calling reloadData e.

 The data source methods within the UICollectionViewDataSource protocol are
fairly similar to those of the UITableViewDataSource protocol. When you wanted to
specify the number of sections within a table view, you’d use numberOfSectionsWithin-
TableView:. For a collection view, you’d use numberOfSectionsWithinCollection-
View:. When specifying the number of rows within a section for a table view, you’d use
tableView:numberOfItemsInSection:. What do you use for collection views? You

Listing 5.2 Adding loadPhotos to retrieve photos within an album

ALAssetsGroup’s
enumerateAssets
UsingBlock: meth
to retrieve photos

b

Check if the
ALAsset is a phot

c

Add the ALAsset
to the photos array
property.dReload the

collection view.e
guessed it—collectionView:numberOfItemsInSection:.

112 CHAPTER 5 Using collection views

 The number of items within each section will inform the collection view how many
items it needs to display. For your Albums app, you’ll have only one section, and the
number of items in this section will be the total count of the photos array. Add the code
shown in the following listing.

- (NSInteger) numberOfSectionsInCollectionView:(UICollectionView
*)collectionView
{
 return 1;
}

- (NSInteger) collectionView:(UICollectionView *)collectionView
numberOfItemsInSection:(NSInteger)section

{
 return [self.photos count];
}

Once you’ve added this to IAAlbumPhotosViewController.m, you should see code sim-
ilar to what’s shown in figure 5.9.

Listing 5.3 Specifying the number of sections and items in each section

Figure 5.9 IAAlbumPhotosViewController with methods in place for you to supply your

collection view with the data it needs

113Using collection views to display data

Now that you have some of this groundwork set up, you’ll get ready to display the pho-
tos that you have within an album by creating a custom UICollectionViewCell.

5.2.3 Creating a custom collection view cell

If you remember from the previous chapter, you used a prototype cell to create a cus-
tom cell for your table view. You’ll be doing something very similar for your collection
view that will be used to display a thumbnail for each photo. This will involve creating
a new subclass of UICollectionViewCell that contains a single UIImageView. You’ll
then create this view within your collection view in your storyboard.

 Start by creating a new Objective-C class within your project called IAPhoto-
CollectionViewCell that’s a subclass of UICollectionViewCell. This is shown in fig-
ure 5.10.

 Once you have this class created, you can hop right into your storyboard to create
its view. Open Main.storyboard and locate your collection view. You should see a single
collection view cell on the top right. If you can’t locate it, take a look at figure 5.11 to
see it.

 This UICollectionReusableView, which is a subclass of UICollectionViewCell,
will act as a prototype cell for you. Once you’ve finished you’ll set its class to IAPhoto-
CollectionViewCell. First, make it bigger by going to the size inspector and chang-
ing its size from Default to Custom. You can then set its width to 104 and its height to
104 as well, as shown in figure 5.12.

Figure 5.10 Creating a new IAPhotoCollectionViewCell class as a subclass of

UICollectionViewCell

114 CHAPTER 5 Using collection views

Figure 5.11 The collection reusable view that you’ll be using to customize your
collection view cell
Figure 5.12 Setting the width and height of the collection view to a custom size of 104 x 104

115Using collection views to display data

Next, drag a UIImageView into this cell by first locating one from the Object Library on
the bottom-right of your window. Ensure that the UIImageView is positioned exactly in
the center of this cell and has the dimensions 104 x 104 as well. Now jump into the
identity inspector of the collection view cell and set its class to IAPhotoCollection-
ViewCell, as in figure 5.13.

 You can make a new outlet from the UIImageView by first opening the assistant edi-
tor. Open IAPhotoCollectionViewCell.h within the assistant editor. Next, drag a con-
nection from the UIImageView within the collection view cell to create an outlet called
imageView.

 Next, make sure the collection view cell is selected; then jump into the attribute
inspector and change its identifier to photoCell. It’s important to spell this cor-
rectly because you’ll be using this identifier to retrieve this cell from your collec-
tion view. That’s it for your custom collection view cell. Because you’re just showing
the thumbnail of a single photo, there’s no need for anything special other than
a UIImageView.

 You can now use the IAPhotoCollectionViewCell that you’ve created. You’ll use
the collectionView:cellForRowAtIndexPath: method to return an instance of your
custom collection view cell. Go into the project navigator and open IAAlbumPhotos-
ViewController.m. Then import your IAPhotoCollectionViewCell class:

#import "IAPhotoCollectionViewCell.h"

Next, implement collectionView:cellForRowAtIndexPath: by adding what’s shown
in the following listing.

Figure 5.13 Setting the class of the collection view cell to IAPhotoCollectionViewCell

ing
to serve
identifier

Dequ
a

cell u
the

ident
116 CHAPTER 5 Using collection views

- (UICollectionViewCell *)collectionView:(UICollectionView *)collectionView
 cellForItemAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"photoCell";
 IAPhotoCollectionViewCell *cell = [self.collectionView

➥ dequeueReusableCellWithReuseIdentifier:CellIdentifier

➥ forIndexPath:indexPath];

 ALAsset *asset = self.photos[indexPath.row];
 cell.imageView.image = [UIImage imageWithCGImage:asset.thumbnail];

 return cell;
}

You first create a static NSString that contains photoCell, which is the identifier you
set for your collection view cell B. Next, you retrieve an instance of your cell by using
the dequeueReusableCellWithReuseIdentifier:forIndexPath: method c. Once
you have your collection view cell, you’re ready to populate its image view with a
UIImage. First, you get the appropriate photo represented by an ALAsset object by
returning the appropriate instance based on the index path you’re displaying d.
Then you set the image for the imageView property on your cell to a new UIImage
based on the thumbnail property of your ALAsset e.

 Great job! Take a look at what you’ve done by run-
ning your Albums application and tapping an album
that you want to view. Your collection view will look
similar to what’s shown in figure 5.14.

 The problem you’re faced with now is that the cells
are too small and not spaced properly. You’ll fix this by
customizing the layout of your collection view.

5.3 Customizing a collection view layout
Collection views have layout objects that are used to
determine the way their cells should be laid out and
displayed. This gives you a great amount of control over
the appearance of your cells depending on what con-
tent you want to display. Because the photos you’re
displaying are squares with equal width and height,
margins between each photo should be the same
throughout the collection view. This makes your layout
customization simple. If you were displaying items of
varying dimensions, you’d be able to adapt your collec-
tion view easily because you’re able to customize the
way the cells are laid out.

 Because you’re displaying photos, you want to show

Listing 5.4 Returning a new IAPhotoCollectionViewCell for an index path

Static NSStr
“photoCell”
as the cell’s

beue
 new
sing
 cell
ifier.

c

Retrieve an ALAsset
using the index path
from the photos array.

d

Set image for
cell’s image view. e

Figure 5.14 Seeing the
IAAlbumPhotosCollection
View in action within our Albums
as much of the photos as you can, while still allowing application

117Customizing a collection view layout

your users to be able to quickly glance and see others. You’ll see how you can change
this by using the UICollectionViewDelegateFlowLayout protocol.

5.3.1 Collection view flow layouts

The flow layout controls how a particular collection view’s contents are laid out and
visually arranged. You can choose to subclass a UICollectionViewFlowLayout and
change its properties to meet the design needs of your collection view if you don’t
need to do much customization. You can also choose to implement the UICollection-
ViewDelegateFlowLayout protocol within your collection view delegate. This gives
you more control because you can dynamically change layout properties when a dele-
gate method is triggered. For your purposes, you’ll be using the delegate approach in
your Albums application.

 Let’s first take a look at the UICollectionViewFlowLayout class to see what you
can customize. Table 5.2 shows the different properties and a description of what
they do.

By default, your scroll direction will be vertical, but you can set it to horizontal by
updating the scrollDirection property. There are various properties for controlling
the amount of space between items as well as in each section. Also, if you have a view
for a header or footer within your collection view, you could specify that size as well.

 When implementing the UICollectionViewDelegateFlowLayout protocol, you’re
able to update these properties dynamically. The delegate methods will be called by
the collection view when they’re needed, which can give you the opportunity to
change it depending on your situation. For instance, you might want the line spacing
to be different if your application was in portrait mode versus landscape mode. Let’s
examine the different delegate methods you can use within the UICollectionView-
DelegateFlowLayout protocol.

 This collectionView:layout:sizeForItemAtIndexPath: method will return a

Table 5.2 Important UICollectionViewFlowLayout properties

Property Description

scrollDirection Scroll either vertically or horizontally

minimumLineSpacing Line spacing between sections

minimumInteritemSpacing Line spacing between items in sections

itemSize Size of each cell within the collection view

sectionInset Edge inset for each section

headerReferenceSize Header size

footerReferenceSize Footer size
CGSize that contains the width and height of a cell at a given index path. To deal with

118 CHAPTER 5 Using collection views

the space between sections, you implement collectionView:layout:insetForSection-
AtIndex:. This method returns a UIEdgeInsert, which has properties for spacing for
the top, left, and bottom. To determine the minimum amount of space that should be
used between each row within the table view, you’d implement collectionView:
layout:minimumLineSpacingForSectionAtIndex:. This method returns a CGFloat.
For the minimum amount of space between each item in a section, you’d implement
collectionView:layout:minimumInteritemSpacingForSectionAtIndex:. If you had
a header or footer, you could specify its size by implementing collectionView:layout:
referenceSizeForHeaderInSection: or collectionView:layout:referenceSizeFor-
FooterInSection:.

 Let’s use a few of these delegate methods to change the way your photos are laid
out in your collection view.

5.3.2 Using the flow layout delegate protocol

You want your photos to take up most of the space within your view. You also want sep-
aration between each photo so that it’s easy to see where one photo starts and ends.
It’ll make it easier to see but at the same time you’ll still be maximizing the amount of
space you have at your disposal.

 First, open IAAlbumPhotosViewController.m. To make sure that your cells are dis-
played with the correct size, add the following code to the bottom of your class:

- (CGSize) collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout *)collectionViewLayout
 sizeForItemAtIndexPath:(NSIndexPath *)indexPath
{
 return CGSizeMake(104.0f, 104.0f);
}

Here you’re returning a CGSize using the CGSizeMake function to specify that your
cells are 104 x 104. Next, you’ll set the minimum spacing between each item to
2 points.

- (CGFloat) collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout *)collectionViewLayout
minimumInteritemSpacingForSectionAtIndex:(NSInteger)section
{
 return 2.0f;
}

For each row, you should apply the same spacing to keep things uniform. Add the fol-
lowing method:

- (CGFloat) collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout *)collectionViewLayout
minimumLineSpacingForSectionAtIndex:(NSInteger)section
{
 return 2.0f;

}

119Customizing a collection view layout

Finally, you’ll adjust the inset of your collection view so that it has a little space at the
top and the bottom to make the spacing you’ve specified between each item and
each row:

- (UIEdgeInsets) collectionView:(UICollectionView *)collectionView
 layout:(UICollectionViewLayout
*)collectionViewLayout
 insetForSectionAtIndex:(NSInteger)section
{
 return UIEdgeInsetsMake(2.0f, 0.0f, 2.0f, 0.0f);
}

Here you’re returning a UIEdgeInset by using the UIEdgeInsetsMake function.
You’re specifying that the inset should be 2 on the top of the collection view and 2
on the bottom. Once you’ve finished, your code should look like what’s shown in
figure 5.15.

 Now you can run your application and see the result! Build and run the applica-
tion and choose an album with many photos. You should see your nicely laid-out col-
lection view just like the one in figure 5.16.

 Give yourself a nice pat on the back! You’ve created an application that can view
the albums and photos on your phone. If you want to go even further, you could
change the layout to display the correct proportion of each photo instead of showing
a square thumbnail.

Figure 5.15 Adding a few UICollectionViewDelegateFlowLayout
protocol methods to IAAlbumPhotosViewController

120 CHAPTER 5 Using collection views

5.4 Summary
You’ve seen that collection views, in many ways, are similar to table views. Their proto-
col implementations are very similar when adding data and interacting with them.
Their similarities end when you realize that you have much more control handling
the way cells are laid out within a collection view. Throughout this chapter you saw all
of these things by adding on to your Albums application, displaying photos from an
album using the Assets Library framework.

■ A collection view can be used when you need to display data in something more
than a list of rows.

■ Table views and collection views are similar in the way that you supply them with
data and respond to actions.

■ You have considerable control when laying out cells within a collection view
when using a custom flow layout.

■ Custom views for each item within a collection view are contained within a col-
lection view cell.

■ Prototype collection view cells can be reused for increased performance in your
applications.

■ By using collection views, you can add the ability to show photos contained
within an album in your Albums application.

Figure 5.16 Our finished
collection view with photos
laid out properly in the
Albums application

Part 2

Building real-world
applications

After you’ve become familiar with the basics of iOS development, you’ll be
ready to start creating more advanced applications. This part of the book will
arm you with the knowledge you need to start creating real-world apps. Also, in
each chapter you’ll be learning by creating basic versions of real-world apps.

 In chapter 6 you’ll learn how to retrieve and interact with remote data, which
opens up a whole world of possibilities. Chapter 7 will teach you how to use the
photos and videos on your iOS device to make the next big photo app.

 Chapter 8 shows how to integrate with social networks such as Twitter and
Facebook using what’s already baked into iOS 7. Chapter 9 explores making
advanced views and custom animations to make your apps really stand out.

 In chapter 10 you’ll learn how to use location information and to work with
maps. Then in chapter 11 you’ll learn about object management with Core Data
to add a layer of persistence to your apps.

Retrieving remote data
Mobile applications are by their mobile nature connected somehow with remote
computers. Even apparently static applications need remote communications to
send stats, retrieve updates, or just show the user a message. Take, for example,
our Hello Time application, where we were relying exclusively on device time:
what if the user moves through different time zones or the device’s clock is off?
In that case, we would have to communicate with a time server connected to a
very accurate clock, with communication taking the form of the client (our
application) sending a message using a specific protocol over the physical net-
work to the server, waiting for the response, and, once the response is available,
reading and processing it.

This chapter covers
■ Retrieving remote data
■ Understanding data serialization and interacting

with external services such as Twitter
■ Sending advanced requests using iOS libraries
■ Using web views to display web pages
■ Using popular open source networking libraries
123

124 CHAPTER 6 Retrieving remote data

In this chapter, we’ll cover exactly how this communication takes place. You’ll learn
the most common way to phrase messages (with data serialization) and how to read,
parse, and process those messages. You’ll learn how to present full, rich HTML pages
in a snap using the native UIWebView object, which will allow you to easily display web-
sites in your application. We’ll then dig deeper into open source networking libraries
used by most popular apps to help you implement the most common communica-
tions in a simplified way.

 To demonstrate how these skills come together, we’ll create an app that retrieves
random jokes about Chuck Norris, using a public API, and lets its users like or unlike
each joke; see figure 6.1.

6.1 Retrieving data using NSURLSession
Before we start to examine how to retrieve data using iOS native libraries in detail, it’s
worth devoting some time to understanding the details of how an HTTP request is
made or, to put this more generally, how the HTTP communication is done.

 Let’s start with an example. Suppose you type http://google.com/?q=Hello
&safe=off into your browser (this URL will search the keyword Hello on Google); it’ll
separate the URL as follows:

Figure 6.1 Our ChuckNorrisRater application, showing a joke, along with Vote up and Vote down
buttons for liking/not liking

http://google.com/?q=Hello&safe=off
http://google.com/?q=Hello&safe=off

125Retrieving data using NSURLSession

■ http is the protocol, which tells the browser to follow the HTTP standard for
the request.

■ :// separates the protocol from the domain.
■ google.com is the domain you are retrieving the data from.
■ / is the path of the request. It indicates the location of the resource you’re try-

ing to retrieve.
■ ? is used to separate the path from the parameters.
■ q=Hello&safe=off are the parameters. There are two (key/value) pair param-

eters separated by &. Key q has Hello as the value, and key safe has off as
the value.

In addition, when making an HTTP request, you always specify a method. The
method indicates what the server should do with the information you’re sending to
the path defined on the URL. You’ll learn more about those methods along with the
full methods list in the next section. You just need to know for now that the method
for retrieving information is called GET and that the browser will use it to retrieve
your example URL.

 In a nutshell, the browser will connect to google.com and it’ll make a GET request
following the HTTP protocol to /, passing q=Hello&safe=off as parameters.

 Luckily for us, HTTP is an ASCII protocol, which means that we can see the request
in plain text. This is what our previous example will look like after the browser finishes
the parsing process we described previously:

GET /?q=Hello&safe=off HTTP/1.1
Host: google.com
Content-Length: 133
(…)

A request consists of one or more lines of ASCII text. The first word in the first line is
the name of the method, followed by the path along with zero or more parameters,
followed by the HTTP version. The next lines in the request are headers, which will
include information about the browser capabilities and other details such as the
requested host (google.com in our example) and the length of the request (Content-
Length). Headers are separated from the body by two line breaks. In GET requests the
body is empty.

 Figure 6.2 shows the flow of an HTTP request, starting from creating a request (fol-
lowing the rules you just learned), then creating a connection to the remote server,
and finally sending the request as plain text. Depending on the size of the response
and the quality of the network, the response could take seconds, hours, or even days
to arrive.

 Before we go any further, let’s set up the application you’ll be creating throughout
the chapter. Go to Xcode and create a new single-view application named Chuck-
NorrisRater. As you did in the previous chapters, you’ll set the class prefix to IA. Once

126 CHAPTER 6 Retrieving remote data

the project is created, Xcode should automatically add the files shown in figure 6.3 to
your project.

 Next, you’ll create a new class named IAHTTPCommunication that you’ll be using to
make the HTTP communication, as shown in figure 6.4.

 The next thing you’ll do is create your main user interface. For this, you’ll open
the autogenerated storyboard file named Main.storyboard. Then you’ll add a label for
the title, a label for the joke, and two buttons for voting up and down. You’ll do that by
dragging and dropping the objects from the Object Library. Figure 6.5 shows what the
interface will look like.

B The joke is contained inside a UILabel. We are going to set the Lines attribute
of this label to 0 and the height to 5 lines tall.

c Vote up and Vote down are UIButtons right next to each other.

d Two UILabels contain quotation marks.

Do you remember that we said that a request could take a long time to complete? For
that reason you need a way to continue the execution of the main thread while the

Time

Create request

Parse response

(a)

Prepare connection

Connection setup

HTTP request

Response

NSURLRequest

NSJSONSerialization

(b)

NSURLSession

Connection setup

completionHandler();

Figure 6.2 The steps in a common HTTP request: (a) a generic HTTP communication
and (b) the equivalents between each step from an Objective-C standpoint

Figure 6.3 Autogenerated files
when creating the new project

called ChuckNorrisRater

127Retrieving data using NSURLSession

Figure 6.4 Adding the IAHTTPCommunication class to your project

3

2

1

Figure 6.5 Configuring the
main controller located in the

application’s storyboard

k

s
128 CHAPTER 6 Retrieving remote data

request is still working. This is crucial because all UI operations on iOS applications
are done in the main thread, which means that if you block the main thread, you’ll be
blocking all touch events, graphic drawing, animations, sounds, and the like, ending
up with an unresponsive application. That’s why you can’t just interrupt the applica-
tion and wait for the response. Two techniques can resolve this issue: creating a new
thread of execution to manage two simultaneous operations or configuring an
instance as a delegate, as you learned in chapter 1, and implementing the methods
defined in the delegate protocol.

 Multithreading and concurrent operations are easily the most complex things to
implement and maintain. They’re useful, but if implemented incorrectly, things can
go very wrong very fast. You can learn more about threads and dispatch queues (an
easy and seamless way of using threads on iOS applications) in appendix A. For now,
keep this in mind: when in doubt, don’t use threads.

 Most I/O methods in Cocoa frameworks were initially designed to use the delega-
tion pattern to make time-consuming operations asynchronous. This means that the
main thread will continue until the operation is done, at which point a specific
method will be called.

 You learned in chapter 1 that starting from iOS 5, Objective-C supports blocks, and
now you’re going to use them in your ChuckNorrisRater application, most specifically
in your recently created IAHTTPCommunication class.

So let’s get down to business. First of all, you need to declare the instance variables
you’re going to use along with your IAHTTPCommunication class. For that, you’ll use
the @interface operator. Open the IAHTTPCommunication.m file, and on the top of
the file, right after the #imports, add the code in the following listing.

@interface IAHTTPCommunication ()

@property (nonatomic, copy) void (^successBlock)(NSData *);

@end

Next, you’ll create the method in charge of the HTTP communication, as shown in the
following listing. This method will retrieve jokes from a public API called icndb (http://
icndb.com) and will return the information asynchronously using blocks.

iOS 7 shortcuts
We’re going to use the delegate protocol in this example so that you’ll gain a deep
understanding of how networking operations work. But keep in mind that iOS 7 includes
a set of shortcuts that use blocks to simplify the task of doing HTTP requests.

Listing 6.1 Defining instance variables in your IAHTTPCommunication class

successBlock
will contain the bloc
you’re going to call
when the request i
completed.

http://icndb.com
http://icndb.com

Cre

re
usin
give

Crea
session

the d
configur

and se
our ins
as del
129Retrieving data using NSURLSession

- (void)retrieveURL:(NSURL *)url successBlock:(void (^)(NSData

➥ *))successBlock
{
 self.successBlock = successBlock;
 NSURLRequest *request = [[NSURLRequest alloc] initWithURL:url];

 NSURLSessionConfiguration *conf = [NSURLSessionConfiguration

 ➥ defaultSessionConfiguration];
 NSURLSession *session = [NSURLSession sessionWithConfiguration:conf

 ➥ delegate:self delegateQueue:nil];
 NSURLSessionDownloadTask *task = [session

 ➥ downloadTaskWithRequest:request];
 [task resume];
}

This method takes two parameters: the URL from where you’ll retrieve the content (in
your application you’ll use the icndb API URL for retrieving random jokes) and a block
that you’ll call once the request is completed. The first thing you need to do is store the
given block for calling it later when the request is finished B. The next step is to create
an NSURLRequest instance for the given URL c and use this request to establish the
HTTP communication d, e, and f. As you can imagine, [task resume] won’t
block the execution. You’ll need to implement the NSURLSessionDownloadDelegate
protocol in order to catch some of the communication events, such as when you get
a new response.

 The NSURLSessionDownloadDelegate protocol defines a series of methods that the
NSURLConnection instance can call along the HTTP communication. In your applica-
tion you’ll use the most important one:

URLSession:downloadTask:didFinishDownloadingToURL:

There are two more methods that you’ll probably need to implement for more com-
plex cases such as tracking download progress or being able to resume a request. As
you can see, those event names are self-explanatory:

URLSession:downloadTask:didResumeAtOffset:expectedTotalBytes:
URLSession:downloadTask:didWriteData:totalBytesWritten:totalBytesExpectedToWrite:

But these aren’t the only ones. In addition the NSURLSession API provides three pro-
tocols that define delegate methods your app can implement to have more control
over sessions. These protocols are

■ NSURLSessionDelegate—This protocol defines delegate methods to handle
session-level events such as session invalidation and credentials.

■ NSURLSessionTaskDelegate—This protocol defines delegate methods to
handle communication events such as redirects, errors, or data sending.

■ NSURLSessionDataDelegate—This protocol defines delegate methods to han-

Listing 6.2 Craft and send request using NSURLRequest and NSURLConnection

Persisting given
successBlock
for calling it
later on

b
ating

the
quest
g the

n URL

c

ting a
using
efault
ation
tting

tance
egate

d

Preparing the
download task

e

Establishing the HTTP
communicationf
dle task-level events specific to data and upload tasks.

C
the

you s
bef
a ca
130 CHAPTER 6 Retrieving remote data

Go ahead and implement the method that will allow you to get the data from the
response in your IAHTTPCommunication.m file. NSURLSession will call this method
once the data is available and the task has finished downloading.

- (void)URLSession:(NSURLSession *)session
downloadTask:(NSURLSessionDownloadTask *)downloadTask
didFinishDownloadingToURL:(NSURL *)location

{
 NSData *data = [NSData dataWithContentsOfURL:location];
 dispatch_async(dispatch_get_main_queue(), ^{
 self.successBlock(data);
 });
}

This piece of code is the last step of the communication. You received the full
response, and now you will call the block that you stored before. The first thing we’ll
do is get the locally stored data that we got from the server, as shown at B. Note that
the location is represented as an NSURL instance, but at this point, the URL is just the
path of a file that holds the response data and not a remote URL.

 You need to be sure to call the successBlock callback from the main thread. This is
usually a good practice because chances are that the method implementing your class
is doing main-thread-specific tasks such as UI operations. You’ll learn more about dis-
patch queues and threads in the appendix, but for now just keep in mind that line c is
forcing your self.successBlock invocation d to occur on the main thread.

 In some cases when retrieving remote information, the request could jump to dif-
ferent servers before reaching the desired destination. See, for example, the case in
figure 6.6. We tried to retrieve an image located at http://t.co/, but the first response
is a redirect to the server that contains the image. We need only the latest response
(the actual image). Even though you can have fine control over redirects by imple-
menting NSURLSessionTaskDelegate, you can let NSURLSession handle all these
details for you, which is the default behavior.

 Before moving to the next section, you’ll need to expose the method retrieve-
URL:successBlock: you just created in order to be able to use it from your main

Listing 6.3 Task has finished downloading delegate method

Getting the
downloaded
data from
local storage

b

Ensuring that you call
the successBlock
from the main thread by
using dispatch queuesc

alling
 block
tored

ore as
llback

d

First response (redirect)

http://t.co/HLCsvMZWWX http://pic.twitter.com/HLCsvMZWWX

Image response

Figure 6.6 Retrieving an image from a shortened Twitter URL generates a redirect.

http://t.co/

131Understanding data serialization and interacting with external services

controller in the next chapter. For that, you’ll open the file IAHTTPCommunication.h
and add your method declaration, as shown in the following listing.

@interface IAHTTPCommunication : NSObject <NSURLSessionDownloadDelegate>

- (void)retrieveURL:(NSURL *)url successBlock:(void (^)(NSData

➥ *))successBlock;

@end

6.2 Understanding data serialization and interacting
with external services
In the previous section, you set up your ChuckNorrisRater application and you wrote
the logic to retrieve data from remote computers. You’re going to retrieve random
Chuck Norris jokes using an API provided by icndb.com. The icndb’s API, as well as all
services that provide a way for third parties to interact, has a normalized way of for-
matting information. Thus, you need to transform this format into something easy to
use and manipulate. In other words, you need a way to convert formatted data into
Objective-C objects.

 Figure 6.7 illustrates how the serialization process works. The example shows the
sender part (icndb server) on the left and the receiver part (your client) on the
right. First, a joke is generated, which icndb saves as binary (it could be saved to a

Listing 6.4 Exposing your retrieveURL:successBlock: method

Declaring your method in the .h file makes it public. The method
returns void and takes two parameters: a URL and a block.

Sender (icndb)

Serialized content

Raw storage

Content
Chuck Norris

can divide by 0

01000110

01111010

API

{"id": 1,

"joke":

"category"…

Serializer

Response

Request

Receiver (our app)

Object instance

Content
Chuck Norris

can divide by 0

01000110

01111010

NSDictionary

Response

{"id": 1,

"joke":

"category"…

Parser

Figure 6.7 Message serialization and deserialization architecture

132 CHAPTER 6 Retrieving remote data

database, memory, file system, or any kind of storage). When a request from your
application takes place, the joke information is serialized and sent to you (the
receiver). Your application parses the information and converts the received data to
native Objective-C objects.

 There are different standard ways of exchanging information but we’ll focus on one
of the most commonly used serialization formats: JavaScript Object Notation (JSON).

JSON is a standard way of representing different kinds of data structures in a text-
based manner. As the name implies, it’s derived from the JavaScript language’s syntax.
JSON defines a small set of rules to represent strings, numbers, and Booleans. Even
though the standard comes from JavaScript, it’s used across multiple languages, and
along with XML, it’s one of the most used serialization methods today. Let’s look at an
example of JSON in action:

{
 "name": "Martin Conte Mac Donell",
 "age": 29,
 "username": "fz"
}

This fragment represents an associative array (or dictionary), which is surrounded by
{} and composed of key/value pairs. Keys can’t be repeated in the associative array. In
our example, name, age, and username are keys, and Martin Conte Mac Donell, 29, and
fz are values.

 Now that you know how the JSON format is defined and how the serialization pro-
cess takes place, let’s go back to your application. You’ll implement the code for
retrieving Chuck Norris jokes. First, you need to import the IAHTTPCommunication
class you created previously and declare the instance variables you’re going to use in
the class. For that you’ll open the file IAViewController.m, and on top of the file, right
after the #import, you’ll add the code in the following listing.

#import "IAHTTPCommunication.h"

@interface IAViewController () {
 NSNumber *jokeID;
}
@end

You’ll then implement the method that will retrieve the jokes, as shown in the
next listing.

- (IBAction)retrieveRandomJokes:(id)sender
{
 IAHTTPCommunication *http = [[IAHTTPCommunication alloc] init];

Listing 6.5 IAViewController instance variables declaration

Listing 6.6 Received data chunk delegate method

jokeID is declared as
NSNumber and it’ll contain the
ID of the joke you are showing.

Creating an instance of your recently
created IAHTTPCommunication class

 b
 NSURL *url = [NSURL URLWithString:@"http://api.icndb.com/jokes/random"];

http://api.icndb.com/jokes/random

on

Ge
inf

no
133Understanding data serialization and interacting with external services

 [http retrieveURL:url successBlock:^(NSData *response)
 {
 NSError *error = nil;
 ➥ NSDictionary *data = [NSJSONSerialization

JSONObjectWithData:response options:0 error:&error];
 if (!error)
 {
 NSDictionary *value = data[@"value"];
 if (value && value[@"joke"])
 {
 jokeID = value[@"id"];
 [self.jokeLabel setText:value[@"joke"]];
 }
 }
 }];
}

In listing 6.6, you define a method called retrieveRandomJokes. By implementing
this method, you’ll see how the serialization takes place from a code perspective. In
that method you’re using the class you created earlier (IAHTTPCommunication) to
retrieve data from icndb.com (in this case, this data happens to be Chuck Norris
jokes). That’s why you’re first creating an instance of IAHTTPCommunication B and
then calling the method retrieveURL:successBlock:, which is in charge of retriev-
ing the data. As soon as IAHTTPCommunication gets a response from icndb.com, it calls
the code inside the block you passed as a parameter c. At that point you’ll have the
data available and ready to be parsed.

 Once the information is retrieved, you have to understand it. You need a way to
convert the text you just downloaded into something that you can easily manipu-
late. You’ll need to extract the joke and its id from the response. The process of
converting serialized data (JSON in this case) to data structures is called deserial-
ization. Luckily, starting from iOS 5, the Cocoa framework includes a class for pars-
ing JSON. The name of the class is NSJSONSerialization, and as you can see in
listing 6.6, parsing the response data is the first thing you do once the block is
called d.

 The response from the icndb API is an associative array represented using JSON
as follows:

{
 "type": "success",
 "value": {
 "id": 201,
 "joke": "Chuck Norris was what Willis was talkin’ about"
 }
}

Looking at this JSON, you’ll see that the response represents an associative array
and the value key contains another associative array. Once NSJSONSerialization
does the deserialization, JSON associative arrays will be converted into Objective-C

Retrieving
jokes using
the IAHTTP-
Communicati
instancec

Deserializing the
information you
got from the APId

tting the
ormation
you need
from the
rmalized
response e Updating

the UI with
the jokef
NSDictionaries, arrays will be converted into NSArrays, numbers into NSNumbers, and

134 CHAPTER 6 Retrieving remote data

strings into NSStrings. All of this leaves you with objects you can use and manipulate
in your application.

 Getting back to listing 6.6, after doing the deserialization, you assign the associa-
tive array located on the value key of the deserialized response to an NSDictionary e.
The last step of your retrieveRandomJokes: method is to place the joke itself into the
label f, for which you need to link those instance variables in Interface Builder, as
shown in figure 6.8. First, open the assistant editor by going to View > Assistant Editor
> Show Assistant Editor in the application menu bar. With the joke label selected in
the interface, hold down the Control key while clicking and dragging from the label
to your IAViewController’s class definition in the assistant editor. Once you’ve fin-
ished dragging and let go, a modal will appear asking you to name the outlet you’re
setting on your class for this label. Name it jokeLabel, as shown in figure 6.8; then
click Connect.

 The only thing left to do is to call the retrieveRandomJokes: method once the
view is loaded, as follows:

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self retrieveRandomJokes:self];
}

And that’s it! Launch the application to see how different jokes appear each time you
open the app.

6.3 Advanced HTTP requests
So far, your application has been using a method called GET, but other HTTP methods
are available:

■ POST

■ PUT

■ DELETE

■ OPTIONS

Figure 6.8 Set the name of your outlet for your joke label to jokeLabel and then click
the Connect button.
■ HEAD

A
param

temp
ar

key=v
s

he
e
e

Setti
re
m

as
135Advanced HTTP requests

■ TRACE

■ CONNECT

We’ll focus on only the two most common methods: GET and POST.
GET is the simplest type of HTTP request method, and it’s the one that browsers use

to fetch a web page. It’s used for requesting the content located at a specific URL. The
content can be, for example, a web page, an image, or a song. As a convention, GET
requests are read-only and according to W3C standards shouldn’t be used for opera-
tions that cause changes on the server side. For example, you wouldn’t use a GET
request to send a form or to send a photo because those operations would need some
change on the server side (as you’ll see shortly, those cases will use POST).

POST submits data to be processed to the identified resource (URL). Parameters
are included in the body of the request using the same format as the GET. For instance,
if you wanted to post a form containing two fields, name and age, you’d send some-
thing similar to name=Martin&age=29 in the body of the request.

 This way of sending parameters is widely used in web pages. The most used cases
are forms. When you complete a form on a website and click Submit, chances are the
request is going to be a POST.

 Let’s jump back to the application and use some of this knowledge. Specifically,
let’s use POST to rate jokes. You’ll be sending votes (either +1 or -1) to a remote server.

 First, you need to implement the functionality to do POST requests to the class in
charge of all your HTTP operations: your IAHTTPCommunication class. To do this, in
the following listing you’ll add a new method, postURL:params:successBlock, which,
as you’ll see, is quite similar to the previous retrieveURL:successBlock method.

 - (void)postURL:(NSURL *)url params:(NSDictionary *)params

➥ successBlock:(void (^)(NSData *))successBlock
{
 self.successBlock = successBlock;

 NSMutableArray *parametersArray = [NSMutableArray

➥ arrayWithCapacity:[params count]];
 for (NSString *key in params)
 {
 [parametersArray addObject:[NSString stringWithFormat:@"%@=%@",

➥ key, params[key]]];
 }

 NSString *postBodyString = [parametersArray

➥ componentsJoinedByString:@"&"];
 NSData *postBodyData = [NSData dataWithBytes:[postBodyString UTF8String]
 length:[postBodyString length]];
 NSMutableURLRequest *request = [[NSMutableURLRequest alloc]

➥ initWithURL:url];
 [request setHTTPMethod: @"POST"];

Listing 6.7 Method to perform POST requests

Creating a
temporary
array that will
hold your POST
parameters

b

dding
eters

to the
orary
ray as
alue
trings

c

Creating a string from the
parameters array containing all
the parameters separated by &

d

Converting
NSString to t
NSData instanc
you’ll use for th

ng the
quest
ethod

f

 [request setValue:@"application/x-www-form-urlencoded" requestePOST

Ad
the P
bod

cre
b

int
req
136 CHAPTER 6 Retrieving remote data

 forHTTPHeaderField:@"content-type"];
 [request setHTTPBody:postBodyData];

 NSURLSessionConfiguration *conf = [NSURLSessionConfiguration

➥ defaultSessionConfiguration];
 NSURLSession *session = [NSURLSession sessionWithConfiguration:conf

➥ delegate:self delegateQueue:nil];
 NSURLSessionDownloadTask *task = [session

➥ downloadTaskWithRequest:request];
 [task resume];
}

POST request data can be structured using different formats. As you’ve learned,
parameters are usually formatted following the form-urlencoded standard (accord-
ing to the W3C’s HTML standard). This format is the default and it’s widely used in
all web browsers. Your method takes an NSDictionary as the argument, but you can’t
send NSDictionaries over HTTP because that’s an internal Objective-C type. To be
able to send it over your HTTP connection, you need to create a comprehensible rep-
resentation of it. You can think of this process as if you were trying to communicate
with someone who speaks a different language. For that matter, you translate your mes-
sage to a universal language, and the recipient translates the message back to their
native language, as figure 6.9 illustrates. The universal language in HTTP is the W3C’s
standard, your language is Objective-C, and the recipient’s language is unknown to you.

 As we mentioned, W3C’s standard indicates some rules to define what comprehensible
means for each case. For this case, you need to represent parameters following the
form-urlencoded part of the standard (for example, param1=var1¶m2=var2).

 Let’s jump back to your method and see how to translate this to your code. First,
you create an array containing all the (key/value) pairs B and c, which you’ll join
afterward by the character &, as you can see on line d. The resulting string converted
to an NSData instance e is what you will post to the server in charge of storing the
votes h. The way to perform a POST request using your NSURLRequest instance is by
setting HTTPMethod to "POST" as well as the content-type, as you can see at f and g.

g
Setting the request content-
type as form encoded

ding
OST

y you
ated

efore
o the
uest h

Hola

mundo

Hola mundo

Hello worldHello world

Figure 6.9 Message

translation metaphor

Cre
an N

ins
with th
server
that
use fo

re

Maki

reque
setti
succ

B
ca
137Advanced HTTP requests

You’ll need to expose this method in order to be able to use it from your IAHTTP-
Communication class. For that matter, you’ll open the file IAHTTPCommunication.h,
and right after the retrieveURL declaration, you’ll add your new method, as shown in
the following listing.

@interface IAHTTPCommunication : NSObject

- (void)retrieveURL:(NSURL *)url successBlock:(void (^)(NSData*))

➥ successBlock;
- (void)postURL:(NSURL *)url params:(NSDictionary *)params

➥ successBlock:(void (^)(NSData *))successBlock;

@end

Now that your IAHTTPCommunication class includes the method to perform POST
requests, you’ll need to call it from your main IAViewController. It’s time to add the
thumbs up/thumbs down touches, as shown in the next listing.

- (IBAction)thumbUp:(id)sender
{
 NSURL *url = [NSURL URLWithString:@"http://example.com/rater/vote"];
 IAHTTPCommunication *http = [[IAHTTPCommunication alloc] init];
 NSDictionary *params = @{@"joke_id": jokeID, @"vote": @(1)};
 [http postURL:url params:params successBlock:^(NSData *response) {
 NSLog(@"Voted Up!");
 }];
}

- (IBAction)thumbDown:(id)sender
{
 NSURL *url = [NSURL URLWithString:@"http://example.com/rater/vote"]
 IAHTTPCommunication *http = [[IAHTTPCommunication alloc] init];
 NSDictionary *params = @{@"joke_id": jokeID, @"vote": @(-1)};
 [http postURL:url params:params successBlock:^(NSData *response) {
 NSLog(@"Voted Down!");
 }];
}

These functions are very similar to each other. You first define the full URL B that
you’ll use for the request, and then you create an instance of your IAHTTP-
Communication class c. So far you shouldn’t be surprised; that’s exactly what you did
before with the GET request. Starting from d things change a little. You create an
NSDictionary that will hold your parameters. Those parameters need to be trans-
formed to the format you already learned (for example, joke_id=<jokeID>&vote=1)
in order to be able to include them in the POST request. As you previously saw, the
method in charge of doing that transformation is postURL:params:successBlock
from your IAHTTPCommunication instance. The only thing left is to make the request

Listing 6.8 Exposing the method postURL:params:successBlock:

Listing 6.9 Link button touches to your UIViewControllerating
SURL
tance
e full
 URL

you’ll
r the
quest

b

Creating an instance of your
IAHTTPCommunication class

 c

Defining the parameters you’re going
to use on the POST request d

ng the
POST
st and
ng the
ess-
lock
llback
block

e

b

c

d

by calling that method e.

138 CHAPTER 6 Retrieving remote data

You’ll link those functions to your interface. First, open the assistant editor by going to
View > Assistant Editor > Show Assistant Editor in the application menu bar. Hold
down the Control key while clicking and dragging from the Vote up button to your
thumbUp method in the assistant editor, as shown in figure 6.10. Once you’ve finished
dragging and let go, the connection will be complete.

 When you’ve finished, repeat the process but from the Vote down button to the
–(IBAction)thumbDown:(id)sender method.

 You’re all set! So far you wrote an application to retrieve jokes using the icndb API
and the GET HTTP verb. You were able to show those jokes on a UIView, and each joke
could be voted up or down. This action sends a POST request to a remote server that
should save the vote.

6.4 Using web views to display remote pages
The previous section taught you how to make raw requests to a remote computer.
That’s exactly what browsers do before displaying a web page. The only difference lies
in the contents of the response. Web pages are formatted using the HTML standard,
which defines a bunch of rules on how to graphically represent different markup tags.
Those rules seem simple, but displaying an entire web page following the complete
WC3 standard is a complex task. Luckily for us, iOS comes with a component called
UIWebView, which using the well-known WebKit engine does exactly that: it interprets
HTML/CSS/JavaScript and displays full web pages inside a UIView.

 Let’s go straight to your ChuckNorrisRater application. You’re going to add a fea-
ture to show the Chuck Norris Wikipedia page. It’ll be triggered when a button is
touched. As you learned in chapter 3, storyboards are perfect for defining navigations
between two or more view controllers. Storyboards save you a lot of time and repeti-
tive code. For that, you’re going to use storyboards to navigate between the jokes view
controller and the controller holding the UIWebView that you’ll create in this chapter.

 First, go to Xcode, create a new file, name the class IAWebViewController, and

Figure 6.10 Linking the “thumbs up” button touch to the thumbUp method
define the class as a subclass of UIViewController. Once the class is created, open

139Using web views to display remote pages

the storyboard using Interface Builder, and add a new UIViewController to your
main storyboard by dragging and dropping the object from the objects panel to the main
window, as the left part of figure 6.11 shows. Then drag and drop the rest of the objects
by positioning them as the right part of figure 6.11 shows.

1 Add a UIWebView right in the center of the view controller.
2 Add two buttons that you’ll use as forward/backward link navigation controls.
3 Add a back button on top that you’ll use to close the modal and come back to

your main view controller.
4 Include a UILabel to show the title.

Now that you have your UIWebViewController prepared, you should pair the class you
just created with the UIViewController you just dropped. In order to do that, select
the view controller on Interface Builder and change the Custom Class property from
the identity inspector, as shown in figure 6.12.

4

1

2

3

Figure 6.11 Creating the controller that will hold your UIWebView
Figure 6.12 Setting the UIViewController as an instance of IAWebViewController

140 CHAPTER 6 Retrieving remote data

You now have a new view controller on your storyboard, but it’s not connected to your
main view. In order to address that, the next thing you’ll do is add a button to your
main interface that will work as the trigger to show the web page and create a segue
from that button to the controller holding your UIWebView by following the steps illus-
trated in figure 6.13.

1 Hold down the Control key while clicking and dragging from the button to the
new UIViewController. Once you’ve finished dragging and let go, a popup
with three options will appear.

2 Select modal on the popup.

In order to control your UIWebView you’ll need to connect it from the interface to your
code. For that, open the assistant editor by going to View > Assistant Editor > Show Assis-
tant Editor in the application menu bar. With the UIWebView control selected in your
interface, hold down the Control key while clicking and dragging from the control to
your IAWebViewController’s class definition in the assistant editor. Once you’ve fin-
ished dragging and let go, a modal will appear asking you to name the outlet you’re set-
ting on your class for this label. Name it webView and then click Connect.

1

2

Figure 6.13 Setting a button as the trigger for showing your new UIWebViewController

141Using web views to display remote pages

You have everything hooked up from a user-interface standpoint; next, you’ll imple-
ment the code to show Chuck Norris’s Wikipedia page in the view controller you just
created. For that you need to make two changes on the IAViewController class you
created previously.

 When the user touches the button, the storyboard will perform the segue you cre-
ated and the Wikipedia page will be shown. You’ll show the content (technically, it’s
the graphical representation of the content) in your UIWebView, and for that you’ll
implement the -(void)viewDidLoad method, which will be called as soon as the
UIViewController finishes loading the main view, as shown in the following listing.

- (void)viewDidLoad
{
 [super viewDidLoad];
 NSURLRequest *request = [NSURLRequest requestWithURL:

➥ [NSURL URLWithString:@"http://en.wikipedia.org/wiki/Chuck_Norris"]];
 [self.webView loadRequest:request];
}

You create the request as you did before B, but instead of sending the request using
NSURLSession, you use the UIWebView’s method loadRequest: c, which will do all
the work for you.

 Finally, you need to implement the Back, Forward, and Close buttons. Because the
three methods are very straightforward, you’ll go ahead and implement them all in
the next listing.

- (IBAction)close:(id)sender
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

- (IBAction)back:(id)sender
{
 [self.webView goBack];
}

- (IBAction)forward:(id)sender
{
 [self.webView goForward];
}

The first method B just dismisses the modal (remember that you connected both
controllers in your storyboard by selecting the modal option). The second and third
methods c and d are used to navigate the browsing history backward and forward.

 Now that you’re all set, it’s important to know a few other things about UIWebView.
There are some cases where you’ll want to control the flow of the navigation. For

Listing 6.10 Load and display the web page inside your UIWebView

Listing 6.11 Close method implementation. Just dismiss the view controller.

Creating an NSURLRequest object with
the Chuck Norris Wikipedia URL

 b

Performing the request by
using the webView instancec

Dismissing view
controller from
screen when
close method
is called

b

Loading the previous location
in the back-forward list when
Back button is touched

c

Loading the next location in
the back-forward list when
Forward button is touched

d

example, you might want to know when specific content or a specific URL is loaded.

http://en.wikipedia.org/wiki/Chuck_Norris

142 CHAPTER 6 Retrieving remote data

Or perhaps you’re implementing a child-safe browser; you might want to block the
user from loading pages matching some criteria such as sex or drugs. For all those
kinds of customizations, you’ll set an instance that implements the UIWebView-
Delegate protocol as the delegate of your UIWebView. The methods you could imple-
ment are these:

■ webView:shouldStartLoadWithRequest:navigationType:

■ webViewDidStartLoad:

■ webViewDidFinishLoad:

■ webView:didFailLoadWithError:

With the first method you can control the navigation flow by allowing or blocking spe-
cific requests. The other three methods are informative events (the names of the
methods will give you a good idea of the event).

 You’re all set! Figure 6.14 gives a sneak peak of what the web view should look like
in your app.

6.5 Popular open source networking libraries
Lots of open source libraries make the process of retrieving data and interfacing with
external services such as Twitter a very easy task. We’ll mention a couple of those
along with examples.

Figure 6.14 Web view inside our view controller

 c
143Popular open source networking libraries

6.5.1 AFNetworking

Sometimes NSURLSession could, at first glance, be a little confusing. AFNetworking is
a framework for iOS that helps you in the process of creating applications that use
remote communications by making networking in iOS a joy. It’s built on top of NSURL-
Session and NSOperations, it supports blocks, and it serializes the response automat-
ically. But more important, the community is very active. Big companies such as Parse,
Heroku, Pinterest, and Simple use AFNetworking in their apps.

 Take, for example, the code in the following listing. It will retrieve your external IP
by making a GET request to a remote service that returns the IP formatted as JSON.

NSURL *url = [NSURL URLWithString:@"http://httpbin.org/ip"];
AFHTTPSessionManager *manager = [[AFHTTPSessionManager alloc]

➥ initWithBaseURL:URL];
manager.responseSerializer = [AFJSONSerializer serializer];
[manager GET:@"/resources" parameters:nil success:^(NSURLSessionDataTask

➥ *task, id responseObject) {
 NSLog(@"IP Address: %@", [JSON valueForKeyPath:@"origin"]);
} failure:nil];

Authors:
 Mattt Thompson @mattt
 Scott Raymond @sco

Project page: http://afnetworking.com
License: MIT license

6.5.2 RestKit

When we refer to RESTful services, we’re referring to API services created in such a way that
instead of having a dozen methods (for example, http://example.com/user/1/create,
http://example.com/user/1/delete, http://example.com/user/1/update…), they have
four standardized methods (create, retrieve, update, destroy) for the same resource
(for example, http://example.com/user/) using the following HTTP verbs:

■ GET

■ PUT

■ POST

■ DELETE

REST is becoming very popular, and big companies such as Facebook, Twitter, and
GitHub are implementing their APIs following REST principles.

 RestKit aims to make interacting with RESTful web services simple. It’s built on top of

Listing 6.12 AFNetworking GET example

You first create the request object the same way
you did on your IAHTTPCommunication class.

 b

You
configure

the manager
response
serializer
as JSON.

Using the request object and a block,
you create a request operation.

When the request is finished, your
block will be called, passing the

deserialized response. d
NSURLConnection and makes it very easy to implement an entire RESTful service. It has

http://example.com/user/1/delete
http://example.com/user/1/update
http://example.com/user/1/create
http://example.com/user/
http://afnetworking.com

144 CHAPTER 6 Retrieving remote data

serialization logic built in, which means that you’ll get responses in native Objective-C
objects. It also supports Core Data for caching responses. The following listing shows
an example using GET.

[objectManager getObjectsAtPath:@"/status/user_timeline/RestKit"
 parameters:nil
 success:^(RKObjectRequestOperation *operation,

➥ RKMappingResult *mappingResult)
{
 NSArray* statuses = [mappingResult array];
 NSLog(@"Loaded statuses: %@", statuses);
}
 failure:^(RKObjectRequestOperation *operation,

➥ NSError *error)
{
 NSLog(@"Hit error: %@", error);
}];

Author: Blake Watters @blakewatters
Project page: http://restkit.org/
License: Apache License, version 2.0

6.6 Summary
Throughout this chapter, we’ve created an application that shows Chuck Norris facts
retrieved using the icndb.com API. The application is able to send votes to a remote
server using POST requests, and it displays the Chuck Norris Wikipedia page using a
UIWebView. With this understanding of data retrieval you’re now capable of imple-
menting an application that receives (and sends) information from (and to) a remote
server. Some key topics we covered are these:

■ Message serialization converts formatted text into Objective-C instances.
■ JSON is a standard way of representing different kinds of data structures in a

text-based manner.
■ Cocoa frameworks include classes such as NSURLRequest and NSURLSession

that support simple and complex HTTP requests.
■ Including web pages inside your applications is very easy thanks to the UIWebView-

Controller class.
■ Open source libraries can help make HTTP communications very easy and

require fewer lines of code.

Listing 6.13 RestKit GET example

http://restkit.org/

Photos and videos
and the Assets Library
You created an application using the Assets Library framework when you created
the Albums app. This application allowed you to view the photos contained within
albums managed by the Photos app on iOS. Truth is, you only scratched the surface
of what you can do with the Assets Library in the Albums app. You only retrieved
albums and photos so that you could use them to be displayed within a table and
collection view.

 By the end of this chapter you’ll be able to capture photos or videos using the
camera, use the built-in photo picker, and access the detailed bits of information
contained within each photo or video. Some of this information includes EXIF
information for photos and duration and location information for videos. Together
we’ll be using this knowledge to put together an app called Media Info that will
allow you to do all of these things; you can see it in action in figure 7.1.

This chapter covers
■ Using the image picker controller
■ Retrieving assets from the Assets Library
■ Capturing photos and videos with the

image picker
■ Retrieving and displaying asset metadata
145

146 CHAPTER 7 Photos and videos and the Assets Library

We’ll look at an extended overview of the Assets Library, and then we’ll set up the
foundation for your new application.

7.1 Overview of the Assets Library framework
The Assets Library framework allows you to access and modify the photos and vid-
eos that are managed by the Photos application in iOS. Any app that you’ve ever
used that accesses or creates photos or videos on your iOS device is doing so by
using the Assets Library framework. Within this framework, one object represents your
whole Assets Library. Thankfully, it’s named quite conveniently as ALAssetsLibrary.
A single instance of this ALAssetsLibrary object may contain many albums and also
may contain photos or videos. Albums are represented by an ALAssetsGroup instance.
Photos or videos are represented by an ALAsset instance. Take a look at figure 7.2,
which shows this relationship.

 Let’s examine these three different classes a little more closely. We’ll look at how
they relate to one another and how you use them to find just what you’re looking for.

Figure 7.1 Your finished Media Info app will allow you to choose and capture media and view detailed
asset information.

ALAssetsLibrary

ALAsset

ALAssetsGroup ALAssetsGroupALAssetsGroup

ALAssetALAsset

Figure 7.2 An ALAssetsLibrary
instance may contain multiple
ALAssetsGroup instances,
which may also contain instances
of ALAssets.

147Overview of the Assets Library framework

7.1.1 The Assets Library, groups, and individual assets

There are more than just three classes within the Assets Library framework, but these
are the most important ones that you’ll be using most often. We’ll do a quick overview
of each of them but won’t go too far because you’ll continue to learn more about
them when you build your application. We’ll start with the gatekeeper to your assets,
the ALAssetsLibrary class.

ALASSETSLIBRARY

In chapter 4 you created a singleton instance of the ALAssetsLibrary that was used
throughout the Albums application. This is because each ALAssetsGroup and ALAsset
that you use has a parent ALAssetsLibrary instance. If this ALAssetsLibrary instance
is somehow deallocated or unavailable, you’ll get an exception when you try to access
any of its children.

 The ALAssetsLibrary represents the parent of all of your photos and videos and
the albums that they belong to. To be able to retrieve your photos or videos you must
first iterate through all of the albums represented as ALAssetsGroup instances. You
can do this using the enumerateGroupsWithTypes:usingBlock:failureBlock:

method shown in the following listing.

[assetsLibraryInstance enumerateGroupsWithTypes:ALAssetsGroupAll
 usingBlock:^(ALAssetsGroup *group,

➥ BOOL *stop)
{
 if(stop)
 // Finished enumerating through groups
 else
 // Do something with 'group'
}
 failureBlock:^(NSError *error)
{
 // Handle error
}];

Notice that you are choosing to enumerate through groups with type ALAssets-
GroupAll. You can change this to specify different types of albums represented by the
ALAssetsGroupType enumerable type, which are listed in table 7.1.

Listing 7.1 Enumerating through all groups within the Assets Library

Table 7.1 Different types of ALAssetsGroupType you can filter on

Type Description

ALAssetsGroupLibrary Library group that contains all assets synced from iTunes

ALAssetsGroupAlbum All albums created on device or synced from iTunes

ALAssetsGroupEvent All albums created as events from importing photos
ALAssetsGroupFaces All albums with detected faces synced from iTunes

148 CHAPTER 7 Photos and videos and the Assets Library

The first time you try to access a user’s assets, the user will be prompted with an alert
that asks them for their permission. Without their permission you will be unable to
access any photos or videos. For example, an error will be returned within the
failureBlock parameter in the function defined previously. Once permission has
been denied, you won’t be able to prompt them again unless they uninstall and then
reinstall the application. The only way to enable access from this point forward is to
do so within the Privacy section of the Settings application.

 The ALAssetsLibrary class is also used to save photos and videos to the Assets
Library. These assets can also be saved to any album that you choose. You’ll be doing
this later when you save new photos to your camera roll. Next, let’s take a look at what
represents each album in your Assets Library.

ALASSETSGROUP

An assets group represents an ordered set of assets within the Assets Library. They’re
most commonly referred to as albums, which is how they’re represented within the
Photos application.

 You can access different properties, such as the name, group type, and URL of a
group, which can be retrieved using the valueForProperty: method. A set of conve-
nient NSString constants, property keys, can be passed into this parameter to retrieve
the property you want. These are shown in table 7.2.

Let’s see how you’d use this to retrieve the name of an assets group. Assuming
you have an assets group instance variable named assetsGroupInstance, you’d do
the following:

NSString *name = [assetsGroupInstance

ALAssetsGroupSavedPhotos All photos saved to the camera roll

ALAssetsGroupPhotoStream All assets available through Apple’s Photo Stream

ALAssetsGroupAll All albums; combination of all of the above

Table 7.2 Property keys representing different properties for an ALAssetsGroup

Property Description

ALAssetsGroupPropertyName The name of the asset group

ALAssetsGroupPropertyType The ALAssetGroupType for a specific group

ALAssetsGroupPropertyPersistentID An ID that identifies a group

ALAssetsGroupPropertyURL A URL that uniquely identifies a group

Table 7.1 Different types of ALAssetsGroupType you can filter on (continued)

Type Description
➥ valueForProperty:ALAssetsGroupPropertyName];

149Overview of the Assets Library framework

This would return the name of the assets group as an NSString. You could do this
using the constants mentioned earlier to retrieve the other properties. You can also
determine if there are any assets within a group by retrieving the number of assets it
contains by using the numberOfAssets instance method.

 How about retrieving photos and videos within this group? You can retrieve all of its
assets, the photos and videos, by using the enumerateAssetsUsingBlock: method. In
your Albums application you used this method to retrieve all of the assets from each
album that you chose to display. You can see an example of this in the next listing.

[assetsGroupInstance enumerateAssetsUsingBlock:^(ALAsset *result,

➥ NSUInteger index, BOOL *stop)
{
 // Do something with 'result'
}];

Within this block you can choose to store the assets within an array and use them how-
ever you like. Let’s look at these assets, represented by the ALAsset class.

ALASSET

The ALAsset class is used to represent the individual photos and videos within the
Photos application. This class allows you to retrieve the original asset for use in your
application as well as multiple representations of photos. For instance, photos can
have the original representation, an edited version, thumbnails, and more.

 To retrieve a square thumbnail you can use the thumbnail property, which returns
a CGImageRef. By using this method you can then generate a UIImage using the
imageWithCGImage: class method as shown here:

[UIImage imageWithCGImage:asset.thumbnail];

If you wanted to return a thumbnail that retained the same aspect ratio of the original
asset, you could use the aspectRatioThumbnail method instead. You can also retrieve
different individual properties using the valueForProperty: method. Table 7.3 shows
the different properties you can access on an ALAsset.

Listing 7.2 Enumerating assets within an assets group

Table 7.3 Property keys representing different properties for an ALAsset

Property Description

ALAssetPropertyType Type of asset: a photo, video, or unknown

ALAssetPropertyLocation Location representation with latitude and longitude

ALAssetPropertyDuration Total play time for a video asset

ALAssetPropertyOrientation Number representing the orientation of a photo

ALAssetPropertyDate Creation date of the asset

150 CHAPTER 7 Photos and videos and the Assets Library

Using the ALAssetPropertyType property key you can determine whether an asset is a
photo or a video. You can check this by doing what’s shown in the following code example:

NSString *assetType = [result valueForProperty:ALAssetPropertyType];
if ([assetType isEqualToString:ALAssetTypePhoto])
 // Photo
else if ([assetType isEqualToString:ALAssetTypeVideo])
 // Video
else
 // Unknown

By retrieving the property type, you can compare to see if it’s equal to ALAssetType-
Photo or ALAssetTypeVideo. These two constants are NSStrings, so you compare
them using isEqualToString:.

 With this overview of the Assets Library, groups, and assets, you’re ready to get
started setting up your new application.

7.1.2 Setting up the Media Info project

Together we’ll be building a new app called Media Info that will allow you to examine
assets and make extensive use of the Assets Library framework. Fire up Xcode and cre-
ate a new single-view application named Media Info, as shown in figure 7.3.

 Once you’ve created the project, head over to the project settings and click the
General tab. You’re going to add the Assets Library framework to your project so you
can use it in your application. Within this tab find the Linked Frameworks and Librar-
ies section and expand it so that you can add a new framework. Click the + button
shown in figure 7.4 to open the dialog that will list available frameworks.

 Once the dialog appears, search for “AssetsLibrary.framework.” Once you’ve
found it, select it and then click the Add button to add it to your project. This is shown
in figure 7.5.

 While you’re still on this screen also add MobileCoreServices.framework. You’ll be
using this framework to identify certain media types later in the chapter.

 Now that you have the framework hooked into your application, you’ll add a new
view controller. Your application will consist of two view controllers, one of which has
already been added for you when you created the Xcode project. This second view
controller will be used for displaying one asset and its detailed information.

 Create a new Objective-C class within the Media Info folder in your project. Name

ALAssetPropertyRepresentations Array of different types of representations of an asset

ALAssetPropertyURLs Array of URLs for each representation

ALAssetPropertyAssetURL Unique identifier URL for asset

Table 7.3 Property keys representing different properties for an ALAsset (continued)

Property Description
it IAAssetInfoViewController and make it a subclass of UIViewController. Now add

151Overview of the Assets Library framework

Figure 7.3 Creating the Media Info project using the Single View Application template

Figure 7.4 Go to the General tab within the project settings to add the Assets Library framework to

your project.

152 CHAPTER 7 Photos and videos and the Assets Library

it to your storyboard by first opening Main.storyboard. Next, go to the Object Library
and find a View Controller, and drag it to the right of your existing scene, as shown in
figure 7.6.

 One very important step is to set the identity of this view controller to IAAsset-
InfoViewController by going to the identity inspector and populating the Class
field. Next, select your first view controller scene. You’ll embed this in a navigation
controller because you want to be able to transition back and forth from this scene
to the one that you just added. With the first scene selected, go to the application
menu and choose Editor > Embed In > Navigation Controller; the result is shown in
figure 7.7.

 The last piece of groundwork you’ll need to do before proceeding further is to add
a new push segue from your first scene to your newly added one. Control-click from
your first scene and drag a connection to your second scene. Once the segue has been
created, select it and hop into the attributes inspector. Name this segue assetView, as
shown in figure 7.8.

Figure 7.5 Search for “AssetsLibrary.framework” and add it to your project.

153Overview of the Assets Library framework

Last, you’ll create a new class called IAAssetsLibrary, which will act as your Assets
Library singleton instance. This will be the same as what you used when you created
your Albums application. Go to the application menu and choose File > New File.
Select Objective-C class and create the class named IAAssetsLibrary as a subclass of

Figure 7.6 Add a new scene to your storyboard to represent the IAAssetInfoViewController.

154 CHAPTER 7 Photos and videos and the Assets Library

Figure 7.7 Embed the first view controller in a navigation controller.

Figure 7.8 Add a new push segue from your first scene to your second. Name the segue identifier
assetView within the attributes inspector.

155Retrieving photos and videos with the image picker

ALAssetsLibrary. Replace the contents of IAAssetsLibrary.h with the code shown in
the following listing.

#import <Foundation/Foundation.h>
#import <AssetsLibrary/AssetsLibrary.h>
#import <MobileCoreServices/MobileCoreServices.h>

@interface IAAssetsLibrary : ALAssetsLibrary

+ (IAAssetsLibrary *) defaultInstance;

@end

Now open IAAssetsLibrary.m and replace its contents with this code.

#import "IAAssetsLibrary.h"

@implementation IAAssetsLibrary

+ (IAAssetsLibrary *) defaultInstance
{
 static IAAssetsLibrary *singleton = nil;
 static dispatch_once_t oncePredicate;
 dispatch_once(&oncePredicate, ^
 {
 singleton = [[super alloc] init];
 });

 return singleton;
}

@end

You’re now finished with the initial setup of your Media Info application and can
get started using different pieces of the Assets Library framework to add in the fea-
tures you need. You’ll start by retrieving existing photos and videos using the image
picker controller.

7.2 Retrieving photos and videos with the image picker
Most applications use the default image picker controller (UIImagePickerController)
to let users pick photos or videos that they want to use. A handful of others go the
other route by creating their own picker. The reason for this is that the default
image picker doesn’t allow for much customization. You can select only one photo
or video at a time, and you can’t do much to change the way it looks. In figure 7.9
you can see how the image picker is used when adding a new photo to a contact in
the Contacts application.

 You’ll be sticking with the default picker because you’ll be using it similarly to how
it’s shown in figure 7.9. You’ll prompt a user to choose a single photo or video and

Listing 7.3 IAAssetsLibrary.h

Listing 7.4 IAAssetsLibrary.m

156 CHAPTER 7 Photos and videos and the Assets Library

that’s all, although you’ll soon learn all of the different properties you can set to add
some customization to how a photo or video is chosen.

7.2.1 Preparing and presenting the image picker controller

The view controller that is shown when you launch your application is the IAView-
Controller class that was created for you when you created your project. You’ll con-
tinue to use this as the main view that will present your users with two different actions.
The first action is the one you’ll be focusing on in this section. This will be a button with
the label Choose Photo or Video, which will launch an image picker controller.

 Add this button to the scene within your storyboard by opening Main.storyboard.
Go to the Object Library and find a button, drag it to the top of IAViewController’s
view, and change its title to Choose Photo or Video. Take a look at it in figure 7.10.

 While doing this, go ahead and change the title in the navigation bar to Media
Info, which is also shown in figure 7.10.

 With the button positioned in your view, you can create an action that will be trig-
gered to launch the image picker when touched. Open the assistant editor to bring up
IAViewController.h and drag a connection to create a new action called launch-
ImagePicker, as shown in figure 7.11.

 Your work with the storyboard is finished for now. Hop into IAViewController.h to
bring up your class’s interface.

CONFORMING TO PROTOCOLS

You have to specify that your view will act as a delegate to the UIImagePicker-
Controller. The image picker will inform the delegate when a photo is picked or

UllmagePickerController

Figure 7.9 How the image picker is used to add a photo to a contact within the Contacts application
when it has been canceled. It’s your job to specify that your class conforms to the

157Retrieving photos and videos with the image picker

UIImagePickerControllerDelegate protocol by adding it to your interface definition
shown in the code snippet at the top of the following page. Also, the image picker
requires that you conform to the UINavigationControllerDelegate protocol. You
have to specify it, although you won’t be digging into that within this application.

Figure 7.10 Add a button to IAViewController with the label Choose Photo or Video.

Figure 7.11 Create an action for the button named launchImagePicker that’s triggered when the

button is touched.

158 CHAPTER 7 Photos and videos and the Assets Library

@interface IAViewController : UIViewController

➥ <UIImagePickerControllerDelegate, UINavigationControllerDelegate>

You didn’t need to import anything to be able to use the UIImagePickerController
in your class. This is because it’s part of the base UIKit framework. After you’ve added
this to IAViewController.h, you can move over to its implementation by opening
IAViewController.m.

 Find the launchImagePicker: action that you created earlier. Here you’ll be set-
ting up your image picker. You’ll start by initializing a new UIImagePickerController
within this method. Add the following code to your action:

UIImagePickerController *picker = [[UIImagePickerController alloc] init];
picker.delegate = self;

SETTING THE IMAGE PICKER SOURCE

There are different sources from which an asset can be retrieved when using the
image picker. You can change this source by specifying the sourceType parameter for
an image picker. One source type is for capturing content using the device’s camera.
You’ll learn about that later. There are two source types that apply to choosing a photo
or a video. The source type UIImagePickerControllerSourceTypePhotoLibrary tells
the image picker that it should let the user choose from the entire Photo Library.
The other option, UIImagePickerControllerSourceTypeSavedPhotosAlbum, takes the
user directly to the saved photos album, skipping the choice for any other album that
they have.

 To give your users the choice to pick any photo from any album, you’ll be using the
entire Photo Library as the source. Add the following to the launchImagePicker: action:

picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

Next, you need to let the picker know whether it should show photos, videos, or both.

SPECIFYING SUPPORTED MEDIA TYPES

You can specify different media types depending on how you want to use the image
picker in your application. You can change what type of media is supported by setting
the mediaTypes property and passing in an array that contains the values kUTType-
Image, kUTTypeMovie, or both. For example, if you wanted to limit your image picker
to just photos, you’d do the following:

picker.mediaTypes = @[kUTTypeImage];

There’s also a class method that returns to you all of the supported media types for a
specified source type, availableMediaTypesForSource:. This ensures that you always
support all media types that can be supported. You want to do this for your application
because you want to support all media types that are available. Add the following line
to the launchImagePicker: action:

picker.mediaTypes = [UIImagePickerController
➥ availableMediaTypesForSourceType:picker.sourceType];

159Retrieving photos and videos with the image picker

PRESENTING THE IMAGE PICKER

You’ve set up the image picker just how you’d want to use it in your application. It’s
time to use the picker by showing it. This is done by calling the UIViewController
method presentViewController:animated:completion:. Add the following line to
the bottom of your action:

[self presentViewController:picker animated:YES completion:nil];

The launchImagePicker: method is shown in the following listing in its entirety.

- (IBAction)launchImagePicker:(id)sender
{
 UIImagePickerController *picker = [[UIImagePickerController alloc]

➥ init];
 picker.delegate = self;
 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 picker.mediaTypes = [UIImagePickerController

➥ availableMediaTypesForSourceType:picker.sourceType];
 [self presentViewController:picker animated:YES completion:nil];
}

You can now run the application and see it in action. It should be possible to pick any
asset from any of the albums on your iOS device. Once the asset is picked, nothing cur-
rently happens. You’ll remedy this by implementing the UIImagePickerController-
Delegate protocol.

7.2.2 Selecting assets from the image picker

Now that your image picker is visible and is allowing you to choose photos or videos, you
need to do something with what’s selected. Currently you’re not doing anything
because you haven’t implemented a key method from the UIImagePickerController-
Delegate protocol. There are two methods specified in this protocol, with one being
imagePickerControllerDidCancel:. This is called when no asset has been selected
and the picker has been canceled.

 The one that you’ll be implementing in your app is imagePickerController:did-
FinishPickingMediaWithInfo:, which is called when a photo or video has been
selected. Look at the method definition here:

- (void)imagePickerController:(UIImagePickerController *)picker

➥ didFinishPickingMediaWithInfo:(NSDictionary *)info;

This gives you access to the instance of the picker that was used as well as an
NSDictionary. You’ll be using this dictionary to retrieve the NSURL of the asset that
was selected. The keys of the items in the dictionary, referred to as editing informa-
tion keys, are shown in table 7.4.

Listing 7.5 Launching the image picker controller from the launchImagePicker:
method

e
t.

s
ge

Pr
fo

asset
s

160 CHAPTER 7 Photos and videos and the Assets Library

Some of these editing information keys apply to photos or videos that have been
edited within the picker or newly captured using the camera. You’ll be using the
UIImagePickerControllerReferenceURL key to get an NSURL that you can use to
retrieve the asset from the Assets Library.

 Implement the method shown in the following listing into IAViewController.m.

- (void)imagePickerController:(UIImagePickerController *)picker

➥ didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSURL *assetURL = info[UIImagePickerControllerReferenceURL];
 [picker dismissViewControllerAnimated:YES completion:nil];
 [self performSegueWithIdentifier:@"assetView" sender:assetURL];
}

Here you first retrieve the NSURL for the selected asset B. Next you dismiss the image
picker because it doesn’t automatically do this for you when you implement this
method c. Lastly you perform the assetView segue d you created earlier and pass
the assetURL as the sender so that you can use it when you override the prepare-
ForSegue: method.

 Now you’ll add a property to IAAssetInfoViewController.h that will store this asset
URL. Open it in your editor and add the following line:

@property (nonatomic, strong) NSURL *assetURL;

Next, go back into IAViewController.m and add the following import statement so
that you can access the IAAssetInfoViewController class.

#import "IAAssetInfoViewController.h"

Table 7.4 Editing information keys returned when selecting an asset from the image picker

Key Description

UIImagePickerControllerMediaType Type of media selected: photo, video, or unknown

UIImagePickerControllerOriginalImage UIImage of the original image

UIImagePickerControllerEditedImage UIImage of an edited version of the image

UIImagePickerControllerCropRect Crop rectangle for a cropped edited version of
the image

UIImagePickerControllerMediaURL File system URL for a newly created movie

UIImagePickerControllerReferenceURL Reference URL for retrieving an ALAsset
representation

UIImagePickerControllerMetaData Metadata for a newly created photo

Listing 7.6 Handling selection of a photo or video from the image picker

Retrieve the
NSURL for th
selected asse

b

Dismis
the ima
picker.c

epare
r the
View
egue.

d

161Capturing photos and videos with the camera

Override the prepareForSegue:sender: method to pass your asset’s URL to the IAAsset-
InfoViewController triggered by your segue identifier.

- (void)prepareForSegue:(UIStoryboardSegue *)segue
 sender:(id)sender
{
 [(IAAssetInfoViewController *)[segue destinationViewController]

➥ setAssetURL:sender];
}

At this point your IAViewController.m file should look like what’s shown in figure 7.12.
 With this in place you can run the application and choose a photo or video. Your

segue will be triggered, which will cause your other view to appear. There will be noth-
ing there yet because you haven’t hooked anything up. Don’t worry; you will very
soon! Before you do this, you’ll add another method of choosing photos or videos—
capturing new ones using the camera.

7.3 Capturing photos and videos with the camera
It might sound complicated to use the camera to take photos and videos, but that’s
not the case. The APIs made available to you in UIKit have extracted much of the com-
plexity. Specifically, the task of capturing media falls upon the image picker you’ve
already been using. Capturing photos and videos is just another source type that you
can specify. You’ll soon learn about a few other options that you can use.

Figure 7.12 What your IAViewController implementation should look like at this point.

162 CHAPTER 7 Photos and videos and the Assets Library

7.3.1 Checking for camera availability
If you’re using the Simulator to run the application, you’ll find out that you won’t be
able to use the camera because there isn’t one. The only way you’d be able to truly
test this is if you were to run the application on a real device. Also some iPods and
iPads don’t have a camera. Luckily, there’s a way to check if one exists before pro-
ceeding further.

 The camera source type you can specify for the sourceType property on a UIImage-
PickerController is UIImagePickerControllerSourceTypeCamera. To be able to
check if a camera is available, you can use the isSourceTypeAvailable: class method
as shown in the following code:

BOOL hasCamera = [UIImagePickerController

➥ isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

If it is available, you can choose to show the camera. If it isn’t, you should show an
alert saying that there is no camera. Let’s do this in your app so that you can examine
photos or videos that you capture with the camera if a camera is an available source.

 Open Main.storyboard and add a button underneath your Choose Photo or Video
button with the label Capture Photo or Video, as shown in figure 7.13.

Figure 7.13 Add a button with the label Capture Photo or Video directly underneath your button to

choose a photo or video.

a
e

le.
163Capturing photos and videos with the camera

Next, connect it to an action called launchCamera in IAViewController that’s trig-
gered when the button is touched. After the connection to the action has been
made, jump back into IAViewController.m so you can add the code to detect if a
camera is available.

 You’ll check to see if the UIImagePickerControllerSourceTypeCamera source is
available. If it isn’t, you’ll show an alert informing the user. Replace the generated
launchCamera: action with the following code.

- (IBAction)launchCamera:(id)sender
{
 if (![UIImagePickerController

➥ isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])
 {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:

➥ @"Sorry!"
 message:@"No camera

➥ available"
 delegate:nil
 cancelButtonTitle:@"Okay"
 otherButtonTitles:nil, nil];
 [alert show];
 }
 else
 {
 // Camera is available
 }
}

You first check to see if a camera source type is available B. If it isn’t, you create a
UIAlertView C and then show it D. If you run this in the Simulator, you’ll see that
this condition is executed because the UIImagePickerControllerSourceTypeCamera
source isn’t available. This is shown in figure 7.14.

 If you wanted to, you could even go more fine-grained and check the availability of
either a front- or rear-facing camera. This is particularly useful for applications that
have functionality that relies on either of those cameras, such as videoconferencing
apps. This is done by using the isCameraDeviceAvailable: class method, which can
check against UIImagePickerControllerCameraDevice type. To check for the front-
facing camera you could use the following:

BOOL hasFrontCamera = [UIImagePickerController

➥ isCameraDeviceAvailable:UIImagePickerControllerCameraDeviceFront];

To check for the rear-facing camera you could use this code:

BOOL hasRearCamera = [UIImagePickerController

➥ isCameraDeviceAvailable:UIImagePickerControllerCameraDeviceRear];

You also have the ability to check if the device has a flash for a particular camera by

Listing 7.7 Checking if a camera is available within the launchCamera: action

Check if
the camer
source typ
is availab

b

Create an alert
if not available. c

Show
the alert.d
using the isFlashAvailableForCameraDevice: method.

164 CHAPTER 7 Photos and videos and the Assets Library

BOOL hasFlashInRear = [UIImagePickerController

➥ isFlashAvailableForCameraDevice:

➥ UIImagePickerControllerCameraDeviceRear];

Now that you’ve implemented checking for a cam-
era, you can see how to customize the media-captur-
ing experience with the UIImagePickerController
and use your newly captured photos and videos in
your app.

7.3.2 Taking photos and videos with the camera

Preparing the UIImagePickerController for cap-
turing from the camera is very similar to what you’ve
already done. You’ll need to first create a new instance
of it, set its delegate, set the camera source type, and
then specify a few parameters to customize its func-
tionality. You’ll start off by setting it up with the dele-
gate and source in place:

UIImagePickerController *picker =

➥ [[UIImagePickerController alloc] init];
picker.delegate = self;
picker.sourceType =

➥ UIImagePickerControllerSourceTypeCamera;

Also, just like when choosing a photo or video from
the image picker, you can specify which media type
you’d like to use. You can limit capturing to just pho-
tos or videos or both. For your app you’ll allow for
whatever’s available:

picker.mediaTypes = [UIImagePickerController

➥ availableMediaTypesForSourceType:picker.sourceType];

With video capture you can limit the duration as well as the quality of the video. The
duration of the video is determined by setting the videoMaximumDuration property.

Customizing the camera view
There are options that allow you to customize the view of the camera screen. By
default there is a BOOL property named showCameraControls, which is YES by
default. If you set this to NO, you must provide your own custom UIView and specify
the cameraOverlayView property. By providing your own camera overlay view, you
also have to implement the functionality to take a photo or capture a video. To cap-
ture a photo you’d use takePicture, and to capture a video you’d use startVideo-
Capture and stopVideoCapture.

Figure 7.14 An alert is being
displayed within the Simulator
when trying to launch the camera
because the camera source type is
not available.

165Capturing photos and videos with the camera

By default this is an NSTimeInterval of 600 seconds (10 minutes). The following
shows how you’d set it to 5 minutes:

picker.videoMaximumDuration = 300;

When setting the video quality, you’d set the videoQuality property using the UIImage-
PickerControllerQualityType enumeration. Table 7.5 shows the different options
you’re given.

To get the highest-quality video possible, you’ll set the videoQuality property on your
picker to UIImagePickerControllerQualityTypeHigh:

picker.videoQuality = UIImagePickerControllerQualityTypeHigh;

You can put this together and show the camera using the image picker if you have a
capable device. Change the launchCamera: action to the code in the following listing.

- (IBAction)launchCamera:(id)sender
{
 if (![UIImagePickerController

➥ isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])
 {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Sorry!"
 message:@"No camera

➥ available"
 delegate:nil
 cancelButtonTitle:@"Okay"
 otherButtonTitles:nil, nil];
 [alert show];
 }
 else
 {
 UIImagePickerController *picker = [[UIImagePickerController alloc]

➥ init];

Table 7.5 Different video quality options with the UIImagePickerControllerQualityType
enumeration

Quality type Description

UIImagePickerControllerQualityTypeHigh Highest-quality video possible

UIImagePickerControllerQualityType640x480 VGA-quality video (640 x 480)

UIImagePickerControllerQualityTypeMedium Medium-quality video

UIImagePickerControllerQualityTypeLow Low-quality video

UIImagePickerControllerQualityTypeIFrame1280x720 iFrame video format (1280 x 720)

UIImagePickerControllerQualityTypeIFrame960x540 iFrame video format (960 x 540)

Listing 7.8 Updating launchCamera: to show the camera if available
 picker.sourceType = UIImagePickerControllerSourceTypeCamera;

166 CHAPTER 7 Photos and videos and the Assets Library

 picker.mediaTypes = [UIImagePickerController

➥ availableMediaTypesForSourceType:picker.sourceType];
 picker.videoQuality = UIImagePickerControllerQualityTypeHigh;
 picker.videoMaximumDuration = 300;
 picker.delegate = self;

 [self presentViewController:picker animated:YES completion:nil];
 }
}

This will allow you to take a photo or a video. You’re now left with one other problem,
though. When you’ve finished using the camera, the photo or video that you’ve cap-
tured isn’t actually saved to your Assets Library.

7.3.3 Saving newly captured photos and videos to the Assets Library

The Assets Library allows you to save new photos or videos using a few convenient
methods. You can save a new image by passing in an NSData representation or by using
a CGImageRef. To be able to save a photo with NSData you could use the method
shown here:

- (void)writeImageDataToSavedPhotosAlbum:(NSData *)imageData
 metadata:(NSDictionary *)metadata
 completionBlock:

➥ (ALAssetsLibraryWriteImageCompletionBlock)completionBlock;

When using the image picker you can retrieve a CGImageRef much more easily than
the NSData. You’ll be using this method when saving your photos:

- (void)writeImageToSavedPhotosAlbum:(CGImageRef)imageRef
 orientation:(ALAssetOrientation)orientation
 completionBlock:

➥ (ALAssetsLibraryWriteImageCompletionBlock)completionBlock;

You can retrieve the UIImage for the photo that was just taken by using the UIImage-
PickerControllerOriginalImage key from the dictionary given to you in the dele-
gate method. The UIImage then gives you access to the CGImageRef by using the
CGImage property. Using this you can save the photo to your Assets Library, as
shown here:

UIImage *image = info[UIImagePickerControllerOriginalImage];
[[IAAssetsLibrary defaultInstance]

➥ writeImageToSavedPhotosAlbum:image.CGImage
 orientation:

➥ (ALAssetOrientation)image.imageOrientation
 completionBlock:^(NSURL

➥ *assetURL, NSError *error)
{
 // Do something after completion
}];

The completion block returns the URL of the newly saved asset or an error if it

couldn’t be saved.

 the
ype
it
 the
167Capturing photos and videos with the camera

 Saving a video is fairly similar to saving a photo. Instead of passing in a CGImageRef,
you can pass in an NSURL for your newly created video. You can get this with the UIImage-
PickerControllerMediaURL key. Here’s how you’d save a video to your Assets Library:

NSURL *mediaURL = info[UIImagePickerControllerMediaURL];
[[IAAssetsLibrary defaultInstance]

➥ writeVideoAtPathToSavedPhotosAlbum:mediaURL

➥ completionBlock:^(NSURL *assetURL, NSError *error)
{
 // Do something after completion
}];

As you can see, saving a photo and saving a video to the Assets Library are very similar.
Let’s make changes to your code to save newly captured photos and videos.

 Within the delegate method that you’ve already added in IAViewController,
you’re going to first have to check the sourceType of the picker to see if some-
thing was captured or chosen from your Assets Library. This is because the same
delegate method is called when an image or video is picked or when one is cap-
tured from the camera. From there you’ll have to either save the photo or video
and retrieve the asset URL or retrieve the asset URL from the existing asset and
then trigger your segue.

 Let’s start by changing the delegate method imagePicker:didFinishPicking-
MediaWithInfo: to see if it was from the camera or another source. The next listing
shows how this method has been updated.

- (void)imagePickerController:(UIImagePickerController *)picker

➥ didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 [picker dismissViewControllerAnimated:YES completion:nil];
 if (picker.sourceType == UIImagePickerControllerSourceTypeCamera)
 {
 [self saveMediaThenViewAsset:info];
 }
 else
 {
 NSURL *assetURL = info[UIImagePickerControllerReferenceURL];
 [self viewAssetFromURL:assetURL];
 }
}

You need to add two new methods, starting with saveMediaThenViewAsset:, which
will save the photo or video depending on the media type. First, add the following
import statement at the top of the file.

#import <MobileCoreServices/UTCoreTypes.h>

Next, add the method as shown in the following listing.

Listing 7.9 Checking the source type from the image picker’s delegate method

Checking
source t
to see if
was from
camera

New method to save the
photo or video and then
show the next view

New method to
show the next view

edia

’s

168 CHAPTER 7 Photos and videos and the Assets Library

- (void)saveMediaThenViewAsset:(NSDictionary *)info
{
 NSString *mediaType = info[UIImagePickerControllerMediaType];

 if ([mediaType isEqualToString:(NSString *)kUTTypeImage])
 {
 UIImage *image = info[UIImagePickerControllerOriginalImage];
 [[IAAssetsLibrary defaultInstance]

➥ writeImageToSavedPhotosAlbum:image.CGImage

➥ orientation:(ALAssetOrientation)image.imageOrientation

➥ completionBlock:^(NSURL *assetURL, NSError *error)
 {
 [self viewAssetFromURL:assetURL];
 }];
 }
 else if ([mediaType isEqualToString:(NSString *)kUTTypeVideo])
 {
 NSURL *mediaURL = info[UIImagePickerControllerMediaURL];
 [[IAAssetsLibrary defaultInstance]

➥ writeVideoAtPathToSavedPhotosAlbum:mediaURL

➥ completionBlock:^(NSURL *assetURL, NSError *error)
 {
 [self viewAssetFromURL:assetURL];
 }];
 }
}

You’re first grabbing the media type B, and then checking to see if it’s a photo C. If
it is, you proceed with saving the photo to the saved photos album. Once it’s saved,
you call the method viewAssetFromURL: (which you’re about to add), passing in the
new asset URL D. If it’s not a photo, you check to see if it’s a video E, and then save it
to your saved photos album if it is.

 You’ll now add the viewAssetFromURL: method, which just contains your call to
prepare for the assetView segue and passes in the NSURL of the asset you want to dis-
play. Add the method shown in the following listing.

- (void)viewAssetFromURL:(NSURL *)assetURL
{
 [self performSegueWithIdentifier:@"assetView" sender:assetURL];
}

Great job so far! You’ve added the ability to capture photos and videos and have them
saved to your Assets Library. Next, you’ll move on to the final view of your application,
which will let you view the different properties of an asset that you’ve chosen.

Listing 7.10 Saving a photo or video to the Assets Library depending on the media type

Listing 7.11 viewAssetFromURL: to prepare for segue

Retrieve m
type from
dictionary.

b

Check if it
a photo.c

Proceed to
view asset
passing in
the new
asset URL.

dCheck if
it’s a

video. e

169Retrieving assets and accessing metadata

7.4 Retrieving assets and accessing metadata
There’s quite a bit of data to be found within each photo or video in your Assets
Library. When working with photos you can access the EXIF (exchangeable image file
format) information, which can reveal to you the type of camera used, lens, aperture,
shutter speed, copyright, description, location, date captured, and so on. Sadly there’s
no EXIF available for videos, but you can still find out many details for the video,
including its length, quality, date, and more.

7.4.1 Setting up your view to display the metadata

Open Main.storyboard and find your scene that represents the IAAssetInfoView-
Controller. You’re going to add an image to show a thumbnail of the asset you’ve
chosen and a table view underneath that will display its metadata. Go to the Object
Library and look for a UIImageView. Drag it to your view and set its dimensions in the
size inspector to 320 x 190, as shown in figure 7.15.

 After the size has been set, go back to the attributes inspector and set the image
view’s mode to Aspect Fit and the background color to black.

 Next, open the assistant editor and create a new outlet from the UIImageView to
IAAssetInfoViewController’s interface class. Name this property imageView.

 You can now close the assistant editor and set up the table view that will display
your asset’s metadata. Go to the Object Library and find a table view, and drag it to
take up the rest of the screen, as shown in figure 7.16.

 Next you’re going to set the table view’s delegate and datasource outlets to
IAAssetInfoViewController. With the table view selected, open the connections
inspector and drag a connection for the delegate and datasource properties to the
IAAssetInfoViewController. You’ll also need to add an outlet for the table view
itself. Open the assistant editor to bring up IAAssetInfoViewController.h and drag an
outlet to create a connection for the table view named tableView.

 When you’ve finished, close the assistant editor and open IAAssetInfoViewCon-
troller.h in the main editor window. Add an import for the Assets Library:

#import <AssetsLibrary/AssetsLibrary.h>

Specify that you’re conforming to the UITableViewDelegate and UITableViewData-
Source protocols by changing the interface definition to the following:

@interface IAAssetInfoViewController : UIViewController

➥ <UITableViewDataSource, UITableViewDelegate>

Next, you’ll add two new properties. One is for storing an ALAsset after you’ve
retrieved it by using the asset URL that you passed in. The other is an array that will
hold the metadata that you’ll display within the table view.

@property (nonatomic, strong) ALAsset *asset;
@property (nonatomic, strong) NSMutableArray *metadata;

After these properties have been added, your class’s interface should look similar to

what’s shown in figure 7.17.

170 CHAPTER 7 Photos and videos and the Assets Library

Now open the implementation at IAAssetInfoViewController.m. You need to import
your IAAssetsLibrary class:

#import "IAAssetsLibrary.h"

There will also be a few strings that you’ll be using in a few of the methods in this class.
To reduce the number of times you have to repeat yourself, let’s define a few con-
stants. Add this code directly above @implementation IAAssetInfoViewController:

#define kExif @"{Exif}"
#define kTitle @"title"

Figure 7.15 Add a UIImageView to IAAssetInfoViewController’s view and set its dimensions
to 320 x 190.
#define kValue @"value"

171Retrieving assets and accessing metadata

Once it’s added, your code should look like what’s shown in figure 7.18.
 This will be all of the setup you’ll need to do for the rest of the app. All you need to

do now is plug in code to retrieve an asset from the Assets Library, filter through its
metadata, and display it in your new view.

7.4.2 Retrieving an asset from the Assets Library

You can retrieve a specific ALAsset from the Assets Library if you have its unique URL.
Luckily you happen to have one for each asset that you want to display. Using your

Figure 7.16 Add a table view to fit the rest of the screen underneath the image view that you’ve
just added.

172 CHAPTER 7 Photos and videos and the Assets Library

instance of the ALAssetsLibrary, you’ll call the assetForURL:resultBlock:failure-
Block: method like so:

[[IAAssetsLibrary defaultInstance] assetForURL:self.assetURL
 resultBlock:^(ALAsset *asset)
{
 // Successfully retrieved asset
}
 failureBlock:^(NSError *error)
{
 // Failed retrieving asset
}];

This method will retrieve an ALAsset from the NSURL that you provide it. If it suc-
ceeds in finding the asset, it returns it to you in the result block. If it fails, it gives you
an error within the failure block.

 Let’s add the code to retrieve an asset when your view is loaded. In IAAssetInfo-
ViewController.m add this one line to the bottom of the viewDidLoad method to call
the retrieveAsset method that you’re about to write:

[self retrieveAsset];

Next, let’s add the retrieveAsset method to load the ALAsset from the Assets
Library using the assetURL property, as shown in the following listing.

Figure 7.17 The interface for IAAssetInfoViewController after you’ve finished adding
properties

Figure 7.18 IAAssetInfoView-
Controller’s implementation should
look like this before you move forward.

w

ve

l

.

late
image
with
sset’s
e.
173Retrieving assets and accessing metadata

- (void)retrieveAsset
{
 [[IAAssetsLibrary defaultInstance] assetForURL:self.assetURL
 resultBlock:^(ALAsset *asset)
 {
 [self setupViewFromAsset:asset];
 }
 failureBlock:^(NSError *error)
 {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:

➥ @"Oops!"
 message:@"You

➥ couldn't load that asset"
 delegate:nil
 cancelButtonTitle:@"Okay"
 otherButtonTitles:nil, nil];
 [alert show];
 }];
}

In retrieveAsset you’re calling a new method, setupViewFromAsset:, if asset retrieval
succeeds B. If there’s an error retrieving the asset, you show an alert C.

 Now you’ll add the setupViewFromAsset: method. Its purpose will be to set the title
of the view with the asset’s filename, populate your image view, and retrieve the meta-
data. Add the method found in the following listing.

- (void)setupViewFromAsset:(ALAsset *)asset
{
 self.asset = asset;
 self.title = self.asset.defaultRepresentation.filename;
 UIImage *image = [UIImage

➥ imageWithCGImage:self.asset.defaultRepresentation.fullScreenImage];

 [self.imageView setImage:image];
 [self retrieveMetadata];
}

The first thing you do is set the asset property B and then the title of your view using
the asset’s filename C. You then retrieve the full-screen image representation of the
asset and use that to populate your image view D. At the end of the method you make
a call to a new method that will retrieve and populate your metadata depending on
whether it’s a photo or a video E.

7.4.3 Accessing metadata for photos and videos

You’ve retrieved an asset from the Assets Library, and now you need to add a method

Listing 7.12 retrieveAsset—Retrieve asset from the Assets Library

Listing 7.13 setupViewFromAsset:—Populate your views from the retrieved asset

Set up vie
using the
asset you’
retrieved.

b

Show an
alert if
asset
retrieva
failed.

c

Set the asset
property.

b Set the view’s
title to the
asset’s filename

c

Popu
your
view
the a
imag

d

Start metadata
retrieval.e
to retrieve its metadata. Depending on whether it’s a photo or a video, you’ll display

o-
.

Enum
thr

dictio

Filter
displaya
EXIF d
174 CHAPTER 7 Photos and videos and the Assets Library

different metadata. If it’s a photo, you’ll show the available EXIF information. If it’s a
video, you’ll show a few properties on the ALAsset using the valueForProperty: method.

 Because the retrieval for the data to display is different depending on the type of
asset you’re displaying, you’re going to add separate methods for each type. The last
method you added required a retrieveMetadata method to be defined. Add this to
IAAssetInfoViewController.m, as shown in the next listing.

- (void)retrieveMetadata
{
 self.metadata = [NSMutableArray new];

 if ([[self.asset valueForProperty:ALAssetPropertyType]

➥ isEqualToString:ALAssetTypePhoto])
 [self retrievePhotoMetadata];
 else
 [self retrieveVideoMetadata];
}

In retrieveMetadata you check the type of the asset to see if you should call retrieve-
PhotoMetadata if it is a photo B and retrieveVideoMetadata if it’s a video C.

 When retrieving EXIF information on a photo, you first have to retrieve the meta-
data property on its defaultRepresentation, as shown here:

NSDictionary *meta = [[self.asset defaultRepresentation] metadata];

Within the dictionary that’s returned, the EXIF information is available under the
{Exif} key. This returns another NSDictionary that contains the EXIF. This is why you
defined the kExif string when you were setting up this view controller. You’re going to
be enumerating through this dictionary to find displayable information. Each display-
able bit of EXIF information will be stored in your class’s metadata array as a new
NSDictionary.

 Add the retrievePhotoMetadata method shown here.

- (void)retrievePhotoMetadata
{
 NSDictionary *meta = [[self.asset defaultRepresentation] metadata];
 NSDictionary *exif = meta[kExif];
 for (id key in exif)
 {
 id value = exif[key];
 if (value && ![value isKindOfClass:[NSArray class]] && ![value

➥ isKindOfClass:[NSDictionary class]])
 [self.metadata addObject:@{kTitle : key,
 kValue : [NSString stringWithFormat:@"%@",

➥ value]}];
 }

Listing 7.14 retrieveMetadata—Retrieve metadata depending on photo or video

Listing 7.15 retrievePhotoMetadata—Retrieves and stores photo EXIF data

Call retrievePhot
Metadata if a photo

b

Call retrieveVideo-
Metadata if a video.c

Retrieve the asset
metadata dictionary.

 b

Retrieve EXIF from
the metadata.c

erate
ough
EXIF
nary.

d

 for
ble

ata. e
Add displayable data to

your metadata array.f

175Retrieving assets and accessing metadata

 [self.tableView reloadData];
}

You first load the metadata dictionary for the asset B and then retrieve the EXIF infor-
mation C. You then enumerate through the EXIF data D and check for data that you
want to display E. With this displayable data you create a new dictionary holding the
key and the value and add that to your class’s metadata array F. Last, you reload the
table view G. When you run this using different photos, you may notice that some
photos show more information than others. Some photos may have location informa-
tion and some may not.

 Finally, you need to retrieve the data you want to show for videos. Add the
retrieveVideoMetadata method in the following listing.

- (void) retrieveVideoMetadata
{
 [self.metadata addObject:@{kTitle: ALAssetPropertyDate,
 kValue: [self.asset

➥ valueForProperty:ALAssetPropertyDate]}];
 [self.metadata addObject:@{kTitle: ALAssetPropertyDuration,
 kValue: [self.asset

➥ valueForProperty:ALAssetPropertyDuration]}];
 [self.metadata addObject:@{kTitle: ALAssetPropertyLocation,
 kValue: [self.asset

➥ valueForProperty:ALAssetPropertyLocation]}];

 [self.tableView reloadData];
}

In this method you manually retrieve and add three properties for each video using the
valueForProperty: method on the asset. You first add the video’s creation date B,
then the duration of the video C, and then the video’s location D. After you’ve
added these properties to your array, you reload the table view E.

 The last thing for you to do is to add two methods for your table view to display the
metadata that you’ve pulled back, as shown in the next listing.

- (NSInteger) tableView:(UITableView *)tableView

➥ numberOfRowsInSection:(NSInteger)section
{
 return [self.metadata count];
}

 - (UITableViewCell *) tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView

Listing 7.16 retrieveVideoMetadata—Retrieves properties to display for a video

Listing 7.17 Table view methods to specify row count and a cell with metadata for each row

Reload the
table view.g

Date video
was created

b

Duration of
the video

c

Location
information

d

Reload table
viewe
➥ dequeueReusableCellWithIdentifier:CellIdentifier];

176 CHAPTER 7 Photos and videos and the Assets Library

 if (cell == nil)
 cell = [[UITableViewCell alloc]

➥ initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier];

 NSDictionary *data = self.metadata[indexPath.row];
 cell.textLabel.text = data[kTitle];
 cell.detailTextLabel.text = data[kValue];

 return cell;
}

You’ve finished setting up your Media Info app! Now
run it and see what happens when you choose a
photo. Take a look at figure 7.19 to see your app
in action.

 You can also try the app on your device to inspect
the data for a photo or a video that you’ve captured
using the camera. There are a handful of paid apps
on the App Store that show you exactly what you’ve
built yourself.

7.5 Summary
In this chapter you learned how to use the camera to
capture and retrieve photos and videos using the
image picker controller. You also learned about the
assets library’s key components and how to save and
retrieve assets. Finally, you built an app that allows
you to display detailed information for any asset
you’ve chosen or captured with the camera.

■ The Assets Library framework allows you to
access and modify photos and videos man-
aged by the Photos app.

■ The ALAssetsLibrary instance acts as the
gatekeeper to all of your assets.

■ Groups, or albums, are known as an ALAssets-
Group. You can retrieve groups from iTunes,
albums, events, detected faces, saved photos,
and Photo Stream.

■ The ALAsset class is used to represent photos and videos that are contained
within an ALAssetsGroup.

■ Applications must be given permission to access the photos stored on a device.
■ The UIImagePickerController provides functionality that allows you to choose

or capture photos and videos. You can even crop photos and trim videos. All of
this is provided to you for free.

Figure 7.19 Showing the EXIF
information for a photo that was
chosen from the Assets Library

177Summary

■ You’re able to control the level of quality when capturing video with the UIImage-
PickerController.

■ You can access many properties on an ALAsset such as the EXIF information
stored within photos.

■ Using the Assets Library and the UIImagePickerController, you can choose
photos and examine their metadata in your Media Info application.

Social integration
with Twitter and Facebook
Facebook and Twitter are two social networking services that have invaded the daily
lives of so many of us—so much so that Apple has decided to integrate the two
directly into iOS. People can share photos, videos, links, and other types of content
using either service directly from iOS. Previously, developers would have to supply
their own integrations or resort to using third-party libraries to include this func-
tionality within their applications. Now it’s possible to use both of these services
within your apps using libraries that are part of the iOS SDK.

 Because there is now a centralized place within iOS to store these accounts, you
can give apps permission to securely use their credentials to interact and share con-
tent with Twitter, Facebook, and Weibo. Within this chapter you’ll learn how to

This chapter covers
■ Accessing accounts with the Accounts

framework
■ Retrieving and displaying a Twitter or

Facebook feed
■ Integrating with Twitter’s API and

Facebook’s OpenGraph
■ Posting content to Twitter or Facebook
178

179Accessing accounts with the Accounts framework

interact with Twitter and Facebook by using the Accounts and Social frameworks.
Together we’ll build an app called TweetBook that will allow you to use Twitter and
Facebook within the same application.

 TweetBook will use the Twitter and Facebook accounts stored within iOS to retrieve
their latest updates and post new content. Let’s take a quick look at what we’ll be
building together by looking at a few of its screens, as shown in figure 8.1.

 By the end of this chapter you’ll create an app that lets you use both Twitter and
Facebook. You’ll see how to request permission for accounts by using the Accounts
framework. After having access to these accounts you’ll use each one specifically to
create and pull back new updates using the Social framework.

 The app isn’t going to be full featured like the Twitter or Facebook applications,
but you’ll still be creating quite a bit of functionality using a relatively small amount of
code. It also gives you the groundwork to expand on TweetBook and create your own
full-fledged social network application.

8.1 Accessing accounts with the Accounts framework
Facebook and Twitter accounts added within the Settings app can be accessed pro-
grammatically through the Accounts framework. A centralized accounts system within
iOS gives people a single place to store their Twitter and Facebook credentials. This
means that if all iOS apps used the Accounts framework, you would never have to
enter your credentials more than once for either service.

 The Accounts framework gives you secure access to authorized accounts, as long as
you’re granted permission. All of this is handled for you within the framework. In this
section you’ll learn how to find and retrieve accounts as well as access different prop-

Accounts Feeds Post to Twitter Post to Facebook

Figure 8.1 An overview of some of the screens that you’ll be creating when you build TweetBook
throughout this chapter
erties of an account and use them within your own application.

180 CHAPTER 8 Social integration with Twitter and Facebook

8.1.1 Accessing Twitter accounts and account properties

Accounts for different social networks are added within the Settings app. Since you’ll
be accessing Twitter accounts, go to the Settings app and make sure that you’ve added
your own credentials. You can see the Twitter accounts section in figure 8.2.

SETTING UP TWEETBOOK WITHIN XCODE

Before we go any further, let’s set up the base TweetBook project. Open Xcode and cre-
ate a new Single View Application named TweetBook. Once the project’s been set up,
you’ll add the Accounts framework in the Link Binary With Libraries build phase within
the project settings. Take a look at figure 8.3 to see how to add Accounts.framework to
your project.

 Next you’ll create a new file that you’ll be using to retrieve and display all accounts a
user gives you permission to. Name it IAAccountsViewController and make sure that
it’s a subclass of UIViewController, as shown in figure 8.4.

 Next, open the interface for IAAccountsViewController by clicking IAAccounts-
ViewController.h and include the Accounts framework by adding the following import
statement:

Figure 8.2 The Twitter accounts section within the Settings application allows you
to store multiple account credentials.
#import <Accounts/Accounts.h>

181Accessing accounts with the Accounts framework

Figure 8.3 Add Accounts.framework in the Link Binary With Libraries build phase in TweetBook.

Figure 8.4 Adding IAAccountsViewController to our project to retrieve and display all

user accounts

182 CHAPTER 8 Social integration with Twitter and Facebook

You’re also going to need an array that stores all of the different accounts that you
can retrieve. Add the following NSMutableArray property to the IAAccountsView-
Controller interface.

@property (nonatomic, strong) NSMutableArray *accounts;

Now go to the implementation of IAAccountsViewController. You need to initialize
this array when the view loads so that you can add accounts to it. Add it to the bottom
of your autogenerated viewDidLoad method, as shown here:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.accounts = [[NSMutableArray alloc] init];
}

You can now proceed with retrieving accounts.

REQUESTING PERMISSION TO ACCESS TWITTER ACCOUNTS

Since you’ll need permission to access Twitter accounts, you need a way to request this
from the user. You can ask for permission to retrieve a list of accounts by using the
ACAccountStore class. This allows you to request accounts by specifying a specific
account type. You’ll use the ACAccountType class to represent different account types.
Currently there are only three different account types you can specify: Twitter, Face-
book, and Weibo. You’ll be using Twitter and Facebook in this chapter.

 Once you make a request to fetch accounts and are granted permission, you can
retrieve an array of accounts associated with an account type. Each object in the array
that represents an account is an instance of an ACAccount.

 Each ACAccount stores various properties associated with that account for a partic-
ular service. Following are some of the important properties on an ACAccount.

■ accountType—ACAccountType for the type of service associated with the account
■ credential—ACAccountCredential, which is used to make authenticated requests

on behalf of the user
■ identifier—NSString that represents a unique identifier for the account
■ username—NSString of the user’s username for the account

Let’s retrieve a list of Twitter accounts a user has on their device. In the IAAccounts-
ViewController implementation, you’re going to declare a new method called
retrieveAccounts:options: that will do this for you. The following listing shows how
this is implemented.

-(void)retrieveAccounts:(NSString *)identifier options:
(NSDictionary *)options
{

Listing 8.1 Request permission and store a user’s Twitter accounts into an array

Initializing an
ACAccountStore

 b
 ACAccountStore *accountStore = [[ACAccountStore alloc] init];

e

Reload
view
fini
183Accessing accounts with the Accounts framework

 ACAccountType *accountType = [accountStore

➥ accountTypeWithAccountTypeIdentifier:identifier];

 [accountStore requestAccessToAccountsWithType:accountType

➥ options:options completion:^(BOOL granted, NSError *error)
 {
 if(granted)
 {
 [self.accounts addObjectsFromArray:[accountStore

➥ accountsWithAccountType:accountType]];
 dispatch_async(dispatch_get_main_queue(), ^{
 [self.tableView reloadData];
 });
 }
 }];
}

You’re first allocating and initializing a new ACAccountStore object, accountStore B.
Next, you’re calling the method accountTypeWithAccountTypeIdentifier: on
accountStore and passing in an NSString that represents an account type identifier
to return an ACAccountType for Twitter c. You’re then requesting permission from
the user to access their Twitter accounts by calling the requestAccessToAccounts-
WithType:options:withCompletionHandler: method d. Within the completion han-
dler a BOOL is returned that lets you know if access to these accounts has been granted
and returns an NSError if there’s a problem. If access is granted by the user e, you
can then retrieve an array of their accounts by calling accountsWithType: on account-
Store f. Lastly you’re making a call on the main queue to reload a table view G. You
don’t currently have a table view set up, but you will shortly.

 You’re going to retrieve the accounts when your view loads. Add a call to
retrieveAccounts:options: with the Twitter accounts type identifier at the end of
your viewDidLoad method. There’s no need to pass in options yet; you’ll be using this
shortly when you retrieve Facebook accounts. Change the viewDidLoad method to
what’s shown here:

-(void)viewDidLoad
{
 [super viewDidLoad];
 self.accounts = [[NSMutableArray alloc] init];
 [self retrieveAccounts:ACAccountTypeIdentifierTwitter options:nil];
}

By adding this, the accounts will be retrieved after your view loads.

DISPLAYING ACCOUNTS IN A TABLE VIEW

You need to create a view for the account’s view controller within your storyboard. In
the project navigator find and choose MainStoryboard.storyboard to get started on
your app’s interface.

 You should already have a scene that was generated when you created the project

Creating an ACAccountTyp
based on an identifier

c

Requesting
permission to
access accounts

d

Check if permission
is granted.e

Retrieve and
store all accounts
of this type.f

 table
 once
shed.

g

in Xcode. Choose the class that represents the view controller within the interface

184 CHAPTER 8 Social integration with Twitter and Facebook

editor. Then open the inspector on the right side of the window, choose the Identity
Inspector tab, and change the class property to IAAccountsViewController.

 First, you’ll embed this within a navigation controller. With the IAAccountsView-
Controller scene selected, go to Xcode’s application menu and choose Editor >
Embed In > Navigation Controller. Now you’ll add a table view to this view that will be
used to list all of the accounts that you’ve retrieved using the Accounts framework. On
the bottom right of your editor, go to the Objects Library and choose Table View. Drag it
into the view, and make sure that it fits the whole view. Next, you’ll add a table view cell
to represent each account within the table view. In the Object Library choose Table
View Cell and drag it into the table view. Once it’s added, go to the attributes inspector
in the utility area and set its identifier to accountCell, as shown in figure 8.5.

 It’s crucial that you set the cell’s identifier correctly, so make sure that account-
Cell is spelled and specified correctly.

 While you’re still in the accounts scene, click the navigation bar and set the title to
Accounts in the attributes inspector, as shown in figure 8.6.

Figure 8.5 Add a table view cell as a new prototype cell to the table view, setting its style
to Basic and its identifier to accountCell.
Figure 8.6 Set the title of the navigation item of the accounts view controller to Accounts.

185Accessing accounts with the Accounts framework

Right now, your controller doesn’t know your table view exists because you haven’t
created an outlet for it yet. Open the assistant editor to bring up IAAccountsView-
Controller.h. Select the table view from your scene and then create a new outlet
named tableView, which will add a new property to the header file, as shown here:

@property (weak, nonatomic) IBOutlet UITableView *tableView;

The table view needs to know where to look when it calls its delegate and data source
methods to populate it with data and respond to touch events. Right-click the table
view in the document outline to bring up its outlets. Drag the delegate and data-
source outlets to the account’s view controller.

 With the assistant editor still open and showing, you need to specify that IAAccounts-
ViewController conforms to the UITableViewDelegate and UITableViewDatasource
protocols. Change the top line to the following:

@interface IAAccountsViewController : UIViewController

➥ <UITableViewDelegate, UITableViewDataSource>

You can now close the assistant editor and switch back to the standard editor. Let’s add
some code so that you can fill this view with your accounts.

 You now need to implement a few methods that are required since you added
these two protocols. These methods will let your table view know how many rows to
display and will return a UITableViewCell that will represent each account.

 You will have one row for each account that you’re displaying. The number of
accounts you have should represent the number of rows that you’ll have in your table
view. Go into the implementation and add the following method to return the num-
ber of rows you will display in your table view:

- (NSInteger)tableView:(UITableView *)tableView

➥ numberOfRowsInSection:(NSInteger)section
{
 return [self.accounts count];
}

Each row will need to be populated with information from the ACAccount it’s display-
ing. Create the method that returns a UITableViewCell for a particular row, as shown
in the next listing.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
 static NSString *CellIdentifier = @"accountCell";
 UITableViewCell *cell = [tableView

➥ dequeueReusableCellWithIdentifier:CellIdentifier];

 ACAccount *account = self.accounts[indexPath.row];
 cell.textLabel.text = account.accountDescription;

 return cell;

Listing 8.2 Return a populated UITableViewCell with information from an ACAccount

Create a static
cell identifier.

b

Dequeue cell
with identifier.

c

Retrieve account for
row in index path.d

Set title of cell to the

} account’s description.e

186 CHAPTER 8 Social integration with Twitter and Facebook

You first create a static NSString to act as a cell identifier B that can be used to
dequeue and reuse a particular cell C. To populate the cell with the account you’re
supposed to be displaying, you retrieve the account from the accounts array by using
the row of the index path passed into this method D. For the title of the cell you’re
using the account’s accountDescription property E.

 By using the accountDescription property, you get a human-readable version of
your account’s username. For example, if you were to just use the username property,
you would get back a string like "ok". By using the accountDescription property, you
get a more Twitter-esque version that people are accustomed to seeing: "@ok".

 Now the moment you’ve been waiting for. Run
the application and check to see if everything’s been
set up properly. After being prompted for permis-
sion to access your accounts, you should see a list of
all of your accounts shown in the Simulator. If you
have no accounts set up, you’ll see an empty table
view. Make sure to double-check the Twitter section
within the Settings app to ensure that you do have at
least one account set up and that everything’s been
set up properly. Figure 8.7 shows our accounts view
populated with one Twitter account.

 Next, you’ll see how to retrieve and list your Face-
book accounts.

8.1.2 Accessing Facebook accounts

Returning a list of all Facebook accounts is almost as
easy as retrieving Twitter accounts. In your viewDid-
Load method, you call retrieveAccounts:options:
and pass in ACAccountTypeIdentifierFacebook with
no options specified.

 Finally, you’ll need to pass in a few options in the
form of an NSDictionary. Within this dictionary
you’ll specify a new Facebook app ID and permission
you’re requesting from each Facebook user.

CREATING A NEW FACEBOOK APP

Facebook requires that you create a new application for each app that interacts with
Facebook. By doing this you also get back a Facebook app ID that’s required to be
passed in when asking for permission to access a user’s Facebook account. Go to Face-
book’s developer portal at http://developers.facebook.com and create a new app.
Application names are unique, so you may need to get creative with the name you
specify, as shown in figure 8.8.

 Once the application is created, you’ll be taken to its settings page. Here you’ll

Figure 8.7 Our application running
with one Twitter account listed in the
IAAccountsViewController
find your application ID and will also be required to fill out a few details about your

http://developers.facebook.com

187Accessing accounts with the Accounts framework

iOS application. Take a look at figure 8.9 to see the app ID for the Facebook app
you’ve just created and the iOS app settings you should fill out.

 Your Facebook app ID is shown on the top of the Settings page. On the bottom of
the page, you’ll need to add the application’s bundle identifier in the Native iOS App
section. After that, you’ll need to set the Facebook Login option to Enabled.

Figure 8.8 Creating a new Facebook app for TweetBook in Facebook’s developer portal

Figure 8.9 Application Settings page where you can see your app ID as well as specify native iOS

app settings

188 CHAPTER 8 Social integration with Twitter and Facebook

REQUESTING PERMISSION FOR FACEBOOK ACCOUNTS
You can now go back to your code and prepare your options. You’ll need to pass in
three things: ACFacebookAppIDKey, ACFacebookPermissionsKey, and ACFacebook-
AudienceKey. The value for ACFacebookAppIDKey will be your newly created Facebook
app’s app ID. The permissions key, ACFacebookPermissionsKey, is for specifying
which permissions you want the user to grant. These permissions can be used to
retrieve their information and friends lists, read their stream, publish to their stream,
and much more. You can find a list of all permissions you can specify by going to Face-
book’s permission documentation at the following address: https://developers.face-
book.com/docs/reference/login/#permissions. It’s extremely important to know that
the first request that your application makes to access a user’s Facebook account can
only be read permission. You can’t initially ask to publish to their news stream. You’ll be
asking for two read permissions, email and user_about_me, initially.

 Go back to your viewDidLoad method in IAAccountsViewController.m. You’ll
declare a new NSDictionary named fbOptions that has two keys, ACFacebookAppID-
Key and ACFacebookPermissionsKey, specified with their corresponding values:

NSDictionary *fbOptions = @{ ACFacebookAppIdKey: @"YOUR-FB-APP-ID",

➥ ACFacebookPermissionsKey: @[@"email",@"user_about_me"] };

Last you’ll add a call to retrieve accounts using your retrieveAccounts:options:
method but pass in ACAccountTypeIdentifierFacebook as the identifier and fbOptions
as the options parameter. This method will perform the same action as the method
used earlier but will retrieve Facebook accounts relative to the account identifier
you’re specifying. Your viewDidLoad should look like the following:

-(void)viewDidLoad
{
 [super viewDidLoad];
 self.accounts = [[NSMutableArray alloc] init];

 [self retrieveAccounts:ACAccountTypeIdentifierTwitter options:nil];

 NSDictionary *fbOptions = @{ ACFacebookAppIdKey: @"YOUR-FB-APP-ID",
 ➥ ACFacebookPermissionsKey: @[@"email",@"user_about_me"] };

}

Now when you run your application, you’ll be prompted to give access to your Face-
book accounts, as shown in figure 8.10.

 If you hit OK, you’ll see your Facebook account(s) listed underneath your Twitter
accounts. Notice that our Facebook account is simply labeled Facebook. This needs to
be way more specific, especially if someone has more than one Facebook account.
Within tableView:cellForRowAtIndexPath: you’ll change what’s used for your cell’s
text label depending on the account type. The following is how you’re currently set-
ting the title for an account:
cell.textLabel.text = account.accountDescription;

https://developers.facebook.com/docs/reference/login/#permissions
https://developers.facebook.com/docs/reference/login/#permissions

189Using the Social framework to post content

For Twitter accounts the accountDescription property serves you exactly what you
need. For Facebook you should use the username property because this will return the
user’s email address. To determine the account type and what you should use, you can
examine the account type’s identifier property. Replace the previous line with the
following code:

if ([account.accountType.identifier

➥ isEqualToString:ACAccountTypeIdentifierTwitter])
 cell.textLabel.text = account.accountDescription;
else
 cell.textLabel.text = account.username;

The table view should now show the username of your Facebook account. So far
you’ve retrieved and listed different accounts. It’s now time to start posting to Twitter
or Facebook using these accounts.

8.2 Using the Social framework to post content
With access to these accounts, you can actually use them to post content to Twitter or
Facebook, depending on the account type. The Social framework allows you to do this

Figure 8.10 You will be prompted to
give access to your Facebook accounts
after you run your application.
by giving you a simple interface and API to post status updates, photos, and videos.

190 CHAPTER 8 Social integration with Twitter and Facebook

Here you’ll learn how you can create content using an account with the Social frame-
work within TweetBook.

8.2.1 Posting to Twitter using the Tweet Composer view

Before you start tweeting what you ate for lunch or posting random cat photos to Twit-
ter, you need to create a new view controller in your TweetBook application. This new
view controller will be used to view a user’s stream and will also serve as the starting
point from which you’ll be able to post new content.

CREATING THE STREAM VIEW CONTROLLER

First, you’ll need to add the Social framework to your project in the same way that you
added the Accounts framework earlier. Hop back into Xcode and go to the General
tab within your project settings. Then add Social.framework into the Link Binary
with Libraries section, as shown in figure 8.11.

 Next, go to the project navigator in Xcode and add a new class, IAStreamView-
Controller, and make it a subclass of UIViewController. In IAStreamViewController’s
interface, you want to go ahead and include the Social and Accounts frameworks by
adding the following:

#import <Social/Social.h>
#import <Accounts/Accounts.h>

Figure 8.11 Add Social.framework to the Link Binary with Libraries section under Build Phases in

your project settings.

191Using the Social framework to post content

Then set IAStreamViewController as a delegate and data source for the UITable-
View. You’ll need to specify an outlet for your UITableView and an IBAction named
postToStream: that you can use to post to a user’s stream. Also, you need to add a
property for an ACAccount that will represent the account the user has selected from
the account view controller. All of this is shown in the following listing.

#import <UIKit/UIKit.h>
#import <Social/Social.h>
#import <Account/Account.h>

@interface IAStreamViewController : UIViewController

➥ <UITableViewDataSource, UITableViewDelegate>

@property (weak, nonatomic) IBOutlet UITableView *tableView;
@property (strong, nonatomic) ACAccount *account;

- (IBAction)postToStream:(id)sender;

@end

Jump into your storyboard by clicking MainStoryboard.storyboard in your project
navigator. You’ll be adding a new UIViewController to your storyboard to represent
your newly created IAStreamViewController. Go to the Object Library on the bot-
tom right, choose a UIViewController, and drag it into your storyboard directly to
the right of your existing IAAccountsViewController. Then go to the inspector and
set the class name for this view to match your IAStreamViewController, as shown in
figure 8.12.

 Go back to the Object Library to find a UITableView and drag it into your new
view. Set its delegate and dataSource outlets to the stream view controller. Next,
right-click the table view and drag a new outlet from the New Referencing Outlet to
the stream view controller and select tableView.

 You want the stream view to be loaded when you click a UITableViewCell that rep-
resents one of your accounts. Control-click from the table view cell you’ve set up in
the Accounts view and drag it to the stream view to create a new push segue, as shown
in figure 8.13.

 After you create the segue, a navigation bar will appear in the scene that contains
your stream view. Add a bar button item to the right side of the navigation bar that will
serve as the button users will use to post to their streams. Choose UIBarButtonItem
from the Object Library and drag it to the right of the navigation bar. Set its identifier
to Compose to get the button to show the standard iOS compose icon (+). Finally,
right-click the button, drag the selector outlet to your stream view controller, and
choose the action you defined in your header file, postToStream:.

 Because you need to carry over account information to the stream view when a
user clicks an account in the accounts view, you’ll need to first include the header file
for your stream view at the top of IAAccountsViewController.m.

Listing 8.3 Interface for IAStreamViewController
#import "IAStreamViewController.h"

192 CHAPTER 8 Social integration with Twitter and Facebook

Figure 8.12 Add a new view controller to the right of the accounts view controller; then set its class
to IAStreamViewController.
Figure 8.13 Create a new segue from the Accounts view’s table view cell to the new stream view.

Re
the sel
index

Retriev
destin

contr
193Using the Social framework to post content

You’ll next need to intercept the segue that you created and pass the selected account
information to the stream view. You’ll do this within prepareForSegue:sender: in the
accounts view. Jump back into the accounts view and add the following method to
your implementation:

- (void) prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 NSIndexPath *selectedIndex = self.tableView.indexPathForSelectedRow;
 ACAccount *account = [self.accounts

➥ objectAtIndex:selectedIndex.row];

 IAStreamViewController *view = [segue destinationViewController];
 view.title = [self.tableView

➥ cellForRowAtIndexPath:selectedIndex].textLabel.text;
 view.account = account;
}

Within this method you first grab the selected index path from your table view B. You
use the index path’s row to retrieve the selected account from the accounts array C.
Next, you get a reference to the stream view controller D, and then you set the title of
the view to the text used in the selected table view cell E, which is the user’s account
name. Last, you set the account property on the stream view to the account that was
selected F.

 Before you run your app, you’ll need to add a few methods so that you comply with
the UITableViewDatasource delegate protocol. Without doing this your application
will crash when the IAStreamViewController is loaded. You’ll be replacing these
methods later in the chapter when you finish this view.

- (NSInteger)tableView:(UITableView *)tableView

➥ numberOfRowsInSection:(NSInteger)section
{
 return 0;
}

- (UITableViewCell *)tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 return nil;
}

Now when you run the application and tap on an account, you’ll be taken directly to
the stream view, as shown in figure 8.14.

 You want to be able to click the bar button item on the top right to be able to post
to your stream. If you click it right now, nothing will happen because you haven’t
defined anything in the postToStream: method yet. Let’s do that right now.

POSTING TO TWITTER

The Social framework gives you a really handy view called the SLComposeView-

trieve
ected
path.

b

Get the account for
the selected row.c

e the
ation
view
oller. d

Set the view’s
text property.eSet the view’s

account property.f
Controller. If you’ve ever shared a web page that you were browsing to Twitter while

194 CHAPTER 8 Social integration with Twitter and Facebook

using Safari, you’ve most likely used this view. For example, take a look at figure 8.15
to see how content is posted to Twitter within Safari.

 The SLComposeViewController gives you many things out of the box that would
normally take a while to implement on your own. This saves you quite a bit of time
because you don’t need to worry about interfacing directly with the Twitter API when
creating a custom-styled view, validations, and much more.

 Add this to your stream view controller by presenting a compose sheet when the
button on the top right is tapped. Within postToStream: you’ll first check what type
of account you’re working with because you’ll need to request additional permissions
for Facebook. Because you’re working with Twitter right now, just do a quick check
against the account type identifier and call a new method called postToTwitter,
as follows:

- (IBAction)postToStream:(id)sender
{
 if ([self.account.accountType.identifier

➥ isEqualToString:ACAccountTypeIdentifierTwitter])
 [self postToTwitter];

Figure 8.14 After clicking an
account, you’re taken to the
stream view.

Figure 2.15 Using the SLCompose-
ViewController within Safari to
share a web page on Twitter
}

195Using the Social framework to post content

If you try to run the application now, you’ll get a compile error because you haven’t
added a postToTwitter method yet. You’ll define this method, and within it you’ll
add the code necessary to launch an SLComposeViewController. Look at the follow-
ing listing, and we’ll go over it together.

- (void)postToTwitter
{
 if([SLComposeViewController

➥ isAvailableForServiceType:SLServiceTypeTwitter])
 {
 SLComposeViewController *view = [SLComposeViewController

➥ composeViewControllerForServiceType:SLServiceTypeTwitter];
 [self presentViewController:view animated:YES completion:^{}];
 }
}

In only a few lines you’re able to perform this func-
tionality. You first check to see if you’re allowed to use
the compose view for the Twitter service (SLService-
TypeTwitter) B. If you’re allowed, you initialize a
new compose view for the service type SLService-
TypeTwitter C. To show the view, you use your
view controller’s presentViewController:animated:
completion: method D. This method gives you the
option to specify whether the view is animated when
it appears and also a callback for when the compose
view closes.

 You’re also able to prefill the compose view with
text, images, and a URL. For example, right before
you call presentViewController:animated:com-

pletion:, you could prefill the compose view with
the following information:

[view setInitialText:@"Boom! Tweeting this from
an app I created while

➥ reading iOS in Action! "];
[view addURL:[NSURL URLWithString:@"http://

manning.com"]];

Now if you launch the compose view by clicking the
Compose button in the stream view, you’ll see it pre-
filled with this information, as shown in figure 8.16.

 Wasn’t that easy? It’s a pretty simple experience
for Facebook as well.

Listing 8.4 Launching an SLComposeViewController for a Twitter account

Check if Twitter
is available for a
compose view.

b

Initialize a
compose view
for Twitter.

c

Show the
compose view. d

Figure 8.16 Prefilling the compose
view with initial text and a URL

196 CHAPTER 8 Social integration with Twitter and Facebook

8.2.2 Posting to Facebook
When posting to Facebook you only need to change the service type from SLService-
TypeTwitter to SLServiceTypeFacebook. Change the postToStream: IBAction to call
postToFacebook if the account isn’t from Twitter. Your completed postToStream:
method should look like the following:

- (IBAction)postToStream:(id)sender
{
 if ([self.account.accountType.identifier

➥ isEqualToString:ACAccountTypeIdentifierTwitter])
 [self postToTwitter];
 else
 [self postToFacebook];
}

Now create a new method called postToFacebook that will launch a new SLCompose-
ViewController, as shown in the following listing.

- (void)postToFacebook
{
 if([SLComposeViewController

➥ isAvailableForServiceType:SLServiceTypeFacebook])
 {

 SLComposeViewController *view = [SLComposeViewController

➥ composeViewControllerForServiceType:SLServiceTypeFacebook];
 [view setInitialText:@"Boom! Posting from an app I created while

➥ reading iOS in Action!"];
 [view addURL:[NSURL URLWithString:@"http://manning.com/lim2"]];
 [self presentViewController:view animated:YES completion:^{}];
 }
}

Notice that all that’s changed is that the service type has changed from SLService-
TypeTwitter to SLServiceTypeFacebook. You could further simplify this method to
accept Twitter or Facebook accounts, but this leaves you with room to customize inter-
action based on the service type.

 If everything’s hooked up properly, you should see the compose view appear for a
Facebook account when you click the Compose button, as shown in figure 8.17.

 You now know how to easily post to your Twitter or Facebook stream. The last thing
you’ll need to do within TweetBook is retrieve a user’s stream depending on which
service type they’ve chosen.

8.3 Making API requests with the Social framework
The Social framework gives you the ability to manually interact with the API of all the
services that it supports as long as you have access to an account. All of this is accom-
plished by using the SLRequest class. This allows you to post to someone’s stream,
retrieve their stream or timeline, friend, unfriend, follow, unfollow, and so on. It all

Listing 8.5 Launching an SLComposeViewController for a Facebook account
depends on the service and what you’re allowed to do based on the limits of their API.

197Making API requests with the Social framework

 The SLRequest class encapsulates various proper-
ties of a standard HTTP request. We covered the dif-
ferent types of HTTP requests and REST in chapter 6.

8.3.1 Retrieving a Twitter stream using an SLRequest

All of your tweets can be retrieved through your pub-
lic timeline. You can retrieve this via Twitter’s API
using an SLRequest. If you look at Twitter’s developer
documentation (http://dev.twitter.com/docs/api),
you’ll see exactly what you need to send in your
request to retrieve a timeline:

■ URL—http://api.twitter.com/1.1/statuses/
user_timeline.json

■ HTTP method—GET

■ Required parameter—user_id or screen_name
■ Optional parameters—since_id, count, max_id,

page, trim_user, include_rts, include_

entities, exclude_replies, contributor_

details

Let’s use SLRequest’s requestWithServiceType:

requestMethod:URL:params method to make this
request. Because you might not know the user_id,
you can specify the screen_name parameter, which
will be the username property of the selected account.

 First, you need to add a property called updates for an NSMutableArray to your
interface that will be used to store every update. Add this right below the property you
created for account:

@property (strong, nonatomic) NSMutableArray *updates;

Within the viewDidLoad method in your stream view controller, you’ll need to initial-
ize the updates array and check what account type you’re displaying. If the account is
a Twitter account, you can call the retrieveTwitterStream method. Your viewDid-
Load should look like what’s shown here:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.updates = [[NSMutableArray alloc] init];

 if ([self.account.accountType.identifier

➥ isEqualToString:ACAccountTypeIdentifierTwitter])
 [self retrieveTwitterStream];
}

Figure 8.17 The compose view
shown for Facebook accounts

http://dev.twitter.com/docs/api
http://api.twitter.com/1.1/statuses/user_timeline.json
http://api.twitter.com/1.1/statuses/user_timeline.json

Specify
parame

for
requ

Check
resp

st
c

198 CHAPTER 8 Social integration with Twitter and Facebook

Next, you can define the retrieveTwitterStream method. This method will make a
request using SLRequest and store all items in the updates array. Take a look at the
following listing to see how to make your request to retrieve a user’s Twitter stream.

- (void)retrieveTwitterStream
{
 NSURL *url = [NSURL URLWithString:

➥ @"https://api.twitter.com/1.1/statuses/user_timeline.json"];
 NSDictionary *params = @{@"screen_name" : self.account.username};

 SLRequest *request = [SLRequest

➥ requestForServiceType:SLServiceTypeTwitter

➥ requestMethod:SLRequestMethodGET URL:url parameters:params];

 [request setAccount:self.account];
 [request performRequestWithHandler:^(NSData *responseData,

➥ NSHTTPURLResponse *response, NSError *error)
 {
 if (response.statusCode == 200)
 {
 NSError *parsingError = nil;
 self.updates = [NSJSONSerialization

➥ JSONObjectWithData:responseData options:0 error:&parsingError];

 dispatch_sync(dispatch_get_main_queue(),^{
 [self.tableView reloadData];
 });
 }
 }];
}

You’re setting a url parameter with the URL for retrieving a user’s timeline according
to Twitter’s API docs B. You’re then preparing the one parameter you’re passing in
for this request, which is the select account’s username C. Next, you create a new
SLRequest by specifying your service type, your request method, URL, and parameters
for the request D. After your request has been initialized, you first specify the authen-
ticated account that will be making the request E. You can then perform the request
and specify a request handler for when the request is finished F. It’s within the
request handler where you will inspect what Twitter returns. You first check to see if
the status code for the response is 200 to ensure that the request went through
smoothly G. You then parse the response data using the NSJSONSerialization class,
which returns an array of dictionaries that represents each tweet H. Lastly you make a
call to reload your table view within the main queue I.

DISPLAYING A USER’S TWITTER STREAM
Although you’ve retrieved a user’s tweets, you can’t see them yet. You haven’t added a
UITableViewCell to your view or even implemented the delegate or data source
methods for the table view used in your stream view controller.

Listing 8.6 Retrieving a user’s Twitter stream with SLRequest

URL for
retrieving
a timeline

byour
ters
 the
est.

c

Create the
SLRequest
object.

d

Specify the
account for
the request.e

Perform the
request and set
up the handler.f

 the
onse
atus
ode. g

Parse the
request’s
response.h

Reload the table view once
you’ve retrieved updates
that you want to display.i

199Making API requests with the Social framework

 Click MainStoryboard.storyboard within your project navigator to hop into Inter-
face Builder. You’ll first drag a new UITableViewCell to your stream view’s table view.
In the inspector on the right side of your window, set its style to Subtitle and its identi-
fier as updateCell.

 Now jump back into the implementation of your stream view controller and add
two methods. One of the methods you’ll add will tell your table view how many rows to
display, which will be a count of how many updates you have in your array. You cur-
rently have a placeholder method in its place that’s returning 0. Change this to return
the real value of updates you’re going to display.

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section
{
 return [self.updates count];
}

Next, you’ll add the tableView:cellForRowAtIndexPath: method to return a popu-
lated UITableViewCell for each row. The code shown in the next listing will replace
what you previously added, which was just returning nil.

- (UITableViewCell *)tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"updateCell";
 UITableViewCell *cell = [tableView

➥ dequeueReusableCellWithIdentifier:CellIdentifier];

 NSDictionary *update = self.updates[indexPath.row];

 if ([self.account.accountType.identifier

➥ isEqualToString:ACAccountTypeIdentifierTwitter])
 {
 cell.textLabel.text = [update objectForKey:@"text"];
 cell.detailTextLabel.text = [update

➥ valueForKeyPath:@"user.name"];
 }

 return cell;
}

Here you’re checking to see if the account is for Twitter B and then populating each
cell using the dictionary for each update. For the tweet you’re using the text value
within the dictionary. For the user’s name you’re using the user.name key path.

 If you run your application, you should see the selected user’s latest updates, as
shown in figure 8.18.

 You can continue with this to provide a stream that contains all of the tweets of
the users that the selected user follows and add more things like photos, pagination,
and dynamic row heights. For now you’re going to move on to retrieving your Face-

Listing 8.7 Return a table view cell for each tweet

Checking if this
is a Twitter
account

b

book stream.

200 CHAPTER 8 Social integration with Twitter and Facebook

8.3.2 Retrieving a Facebook news feed

Just like with retrieving a user’s Twitter stream, what you have to do to retrieve a user’s
Facebook stream depends on the API that they expose. Facebook’s Open Graph API
will allow you to retrieve their news feed. You’ll also need to request permission to
retrieve their news feed.

 Go to the viewDidLoad method and add a call to retrieveFacebookStream if the
account is not a Twitter account. Your viewDidLoad method should look like the following:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.updates = [[NSMutableArray alloc] init];

 if ([self.account.accountType.identifier

➥ isEqualToString:ACAccountTypeIdentifierTwitter])
 [self retrieveTwitterStream];
 else
 [self retrieveFacebookStream];
}

You can now define your retrieveFacebookStream. What you’ll have to do, which you
didn’t do for Twitter, is request additional permissions to read a user’s stream. Earlier

Figure 8.18 A user’s Twitter
stream shown in the stream
view controller
you requested permission to access a user’s Facebook accounts. You passed in email

201Making API requests with the Social framework

and user_about_me as the permissions you requested for the ACFacebookPermissions-
Key parameter. You’ll make almost the same request as before to gain access to an
account but use different permissions.

 In retrieveFacebookStream add the following to re-request permission to access
Facebook accounts with the read_stream permission:

NSDictionary *options = @{ ACFacebookAppIdKey: @"YOUR-FB-APP-ID",

➥ ACFacebookPermissionsKey: @[@"read_stream"] };

ACAccountStore *accountStore = [[ACAccountStore alloc] init];
ACAccountType *accountType = [accountStore

➥ accountTypeWithAccountTypeIdentifier:ACAccountTypeIdentifierFacebook];

[accountStore requestAccessToAccountsWithType:accountType options:options

➥ completion:^(BOOL granted, NSError *error)
 {
 if(granted)
 {
 // Replace account and make an SLRequest
 }
 }
];

Here you’re also retrieving new ACAccount instances with this new permission. You’ll
have to iterate through the array of accounts, and if the username matches the
account currently set on your stream view, you should replace it.

 Right underneath if(granted) add the following code to match and replace the
user’s account:

for (ACAccount *account in [accountStore

➥ accountsWithAccountType:accountType])
{
 if ([account.username isEqual:self.account.username])
 self.account = account;
}

Once you have the right account, you can create an SLRequest to retrieve a user’s
stream. Right after you set the account you’ll make the request. Take a look at the
next listing to see how you can retrieve a user’s Facebook stream.

NSURL *url = [NSURL URLWithString:

➥ @"https://graph.facebook.com/me/feed"];
SLRequest *request = [SLRequest requestForServiceType:SLServiceTypeFacebook
 requestMethod:SLRequestMethodGET
 URL:url
 parameters:nil];

[request setAccount:self.account];

[request performRequestWithHandler:^(NSData *responseData,

➥ NSHTTPURLResponse *response, NSError *error)
{

Listing 8.8 Retrieve a user’s Facebook stream with an SLRequest

URL for retrieving
news feed

b

Create the
SLRequest.c

Specify the account
for the request.d
 if (response.statusCode == 200)

202 CHAPTER 8 Social integration with Twitter and Facebook

 {
 NSError *parsingError = nil;
 self.updates = [[NSJSONSerialization

➥ JSONObjectWithData:responseData options:0 error:&parsingError]

➥ objectForKey:@"data"];

 dispatch_sync(dispatch_get_main_queue(),^{
 [self.tableView reloadData];
 });
 }
}];

Within this method, you’re specifying the open graph URL to retrieve a user’s feed B.
You then set up the SLRequest C and then attach the account to this request D. This
is so that the request is fully authenticated. Once you retrieve the user’s news feed, you
parse it using NSJSONSerialization E and retrieve the updates by pulling back the
data key. Then you reload your table view F.

 Finally, you need to change the tableView:cellForRowAtIndexPath: to accom-
modate the different structure of data from Facebook’s news feed. Within this
method, add an else statement for when the account type is not from Twitter. You’ll
use the story property for the main text for the cell and the from.name key path to
display the name of the user. Your tableView:cellForRowAtIndexPath: should look
like the following listing.

- (UITableViewCell *)tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"updateCell";
 UITableViewCell *cell = [tableView

➥ dequeueReusableCellWithIdentifier:CellIdentifier];

 if (!cell)
 cell = [[UITableViewCell alloc]

➥ initWithStyle:UITableViewCellStyleSubtitle

➥ reuseIdentifier:CellIdentifier];

 NSDictionary *update = self.updates[indexPath.row];

 if ([self.account.accountType.identifier

➥ isEqualToString:ACAccountTypeIdentifierTwitter])
 {
 cell.textLabel.text = [update objectForKey:@"text"];
 cell.detailTextLabel.text = [update valueForKeyPath:@"user.name"];
 }
 else
 {
 cell.textLabel.text = [update objectForKey:@"story"];
 cell.detailTextLabel.text = [update valueForKeyPath:@"from.name"];
 }

 return cell;

Listing 8.9 Finalized tableView:cellForRowAtIndexPath: method to display
updates

Parse the request’s
response.e

Reload the
table view.f
}

203Summary

You can now run your application and see your Facebook updates. If everything has
been set up properly, your stream view will look like what’s shown in figure 8.19.

 As with the Twitter stream you displayed, you can continue to modify this to pro-
vide a much richer experience for your users. You can examine the different types of
updates to a user’s stream and use different table view cells to display it with photos,
links, comments, and the like.

8.4 Summary
You learned how to use the Accounts framework to gain permission to the accounts
stored in iOS for Twitter and Facebook. You also learned how to post content using the
Social framework. While using the Social framework you also saw how to retrieve a user’s
stream for both Twitter and Facebook. There are many places where you can expand on
TweetBook to make it a really wonderful full-fledged Twitter and Facebook experience.

■ The Accounts framework lets you access Twitter, Facebook, and Weibo accounts
that you’ve been given permission to use.

■ By using the SLComposeViewController, you can easily post updates to each of
these networks.

■ The SLComposeViewController gives you the ability to post text, images, links,
location, and much more right out of the box.

■ The Social framework helps you to interface with the APIs made available to you
by Twitter, Facebook, and Weibo.

■ You can use an account that you’ve been given permission to use to authenti-
cate requests made with an SLRequest.

■ By using both the Accounts and Social frameworks, you were able to create a
simple application that allows you to list accounts, view your streams, and post
content to each service.

Figure 8.19 A user’s Facebook
stream populating our table view
within the stream view controller

Advanced view
customization
iOS includes a large set of view classes for interacting with the user and displaying
all kinds of controls such as buttons, tables, images, and scroll views. But sometimes
your app has unique needs that aren’t covered by default views. In an application,
we all want the “wow” effect. Throughout this chapter you’ll learn how to achieve it
by customizing your views beyond the default properties. You’ll be able to create
both basic and advanced animations to enrich user interactions. This chapter will
give you the tools to make the difference by creating unique experiences. To illus-
trate, let’s see what a stunning app like Path would look like without view customi-
zations, as shown in figure 9.1.

 In order to learn about animations and customizing views, in this chapter you’ll
be creating an app called AnimatedClock, as shown in figure 9.2. AnimatedClock is
a fully functioning clock application. You’re going to visually represent time by an
animated pendulum and an analog clock with animated clock hands. While creating

This chapter covers
■ Going beyond the Interface Builder with

custom views
■ Creating basic animations
■ Using advanced animation techniques
204

205Going beyond the Interface Builder with custom views

your app you’ll learn how to customize default iOS views by subclassing the parent
class for display objects, the UIView.

9.1 Going beyond the Interface Builder with custom views
You learned in the previous chapters how to create your application interfaces by
dragging and dropping controls from Interface Builder. You also learned that you can
assign a custom class to these dropped controls by changing the Class attribute on
the identity inspector, as shown in figure 9.3. Previously you’ve done that only to cus-
tomize view controllers. In this chapter you’re going to use this method to create
custom views and associate them with your Interface Builder’s components.

 Interface Builder is a great tool for configuring a wide set of component parame-
ters, and it’s usually enough to create simple applications. But if you want to go the
extra mile and implement stunning interfaces, chances are you’ll need to create a
couple of custom views for your applications as you’re going to do with your Animated-
Clock application.

Figure 9.1 Difference between what Path would look like using only default
views (left) and what Path actually looks like using customized views and
effects (right)

206 CHAPTER 9 Advanced view customization

 When we say “view,” what we’re actually referring
to is UIView. UIView is the parent class for all dis-
play objects. Every display component that we’ve
used in this book, such as UIButton, UITableView,
UILabel, and UIWebView, is a subclass of UIView.
That means that knowing how UIView works will
help you not only for UIViews but also for all other
display objects you customize. Let’s start by seeing
what happens behind the scenes when a view is
placed on the screen.

 In order to place a view on the screen you must
create the view. If you’re doing it programmatically,
the default initialization method is initWithFrame:.
This method defines the position of your new view,
which is relative to its (future) parent view and the
size in points. Once the view is created, you need to
place it on the screen by adding it as a subview of
another view. UIView defines the following methods
for adding subviews:

■ (void)addSubView:

■ (void)insertSubView:aboveSubview:

■ (void)insertSubView:belowSubview:

■ (void)insertSubView:atIndex:

The first one is the most commonly used, and it
inserts a view following the painter’s algorithm; the
name of the algorithm refers to the technique paint-
ers employ of painting each element on top of the
last one, as figure 9.4 shows.

 The other three methods are used to add a subview and manually manage the view
hierarchy. You can use them to add a view on top of or below an existing view. Managing

Figure 9.2 AnimatedClock, a fully
functioning clock application with
stunning animations and a
customized interface that we’ll build
together by the end of this chapter

Figure 9.3 As you learned in previous
chapters, you can customize classes
from Interface Builder by changing the

Class attribute.

207Going beyond the Interface Builder with custom views

view hierarchies is a crucial part of your applications because it not only influences the
visual appearance of your application, but also it defines how the views react to touch
events. You’ll learn more about this in this section.

 As we said, Interface Builder is the most convenient way to build view hierarchies
because you can create interfaces graphically by dragging and dropping views. And
even when creating custom views you’ll still use Interface Builder to position them.
When a view is created using Interface Builder, behind the scenes Cocoa will initialize
it by calling the method initWithCoder:.

 Once the view is initialized and positioned on a parent view, the view will draw its
content and call its drawRect: method internally.

 Let’s summarize all this so that you understand how you can customize views:

1 When initializing a view, you call either initWithFrame: or initWithCoder:.
This is important when creating custom views or when subclassing display ele-
ments because you’re going to write all the initialization code such as gestures,
instance variable initializations, and the like there.

2 You call drawRect: each time the view is drawn. This is useful when, for exam-
ple, you want to define a tile background or create custom shapes.

3 You add subviews one on top of the other.

It’s time to create the AnimatedClock application you’re going to use throughout the
chapter. Go to Xcode and create a new, single-view application named Animated-
Clock. As you did in the previous chapters, you’ll set the class prefix to IA, as shown in
figure 9.5.

 For this application you’ll use a set of images to enrich your interface. Figure 9.6
shows all the images you’re going to use and their filenames.

View 1

View 2

View 3

View 4

Figure 9.4 The painter’s
algorithm shows how each
component represents layers
one on top of each other.

208 CHAPTER 9 Advanced view customization

In order to include those images in your project, you’ll create a new group called
Images. Then you’ll select all the files from the Finder and drag and drop them into your
recently created Images group, as shown in figure 9.7. Once you’ve finished dragging

Figure 9.5 Creating a new project named AnimatedClock
Figure 9.6 Images used in the AnimatedClock application

209Going beyond the Interface Builder with custom views

and let go, a modal will appear asking you if you want to save these items into your
project tree. Select Copy Items into Destination Group’s Folder and click Finish.

 Now that you have the assets you need to build the interface for your project,
you’re going to open the autogenerated storyboard Main.storyboard using Interface
Builder and create your interface. For that you’ll add the view you’re going to custom-
ize in this section. This view will represent your pendulum clock. In order to do this,
you’ll drag and drop a UIView from the Object Library and place it in your main view
controller, as shown in figure 9.8. Once you’ve finished dragging and let go, set the
view’s background color to Clear Color.

 Then you will include the image views that you’ll use as the clock’s hands, the pen-
dulum, and the clock base. For that, you’ll drag and drop five UIImageViews, place
them to form the clock, and set the Image parameter of each view according to the
corresponding filename. For example, the clock base is clock_background.png. When
positioning the views, make sure the three clock hand views have the same dimensions
and are in the exact same x and y positions, as shown in figure 9.9. Also make sure to
set the Mode as Center for all UIImageViews. After doing that you’ll add four labels
that you’ll use as your clock hours. The labels are “12,” “3,” “6,” and “9.” The reason
why you’re including files with an @2x suffix is because some devices include a higher
definition (Retina) display. So what you need to do is provide another version for all
of your images: one that’s double the size. If you name your image with double the
size with an @2x extension, whenever you try to load an image with [UIImage image-
Named:...] or similar APIs, it will automatically load the @2x image instead on the
Retina display. Note that you don’t need to specify the @2x Retina version when
selecting images in Xcode because they’re called automatically when the application
is running.

1

Figure 9.7 Include the images in your project by (1) creating a new group and then dragging and
dropping files from the Finder.

210 CHAPTER 9 Advanced view customization

The image views shown in figure 9.9

B The pendulum is the bottom view and therefore is the first one you have to add.

c Clock base is just an image, and there are four labels on top of it.

d Three clock hands in the exact same position represent seconds, minutes,
and hours.

Your interface is ready! Go ahead and run the application using the 4-inch Simulator.
Figure 9.10 shows what it looks like so far.

 As you can see, the background is white and the clock is not moving whatsoever.
You’ll fix the animation soon, but first you’ll set a nicer tile background. Tile back-
grounds are created by placing a small pattern (tile) repeatedly across the x and y
axes. The benefit of this is that you can create backgrounds of any size by using only
one (usually) small image. You’re going to use a wood image as a tile, and the back-
ground will look like a wall afterward.

Figure 9.8 Adding the view you’re going to use as your pendulum clock

211Going beyond the Interface Builder with custom views

For that, you’ll create a new class called IABackgroundView and make it a subclass of
UIView. To be able to draw the background inside your view, you need to override the
method that performs the drawing. Any idea what this method would be? You guessed
right! The method is drawRect:. This method is called internally when the view needs
to draw (or redraw) its content. It’s called when you first display the view and when
the view is altered. In the lifecycle of the view it could be called thousands of times.
Any visual change on the view or on a subview will trigger a redraw cycle and therefore
call drawRect:.

 Let’s write the logic to create your tile background, shown in the following listing.
Open the class you just created by going to Xcode and locating the IABackground-
View.m file.

2

1

3

Figure 9.9 Creating the clock interface by placing five image views

text
Setti

with
i

212 CHAPTER 9 Advanced view customization

- (void)drawRect:(CGRect)rect
{
 CGContextRef context = UIGraphicsGetCurrentContext();
 UIImage *tile = [UIImage imageNamed:@"woodpattern"];
 [[UIColor colorWithPatternImage:tile] set];
 CGContextFillRect(context, self.bounds);
}

On the first line B of the method you obtain the
UIView graphic context. A graphic context repre-
sents a drawing destination, and it contains parame-
ters that the iOS drawing system needs to perform
subsequent drawing commands such as stroke and
fill colors, clipping areas, styles, and others. One of
the parameters you’re changing on the context you
just obtained is the fill color c. You configure the
fill color as an image generated by a pattern. As a
side note, you’ll call it “color” even if it’s not strictly a
“color” to be consistent with iOS nomenclatures.
Line d fills a rectangle (in this case you’re using
self.bounds, which is your entire view) using the
pattern image you just set.

 Now that you have the code in place, you’ll
define the custom class of the root view (note: this is
the first view you find on the view hierarchy, not the
container view you added on top) and use the file
you just created. For this, you’ll open Interface
Builder, select the view, and change the Class param-
eter from the identity inspector, as figure 9.11 shows.

 Now compile and run the app again to see how
your new background looks. As you can see in fig-
ure 9.12, the tile is repeated, generating a full back-
ground.

9.2 Creating basic animations
Animations are used extensively in iOS applications to enrich the user interface.
They convey feedback to the user about application changes and input events. iOS
offers several animation mechanisms that let you create sophisticated animations
very easily with only a few lines of code. All animation techniques you will learn in
this chapter use a built-in infrastructure called Core Animation. Core Animation is
an essential part of iOS applications, and you’ve been using it since chapter 1 with-

Listing 9.1 Overriding drawRect and drawing your tile background

Getting the current
UIView graphic conb

ng a color
generated
 your tile

mage as a
pattern

c

Filling the pattern across
the entire UIView boundsd

Figure 9.10 Your application
looks like this after adding a couple
of views using Interface Builder.
out knowing it. Internally every transition between view controllers, every navigation

213Creating basic animations

bar effect, and the like use Core Animation. There are two different ways of animat-
ing views on iOS:

■ Basic UIView animations using UIKit abstractions. (UIKit is the framework iOS
uses to manage user interfaces. Basically every view you’ve used before such as
buttons, tables, and the like is part of UIKit.) You’ll use this kind of animation
for animating property changes, for example, changing the position, the rota-
tion, or the transparency of your view.

■ For more complex and sophisticated animations you’ll use Core Animation
directly (section 9.3).

Creating basic animations is very straightforward. You only need to create an anima-
tion block by calling the method animateWithDuration:animations: of the UIView
class, setting the duration of the animation as follows:

[UIView animateWithDuration:1.0 animations:^{
 // Here we have to modify our view(s) properties.

Figure 9.11 Changing the main view class to IABackgroundView
}];

214 CHAPTER 9 Advanced view customization

As you can see, the animation block is just a regu-
lar block, and inside it you’ll set the properties of
the view that you want to animate. For example, you
can set the alpha (transparency) property to 0. This
will gradually change the alpha from 1 (the default
alpha value of every view) to 0 in a second. By
doing that, you’ll see a fade-out effect. Using the
previous example,

[UIView animateWithDuration:1.0 animations:^{
 [ourViewInstance setAlpha:0.0];
}];

You can change more than one parameter inside the
block, and all the animations will start in parallel.

 Let’s go back to the AnimatedClock application.
So far you created your clock’s interface and it
looks great, but you didn’t write the code to show
the current time, as a clock would do. Next, you’ll
create a customized view, responsible for moving
the clock’s hands. For that, you’re going to open
Xcode and create a new class named IAAnalog-
ClockView and make it a subclass of UIView, as
shown in figure 9.13.

 This class will be in charge of rotating the three
clock hands (seconds, minutes, hours) according to
the current time and oscillating the pendulum.
Before going any further, you need to understand
how rotation works. iOS graphic frameworks use
transform views by creating a transformation matrix. To understand this, imagine
you have a drawing on a paper. The paper represents a two-dimensional space, and
so you can draw a Cartesian plane with x and y axes, as shown in figure 9.14. Let’s say
that you draw the axes on the table such that you move the paper. The axes remain in
the same place. When the drawing is rotated you’ll see that each point of your previous
drawing is located in a different x and y position.

 Transformation matrixes are a mathematical way of translating coordinates from
the initial state (left part of the image) to the new transformed state (right). Those
matrixes are used to rotate, scale, and skew objects you draw in a view. Creating these
matrixes is not trivial and would require some knowledge of mathematics. Take, for
example, the clockwise rotation matrix, shown in figure 9.15.

 Luckily, you don’t typically need to create matrixes directly. For example, in order
to create the rotation matrix you’ll call the function CGAffineTransformMakeRotation
with an angle as the parameter, and it will create the matrix for you.

Figure 9.12 The background is
generated by repeating a pattern
image. You can see the actual
image (tile) inside the rectangle.

215Creating basic animations

There’s one more thing you need to know about transformations before going back to
your application. When you rotated the paper, you did it in such a way that the center
of the paper remained in the middle. Try it yourself: put your finger in the middle of
the paper and rotate the sheet. Now put your finger on top of the paper and rotate

Figure 9.13 Creating a class named IAAnalogClockView, which is a subclass of UIView

y

x

(x, y)

y

x

(x', y')

Figure 9.14 Example of rotation using a sheet of paper and a fixed
coordinate system

cosθ

–sinθ

sinθ

cosθ

0

0
Figure 9.15 The clockwise
0 0 1
rotation matrix

s
ock’s
age.

After cha
the a
poin

repositio
view

center
clock’s

f
216 CHAPTER 9 Advanced view customization

the sheet again, as shown in figure 9.16. The point where your finger is positioned is
called the anchorPoint. The anchorPoint values range from 0 to 1 such that (0, 0) is
the top left and (1, 1) is the bottom right. By default the anchorPoint is (0.5, 0.5),
which is the middle of the view.

 You’re ready to go back to your application and create the logic to rotate the
clock’s hands. First, you’ll need to link your custom clock view, clock hands, and pen-
dulum from Interface Builder to your code in order to control them. For that you’ll
change the class of the view you created before, the one that holds the clock’s hands,
pendulum, and base, by selecting it and changing the Class property from the identity
inspector to IAAnalogClockView. Next, you’ll link the pendulum and clock’s hands to
this view. For that you’ll open the assistant editor in Interface Builder by selecting
View > Assistant Editor > Show Assistant Editor in the application menu. With the
hours hand selected in your interface, hold down the Control key while clicking and
dragging from the view to your IAAnalogClockView’s class definition in the assistant
editor. Once you’ve finished dragging and let go, a modal will appear asking you to
name the outlet you’re setting on your class for this view. Name it hoursHand and then
click Connect. You’ll do the exact same procedure with the seconds hand, minutes
hand, and pendulum. The names of these variables will be secondsHand, minute-
sHand, and pendulum, respectively.

 In the following listing you’ll write the code in charge of rotating the clock’s hands.

- (void)moveHand:(UIView *)hand toAngle:(CGFloat)angle
{
 [[hand layer] setAnchorPoint:CGPointMake(0.4f, 0.75f)];
 [[hand layer] setPosition:CGPointMake(165.0f, 155.0f)];
 [UIView animateWithDuration:0.5 animations:^
 {

Listing 9.2 Method used to rotate the clock’s hands

Figure 9.16 How rotations
change when you move the
anchorPoint

Anchor point is set a
the bottom of the cl
hands inside the im

b
nging
nchor
t, you
n the

to the
of the
 base.

c

Create the animation
block with duration o
half a second.d

217Creating basic animations

 CGAffineTransform matrix = CGAffineTransformMakeRotation(angle *

➥ M_PI / 180);
 [[hand layer] setAffineTransform:matrix];
 }];
}

The first thing you’ll notice in the code is that you’re moving the anchor point to a
specific place B. You created your clock hands’ images in such a way that the same
anchor point position works for all the hands, but this number makes sense only after
seeing how the images look. Take a look at figure 9.17 to see why the point is (0.4,
0.75). After setting the anchor point, the position of your view will change; that’s why
you’re repositioning it c to the center of your clock’s base, which is the point (165,
155). Next, you define an animation block d and inside it you set your view transfor-
mation as a matrix containing the rotation as you learned before. By doing this, you’ll
create an animation of half a second length that will rotate the hand. Note that
CGAffineTransforMakeRotation takes the angle as a parameter in radians. The for-
mula to convert from degrees to radians is angle × pi / 180, and that’s what you’re
using to rotate the view in e. If you compile and run the application at this point,
you’ll get a strange error about CALayer being a forward declaration. But don’t worry!
You’re about to fix that.

 In order to apply the transformations to the layer of your view as you’re doing in
listing 9.2, you need to include the QuartzCore framework to your project. In order to
do that, you’ll add a Linked Framework from the Summary tab on the right, as shown
in figure 9.18. The framework you’re going to add is QuartzCore.framework. Once
you finish doing that, you’ll open the file IAAnalogClock.m again and add the follow-
ing line to the very top:

#import <QuartzCore/QuartzCore.h>

Rotate the clock’s
hand to a given angle.e

Image 1 Image 2 Image 3

0.75

0.4

Figure 9.17 All your clock hands
are designed to have the same
anchor point: (0.4, 0.75).

bject
ods
asy
arate
s,
rom

e.
Anim
the cl

hands u
the me
you cre
in listin
218 CHAPTER 9 Advanced view customization

The next thing you’ll add to this file is the method that will be called once per second,
as shown in listing 9.3. This method will be responsible for moving the clock’s hands.

- (void)moveHandsToLocalTime
{
 NSInteger comp = (NSHourCalendarUnit | NSMinuteCalendarUnit |

NSSecondCalendarUnit);
 NSDateComponents *components = [[NSCalendar currentCalendar]

components:comp fromDate:[NSDate date]];

 [self moveHand:self.hoursHand toAngle:([components hour] % 12) * 360.0f

➥ / 12.0f];
 [self moveHand:self.minutesHand toAngle:[components minute] * 360.0f /

➥ 60.0f];
 [self moveHand:self.secondsHand toAngle:[components second] * 360.0f /

➥ 60.0f];
}

In order to move the clock’s hands you need a way to extract hours, minutes, and sec-
onds from the current date. For that, you use a class named NSDateComponents B.
This class encapsulates the date and time fragments in an object-oriented manner,
allowing you to retrieve the hours, minutes, and seconds very easily by calling the
methods hour, minute, and second. Now you need to calculate the angle your clock’s
hand should take each second. Let’s think this through: the clock’s hand will have an
angle of 360° once it reaches its last value. So, the hours hand will have an angle of

Listing 9.3 Method in charge of moving the clock’s hands to the correct angle

Figure 9.18 Adding QuartzCore.framework to your project

The calendar o
contains meth
that make it e
for you to sep
hours, minute
and seconds f
the current tim

b

ating
ock’s
sing
thod
ated
g 9.2

c

360° when the hour is 12, and the minutes and seconds hands will have an angle of 360°

ing a
 that
all your
od every
d

219Using advanced animation techniques

once they equal 60. Knowing that, let’s do cross multiplication. The calculation for the
hours hand would be:

If you apply the same logic to minutes and seconds, you’ll end up with these three
formulas:

hour_hand_angle = hour * 360 / 12
minute_hand_angle = minute * 360 / 60
second_hand_angle = second * 360 / 60

These formulas give you the angles you’re using in listing 9.3 as parameters of the calls
to moveHand:toAngle: c.

 If you try to compile and run the application, you’ll see that the clock still doesn’t
move. That’s because you have all the logic in place for rotating the clock’s hands, but
you’re not calling it every second yet. You’ll fix that in the next listing.

- (void)didMoveToWindow
{
 [NSTimer scheduledTimerWithTimeInterval:1.0 target:self

➥ selector:@selector(moveHandsToLocalTime) userInfo:nil repeats:YES];
}

didMoveToWindow is another method defined in the UIView class. This method is
called internally by iOS when the view changes its window property. On iOS that’s sim-
ilar to saying “when the view is placed on the screen.” Here you’re initializing a timer
that will call the method you created in listing 9.3 every second B.

 You’re finished! Compile and run the application. The clock should show the cur-
rent time, and you should be able to see the clock’s hands animations. But hold on.
Did you notice something strange? The pendulum isn’t moving! We’re going to
address this in the next section.

9.3 Using advanced animation techniques
In the previous section you learned how to create animations very quickly by changing
the view properties inside an animation block. That’s usually enough to create basic
interface animations, but sometimes you’ll need to create more complex transitions.
Take, for example, the animation shown in figure 9.19.

 Whereas a property-based animation, like the one you’ve been using for the clock’s
hands, changes a property from a start value to an end value gradually in a specific
timeframe, there’s another way of defining animations: by using CAAnimation objects
directly. This method gives you total control of your animations, timing, and positions of
your views at any given moment of the transition. The disadvantage of using CAAnimation

Listing 9.4 Triggering the moveHandsToLocalTime: method every second

12 360° Hour 360⋅
12Hour x°

x =

Creat
timer
will c
meth
secon

b

directly is that your code will get more complex.

220 CHAPTER 9 Advanced view customization

Let’s go back to your AnimationClock application and write the code to animate your
missing piece: the pendulum. In order to animate the pendulum, you’re going to use the
CAKeyframeAnimation object, which lets you create animations in segments. This is use-
ful when instead of moving (or rotating) an object from point A to point B, you need to
define a custom path, as the previous hot-air balloon image shows (figure 9.19).

 For your pendulum animation you want to mimic how it would move in real life.
For that you have three states: the first one is when the pendulum is at equilibrium
position (0°) and the other two are both extremes (15° and -15°, respectively). As the
pendulum moves from the equilibrium position to the extremes, the velocity decreases.
The farther the pendulum has moved from the equilibrium position, the slower it
moves; the closer the pendulum is to the equilibrium position, the faster it moves. For
that you’ll split your animation into four segments, as shown in figure 9.20.

Basic (x, y) position changeA Advanced animationB

Figure 9.19 Figure A shows a basic animation changing the frame position. Figure B
shows an animation with the same end point but a more complex trajectory.

1 3 Figure 9.20 Pendulum
animation used in the
AnimatedClock application,
2 4 separated into four segments

he
int and
ing the
221Using advanced animation techniques

The initial position of your pendulum is the equilibrium point, and as such, the seg-
ments are defined as follows:

1 0° to 15°—Goes from the equilibrium point to the left extreme. As the pendu-
lum moves, the velocity decreases.

2 15° to 0°—Goes from the left extreme to the equilibrium point. As the pendu-
lum moves, the velocity increases.

3 0° to -15°—Goes from the equilibrium point to the right extreme. As the pen-
dulum moves, the velocity decreases.

4 -15° to 0°—Goes from the right extreme to the equilibrium point. As the pen-
dulum moves, the velocity increases.

When you’re creating an animation, what happens to your animated properties while
your animation is running is almost as important as what happens at the end. To illus-
trate this, let’s say you want to move a view from point A to point B in one second. By
default, what you’ll see is an animation that seems to neither speed up nor slow down.
The view will move at a constant rate. In other words, your view position will change
linearly with time. But when defining the pendulum’s segments the velocity should
decrease or increase according to the pendulum position. In order to achieve those
velocity changes, you use timing functions. Timing functions define the rate at which
a property value changes from one value to another over time. In figure 9.21 you’ll see
some of the most common timing functions. The ease-in function causes the anima-
tion to begin slowly and then speed up as it progresses. Ease-out causes the animation
to begin quickly and then slow as it completes.

 Let’s apply everything you’ve learned to your AnimatedClock application. You’ll cre-
ate the segmented animation on your pendulum using CAKeyframeAnimation. Open
the file IAAnalogClockView.m using Xcode and add the method in the following listing.

- (void)oscillatePendulum
{
 [[self.pendulum layer] setAnchorPoint:CGPointMake(0.5f, 0.0f)];

Listing 9.5 Method in charge of pendulum oscillation

End

Linear

Start

t = 0 t = 1

V
a
lu

e

End

Ease in

Start

t = 0 t = 1

V
a
lu

e

End

Ease out

Start

t = 0 t = 1

V
a
lu

e

Figure 9.21 Most common timing functions. By default iOS uses the Linear function.

Defining t
anchor po
reposition

b

 [[self.pendulum layer] setPosition:CGPointMake(165.0f, 155.0f)]; view afterward

 Defin
anima

duratio
seco

Mak
ani

in

les
h
t

222 CHAPTER 9 Advanced view customization

 CAKeyframeAnimation *animation = [CAKeyframeAnimation

➥ animationWithKeyPath:@"transform.rotation.z"];
 animation.duration = 1.5f;
 animation.repeatCount = INT64_MAX;
 animation.values = @[@(0.0f * M_PI / 180.0f), @(15.0f * M_PI / 180.0f),

➥ @(0.0f * M_PI / 180.0f), @(-15.0f * M_PI / 180.0f),@(0.0f * M_PI /

➥ 180.0f)];
 animation.keyTimes = @[@(0.0f), @(0.26f), @(0.50f), @(0.74f),

➥ @(1.0f)];
 animation.timingFunctions = @[
 [CAMediaTimingFunction

➥ functionWithName:kCAMediaTimingFunctionEaseOut],
 [CAMediaTimingFunction

➥ functionWithName:kCAMediaTimingFunctionEaseIn],
 [CAMediaTimingFunction

➥ functionWithName:kCAMediaTimingFunctionEaseOut],
 [CAMediaTimingFunction

➥ functionWithName:kCAMediaTimingFunctionEaseIn],
];
 [[self.pendulum layer] addAnimation:animation forKey:nil];
}

The first thing you have to set, as you did before, is the anchor point. You use (0.5,
0.0) as the anchor point B because your pendulum anchor point is located at the top
center of the image. Then you need to initialize the CAKeyframeAnimation instance
that you’ll use to animate your pendulum in segments. When initializing CAKeyframe-
Animation, you have to define which property of the view you’re going to animate. In
this case you want the pendulum to rotate, and so you set the animation key as trans-
form.rotation.z c, which is the rotation property of the transformation, as you
learned previously. Next, you configure your animation’s properties such as total
duration d and how many times you want the animation to repeat. You assign a very
(very) big number to repeatCount in order to repeat the animation infinitely e.

 Now it’s time to create the animation segments you defined. Each segment is
defined by using three properties: end value f, duration g, and timing function h.
You define those events by setting the arrays values, keyTimes, and timingFunctions.
Figure 9.22 shows how those arrays are constructed.

 One thing to notice is that keyTimes values are not seconds. Each value in the key-
Times array is a number between 0.0 and 1.0 that defines the time point (specified as
a fraction of the animation’s total duration) at which to apply the corresponding key
frame value. The animation is finally applied to the pendulum layer by calling add-
Animation:forKey: method i.

 Finally, you call the method you just created when the clock is initialized. For that
you’ll open the file IAAnalogClockView.m, locate the method didMoveToWindow you
created in the previous section, and add the oscillatePendulum call to the end of this
method as follows:

Initializing a key frame
animation for rotation
transformations

cing
tion
n in
nds

d

ing the
mation
repeat
finitely e

Setting
the ang
for eac
segmenf

Setting the
duration
of each
segmentg

Setting the
timing functions
on each segment

h

Adding the animation to the layer
to start animating right away i
 [self oscillatePendulum];

223Summary

Now it’s show time! Compile and run the application to see the pendulum moving
along with the three clock hands.

9.4 Summary
Throughout this chapter, we dove deeper into different ways of working with views to
help you make more immersive, rich applications. We created an application that
shows the current time represented by a pendulum clock. This clock has the particu-
larity that its hands as well as the pendulum move in real time by using basic anima-
tions for the clock’s hands and a customized animation to make the pendulum
transitions mimic real life. Following are some key topics we covered:

■ Stunning interfaces always include some kind of view customization; for that
you subclass UIView classes.

■ View hierarchies define how the views react to touch events.
■ Interface Builder is the most convenient way to build view hierarchies.
■ A graphic context represents a drawing destination, and it contains parameters

to perform subsequent drawing commands such as stroke and fill colors, clip-
ping areas, styles, and others.

■ For very basic animations you use UIView class methods.
■ For sophisticated animations you use Core Animation.

Figure 9.22 Animation
segments you defined
previously but now
represented as arrays

Location and mapping
with Core Location

and MapKit
Whenever I can’t figure out where to eat, I turn to my favorite restaurant review
app to make the difficult decision for me. It shows me all of the nearby restaurants
and lists them according to their rating. I choose a place that I believe will be able
to satisfy my enormous appetite. Not knowing where this place is, I load the direc-
tions into my favorite maps app to give me walking directions. As I turn, the map
turns with me, orienting itself so that I know where to go. After a few minutes of
walking, I’m ready to stuff my face.

 There’s no need for me to manually enter my current street address when
searching for a restaurant. It just knows where I am. There’s no need for me to tell
the maps app that I’m facing a certain direction and to change its perspective. It

This chapter covers
■ Introducing the Core Location and MapKit

frameworks
■ Retrieving your current location, heading,

and speed
■ Geocoding locations to display user-friendly

locations
■ Displaying a map of your location
224

just knows the direction I’m facing. These apps use Core Location to retrieve my

225Introduction to the Core Location framework

current location as well as my heading. You’ll be learning how to use Core Location
and MapKit in this chapter by creating an application called Speed Map, as shown in
figure 10.1.

 This app will show you your current location in user-friendly, readable text. It also
has a map that will show and track your location in real time and rotate depending on
which direction you’re facing. As you go along you’ll also learn about the many differ-
ent things you can do with these two frameworks.

10.1 Introduction to the Core Location framework
Core Location is a framework that’s included in the iOS SDK that can be used to deter-
mine location and heading with a device. Location is found using GPS or assisted GPS
on the device. Assisted GPS helps retrieve your location quicker by using the cellular
or Wi-Fi network to triangulate your location. Heading is determined by the phone’s
compass. You also get a geocoder, which can be used to retrieve placemarks and
names of the city and state when given a pair of coordinates. You’ll learn how to use all
of these in this section.

Figure 10.1 The application we’ll be building together will show your current location and
the speed you’re traveling, and it will even track your location in real time within a map.

226 CHAPTER 10 Location and mapping with Core Location and MapKit

10.1.1 Representing a location with CLLocation

The CLLocation class is one that you’ll become very familiar with because it’s used to
represent location data. A single instance contains geographical coordinates, altitude,
values indicating the accuracy of these measurements, and the time at which they
were captured. There’s also information regarding the speed and heading of the
device at the time of measurement.

 You can initialize a new CLLocation instance by using the initWithLatitude:
longitude method. You’ll use the coordinates for Mountain View, California, for this
example. You can specify the latitude 37.3861 and the longitude 122.0828 as follows:

CLLocation *location = [[CLLocation alloc] initWithLatitude:37.3861

➥ longitude:122.0828]];

The location instance variable that you’ve created can let you know the latitude
and longitude you’ve set by retrieving the coordinate property. The coordinate
property returns a CLLocationCoordinate2D structured type, which contains two
fields, latitude and longitude. Following is how you’d check the latitude and lon-
gitude of the CLLocation that you created:

location.coordinate.latitude // 37.3861
location.coordinate.longitude // 122.0828

If you were to retrieve a CLLocation from your device that represented your current
location, you’d have properties that you could check to determine the accuracy. Accu-
racy is determined horizontally and vertically using the horizontalAccuracy and
verticalAccuracy properties. These values represent the level of uncertainty, mea-
sured in meters. For example, if you had a horizontal accuracy of 25, that would mean
that the location retrieved was uncertain up to a 25-meter radius. The lower the accu-
racy number, the better. Take a look at figure 10.2 for a real-world example using the
Google Maps application.

 What you’re seeing is the Google Maps visual representation of a CLLocation
instance that represents our current location. The left side of the figure shows a bad
accuracy example. This was captured right when the application was opened. It
retrieved a CLLocation but the accuracy wasn’t great yet. After a few seconds, the
accuracy became better, which is what’s shown on the right side of the figure.

 Since you created the CLLocation instance without retrieving it from the device,
you won’t have a horizontal or vertical accuracy measurement. You still could set the
accuracy properties by doing the following, using any value you like:

location.horizontalAccuracy = 25.0f;
location.verticalAccuracy = 50.0f;

If you retrieved it from a device, you’d also be able to retrieve the altitude as well as
the speed at which you were traveling. You can also set these in the same way as
shown previously.

 There’s also a way to initialize a new CLLocation with altitude, latitude, longitude,

accuracy, as well as timestamp. You can do this by using the initWithCoordinate:

227Introduction to the Core Location framework

altitude:horizontalAccuracy:verticalAccuracy:timestamp: initializer. Unlike the
initializer that you previously used, this one requires you to pass in the coordinates as
a single parameter of type CLLocationCoordinate2D. Let’s create one by using the
same values you used earlier:

CLLocationCoordinate2D coordinates = CLLocationCoordinate2DMake(37.3861,

➥ 122.0828);

You can then pass in coordinates along with any altitude, accuracy, and timestamp, as
shown here:

CLLocation *location = [[CLLocation alloc] initWithCoordinate:coordinates
 altitude:1000.0f
 horizontalAccuracy:25.0f
 verticalAccuracy:50.0f
 timestamp:[NSDate

➥ date]];

Because you already know about the CLLocation object, you can learn how to retrieve
this using CLLocationManager.

10.1.2 The location manager

To be able to retrieve the current location of a device you’ll have to use CLLocation-
Manager. CLLocationManager defines the interface for determining how you receive
location updates in your app. You can use a CLLocationManager instance to start and

Bad accuracy Good accuracy

Figure 10.2 Bad accuracy on the left and good accuracy on the right. The larger blue circle
equals the distance of uncertainty.
stop monitoring for changes in location, heading, and when a user enters or leaves a

228 CHAPTER 10 Location and mapping with Core Location and MapKit

distinct region or location, and you can also defer location updates when your app is
running in the background.

 First, you should check to see if it’s possible to retrieve what you want. A variety of
class methods will help you do just that. Take a look at table 10.1, which lists each
method and gives a brief description of what it does.

All of these methods return a BOOL, which you can use to help you decide what you
should do in your application.

 There are also a few properties that you can set on the location manager. These
properties will determine what you retrieve, the frequency, and the accuracy. New
readings from the location manager are delivered to you using a delegate, which is
specified with the delegate property. We’ll jump into this shortly, but it’s important to
know that location isn’t requested synchronously.

 First, there’s the distanceFilter property, which determines how far the device
must move horizontally in meters before an update event is generated. The distance is
measured relative to the last location update that was generated.

 Next is desiredAccuracy, which lets you specify how accurate the readings will
be. There are times when you need something extremely accurate; for example, you
could be building a car navigation app, which needs precise location data. But if you
were building a weather app that needed only the city you’re in, you wouldn’t
require the same kind of accuracy. You can specify six accuracy constants, which are
ordered from most to least accurate: kCLLocationAccuracyBestForNavigation,
kCLLocationAccuracyBest, kCCLocationAccuracyNearestTenMeters, kCCLocation-

AccuracyHundredMeters, kCCLocationAccuracyKilometer, and kCCLocationAccuracy-
ThreeKilometers.

 Just like with the distanceFilter property, you can filter the change in heading
for heading updates using the headingFilter property. The heading filter is specified
in degrees rather than meters. The heading reading also needs to know the orienta-

Table 10.1 CLLocationManager class methods to check for availability and permissions

Type Description

authorizationStatus Has the user given permission to use their current
location?

locationServicesEnabled Are location services enabled on the device?

deferredLocationUpdatesAvailable Does the device support deferred location updates?

significantLocationChange-
MonitoringAvailable

Does the device support significant location change
monitoring?

headingAvailable Can the device retrieve heading-related events?

regionMonitoringAvailable Does the device support region monitoring?
tion of the device. This is specified by using the headingOrientation property.

229Introduction to the Core Location framework

We mentioned the delegate property earlier. When using the location manager, you
must specify a delegate that conforms to the CLLocationManagerDelegate protocol to
be able to retrieve updates. Whenever a location or heading update is retrieved, this
result is passed to the delegate specified for your CLLocationManager instance. There
are two methods you have to add if you wish to know when the location manager has
resumed or has paused receiving updates, as shown here:

- (void)locationManagerDidResumeLocationUpdates:(CLLocationManager

➥ *)manager
{
 // Location manager has resumed location updates
}

- (void)locationManagerDidPauseLocationUpdates:(CLLocationManager *)manager
{
 // Location manager has paused location updates
}

These two methods allow you to act according to the location manager’s update
retrieval state. For example, if you were building a GPS navigation app, you would
have to show an alert if you weren’t receiving location updates anymore. Without an
alert, the users of your navigation app would be wondering why their location wasn’t
updating on the screen.

 The really important information that you’ll be using is passed into the method
locationManager:didUpdateLocations:. This method is called whenever the loca-
tion manager has new current location readings. Even though it’s optional, consider it
required if you’re looking to retrieve the current location within your app.

 The first parameter passed into this method is the instance of the location man-
ager that’s being used to listen for location changes. The second parameter is an array
of CLLocation objects. You’re guaranteed to have at least one object in this array.
Each CLLocation object in the area is ordered by the time at which it occurred. This
means that the newest location would be at the end of the array. For instance, if you
always wanted to retrieve the latest location information from this method, you could

Be mindful of battery consumption
There are a few things to keep in mind when configuring the location manager. First,
some readings, such as heading, require that a hardware compass be available on
the device that your app is running on. Also, the location manager can drain a phone’s
battery relatively quickly. This can happen if you set an accuracy requirement that’s
too high. For example, if you set the required accuracy reading too high, the location
manager would have to use the GPS to retrieve a new location every time you move
this distance. If you had this on while you were in a fast-moving vehicle, there’s a high
chance that it would quickly drain your battery. It’s very important to take these things
into consideration when dealing with location.
do the following:

230 CHAPTER 10 Location and mapping with Core Location and MapKit

- (void)locationManager:(CLLocationManager *)manager

➥ didUpdateLocations:(NSArray *)locations
{
 CLLocation *newestLocation = [locations lastObject];
}

There are also delegate methods you can implement for getting the latest heading
readings as well. You’ll be using the locationManager:didUpdateLocations: method
as well as other delegate methods when you create your application. When you’re
ready to retrieve location and heading updates, you can do so by calling either start-
UpdatingLocation or startUpdatingHeading on your location manager instance. If
you want to stop these updates, you can do so by calling stopUpdatingLocation and
stopUpdatingHeading.

 How about you start setting up your application in Xcode before we go further?

10.1.3 Setting up Speed Map in Xcode

Together we’ll be building an app called Speed Map that contains a single view. This
view will show your current speed and current location in plain text and a map that
will track and show the current location in real time. You’ll be using the Simulator to
simulate location scenarios for this application, but to really enjoy it, we highly suggest
using it on a real device if you have a paid developer license.

 Let’s first create the project and then hook in the Core Location framework. Open
Xcode and create a new, single-view application called Speed Map, as shown in figure 10.3.
Figure 10.3 Creating Speed Map as a single-view application in Xcode

231Introduction to the Core Location framework

Once the project’s been created, go into the Settings tab and expand the Link Binary
with Libraries section. Here you want to add the Core Location framework by looking
for and adding CoreLocation.framework, as shown in figure 10.4.

 Once you’ve added the Core Location framework, you should start preparing the
views in your storyboard. Open Main.storyboard in the project navigator. You’ll put
together the first of two screens that you’ll have in your application. This first screen
will show your current speed as well as your location.

 First you’ll embed this view in a navigation controller by selecting the view and
choosing Editor > Embed In > Navigation Controller from the application menu bar.
Next select the navigation bar and set its title to Speed Map within the attributes
inspector, as shown in figure 10.5.

 You’ll now add a label that will be used to show the speed you’re traveling in miles
per hour. This will be the main part of this view, which means that you should make it
stand out. Go to the Object Library, grab a UILabel, and drag it into your view. Posi-
tion it so that it appears at the top of your view. Set the font for this label to Helvetica
Light with a font size of 90 and center aligned. Next, set the text in the label to 0
because you’ll be starting at 0 MPH. Also, change the view sizing so that the width is
320 and the height is 140. This is shown in figure 10.6.

 You can now create a new outlet for this label by first opening the assistant editor.

Figure 10.4 Add the Core Location framework in the Link Binary with Libraries section in the
project settings.
Ensure that IAViewController.h is open within the assistant editor window. Once it is,

232 CHAPTER 10 Location and mapping with Core Location and MapKit

Figure 10.5 Set the title of the navigation bar to Speed Map within the attributes inspector.

Figure 10.6 Add a new UILabel and position it toward the top of your view. Set its font,

alignment, and constraints so that it appears correctly.

233Retrieving location, heading, and speed

drag a connection to create a new outlet for this label called speedLabel, as shown in
figure 10.7.

 Let’s focus once again on your view within the storyboard. You’ll add one more
label that you’ll use to display your current location. Place it directly underneath
the label you’re using to display your speed, and make sure the text is center aligned.
Then change its Width attribute to 320, as shown in figure 10.8.

 Next, go to the attributes inspector and set its text to be blank. Now open the assistant
editor and create a connection for this label with an outlet called locationLabel. We can
stop here and get right into adding some functionality to this app. You’ll learn how to set
up a location manager and retrieve your location, speed, and heading information.

10.2 Retrieving location, heading, and speed
Earlier we went over the location manager and how it’s used to retrieve information
from the GPS and compass. You’ll be using the location manager in this section to add
the functionality you need in your Speed Map application. First, you’ll use it to
retrieve your current location.

10.2.1 Retrieving your current location with the location manager

You know that you need to use a location manager and set up delegate methods to listen
for location update events. You’ll be putting this into action in this section by adding this
to IAViewController. Open IAViewController.h and add the following import line at the
top of the controller to give you access to the Core Location framework in this class:

Figure 10.7 Create a new outlet within IAViewController.h for your new label named speedLabel.
#import <CoreLocation/CoreLocation.h>

234 CHAPTER 10 Location and mapping with Core Location and MapKit

Next, you need a property to represent the location manager you’ll be using. Add the
following property:

@property(nonatomic, strong) CLLocationManager *locationManager;

After this you’ll have to specify that this class conforms to the CLLocationManager-
Delegate protocol. Update the following line to reflect this:

@interface IAViewController : UIViewController <CLLocationManagerDelegate>

You can now jump into IAViewController.m to work on the implementation of your
controller. First, you’ll define a constant that you’ll use to help you calculate the num-
ber of meters that are in a mile. Right above the @implementation declaration in your
controller, add the following:

Figure 10.8 Add another label underneath the speed label that will be used to represent your
current location.
#define kMetersPerSecondToMilesPerHour 2.2369362920544

.

235Retrieving location, heading, and speed

Next, because you specified that you conform to the CLLocationManagerDelegate
protocol, you have to add the needed methods. Add the code shown in the following
listing to the controller.

- (void)locationManagerDidPauseLocationUpdates:(CLLocationManager *)manager
{
 self.speedLabel.text = @"";
 self.locationLabel.text = @"Location unavailable";
}

- (void)locationManagerDidResumeLocationUpdates:(CLLocationManager *)manager
{
}

When the location manager is paused, you’ll update your labels to reflect its current
state. Are you wondering why you’re not doing anything when location updates
resume? The code you’re about to add will automatically set those labels when you get
new location readings. Because the location manager has resumed, it should send
you new readings.

 Toward the bottom of the viewDidLoad method you should set your location-
Manager property, specify a distance filter and accuracy, and set your controller as the
delegate. You can also make a call to start updating the location by calling start-
UpdatingLocation. The updated viewDidLoad method is shown here:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.locationManager = [[CLLocationManager alloc] init];
 self.locationManager.desiredAccuracy = kCLLocationAccuracyBest;
 self.locationManager.distanceFilter = 10.0f;
 self.locationManager.delegate = self;

 [self.locationManager startUpdatingLocation];
}

First, you set the locationManager property to be a new instance of CLLocation-
Manager B. You set your desired accuracy to best c, mainly because of the speed
readings that you’ll be displaying. You also set a distance filter to be 10 meters d. This
means that someone must travel 10 meters for an event update to occur. You then set
your controller as the delegate e and make a call to start updating the location f.

 Even though you’re calling startUpdatingLocation, nowhere in the controller
are you actually retrieving any location events. You should implement another
method from the CLLocationManagerDelegate protocol in order to update your
interface with your speed and location. This method is locationManager:didUpdate-
Locations:, which will give you an array of CLLocation objects. Add the code shown

Listing 10.1 CLLocationManagerDelegate required methods

Create location
manager instance.

 b
Set
desired
accuracy

c

Set distance
filter.d

Assign controller
as delegate.eStart updating

location. f
in the next listing to IAViewController.

th
and
e.
236 CHAPTER 10 Location and mapping with Core Location and MapKit

- (void)locationManager:(CLLocationManager *)manager
didUpdateLocations:(NSArray *)locations
{
 CLLocation *location = [locations lastObject];
 NSString *locationString = [NSString stringWithFormat:@"%f, %f",

➥ location.coordinate.latitude, location.coordinate.longitude];
 NSString *speedString = [NSString stringWithFormat:@"%d",

➥ [@(location.speed * kMetersPerSecondToMilesPerHour)

➥ intValue]];

 self.locationLabel.text = locationString;
 self.speedLabel.text = speedString;
}

In this method you get the last location object in
the locations parameter passed in by the location
manager B. This is because the last object in the
array is the newest location reading. You then
create a new string using the latitude and longi-
tude c and another one for the speed d. When
creating the string to represent the speed, you mul-
tiply the speed reading by your constant, kMeters-
PerSecondToMilesPerHour. Lastly, you’re setting
the locationLabel text property to location-
String e and setting the speedLabel text prop-
erty to speedString f.

 How about you put what you’ve done to the test
and run the application? If all is well, you should
first be presented with an alert that asks you for per-
mission to use your current location, as shown in fig-
ure 10.9.

 Once you tap OK, you’ll see that your speed is
0 and that you don’t have a location displaying.
This is because the Simulator needs to be told
exactly where you are for location readings to
work. You can do this within Xcode in the debug
area shown on the bottom of the window while the
application is running. You can open this by going
to View > Debug Area > Show Debug Area (Com-
mand+Shift+Y). You can choose one of the preset
locations by clicking the location arrow, as shown
in figure 10.10.

Listing 10.2 Updating the interface when you retrieve new location information

Grab most recent
CLLocation.

b
Create
string wi
latitude
longitud

c

Create string with
speed in miles.

d

Set locationLabel text
to locationString.E

Set speedLabel text
to speedString.F

Figure 10.9 The first time you
run your application, you’ll be
asked for permission to use your
current location.

237Retrieving location, heading, and speed

How about you choose Honolulu, HI, USA, because
I’m sure you wouldn’t mind being there right now. If
you’re already there and are feeling generous, I
wouldn’t mind a ticket to come and visit . Anyway,
once the location’s been set, look back at the Simula-
tor to see the latitude and longitude for sunny
Honolulu, as shown in figure 10.11.

 One very special feature of the Simulator is the
ability to simulate location scenarios. While you have
the Simulator open, you can access the Debug >
Location menu in the application menu bar. Within
this menu you can choose Freeway Drive, which will
simulate location updates during a drive along the
freeway. Once you’ve set this, take a look at the Sim-
ulator. You’ll slowly see the speed increase and your
location will start changing, as shown in figure 10.12.

 You’ll now see how to change the latitude and
longitude to something more user friendly by using
the built-in geocoder.

10.2.2 Geocoding a location

Displaying the latitude and longitude is beneficial
for debugging, plotting points on a map, and other
various non-user-friendly scenarios. To turn these
numbers into something that non-developers can
understand, you can use Core Location’s geocoder.

Figure 10.10 When running your app in the Simulator, you can choose a preset location within Xcode
while the application is running.

Figure 10.11 We set our location
to Honolulu, HI, USA, by using a
predefined location within Xcode.

238 CHAPTER 10 Location and mapping with Core Location and MapKit

The CLGeocoder class represents the built-in geo-
coder that you can use to reverse-geocode and
forward-geocode locations.

 Forward geocoding is useful when you have an
address, such as Auburn, AL, and you want to find the
latitude and longitude. Reverse geocoding is used
when you have a latitude and longitude, such as
32.6097, 85.4808, and want to turn that into a read-
able city, state, and country. You’ll need to reverse
geocode the latitude and longitude reading that you
get from the location manager. You’ll need to use
the reverseGeocodeLocation:completionHandler:
method to do just that. This method accepts a
CLLocation and a block that will be executed once
the reverse geocode is finished.

 The block is executed once the reverse geocod-
ing request is completed. It will always get called,
even when there’s an error. Also, geocoding is asyn-
chronous but will run on the main thread. It’s
important to run only one geocoding operation at a
time because otherwise it will delay the main thread
and make the user interface appear locked up or
frozen. Take a look at the definition of the comple-
tion handler:

typedef void (^CLGeocodeCompletionHandler)
(NSArray *placemark, NSError

➥ *error);

If there’s no error, you’ll be passed back an array of placemarks. Each placemark is
a CLPlacemark object, which will contain detailed information about that location.
The information you can obtain includes the city, state, country, landmark loca-
tions, postal code, whether it’s inland or near an ocean, and the like. For your pur-
poses you’ll be looking for the city and state. The city is retrieved by calling the
subAdministrativeArea property, and the state can be retrieved by using the
administrativeArea property.

 To ensure that you’re calling the reverse geocoding function only once, you can
use the isGeocoding property on the CLGeocoder instance, which returns a BOOL value.
You can make this check before you call the reverseGeocodeLocation:completion-
Handler: method.

 First, go into IAViewController.h and create a new property for the geocoder you’ll
be using throughout the controller:

@property (strong, nonatomic) CLGeocoder *geocoder;

Figure 10.12 The location is
now constantly changing with
the speed increasing after
setting the Simulator to simulate
a freeway drive.

to
place

ret
a
e last

k.

”.
239Retrieving location, heading, and speed

Open IAViewController.m and replace the locationManager:didUplodateLocations:
method with the code shown in the following listing.

- (void)locationManager:(CLLocationManager *)manager

➥ didUpdateLocations:(NSArray *)locations
{
 CLLocation *location = [locations lastObject];
 NSString *speedString = [NSString stringWithFormat:@"%d",
 [@(MAX(location.speed, 0)) intValue]];

 self.speedLabel.text = speedString;

 if (![self.geocoder isGeocoding])
 {
 [self.geocoder reverseGeocodeLocation:location
 completionHandler:^(NSArray *placemarks,

➥ NSError *error)
 {
 if (placemarks && [placemarks count] > 0 && error == nil)
 {
 CLPlacemark *placemark = [placemarks lastObject];
 NSString *locationString = [NSString

➥ stringWithFormat:@"%@, %@",

➥ placemark.subAdministrativeArea, placemark.administrativeArea];

 self.locationLabel.text = locationString;
 }
 }];

 }
}

You’re making a few changes to this method. The speed is being calculated and dis-
played in the same way but the way you’re displaying the location has changed. You
now first check to see if you’re currently geocoding. If you’re not geocoding, you pro-
ceed B and call the reverse geocoding method c. Within the completion block
you check to make sure that you have placemarks and there are no errors d. Then you
retrieve the latest placemark e and create a new formatted string that contains the
city and state f and then set that to the text property of locationLabel g.

 You can easily test this by using the predefined locations within Xcode when you
run the application. Run the application and set the location to Honolulu, HI. You
should see the location label set to Honolulu, Hawaii, as shown in figure 10.13.

 If you have a developer license, you can put this on your device and leave it run-
ning while you’re in a moving vehicle. It should be fun to monitor your speed and
your current location as you travel. You can expand this if you want to by adding the
heading reading from the compass underneath the current location. You can do this
by starting heading updates in the location manager and implementing the appropri-
ate delegate method. For now, though, we’ll move on to an overview of the MapKit

Listing 10.3 Reverse geocoding to retrieve the city and state from a CLLocation

Continue only if
not currently
geocoding.

b

Call the
reverse
geocoding
method.

c

Check
 see if
marks

were
urned
nd no
rrors.

d

Grab the
placemare

Format a
string to
represent
“City, StatefSet the locationLabel

text to the new string. g
framework and add a map to your application.

240 CHAPTER 10 Location and mapping with Core Location and MapKit

10.3 Introduction to the MapKit framework
The MapKit framework is used to embed and interact with maps within an applica-
tion. It’s a fairly large framework that allows you to do many things. You can include
illustrated maps, satellite maps, hybrid maps, annotations, overlays, routes, and much
more. To put it into perspective, most of what MapKit provides can allow you to create
something close to Apple’s very own Maps application.

10.3.1 Using the map view to display a map

One of the biggest pieces of MapKit is the MKMapView. You can use this view to embed
a map anywhere in your application, and it provides a decent amount of functionality
out of the box. For instance, the ability to show your current location is already baked
into this view. The main view that you interact with within the Maps application is the
MKMapView, as shown in figure 10.14.

 You can use three different map types: a default map, which provides an illustrated
representation; a satellite map, which uses real aerial images to represent the map;

Figure 10.13 By using the
predefined Honolulu, HI location in
Xcode, you’re reverse geocoding the
latitude and longitude to display

Figure 10.14 The MKMapView used
within Apple’s Maps application
Honolulu, Hawaii in the location label.

241Introduction to the MapKit framework

and the hybrid map, which lays illustrated roads and points of interest over the satel-
lite imagery used in a satellite map. You can see these three different map types side by
side in figure 10.15.

 You can set the type programmatically on an instance of MKMapView by specifying
the mapType property. The three constants that represent these types are MKMapType-
Standard, MKMapTypeSatellite, and MKMapTypeHybrid. Within the interface editor
you can just choose among Map, Satellite, and Hybrid within the attributes inspector.

 When using the MKMapView, you should specify an initial region for the map to dis-
play. This is done by setting the region with a center point, defined by latitude and lon-
gitude, and a span, which is the distance from the center. The span is used to determine
how much the map should zoom out from the center point for it to display within the
view. For example, say you wanted to set an instance of MKMapView’s region to 37.3861,
122.0828 with a span of 1 kilometer. You could do so as follows:

CLLocationCoordinate2D coordinate = CLLocationCoordinate2DMake(37.3861,

➥ 122.0828);
MKCoordinateRegion region = MKCoordinateRegionMakeWithDistance(coordinate,

➥ 1000, 1000);
[mapView setRegion:region];

You can use the CLLocationCoordinate2DMake() function to create a CLLocation-
Coordinate2D for a specific latitude and longitude. Then you can use the MKCoordinate-
RegionMakeWithDistance() function to create an MKCoordinateRegion using the

Map Hybrid Satellite

Figure 10.15 The three different map types that you get out of the box with an MKMapView
coordinate and passing in the span.

242 CHAPTER 10 Location and mapping with Core Location and MapKit

 If you just wanted to let the map zoom in on your location, you could set a tracking
mode without having to worry about setting an initial region. You can set this mode
with the setUserTrackingMode:animated: method. There are three different track-
ing modes you can specify: MKUserTrackingModeNone, MKUserTrackingModeFollow,
and MKUserTrackingModeFollowWithHeading. By default, no tracking mode is set. The
tracking mode MKUserTrackingModeFollow will follow and update the map based on
the user’s current location. The last option, MKUserTrackingModeFollowWithHeading
will also update the map based on the user’s location but will orient it depending on the
user’s heading. You’ll be using this shortly within your Speed Map application.

10.3.2 Retrieving user location using MapKit

You could retrieve a user’s location using MapKit instead of having to use Core Loca-
tion’s location manager. An MKMapView can do this by talking to Core Location for
you. First, you’ll need to set the showsUserLocation property to YES on the map
you’re using. You’ll then need to implement the MKMapViewDelegate protocol and set
the delegate property on the map view instance you’re using.

 The MKMapViewDelegate protocol has a single required method that’s used to let
you know when the tracking mode of a user’s location has changed. Whether you use
this or not, it must be implemented. This method is shown here:

- (void)mapView:(MKMapView *)mapView

➥ didChangeUserTrackingMode:(MKUserTrackingMode)mode

➥ animated:(BOOL)animated
{
 // Handle tracking mode change
}

The method that will inform you of a user’s location updates is the mapView:did-
UpdateUserLocation: optional method. The location object that’s returned is an
MKUserLocation. You can use its location property to retrieve the CLLocation repre-
sentation, as follows:

- (void)mapView:(MKMapView *)mapView didUpdateUserLocation:

➥ (MKUserLocation *)userLocation
{
 CLLocation *location = userLocation.location;
}

Next, you’ll see how you can add annotations to a map.

10.3.3 Using annotations in a map

An annotation is a view that’s used to mark a single coordinate on a map. You can use
annotations to mark specific points of interest. An example of an annotation is shown
in figure 10.16 to mark the location of Apple, Inc.

 To create an annotation you can use the MKPointAnnotation class. You’ll have to
specify a coordinate, title, and, optionally, a subtitle. If you had an instance variable of

a map named mapView, you could add an annotation using the addAnnotation:

243Introduction to the MapKit framework

method. Here you can see how you’d add an annotation for Apple’s headquarters in
Cupertino, California:

MKPointAnnotation *annotation = [[MKPointAnnotation alloc] init];
annotation.coordinate = CLLocationCoordinate2DMake(37.332, -122.031);
annotation.title = @"Apple, Inc.";
annotation.subtitle = @"1 Infinite Loop, Cuptertino, CA";

[mapView addAnnotation:annotation];

If you wanted to create your own custom annotation, you’d have to create a new class
that implements the MKAnnotation protocol. Suppose you wanted to create one
named IAAnnotation. You could use the code shown in the following listing.

@interface IAAnnotation : NSObject<MKAnnotation>

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, readonly) NSString *title;
@property (nonatomic, readonly) NSString *subtitle;

@end

The object that implements the MKAnnotation protocol must have at least a coordi-
nate, a title, and a subtitle. When you decide to use this in your application, you can
initialize it, set these properties, and add it to your map. You can also create custom
views by subclassing the MKAnnotationView class and adding them to the map view.

Listing 10.4 IAAnnotation custom class that implements the MKAnnotation protocol

Annotation

Figure 10.16 An annotation used to
display the location of Apple, Inc.
within the Maps application
 Now let’s add a map to your Speed Map application.

244 CHAPTER 10 Location and mapping with Core Location and MapKit

10.3.4 Adding a map to your application

You’re going to add a map that will display and track a user’s current location with a
heading. The first thing you should do is add the MapKit framework to your applica-
tion. Go to the project’s Build Settings tab and add MapKit.framework to the Linked
Frameworks and Libraries section, as shown in figure 10.17.

 Let’s now jump into Main.storyboard and look for Map View within the Object
Library on the bottom right of the window. Drag it into your view so that it com-
pletely covers what you currently have in place. Also ensure that its width and
height fill up the entire view. Next, open the attributes inspector and ensure that
Shows User Location is checked. Also mark this view as hidden. This is shown in fig-
ure 10.18.

 Open the assistant editor and create a new outlet for your map called mapView
in IAViewController.h. You’ll see an error that says “Unknown type name ‘MKMap-
View’.” You can fix this by importing the MapKit framework using the following
import statement:

#import <MapKit/MapKit.h>

Now jump back into the storyboard and look for a UIBarButtonItem in the Object
Library. You’re going to use this to add a button to the navigation bar to toggle the

Figure 10.17 Add MapKit.framework to Speed Map within the Link Binary With Libraries section in the
Build Settings.

245Introduction to the MapKit framework

map view. After you’ve found the bar button item, drag it to the top right of the navi-
gation bar and set its title to Toggle Map, as shown in figure 10.19.

 Once again, open the assistant editor and drag a connection to IAViewController.h
to create a new IBAction named toggleMap, as shown in figure 10.20.

 Now go to the implementation of IAViewController by opening IAViewCon-
troller.m from the project navigator. Add the following code to the bottom of the
viewDidLoad method to set the user tracking mode on the map:

[self.mapView setUserTrackingMode:MKUserTrackingModeFollowWithHeading];

Finally, add code to the toggleMap: action you created. Within the method definition
you’ll add code to hide or show the map depending on its previous state. The method
in its entirety is shown in the following listing.

 .

Figure 10.18 Add the map view on top of your view so that it fills up the entire width and
height. Ensure that it shows the user location and is hidden.

246 CHAPTER 10 Location and mapping with Core Location and MapKit

Figure 10.19 Add a bar button item to the navigation bar and set its title to Toggle Map.

Figure 10.20
Create a new
action for the bar
button item called
toggleMap within

IAViewController.h.

247Summary

- (IBAction)toggleMap:(id)sender
{
 [self.mapView setHidden:![self.mapView isHidden]];
}

You can now run the application and give it a try. Run the app in the Simulator and set
the debug location to Freeway Ride in Debug > Location within the application menu.
Your speed should start increasing and your location should change. Tap the Toggle
Map button, and you’ll see your location being shown and tracked on the map. If you
put this on a real device, the map will not only update with your current location but
will also rotate depending on your current heading.

10.4 Summary
In this chapter you learned about two frameworks, Core Location and MapKit, that
enable you to use location to provide a whole new level of interaction in your apps.
You learned how to retrieve location updates and reverse geocode location informa-
tion using the Core Location framework. You also saw how easy it is to map a user’s
location using the MapKit framework. Finally, you created an application that tied this
all together to show speed and location information as well as plot a user’s location on
a map. These are the key points to remember:

■ Location information is wrapped in a CLLocation instance.
■ The CLLocationManager lets you know of location updates depending on the

filters and settings you have in place.
■ It’s important to be mindful of battery drain when working with location moni-

toring on the device.
■ The iOS Simulator has built-in tools to help you debug real-life location scenarios.
■ You can reverse geocode location information using the CLGeocoder class.
■ The MapKit framework allows you to very quickly add full map integration into

your apps.
■ The MKMapView allows you to view maps in three different visual modes.
■ Annotations allow you to add detailed contextual information at a given point

on a map.

Listing 10.5 toggleMap: action to hide or show the map

Persistence and
object management

with Core Data
None of the apps that we’ve created together so far have used any type of local
persistence. The implication of this is that the data you store in your apps will
never be saved. If you quit an app and relaunch it, it won’t be able to retrieve any-
thing that you’ve created. Depending on the type of application you’re building,
you could store and fetch this data remotely on some server. The problem with
this would be making your users wait while you make a long request to retrieve

This chapter covers
■ Introduction to Core Data
■ Differences between Core Data and traditional

databases
■ Creating your Core Data model with

relationships
■ Creating, updating, deleting, and fetching

managed objects
■ Using a fetched results controller with

a table view
■ Creating a Core Data–backed task list

management app
248

249Introduction to Core Data

their data. Also, if they didn’t have an internet connection, you wouldn’t be able to
retrieve it for them.

 Thankfully, Apple has provided us with the Core Data framework. Core Data can
help us by allowing us to do object management and persistence within our apps. It’s
such a big and powerful framework that entire books have been written on Core Data
alone. We’ll cover many of the important parts—the parts that will allow you to write
your own Core Data–backed application by the end of the chapter.

 The application you’ll be creating will be one that will allow you to manage a list of
tasks. You could create a task list for work, personal errands, groceries—you name it.
Each list would contain its own set of tasks that could be marked as completed and
deleted. Figure 11.1 shows what it will look like.

 Coincidentally, your application will be named Core Tasks. It’s the perfect way
to remind you that this task application will be fully backed by Core Data. First
you’ll get more familiar with Core Data by finding out just what it is and what makes
it different.

11.1 Introduction to Core Data
Core Data is an object-graph and persistence framework provided by iOS: essentially, it
lets you persist data within your applications. This is especially useful when creating
applications that allow users to save data that they’d expect to see when the app is
closed and then relaunched later. One example is the task management app you’re
going to create. It would be a terrible experience for your users if the tasks they created

Figure 11.1 Core Tasks, the Core Data–backed task list management application
disappeared when they quit the application. You’ll learn how Core Data compares to

250 CHAPTER 11 Persistence and object management with Core Data

other persistence and storage solutions that you may be familiar with, and then you’ll
set up your application.

11.1.1 Differences between Core Data and traditional databases

Chances are you’ve worked with or have heard of SQL-based database solutions such
as MySQL, PostgreSQL, or SQLite. Both Core Data and SQL databases provide a means
of persistently storing and searching data. Core Data does this well because it’s backed
by SQLite. What makes Core Data different is the fact that it acts as a layer above tradi-
tional SQL databases that makes it easier for you to work with objects in your applica-
tion, in some ways similar to an ORM (object-relational mapping) tool.

 Imagine you have an application that catalogs people at specific companies. You
can have two types of objects, Employee and Company. The relationship between these
two objects would mimic real life by specifying that one company can have many
employees. This inherently means that an employee essentially belongs to a company.
In a traditional database there would be one table for employees and one for compa-
nies. Each table would contain rows of data for each individual record. For instance,
the companies table would have rows that contain records for each different company.
Each record within each table would have its own unique identifier, which is most
commonly represented by a number.

 You can think of the proposed database structure for this example as what’s shown
in figure 11.2.

 Each node in this figure would be a single column for each row within each table.
For example, if you had an employee named Bob, the row containing his information
would look like the following:

id: 42
name: Bob Johnson
company_id: 3

He works for a company named Punchkeep, which has the unique identifier of 3. It
would look like the following:

id: 3
name: Punchkeep

Each employee belongs to a single company. This is why Bob has a column called
company_id, which is set to 3. The company_id column on employees and the id col-
umn on companies can be used to define the relationship between the two objects.

Employees

name company_idid

Companies

nameid

Figure 11.2 Proposed database structure for two tables: employees and

companies. Each node is a column within a single row in each table.

251Introduction to Core Data

Using SQL you could find the company that Bob worked for by doing the following,
knowing only Bob’s unique identifier:

SELECT companies.* FROM companies, employees
WHERE companies.id = employees.company_id AND employees.id = 42;

This would return raw data to represent the company that Bob works for. You would
have to go through each column and manually create a new company object to repre-
sent Punchkeep. This is a decent amount of grunt work and can become very cumber-
some when you’re dealing with complex relationships among multiple objects. You
also have to worry about changing many things if you decide to add new columns or
rename existing ones. Also, what would happen if you were to delete the Punchkeep
company from your database? Bob would be left with a company_id value pointing to a
company that doesn’t exist anymore.

 This is where Core Data really shines with object management. Retrieving objects
is simple and doesn’t require a large amount of manual sifting through data to instan-
tiate a new object. For instance, you won’t need to retrieve each value for each record
and manually set it on a new instance of an object. As you’ll later see, Core Data will
do this for you. Also, relationships between objects are handled for you out of the box;
in the previous case where Punchkeep was deleted, Core Data could automatically
remove the orphaned employee entries for you. Saving and updating objects that are
backed by Core Data is simple as well. You’ll learn how to do all of this as you progress
through the app you’re building in this chapter.

11.1.2 What Core Data doesn’t do well

You should keep a few things in mind when choosing to use Core Data. Out of the
box there are some things that it doesn’t do well compared to other SQL-based data-
base solutions. The decision depends heavily on the type of application you’re try-
ing to build.

 Suppose you’re building an application that displays news articles from various
news sources. This list of articles could grow to a potentially large number. If you had
a feature that caused all news articles to be marked as read, it would require you to
update every single object in Core Data. For each object you need to update, Core
Data will have to load it into memory. This could potentially be an extremely memory-
intensive process if you don’t use advanced techniques to perform this action. Some
SQLite solutions that persist everything to disk don’t face this exact problem because
they don’t need to load large amounts of data into memory.

 Another limitation with Core Data is the specific data constraints. If you’re used to
using SQL databases, you may be familiar with using unique keys and values for spe-
cific columns. These would prevent multiple identical values from being stored in a
single table. For instance, you may have a users table where each user has a unique
username. This is how many websites restrict multiple people from having the same
username. With Core Data this isn’t handled for you automatically. Core Data expects

you to perform this validation on the business-logic side of your integration within

252 CHAPTER 11 Persistence and object management with Core Data

your app. But those limitations aside, Core Data does offer you a very tightly inte-
grated way to store, retrieve, and manage the objects in your applications. Now let’s go
set it up and start using it.

11.1.3 Setting up your application

To put Core Data to use, you’ll start by creating and setting up a new project in Xcode
called Core Tasks. You’ll create multiple task lists that will contain their own set of
tasks. Open up Xcode and create a new project using the Master-Detail Application
template. Name the project Core Tasks, and make sure that the Use Core Data option
is checked, as shown in figure 11.3.

 Because you used the Master-Detail Application template, Xcode automatically cre-
ated two separate view controllers for you, IAMasterViewController and IADetail-
ViewController. Xcode has also added a table view to the master view controller and
wrapped both of your views within a navigation controller.

 Look at your storyboard, and you’ll see that your views have already been set up for
you. In figure 11.4 you can see the navigation controller, a scene for your master view
controller, and one for the detail view controller.

 Since you chose to use Core Data, the application was set up to allow you to create
a new object from the master view controller and then view its information within the
detail view. Even if this isn’t exactly what you wanted, it sets up many things for you so

Figure 11.3 Create a new Master-Detail Application project named Core Tasks, and make sure
that the Use Core Data option is checked.

253Introduction to Core Data

that you only have to change a few items to get started. It also added the Core Data
framework for you, which you can see in the project’s build settings.

 For your needs the current setup of the master view controller will work perfectly.
You’ll use this view to create a new task list. Once a task list is created, it will be shown
within the table view. When you tap the task list, you should be taken to a new view
that will show a table view listing all of the tasks that belong to that list. Currently the
detail view controller contains only a label, not a table view. Let’s make that change
right now.

 First, jump into IADetailViewController.h and add an import for Core Data by add-
ing the following:

#import <CoreData/CoreData.h>

You’ll also notice that it was set up as a subclass of UIViewController. You want this to
use a table view to list tasks that belong to a list. Change the interface declaration such
that it specifies that your class is a subclass of UITableViewController, as shown here:

@interface IADetailViewController : UITableViewController

Also, you’ll see a property for an IBOutlet that was created for a UILabel, as follows:

@property (weak, nonatomic) IBOutlet UILabel *detailDescriptionLabel;

You can remove this line. You won’t need this anymore because you’ll be using a table
view, not a label, to display a list of tasks.

 Now jump into the implementation by opening IADetailViewController.m and

Figure 11.4 Our storyboard already contains a navigation controller and scenes for the master and
detail view controllers.
adding a few methods that are now required because this is a table view controller. To

254 CHAPTER 11 Persistence and object management with Core Data

start off with a good base, replace what’s contained within IADetailViewController.m
with the code shown in the following listing.

#import "IADetailViewController.h"

@interface IADetailViewController ()
- (void)configureView;
@end

@implementation IADetailViewController

#pragma mark - Managing the detail item

- (void)setDetailItem:(id)newDetailItem
{
 if (_detailItem != newDetailItem)
 {
 _detailItem = newDetailItem;
 [self configureView];
 }
}

- (void)configureView
{
 if (self.detailItem) {
 }
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self configureView];
}

#pragma mark - Table View

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView

➥ numberOfRowsInSection:(NSInteger)section
{
 return 0;
}

- (UITableViewCell *)tableView:(UITableView *)tableView

➥ cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView

➥ dequeueReusableCellWithIdentifier:@"Cell" forIndexPath:indexPath];
 return cell;
}

- (BOOL)tableView:(UITableView *)tableView

Listing 11.1 IADetailViewController.m
➥ canEditRowAtIndexPath:(NSIndexPath *)indexPath

255Managed objects, entities, relationships

{
 return YES;
}

- (void)tableView:(UITableView *)tableView

➥ commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

➥ forRowAtIndexPath:(NSIndexPath *)indexPath
{
}

- (BOOL)tableView:(UITableView *)tableView

➥ canMoveRowAtIndexPath:(NSIndexPath *)indexPath
{
 return NO;
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

@end

You’ll be updating most of the table view–related methods soon when you’re ready to
list, create, update, and delete tasks. Jump back into your storyboard and re-create the
scene for your detail view controller.

 Once you’re in the storyboard, select the existing scene for the detail view control-
ler and remove it completely. Instead of having to add a table view to a UIView-
Controller, you’re going to use a UITableViewController. This way you don’t need
to manually set up the table view’s outlet, data source, and delegate. Go to the Object
Library, find a table view controller, and drag it into the storyboard. Once you’ve
added it, go to the inspector and change its class to IADetailViewController. Finally,
create a new push segue from the prototype cell within the master view controller to
the detail view controller that will replace the one that was removed when you first
removed the scene. After you’ve added the segue, select it, and go to the attributes
inspector and set its identifier to showDetail, as shown in figure 11.5.

 Next, change the prototype cell type to Basic instead of Custom. Also set the reuse
identifier to TaskCell. This will be used when you’re displaying each individual task
for a list.

 While you’re still in the storyboard, change the title of the navigation bar in the
master view controller’s scene. Name the title Lists to convey that this will show the
lists you’ve created.

 You’ve now finished doing most of the initial setup for your project. You’re almost
ready to start setting up your data model in Core Data. Before you do so, it’s impor-
tant that you understand some key components.

11.2 Managed objects, entities, relationships
In Core Tasks you’ll store tasks that belong to a specific list. This involves two separate

entities: one for a task and one for a list. You need to be able to define properties for

256 CHAPTER 11 Persistence and object management with Core Data

each of these because you should be able to store the name of a list or a description
for a task and whether it’s been completed.

 How do you go about storing this information within Core Data? When working
with a database solution like MySQL, you’d create tables to represent each entity. Core
Data is structured a little differently, and you’ll soon see that Xcode provides you with
a simple but powerful interface to easily configure your data model. In the next sec-
tion you’ll learn how to persist the data crucial to your application by using managed
objects and contexts and how to create entities and relationships.

11.2.1 Managed object models and contexts

When thinking about a managed object context (context for short) or a managed
object model (MOM), try not to get lost in Apple’s verbose naming conventions, which

Figure 11.5 Add a new segue from the master view controller to your new detail view controller
scene. Once it’s been added, change the segue’s identifier to showDetail.
make it seem much more complicated than it actually is. All of the data you wish to

257Managed objects, entities, relationships

store in Core Data needs some place to live, just like people do. The context plays the
role of your data’s environment by being the gatekeeper to your data and keeping track
of its state. Without a context defined in your application, you won’t be able to access
any of your data because the context is what you’ll need to interact with. When you
retrieve data from your context, it will attempt to find it within a managed object model.

 A managed object model belongs to a context and contains your application’s
structured data. You can think of a MOM as the city or town that your data lives in; its
context is the state or country that your city is within. Also, just as there are many cities
within a state, there can be many MOMs within a single context.

 Each MOM instance contains entities, their properties, and their relationships. You
can see an overview of a managed object context and multiple managed object mod-
els in figure 11.6.

 In your app you’ll have two entities representing your data: a list and a task. Each
of them will have properties that describe different attributes specific to it.

 When a new MOM is created, it’s inserted into a context. When you’re working
with concurrency and using multiple threads, you’ll need to have multiple contexts
to ensure that everything is thread-safe. Note that it’s the context that performs
most of the magic for you with Core Data, such as creating, fetching, updating, and
saving the data.

 The context is responsible for all of your application data at runtime. When you
need to fetch, save, delete, update, or even undo changes to your data, you’ll be mak-
ing requests through the managed object context.

 When you created your project, Xcode already added code to set up an instance of
your managed object context and managed object model. If you open IAAppDelegate.m,
you’ll see a method called managedObjectContext, which returns an instance of an
NSManagedObjectContext, as shown in the following listing.

- (NSManagedObjectContext *) managedObjectContext

Listing 11.2 IAAppDelegate.m returns an instance of a managed object context

Entity

Managed object context

Managed object model Managed object model

Property PropertyProperty

EntityRelationship Relationship

PropertyProperty

Entity

PropertyProperty

Entity

Property

Figure 11.6 Overview of a managed object context and managed object models, which contain
entities, their properties, and relationships
{

Create
instan

NSMan
Ob
Con
258 CHAPTER 11 Persistence and object management with Core Data

 if(_managedObjectContext)
 return _managedObjectContext;

 NSPersistentStoreCoordinator *store = [self

➥ persistentStoreCoordinator];
 if(coordinator)
 {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:store];
 }

 return _managedObjectContext;
}

Running through this method, you can see that if you already have an instance of
_managedObjectContext you immediately return it B. If _managedObjectContext is
nil, you set up a new instance. First, you need a reference to the NSPersistentStore-
Coordinator from the method we went over previously in this chapter c. You then
create a new instance of NSManagedObjectContext and store it into your instance vari-
able d. After that, you set the persistent store to point to store e, and then you
return the newly created managed object context f. This code ensures that you have
only one instance of a managed object context within your application delegate class.

 The managed object context retrieved from this method is also passed to the mas-
ter view controller after the application is launched, as follows:

- (BOOL)application:(UIApplication *)application

➥ didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 UINavigationController *navigationController = (UINavigationController

➥ *)self.window.rootViewController;
 IAMasterViewController *controller = (IAMasterViewController

➥ *)navigationController.topViewController;
 controller.managedObjectContext = self.managedObjectContext;
 return YES;
}

Here you can see where the managedObjectContext property is set on the master view
controller B. As we mentioned earlier, the managed object context contains entities.
Let’s talk about entities, which are managed objects. They’re what you’ll be using to
represent the data you’re storing in your app.

11.2.2 Entities and managed objects

Entities are used to describe the objects that you want to store in Core Data. Each
entity is a subclass of NSManagedObject, which is a generic class that outlines the struc-
ture of the data within your entity.

 One new type of file was created for you when you created your Core Tasks project.
Open the project within Xcode again. In the project navigator you should see a file

If NSManagedObjectContext
already created, return it.

b

Retrieving reference to
persistent store coordinator.

c

 a new
ce of a
aged-
ject-
text.

d

Add the
persistent store
to the managed
object context. e

Return the managed
object context.F

Setting the managed object context
on the master view controller b
named Core_Tasks.xcdatamodeld. This data model contains all of the details of each

259Managed objects, entities, relationships

entity that you’ll be storing using Core Data. The template used to create this project
already set up a basic Event entity, as shown in figure 11.7.

 Let’s examine the different parts of this data model editor by going through each
numbered part of figure 11.7.

1 Add Entity—Create a new entity in your data model.
2 Entities—List of all entities within your data model.
3 Attributes—NSAttributeDescription—Properties for an entity represented by

a specific data type such as an NSString, NSNumber, NSDate, or NSData.
4 Relationships—NSRelationshipDescription—Property that represents a rela-

tionship or connection to another entity.
5 Fetched Properties—NSFetchedPropertyDescription—Properties that are dynami-

cally retrieved through a relationship, search, or a conditional statement.

One important thing to note is that attributes, relationships, and fetched properties are
three specific types of items that belong to an entity. You’ll be setting up some of these
right now. First, remove the Event entity by selecting it and hitting the Delete key on
your keyboard.

 Now you’ll create your first entity for your project to represent a list of tasks. Click
Add Entity and name this new entity List. As it stands now, it has no declared attri-
butes, which means that there is nothing you can store for a list.

 What attributes will you need to represent each instance of a list? You’ll need just
one, which will be the name of the list itself, which should be an NSString. An attribute

1

2
3

4

5

Figure 11.7 Our data model, which shows an entity named Event that was set up for us by the
application template used to create the project
can also be declared as optional or required. If an attribute is required, the managed

260 CHAPTER 11 Persistence and object management with Core Data

object context won’t allow you to save this list if this attribute is not set. You can also
set a default value for an attribute, just in case nothing is specified for it. The attribute
you’ll be setting for the List entity is shown in table 11.1.

Select the List entity and then click the + button within the Attributes section of the
editor to add a new attribute, as shown in figure 11.8.

 When you add a new attribute, you can set its type to the right of its name. Use the
inspector in the right of the data model editor window to expose more advanced
options to declare an attribute as required (unchecking Optional).

 Let’s create another entity to represent a task. As shown in table 11.2, it will have
two attributes to represent the task: one will be a description or summary of the task,
and one will represent whether or not it has been completed.

Table 11.1 Attribute properties for the List entity that represents a list of tasks

Name Type Optional Default value

name String No None

Table 11.2 Attribute properties for the Task entity of a summary of a task

Name Type Optional Default Value

summary
completed
created

String
Boolean
Date

No
No
No

None
NO
None

Figure 11.8 Click the + button on the bottom left of the Attributes section of a specific entity to add

an attribute.

261Managed objects, entities, relationships

Create a new entity named Task using these attributes.
 After you’ve added the entity for your tasks and lists, you’re still not fully finished.

You know that a list will have its own set of tasks. You’ll define this by creating a rela-
tionship for each entity in your data model.

11.2.3 Relationships between entities

Using Core Data you can also create relationships between objects represented by
your entities. Relationships are defined as properties on an entity. You’ll have to give
each relationship that you set a specific name and information as to how the relation-
ship works so that Core Data knows how to handle your data. These items are
described here:

■ Destination entity—A relationship is between one or two entities. The destination
entity is the other entity involved in the relationship you’re creating. If you create
a task and one of the properties is a list, that list will point to a specific List entity.

■ Inverse relationship—An existing relationship on the destination entity that can
be used to relate back to the entity you’re creating the new relationship on. For
example, if a list has many tasks, the inverse would be the relationship that
defines the specific list that contains a task.

■ Delete rule—What to do with relationship data after the owner has been deleted.
If a list has many tasks and then the list is deleted, should Core Data delete all of
its tasks automatically? You can tell Core Data how it should handle this situa-
tion for you so that there are no orphaned objects.

You’ll start by creating a relationship on your List entity. Create a relationship named
tasks with its destination entity as Task. In the attributes inspector mark it as a To Many
relationship because there are many tasks for one list. Next, set the delete rule to Cascade
because you don’t wish to keep the tasks if the record for the list that owns them is deleted.
This will go through the list’s tasks and delete them all. This is shown in figure 11.9.

 Right now there is no inverse relationship specified for the tasks relationship you
just created. If you were to click the drop-down underneath Inverse, you’d see that there
is nothing to choose. You’ll first need to create a new relationship on the Task entity that
has the destination as a List to be able to choose it as the inverse relationship.

 Go to the Task entity and create a relationship named list, with its destination set
to List. It’s not a To Many relationship because there’s only one list for each task. Also,
for the delete rule, specify No Action because you shouldn’t delete a list if you delete
only one of the tasks. Once you’ve added this, go back to the List entity and set the
inverse relationship for tasks to list. This allows you to retrieve a list’s tasks and go
backward and retrieve the list that owns an instance of a particular task.

 You can get a better picture of your entities and their relationships by changing
the editor style of the data model editor. Figure 11.10 shows a UML (unified modeling
language) representation of our entities and their relationships after switching the

editor style on the bottom right-hand side of the window.

262 CHAPTER 11 Persistence and object management with Core Data

Figure 11.9 Adding a To Many relationship for tasks on the List entity

Figure 11.10 The List and Task entities and their relationships shown as a UML representation by
switching the editor style in Xcode

263Managed objects, entities, relationships

This gives you a better visual overview of the relationships between the entities in your
data model. By looking at the arrows drawn outward from each relationship, you can tell
which one is a To Many versus a Single relationship. The double arrow signifies that a
particular relationship has the cardinality of To Many as opposed to a single arrow.

 You’ve now finished setting up attributes and relationships for your entities. Next, you’ll
see how to easily generate new files based on your entities to add them to your project.

11.2.4 Generating managed object classes for your entities

Xcode can automatically generate managed object subclasses for you based on the
entities in your data model and add them to your project. It’s required that you do
this and add these classes to represent your entities. You’ll need to switch your editor
style back to a table view instead of the graph that showcased the relationships
between your entities on the bottom right-hand corner of the window. Start by select-
ing all of the entities in your data model. Next, go to the application menu bar and
choose Editor > Create NSManagedObject Subclass, as shown in figure 11.11.
Figure 11.11 Creating NSManagedObject subclasses based on your data model’s entities

264 CHAPTER 11 Persistence and object management with Core Data

You’ll be asked to select the data models with the entities you’d like to manage. There
should be only one option, Core_Tasks. Make sure it’s selected, and then click Next.
You’ll then be asked to verify that List and Task are the entities that you want to man-
age. Because they are, make sure that they’re selected and click Next again. The next
window that will pop up will ask you where you want them saved. Save them within
your Core Tasks project folder, and make sure that the Core Tasks target is checked, as
shown in figure 11.12.

 When you have finished, you should have two new classes added to your project for
lists and tasks. Look at the interface for the List class by opening List.h from the proj-
ect navigator; the interface is shown in the following listing.

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Task;

@interface List : NSManagedObject

@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSSet *tasks;

Listing 11.3 Interface for generated List class

Figure 11.12 Save the generated files within the Core Tasks folder, and make sure that the Core Tasks
target is selected.
@end

265Working with managed objects

@interface List (CoreDataGeneratedAccessors)

- (void)addTasksObject:(Task *)value;
- (void)removeTasksObject:(Task *)value;
- (void)addTasks:(NSSet *)values;
- (void)removeTasks:(NSSet *)values;

@end

Notice in listing 11.3 that there are many predefined methods that have to do with
adding and removing tasks that belong to a list. If you were to look at Task.h, you’d see
that these methods aren’t there. This is because of the tasks relationship that you
added, which told Core Data that there could be many tasks for one list.

 Next, take a look at the implementation by opening List.m. You should see the
code shown in the next listing.

#import "List.h"
#import "Task.h"

@implementation List

@dynamic name;
@dynamic tasks;

@end

What may be shocking is that even though many methods were defined in the inter-
face, the implementation is handled for you by Core Data. Also notice that your prop-
erties are using @dynamic rather than @synthesize. This tells the compiler that the
getter and setter methods are not generated by your class but are generated some-
where else instead, specifically by Core Data. For example, to create a new instance of
List and programmatically set the value of the name property, you would normally do
the following:

List *list = [[List alloc] init];
list.name = @”Groceries”;

Because you don’t have getter and setter methods defined in the class, you can rely on
key-value coding to help you set values for properties on an entity. You can do this by
using the setValue:forKey: method:

List *list = [[List alloc] init];
[list setValue:@"Groceries" forKey:@"name"];

You’re now finished setting up the entities for your Core Tasks app. Let’s see how you
can use these managed objects that you’ve created with Core Data. By doing so, you can
also continue building your app.

11.3 Working with managed objects
You’ll now be able to use the managed objects classes you created for the List and Task

Listing 11.4 List.m

Add a single
task to a list.

Remove a
single task
from a list.

Add a set
of tasks.

Remove a set of tasks.
entities by creating, updating, and deleting instances of them within Core Data inside

C
a

UIAle
V

inst
g

ce
266 CHAPTER 11 Persistence and object management with Core Data

your application. This means you get to dive back into your code and modify what
Xcode has already set up for you in your project. First, you’ll learn how to create a new
managed object instance and save it. You’ll then learn how to update it and then
remove it.

11.3.1 Creating, updating, and deleting managed objects

Earlier we discussed how managed objects belong to a managed object context. We
also showed how a reference to the managed object context from your application
delegate was passed to the master view controller. You’ll be referencing this managed
object context when you work with your data. Remember, the managed object context
is essentially the gatekeeper that manages your objects in Core Data.

CREATING MANAGED OBJECTS

Let’s quickly see how you’d create a new list in your Core Tasks application. Bring up
Xcode once again and open IAMasterViewController.h. You’re first going to declare
that you conform to the UIAlertViewDelegate protocol. You’re adding this because
you’ll be using a UIAlertView with a text field to let users create a new list. Once
you’ve added it, hop into IAMasterViewController.m. Add the following import state-
ment to bring in the class for your List entity.

#import "List.h"

Underneath the imports, add the following line, which will be used to tag the alert
view that you’ll be showing.

#define kAlertNewList 1000

Next, you need to find the insertNewObject: method that was generated for you.
This method is called when the bar button item on the top right is tapped to create a
new object in Core Data. Replace this method with that shown in the following listing.

- (void)insertNewObject:(id)sender
{
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Create List"
 message:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"Save",

➥ nil];

 [alert setTag:kAlertNewList];
 [alert setAlertViewStyle:UIAlertViewStylePlainTextInput];
 [alert show];
}

Here you first create a new UIAlertView instance that asks your users for a new name
for a list they want to create B. You then set the tag property c so that you can refer-

Listing 11.5 UIAlertView to ask for a new list name in insertNewObject:

reate
 new
rt-
iew

ance.

b

Set a ta
on it to
referen
it by.

c

Set the alert
type to have
a text view.dShow the alert view.e
ence this alert view within its delegate method. Next you set the alert view style d to

267Working with managed objects

UIAlertViewStylePlainTextInput so that it has a text field to supply a name for the
list. Finally, you show the alert view e.

 What you want to do now is add the delegate method that’s called when the
UIAlertView is dismissed. Add the following method underneath the insertNew-
Object: method.

- (void) alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex

{
 if (alertView.tag == kAlertNewList && buttonIndex !=

➥ alertView.cancelButtonIndex)
 {
 UITextField *textField = [alertView textFieldAtIndex:0];
 if ([textField.text length] == 0)
 return;

 List *newList = [NSEntityDescription

➥ insertNewObjectForEntityForName:@"List"

➥ inManagedObjectContext:self.managedObjectContext];

 [newList setValue:textField.text
 ➥ forKey:@"name"];

 NSError *error = nil;
 if (![self.managedObjectContext save:&error])
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 }
}

You first check to see if the alert view you’re inspecting is the right one by comparing
its tag and making sure that the user did not click the Cancel button B. You then
retrieve a reference to the text field from the alert view c and check if the user
entered anything d. After that you instantiate a new instance of a managed object
context that represents a new list e in the managed object context. Using the text
field text value, you set the name on your managed object f and then save it g using
the managed object context.

 The biggest takeaways from this method are the following lines. Let’s first look at
when you actually instantiated a new List using the NSEntityDescription class:

List *newList = [NSEntityDescription insertNewObjectForEntityForName:@ "List"
inManagedObjectContext:self.managedObjectContext];

This inserted a new List object in the managed object context you passed in that has
the entity name List. If this entity name did not exist, you would have gotten an error.
It’s because you actually have a List entity in your data model that Core Data knew
how to handle this.

 When you wanted to save the new list, you had to call the save method using the

Listing 11.6 Creating and saving a new List after the alert view is dismissed

Check alert view by
checking the tag and
verifying that the user
did not hit Cancel.

b

Retrieve a
reference to
the text field
from the
alert view.

c

Check if user
entered in any
text; if not return.d

Create a new managed
object instance for a List.e

Set the name
property on the list.f

Save the managed object context. g
managedObjectContext property, because you used this managed object context

ity
268 CHAPTER 11 Persistence and object management with Core Data

when you instantiated a new managed object. How about updating them once they’ve
been created?

UPDATING MANAGED OBJECTS

If you wanted to update the new list that you created, it’d be even easier. If you still
had a reference to the managed object, you’d only need to use the setValue:forKey:
function to update the value of an attribute. For instance, after you saved the newList,
you could add the following to change its name attribute:

[newList setValue:@"Another name" forKey:@"name"];

NSError *error = nil;
if (![self.managedObjectContext save:&error])
 NSLog(@"Error updating List: %@, %@", error, [error userInfo]);

All you had to do was save the managed object context again after the changes were
made. Quite simple isn’t it? How about deleting?

DELETING MANAGED OBJECTS

To be able to delete a managed object instance, you’d have to tell your managed
object context that you want to delete a specific item. Once again, the managed object
context acts as the owner of your managed objects. Using the same newList instance,
you could do the following to delete it:

[self.managedObjectContext deleteObject:newList];

NSError *error = nil;
if (![self.managedObjectContext save:&error])
 NSLog(@"Error deleting List: %@, %@", error, [error userInfo]);

All you’re doing here is calling the deleteObject: method on your managed object
context and passing in newList as the object that you want to remove. You then call
the save: method again to make sure that this change is persisted.

 You’ve seen how to create, update, and delete managed objects; now you’ll learn how
to fetch them from Core Data so that you can list them in the master view in your app.

11.3.2 Using fetch requests to retrieve managed objects

What good would Core Data be if you could save objects but couldn’t retrieve them?
Retrieving saved objects isn’t as simple as updating or deleting, but you’ll see that it’s
not that complicated. The simplest way to retrieve objects is by using an NSFetch-
Request. The following example shows how you can create a fetch request to retrieve
all of the lists stored in Core Data:

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:

➥ @"List" inManagedObjectContext:self.managedObjectContext];
[fetchRequest setEntity:entity];

NSError *error = nil;
NSArray *lists = [self.managedObjectContext

Create a new
fetch request.

b

Create an ent
description
for lists.

c

Set the entity on
the fetch request.d

Execute the e

➥ executeFetchRequest:fetchRequest error:&error]; fetch request.

269Working with managed objects

When fetching objects you first need to instantiate a new NSFetchRequest B. You
then create an entity description for the entity you want to retrieve with a reference to
its managed object context c. Next, you set the entity on the fetch request d. The
last thing you need to do is execute the fetch request on the managed object context
by calling executeFetchRequest:error: e. This will return an array that contains all
managed object instances for your specified entity. In this case it would return all of
your lists.

 Chances are you may encounter a situation where you wouldn’t want to return all
elements stored in Core Data for a specific entity. The simplest thing you can do is
limit the number of objects returned in the fetch request. Specifying a fetch limit as
follows allows you to do just that.

[fetchRequest setFetchLimit:20];

By doing this, you’d be limiting the total number of objects returned to 20. If you
wanted to only load 20 at a time, you could also set an offset so that the next time you
fetch you could return the next 20. This is useful when doing pagination, which would
allow the user to load more objects to display as they scroll down. You can do this by
typing the following:

[fetchRequest setFetchOffset:20];

It’s also possible to change the ordering of the objects returned from the fetch
request. For example, if you were making an address book application, you’d want to
be able to sort in alphabetical order. You could do this by using a sort descriptor
(NSSortDescriptor). To be able to sort lists by their name in descending order, you
could add a sort descriptor to your fetch request, like this:

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

➥ initWithKey:@"name" ascending:NO];
[fetchRequest setSortDescriptors:@[sortDescriptor]];

You can create a sort descriptor by using the initWithKey:ascending: method. The
key you’re passing in is the attribute on your entity that you want to sort by. In this
case, it’s name, which is the name of your list. You’re saying that you want it listed in
descending order. When you add it to your fetch request, notice that it expects an
array of source descriptors. This means that you can add multiple sort descriptors to
your fetch request.

 Next, you’ll learn how to do advanced filtering using predicates.

11.3.3 Filtering results using predicates

Predicates (NSPredicate) can be used to filter arrays unrelated to Core Data. They’re
useful when you want to filter data stored in an array. It is, however, the easiest way for
you to filter the results that you retrieve when making a fetch request. If you have an
understanding of SQL, you can think of it as the conditional when making a SELECT
statement. To illustrate this, you’ll create a local array of strings that you’ll use to filter

using predicates.

270 CHAPTER 11 Persistence and object management with Core Data

 We’ll start off with an example of an array that contains names of people that we’ve
added to an NSArray named names. This will give you an easy data set that you can use
to filter using predicates:

NSArray *names = @[@"Spencer", @"Brent", @"Pradeep", @"Wells", @"Michael"];

Using various predicate conditions, you can see just what names would be returned, as
shown in table 11.3.

You can create these by using NSPredicate’s predicateWithFormat: class method
and apply it to an array, as shown here:

NSPredicate *predicate = [NSPredicate

➥ predicateWithFormat:@"name == 'Spencer'];
[names filterUsingPredicate:predicate];

After the predicate is applied, only the names that match are left in the array. You can
use predicates similarly when creating fetch requests by using the setPredicate:
method on a fetch request instance. There are many different ways of filtering using
predicates. It’s highly recommended that you refer to Apple’s Predicate Programming
Guide (http://mng.bz/vAHR) for a complete list of different conditions you can specify.

11.3.4 Using a fetched results controller to manage results
in a table view

The job of a fetched results controller (NSFetchedResultsController) is to help you
efficiently manage the lifecycle of managed objects within a table view—when they’re
created, updated, or removed. If you take a look at the code in the master view con-
troller, you’ll see a couple autogenerated methods referencing a fetched results control-
ler. Fetched results controllers also monitor changes to objects in a managed object
context. They report these changes to a delegate, which can then notify a table view to
update so that it reflects the new changes. For example, if you delete an item in the
table view, it should not only visually disappear but also be removed from Core Data.
There’s also an option to cache the results of the fetch so that if the same data is
fetched multiple times, it doesn’t need to be refetched from Core Data.

 Typically, a fetched results controller is an instance variable on a table view control-

Table 11.3 Different predicates applied to the names array to see what names would be returned with
each different condition

Predicate Filtered names

name == 'Spencer' Spencer

name like[c] '*en*' Spencer, Brent

(name ==[c] 'Pradeep') OR (name like[c] '*s') Pradeep, Wells

(name beginswith 'M') OR (name contains[c] 'r') Michael, Spencer, Brent, Pradeep
ler. This is evident in IAMasterViewController where a fetchedResultsController

http://mng.bz/vAHR
http://mng.bz/vAHR

-

Per

f

271Working with managed objects

property was generated for you. Open Xcode and take a look at its implementation by
finding the getter method fetchedResultsController. Replace the contents of this
method with what’s shown in the next listing.

if (_fetchedResultsController != nil)
 return _fetchedResultsController;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription

➥ entityForName:@"List"

➥ inManagedObjectContext:self.managedObjectContext];
[fetchRequest setEntity:entity];

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

➥ initWithKey:@"name" ascending:YES];
[fetchRequest setSortDescriptors:@[sortDescriptor]];

NSFetchedResultsController *fetchedController = [[NSFetchedResultsController
alloc] initWithFetchRequest:fetchRequest

➥ managedObjectContext:self.managedObjectContext

➥ sectionNameKeyPath:nil

➥ cacheName:@"Master"];

fetchedController.delegate = self;
self.fetchedResultsController = fetchedController;

NSError *error = nil;
if (![self.fetchedResultsController performFetch:&error])
{
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
}

return _fetchedResultsController;

In this method you first check to see if you’ve already created a fetch request control-
ler B. If so, you just return it instead of re-creating it. You then create a fetch request
for your List entity and set it to sort by name in ascending order c. Next, you instanti-
ate a new fetchedController with the fetch request, supply your managed object
context, and specify a cache named Master that will hold your results d. You then set
your master view controller as the delegate e and set the fetchedResultsController
property to fetchedController f. Finally, you perform the fetch on the fetched
results controller g.

 When your controller was generated it was specified to conform to the
NSFetchedResultsControllerDelegate protocol. When the fetched controller gets
a notification of a change on one of its result objects, it will call a few delegate meth-
ods to let you know of this. In these methods you can update the table view accord-
ingly. Let’s quickly go over a few key delegate methods that have been implemented

Listing 11.7 fetchedResultsController getter method updating for fetching lists

Check if fetched results
controller already exists.b

Create fetch
request and
set sort
descriptors.

c

Create new
fetched results
controller.

d

Set your
class as the
delegate.

e

Point fetched
Results-
Controller
to fetched-
Controller.f

form
the

etch. g
for you:

272 CHAPTER 11 Persistence and object management with Core Data

■ controllerWillChangeContent:—Notifies delegate that the fetched results
controller is about to process a change due to an object being added, removed,
moved, or updated.

■ controller:didChangeObject:atIndexPath:forChangeType:newIndexPath:—
Notifies delegate that the fetched results controller did already change an object
at a specific index path. The change type lets you know if an object’s been
added, removed, moved, or updated. You’re also supplied with a new index
path if the index path of the object changes or is newly inserted.

■ controllerDidChangeContent:—Notifies delegate that the fetched results con-
troller has finished making changes.

Taking a look at the implementation of one of these methods can help you better
understand just how it helps you. In IAViewController.m find the controller:did-
ChangeObject:atIndexPath:forChangeType:newIndexPath: method. It’s shown in
the following listing, and we’ll explain just what’s happening.

- (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath
{
 UITableView *tableView = self.tableView;

 switch(type) {
 case NSFetchedResultsChangeInsert:
 [tableView insertRowsAtIndexPaths:@[newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeDelete:
 [tableView deleteRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;

 case NSFetchedResultsChangeUpdate:
 [self configureCell:[tableView cellForRowAtIndexPath:indexPath]
 atIndexPath:indexPath];
 break;

 case NSFetchedResultsChangeMove:
 [tableView deleteRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationFade];

 [tableView insertRowsAtIndexPaths:@[newIndexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 break;
 }

Listing 11.8 Fetched results controller notifying you an object has changed

Object added—
insert it into
table view.

b

Object deleted—
remove from table view.

c

Object changed—
reconfigure the cell.

d

Object moved—remove
old row and add new row.

e

}

273Working with managed objects

Here you can see the different cases for when the results of a fetched results control-
ler are modified. If a new object is added, you insert a new row for it in the table
view B. If it’s been removed, you remove it from the table view c. When an object is
updated, you reconfigure the cell for that object in the table view d. Lastly, if an
object is moved to a new position, you remove the old row and insert it at the new
index path e.

 You can see just how it works by making one quick change to your master view con-
troller. You’ve updated all necessary methods except for configureCell:atIndex-
Path:. This method still contains code specific to the event example that was supplied
when you generated the project. Change the content of this method to what’s shown
here so that you can display the name of the list within its cell:

- (void)configureCell:(UITableViewCell *)cell

➥ atIndexPath:(NSIndexPath *)indexPath
{
 List *list = [self.fetchedResultsController

➥ objectAtIndexPath:indexPath];
 cell.textLabel.text = list.name;
}

Lastly, let’s replace the prepareForSegue method with what’s shown here. This will be
in preparation for the next section.

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if ([[segue identifier] isEqualToString:@"showDetail"])
 {
 NSIndexPath *indexPath = [self.tableView indexPathForSelectedRow];
 List *list = [[self fetchedResultsController]

➥ objectAtIndexPath:indexPath];

 [[segue destinationViewController] setValue:list

➥ forKey:@"detailItem"];
 [[segue destinationViewController]

➥ setValue:self.managedObjectContext forKey:@"managedObjectContext"];
 }
}

Now you can run the app and start creating a few lists of your own. Tap the + button
on the top right and add a new list with a name of your choice. In figure 11.13 you can
see that you can create a new list named Personal and have it automatically listed in
your table view.

 You can also trigger the Edit function of the table view to remove a specific list.
Also, you can swipe to delete if you’d like. Whenever you make any of these changes,
your fetched results controller informs your table view controller how to display the
correct content.

 Give yourself a big old pat on the back! You’ve just made a fully functional Core
Data–backed application. You’re almost finished with it. You just need to modify your

detail view controller so that it can create a task and add it to a list using a table view.

274 CHAPTER 11 Persistence and object management with Core Data

11.3.5 Adding and removing tasks from a list

Quickly jump into IADetailViewController.h so that you can make the changes you
need to start creating tasks. Much of what you’ll be adding we’ve already covered in
the previous sections. We’ll go over a few key points that cover how to add and remove
tasks from a specific list. First, replace the contents of IADetailViewController.h with
the code shown in the following listing.

#import <UIKit/UIKit.h>
#import <CoreData/CoreData.h>
#import "List.h"

@interface IADetailViewController : UITableViewController

➥ <UIAlertViewDelegate>

@property (strong, nonatomic) List *detailItem;
@property (strong, nonatomic) NSManagedObjectContext *managedObjectContext;

@end

First, you import the List class to replace the generic NSManagedObject property. You
also change this class to be a delegate of UIAlertView and add a property for a man-
aged object context. The detailItem and managedObjectContext properties are set

Listing 11.9 IADetailViewController.h

Figure 11.13 When a new list is added, it will automatically appear in your table view. You can also
trigger the Edit function of the table view to remove a list.
from the master view controller’s prepareForSegue: method.

275Working with managed objects

 Next, hop into IADetailViewController.m and replace your code with what’s
shown in the next listing to give you a clean base to start with. We’ll be filling out
this class together.

#import "IADetailViewController.h"
#import "IAAppDelegate.h"
#import "Task.h"
#import "List.h"

@interface IADetailViewController ()
- (void)configureView;
@end

#define kAlertNewTask 1002

@implementation IADetailViewController

- (void)setDetailItem:(id)newDetailItem {
 if (_detailItem != newDetailItem) {
 _detailItem = newDetailItem;

 [self configureView];
 }
}

- (void)configureView
{
 if (self.detailItem)
 {
 self.title = [self.detailItem valueForKey:@"name"];
 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]

➥ initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

➥ target:self

➥ action:@selector(insertNewObject:)];
 self.navigationItem.rightBarButtonItem = addButton;

 }
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self configureView];
}

@end

What you’ve just pasted into your implementation of IADetailViewController con-
tains three methods that are already filled out for you. The first one is setDetail-
Item:, which is the setter method for the list that owns all of the tasks shown within
this view controller. The other method is configureView, which is similar to what you
have in the master view controller. You’re setting the title of the view to the name of
the list that was clicked to launch this view. You’re then adding a button on the top

Listing 11.10 IADetailViewController.m
right that will call a method called insertNewObject:.

Save
t

obj
276 CHAPTER 11 Persistence and object management with Core Data

 The insertNewObject: method will work just like the one you used in the previous
view controller. You’ll show an alert view that will prompt for a summary for the new
task. Add the following insertNewObject: method:

- (void)insertNewObject:(id)sender
{
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Create Task"
 message:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"Save", nil];
 [alert setTag:kAlertNewTask];
 [alert setAlertViewStyle:UIAlertViewStylePlainTextInput];
 [alert show];
}

Next, you’ll need to add the delegate method for the UIAlertView that you’re showing.
This delegate method is triggered when the alert is dismissed. Add the alertView: did-
DismissWithButtonIndex: method using the code shown in the following listing.

- (void) alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex

{
 if (alertView.tag == kAlertNewTask && buttonIndex !=

➥ alertView.cancelButtonIndex)
 {
 UITextField *textField = [alertView textFieldAtIndex:0];
 if ([textField.text length] == 0)
 return;

 Task *newTask = [NSEntityDescription

➥ insertNewObjectForEntityForName:@"Task"

➥ inManagedObjectContext:self.managedObjectContext];

 [newTask setValue:textField.text forKey:@"summary"];
 [newTask setValue:[NSDate date] forKey:@"created"];
 [newTask setValue:@(NO) forKey:@"completed"];

 [self.detailItem addTasksObject:newTask];

 NSError *error = nil;
 if (![self.managedObjectContext save:&error])
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 [self.tableView reloadData];
 }
}

You’re creating a new task managed object B and setting its summary c, created d,
and completed e attributes. You then add it to your list by calling the addTasksObject:
method, passing in our new task f. The managed object context is then saved g and

Listing 11.11 Delegate method for the alert view that will create a new task

Create a new task
managed object.

b

Set the summary
value using the
text supplied.

c

Set the created
value to the
current date.d

Set the task
as not yet

completed. e
Add the task
to the list.f

 the task in
he managed
ect context. g

Reload our
table view.h
you reload your table view h.

277Working with managed objects

 Speaking of table views, it’s time to start setting up the data source and delegate
methods. First, you’re going to set up a method called allTasks, which will return an
array of ordered tasks using the tasks relationship on a list. Add the allTasks
method using the following code:

- (NSArray *)allTasks
{
 NSSortDescriptor *completed = [NSSortDescriptor

➥ sortDescriptorWithKey:@"completed" ascending:YES];
 NSSortDescriptor *created = [NSSortDescriptor

➥ sortDescriptorWithKey:@"created" ascending:NO];

 return [self.detailItem.tasks sortedArrayUsingDescriptors:@[completed,

➥ created]];
}

All you’re doing here is creating two separate sort comparators. These sort compara-
tors are then passed into the sortedArrayUsingDescriptors: method on the tasks
property of your list. This will cause the array of tasks to be sorted by first showing the
incomplete tasks and then ordered by created date in descending order.

 Now add the following table view methods to let it know how many sections and
rows there are:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView

➥ numberOfRowsInSection:(NSInteger)section
{
 return [[self allTasks] count];
}

You’ll also allow for this table view to be edited, but it won’t allow rows to be manually
reordered. Add the following delegate methods:

- (BOOL)tableView:(UITableView *)tableView

➥ canEditRowAtIndexPath:(NSIndexPath *)indexPath
{
 return YES;
}

- (BOOL)tableView:(UITableView *)tableView

➥ canMoveRowAtIndexPath:(NSIndexPath *)indexPath
{
 return NO;
}

Next, to display each row in the table view, you need to implement the tableView:
cellForRowAtIndexPath: method. Add the following code to your class:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 UITableViewCell *cell = [tableView

R
com

ry
if

e

ext.

the
e
ted.
278 CHAPTER 11 Persistence and object management with Core Data

➥ dequeueReusableCellWithIdentifier:@"TaskCell"

➥ forIndexPath:indexPath];

 [self configureCell:cell atIndexPath:indexPath];

 return cell;
}

Here you’re using the TaskCell reuse identifier you set for your view’s prototype cell.
You’re then calling configureCell:atIndexPath: and returning the cell. All of the
real work for customizing your cells is done within that method. Add it using the fol-
lowing code:

- (void)configureCell:(UITableViewCell *)cell atIndexPath:(NSIndexPath

➥ *)indexPath
{
 Task *task = [[self allTasks] objectAtIndex:indexPath.row];

 BOOL completed = task.completed;
 cell.textLabel.text = [task valueForKey:@"summary"];

 if (completed)
 [cell setAccessoryType:UITableViewCellAccessoryCheckmark];
 else
 [cell setAccessoryType:UITableViewCellAccessoryNone];
}

At the beginning of this method you retrieve the appropriate task that needs to be
rendered within a cell B. You then check to see if it’s been completed c and set the
cell to display the summary value of the task d. Lastly, if it’s completed, you show a
checkmark as the accessory view e. If it’s not completed, you don’t show anything f.

 How do you mark a task as completed? All you have to do is tap on it to mark it as
completed or uncompleted. This is done within the tableView:didSelectRowAt-
IndexPath: method. Add the following to your view controller:

- (void) tableView:(UITableView *)tableView

➥ didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 Task *task = [[self allTasks] objectAtIndex:indexPath.row];
 task.completed = @(!task.completed);

 NSError *error = nil;
 if (![self.managedObjectContext save:&error])
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 [self.tableView deselectRowAtIndexPath:indexPath animated:YES];
 [self.tableView reloadData];
}

When a row is selected you first retrieve the task B. You then set the completed value
to the opposite of its current value c. After that’s been set, you save it on the managed
object context d. You then deselect the row e and reload the table view f to reflect

Retrieve the task within the allTasks array. b

etrieve
pleted
value. c

Set the text label to be
the summary value.d

Set accesso
checkmark
completed.e

Set accessory blank
if not completed. f

Retrieve
selected task.

b

Change th
completed
property.

c

Save change to the
managed object cont

d

Deselect
row you’v
just selec

e

Reload the table view.f
your changes.

o

279Working with managed objects

 The last method you need to implement is the one to delete a task if someone
slides to delete it from the table view. This method will remove it from the list that
owns it and will remove it from the managed object context. Add this method to your
class using the following code:

- (void)tableView:(UITableView *)tableView

➥ commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

➥ forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 Task *task = [[self allTasks] objectAtIndex:indexPath.row];
 [self.detailItem removeTasksObject:task];

 NSError *error = nil;
 if (![self.managedObjectContext save:&error])
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 [self setEditing:NO animated:YES];
 [self.tableView reloadData];
 }
}

You first check to see if you’re in editing mode and deleting B. If so, you retrieve the
task that you want to remove c and delete the object from your managed object con-
text using the removeTasksObject: method of List, so your detailItem is up to date d.
After saving your changes e you exit edit mode f and reload your table view g.

 That’s it! Cue a round of applause, balloons, and magic unicorns. After you’re fin-
ished you should be able to run the app and use your Core Tasks app. You should be
able to create and remove new tasks within different lists, as shown in figure 11.14.

Check if
deleting.

b

Retrieve
task to
delete.

c

Remove from
managed

bject context
using method

on List. d

Save managed
object context.

e

Exit editing
mode.fReload

table view.g
Figure 11.14 Our completed Core Tasks application

280 CHAPTER 11 Persistence and object management with Core Data

You’ll be able to create and delete lists, dive into those lists to create tasks, complete
tasks, and also delete them. You’ve made quite a useful application that you can use
daily. It’s also something that’s dependable because your data should still be there the
next time you open the app.

11.4 Summary
In this chapter you’ve covered quite a bit of ground. You’ve had an overview of Core
Data and explored the differences between it and traditional SQL databases. You
learned how to structure the data model for Core Data and to create relationships
between entities. You also learned how to create, update, delete, and fetch managed
objects. When listing out your lists, you used a fetched results controller to manage
your managed objects. You used all of this knowledge to create your own task manage-
ment app that was backed by Core Data. Also, as we mentioned earlier, even though
you now have great first-hand experience with Core Data, there’s still so much more to
learn and so much more that you can do with it.

■ Core Data helps you with object management and persistence in your iOS apps.
■ The managed object context acts as the gatekeeper to your data and keeps

track of its states.
■ A managed object model represents an outline of your entities in Core Data.
■ Entities represent each object that you store in Core Data.
■ Core Data is very tightly integrated with Xcode. You never have to leave Xcode

to work with Core Data.
■ Relationships are defined as properties on an entity and are used to connect

one entity to another.
■ Managed objects are instances of entities stored in Core Data.
■ You can use fetch requests to retrieve managed objects.
■ Filtering results in a fetch request can be done by using predicates.
■ A fetched results controller can be used to manage the lifecycle of objects

retrieved from fetch requests.

Part 3

Application extras

You’ve mastered the basics and have armed yourself with the knowledge to
build real-world applications. In this part of the book you’ll explore a few extra
topics that will be sure to help you in the future.

 In chapter 12 you’ll learn about AirPlay by creating your own streaming music
player that uses an Apple TV as an external display. Chapter 13 teaches you about
push notifications and how you can set up everything necessary to have them in
your own apps. Then in Chapter 14 you’ll learn how to implement parallax and
realistic animation effects using iOS 7’s new APIs for motion and dynamics.

Using AirPlay
for streaming

and external display
Being able to wirelessly stream audio to a sound system is one of the most amazing
things that some of us take for granted. Not too long ago we were looking for the
3.5 mm stereo cable that we used to play audio from our devices. Actually, most
people don’t have the ability to stream audio wirelessly in their home or automo-
bile. You can count on this changing soon, with the advent of wireless streaming
solutions built into the devices you use in your everyday life—especially in your
phones. With Apple’s AirPlay you’ll soon be able to have one less tangled cable
lying around.

 AirPlay lets you stream not only audio but also photos, videos, and even content
to be used as an external screen, right from your devices. In this chapter you’ll
learn more about AirPlay and its different applications. You’ll be able to then use
this knowledge to build your own app, step by step. The app you’ll be building is

This chapter covers
■ Introduction to AirPlay
■ Streaming content over AirPlay
■ Creating a view controller for an external screen
■ Displaying content on an external screen
■ Creating an AirPlay-powered music player
283

284 CHAPTER 12 Using AirPlay for streaming and external display

called AirMusic, and it will be your own mini AirPlay-supported music player that can
also wirelessly broadcast content on external screens. Take a look at it in figure 12.1.

 It’s important to note that you can test this application only on a real device. The
iOS Simulator does not allow you to connect to any AirPlay devices. It’s also important
to have an AirPlay device that at least supports audio streaming. Later in the chapter
you’ll be using AirPlay to display content on an external screen. You’ll need an AirPlay
device that supports video to be able to try this out.

 First, you’ll learn more about Apple’s AirPlay, what you can do with it, and which
devices are supported, and then you’ll start setting up the base of your application.

12.1 Introduction to AirPlay
Apple originally had wireless audio streaming through what they called AirTunes.
There were AirTunes-supported radios, alarm clocks, and other types of audio devices
that allowed users to stream music from their Macs and supported iDevices. Things
became interesting when Apple announced AirPlay with iOS 5 and the Apple TV.
Using the Apple TV as an AirPlay receiver, people were then able to stream photos and
videos, as well as just audio, wirelessly to their TV. It was even possible to mirror the
display of a device and use the TV as a second screen. Let’s take a quick look at some
of the examples of great AirPlay integration.

12.1.1 Examples of AirPlay integration

If you haven’t used AirPlay before, you’ll find out that it’s incredibly seamless to use.

Figure 12.1 You’ll be creating your own AirPlay-powered mini music player named AirMusic.
Within iOS you can see the AirPlay option within the control center. Tapping it will

285Introduction to AirPlay

show all of the AirPlay-enabled devices on your current Wi-Fi network. If one of these
devices is an Apple TV, it will allow you to mirror whatever is shown on your device
directly on your Apple TV–connected television. This is
shown in figure 12.2.

 If you were playing music, enabling AirPlay would
allow you to stream what you were hearing. The same
goes for photos and videos. The Photos application has
an AirPlay option within the standard share dialog.
Using this would allow you to display a particular photo
or video on a TV over AirPlay, as shown in figure 12.3.

 Mirroring a display offers some interesting possibilities
with AirPlay. When you take over the screen of the exter-
nal display, you have full control over it. You can use it as
an extra screen to display relevant content. Apple’s Key-
note application will let you stream your presentation over
AirPlay while showing slide notes, controls, and more on
your device. A few racing games get even more creative
with AirPlay. They allow the external screen to act as the
main screen for the game, leaving your device as the con-
troller with live track information. Some even allow the
screen to be split to show the screens of multiple people

Figure 12.2 AirPlay
shown within the
control center and
the Mirroring option
shown when
selecting an Apple
TV device

Figure 12.3 The Photos app
allows you to display a photo
playing the same game together. or video using AirPlay.

286 CHAPTER 12 Using AirPlay for streaming and external display

 Let’s now start setting up the application we’ll be building together in Xcode.

12.1.2 Setting up your application

You’ll be using AirPlay to stream audio and display song information on an external
screen from your own application. Open Xcode and create a new project named Air-
Music using the Single View Application template. Once the project’s been created,
jump into the Build Phases section, expand Link Binary With Libraries, and add
MediaPlayer.framework, as shown in figure 12.4.

 You can now start piecing together the main view of your app. Open Main.story-
board and embed a single scene in its own navigation controller. Do this by selecting
the scene and then choosing Editor > Embed In > Navigation Controller within
Xcode’s application menu bar. Once it’s embedded, set the title of the navigation item
to AirMusic, as shown in figure 12.5.

 Next, go into the Object Library, find a UIImageView, drag it toward the top of
your screen, and set its size to 200 x 200. This will be used to display the album art
for a selected song. Go back to the Object Library, grab a UILabel, and drag it into
your view underneath the UIImageView. To make it more visually appealing, set its
typeface to bold and text alignment to centered. Next, expand its width to fill up
most of the view. You’ll use this to display the artist name. After adding this, add
another UILabel underneath the first one, and make it the same size and center
aligned. You’ll use this label to display the song name. Your view should look like
what’s shown in figure 12.6.

 To be able to choose a song you’ll add a bar button item to the navigation bar.
Drag a bar button item to the left side of the navigation bar. Within the attributes
inspector set its identifier to Add. You’ll add one more button later on in your view
controller’s implementation to launch the AirPlay picker.

Figure 12.4 Add the MediaPlayer framework to your project within the Link Binary With Libraries

section of the Build Phases tab.

287Introduction to AirPlay

Figure 12.5 Embed your single scene within a navigation controller, and set the navigation item’s title
to AirMusic.

Figure 12.6 Our view after adding an image view and two labels to represent information

for a chosen song

288 CHAPTER 12 Using AirPlay for streaming and external display

You’ll now add a toolbar (UIToolbar) to your view that will be used to house the
player controls in order to play and pause a song. Go to the Object Library and drag a
toolbar to the bottom of your view. Tap it, and then go to the attributes inspector to
change its tint to Light Gray Color, as shown in figure 12.7.

 The toolbar will have a bar button item already added to it. To avoid confusion,
first remove the one that was already in the toolbar when you dragged it into your
view. Next, grab another bar button item and add it to the bottom left of the new nav-
igation bar. Set its identifier to Play and tint color to White within the attributes
inspector. Now go to the Object Library and find a Flexible Space Bar Button Item;
add it to the right of the Play button you’ve just added. Once it’s added, choose
another bar button item from the Object Library and place it to the right of the Play
button. Set its identifier to Pause and tint color to White. Next, grab a Fixed Space Bar
Button Item and drag it in between the Play and Pause buttons. In the attributes
inspector change its width to 20.

 You’re now going to add two auto layout constraints to the UIImageView to ensure
that the width and the height stay at 200 x 200, as shown in figure 12.8.

Figure 12.7 With the toolbar selected, go to the attributes inspector and change the Bar
Tint attribute to Light Gray Color.

289Introduction to AirPlay

You’ll need to add one more set of constraints to the toolbar so that it’s always
attached to the bottom of your view. Add a constraint to the toolbar’s bottom space, as
shown in figure 12.9.

 Once you’ve finished, your view should look like what’s shown in figure 12.10.
 What’s left to do is to make a few connections. Let’s start with the actions. Open

the assistant editor and make a new action for the + button in the top left of your view
and name this action chooseMusic. For the Play button on the bottom left of your
view, create a new action named playMusic. For the Pause button create a new action
named pauseMusic.

 You can now make outlets for your image view and two labels. For the image view
make a new outlet called albumImageView. For the top-most label create an outlet
named artistLabel. Next, create an outlet for the toolbar called controlToolbar.
Lastly, for the bottom label create an outlet named songLabel.

 Now that you’ve set up the base of your project, you can start adding AirPlay func-
tionality to your application.

Figure 12.8 Add two auto
layout constraints for the
width and the height so that
your image view’s dimensions
stay fixed at 200 x 200.

290 CHAPTER 12 Using AirPlay for streaming and external display

12.2 Controlling and enabling AirPlay output
In figure 12.3 we showed a picker displaying different output options for AirPlay. This
example was specifically for a photo we wanted to broadcast to an Apple TV. For music
there’s also the ability to show a volume slider to adjust the volume broadcasted over
AirPlay. In this section you’ll learn which view allows you to do this and how to add it
to your application.

12.2.1 Enabling AirPlay support using built-in media players

There are different built-in methods of playing media within iOS. The AVPlayer class,
part of the AVFoundation framework, gives you more granular control over the entire
playback experience. A higher-level media player is the MPMoviePlayerViewController.
This gives you a prebuilt view that has common playback controls already implemented.

 When using the AVPlayer you can enable AirPlay by setting the property allows-
ExternalPlayback. For example, you could initialize and enable AirPlay by doing
the following:

AVPlayer *player = [AVPlayer playerWithUrl:MY_MEDIA_URL];
player.allowsExternalPlayback = YES;

Figure 12.9 Add an auto
layout constraint to the
toolbar’s bottom space so
that it always stays locked to
the bottom of your view.
...

291Controlling and enabling AirPlay output

If you’re using the MPMoviePlayerViewController, you can set the allowsAirPlay
property in the same way:

MPMoviePlayerViewController *player = [[MPMoviePlayerViewController alloc]

➥ initWithContentURL:MEDIA_URL];
player.allowsAirPlay = YES;
...

When using the MPMoviePlayerViewController with AirPlay enabled, you’ll see an
AirPlay button that will allow you to choose which device the audio or video is routed
to. This is baked into the MPMoviePlayerViewController, but it’s actually something
you can add to your own view.

12.2.2 Displaying an AirPlay controller to a view

The MediaPlayer framework has a class called MPVolumeView that allows you to con-
trol the system volume on your device using a slider, as well as the output destina-
tion for your audio. If you’re on Wi-Fi and an AirPlay device is detected, you’ll see
an AirPlay route button. Both the route button and the volume slider are shown in
figure 12.11.

MPVolumeView gives you the option to disable either the volume slider or route but-
ton from appearing by using the setShowsVolumeSlider: or setShowsRouteButton:

Figure 12.10 The finished view for AirMusic after adding controls to choose a new song and a
toolbar to control our music
method. When the route button is tapped, a UIActionSheet will appear showing the

 new
iew

.Size v
fit wit
paren

n

.

292 CHAPTER 12 Using AirPlay for streaming and external display

different output devices you have available. Adding
one of these views to an app is simple. All you have to
do is make sure you import the MediaPlayer frame-
work first:

#import <MediaPlayer/MediaPlayer.h>

Then do the following.

MPVolumeView *volumeView = [[MPVolumeView alloc]
initWithFrame:CGRectMake(0,0,150,20)];

[volumeView setShowsVolumeSlider:YES];
[volumeView setShowsRouteButton:YES];
[parentView addSubview:volumeView];

The default size of the route button is 20 points high,
but the volume slider can be as wide as you want it to
be. The value of 150 points for its width is arbitrary
and can be changed to whatever suits your needs.

 Next, you’ll add this to your own application and
get it to function by routing a song of your choice to
an AirPlay device.

12.2.3 Streaming audio to an AirPlay destination
in your application

You want to add MPVolumeView to the bottom of your view, within the toolbar contain-
ing your audio controls. This allows all of the audio controls to appear in a single
place. For you to add an MPVolumeView within a UIToolbar, it must be contained
within a UIBarButtonItem. Luckily, you can do this with a custom UIBarButtonItem.

 Open IAViewController.m in Xcode and add the following method named add-
AirPlayControls:

- (void)addAirPlayControls
{
 NSMutableArray *items = [self.controlToolbar.items mutableCopy];
 MPVolumeView *airPlayView = [[MPVolumeView alloc]

➥ initWithFrame:CGRectMake(0, 0, 150, 20)];
 [airPlayView setShowsVolumeSlider:YES];
 [airPlayView setShowsRouteButton:YES];
 [airPlayView sizeToFit];

 UIBarButtonItem *airPlayButtonItem = [[UIBarButtonItem alloc]

➥ initWithCustomView:airPlayView];
 self.controlToolbar.items = [items

➥ arrayByAddingObject:airPlayButtonItem];
}

You first retrieve an array of all of the items currently within your toolbar B. You then

Getting all items
currently in the toolbar

 b

Initializing a
MPVolumeV

c

Volume slider
should be showndRoute button

should be shown.eiew to
hin its
t view f

Create bar butto
item to act as a
wrapper for the
MPVolumeViewg

Add the bar
button item to
the toolbar.h

Figure 12.11 The volume slider
and the AirPlay route button shown
in our very own AirMusic app
initialize a new MPVolumeView c and set its volume d and route e buttons to be

293Controlling and enabling AirPlay output

shown. You then tell it to size itself to fit within its parent view f. Next, you create a
custom UIBarButtonItem that will wrap your MPVolumeView g. Lastly, you add it to
your toolbar’s array of items h.

 To ensure that this is called when your view loads, add the following line to your
viewDidLoad method:

[self addAirPlayControls];

To make sure that this works as intended, you must finish the rest of your app’s music-
playing capabilities. Guess what? By the end of this section you’ll have created your
own basic iPod application. You’ll be piggybacking off the existing iPod player within
the MediaPlayer framework, but why reinvent the wheel? Start by adding functionality
to the actions you created earlier. Replace all three of them in IAViewController.m
with the code shown in the following listing.

- (IBAction)chooseMusic:(id)sender
{
 MPMediaPickerController *picker = [[MPMediaPickerController alloc]

➥ initWithMediaTypes:MPMediaTypeMusic];
 [picker setDelegate:self];

 [self presentViewController:picker animated:YES completion:nil];
}

- (IBAction)playMusic:(id)sender
{
 MPMusicPlayerController *player = [MPMusicPlayerController

➥ iPodMusicPlayer];
 [player setQueueWithItemCollection:self.songQueue];
 [player play];}

- (IBAction)pauseMusic:(id)sender
{
 MPMusicPlayerController *player = [MPMusicPlayerController

➥ iPodMusicPlayer];
 [player pause];
}

In the chooseSong: action you use the MPMediaPickerController to choose a song
to play B. You also use the device’s default MPMusicPlayerController (known as
the iPodMusicPlayer) to handle your music within the playMusic: c and pause-
Music: d actions.

 Because you’re using the MPMediaPickerController, you need to conform to the
MPMediaPickerControllerDelegate protocol. You also need to add a property to
your class that will hold a reference to your song queue, which is used to specify which
songs to play. It will be set whenever a song is chosen. Go to IAViewController.h and
add the following import for the MediaPlayer framework:

Listing 12.1 Implementing actions to choose, play, and pause a song

Choose music using the
MPMediaPickerController.b

Play music by using the default
MPMusicPlayerController.

c

Pause music by using the default
MPMusicPlayerController.

d

#import <MediaPlayer/MediaPlayer.h>

s

om

Dis
the m

pi

nce
ed

cker
eled.
294 CHAPTER 12 Using AirPlay for streaming and external display

Now you’ll specify that you conform to the MPMediaPickerControllerDelegate by
updating your interface declaration, as shown here:

@interface IAViewController : UIViewController

➥ <MPMediaPickerControllerDelegate>

For your song queue, add the following property for an MPMediaItemCollection:

@property (strong, nonatomic) MPMediaItemCollection *songQueue;

Go back to IAViewController.m and add two delegate methods to properly handle the
event when a song is chosen using the media picker and when the media picker is can-
celed. Add the two methods shown in the following listing.

- (void)mediaPicker:(MPMediaPickerController *)mediaPicker

➥ didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection
{
 [mediaPicker dismissViewControllerAnimated:YES completion:nil];

 self.songQueue = mediaItemCollection;
 [self populateViewsWithSongQueue];
 [self playMusic:self];
}

- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker
{
 [mediaPicker dismissViewControllerAnimated:YES completion:nil];
}

When a song is chosen B you first dismiss the media picker c. You then hold onto a
reference to the MPMediaItemCollection using the songQueue property d, populate
your views based on the selected song e, and then play it f. If the media picker is
canceled g, you make sure it’s dismissed c.

 The method you call to populate your views with the currently selected song,
populateViewsWithSongQueue, will retrieve the album artwork as well as the artist
and song name. Add this method to your view controller by using the code in the
next listing.

- (void)populateViewsWithSongQueue
{
 self.artistLabel.text = @"";
 self.songLabel.text = @"";
 self.albumImageView.image = nil;

 MPMediaItem *mediaItem = self.songQueue.items[0];
 MPMediaItemArtwork *albumArtwork = [mediaItem

➥ valueForProperty:MPMediaItemPropertyArtwork];
 NSString *artistName = [mediaItem

Listing 12.2 Methods for handling song selection and cancelation

Listing 12.3 Populate your views with information from currently selected song

Media item
have been
selected fr
the media
picker.

B

miss
edia
cker.

C Store refere
to the select
song.D

Populate your
views based on
the selected song.E

Play the
selected song.F

Media pi
was cancG

Clear song-
related views.

b Retrieve the
selected song.

c

Retrieve the
album artwork.

d

Retrieve the e

➥ valueForProperty:MPMediaItemPropertyAlbumArtist]; artist name.

295Using external screens with AirPlay

 NSString *songName = [mediaItem

➥ valueForProperty:MPMediaItemPropertyTitle];

 if (albumArtwork)
 [self.albumImageView setImage:[albumArtwork

➥ imageWithSize:self.albumImageView.bounds.size]];

 if (artistName)
 self.artistLabel.text = artistName;

 if (songName)
 self.songLabel.text = songName;
}

In this method you first clear your existing views B. You then retrieve the song to play
from your queue c and retrieve its artwork d, artist name e, and song name f. You
then populate your views by first setting the albumImageView’s image to that of the
album artwork g. Next, you set artistLabel’s text property to the artist name h.
Finally, you set songLabel’s text property to the song name i.

 One last thing you’ll add is the ability to immediately queue up the last-played
song from your device’s music player. This could be the song you last played in the
Music app long before you installed AirMusic on your device. It’s very simple to do
because you’re using the default music player. Add the following code to the bottom
of viewDidLoad:

MPMusicPlayerController *player = [MPMusicPlayerController
iPodMusicPlayer];
if ([player nowPlayingItem])
{
 self.songQueue = [[MPMediaItemCollection alloc]

➥ initWithItems:@[player.nowPlayingItem]];
 [self populateViewsWithSongQueue];
}

This checks to see if there was a media item within the nowPlayingItem property. If so,
you create a new MPMediaItemCollection and set that to your songQueue property.
You then populate your view by calling the populateViewsWithSongQueue method.

 Amazingly, you’ve just built a functional music application in no time at all! It also
allows you to stream and control the volume of the music to an AirPlay-connected
device. Again, this application should function fully only on a real device. If you have
a paid Apple developer license, you can install this directly from Xcode.

 Next, you’ll learn how to display this song information using AirPlay’s mirror-
ing feature.

12.3 Using external screens with AirPlay
By using AirPlay’s mirroring feature you can change the content shown on an external
screen. Within an application you can check to see if there are multiple screens

Retrieve the
song name.f

Show the album artwork
in the album image view.g

Show the artist name
in the artist label.h

Show the song name
in the song label.i
available and also observe notifications that let you know when a new screen has

r
296 CHAPTER 12 Using AirPlay for streaming and external display

connected or disconnected. When a new screen is available, you can attach your own
custom view to it.

12.3.1 Creating a custom view controller for external screens

When working with external screens you cannot rely on Xcode’s interface tools, which
only help you design for standard-size iOS devices. The size of an external screen is
usually unknown, thus requiring you to programmatically create your own views. The
size of its subviews should be relative to the size of the screen itself. This allows you to
maximize your custom view to fit a very large or small screen.

 By using an available external screen you can display content that may be useful
for the users of your app. For AirMusic, you’ll be using the external screen to show a
bigger version of the song information you were already showing. You won’t be
showing the audio controls because there’s currently no way for your users to inter-
act with the external screen directly. They can use your app on their device in the
same way as before.

 First, you’ll create a brand-new view controller called IAExternalViewController.
It will contain most of the same views that you currently have in IAViewController and
will also have the same functionality for populating these views. Once you’ve created
this new view controller, open IAExternalViewController.h and replace its content
with what’s shown in the following listing.

#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>

@interface IAExternalViewController : UIViewController

@property (strong, nonatomic) UIImageView *albumImageView;
@property (strong, nonatomic) UILabel *artistLabel;
@property (strong, nonatomic) UILabel *songLabel;

@property (assign, nonatomic) CGRect windowFrame;
@property (strong, nonatomic) MPMediaItemCollection *songQueue;

- (id)initWithWindowFrame:(CGRect)windowFrame

➥ withSongQueue:(MPMediaItemCollection *)songQueue;
- (void)populateViewsWithSongQueue;

@end

This sets up the image view for the album art, the labels for the artist and song infor-
mation, and the song queue. You’ve also added another property for the frame of its
parent window (which you’ll soon see) B, as well as a custom initializer for the
IAExternalViewController view controller object c.

 Now open IAExternalViewController.m. You’ll be replacing all of the code there
with what’s shown in the next listing.

Listing 12.4 IAExternalViewController.h

Frame of the
external
window’s
parent window

b

Custom initialize
with frame and
song queue

c

297Using external screens with AirPlay

#import "IAExternalViewController.h"

@implementation IAExternalViewController

- (id)initWithWindowFrame:(CGRect)windowFrame

➥ withSongQueue:(MPMediaItemCollection *)songQueue
{
 self = [super initWithNibName:nil bundle:nil];
 if (self)
 {
 self.windowFrame = windowFrame;
 self.songQueue = songQueue;
 }

 return self;
}

- (void)loadView
{
 UIView *view = [[UIView alloc] initWithFrame:self.windowFrame];
 [view setBackgroundColor:[UIColor whiteColor]];

 float widthHeight = view.bounds.size.width / 4;
 CGRect imageFrame = CGRectMake((view.bounds.size.width –

➥ widthHeight)/2,
 (view.bounds.size.height -

➥ widthHeight)/3,
 widthHeight, widthHeight);

 self.albumImageView = [[UIImageView alloc] initWithFrame:imageFrame];
 [view addSubview:self.albumImageView];

 CGRect artistLabelFrame = CGRectMake(0,
 imageFrame.origin.y +

➥ imageFrame.size.height + (imageFrame.size.height / 5),
 view.bounds.size.width,
 45.0f);
 self.artistLabel = [[UILabel alloc] initWithFrame:artistLabelFrame];
 [self.artistLabel setFont:[UIFont boldSystemFontOfSize:40.0f]];
 [self.artistLabel setTextAlignment:NSTextAlignmentCenter];
 [view addSubview:self.artistLabel];

 CGRect songLabelFrame = CGRectMake(0,
 artistLabelFrame.origin.y + 55.0f,
 artistLabelFrame.size.width,
 artistLabelFrame.size.height);
 self.songLabel = [[UILabel alloc] initWithFrame:songLabelFrame];
 [self.songLabel setFont:[UIFont systemFontOfSize:30.0f]];
 [self.songLabel setTextAlignment:NSTextAlignmentCenter];
 [view addSubview:self.songLabel];

 [self setView:view];
}

- (void)populateViewsWithSongQueue
{

Listing 12.5 IAExternalViewController.m

Custom initializer
with window frame
and song queue

b

Programmatically
creating your view

c

Populating views with
information from the
current song

d

 MPMediaItem *mediaItem = self.songQueue.items[0];

298 CHAPTER 12 Using AirPlay for streaming and external display

 MPMediaItemArtwork *albumArtwork = [mediaItem

➥ valueForProperty:MPMediaItemPropertyArtwork];
 NSString *artistName = [mediaItem

➥ valueForProperty:MPMediaItemPropertyAlbumArtist];
 NSString *songName = [mediaItem

➥ valueForProperty:MPMediaItemPropertyTitle];

 if (albumArtwork)
 [self.albumImageView setImage:[albumArtwork

➥ imageWithSize:self.albumImageView.bounds.size]];

 if (artistName)
 self.artistLabel.text = artistName;

 if (songName)
 self.songLabel.text = songName;
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self populateViewsWithSongQueue];
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

@end

You initialize this view by setting the windowFrame and songQueue properties B. The
windowFrame property is used when you build your view. The songQueue property is
used when you populate your view d, just like in IAViewController. The part that
stands out the most is the loadView c method, where you programmatically create
your view. You calculate the frame of each view depending on the size of the window,
which is dependent on the size of the external screen. All that you’re doing here is
adding one image view and two labels.

 Next, you’ll see how to attach this view controller to an external screen.

12.3.2 Displaying content on an external screen

To know when an external screen is available you need to add an observer for the
UIScreenDidConnectNotification on the NSNotificationCenter. This is triggered
whenever a new screen is connected via AirPlay or even through HDMI/VGA/DVI.
Also, using the UIScreenDidDisconnectNotification lets you know when a screen
is disconnected.

 What would happen if an external screen were already connected before you regis-
tered for these notifications? In this case, you’d only receive the notification for when
it is disconnected. This is why you should also check to see if another screen is already
available when your application first becomes visible.

299Using external screens with AirPlay

 Add a call for a method that you’ll soon implement on the bottom of viewDidLoad
that will check for this:

[self checkForAndSetupExternalScreen];

Now add two observers to IAViewController.m to know when a new screen connects
and disconnects. Add the following toward the bottom of viewDidLoad:

 [[NSNotificationCenter defaultCenter] addObserver:self
 ➥ selector:@selector(screenDidConnect:)
 ➥ name:UIScreenDidConnectNotification
 ➥ object:nil];

 [[NSNotificationCenter defaultCenter] addObserver:self
 ➥ selector:@selector(screenDidDisconnect:)
 ➥ name:UIScreenDidDisconnectNotification
 ➥ object:nil];

Also, add a call to remove yourself as an observer when your view disappears by over-
riding the viewDidDisappear: method:

- (void)viewDidDisappear:(BOOL)animated
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

These two observers call for two new methods, screenDidConnect: and screenDid-
Disconnect:. These methods will be triggered when one of the notifications is
observed. Add them to IAViewController.m using the following code:

- (void)screenDidConnect:(NSNotification *) notification
{
 [self checkForAndSetupExternalScreen];
}

- (void)screenDidDisconnect:(NSNotification *) notification
{
 if (self.externalWindow)
 {
 [self.externalWindow setHidden:YES];
 self.externalWindow = nil;
 }
}

When a screen does connect, you call checkForAndSetupExternalScreen B. You’re
going to create this method to attach IAExternalViewController to the external
screen. On disconnect you check to see if a property named externalWindow is not
nil c. If it’s not, you set it to hidden d and then set it to nil e. This property is for
a UIWindow attached to the external screen that houses an instance of IAExternal-
ViewController.

 Add these two properties to IAViewController.h now. First, add the following import:

Set up the
external screen.

b

Check if
external-
Window property
is not nil.

c

Set external-
Window to hidden.dSet external-

Window to nil.e
#import "IAExternalViewController.h"

R
s
s

Ch
exter
View

yet initia

Set s

Vi -
300 CHAPTER 12 Using AirPlay for streaming and external display

Now add the two properties to represent the external view controller and the exter-
nal window:

@property (strong, nonatomic) UIWindow *externalWindow;
@property (strong, nonatomic) IAExternalViewController *externalView;

Once again, jump back into IAViewController.m to add the checkForAndSetupExternal-
Screen method shown in the following listing.

- (void)checkForAndSetupExternalScreen
{
 if ([[UIScreen screens] count] > 1)
 {
 UIScreen *screen = [UIScreen screens][1];
 self.externalWindow = [[UIWindow alloc]

➥ initWithFrame:screen.bounds];
 [self.externalWindow setScreen:screen];

 if (!self.externalView)
 {
 self.externalView = [[IAExternalViewController alloc]

➥ initWithWindowFrame:self.externalWindow.frame

➥ withSongQueue:self.songQueue];
 [self.externalWindow

➥ setRootViewController:self.externalView];
 }
 else
 {
 self.externalView.songQueue = self.songQueue;
 [self.externalView populateViewsWithSongQueue];
 }

 [self.externalWindow setHidden:NO];
 }
}

Within this method you first check to see if there is more than one screen available B.
If there’s only one screen, then no external screen is attached. If an external screen is
available, you retrieve the screen c and initialize a new UIWindow using the screen
bounds and set it to the externalWindow property d. You then set its screen property
to be that of the new external screen e. If the externalView property is nil f, you
create a new instance, passing in the window frame and the song queue g. You then set
the external view as the root view controller for the external window h. If external-
View is not nil, you just update the song queue i and update its views to reflect the
latest song in the queue j. Lastly, you set the window as not hidden 1).

 One final thing you should do is update your external view whenever a new song is
played. Add the following to the bottom of the playMusic: action to manually update
the song queue and the views on the external view controller:

Listing 12.6 Checking for and then setting up an external screen

Check if more than one
screen is available.

b

etrieve
econd
creen.

c
Initialize
externalWindow
using the second
screen’s bounds.

d

Set externalWindow’s
screen to the second screen.eeck if

nal-
is not
lized. f

Initialize externalView with
window frame and song queue.g

Set externalView as root view
controller for externalWindow.h

ong queue if
external-
ew is already

initialized. i

Manually populate
views if external
View is already
initialized.j

Set window
as not hidden.1)

301Summary

if (self.externalView)
{
 self.externalView.songQueue = self.songQueue;
 [self.externalView populateViewsWithSongQueue];
}

Great job! You can now try it out by running the app on your device and then turning
on AirPlay mirroring mode within the control center. Once mirroring is enabled, you
should see your external screen updated with your custom view in IAExternalView-
Controller, as shown in figure 12.12.

 Also, the view should update whenever you play a new song. If you close the app or
turn off AirPlay, the external screen should also reset. Great job—you’ve created your
own mini music player that can also stream audio and display custom content on an
external screen using AirPlay.

12.4 Summary
AirPlay provides an extremely simple way to stream audio, photos, and videos and
even create an external display using AirPlay-supported devices, such as the Apple TV.
You learned that the AV Foundation and MediaPlayer frameworks provide an easy way
to stream audio and video using AirPlay. To see just how easy it is to start adding Air-
Play support to your apps, you created your own simple AirPlay-powered music player.
Finally, you learned about using AirPlay to display views on an external display.

■ AirPlay allows you to stream audio wirelessly to any AirPlay-enabled device.
■ Streaming video is currently possible with only a few AirPlay devices, such as the

Figure 12.12 With AirPlay
mirroring enabled, our app
now displays custom content
on an external screen.
Apple TV.

302 CHAPTER 12 Using AirPlay for streaming and external display

■ You can test AirPlay only on real devices and not on the Simulator because the
iOS Simulator doesn’t support it.

■ The AVPlayer and MPMoviePlayerViewController have support for enabling
or disabling AirPlay output.

■ Adding an MPVolumeView allows you to control the system volume and route the
audio to AirPlay-supported devices.

■ External screens over AirPlay are available only when AirPlay is in mirror-
ing mode.

■ Utilizing external screens over AirPlay can enrich your user’s experience.
■ It’s best to create views for external screens programmatically because of

unknown sizes and Xcode limitations.
■ By adding observers to the notification center, you can watch for new screens.

Integrating push
notifications
In iOS, applications are not allowed to perform continuous operations in the back-
ground. But what if something interesting does happen and you want to let your
users know about that even if the app is closed? Say you create an application for
sending short messages to other people. Chances are the user is not using your
application when a friend asks him to have some margaritas by the beach.

 Push notifications are the solution for these issues; they’re a great way for apps to
interact with users at any time. When an event of interest occurs, you send a specially
crafted message to a user’s device, and they’ll see a message and hear an alert. This is
similar to what happens when you get an SMS or a new email on your iPhone.

 In this chapter you’ll learn how push notifications take place. You’ll learn how
to configure your app to accept push notifications and how to send them. At the
end of the chapter you’ll have the tools to interact with your users, even when they

This chapter covers
■ Apple’s Push Notification service
■ Configuring your app to send and receive

push notifications
■ Sending remote push notifications
■ Registering and scheduling local notifications
303

304 CHAPTER 13 Integrating push notifications

aren’t using your application. You’ll create a simple
application called SaleAlerts, which alerts the user to
new offers using push notifications, as shown in fig-
ure 13.1.

13.1 Apple’s Push Notification service
To understand Apple’s Push Notification service
(APNs), you first need to understand the basic con-
cepts of how push notifications work.

 In chapter 9 you learned how to establish commu-
nication with remote computers. Those communica-
tions were always in the form of making a request
and receiving a response. In that kind of communica-
tion, there’s always a one-to-one relationship between
requests and responses. In other words, you get only
what you ask for, when you ask for it. When doing
push notifications, the app doesn’t make requests. It
subscribes to certain events, and those events are
pushed to the app whenever they occur. A neat anal-
ogy to help you understand this mechanism is the tra-
ditional mail system. Letters arrive at your house
whenever someone sends you something; you don’t
have to go to the post office every hour asking if there
is something new. Letters will arrive even if you are
not at home, and you’ll eventually get them once
you’re there. Push notifications work the same way. Instead of doing a request asking for
new messages, emails, offers, or whatever your app does, the app subscribes to a push
notification service, and when something new is available, it’ll get a notification. Fig-
ure 13.2 shows the difference between a traditional request/response communication
and push notifications.

 The Apple Push Notification service is the centerpiece of push notifications. It’s
a service provided by Apple that lets you send messages to users. But how does it

Remote

server

Remote

server

Apple Push

Notification

service

Request

Response

A B

Figure 13.2 (A) Shows a traditional request/response communication between our app and a

Figure 13.1 Push notification
coming to our SaleAlerts application
while the app is closed
remote server; (B) shows how push notifications are originated from the server at any time.

305Apple’s Push Notification service

work? When you turn on your iPhone, as soon as your device gets connected to the
internet, iOS creates a persistent connection to the APNs, and this service assigns a
unique identifier to the device. That’s done automatically in the background by the
operating system.

 To be able to send push notifications from your application, you need to ask for
push permission from the user. Once the permission is granted, the app is provided
with a device token, which is an alphanumeric string that uniquely identifies the
device. The device token is your way to identify users’ devices and be able to send noti-
fications. You can think of a device token as a street address. It’s the address to which
the notification will be directed.

 To be able to send notifications you need to create some logic outside your iOS
app. In short, you’ll need to set up a computer with internet connectivity that will
store device tokens of your users and, when needed, connect to the APNs and send
push notifications. Later in the chapter we’ll show some examples for the server side
of the app. Those examples will be written in the Python language. We chose Python
because its simple, unintimidating syntax will allows you to understand the concept
even if you’ve never seen Python before. Figure 13.3 shows the device token flow.
Steps 1 and 2 are done by the operating system, and steps 3 and 4 are controlled by
your application.

 Once the device token is provided and the user has granted you permission to
receive push notifications, you’re ready to send notifications. The push notification
flow starts from your program running on the server side. It sends a text message
along with a sound, an icon, and one or more destinations to the APNs (you’ll see how
to create these messages later on). The APNs validates that your app is allowed to send
push notifications, and it redirects the message to the user device, which will show the
text message on the screen and emit a sound. When the user touches the alert, your
application opens. Figure 13.4 shows the push notification flow.

Connection1

Device token2

Device token4

Device token

App

Server

side

3

Apple Push

Notification

service

Figure 13.3 Device token flow: (1) A
connection to the APNs is established
by the operating system; (2) a unique
device token is assigned; (3) when the
app is granted push notification
permission by the user, the device
token is provided to the app; (4) you
send the device token to your servers in
order to be able to send notifications to
that user later on.

306 CHAPTER 13 Integrating push notifications

13.2 Configuring your app to send and receive push
notifications
Let’s get down to work. First, you’re going to create the application you’ll use in this
chapter. For that, you’ll open Xcode and create a new, single-view application named
SaleAlerts. As you did in the previous chapters, you’ll set the class prefix to IA.

 The interface of your application will be very simple so you can focus on the push
notification side. It will consist of a UILabel in the middle of the main view holding a
sale offer. Create your very simple interface by opening the Main.storyboard file in
Interface Builder and dragging and dropping a UILabel object from the Object
Library into the view controller, as shown in figure 13.5.

 In order to support push notifications you must configure your application in the
iOS Dev Center. To do that, open the following web page in your preferred browser:
https://developer.apple.com/devcenter/ios/index.action. Now sign in to your account
and click Certificates, Identifiers & Profiles.

 The first thing you need to add from the Dev Center is an application ID. App IDs
are strings used to uniquely identify applications. The format for app IDs is

ABCDEF123.com.manning.ios.SaleAlerts

The first part (ABCDEF123) is your team ID and the rest is the bundle ID. Note that the
bundle ID part of your app ID must match the bundle identifier of your app. Bundle
identifiers are automatically added when you create a project. Each time you created a
project previously, you set the Company Identifier field to com.manning.ios. Then
Xcode set a bundle identifier for you in the form of com.manning.ios.<Project Name>;
for example, the application we’re creating in this chapter will have com.manning.ios
.SaleAlerts as its bundle identifier.

 Go ahead and create the app ID by clicking Identifiers, selecting App IDs on the left
panel of the iOS Dev Center, and then clicking the + button, as shown in figure 13.6.

 Now you’ll see a form for registering app IDs. Set the Name field of your app to

1

3

2

App

Apple Push

Notification

service

Server

side

Figure 13.4 Push notification flow: (1) Our
program on the server sends a request to the
APNs; (2) if we have permission to send
notifications, the APNs sends a push
notification to the device; (3) when the
notification is touched, the app opens.
SaleAlerts and choose Explicit App ID. Then set the bundle ID to any string you want;

https://developer.apple.com/devcenter/ios/index.action

307Configuring your app to send and receive push notifications

we’re setting ours to com.manning.SaleAlerts. Make sure to choose Push Notifications
in the App Services section, as shown in figure 13.7. That will allow you to send (and
receive) push notifications.

 If you click App IDs in the Identifiers section again and select SaleAlerts App ID
(the one you just created), you’ll see that push notifications are still not enabled. In
order to enable them you must click Edit and then create an SSL certificate. SSL certif-
icates are used to establish remote secure communications. In the case of push notifi-
cations, the communication between your server and the APNs will be encrypted using
this SSL certificate. Go ahead and create a development SSL certificate by clicking
Create Certificate and following the step-by-step guide in the portal. Remember where
you save the certificate files because you’re going to use them later on.

 Now you need to create a provisioning profile. Provisioning profiles are files that
contain code-signing information as well as the distribution mechanism. They also con-
tain information about what devices the app can be deployed to (for testing). To cre-

Figure 13.5 Our interface consists of only one UILabel in the middle.
ate a provisioning profile, choose the Provisioning Profiles option on the left of the

308 CHAPTER 13 Integrating push notifications

iOS Dev Center and then click the + button. From the Add iOS Provisioning Profile
screen, choose iOS App Development and then click Continue, as shown in figure 13.8.
Then click Submit to confirm the profile creation. Next, you’re going to choose
your App ID, developer certificate, and device. Once that’s done, you’ll be able to
download the provisioning profile and install it by dragging and dropping it onto

1

2

Figure 13.6 Create an app ID by (1) selecting App IDs from the menu and then (2) clicking the + button.

1

2

Figure 13.7 Enable push
notifications for your app
by (1) selecting Push
Notifications and (2)
clicking Continue.
the Xcode icon on the OS X dock bar.

309Sending push notifications

With your App ID created and the provisioning profile associated with it, you’ve com-
pleted your application configuration. In the next section you’ll write the logic to
send push notifications from the server.

13.3 Sending push notifications
Before being able to receive notifications, you need to ask the user for permission.
Once the user grants you the permission to receive push notifications on the device,
iOS will provide you the token id of the device. When asking for permission you need
to specify what type of push notifications you’re going to implement. Notification types
are badge, sound, and alert. These are UIRemoteNotificationTypeBadge, UIRemote-
NotificationTypeSound, and UIRemoteNotificationTypeAlert, respectively:

■ UIRemoteNotificationTypeBadge—This kind of notification adds a red circle
to your application icon along with a number. You’ve probably seen this notifi-
cation when, for example, receiving an email.

■ UIRemoteNotificationTypeSound—This notification type plays a sound file when

Figure 13.8 Create a new provisioning profile in the iOS Dev Center by clicking the +
button and choosing the iOS App Development option.
the user receives a push notification.

310 CHAPTER 13 Integrating push notifications

■ UIRemoteNotificationTypeAlert—This notification type displays a text alert
box with a custom message. This is the most common type of notification.

Notification types can be combined, meaning that you can send push notifications
including a badge change, a sound, and a message.

 Asking the user for permission is very straightforward; for that you’ll open the
IAAppDelegate file and create the method shown in the following listing.

- (void)applicationDidFinishLaunching:(UIApplication *)application
{
 [[UIApplication sharedApplication] registerForRemoteNotificationTypes:

➥ (UIRemoteNotificationTypeSound | UIRemoteNotificationTypeAlert)];
}

Do you remember this method? It’s the one that iOS
calls right after your application loads. There you’re
asking the user for permission to receive push notifi-
cations. Right after the app is launched, the user will
see an alert similar to the one in figure 13.9.

 When the user allows you to send push notifications,
iOS will call the following method: application:
didRegisterForRemoteNotificationsWithDevice-

Token:. As you can see by the name of the method,
one of the parameters is the token ID of the device.
We said before that this token is comparable to
addresses and as such you’ll need to store them on
the server side for sending notifications in the future. This chapter won’t cover how to
persist the tokens on the server. Such operations are beyond the scope of the book, but
we’ll show some examples of how to send push notifications even when it’s not done
using Objective-C.

 We’re going to show how to send a push notification using the Python language.
We’ll cover the entire process step by step, so don’t worry if there’s something in
the code that you don’t immediately understand. The first step is shown in the fol-
lowing listing.

import socket, ssl, struct

token = 'a4b8e18bd065c6ea7def614631ee4abaf26dbd56cde307e596fbf838fbb03296'
payload = '{"aps": {"alert": {"body": "Get 50% off Mojitos!"}}}'

Listing 13.1 Asking permission for receiving push notifications

Listing 13.2 Step 1: Preparing the payload

Asking the user for permission for receiving
notifications including sounds and alerts

Figure 13.9 Users are asked if
they would like to receive push
notifications.

Importing the packages to
use in the push example

Token example (that’s exactly what iOS givesThe push payload

you when the user grants permission)represented as JSON

311Sending push notifications

Listing 13.2 shows the first step of the push notification script. This step only defines
two variables. One is token, which contains an example token ID, and the other one is
payload, containing your push notification payload. Did you find the payload’s format
familiar? It’s JSON, a normalization format you learned in chapter 6. The JSON pay-
load is defined as follows:

{
 "aps": {
 "alert": {
 "body": <Alert message>,
 "launch-image": <image filename used as the launch image>
 },
 "badge": <Badge number>,
 "sound": <Sound filename, played when the notification arrives>
 }
}

Note that not all keys are mandatory; as a matter of fact, in listing 13.2 you’re using
only the alert key.

 In order to send push notifications to the APNs you need to use a specific format.
The payload will be formatted as JSON, but the payload is only one part. The other
part is the destination of the push notification, in other words, the token ID. Apple
expects you to send push notifications through the APNs by sending the token ID and
the payload, as shown in figure 13.10.

 You need to create a binary package in which the bytes are arranged in a specific
way. The first byte is the command (for simple push notifications you’ll use 0) that
defines the format of the package. The next two bytes are the token ID length (this
will always be 32) followed by the token ID itself. Then you include the payload length
followed by the payload itself formatted as JSON.

 Now create the package in your script using the variables you prepared in listing 13.2,
as shown in the next listing.

byteToken = token.decode('hex')
theNotification = struct.pack('!BH32sH', 0, 32, byteToken, len(payload))
theNotification += payload

Listing 13.3 Step 2: Creating the binary package

Command

1 byte

0

Token

32 bytes

a4 b8 e1 8b…

Payload

101 bytes

{"aps":{"alert":"Get 50%…

Token

length

2 bytes

32

Payload

length

2 bytes

101

Figure 13.10 Binary format of the push notification binary package

Decoding your token id string to binary
(assuming that the token variable is a hex string)

Creating the binary package according to

the previously mentioned format

Conne
the sock

the te
312 CHAPTER 13 Integrating push notifications

Here you create the binary package using a function called pack, which exists in most
programming languages. This function is used to create binary packages according to
a given format, which is the first argument of the function. The format determines
how much space each element of your binary package will use. Figure 13.11 shows
how !BH32sH is related to the binary structure shown previously.

 The ! symbol at the very beginning is our way of telling the struct.pack func-
tion how to order bytes. Each letter after the symbol represents the space that each
part of our package will use. Byte (B) is 1 byte and it will hold the command; short
(H) is 2 bytes that will contain the token length. Then 32s is a string of 32 characters
holding the token. Using the format and the arguments you pass to the function,
you’ll get a binary package that you can send to the APNs. In order to do that, you
first need to create a connection to the APNs, which is what you’re going to do in the
next listing.

connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
ssl_sock = ssl.wrap_socket(connection, certfile='yourCertificate.pem')
ssl_sock.connect(('gateway.sandbox.push.apple.com', 2195))
ssl_sock.write(theNotification)
ssl_sock.close()

Using the certificate that you downloaded from the iOS Dev Center and your private
key, you’re going to create a secure communication to the APNs using SSL as B and c
show. Once the connection is established, you can send as many push notifications as
you want. In this case we’re sending only one package that we previously crafted using
the correct formatting. After you’ve finished sending push notifications d, you end the

Listing 13.4 Step 3: Sending the package to the APNs

0

Ordering

method

!

Byte

B

Short

H

String

32s

Short

H

a4 b8 e1 8b… {"aps":{"alert":"Get 50%…32 101

Figure 13.11 Link between a push notification package and the first argument of the
struct.pack function

Creating a secure socket
by using your certificate

provided by Apple and
your private key b

cting
et to
sting
APNs c Sending your

previously crafted
binary packagedClosing the connection

once you’re finished e
communication by closing the socket e.

Getti
mai
con

from th
de

m
313Registering and scheduling local notifications

 If everything goes right, once you run the script you’ll get a push notification in
your device, similar to figure 13.1. When the user touches the notification (or slides it
if they’re on the lock screen), your app will open, and you’ll have access to the entire
payload by implementing the method application:didReceiveRemoteNotification:
on the app delegate, as you’ll do in the following listing.

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo

{
 IAViewController *viewController = (IAViewController *)[[self window]

➥ rootViewController];
 NSDictionary *alert = userInfo[@"aps"][@"alert"];
 [[viewController offerLabel] setText:alert[@"body"]];
}

The JSON string you sent from your server is deserialized the same way you learned
in chapter 6, meaning that instead of receiving a JSON string, you’ll receive an
NSDictionary with the same keys you included before. Note that now that the
object is deserialized, you can access the values very easily b.

 The last line sets the text of your main view controller label using the push notifica-
tion message you just received. To be able to access the view controller you need to
include IAViewController in your IAAppDelegate. For that, you’ll go to the very top
of your IAAppDelegate.m file and add this line:

#import "IAViewController.h"

Next, you’ll link your label from Interface Builder to the IAViewController instance.
This time, instead of linking it to the .m file as you did in the previous chapters, you’ll
link it to the .h file. The reason you’re doing this is that you need this variable to be pub-
lic to be able to access it from the app delegate. First, open the assistant editor from the
Interface Builder by choosing View > Assistant Editor > Show Assistant Editor in the
application menu bar. With the offer label selected in your interface, hold down the
Control key while clicking and dragging from the label to your IAViewController’s
class definition in the assistant editor, as shown in figure 13.12. Once you’ve finished
dragging and let go, a modal will appear asking you to name the outlet you’re setting on
your class for this label. Name it offerLabel and then click Connect.

 That’s it! The next time you click a push notification, you’ll see the offer on
the screen.

13.4 Registering and scheduling local notifications
So far you’ve learned how to send and receive remote notifications when some new
content is available, but remote notifications aren’t the only type. There’s another kind
of notification called local notifications. Local notifications are visually the same as

Listing 13.5 Receiving a push notification from your app delegate

ng the
n view
troller
e app
legate

Getting the message fro
the push notification
payload and showing it
on the screenb
push notifications; they both indicate to the user that something interesting happened

The
notific
will be

aft
minutes

seco

t

y

e

314 CHAPTER 13 Integrating push notifications

in your app by showing a message, a sound, and/or an icon. But local notifications
serve different needs: these kinds of notifications are strictly related to a date and a
time and are scheduled beforehand. They’re used for reminders, schedules, expira-
tions, and the like. You don’t need any interaction server-side in order to schedule
local notifications.

 Now you’ll implement a reminder in your SaleAlerts application that will help the
user remember that a new offer is available by showing an alert 10 minutes after a push
notification is received. Add the following code into the application:didReceive-
RemoteNotification: method you created in listing 13.5.

UILocalNotification *notification = [[UILocalNotification alloc] init];
notification.fireDate = [NSDate dateWithTimeIntervalSinceNow:600];
notification.alertBody = alert[@"body"];
[[UIApplication sharedApplication] scheduleLocalNotification:

➥ notification];

You first create a UILocalNotification instance, and then you set the message c and
the fire date B. Note that the fire date is expressed in seconds. Line d schedules the
notification you just created.

 Similar to remote push notifications, when a local notification is touched and your
app opens, iOS calls a function including the notification payload. The method called
when a local notification arrives is application:didReceiveLocalNotification:,
and the parameters are the same as in the remote notifications scenario you imple-
mented previously.

Listing 13.6 Scheduling a local notification

Figure 13.12 Linking the offer label to the IAViewController public definition

 local
ation
 fired
er 10
 (600
nds).

b

Setting the text tha
the user will see
using the previousl
received push
notification messagc

Scheduling the notification
you just createdd

315Summary

To summarize, you send a push notification from the server to the device including a
message regarding an offer. The device receives the notification, and when the user
opens your app by touching (or sliding) the notification, you show the offer on the
screen and at the same time you schedule a local notification that will be shown after
10 minutes reminding the user about the offer, as shown in figure 13.13.

13.5 Summary
Throughout this chapter, you learned how push notifications are sent and received,
helping you to create a communication channel with your users regardless of what
application they’re using at the moment the notification arrives. You learned the com-
plete route of push notifications, starting from a message sent from a remote server,
going through the Apple Push Notification service, and finally reaching the user’s
device. Here are some key topics we covered:

■ When you enable push notifications, events are pushed to the app whenever
they occur through APNs.

■ In order to be able to send push notifications to a specific user, you have to ask
the user for permission.

■ Push notifications are sent from a server to your iPhone application.
■ The format you use to create push notifications is JSON.
■ To send and receive push notifications, you need to configure your certificates

and application’s parameters in the iOS Dev Center.

Get 20% off on Margaritas

Figure 13.13 Touching (or
sliding) a push notification
opens your app, which will
show the offer.

Applying motion effects
and dynamics
With iOS 7 came flat textures devoid of gradients and out went skeuomorphic
design that mimicked real-life physical objects. There was also the addition of paral-
lax, which made interface objects appear to be three-dimensional by altering their
position ever so slightly depending on the angle at which you’re holding your
device. This parallax effect and many others can be achieved by using the new
motion APIs in UIKit. Also, before iOS 7 you needed to dive into complex math and
physics if you wanted to create realistic physics effects in your views. Now there’s
also a whole new slew of APIs in UIKit Dynamics that you can use to create these
realistic effects without having to be a mathematician. You’ll learn about both
motion and dynamics in this chapter. Together we’ll build a fun little app that will
serve as a catalog to showcase a few of the great things you can now do.

This chapter covers
■ Motion effects using UIMotionEffects
■ Adding the parallax effect
■ Realistic animations with UIKit Dynamics
■ Simulating gravity, collisions, and elasticity
■ Creating custom behaviors
316

317Creating your application

14.1 Creating your application
The app you’ll prepare for this chapter will be rather quick and simple. It will involve
two images, a basketball court floor for the background and an image of a basketball,
which we’ll use to demonstrate motion and dynamics. Open Xcode and create a new
single-view application called Motion Ball.

 Next, you’ll need to download an archive that contains four images for the back-
ground and the basketball you’ll use in the app. There are two versions of each image,
a retina and non-retina version. Open your web browser and go to http://blim.co/
HEbROX to download the image archive. Once it’s downloaded, open the archive and
you’ll see the following files:

■ basketball.png
■ basketball@2x.png
■ background.png
■ background@2x.png

Jump back into Xcode and select your image assets in the project navigator. Next,
drag all four files into the window that displays all of your image assets. You should see
them added to your project, as shown in figure 14.1.

 Next, open your storyboard and add a UIImageView that fills the entire view, and
set the image to background, as shown in figure 14.2.

Figure 14.1 Add the images to your image assets in your Xcode project.

http://blim.co/HEbROX
http://blim.co/HEbROX

318 CHAPTER 14 Applying motion effects and dynamics

The last view you’ll need to add is another UIImageView that’s positioned in the center of
the screen. Set its size to 150 x 150 and the image to basketball, as shown in figure 14.3.

 Once the basketball’s been added, create an outlet for it in IAViewController.h
called basketball, as shown in figure 14.4. That’s all the setup you’ll need to do for
your app. Let’s now take a look at motion effects.

14.2 Using motion effects
Motion effects are used to add effects to views in your application based on the
motion of the device running the application. This is accomplished by applying a
motion effect to a specific view. These effects can be applied for horizontal and verti-
cal movement when an iOS device is tilted. This also means that you can only see these
results on a real device because you can’t simulate this in the iOS Simulator. You’ll see
how to add a parallax effect to your application.

14.2.1 Adding the parallax effect

The parallax effect utilizes the accelerometer and gyroscope data to determine how a
single axis on a view should be adjusted when a device is tilted horizontally or verti-
cally. It’d be easy to show you what the parallax effect looks like if we were able to show
you an animated GIF within this book. Instead, look at figure 14.5, which shows you

Figure 14.2 Add a UIImageView to show the background image you added to the image assets.
what the parallax effect looks like when you tilt a device horizontally or vertically.

319Using motion effects

Figure 14.3 Add another image view to the center of the screen to represent the basketball.

Figure 14.4 Add an outlet
for the basketball image
view named basketball to

IAViewController.h.

320 CHAPTER 14 Applying motion effects and dynamics

In this figure the motion effect is applied to the dark gray circle. The background is
used as a reference point to demonstrate the way the ball is positioned as you move
the device to the left/right or up/down.

 To create these effects there’s a new class in the UIKit framework called UIMotion-
Effect, which serves as an abstract class. This means you can’t use this class directly to
create your own motion effects, but you can subclass it. Luckily there’s an out-of-the-
box class called UIInterpolatingMotionEffect that you can use to create the paral-
lax effect.

 To create a UIInterpolatingMotionEffect you can use the initWithKeyPath:type:
method. The first parameter, the key path, is used to specify on which axis on the
view you’d like to apply the effect. Normally this is done on the center point of
the view. For instance, if you were to apply a horizontal motion effect, you’d apply it
to the center.x key path. For a vertical effect you’d use center.y. The second parame-

Center Tilted left Tilted right

Center Tilted up Tilted down

Figure 14.5 Demonstrating the parallax effect on a circle, which changes location
when the device is tilted horizontally or vertically
ter in the initWithKeyPath:type: method specifies the type of motion to track,

ct.
ve

max
re

Set h
m

relat
321Using motion effects

which is represented by two constants, UIInterpolatingMotionEffectTypeTilt-
AlongHorizontalAxis for horizontal tracking and UIInterpolatingMotionEffect-
TypeTiltVerticalAxis for vertical.

 Once a UIInterpolatingMotionEffect instance is created, you can add a maxi-
mum value and a minimum value that are used to specify the amount a view should
move when a device is tilted horizontally all the way to the left or to the right. This is
accomplished by specifying an NSNumber for the maximumRelativeValue and minimum-
RelativeValue properties.

 Add the parallax effect to your app so that the basketball’s position changes when
the device is tilted horizontally or vertically. Jump into IAViewController.m and add the
following method.

- (void) addParallaxEffect
{
 UIInterpolatingMotionEffect *horizontalEffect =

➥ [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.x"

➥ type:UIInterpolatingMotionEffectTypeTiltAlongHorizontalAxis];

 UIInterpolatingMotionEffect *verticalEffect =

➥ [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.y"

➥ type:UIInterpolatingMotionEffectTypeTiltAlongVerticalAxis];

 verticalEffect.maximumRelativeValue = @(20);
 verticalEffect.minimumRelativeValue = @(-20);

 horizontalEffect.maximumRelativeValue = @(20);
 horizontalEffect.minimumRelativeValue = @(-20);

 [self.basketball addMotionEffect:verticalEffect];
 [self.basketball addMotionEffect:horizontalEffect];
}

Here you first create a vertical effect using the key path center.y so that the vertical
effect is applied to the y-axis B. You then create a horizontal effect on the x-axis c.
Next, you set the maximum d and minimum e values to 20 points for the vertical
effect. Then you set the same for the maximum f and minimum g on the horizon-
tal effect. Lastly you add the motion effect for vertical h and horizontal i to the
UIImageView that represents your basketball.

 The last thing to do is to make a call to this method within the viewDidLoad method:

- (void) viewDidLoad
{
 [super viewDidLoad];
 [self addParallaxEffect];
}

You can try this out only if you have a paid developer account because you’ll need to

Listing 14.1 Add parallax effect to basketball

Create
vertical
motion
effect.

b

Create
horizontal
motion effe

cSet
rtical
imum
lative
value.

d

Set vertical minimum
relative value.

e

orizontal
aximum

ive value. f

Set horizontal minimum
relative value.

g

Add vertical motion
effect to basketball.

h

Add horizontal motion
effect to basketball.i
run this application on your device to see it in action. When you do run this, you

322 CHAPTER 14 Applying motion effects and dynamics

should see the basketball showcasing the parallax effect when the device is moved ver-
tically or horizontally. Next, you’ll be learning about UIKit Dynamics so that you can
apply realistic animations to your basketball.

14.3 Using UIKit Dynamics
UIKit Dynamics gives you a way to animate views to produce realistic effects. Previously
in iOS 6, in order to create these types of animations you’d need a deep understand-
ing of math, physics, and Core Animation. UIKit Dynamics now allows you to add
these types of effects to your apps.

14.3.1 Introduction to UIKit Dynamics

As is probably apparent from its name, UIKit Dynamics is part of the UIKit frame-
work. The top-level class with the physics engine that’s responsible for generating
the effects you’ll be using is the UIDynamicAnimator class. This class will accept
behaviors that are applied to a specific view. Behaviors provide instructions to the ani-
mator’s physics engine, which in turn applies the effects. These behaviors are repre-
sented by the UIDynamicBehavior class. Each UIDynamicBehavior can be applied to
multiple UIDynamicItems. What’s a UIDynamicItem? The UIDynamicItem is a protocol
that defines a center, bounds, and a two-dimensional transform. Luckily the UIView
class conforms to the UIDynamicItem protocol.

 Take a look at figure 14.6 to see how these all relate to each other.
 Also, the UICollectionViewLayoutAttributes class (you learned about this when

reading about collection views) can be used with dynamic behaviors. In this chapter
we’ll be sticking to applying effects to UIViews.

 When creating a new UIDynamicAnimator instance you’ll have to pass in a refer-
ence view using the initWithReferenceView: method. This reference view will be the
top-level view in your view controller, as shown here:

UIDynamicAnimator *animator = [[UIDynamicAnimator alloc]

➥ initWithReferenceView:self.view];

When using a UIDynamicBehavior you can use one of the out-of-the-box subclasses or
create your own. The behaviors already created for us will solve almost all of our

UIDynamicBehavior

UIDynamicAnimator

UIDynamicItem UIDynamicItem

UIDynamicBehavior

UIDynamicItem

Figure 14.6 The
UIDynamicAnimator takes
in UIDynamicBehaviors,
which can be applied to
multiple objects that conform
to the UIDynamicItem
protocol.

323Using UIKit Dynamics

needs, which is one of the reasons why we don’t need to be rocket scientists to work
with them. Each of them has its own specific behavior, as shown in table 14.1.

How about you get started by adding some dynamic behaviors to your basketball?
First, open Xcode and add a property to IAViewController.h called animator, as
shown here:

@property (strong, nonatomic) UIDynamicAnimator *animator;

Now go to IAViewController.m and set the animator property in the viewDidLoad
method using the view property as the reference view:

self.animator = [[UIDynamicAnimator alloc]

➥ initWithReferenceView:self.view];

Next, you should set the basketball to be able to interact with touch actions, because
that’s how you’re going to be triggering these effects. Add the following to the bottom
of viewDidLoad as well:

[self.basketball setUserInteractionEnabled:YES];

Great—you’re ready to start adding some awesome behaviors.

14.3.2 Applying the gravity behavior

The gravity behavior is one of the simplest behaviors to use. The goal is to have the
dynamic item, the basketball, fall with simulated gravity after it’s tapped. To do this,
you’ll create two new methods, setupGravity and dropBall: in IAViewController.m.
The setupGravity method is only to add a gesture recognizer to execute dropBall:
when the ball is tapped. Add the following code:

- (void) setupGravity
{
 UITapGestureRecognizer *tapGesture = [[UITapGestureRecognizer alloc]

➥ initWithTarget:self

➥ action:@selector(dropBall:)];
 [self.basketball addGestureRecognizer:tapGesture];

Table 14.1 Different types of UIDynamicBehaviors

Behavior Description

UIAttachmentBehavior Connection between two dynamic items

UICollisionBehavior Collision between dynamic items

UIGravityBehavior Gravity effect applied to dynamic items

UIDynamicItemBehavior Effect to match ending velocity of a user gesture

UIPushBehavior Apply force to a dynamic item from a push

UISnapBehavior Snap a dynamic item to a specific point
}

324 CHAPTER 14 Applying motion effects and dynamics

Now add the following to the bottom of viewDidLoad:

[self setupGravity];

Finally, you can add the gravity behavior, which is executed when the basketball is
tapped. This code is shown in the following listing.

- (void) dropBall:(UITapGestureRecognizer *)recognizer
{
 UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

➥ initWithItems:@[self.basketball]];
 [self.animator addBehavior:gravity];
}

All of the magic is done in the two lines found in this method. You first create a new
instance of UIGravityBehavior as the dynamic item B. Then you add the behavior to
the animator c.

 If you run the application now, you’ll see the ball fall off the screen as soon as it’s
tapped. The start and end results are shown in figure 14.7.

 It’s amazing how this was accomplished with such a small amount of code. It actu-
ally took you more lines to set up the tap gesture than it did to simulate the gravity

Listing 14.2 Applying gravity to a view on tap

Create gravity
behavior for
basketball.

b

Apply behavior
to animator.c

After tapping

Figure 14.7 After tapping, the ball will animate and fall off the screen as if gravity was

pulling it down. After the animation, the ball will be off the screen.

325Using UIKit Dynamics

effect. What if you wanted the ball to fall and come to a stop at the bottom of your
view? You can do this by adding a collision behavior.

14.3.3 Applying a collision behavior

Collision behaviors allow you to define how dynamic items should react when they
come in contact with one another. This is accomplished by using the UICollision-
Behavior class. In the case of your basketball, when the gravity behavior is applied, it
falls but never stops falling. You can get it to stop at the bottom of the screen by add-
ing a collision behavior. Because the animator was created with knowledge of a refer-
ence view—the main view of your view controller—it knows where the imposed
boundaries are. You can use this to your advantage in this situation.

 The UICollisionBehavior class’s translatesReferenceBoundsIntoBoundary prop-
erty allows you to tell it to set the bounds of the reference view as the boundary of the
behavior by setting it to YES. You’ll add the collision behavior within the dropBall:
method, as shown in the next listing.

- (void) dropBall:(UITapGestureRecognizer *)recognizer
{
 UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

➥ initWithItems:@[self.basketball]];
 [self.animator addBehavior:gravity];

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

➥ initWithItems:@[self.basketball]];
 collision.translatesReferenceBoundsIntoBoundary = YES;
 [self.animator addBehavior:collision];
}

Here you’re adding three lines to add the collision behavior. First, you create a new
UICollisionBehavior with the basketball view as the dynamic item B. Next, you set
the bounds of the reference view as the boundary for the behavior c. Lastly, you
add the behavior to the animator d.

 Run the application and tap the basketball. You should see that the ball lightly
bounces as soon as it hits the bottom boundary of the reference view. The start and
finish positions are shown in figure 14.8.

 One thing you also see in this example is that you can add multiple behaviors to an
animator to make a unique effect. Next, you’re going to learn how to make this image
come to life by making it bounce like a real basketball.

14.3.4 Adding dynamic behavior

You’re going to use the UIDynamicBehavior class to help with the bounce effect. The
UIDynamicBehavior has a property that specifies the elasticity of an object that helps
makes this possible. This property accepts a CGFloat that ranges from 0.0 (no

Listing 14.3 Adding the collision behavior

Create the
collision
behavior.

b

Set reference
view bounds
as boundary.c

Apply behavior
to animator.d
bounce) to 1.0 (continuous elasticity).

326 CHAPTER 14 Applying motion effects and dynamics

Also, a basketball never falls straight down without rotating. The UIDynamicBehavior
class lets you specify angular and linear velocities for a specific dynamic item. You’ll be
adding an angular velocity by using the addAngularVelocity:forItem: method. This
will be used to give the ball a little rotation when it collides with the boundaries of the
reference view.

 To simulate friction there’s a friction property that takes values from 0.0 (no
friction) to 1.0 (strong friction). Also, to give the object realistic density to simulate
mass, there’s even a density property that you can specify. The density specified is
directly related to the pixel size of the dynamic item that it’s applied to. For exam-
ple, an object that is 100 x 100 with a 1.0 density value will accelerate to 100 points
per second2.

 Update the dropBall: method as shown in the following listing.

- (void) dropBall:(UITapGestureRecognizer *)recognizer
{
 UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

➥ initWithItems:@[self.basketball]];

Listing 14.4 Adding dynamic behavior

After tapping

Figure 14.8 After tapping it, the ball will fall with the same gravity behavior but will
come to a light stop at the bottom of the reference view due to the collision behavior
you added.
 [self.animator addBehavior:gravity];

S
f

am

S
den

bask
327Using UIKit Dynamics

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

➥ initWithItems:@[self.basketball]];
 collision.translatesReferenceBoundsIntoBoundary = YES;
 [self.animator addBehavior:collision];

 UIDynamicItemBehavior *bounce = [[UIDynamicItemBehavior alloc]

➥ initWithItems:@[self.basketball]];
 [bounce addAngularVelocity:0.2f forItem:self.basketball];
 bounce.elasticity = 0.8f;
 bounce.friction = 0.2f;
 bounce.density = 0.4f;
 [self.animator addBehavior:bounce];
}

Here you’re creating a new dynamic item behavior for the basketball as the dynamic
item B. Then you’re adding an angular velocity of 0.2 c, elasticity of 0.8 d, friction
of 0.2 e, and density of 0.4 f. Lastly you’re adding the behavior to the animator g.

 When you run the app and tap the basketball, you’ll notice that it rotates as it
bounces and returns to its normal position as it comes to a stop at the bottom right of
the screen. Figure 14.9 shows you how the ball ends up after the animator has finished.

 You’re encouraged to play with the values for angular velocity, elasticity, friction,
and density to see just how they affect the animation.

Create
dynamic item
behavior.

b

Add angular
velocity to
basketball.c

Specify elasticity
amount.d

pecify
riction
ount.

e

pecify
sity of
etball. f

Add behavior
to animator.g

After tapping

Figure 14.9 After you tap the ball, the dynamic item behavior will cause the ball to
rotate and fall based on the angular velocity, elasticity, friction, and density that

you added.

ity

.

Cr
colli

beha
328 CHAPTER 14 Applying motion effects and dynamics

14.3.5 Creating a custom UIDynamicBehavior subclass

If you want to package all of these behaviors into one class, it’s easy to do by creating a
subclass of UIDynamicBehavior. First, go to the project navigator and create a new file
in the Motion Ball group called IABallBounceBehavior that’s a subclass of UIDynamic-
Behavior, as shown in figure 14.10.

 After the new file’s been created, open IABallBounceBehavior.h and add the fol-
lowing method declaration:

-(id) initWithItems:(NSArray *)items;

Next, open IABallBounceBehavior.m. Here you’ll be adding all of the behaviors that
you’ve just created, but instead of adding them to an animator, you’ll be adding them
as child behaviors. Add the code shown in the following listing.

-(id) initWithItems:(NSArray *)items
{
 if (self = [super init]) {
 UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

➥ initWithItems:items];
 [self addChildBehavior:gravity];

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

Listing 14.5 Custom ball bounce behavior

Figure 14.10 Create a subclass of UIDynamicBehavior called IABallBounceBehavior.

Create
gravity
behavior.

b

Add grav
as child
behavior

eate
sion

d

➥ initWithItems:items]; cvior.

ic

or.
329Summary

 collision.translatesReferenceBoundsIntoBoundary = YES;
 [self addChildBehavior:collision];

 UIDynamicItemBehavior *dynamic = [[UIDynamicItemBehavior alloc]

➥ initWithItems:items];
 for (UIView *item in items)
 [dynamic addAngularVelocity:0.2f forItem:item];

 dynamic.elasticity = 0.8f;
 dynamic.friction = 0.2f;
 dynamic.density = 0.4f;
 [self addChildBehavior:dynamic];
 }

 return self;
}

This should look extremely familiar. All you’re doing is adding the custom behaviors
you’ve already created into an initializer for the IABallBounceBehavior class. You first
create the gravity behavior B and add it as a child behavior c. Then you create the
collision behavior d and add that as a child behavior e. Lastly you create the dynamic
item behavior f, apply velocity to all items in the items array g, and then add that as
a child behavior h.

 Next, open IAViewController.m. You can replace all of the dynamic behaviors with
your new IABallBounceBehavior. First, you’ll need to import the new class by adding
the following to the top of the IAViewController class:

#import "IABallBounceBehavior.h"

Finally, you can replace all of the code within dropBall: with the two lines shown here:

IABallBounceBehavior *ballBounce = [[IABallBounceBehavior alloc]

➥ initWithItems:@[self.basketball]];
[self.animator addBehavior:ballBounce];

This shows how simple it is to wrap different dynamic behaviors to achieve a desired
effect in one single behavior.

14.4 Summary
There are so many things you can do with motion effects and dynamics, and you’ve
only just skimmed the surface. There literally are endless possibilities, even with dynam-
ics alone. On top of using both of these, you can also combine Core Animation and
gestures to make something truly unique. All of these together, if used wisely, can sim-
ulate realistic and fun animations that can help provide a level of delight for your
users as they use your applications.

■ You can use motion effects to provide a parallax effect to your views.
■ The parallax effect works by using data from the accelerometer and gyroscope

when a device is tilted horizontally or vertically.
■ To be able to test motion effects, you need to run the applications on a physi-

Add collision
as child

behavior.

e Create
dynam
item
behavi

f

Apply angular
velocity to all
items passed in.g

Add dynamic
item behavior as
child behavior.h
cal device.

330 CHAPTER 14 Applying motion effects and dynamics

■ UIKit Dynamics provides realistic animations without the need of a complex
understanding of math and physics.

■ Many dynamic behaviors can be used out of the box, such as gravity, collisions,
and more.

■ You can add multiple dynamic behaviors as child behaviors into a single UIKit-
DynamicBehavior subclass.

Appendix

When you write applications, all you’re doing is providing a set of instructions for
the computer to follow. These instructions are specifically crafted in a language
that both the compiler and humans can understand. In iOS, the language you write
in is Objective-C, and we used it extensively throughout the book. This appendix
includes information about the language that will provide you with a better under-
standing of how iOS applications work.

A.1 Introduction to Objective-C
Objective-C is the primary language you use when writing iOS applications. It’s based
on the C programming language with a couple of additions that make it a complete
object-oriented language. We said “primary” because given that Objective-C is a
superset of C, writing C code is perfectly valid. In fact, the compiler that Xcode uses
(LLVM since Xcode 3.2.3, GCC on earlier versions) is a C compiler modified to
understand all of Objective-C’s additions.

The appendix covers
■ Introduction to Objective-C
■ Using blocks
■ Optimizing applications with Grand Central

Dispatch
■ Understanding automatic reference counting
331

332 APPENDIX A Appendix

A.1.1 Class syntax

In a way, an application is an ecosystem of interconnected objects interacting with one
another. In object-oriented programming (OOP) terms, an object is an instance of a
class, and in Objective-C, classes are declared in two files:

1 The .h file, which contains the declarations of the class members (you call the
declaration the interface) such as variables, methods, and properties

2 The .m file, which contains the implementation of the class

In figure A.1 you can see a class interface (.h file) and each part of the declaration.
Member variables are set to protected by default, so if you want to access those vari-
ables from another class, you’ll have to write accessor methods (see section A.1.3,
“Properties,” for more information about accessors). Figure A.2 shows the implemen-
tation side (.m file) of the class.

A.1.2 Message passing
When talking about Objective-C we usually refer to message passing instead of calling
functions. Message passing seems very strange to developers coming from other lan-
guages, but its oddness fades quickly when you start working in the language. As you
learned in the book, sending or passing messages to objects looks like this:

 [object methodWithArgument:@"hey" andArgument:@"ho"];

Member variables

Class name Parent class

Class methods

Instance methods

Figure A.1 Example of class declaration containing public variables,
instance method, and class methods. This class is named
IAViewController and inherits from UIViewController.

Methods implementation

Figure A.2 Class implementation (.m file). Inside the @implementation - @end block

you’ll write all your class logic.

333Introduction to Objective-C

The square brackets introduce the fact that this statement is passing a message. We
call the sentence on the left the receiver. In this case the receiver is object. Next, you
see the arguments (if any). Objective-C is very explicit when naming arguments. You
always send your arguments after a very explicit sentence. In the previous example, the
first argument comes after methodWithArgument: and the second after andArgument:;
this convention is useful for parsing the method purpose at first glance. Methods are
perhaps the most common element of your programming interface, and as such you
should take particular care in how you name them. The first portion of the method
name should indicate the primary intent or result of calling the method, and the
parameters should be named accordingly. We’ll illustrate this with an example of a
method you can find on NSString object instances; see figure A.3.

 The name of the method is expressive and concise. You can easily see that it takes
two strings as parameters, and just by reading the method you can tell what it does: It
creates a new string by replacing all the occurrences of the string you’re passing as the
first argument with the string you’re passing as the second argument.

 There are two types of methods in Objective-C: class methods (represented by +)
and instance methods (represented by -). A class method has no knowledge of the
instance variables because it’s not tied to an object instance. Class methods are mainly
used for creating a new object, utility, or shared instance for a singleton class.

A.1.3 Properties

Data encapsulation is the mechanism whereby the implementation details of a class
are kept hidden from outside the class. This is usually accomplished by creating getter
and setter methods that take responsibility for these variables. In Objective-C you can
use properties for that. The property declaration automatically declares getter/setter
methods for us. It’s a convenience notation used to replace the declaration and,
optionally, implementation of accessor methods. This is something extensively used
and very much recommended. Given that properties are always backed up by an
instance variable (ivar) that’s also created automatically, there are some memory
management details of those variables that you need to understand. We’ll talk about
that in the next section, “Understanding automatic reference counting.” Figure A.4
shows the properties declaration style.

 As you can see, there are a couple of attributes you can set on the properties decla-
ration. These attributes are defined as follows.

Method type

Return type Method name Argument types Arguments

Figure A.3 Example of what an Objective-C method looks like. Note that the method’s
name and arguments are expressive and concise.

334 APPENDIX A Appendix

WRITABILITY

You can define the property as read-only or read-write by using the keywords readonly
and readwrite. Those keywords are mutually exclusive and allow you to control the
availability of a setter. If you don’t define this argument, the property is readwrite by
default. Note that there’s no way to make a write-only property. Readonly means that
only the getter is created.

SETTER ATTRIBUTE

Properties allow you to specify an attribute that defines how memory is managed on
the setter. The attributes that you can use are these:

■ strong—Setting the property as strong tells the memory manager that the
ivar that backs this property holds a strong reference to the object in question.
In other words, the setter will make sure to hold the reference in memory until
the instance is destroyed.

■ weak—Weak means that the property doesn’t become an owner of that object
but just holds a reference to it. If the object’s reference count drops to 0, even
though you may still be pointing to it, it will be removed from memory.

■ copy—Copy is required when the object is mutable. You use this when you need
the value of the object as it is at this moment, and you don't want that value to
reflect any changes made by other owners of the object.

■ assign—Assign is the opposite of copy. When calling the getter of an assign
property, it returns a reference to the actual data. Typically you use this attri-
bute when you have a property of primitive type, for example, integers, floats,
booleans, and the like.

CUSTOM ACCESSORS

With the keywords setter and getter you can control the name of the methods that
are used for your getter and/or setter. These are specified with getter=getterMethod
and setter=setterMethod.

ATOMICITY

Objective-C accessors sometimes have quite a bit of work to do, and this work isn’t
inherently thread-safe. When you declare a property as atomic, the setters and getters
that are automatically created provide robust access to instance variables in a multi-
threaded environment. This means that before returning a value from the getter or set-
ting a value via the setter, the compiler will make sure not to access the same variable at
the same time from different threads. Setting the property as nonatomic tells the prop-
erty to just set and get the value directly without any other consideration. Given that
atomicity is not guaranteed, nonatomic is considerably faster than atomic. Note that

Property attributes Variable type

Figure A.4 Properties
declaration style
even if atomic is the default value, it’s more common to use nonatomic properties.

335Using blocks

A.2 Using blocks
Blocks are an incredibly powerful addition to Objective-C, introduced in iOS 4. They’re
really nothing more than a chunk of code. What makes them unique is that a block can
be executed inline as well as passed as an argument into methods and/or functions.
They’re also called closures, because they close around variables in a specific scope.
Blocks look and operate much like C functions, and as such, they carry with them a
rather obscure aspect of Standard C: function pointer declaration and casting syntax.

A.2.1 Block literals

When defining a block, you’re actually creating a block literal. A literal is a value that can
be built at compile time. For example, an integer literal is 3, a string literal is @"foobar".
In other words, a literal is some data that is presented directly in the code, rather than
indirectly through a variable. The term literal comes from the fact that you’re writing
data “literally” into your code (that is, exactly as written). You’ll see why the fact that
block declarations are literals is important later when we get into memory management.

 Let’s first see what a block literal looks like:

^(int a, int b)
{
 int powres = a ** b;
 return powres;
}

As you can see, it looks very similar to a C function body, except for these differences:

■ There is a caret symbol preceding the function body.
■ Return types are automatically inferred when not defined.
■ There is no function name. We say that block literals are anonymous.

As with function and method definitions, the braces indicate the start and end of the
block. Blocks can also take arguments and return values just like methods and func-
tions. In a nutshell, block literals encapsulate a bunch of code the same way C functions
do, but they also hold some really useful features, as you’ll see in this section.

A.2.2 Block pointers

A block pointer isn’t any different from an object pointer in the way that you can pass
it to functions or create functions that return blocks. We’ll illustrate how the assign-
ment works by the following example:

int(^pow)(int, int) = ^(int a, int b)
{
 int powres = a ** b;
 return powres;
}

As you can see, the first word found is int, which is the return type of the block, fol-
lowed by (^pow). The caret symbol ^ replaces the star * that you usually use for

declaring variable pointers. The meaning is the same, but by using the caret symbol

336 APPENDIX A Appendix

you’re telling the compiler that instead of pointing to a value, you’re pointing to a
block of code. Immediately after the name of the block pointer you find (int, int),
which is the declaration of the block arguments. In this case, (int, int) means that
the block is taking two arguments of type int. The right-hand side is the block literal
that you saw a moment ago.

NOTE The fact that blocks return something is confusing sometimes. As
you’ll see later on, the block returns a value that can be used by the caller of
the block.

Another key difference between ordinary functions and blocks is that functions are
defined in the global scope and blocks are defined in a local scope. In other words,
blocks can be defined anywhere a variable can. The scope is very important when
defining blocks because you can access variables from the same enclosing scope where
the block is defined. Here’s an example:

- (void)exampleMethod
{
 int variableInsideMethod = 10;

 void(^exampleBlock)(void) = ^(void){
 NSLog(@”We can access: %d”, variableInsideMethod);
 };
}

As you can see, you can access the variableInsideMethod variable within your block.

A.2.3 Block invocation

So far you’ve learned how to declare blocks and how their pointers are assigned. It’s
important to understand that, so far, the code inside your blocks hasn’t executed at all.
You’ve created them, but you haven’t used them. You’ll see next how blocks are invoked:

int pow_result = pow(3, 4);

As you can see, block invocation has the exact same syntax as C function calls. Blocks
return a specific type (or none) and take arguments the same way a C function does.
In the previous example, pow_result contains an integer that is the resulting value of
calculating 3 to the power of 4.

A.2.4 Common usage

A block represents a unit of executable code that can capture variables of the sur-
rounding scope. This makes blocks ideal for asynchronous invocation; in fact, blocks
are used extensively when writing asynchronous tasks. You’ll see later that blocks are
extremely handy when it comes to multithreading operations.

 Other typical uses for blocks include the following:

■ Running code when an asynchronous task is completed (for example, an HTTP
request)
■ Handling errors on asynchronous calls

gument
e where
 execute

ronous
(see
iorities”

n).
337Optimizing applications with Grand Central Dispatch

■ Handling asynchronous notifications
■ As lambda functions, for iterations (sorting, enumeration, and the like)
■ UIView animation and transitions

A.3 Optimizing applications with Grand Central Dispatch
Multithreading is treated as a black art by many programmers and for good reason.
Even for an experienced programmer, writing and maintaining multithreaded code is
hard and unpleasant. It’s so difficult to do it right that it’s usually recommended to
avoid multithreading as much as possible.

 The goal behind multithreading is very simple: perform more than one task at the
same time. Take, for example, the iOS user interface operations: the tasks used to
(re)draw the screen are all done in the main thread, that is, the same thread on which
your program runs. While your logic is running, the user interface is not able to
update, leading to a frozen screen. But that’s not the only problem: touches also are
dispatched on the main thread, and when you perform heavy operations on the main
thread, such as I/O operations, complex computations, or synchronous network
requests, you’re preventing the operating system from catching these events. Alas,
sometimes you don’t have any other choice than using multithreading, but fortu-
nately, Objective-C abstractions are way easier to use and understand.

GRAND CENTRAL DISPATCH

Grand Central Dispatch (GCD) is a technology added by Apple that allows concurrent
executions just like multithreading does but without the complexity involved in writ-
ing multithreading code. It works by allowing specific tasks in a program to be queued
for execution in parallel. You submit these tasks in the form of block objects. Blocks
are queued in specific queues controlled by the operating system and then executed
in parallel or in series. Let’s look at an example of a queue invocation:

dispatch_async(
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
 ^{
 NSLog(@"This is executed in a different thread!");
 }
);

In order to execute asynchronous tasks you’ll call dispatch_async, a function that
takes two arguments: the queue in which you want to execute the task (these queues
are automatically created for you) and the task itself.

DISPATCH QUEUES

iOS creates a series of dispatch queues for you to be used as replacements for multi-
threading operations, and as such, all low-level operations and multithreading han-
dling are done by the operating system, so there is no guarantee as to which thread is

The first ar
is the queu
you want to
the asynch
operation
“Queue Pr
for more
informatio

b

The second argument is the block of code that will be executed.
Here you’re just printing a message to standard output. c
going to execute your tasks. There are two types of queues:

338 APPENDIX A Appendix

■ Concurrent—Tasks are dequeued in First In, First Out (FIFO) order. As the name
indicates, you use this kind of queue to execute tasks concurrently. The operat-
ing system automatically creates four concurrent dispatch queues for you with
different priorities. Given the fact that tasks are executed concurrently, there’s
no guarantee as to the order in which tasks are finished.

■ Serial—Tasks are dequeued in FIFO order, one at a time. The next task is
dequeued only when the running one is finished. Serial queues guarantee you
run only one task at a time. You use serial queues to ensure that tasks are exe-
cuted in a predictable order. This is very useful when all tasks are related in a
way and you need to be sure that each task is executed one after another.

Figure A.5 illustrates an abstraction of how dispatch queues work.
 All global dispatch queues created by iOS that you’ll see in the next section are

concurrent. In order to use serial queues you’ll have to create a new queue by using
the function dispatch_queue_create("queue name", 0) and use this newly created
queue as the first argument of each task you want to execute in serial mode.

QUEUE PRIORITIES

Queue priorities define the urgency of the tasks. Higher priorities will (hopefully) be
executed sooner than lower priorities:

■ DISPATCH_QUEUE_PRIORITY_HIGH—Tasks dispatched to the high-priority queue
run at the highest priority. This means that the queue is scheduled for execu-
tion before any default-priority or low-priority queue.

■ DISPATCH_QUEUE_PRIORITY_DEFAULT—Tasks dispatched to this queue run at the
default priority; the queue is scheduled for execution after all high-priority queues
have been scheduled but before any low priority queues have been scheduled.

■ DISPATCH_QUEUE_PRIORITY_LOW—Tasks dispatched to this queue run at low pri-
ority; the queue is scheduled for execution after all high-priority and default-
priority queues have been scheduled.

■ DISPATCH_QUEUE_PRIORITY_BACKGROUND—Tasks dispatched to this queue run at
background priority; the queue is scheduled for execution after all high-priority

New task into queue

for execution

In waiting

Dequeued tasks

are being executed

Figure A.5 An overview of how operation queues work on GCD. It’s a traditional FIFO
queue in which tasks are dequeued and executed, sometimes in parallel and sometimes in
series according to execution type.

339Understanding automatic reference counting

queues have been scheduled, and the system runs items on a thread whose pri-
ority is set for background status. Such a thread has the lowest priority, and any
disk I/O is throttled to minimize the impact on the system.

You can retrieve these queues by using dispatch_get_global_queue(<queue name>,
0). One important queue that wasn’t mentioned in this list is the main queue. The
main queue is very useful when you need to run some specific tasks on the main
thread, such as user interface operations. For example, if you want to update a label
on screen, show a message, or update any view, you’re forced to do it from the main
thread because UI operations are not thread safe. For that, you’ll use the exact same
queue_async() function, and in order to retrieve the queue for its use, you’ll call the
function dispatch_get_main_queue(). This means that this code should run on
the main thread:

dispatch_async(dispatch_get_main_queue(), ^{ NSLog(@”Main thread!”); });

A.4 Understanding automatic reference counting
Every program needs a way to write and read things from memory. When you create
an instance of a class, or when you define a variable or mutate an object, you’re allo-
cating space in your device memory for later use. But because memory isn’t infinite,
you also need to release the memory you used when you don’t need it anymore. The
process of allocating and releasing memory is called memory management, and pro-
gramming languages use different techniques to do it. Cocoa’s memory management
system is called reference counting. Each object keeps track of how many times it is being
referenced and released. When the counter reaches zero, the object is marked as fin-
ished, and it’s eventually removed. Figure A.6 shows how reference counting works
with multiple objects. The rules are fairly simple. In short,

1 If you alloc, new, copy, or retain an object, you must balance that with
release or autorelease.

2 If you obtain an object in some other way, and you need it to stay alive long-
term, you must retain or copy it. This must, of course, be balanced later.

Reference count = 3

object

Reference count = 1

object

Reference count = 0

object

Figure A.6 This is an object with a reference count of 3, meaning that
3 classes asked for ownership of this object, then two classes
released it, leaving a count of 1, and finally the last class released the
object, subtracting the count by 1 and leaving the count as 0. At this

point the object is removed from memory.

340 APPENDIX A Appendix

Memory management systems that delegate all the responsibility to developers usually
create very complicated code and potential memory leaks (a memory leak is the repet-
itive allocation of memory without consequential release of it when no longer used).
Before Xcode 4.2 that was the case with Cocoa’s memory management system; devel-
opers were in charge of allocating memory as they needed it and releasing it when not
used. Later on, with the introduction of LLVM and the Clang static analyzer, there was
a way to catch all potential problems and see some tips on screen. But, you might ask,
if Clang could spot these errors, why can’t Clang just fix them for us? That’s what
Automatic Reference Counter (ARC) does. It’s a layer on top of the compiler that
inserts the needed calls to retain and release methods for you. Nothing really
changed about how Objective-C manages your memory; ARC is a compiler-level fea-
ture that adds all those retain/release calls for you. Not only does ARC free you
from writing the calls to release/retain, but it also strictly prohibits the use of these
methods. In other words, ARC frees you from dealing with most memory management
issues. But even though ARC makes your life easier, you can’t ignore memory manage-
ment completely. There are some cases where you still need to make some decisions
about how memory is managed. We’ll look at the most important ones now.

PROPERTIES AND ATTRIBUTES

You learned earlier about how properties are declared in Objective-C, as well as how
to set properties through the setter attribute. These attributes define how memory is
managed on the setter:

■ strong
■ weak
■ copy
■ assign

You can look back at section A.1.3, “Properties,” for details about these attributes. It’s
important to understand that you must decide how your properties relate to other
objects. You use these attributes to notify the compiler of these relationships. Strong
references are a way of owning the variable, meaning that as long as the instance hold-
ing the property is alive, the variable will be as well. Weak references can be removed
from memory at any time, and the instance has no control over that.

BLOCKS

If there’s one thing to be careful about in ARC, it’s the retain cycle. A retain cycle is a
situation in which object A retains object B, and object B retains object A at the same
time. This is a problem because object A won’t be released from memory because it’s
still owned by object B, but object B won’t ever be released either because it’s still
owned by object A.

 Retain cycles are somewhat dangerous with blocks because all the variables from
the surrounding scope you use inside the block will be retained; for example:

[self someMethodWithBlock:^{
 [self someOtherMethod];

}];

341Summary

At this point, the block is held by the instance and the block itself is strongly holding
self. This is a case of a retain cycle that will lead to a memory leak. The way to break
the cycle in this case is to force self to be weak inside the block. In order to do that
you must define a weak version of self before calling the block:

__weak id wself = self;
[self someMethodWithBlock:^{
 [wself someOtherMethod];
}];

You first create a variable with the __weak modifier called wself. This variable points
to the actual instance, but thanks to the modifier you’re telling the block not to strongly
hold self.

A.5 Summary
This appendix has provided an introduction to Objective-C, which is the main program-
ming language used to write apps for iOS. You learned how incredibly flexible and pow-
erful Objective-C can be, and although an in-depth analysis of all the characteristics of
Objective-C is beyond the scope of this book, we covered some key features that will
make your life easier as an iOS developer. Some key topics we covered are these:

■ When writing Objective-C you don’t call functions; you send messages to objects.
■ Properties create setters and getters for you, cutting down on the repetitive code

you need to write.
■ Blocks are pieces of code that you can save, execute, copy, or pass to other

methods at runtime.
■ Grand Central Dispatch can simplify concurrent operations, and it’s a full replace-

ment for traditional multithreading.
■ There is a layer on the compiler that creates the memory management code

you need. This mechanism is called Automatic Reference Counter.

index
Symbols

^ (caret symbol) 335
- (minus sign) 333
! (exclamation point) 312
+ (plus sign) 333

A

ACAccountCredential class 182
ACAccountStore class 182–183
ACAccountType class 182
ACAccountTypeIdentifier-

Facebook 188
ACAccountTypeIdentifier-

Twitter 186
accessor methods 332
accountDescription

property 186, 189
Accounts framework

Facebook accounts
creating Facebook

app 186–187
requesting permission 188–

189
overview 179–180
Twitter accounts

displaying accounts in table
view 183–186

requesting permission 182–
183

accountType property 182
accountTypeWithAccountType-

Identifier method 183
ACFacebookAppIDKey 188

ACFacebookPermissionsKey
188

addAngularVelocity
method 326

addAnnotation method 242
addSubView function 35
administrativeArea

property 238
AFNetworking 143
AirMusic application 286–289
AirPlay

displaying controller to
view 291–292

enabling support using built-
in media players 290–291

external screens
custom view controller

for 296–298
displaying content 298–

301
integration examples 284–

286
overview 283–284
streaming audio to

destination 292–295
ALAsset class 149–150
ALAssetPropertyAssetURL

property 150
ALAssetPropertyDate

property 149
ALAssetPropertyDuration

property 149
ALAssetPropertyLocation

property 149
ALAssetPropertyOrientation

ALAssetPropertyRepresenta-
tions property 150

ALAssetPropertyType
property 149

ALAssetPropertyURLs
property 150

ALAssetsGroup class 109, 148–
149

ALAssetsGroupAlbum type 147
ALAssetsGroupAll type 148
ALAssetsGroupEvent type 147
ALAssetsGroupFaces type 147
ALAssetsGroupLibrary type 147
ALAssetsGroupPhotoStream

type 148
ALAssetsGroupPropertyName

property 148
ALAssetsGroupProperty-

PersistentID property 148
ALAssetsGroupPropertyType

property 148
ALAssetsGroupPropertyURL

property 148
ALAssetsGroupSavedPhotos

type 148
ALAssetsLibrary class 147–148
Albums application 82–86
allowsExternalPlayback

property 290
AnimatedClock application 204
animateWithDuration

method 213
animations

advanced 219–223
basic 212–219
342

ACFacebookAudienceKey 188 property 149 animator property 323

INDEX 343

annotating maps 242–243
APNs (Apple Push Notification

service) 304–306
App IDs 306
ARC (automatic reference

counting)
blocks 340–341
overview 339–340
properties and attributes 340

assetForURL method 172
Assets Library

ALAsset 149–150
ALAssetsGroup 148–149
ALAssetsLibrary 147–148
capturing with camera

checking camera
availability 162–164

saving to Assets
Library 166–168

taking photos and
videos 164–166

image picker controller
conforming to

protocols 156–158
overview 156
presenting 159
selecting assets from 159–

161
setting source 158
supported media types 158

Media Info application 150–
155

metadata
accessing 173–176
setting up view for 169–171

overview 146–147
retrieving assets 171–173

assign properties 334, 340
atomic properties 334
attributes 340
Attributes Inspector 69
audio 292–295
authorizationStatus method 228
automatic reference counting.

See ARC
availableMediaTypesForSource

method 158

B

battery 229
blocks

automatic reference
counting 340–341

block literals 335
block pointers 335–336
HTTP requests 128
using 336

C

CAAnimation class 219
CAKeyframeAnimation

class 220–222
camera

capturing with
checking camera

availability 162–164
saving to Assets

Library 166–168
taking photos and

videos 164–166
customizing view of 164

cameraOverlayView
property 164

cellForItemAtIndexPath
method 109

cellForRowAtIndexPath
method 87, 94, 115

CGAffineTransformMake-
Rotation function 214,
217

CGImageRef 166
CGRect 33
checkForAndSetupExternal-

Screen method 299
checkmark 96
ChuckNorrisRater

application 124, 138
Class attribute 205
classes 332
CLLocation class 226–227
CLLocationCoordinate2DMake

function 241
CLLocationManager class 227–

230
CLLocationManagerDelegate

protocol 229
closures 335
collection view

adding UICollectionView-
Controller as new scene 107

custom collection view
cell 113–116

customizing layout 117–118
data source 107–113
flow layout delegate

protocol 118–120

collision behavior 325
concurrent tasks 338
configureCell method 273
CONNECT method 134
Connections Inspector 69
Constraints section 71
Contacts app 78
Content-Length header 125
contexts. See managed object

contexts
controllerDidChangeContent

method 272
controllerWillChangeContent

method 272
controls and views 35
coordinate system for views 33–

35
copy properties 334, 340
Core Animation 212
Core Data

limitations of 251–252
managed objects

adding and removing tasks
from list 274–280

creating 266–268
deleting 268
entities and 258–261
fetched results

controller 270–273
filtering results using

predicates 269–270
generating managed object

classes for entities 263–
265

managed object
contexts 256–258

managed object
models 256–258

relationships between
entities 261–263

retrieving 268–269
updating 268

RestKit 144
vs. traditional databases 250–

251
Core Location framework

CLLocation class 226–227
CLLocationManager

class 227–230
geocoding location 237–239
retrieving current

location 233–237
Core Tasks application 252–255
CoreGraphics framework 17,
block invocation 336 overview 103–105 83

INDEX344

credential property 182
CRUD (create, retrieve, update,

destroy) 143
custom views 205–212

D

data persistence
Core Data

limitations of 251–252
vs. traditional

databases 250–251
Core Tasks application 252–

255
managed objects

adding and removing tasks
from list 274–280

creating 266–268
deleting 268
entities and 258–261
fetched results

controller 270–273
filtering results using

predicates 269–270
generating managed object

classes for entities 263–
265

managed object
contexts 256–258

managed object
models 256–258

relationships between
entities 261–263

retrieving 268–269
updating 268

data serialization 131–134
data source

collection view 107–113
table view 86–90

databases. See data persistence
datasource property 169
day/night modes 25–30
deferredLocationUpdates-

Available method 228
delegate property 169
DELETE method 134
delete rule 261
deleting table view rows 97–99
density property 326
dequeueReusableCellWith-

Identifier method 87
dequeueReusableCellWithReuse-

Identifier method 116
deselecting table view rows 100–

desiredAccuracy property 228
destination entity 261
detail button 95
Dev Center 306
didChangeObject method 272
didDismissWithButtonIndex

method 276
didFailLoadWithError

method 142
didFinishPickingMediaWithInfo

method 159, 167
didMoveToWindow method 219
didReceiveLocalNotification

method 314
didReceiveMemoryWarning

method 38–39
didReceiveRemoteNotification

method 313–314
didRegisterForRemote-

NotificationsWithDevice-
Token method 310

didSelectRowAtIndexPath
method 110

didUpdateLocations
method 235

disclosure indicator 95
dispatch queues 337–338
DISPATCH_QUEUE_PRIORITY

_BACKGROUND 338
DISPATCH_QUEUE_PRIORITY

_DEFAULT 338
DISPATCH_QUEUE_PRIORITY

_HIGH 338
DISPATCH_QUEUE_PRIORITY

_LOW 338
distanceFilter property 228
double tap gesture 4
DVI 298
@dynamic 265
dynamic behavior 325–327

E

edgesForExtendedLayout
property 45

Empty Application template 19
entities

generating managed object
classes for 263–265

managed objects and 258–
261

relationships between 261–
263

enumerateAssetsUsingBlock

enumerateGroupsWithTypes
method 147

events 35–37
executeFetchRequest

method 269
external screens

custom view controller
for 296–298

displaying content on 298–
301

externalView property 300
externalWindow property 300

F

Facebook 143
Accounts framework

creating Facebook
app 186–187

requesting permission 188–
189

Social framework
posting to 196
retrieving news feed 200–

203
fbOptions parameter 188
fetched results controller 270–

273
FIFO (First In, First Out) 338
File helper section 69
filtering results using

predicates 269–270
First In, First Out. See FIFO
flick gesture 4
flow layout delegate

protocol 118–120
footerReferenceSize

property 117
form-urlencoded 136
Foundation framework 17, 83
frameworks 17
friction property 326

G

GCD (Grand Central Dispatch)
dispatch queues 337–338
overview 337
queue priorities 338–339

geocoding location 237–239
gestures 4
GET method 134–135
getter keyword 334
GitHub 143
101 method 149 Google Maps 226

INDEX 345

GPS (Global Positioning
System) 225

Grand Central Dispatch. See
GCD

gravity behavior 323–325

H

.h file 332
HDMI (High-Definition Multi-

media Interface) 298
HEAD method 134
headerReferenceSize

property 117
headingAvailable method 228
headingFilter property 228
headingOrientation

property 228
Hello Time application

application interface 7–8
building and running 13–14
clock functionality 12–13
connecting user interface to

code 11–12
creating in Xcode 5–7
landscape mode support 30–

31
switching between night and

day modes 25–30
Heroku 143
High-Definition Multimedia

Interface. See HDMI
horizontalAccuracy

property 226
HTTP (Hypertext Transfer

Protocol) 134–138

I

icndb API 128
IDE (integrated development

environment) 5
identifier property 182, 189
Identity Inspector 69
image picker controller

conforming to protocols 156–
158

overview 156
presenting 159
selecting assets from 159–161
setting source 158
supported media types 158

imagePickerControllerDid-
Cancel method 159

initWithCoordinate
method 226

initWithFrame method 33,
206

initWithKey method 269
initWithKeyPath method 320
initWithLatitude method 226
insetForSectionAtIndex

method 118
inspector sections, Xcode 68–71
instance variables 333
instantiateViewControllerWith-

Identifier method 73
integrated development envi-

ronment. See IDE
interaction in iOS 4–5
interface 332
@interface operator 128
inverse relationship 261
iOS

blocks for HTTP requests 128
development

frameworks 17
iOS Simulator 20–23
message passing 15–17
MVC pattern 17
object-oriented

programming 15
Objective-C 15–17
requirements 5
Xcode project types 18–19
Xcode workspace 19–20

interaction in 4–5
iOS Simulator 20–23, 95
iPodMusicPlayer 293
isCameraDeviceAvailable

method 163
isEqualToString method 150
isFlashAvailableForCamera-

Device method 163
isSourceTypeAvailable

method 162
itemSize property 117

J

JSON (JavaScript Object
Notation) 132

K

kCCLocationAccuracyHundred-
Meters 228

kCCLocationAccuracyKilometer

kCCLocationAccuracyNearest-
TenMeters 228

kCCLocationAccuracyThree-
Kilometers 228

kCLLocationAccuracyBest 228
kCLLocationAccuracyBestFor-

Navigation 228
kMetersPerSecondToMilesPer-

Hour 236

L

landscape orientation
enabling support for 45–47
supporting in Hello Time

application 30–31
layout

customizing 117–118
flow layout delegate

protocol 118–120
lifecycle, view controllers 39–41
loadView method 39
local notifications 313–315
location and mapping

Core Location framework
CLLocation class 226–227
CLLocationManager

class 227–230
geocoding location 237–

239
retrieving current

location 233–237
MapKit framework

adding map to
application 244–247

annotating map 242–243
displaying map 240–242
retrieving current

location 242
Speed Map application 230–

233
locationServicesEnabled

method 228

M

.m file 332
managed object contexts 256–

258
managed object models. See

MOM
managed objects

adding and removing tasks
from list 274–280
initWithCoder method 207 228 creating 266–268

INDEX346

managed objects (continued)
deleting 268
entities and 258–261
fetched results

controller 270–273
filtering results using

predicates 269–270
generating managed object

classes for entities 263–265
relationships between

entities 261–263
retrieving 268–269
updating 268

managedObjectContext
method 257

MapKit framework
adding map to

application 244–247
annotating map 242–243
displaying map 240–242
retrieving current

location 242
see also location and mapping

Master-Detail Application
template 19, 252

maximumRelativeValue
property 321

Media Info application 150–
155

MediaPlayer framework 291
mediaTypes property 158
message passing 15–17, 332–

333
metadata

accessing 173–176
setting up view for 169–171

minimumInteritemSpacing
property 117

minimumInteritemSpacing-
ForSectionAtIndex
method 118

minimumLineSpacing
property 117

minimumLineSpacingFor-
SectionAtIndex method 118

minimumRelativeValue
property 321

mirroring feature, AirPlay 295
MKAnnotation protocol 243
MKCoordinateRegionMake-

WithDistance function 241
MKMapTypeHybrid 241
MKMapTypeSatellite 241
MKMapTypeStandard 241

MKMapViewDelegate
protocol 242

MKPointAnnotation class 242
MKUserTrackingModeFollow

242
MKUserTrackingModeNone

242
modal segues 74
Model-View-Controller pattern.

See MVC pattern
MOM (managed object

models) 256–258
motion effects

Motion Ball application 317–
318

overview 316–317
parallax effect 318–322
UIKit Dynamics

collision behavior 325
custom UIDynamicBehavior

subclass 328–329
dynamic behavior 325–327
gravity behavior 323–325
overview 322–323

MPMediaItemCollection 294–
295

MPMediaPickerController 293
MPMediaPickerController-

Delegate protocol 293
MPMoviePlayerViewController

290
MPVolumeView class 291–292
multithreading

dispatch queues 337–338
overview 337
queue priorities 338–339

MVC (Model-View-Controller)
pattern 17

MySQL 250

N

navigation controller
overview 41–42
Tasks application 56–58

night/day modes 25–30
nonatomic properties 334
NSAttributeDescription

class 259
NSData class 136
NSDateFormatter class 17
NSDictionary class 134
NSEntityDescription class 267
NSFetchedPropertyDescription

NSFetchedResultsController
class 270

NSFetchedResultsController-
Delegate protocol 271

NSFetchRequest class 268
NSIndexPath class 110
NSJSONSerialization class 133,

198, 202
NSManagedObjectContext

class 257–258
NSMutableArray property 109,

182
NSNotificationCenter class 298
NSObject class 15
NSPersistentStoreCoordinator

class 258
NSPredicate class 269
NSRelationshipDescription

class 259
NSSortDescriptor class 269
NSURLConnection class 129
NSURLRequest class 136
NSURLSession class 124–131
NSURLSessionDataDelegate

protocol 129
NSURLSessionDelegate

protocol 129
NSURLSessionDownload-

Delegate protocol 129
NSURLSessionTaskDelegate

protocol 129
numberOfAssets method 149
numberOfItemsInSection

method 109, 111
numberOfRowsInSection

method 86
numberOfSectionsInCollection-

View method 109
numberOfSectionsWithinTable-

View method 111

O

Object Library 7, 68
object-oriented programming.

See OOP
object-relational mapping. See

ORM
Objective-C 15–17

class syntax 332
message passing 332–333
properties 333–334

objects
defined 332
MKMapView class 240 class 259 message passing and 333

INDEX 347

OOP (object-oriented
programming) 15, 332

OpenGL Game template 19
OPTIONS method 134
orientation

enabling support for portrait
and landscape 45–47

updating views 47–49
ORM (object-relational

mapping) 250
outlets 11

P

pack function 312
Page-Based Application

template 19
parallax effect 318–322
parameters

HTTP request 125
for messages 16

Parse 143
path, HTTP request 125
performSegueWithIdentifier

method 74
permission

requesting for Facebook
accounts 188–189

requesting for Twitter
accounts 182–183

persistence. See data persistence
photos

capturing with camera
checking camera

availability 162–164
saving to Assets

Library 166–168
taking photos and

videos 164–166
metadata

accessing 173–176
setting up view for 169–171

see also Assets Library
Photos application 79, 90
pinch gesture 4
Pinterest 143
popover segues 74
populateViewsWithSongQueue

method 294–295
popViewControllerAnimated-

Yes 67
portrait orientation 45–47
POST method 134–135
PostgreSQL 250

preferredStatusBarStyle
method 44

prepareForSegue method 75
presentViewController

method 159, 195
projects, Xcode 5
properties

atomicity 334
automatic reference

counting 340
custom accessors 334
overview 333–334
setter attribute 334
writability 334

prototype cells 90–96
push notifications

Apple Push Notification
service 304–306

local notifications 313–315
overview 303–304
SaleAlerts application 306–309
sending 309–313

push segues 74
PUT method 134

Q

queue priorities 338–339
Quick help section 69

R

readonly properties 334
readwrite properties 334
reference counting 339
referenceSizeForHeaderIn-

Section method 118
regionMonitoringAvailable

method 228
relationships between

entities 261–263
reloadData method 88
remote data

AFNetworking 143
data serialization 131–134
HTTP requests 134–138
RestKit 143–144
retrieving using

NSURLSession 124–131
using web views to display

remote pages 138–142
requestAccessToAccountsWith-

Type method 183
requestWithServiceType

requirements for iOS
development 5

RESTful services 143
RestKit 143–144
retrieveAccounts method 182–

183, 186, 188
retrieveAsset method 172
retrieveMetadata method 174
retrievePhotoMetadata

method 174
retrieveURL method 130
retrieveVideoMetadata

method 175
reverseGeocodeLocation

method 238
rows

collection view 105
table view

deleting 97–99
selecting and

deselecting 100–101
running application 13–14

S

Safari application 95
SaleAlerts application 306–309
scenes 73–75
screenDidConnect method 299
screenDidDisconnect

method 299
screens and views 32–33
scrollDirection property 117
SDK (Software Development

Kit) 4
sectionInset property 117
segues

passing data between view
controllers with 75–76

transitioning between scenes
with 73–75

selecting table view rows 100–
101

@selector() function 37
serial tasks 338
setShowsRouteButton

method 291
setShowsVolumeSlider

method 291
setter attribute 340
setter keyword 334
Settings app 78
setupViewFromAsset method 173
setUserTrackingMode
predicates 269–270 method 197 method 242

INDEX348

shouldStartLoadWithRequest
method 142

Show Assistant Editor option 11
Show Attributes Inspector

option 8
Show Connections Inspector

option 54
Show Identity Inspector

option 59
Show Size Inspector option 53
Show Standard Editor option 29
showCameraControls

property 164
significantLocationChange-

MonitoringAvailable
method 228

Single View Application
template 18–19

Size Inspector 69
sizeForItemAtIndexPath

method 117
SLComposeViewController 193–

194
SLRequest 197–199
SLServiceTypeFacebook 196
SLServiceTypeTwitter 195–196
Social framework

Facebook
posting to 196
retrieving news feed 200–

203
Twitter

posting using Tweet Com-
poser view 190–195

retrieving stream using
SLRequest 197–199

social integration
Accounts framework

Facebook accounts 186–189
overview 179–180
Twitter accounts 182–186

Social framework
posting to Facebook 196
posting to Twitter using

Tweet Composer
view 190–195

retrieving Facebook news
feed 200–203

retrieving Twitter stream
using SLRequest 197–
199

TweetBook application 180–
182

Software Development Kit. See

songQueue property 294, 298
sortedArrayUsingDescriptors

method 277
Speed Map application 230–233
SQLite 250
startUpdatingHeading

method 230
startUpdatingLocation

method 230, 235
startVideoCapture method 164
status bar styles 43–44
stopUpdatingHeading

method 230
stopUpdatingLocation

method 230
stopVideoCapture method 164
storyboards

advantages of 71–72
issues with 76–77
passing data between view

controllers with segues 75–
76

scenes within 73
Tasks application

connecting views within
storyboard 62–67

create task view 58–62
creating project 51
interface 51–56
navigation controller 56–58
overview 51
view task view 58–62

transitioning between scenes
with segues 73–75

Xcode interface editor
inspector sections 68–71
overview 67–68

streaming. See AirPlay
strong properties 334, 340
subAdministrativeArea

property 238
successBlock callback 130
supportedInterfaceOrientations

method 45
swipe gesture 5

T

tab bar view controllers 42
Tabbed Application template 19
table view

adding 53
Albums application 82–86
applications using 78–79

data source 86–90
deleting rows 97–99
overview 79–80
prototype cells 90–96
selecting and deselecting

rows 100–101
takePicture method 164
Tasks application

connecting views within
storyboard 62–67

create task view 58–62
creating project 51
interface 51–56
navigation controller 56–58
overview 51
view task view 58–62

tint color for views 38
toggleMode method 29
TRACE method 134
transformation matrixes 214
transitioning between

scenes 73–75
translatesReferenceBoundsInto-

Boundary property 325
Tweet Composer view 190–195
TweetBook application 180–182
Twitter 143

Accounts framework
displaying accounts in table

view 183–186
requesting permission 182–

183
Social framework

posting using Tweet Com-
poser view 190–195

retrieving stream using
SLRequest 197–199

U

UI (user interface) 11–12
UIActionSheet class 291
UIAlertView class 266–267
UIAlertViewDelegate

protocol 266
UIAlertViewStylePlainTextInput

class 267
UIAttachmentBehavior class 323
UIBarButtonItem class 292
UIButton class 32
UICollectionView class 104
UICollectionViewCell class 105,

113
UICollectionViewController
SDK controller 42–43 class 107

INDEX 349

UICollectionViewDataSource
class 105

UICollectionViewDelegate
class 105

UICollectionViewDelegateFlow-
Layout protocol 117

UICollectionViewFlowLayout
class 117

UICollectionViewLayout-
Attributes class 322

UICollisionBehavior class 323,
325

UIControl class 33, 35
UIDynamicAnimator class 322
UIDynamicBehavior class 322,

325, 328–329
UIDynamicItem protocol 322
UIDynamicItemBehavior

class 323
UIEdgeInset class 119
UIEdgeInsetsMake

function 119
UIGravityBehavior class 323
UIImagePickerController

class 155–156
UIImagePickerController-

CameraDevice type 163
UIImagePickerController-

CropRect key 160
UIImagePickerController-

Delegate protocol 157, 159
UIImagePickerController-

EditedImage key 160
UIImagePickerController-

MediaType key 160
UIImagePickerController-

MediaURL key 160
UIImagePickerController-

MetaData key 160
UIImagePickerController-

OriginalImage key 160
UIImagePickerController-

QualityType 165
UIImagePickerController-

QualityType640x480 165
UIImagePickerController-

QualityTypeHigh 165
UIImagePickerController-

QualityTypeIFrame1280x720
165

UIImagePickerController-
QualityTypeIFrame960x540
165

UIImagePickerController-

UIImagePickerController-
QualityTypeMedium 165

UIImagePickerController-
ReferenceURL key 160

UIImagePickerController-
SourceTypeCamera
class 162–163

UIImagePickerControllerSource-
TypePhotoLibrary class 158

UIImagePickerController-
SourceTypeSavedPhotos-
Album class 158

UIImageView class 32
UIInterfaceOrientation

enumerable 46
UIInterfaceOrientation-

LandscapeLeft 46
UIInterfaceOrientation-

LandscapeRight 46
UIInterfaceOrientationMask

enumerable 46
UIInterfaceOrientationMask-

All 47
UIInterfaceOrientationMask-

LandscapeAll 47
UIInterfaceOrientationMask-

LandscapeLeft 47
UIInterfaceOrientationMask-

LandscapeRight 47
UIInterfaceOrientationMask-

Portrait 46
UIInterfaceOrientationMask-

PortraitAll 47
UIInterfaceOrientationMask-

PortraitUpsideDown 46
UIInterfaceOrientation-

Portrait 46
UIInterfaceOrientationPortrait-

UpsideDown 46
UIInterpolatingMotionEffect

class 320
UIInterpolatingMotionEffect-

TypeTiltAlongHorizontal-
Axis 321

UIInterpolatingMotionEffect-
TypeTiltVerticalAxis 321

UIKit Dynamics
collision behavior 325
custom UIDynamicBehavior

subclass 328–329
dynamic behavior 325–327
gravity behavior 323–325
overview 322–323

UIKit framework 17, 83, 213

UILocalNotification class 314
UIMotionEffect class 320
UINavigationController

class 41–42
UIPushBehavior class 323
UIRectEdgeAll 45
UIRectEdgeNone 45
UIRemoteNotificationType-

Alert 310
UIRemoteNotificationType-

Badge 309
UIRemoteNotificationType-

Sound 309
UIResponder class 32
UIScreen class 32
UIScreenDidConnect-

Notification 298
UIScreenDidDisconnect-

Notification 298
UISnapBehavior class 323
UIStatusBarStyleDefault 44
UIStatusBarStyleLight-

Content 44
UIStoryboardSegue class 73
UITabBar class 42
UITabBarViewController

class 42
UITableView class 54, 80
UITableViewAccessory-

Checkmark 96
UITableViewAccessoryDetail-

Button 95
UITableViewAccessory-

DisclosureIndicator 95
UITableViewCellEditingStyle 98
UITableViewCellEditingStyle-

Delete 98
UITableViewCellEditingStyle-

Insert 98
UITableViewCellEditingStyle-

None 98
UITableViewController

class 42–43, 82
UITableViewDataSource

protocol 54–55, 86, 111
UITableViewDelegate

protocol 54–55, 97
UITableViewStyleGrouped 80
UITableViewStylePlain 80
UITextField class 32
UIToolbar class 288, 292
UIView class 32, 206
UIViewController class 41, 138
UIWebView control 138, 140
QualityTypeLow 165 UILabel class 32 UIWebViewController class 139

INDEX350

UIWebViewDelegate
protocol 142

UIWindow class 32
user interface. See UI
username property 182, 197
Utility Application template 19

V

valueForProperty method 148,
174–175

verticalAccuracy property 226
VGA (Video Graphics

Array) 298
videoMaximumDuration

property 164
videoQuality property 165
videos

capturing with camera
checking camera

availability 162–164
saving to Assets

Library 166–168
taking photos and

videos 164–166
metadata

accessing 173–176
setting up view for 169–

171
see also Assets Library

view controllers
lifecycle 39–41
naming 39
navigation controllers 41–42

overview 38
passing data between 75–76
status bar styles 43–44
tab bar view controllers 42
table view controllers 42–43

view property 39
viewAssetFromURL method

168
viewDidAppear method 39
viewDidDisappear method 39
viewDidLayoutSubviews

method 39
viewDidLoad method 13, 38–39,

66
views

animations
advanced 219–223
basic 212–219

connecting within
storyboard 62–67

controls 35
coordinate system 33–35
custom 205–212
events, responding to 35–37
Hello Time application

landscape mode
support 30–31

switching between night
and day modes 25–30

orientation and
enabling support for por-

trait and landscape 45–
47

updating views 47–49

screens and 32–33
tint color 38
windows and 32–33
see also storyboards

viewWillAppear method 39,
66

viewWillDisappear method 39
viewWillLayoutSubviews

method 39

W

weak properties 334, 340
web views 138–142
webViewDidFinishLoad

method 142
webViewDidStartLoad

method 142
Weibo 178, 182
windowFrame property 298
windows and views 32–33

X

Xcode
creating Hello Time

application 5–7
downloading 5
interface editor

inspector sections 68–71
overview 67–68

project types 18–19
workspace 19–20

XIBs 20, 50

Lim ● Mac Donell

T
o develop great apps you need a deep knowledge of iOS.
You also need a fi nely tuned sense of what motivates 500
million loyal iPhone and iPad users. iOS 7 introduces

many new visual changes, as well as better multitasking,
dynamic motion effects, and much more. This book helps
you use those features in apps that will delight your users.

iOS 7 in Action is a hands-on guide that teaches you to create
amazing native iOS apps. In it, you’ll explore thoroughly
explained examples that you can expand and reuse. If this is
your fi rst foray into mobile development, you’ll get the skills
you need to go from idea to app store. If you’re already
creating iOS apps, you’ll pick up new techniques to hone
your craft, and learn how to capitalize on new iOS 7 features.

What’s Inside
● Native iOS 7 design and development
● Learn Core Data, AirPlay, Motion Effects, and more
● Create real-world apps using each core topic
● Use and create your own custom views
● Introduction and overview of Objective-C

This book assumes you’re familiar with a language like C, C++,
or Java. Prior experience with Objective-C and iOS is helpful.

Brendan Lim is a Y Combinator alum, the cofounder of
Kicksend, and the author of MacRuby in Action.
Martin Conte Mac Donell, aka fz, is a veteran of several
startups and an avid open source contributor.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/iOS7inAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

iOS 7 IN ACTION

iOS DEVELOPMENT

M A N N I N G

“A practical journey through
the iOS 7 SDK.”
—Stephen Wakely
Thomson Reuters

“A kickstart for newbs and a
deft guide for experts.”—Mayur S. Patil

Clearlogy Solutions

“Mobile developer: don’t you
dare not read this book!”

—Ecil Teodoro, IBM

“The code examples are
excellent and the methodology

used is clear and concise.”—Gavin Whyte
Verify Data Pty Ltd

“Everything you need
to know to ship an app,

 and more.”
—Daniel Zajork

API Healthcare Corporation

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the cover illustration
	Part 1—Basics and necessities
	1 Introduction to iOS development
	1.1 Developing for iOS
	1.1.1 Different kind of design interaction
	1.1.2 Getting ready to develop for iOS

	1.2 Creating your first iOS application
	1.2.1 Creating the Hello Time application in Xcode
	1.2.2 Creating the application interface
	1.2.3 Connecting your user interface to your code
	1.2.4 Implementing the clock functionality
	1.2.5 Building and running your application

	1.3 iOS development fundamentals
	1.3.1 Object-oriented programming
	1.3.2 Objective-C syntax and message passing
	1.3.3 The Model-View-Controller pattern
	1.3.4 Frameworks introduction

	1.4 Overview of Apple’s development tools
	1.4.1 Creating different types of projects in Xcode
	1.4.2 Getting familiar with Xcode’s workspace
	1.4.3 iOS Simulator

	1.5 Summary

	2 Views and view controller basics
	2.1 Enhancing Hello Time
	2.1.1 Switching between night and day modes
	2.1.2 Adding support for landscape mode

	2.2 Introducing views
	2.2.1 Screens, windows, and views
	2.2.2 Views and the coordinate system
	2.2.3 User interface controls
	2.2.4 Responding to actions and events
	2.2.5 Custom tint colors

	2.3 View controller basics
	2.3.1 Introducing view controllers
	2.3.2 The view controller lifecycle
	2.3.3 Different types of view controllers
	2.3.4 Different status bar styles

	2.4 Supporting different orientations
	2.4.1 Enabling support for portrait and landscape
	2.4.2 Updating your views for different orientations

	2.5 Summary

	3 Using storyboards to organize and visualize your views
	3.1 Building a task management app
	3.1.1 Creating the Tasks app project in Xcode
	3.1.2 Creating the interface for listing tasks
	3.1.3 Adding a navigation controller
	3.1.4 Creating and viewing a task
	3.1.5 Connecting your views within the storyboard

	3.2 Exploring Xcode’s interface editor
	3.2.1 Overview of Xcode’s interface editor
	3.2.2 The inspector sections

	3.3 Using storyboards to manage your views
	3.3.1 How does storyboarding benefit you?
	3.3.2 Scenes within storyboards
	3.3.3 Transitioning between scenes with segues
	3.3.4 Passing data between view controllers with segues
	3.3.5 Problems with using storyboarding

	3.4 Summary

	4 Using and customizing table views
	4.1 Introduction to table views
	4.1.1 Anatomy of a table view

	4.2 Using table views to display data
	4.2.1 Setting up your Albums application
	4.2.2 Providing data through a data source
	4.2.3 Custom table view cells with prototype cells

	4.3 Managing selection and deletion within a table view
	4.3.1 Deleting rows within a table view
	4.3.2 Handling the selection and deselection of rows

	4.4 Summary

	5 Using collection views
	5.1 Introducing collection views
	5.2 Using collection views to display data
	5.2.1 Adding a UICollectionViewController as a new scene
	5.2.2 Supplying a collection view with data
	5.2.3 Creating a custom collection view cell

	5.3 Customizing a collection view layout
	5.3.1 Collection view flow layouts
	5.3.2 Using the flow layout delegate protocol

	5.4 Summary

	Part 2—Building real-world applications
	6 Retrieving remote data
	6.1 Retrieving data using NSURLSession
	6.2 Understanding data serialization and interacting with external services
	6.3 Advanced HTTP requests
	6.4 Using web views to display remote pages
	6.5 Popular open source networking libraries
	6.5.1 AFNetworking
	6.5.2 RestKit

	6.6 Summary

	7 Photos and videos and the Assets Library
	7.1 Overview of the Assets Library framework
	7.1.1 The Assets Library, groups, and individual assets
	7.1.2 Setting up the Media Info project

	7.2 Retrieving photos and videos with the image picker
	7.2.1 Preparing and presenting the image picker controller
	7.2.2 Selecting assets from the image picker

	7.3 Capturing photos and videos with the camera
	7.3.1 Checking for camera availability
	7.3.2 Taking photos and videos with the camera
	7.3.3 Saving newly captured photos and videos to the Assets Library

	7.4 Retrieving assets and accessing metadata
	7.4.1 Setting up your view to display the metadata
	7.4.2 Retrieving an asset from the Assets Library
	7.4.3 Accessing metadata for photos and videos

	7.5 Summary

	8 Social integration with Twitter and Facebook
	8.1 Accessing accounts with the Accounts framework
	8.1.1 Accessing Twitter accounts and account properties
	8.1.2 Accessing Facebook accounts

	8.2 Using the Social framework to post content
	8.2.1 Posting to Twitter using the Tweet Composer view
	8.2.2 Posting to Facebook

	8.3 Making API requests with the Social framework
	8.3.1 Retrieving a Twitter stream using an SLRequest
	8.3.2 Retrieving a Facebook news feed

	8.4 Summary

	9 Advanced view customization
	9.1 Going beyond the Interface Builder with custom views
	9.2 Creating basic animations
	9.3 Using advanced animation techniques
	9.4 Summary

	10 Location and mapping with Core Location and MapKit
	10.1 Introduction to the Core Location framework
	10.1.1 Representing a location with CLLocation
	10.1.2 The location manager
	10.1.3 Setting up Speed Map in Xcode

	10.2 Retrieving location, heading, and speed
	10.2.1 Retrieving your current location with the location manager
	10.2.2 Geocoding a location

	10.3 Introduction to the MapKit framework
	10.3.1 Using the map view to display a map
	10.3.2 Retrieving user location using MapKit
	10.3.3 Using annotations in a map
	10.3.4 Adding a map to your application

	10.4 Summary

	11 Persistence and object management with Core Data
	11.1 Introduction to Core Data
	11.1.1 Differences between Core Data and traditional databases
	11.1.2 What Core Data doesn’t do well
	11.1.3 Setting up your application

	11.2 Managed objects, entities, relationships
	11.2.1 Managed object models and contexts
	11.2.2 Entities and managed objects
	11.2.3 Relationships between entities
	11.2.4 Generating managed object classes for your entities

	11.3 Working with managed objects
	11.3.1 Creating, updating, and deleting managed objects
	11.3.2 Using fetch requests to retrieve managed objects
	11.3.3 Filtering results using predicates
	11.3.4 Using a fetched results controller to manage results in a table view
	11.3.5 Adding and removing tasks from a list

	11.4 Summary

	Part 3—Application extras
	12 Using AirPlay for streaming and external display
	12.1 Introduction to AirPlay
	12.1.1 Examples of AirPlay integration
	12.1.2 Setting up your application

	12.2 Controlling and enabling AirPlay output
	12.2.1 Enabling AirPlay support using built-in media players
	12.2.2 Displaying an AirPlay controller to a view
	12.2.3 Streaming audio to an AirPlay destination in your application

	12.3 Using external screens with AirPlay
	12.3.1 Creating a custom view controller for external screens
	12.3.2 Displaying content on an external screen

	12.4 Summary

	13 Integrating push notifications
	13.1 Apple’s Push Notification service
	13.2 Configuring your app to send and receive push notifications
	13.3 Sending push notifications
	13.4 Registering and scheduling local notifications
	13.5 Summary

	14 Applying motion effects and dynamics
	14.1 Creating your application
	14.2 Using motion effects
	14.2.1 Adding the parallax effect

	14.3 Using UIKit Dynamics
	14.3.1 Introduction to UIKit Dynamics
	14.3.2 Applying the gravity behavior
	14.3.3 Applying a collision behavior
	14.3.4 Adding dynamic behavior
	14.3.5 Creating a custom UIDynamicBehavior subclass

	14.4 Summary

	Appendix
	A.1 Introduction to Objective-C
	A.1.1 Class syntax
	A.1.2 Message passing
	A.1.3 Properties

	A.2 Using blocks
	A.2.1 Block literals
	A.2.2 Block pointers
	A.2.3 Block invocation
	A.2.4 Common usage

	A.3 Optimizing applications with Grand Central Dispatch
	A.4 Understanding automatic reference counting
	A.5 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back cover

