
www.allitebooks.com

http://www.allitebooks.org

openFrameworks Essentials

Create stunning, interactive openFrameworks-based
applications with this fast-paced guide

Denis Perevalov

Igor (Sodazot) Tatarnikov

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

openFrameworks Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1140415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-614-5

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Denis Perevalov

Igor (Sodazot) Tatarnikov

Reviewers
Cory Barr

Dmitry Philonenko

Alex Samuel

Commissioning Editor
Kunal Parikh

Acquisition Editor
Rebecca Youé

Content Development Editor
Ritika Singh

Technical Editor
Humera Shaikh

Copy Editor
Sarang Chari

Project Coordinators
Aboli Ambardekar

Judie Jose

Proofreaders
Simran Bhogal

Stephen Copestake

Ameesha Green

Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

You have chanced upon a chapter that not many will read. With a couple of phrases
quoted on the cover, a foreword is quite a doubtful genre in modern technical
literature. Usually, such texts begin with "the book you are holding…", but perhaps
you are holding a gadget and your fingers miss the touch of coarse paper, or you are
reading a nicely designed printed booklet of selected chapters from the book.

The main thing is that the book is in your hands as well as the technology, which exists
in digital space only but can make most physical objects around us interactive. The
book about the technology, special features, methods, and principles of work will be
there on your desk among some printouts, crumpled designs, and endless paper cups
that deliver portions of invigorating caffeine to us. It will be scolded by a beginner,
or criticized by a professional, but it will also be bookmarked by hundreds and
commented on the margins by thousands of people certainly advancing in mastering a
powerful instrument of technological and creative use—openFrameworks.

This is a generation of code designers, artists with digital tools, engineers with the
programmed project functionality—a young, unexpected generation, which is used
to constant studying, the constant state of a novice making the first attempt to cope
with a new principle and a new instrument—a fresh start. If you're part of this
categorization, this book will be a great base to acquire new habits and will act as the
first step towards self-development for you.

The pro goes ashore
A profession is neither a bronze molding nor a stone monument but a living and
evolving form. A coder's, a programmer's, and an interactive project engineer's
profession has been living until now in the depth of the office ocean among the
unicellular executors of other people's plans and among the irresolute and inert
workers unable to motivate themselves, to broaden the range of instruments,
technologies, and wishes—wishes to exceed the environment of hired workers and
step into the world of high professional competition belonging to men of business—
men of solution finding.

www.allitebooks.com

http://www.allitebooks.org

For professionals, evolution is to consider that they are beginners again. Taking a
manual and evening by evening, at home by the lamplight forging their new armor,
their strong professional exoskeleton, to exceed habitual tasks allowing them to step
out of an ocean of many and onto the beach of singularities where the experience
of the past and the ambitions of the future change the very idea of workspace,
competences, and hierarchies.

You can be an experienced coder having worked at different sites and application
for years, but you have to go to the bottom studying again, doing tests and exercises,
correcting amateur mistakes, getting a new experience, and changing your idea
about what can be done by yourself, by your intellect, your vision, and your
imagination. Changes inspire as do understanding, knowledge, and experience.
A book that makes you sink down to the bottom, consuming several evenings or a
couple of weeks, will eventually help you to understand a lot.

Although it is the basics, they are assembled intentionally into a compact, handy
structure of informational portions, maybe not so exquisitely designed but definitely
rich in nutritious and simple practical ways. This book is going to rest on the shelf
after you, led by the success of consecutive learning, have performed a series of
simple works based on the examples, gradually and consciously going ashore onto
a new professional environment. You will enter the era of probably the most active
technological education—self-education by means of hundreds of available sources.

The era of self-education
The authors of this book are professionals tired of putting on knowledge as a
clumsy sea lion puts on fat. Knowledge should constantly attract new ideas, and a
book is probably the best way to share it. This book is not a step but a jump. A sea
lion stepped ashore out of the thick, powerful knowledge clot, stiff on the land of
theoretical teaching methods and surprisingly flexible in its natural environment of
project development. We witness the evolution into methodologists, teachers, and
preachers of technologies.

We have stepped into the era of instant evolution of knowledge, habits, and
experience, into a period of high-speed reforging and assembly of new details and
completely unique professional habits. Programming inspires advertisers and artists.
Mobile applications become the channels for spreading marketing and cultural
novelties. Behind the glossy interface design, there are people following the lines,
thinking in compact code constructions, and joining and optimizing data exchange
in new sequences, where, as a result, persons with a smartphone in their hands get
access to a cosmic number of new impressions.

www.allitebooks.com

http://www.allitebooks.org

Now, we can all enroll for some courses, enter online universities, and order tens
of books and manuals. We live in the melting pot of innovation history, and the
lack of information is no excuse for the lack of talent. People began sharing their
knowledge easily and understanding different questions, the answers to which are
not worth publishing. Practical professional manuals are a separate, widely spread
genre—littered, popular, and diverse.

This book appeared with the knowledge of similar books' faults. It was structured to
be light but available, keeping the link to the authors' experiences and helping you to
independently develop the basic principles of openFrameworks for any platform and
projecting task. You will feel your personal evolution go on with every page, chapter,
and every performed prototype.

We live in the epoch of Minecraft, when kids make worlds out of blocks and create
the unimaginable, and the developers of this amazing game can consider themselves
educators, teachers, and inspirers of an entire generation of future talents. We had
no such games; we saw The Prince of Persia, who did his best jumping over the traps
craftily set by the designers. We studied by less entire examples, but even then we
realized that programming, coding, and UX impression design would be our new
hobby, that not only spaceflights, but also the shimmering worlds of screens, internet
services, new smart-stuffed objects, and the new economics of ideas is possible.

I have been teaching technology-based design for more than 10 years already;
my main conclusion is that (the right) methods are neither simplification nor
entertainment, which are characteristic of modern education. One should be inspired
by what is achieved in the end and be captivated by the possibilities of the studied.
Every elementary molecule of knowledge should be connected to a new use in
one's imagination, excite an appetite for knowledge, and think in terms of practical
application.

Thus, I got tens of projects made by graduate students, who had never been
interested in programming at all. They came to love this creative process (though
with hundreds of restrictions and only at the beginner level) because it allowed them
to create their own companies and tens of commercial projects for clients.

A great couple—Processing and openFrameworks—permitted designers to create
interactive systems, easily combining computer data and physical objects. They
allowed creating interactive installations, thus widening the possibilities of device
interfaces to experiment with data interpretation, transferring music into color,
poetry into a drawing, and a dance into strokes of paint; to track down the behavior;
to react; and to animate the behavior of digital nature inside an operating system and
inside an application.

www.allitebooks.com

http://www.allitebooks.org

When I give my students a regular task without a basic introduction to technology
or to some designers with no technical education, I just tell them to look around and
think. This is because today there is no technology that wouldn't look like magic,
or sorcery, as nudity looked profane but inspiring at the time of the Renaissance.
This accessibility of naked technology in a book is not an anatomical atlas for
openFrameworks but a collection of short, erotic stories inspiring to imagine, to
make up and dream, and to try to master and capture with pleasure.

Probably, if the sexuality of programming were put in the first paragraph, my
foreword would be read by more people. But to my mind, as a designer and a
teacher, I care more about your turning the page over as this is where your personal
border lies. There is the land separating the ocean of knowledge and experience from
just a wish to know and understand. This feeling of border is the most mysterious
thing in a person in his professional and personal evolution and in his personal
creation. As Adam, we stand in front of the tree of knowledge. I envy you; you are
students—beginners again.

Having read this book, I overstepped the professional line, allowing an insight into
our projects in the near future and into understanding the logic and the principles
of projecting with openFrameworks. Now, hold your breath and jump out of the
ocean—turn the page!

Dmitry Karpov
Course Director, CPD Interactive Design and New Media, BHSAD

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Denis Perevalov is a scientist at the Krasovsky Institute of Mathematics and
Mechanics, Ekaterinburg, Russia. His main research interests are computer vision
and interactive systems.

He has been teaching the information processing and algorithms of technical vision
courses at the Ural Federal University since 2010. He is also the author of the book
Mastering openFrameworks – Creative Coding Demystified, Packt Publishing, 2013.

I would like to thank my wife, Svetlana, and son, Timofey, for
engaging me all the time.

Thanks to the Institute, especially my supervisor, Victor Borisovich
Kostousov, for supporting my book writing.

Thanks to the dancer, Ekaterina Zharinova, for providing me with
an opportunity to check the preliminary version of the book's video
synthesizer in her media performance, On the opposite side.

I also give big thanks to Angelina Poptsova for proofreading, Oleg
Nurmuhametov for consulting on iOS, and Ilya Nemihin from
hackerspace (makeitlab.ru) for consulting on the Raspberry Pi.

Thanks to Packt Publishing for working so hard to make this
book possible.

Many thanks to the openFrameworks creators and community for
their constant enthusiasm and productivity.

www.allitebooks.com

http://www.allitebooks.org

Igor (Sodazot) Tatarnikov is a video artist, animator, and VJ from Moscow,
Russia. He creates media content in various techniques, including animation, stop
motion, and generative art.

Igor and Denis are cofounders of the visual laboratory Kuflex (2011), which made
numerous interactive video installations and audio-visual performances for
numerous exhibitions and commercial projects. Kuflex's clients include the Garage
Museum of Contemporary Art (Moscow), the Jewish Museum and Tolerance Center
(Moscow), the Moscow International Festival «Circle of light», Microsoft, Nokia,
Samsung, and Master Card. Most of these works were made using openFrameworks.

I want to thank my wife, Marina, for her love and support; my
parents for backing up all my interests since my childhood; and my
jolly cat, Multick, for inspiration and good mood.

I would also like to thank Ksenya Lyashenko for interesting projects
in our Kuflex team, Leksha Jankov for the music used in the book
examples, and Kirill Ivanov for the visual experiments at SBPCH
concerts and for the present that inspired the creation of the video
synthesizer—the main example of the book.

My special thanks goes to the authors of openFrameworks and all
the members of the community, who support its development, and
also to Packt Publishing for working on the book.

About the Reviewers

Cory Barr is an interactive new media artist, data visualizer, and machine learning
practitioner. A former machine-learning research scientist and engineer, he now
focuses on the intersection of interactive installations and data visualization. He
has a master's degree in computer science from Stanford University and a master's
degree in music theory from the University of Oklahoma.

Cory has held positions at Stanford University, Genentech, and The Exploratorium.
He is currently focused on Anticlockwise Arts, a company he cofounded to create
interactive installations and data visualizations. His interactive art has been on display
at cultural institutions and corporations, including The Exploratorium, California
Academy of Sciences, The Tech Museum of Innovation, Audi, YouTube, and Yelp.

Dmitry Philonenko is a project leader, developer, designer, and an IT enthusiast
with passion for innovations. He has been the Chief of Design since May 2007 in
the development department at Animation Technologies Ltd. He has done his PhD
(Cultural Studies / Critical Theory and Analysis) in the year 2008 from Ural State
University, which is named after A.M. Gorky. He graduated from Ural State Academy
of Architecture and Arts with a master's degree in graphic design (1997-2003).

Alex Samuel is a coder, maker, and a full-stack web developer who recently
received her MFA, design and technology, from Parsons The New School For
Design. Her work focuses on code-based interactions that encourage and augment
the way people consume news. Currently, she is working to launch and develop
Glossy.io with her cofounders.

Prior to entering the tech world, Alex worked as a beauty editor at Condé Nast for 5
years and continued to blog for SELF.com daily while in graduate school.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with openFrameworks 13

What is openFrameworks? 13
Installing openFrameworks 14

The openFrameworks folder structure 15
Running your first example 16
The video synthesizer application 18

Three reasons to create your own video synthesizer with
openFrameworks 20

Summary 20
Chapter 2: Creating Your First openFrameworks Project 21

Creating and running a new project 21
Creating a project 22
Running a project 24

Discovering the project's code structure 25
Setting up the screen 26
Centering the coordinate system 27
A simple drawing 28

Setting drawing color 28
Drawing primitives 30

Geometric patterns 32
The stripe pattern 32

A stripe pattern made from parallel lines 32
A stripe pattern made from rotating lines 34
A stripe pattern made from rotating triangles 34

Summary 36

Table of Contents

[ii]

Chapter 3: Adding a GUI and Handling Keyboard Events 37
Creating a GUI using the ofxGui addon 37
Implementing a simple GUI panel with sliders 38

Using the sliders' values 40
Implementing the autosave feature 41
Creating groups of controls 41

Using the sliders' values 43
Implementing a checkbox, a color selector, and a 2D slider 43

Using the controls' values 46
Experimenting with the project 47

Handling keyboard events 49
Hiding the GUI 49
Saving a screenshot 50
Saving a preset using the system save dialog 50
Loading a preset using the system load dialog 51

Implementing the matrix pattern generator 51
Using the sliders' values 53
Experimenting with the matrix pattern generator 55

Summary 57
Chapter 4: Working with Raster Graphics – Images, Videos,
and Shaders 59

Raster images in openFrameworks 60
Drawing an image file 60
Playing a video file 62
Grabbing a live video from a camera 64
Mixing layers using additive blending 65

Creating the mixer's GUI 66
Implementing the mixer's functionality 68

Creating the video effect with a shader 70
Redirecting drawing to the offscreen buffer 70
Drawing the offscreen buffer contents and enabling smoothing 72
Implementing the kaleidoscope effect 74

Creating the fragment shader 75
Creating the vertex shader 78
Using created shaders in the project 78

Summary 81
Chapter 5: Creating 3D Graphics 83

Introduction to 3D graphics with openFrameworks 83
openFrameworks classes for surface representation 84

Drawing a wireframe sphere 85

Table of Contents

[iii]

Creating a camera 87
Controlling the camera with a mouse 88

Disabling mouse control for the camera when the GUI is visible 89
Camera automation 89

Drawing a solid sphere 90
The things needed for shading the surface 91
Drawing a solid sphere with shading 91

Texturing the sphere 94
Preparing a texture 94
Setting texture coordinates 95
Activating texturing 96

Mixing 2D and 3D with the GUI 97
Deforming a sphere 99

Deforming by formulas 99
Extruding the sphere 102

Summary 104
Chapter 6: Animating Parameters 105

Using time values for a parameter's automation 105
Implementing a simple LFO 106
Implementing a pseudorandom LFO with Perlin noise 108

Using the level of sound for a parameter's automation 109
Playing and analyzing an audio file 109

Getting the level of a sound signal 111
Capturing sound from a sound card's input and measuring its level 113
Reading data from a text file 115
Controlling automation 117
Summary 118

Chapter 7: Distributed and Physical Computing with
Networking and Arduino 119

Distributed computing with networking 120
Networking in openFrameworks 120

The ofxNetwork addon 121
The ofxOsc addon 121

Implementing the OSC messages receiver 122
Creating an OSC sender with openFrameworks 123

Sending OSC messages between two separate computers 126
Connection troubleshooting 127

Creating OSC senders with TouchOSC, Python, and Max/MSP 127
Creating an OSC sender for a mobile device using the TouchOSC app 127
Creating an OSC sender with Python 128
Creating an OSC sender with Max/MSP 130

Table of Contents

[iv]

Physical computing with Arduino 135
Programming an Arduino board 135

Receiving data from Arduino in the openFrameworks project 138
Connection troubleshooting 140
Connecting more devices 140

Summary 141
Chapter 8: Deploying the Project on iOS, Android, and
Raspberry Pi 143

Running the project on an iOS device 144
Implementing video synthesizer for iOS 145
Building a project for iPad 148

Deploying the project on an iOS device 149
Using accelerometer 149

Running the project on an Android device 150
Installing software for Android development 151
Implementing video synthesizer for Android 152

Creating an empty project 152
Implementing the video synthesizer 152

Increasing the size of the GUI panel 154
Troubleshooting 154

Implementing reaction on stopping and double-tapping 155
Using the accelerometer on an Android device 156
Renaming the project 157

Running the project on Raspberry Pi 157
Required equipment 157
Setting up the device 158
Installing openFrameworks 159
Running the first example 160
Implementing a video synthesizer for Raspberry Pi 161

Summary 162
Chapter 9: Further Resources 163

Enhancing the video synthesizer project 163
Speeding up the rendering 164
Drawing curves and text 164
Using fragment shaders for image generation 164
Using vertex shaders for an object deformation 165
Using the Firmata protocol for Arduino connection 165
Multidisplay setup and sharing images between separate programs 166

Getting more information on openFrameworks 167
openFrameworks books 167

Table of Contents

[v]

Debugging and speeding up your code 167
Debugging 168
Speeding up the code 169

Summary 170
Appendix A: Video Synthesizer Reference 171

The desktop version 171
The openFrameworks project and source files 171

Data files 172
Control keys 172
The GUI controls 173

Basic sliders 173
Global group 174
Primitive group 174
Mixer group 175

iOS and Android versions 177
The openFrameworks project and source files 177
Data files 177
The GUI 178
Touches 178
Accelerometer 178

Raspberry Pi version 178
Summary 178

Appendix B: openFrameworks Quick Reference 179
Application 179
2D drawing 180
The GUI 181
Multimedia and other classes 182
Mathematical, timer, and conversion functions 183
Summary 184

Index 185

[vii]

Preface
openFrameworks Essentials is a guide that can be used to learn and use openFrameworks
in order to develop creative and artistic real-time applications. The book contains
an insight into how openFrameworks can be used to implement your creative ideas
in powerful projects by working on the OS X, Windows, Linux, iOS, Android, and
Raspberry Pi devices. Although openFrameworks is a very popular toolkit for creative
coding, the number of books describing openFrameworks is not high.

This book is a fast-paced tutorial that begins with installing openFrameworks and
then takes a step-by-step approach towards using openFrameworks to build a video
synthesizer project. We will investigate and implement features such as 2D and 3D
graphics, GUI, shaders, and reaction on sound, using the OSC networking protocol
and Arduino.

The openFrameworks version considered is 0.8.4.

What this book covers
Chapter 1, Getting Started with openFrameworks, introduces openFrameworks by
explaining its installation and running one of its examples. Additionally, it discusses
the structure of the video synthesizer project, which will be developed in the course
of the book.

Chapter 2, Creating Your First openFrameworks Project, guides you to create a new
openFrameworks project and implement 2D graphics.

Chapter 3, Adding a GUI and Handling Keyboard Events, explains creating a graphical
user interface consisting of controls such as sliders and checkboxes. Also, it covers
implementing keyboard events, using system dialogs, and saving screenshots.

www.allitebooks.com

http://www.allitebooks.org

Preface

[viii]

Chapter 4, Working with Raster Graphics – Images, Videos, and Shaders, explains drawing
images and videos, capturing video from a camera, mixing videos using additive
blending, and creating the kaleidoscope video effect using a fragment shader.

Chapter 5, Creating 3D Graphics, introduces the basics of 3D graphics with
openFrameworks by drawing a sphere in 3D and then texturing and deforming it.

Chapter 6, Animating Parameters, discusses using various data sources, such as Perlin
noise, sounds, and text files, to automatically control the parameters of the project.

Chapter 7, Distributed and Physical Computing with Networking and Arduino, explains
how to control your project from other programs using the OSC networking
protocol. It describes building such controlling programs using openFrameworks
by itself as well as the Python and Max/MSP programming languages. Also, it
covers receiving data from an Arduino device.

Chapter 8, Deploying the Project on iOS, Android, and Raspberry Pi, guides you to
run the light version of the developed video synthesizer on mobile and Raspberry
Pi devices.

Chapter 9, Further Resources, suggests the direction to further enhance the video
synthesizer project, provides sources of additional information on openFrameworks,
and discusses debugging and speeding up openFrameworks projects.

Appendix A, Video Synthesizer Reference, is a comprehensive documentation of the
developed video synthesizer project. It contains a description of all GUI controls,
control keys, and media files used by the project.

Appendix B, openFrameworks Quick Reference, is a useful reminder of the basic
openFrameworks functions and classes used in the book.

What you need for this book
openFrameworks is a cross-platform toolkit, so you can develop openFrameworks
projects using your operating system of choice—OS X, Windows, Linux Ubuntu,
Debian or Fedora, or Raspbian OS. To build the projects, you will need to install
the C++ IDE and openFrameworks itself. All the required software is free;
detailed instructions on installing are explained in Chapter 1, Getting Started with
openFrameworks.

To proceed with some sections, you will need additional software (Python and
Max/MSP) or hardware (camera, microphone, iOS, Android, Raspberry Pi,
and Arduino devices). If you currently don't have any devices, you can skip the
corresponding section(s).

Preface

[ix]

Who this book is for
The book is intended for those who want to use openFrameworks to build creative
projects that run at maximum efficiency on desktops and mobiles. Perhaps you have
some experience in creative coding but have never used C++ and openFrameworks, or
perhaps you know a little C++ but are new to creative coding. In either case, this book
will get you up and running quickly. A basic knowledge of programming languages,
such as C++, Java, Python, or JavaScript, will be enough to proceed with the book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The class for playing videos is ofVideoPlayer."

A block of code is set as follows:

ofSetWindowTitle("Video synth");
ofSetWindowShape(1280, 720);
ofSetFrameRate(60);
ofBackground(ofColor::white);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

for (int i=-50; i<50; i++) {
 ofPushMatrix();
 ofTranslate(i*20, 0);
 ofLine(0, -100, 0, 100);
 ofPopMatrix();
}

Any command-line input or output is written as follows:

cd openFrameworks/libs/openFrameworksCompiled/project

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Click on
the GENERATE PROJECT button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Preface

[xi]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/6145OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[13]

Getting Started with
openFrameworks

In this chapter, we will introduce openFrameworks by covering the following topics:

• What is openFrameworks?
• Installing openFrameworks
• Running an openFrameworks example

Finally, we will discuss the video synthesizer project, which we will develop
throughout the book.

What is openFrameworks?
openFrameworks is a free, open source C++ framework that is intended to develop
real-time projects, which use most modern computing devices' capabilities, such as
video, audio, networking, and computer vision.

openFrameworks is developed by Zach Lieberman, Theodore Watson, and Arturo
Castro, together with a big openFrameworks community. The current openFrameworks
version is 0.8.4.

Its main features are:

• openFrameworks is a framework for the easy development of real-time
applications. All you need to do is implement a number of events, such as
starting project and drawing, and openFrameworks will maintain all the stuff
behind this, such as creating a graphical window and listening for mouse and
keyboard events.

Getting Started with openFrameworks

[14]

• Its conception and philosophy is oriented for use in creative and experimental
projects. openFrameworks contain many ready-to-use functions and classes to
work with 2D and 3D graphics, video, audio, and so on.

• It's a C++ framework, that is, you will code it using the C++ programming
language. Your code will be compiled in native machine code and executed
very efficiently. Many algorithms that work slowly when implemented in
languages such as Python, Java, or Processing, could work significantly faster
when implemented in openFrameworks.

• openFrameworks is highly extensible. Its extensions are called addons.
They are open source and are built by members of the openFrameworks
community. Several hundreds of existing addons give you an opportunity
to extend your project with the capabilities of various software libraries,
popular sensors, and gadgets.

• openFrameworks is cross-platform—the code you will write can be executed
on many popular platforms, including OS X, Windows, Linux, iOS, Android,
and Linux ARM devices such as Raspberry Pi.

• Finally, it has a very friendly and active community. If you get stuck
during developing with openFrameworks, you can get help from the
openFrameworks forum.

Begin your acquaintance with openFrameworks by visiting and exploring its site
openframeworks.cc. It contains a lot of useful information about openFrameworks,
including download links, tutorials, documentation, forums, and news.

Installing openFrameworks
To develop projects with openFrameworks, you need to install an Integrated
Development Environment (IDE) with the C++ compiler and openFrameworks.

To install them, perform the following steps:

1. Go to openFrameworks' download page at openframeworks.cc/download.
2. Find your platform on the page (OS X, Linux, Windows, iOS, Android, or

Linux ARM) and select the desired IDE (Xcode, Code::Blocks, Eclipse, or
Visual Studio). For developing with iOS, an OS X computer is required.
Development on a Linux ARM device is done using the C++ compiler
directly, without an IDE.

All the IDEs mentioned are free. But, to run your project on
an iOS device, you must buy an iOS Developer License from
Apple for $99 per year.

Chapter 1

[15]

3. Download the openFrameworks archive by clicking on the corresponding
link and unzip it.

4. Click on the corresponding setup guide link and follow the instructions
shown for installing and configuring the IDE and openFrameworks. Now
you can develop and run your projects in openFrameworks.

Running openFrameworks projects on desktops (Mac OS X,
Windows, or Linux) is simpler than on mobiles. So, if you are
a novice in C++ or openFrameworks, we recommend that you
start to develop your very first openFrameworks project for a
desktop OS rather than a mobile one.
After a while, when you are a little more comfortable
with C++ and openFrameworks, you can easily port your
project to mobiles, if needed. You will learn how to deploy
openFrameworks projects on mobiles and Raspberry Pi in
Chapter 8, Deploying the Project on iOS, Android, and Raspberry Pi.

The openFrameworks folder structure
It's time to look inside openFrameworks, so open the openFrameworks folder. It
consists of a number of folders and files, as shown in the following screenshot (the
screenshot is for OS X, but the folder structure is similar for all other platforms):

openFrameworks' folder structure

Getting Started with openFrameworks

[16]

The most important folders for us now are apps and examples. The apps folder
is the place where your own projects will be stored. The examples folder contains
a collection of examples, demonstrating all the aspects of openFrameworks
programming. The examples are categorized by topics, including 3D, graphics,
sound, and video.

Now, let's run one of the examples.

Running your first example
We would like to introduce one of the funniest openFrameworks examples, which
we like a lot. The example captures the images from a webcam and draws it on the
screen as a fancy 3D surface, as shown in the following picture:

3D surface generated by an openFrameworks example

This is the meshFromCamera example located in the examples/3d folder.

This example requires a webcam. If your computer does not have a
built-in webcam, and you have no external webcam to connect to,
please work with another example, for instance, examples/3d/
3DPrimitivesExample.

Chapter 1

[17]

We cannot run the example immediately after installing openFrameworks.
The reason is that openFrameworks examples are distributed as source files only,
without executable files that you can run.

To obtain the executable file, we need to build the project, that is, compile its C++
source code to machine code and link it into an executable file. Let's do it and then
run the example by performing the following steps:

1. Open the example folder examples/3d/meshFromCamera.
2. Find there the file named meshFromCamera.xcodeproj (Xcode project),

meshFromCamera.sln (Visual Studio project), or meshFromCamera.
workspace (Code::Blocks project).

3. Double-click on this file, and the meshFromCamera project will open in
your IDE.

4. Build the project by pressing Command + B in Xcode, F7 in Visual Studio, or
by clicking on the Build button in Code::Blocks.

For Xcode users
In the project, there exist several schemes that indicate the part
of the project to build and a number of settings for it. Often at
first run, the scheme is set to openFrameworks, as shown on the
following screenshot:

Scheme selector in Xcode

If so, the compiler builds openFrameworks, but not the project.
To resolve the issue, please click on the scheme name. A context
menu will appear. Select the meshFromCamera Release scheme
there. After this, perform building as described in step 4.

5. Run the project by clicking on the corresponding button in your IDE
(normally, it's depicted as a small triangle, meaning the play symbol). After
running, you will see your webcam's image drawn as a distorted 3D surface.

6. Press Esc to stop the execution.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with openFrameworks

[18]

This example involves several topics, such as capturing frames from the camera,
creating 3D surfaces, and texturing them. You will discover these topics in Chapter 4,
Working with Raster Graphics – Images, Videos, and Shaders, and Chapter 5, Creating 3D
Graphics, and will be able to build similar and even more sophisticated projects easily.

The video synthesizer application
A video synthesizer is an electronic device or a computer program that generates
and transforms a video signal in a complex way. Video synthesizers are used
for creating live visuals for DJ sets and performances, or serve as a visual part of
interactive installations and mobile apps.

Probably the most famous analog video synthesizer was made
by John Whitney in the middle of the twentieth century. Visual
effects, obtained with the synthesizer, are demonstrated in his
film Catalog (1961). It's worth watching on YouTube.

Throughout the book, we will build our own video synthesizer application. We
will start with a simple project in the next chapter and will extend it by adding new
features with each new chapter. At the end of the book, we will get a fully-fledged
video synthesizer, which reveals many openFrameworks capabilities.

Typically, a video synthesizer consists of several modules—video generators, video
players, video effects, and video mixers—connected to each other. Our synthesizer
will include all these basic modules and will have the following structure:

• A 2D image generator that produces pictures made from geometric shapes,
(Chapter 2, Creating Your First openFrameworks Project)

• A graphical user interface (GUI) consisting of sliders and checkboxes
(Chapter 3, Adding a GUI and Handling Keyboard Events)

• A player of image files, video files, and live videos from a camera (Chapter 4,
Working with Raster Graphics – Images, Videos, and Shaders)

• A video mixer that mixes several pictures using additive blending and the
kaleidoscope video effect (Chapter 4, Working with Raster Graphics – Images,
Videos, and Shaders)

• A 3D surface generator that renders a textured and deformed sphere in 3D
(Chapter 5, Creating 3D Graphics)

Chapter 1

[19]

• Various sources for controlling the synthesizer's parameters, such as LFO,
sound analysis, text files (Chapter 6, Animating Parameters), networking,
and an Arduino device (Chapter 7, Distributed and Physical Computing with
Networking and Arduino)

This structure is shown in the following diagram:

LFO,

sound analysis,

and text file

Networking

and

Arduino

Image,

video,

and

camera

Video mixer

and

video effect

GUI

2D 3D

Chapter 3 Chapter 6 Chapter 7

Chapter 2 Chapter 4 Chapter 5

Screen

The video synthesizer's structure

Additionally, in Chapter 8, Deploying the Project on iOS, Android, and Raspberry Pi, we
will see how to deploy the light version of the synthesizer on mobile devices: iOS,
Android, and Raspberry Pi. In the last chapter, Chapter 9, Further Resources, we will
consider ways to further enhance the synthesizer, get some advice on debugging and
optimizing your future openFrameworks projects, and consider additional references
on openFrameworks.

The synthesizer created will have quite a lot of GUI controls and control keys. If
while working with the book you need a quick reference on some of them, please
see Appendix A, Video Synthesizer Reference, where we have collected descriptions and
references to all parts of the synthesizer.

For a short description of openFrameworks functions and classes discussed
throughout the book, see Appendix B, openFrameworks Quick Reference.

Getting Started with openFrameworks

[20]

Three reasons to create your own video
synthesizer with openFrameworks
Why would you program a video synthesizer with openFrameworks? The reasons
are the following:

• You will get a handy, standalone application that provides you with
interactive video wherever you need it (on a stage at your live performance
or in your mobile), running on any platforms, and controlled by other
programs or devices, such as mobiles or Arduino.

• Our video synthesizer is exceptionally customizable. By changing just several
lines of code, you will get a unique synthesizer. The more you change the code,
the more you find that there are no limits to expressing your creative ideas.

• By splitting the video synthesizer project into parts and then rearranging
and adding new parts, you will obtain something different from the video
synthesizer. For example, you can construct an interactive installation
that transforms users' faces into abstract images. It could even be a mobile
3D drawing application that generates fantastic 3D landscapes. It's worth
noting that you can easily incorporate LeapMotion, Kinect, and many other
gadgets into your openFrameworks project in order to realize the interactive
experience that you want.

Summary
In this chapter, you learned what openFrameworks is, how to install it, and also how
to build and run its examples.

In the next chapter, we will create our own openFrameworks project that draws
simple 2D graphics.

[21]

Creating Your First
openFrameworks Project

In the previous chapter, we installed openFrameworks and learned how to build
and run its example projects. It's time to start our own project! So, in this chapter,
we are going to develop a sketch of the video synthesizer and explore the basics of
2D graphics with openFrameworks.

We will cover the following topics:

• Creating a new project with Project Generator
• openFrameworks project's structure
• Setting up screen size and frame rate
• Drawing geometric primitives, such as lines, triangles, and circles
• Drawing patterns from geometric primitives

Creating and running a new project
Let's create a new openFrameworks project. The simplest way to do this is to use
the Project Generator wizard included in openFrameworks for OS X, Windows,
Linux, and iOS.

Another way to create a new project is to copy any openFrameworks
example to the apps/myApps folder (or any other subfolder of the
apps folder) and use it from scratch for your project. The first thing
you would need to do after copying is rename the project; please see
the documentation of your IDE for details on how to do this.

Creating Your First openFrameworks Project

[22]

Creating a project
To create a project, follow these steps:

1. Run Project Generator : Open the ProjectGenerator_osx folder (in OS X),
ProjectGenerator (in Windows), or apps/projectGenerator (in Linux)
and run the executable named projectGenerator.

In Linux, Project Generator needs to be built before running;
see the details on building a project in the Running your first
example section of Chapter 1, Getting Started with openFrameworks.

You will see the Project Generator window, as shown in the following
screenshot:

This is the Project Generator window

2. Set project name: Click on the area titled Name: mySketch. The dialog
prompting a name for your project will appear. Type VideoSynth and click
on the OK button to close the dialog.

In the name of the project, you cannot use non-ASCII
symbols. Also, note that spaces will be replaced by _.

3. Choosing the project's path: By default, your project will be created in the
apps/myApps folder. If you want to change the destination folder, click on the
area titled Path:....

Chapter 2

[23]

You must put your openFrameworks project inside some
subfolder of the apps folder (more precisely, your project
must be placed at a third level, away from the root of the
openFrameworks folder). Otherwise, you will get a compile
error because the compiler didn't find openFrameworks files.
For instance, apps/myApps and apps/BigProject folders
are appropriate folders for your openFrameworks projects.

4. Selecting the addons: Addons are openFrameworks extensions. The most
important addons are distributed with openFrameworks (these addons
are called core addons). All other addons are called non-core addons and
are listed on ofxaddons.com. They should be downloaded and installed
manually to the addons folder of openFrameworks.
In our project, we will use two core addons—ofxGui and ofxOsc. These
addons implement GUI and networking via the Open Sound Control (OSC)
protocol. We will discuss them in detail later in Chapter 3, Adding a GUI and
Handling Keyboard Events, and Chapter 7, Distributed and Physical Computing
with Networking and Arduino.
To link them to the project, click on the area titled Addons:. The dialog
with the installed addons list will appear. Check the ofxGui and ofxOsc
checkboxes and click on the << BACK button.

5. Now, the Project Generator window should look as shown in the
following screenshot:

Here, Project Generator is ready to create our video synthesizer project

Make sure that Name: is set to VideoSynth, and Addons: is set to ofxGui,
ofxOsc.

Creating Your First openFrameworks Project

[24]

6. Click on the GENERATE PROJECT button. The VideoSynth project
will be created.

7. Close the Project Generator application by pressing Esc.

Running a project
Now, let's run our project with the following steps:

1. Open the apps/myApps/VideoSynth project in your IDE.
2. Build and run it (see the Running your first example section of Chapter 1,

Getting Started with openFrameworks). You will see the project's window,
as shown in the following screenshot:

This is the window of the new project created by Project Generator

3. Press Esc to close the application.

Great! We have a project that builds and runs. Currently, it shows a blank window
and does nothing interesting. So, in the rest of the chapter, we will fill it with
meaningful code. Before we do it, let's discover the project's structure to know
exactly the places where we should add the code.

Chapter 2

[25]

Discovering the project's code structure
Open the project's VideoSynth folder and find the src folder there. It contains the
project's source code files, as shown in the following screenshot:

The project's folder contents (the center column) and its source code
files placed in the src folder (the right column)

There are three source files:

• main.cpp: This file contains the code to initiate a window and run the app.
We will leave it unchanged.

• ofApp.h: This file is a declaration of the ofApp application class, which
consists of a declaration of the functions, such as setup(), update(),
draw(), and some others. Currently, we do not need to add anything there.

• ofApp.cpp: This file contains definitions of declared functions. This is the file
we will edit right now.

The following functions, declared in the ofApp class, are called by the
openFrameworks engine:

• setup(): This function is called once at the beginning of the application
execution. This is the place to implement a project's initialization steps, such
as loading images, starting cameras, and initializing networking.

• update(): This is called after setup(), and this is the place to perform
computations and related things, such as camera updating and network
receiving and sending.

• draw(): This is called after update(). All that needs to be drawn on the
screen should be coded here. After a while, depending on the frame rate
settings, openFrameworks calls update() and draw() again and again, in an
infinite loop.

• exit(): This is called right before finishing the application execution. This is
the final step of the program. Here, you should stop all the started processes,
such as cameras and networking.

Creating Your First openFrameworks Project

[26]

• All the other functions currently presented in the class declaration are called
by openFrameworks to handle various events, including keyboard keys
pressed (keyPressed()), mouse clicks (mousePressed()), and changing
window size (windowResized()).

Setting up the screen
The very first thing to code is to set up the global attributes: the project's window
title, screen size, rendering frame rate, and background color. To achieve this, add
the following lines to the ofApp::setup() function's body in the ofApp.cpp file:

ofSetWindowTitle("Video synth");
ofSetWindowShape(1280, 720);
ofSetFrameRate(60);
ofBackground(ofColor::white);

Downloading the example code

You can download the example code files from your account
at http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

This code consists of calling four openFrameworks functions, which set the window
title to Video synth, the project's drawing area size with width of 1280 pixels and
height of 720 pixels, the frame rate to 60 Hz, and the white background, respectively.

All openFrameworks functions and class names begin with of,
which is an abbreviation of openFrameworks.

Run the project and you will see a titled window with a white background:

This shows the project's window with a title and a white background

Chapter 2

[27]

By default, the project runs in the windowed mode. To set the
fullscreen mode, add the following line:

ofSetFullscreen(true);

The true argument here means that you are enabling fullscreen.

Centering the coordinate system
By default, in openFrameworks (and in most computer programs dealing with 2D
graphics), the center of the screen coordinate system is placed in the top-left corner of
the screen. The horizontal axis is directed to the right and the vertical axis is directed
downwards. The measurement unit is the pixel.

For a screen with size 1280 × 720 pixels, the top-left corner has the coordinates
(0, 0) and the bottom-right corner has the coordinates (1280-1, 720-1) = (1279, 719),
as shown in the following screenshot:

This shows the default coordinate system

We are planning to implement generative graphics, which is situated around
the screen center. To make the code easier, it's a good approach to move the
coordinate system origin to the screen center by adding the following lines to the
ofApp::draw() function:

ofPushMatrix();
ofTranslate(ofGetWidth() / 2, ofGetHeight() / 2);
//----
//... We will place our drawing code here
//----
ofPopMatrix();

www.allitebooks.com

http://www.allitebooks.org

Creating Your First openFrameworks Project

[28]

The ofPushMatrix() function pushes the current coordinate system state
(represented by a view matrix) in a special stack that holds view matrices. Then,
the ofTranslate() command shifts the coordinate system by ofGetWidth()/2
pixels horizontally and ofGetHeight()/2 pixels vertically. The ofGetWidth() and
ofGetHeight() functions return the current screen size, so we obtain a shift of the
coordinate system center to the screen center. The //... comment line defines the
place where we will put the drawing code a bit later. Finally, the ofPopMatrix()
calling restores the original coordinate system by getting it from the stack.

We obtain the centered coordinate system, as shown in the following screenshot:

This shows the centered coordinate system

We are ready to drop some graphics on the screen!

A simple drawing
The simplest thing that can be drawn with openFrameworks is a geometric primitive
such as a line, rectangle, or circle. Before drawing, we should set the drawing color
using the ofSetColor function and then draw primitives using commands such as
ofLine, ofRect, ofTriangle, and ofCircle (they draw a line, rectangle, triangle,
and circle respectively). Let's consider setting the color and then drawing functions
in detail.

Setting drawing color
The ofSetColor function switches the drawing color to a specified color. There are
several overloaded versions of this function:

• The most universal form lets us explicitly specify the red, green, blue, and
alpha (opaqueness) components of the color:
ofSetColor(255, 0, 0, 255);

The arguments are integers from 0 to 255, which correspond to red, green, or
blue color components and alpha color components. In our example, we will
get the red opaque color because the red component is maximal, the blue and
green components are zero, and the opaqueness is maximal.

Chapter 2

[29]

• When the fourth argument is omitted, it means alpha=255, so to obtain
the red color, we could use the shorter command, as shown in the following
line of code:
ofSetColor(255, 0, 0);

• If only one argument is given, it means an opaque color with specified
brightness, as shown in the following line of code:
ofSetColor(128);

This command is equivalent to calling ofSetColor(128, 128, 128, 255);
and getting a gray opaque color.

• Also, it is possible to specify the color's name, as follows:
ofSetColor(ofColor::yellow);

This command sets a yellow drawing color.

The list of all available color names is given in the
ofColors.h file in openFrameworks.

• When you need to set the same color several times or want to pass it as an
argument to a function, you could use the ofColor class:
ofColor color(255, 0, 0);
ofSetColor(color);

This code creates a color variable that holds the red color and then uses it to
set a drawing color.

By default, openFrameworks uses a white color to draw. But, we also use a
white color for the background. Hence, to be able to see our drawing, we must
set a drawing color different than white, for example, black. To achieve this,
add the following command to the ofApp::draw() function between two
comments //----:

ofSetColor(ofColor::black);

Creating Your First openFrameworks Project

[30]

Drawing primitives
We collected the most important primitives' drawing functions and some additional
functions in the following table. It contains a function's description, its example code,
and its resulting diagram:

Function and description Code example Result
ofLine(x1, y1, x2, y2)

This draws a straight line
segment from (x1,y1) to (x2,y2).

ofLine(0, -100, 0, 100);

//A line

ofSetLineWidth(w)

This sets the width of drawing
lines.

ofSetLineWidth(3.0);
ofLine(0, -100, 0, 100);

//A thick line

ofRect(x, y, w, h)

This draws a rectangle with the
top-left corner (x, y), width w,
and height h pixels.

ofRect(0, 0, 100, 50);

//A rectangle

ofTriangle(x1,y1,
x2,y2,x3,y3)

This draws a triangle with
vertices (x1,y1), (x2, y2), (x3, y3).

ofTriangle(0,0,-50,100,50,100);

//A triangle

ofCircle(x, y, r)

This draws a circle with center
at (x,y) and radius r.

ofCircle(0, 0, 50);

//A circle

ofSetCircleResolution(q)

The circle's boundary is drawn
as a equilateral polygon. This
function sets the number of
vertices for the polygon. The
default value is 20.

ofSetCircleResolution(40);

//A smoother circle

Chapter 2

[31]

Function and description Code example Result
ofFill()

This enables the filling of
drawn shapes (it is enabled by
default).

ofFill();
ofRect(0, 0, 100, 50);

//Filled rectangle

ofNoFill()

This disables the filling of
drawn shapes.

ofNoFill();
ofRect(0, 0, 100, 50);

//Unfilled rectangle

All coordinates and parameters in the drawing functions are floats,
except the argument of the ofSetCircleResolution command,
which should be an integer.

To check any of these code examples, insert it after the ofSetColor... line.

If you have never programmed such drawings, you can stop reading for the moment
and explore drawing simple pictures from the listed primitives, using different colors!

Now, let's go further and explore a way of creating pictures by repeatedly drawing
the same primitive.

Before moving to the next section, please comment (or remove) the code
you created in this section when drawing primitives so that the draw()
function looks as follows:

ofPushMatrix();
ofTranslate(ofGetWidth() / 2, ofGetHeight() / 2);
//----

//----
ofPopMatrix();

Creating Your First openFrameworks Project

[32]

Geometric patterns
The idea of creating a picture by repeatedly drawing several geometric primitives
and shifting, rotating, or resizing them in small amounts is known from ancient
times. The resultant picture is called a geometric pattern.

Ethnic ornaments are exciting examples of geometric patterns.
Check Google's image search results on the geometric pattern
and ethnic ornament to boost your creativity on the topic.

Creating geometric patterns with a computer is super easy, and it's a must-have
feature of any video synthesizer. In the rest of the chapter, we will implement a
simple but powerful pattern's type in detail, which we call a stripe pattern.

The stripe pattern
A stripe pattern is formed by drawing the geometric primitives repeatedly, placing
their centers along some (invisible) curve, such as a straight line, a curved line, or
even a spiral. We will call this curve a base curve.

The reason of naming is that the resultant figure sometimes
resembles a stripe.

A stripe pattern made from parallel lines
Let's draw a pattern that has a horizontal straight line as a base curve and a vertical
line segment as a geometric primitive, as shown in the following image:

This shows a simple stripe pattern scheme

For convenience, we will implement the pattern drawing as a new function called
stripePattern(). The implementation will consist of three steps: inserting the function
declaration, function definition, and calling this function from the draw() function.

Chapter 2

[33]

Inserting the function declaration
Insert the following line of our function declaration to the ofApp.h file, as follows:

void stripePattern();

This line must be placed inside the ofApp class declaration, somewhere after the
public: keyword line. The exact position of the line is not important. The resulting
code can look like the following:

class ofApp : public ofBaseApp{
public:
 void setup();
 void update();
 void draw();
 void stripePattern();

Inserting the function definition
Insert the following code (for instance, insert it before the ofApp::draw() function
definition) to the ofApp.cpp file:

void ofApp::stripePattern() {
 ofSetColor(ofColor::black);
 ofSetLineWidth(3.0);
 for (int i=-50; i<50; i++) {
 ofPushMatrix();
 ofTranslate(i*20, 0);
 ofLine(0, -100, 0, 100);
 ofPopMatrix();
 }
}

The first two lines of the function set the drawing color to black and the drawing
line's width to 3 pixels (we discussed these functions in the preceding section).
The third line starts a for cycle, which iterates i from -50 to 49.

The cycle's body consists of storing the current coordinate system, shifting it by
(i*20, 0), drawing a vertical line, and restoring the coordinate system back to
the original state.

As you would note, the cycle will produce the following sequence of coordinate
system centers:

(-50*20, 0), (-49*20, 0), …, (0, 0), (20, 0), …, (49*20, 0)

These points lie on the horizontal line y = 0—this is the equation for the base curve of
the pattern. By drawing vertical lines in each iteration, we obtain the desired pattern.

The stripePattern() function is ready. Let's call it.

Creating Your First openFrameworks Project

[34]

Inserting the function calling
Insert the stripePattern(); code line into the ofApp::draw() function between
the two comments //----. The ofApp::draw() function should now look like this:

ofPushMatrix();
ofTranslate(ofGetWidth() / 2, ofGetHeight() / 2);
//----
stripePattern();
//----
ofPopMatrix();

On running the project, we will see the desired pattern, as shown in the
following image:

Here's a stripe pattern made from parallel lines

A stripe pattern made from rotating lines
Let's improve the pattern generation algorithm by adding a rotation of lines. Insert
the following line before the ofLine... command inside ofApp::stripePattern():

ofRotate(i * 5);

This command rotates the coordinate system by i * 5 degrees counterclockwise. It
results in the following pattern:

This is a stripe pattern made from rotating lines

A stripe pattern made from rotating triangles
Until now, our pattern really looks like a stripe. But, this is not the case always.
To demonstrate this, let's draw a big triangle instead of a line. Replace the ofLine...
line inside the stripePattern() function with the following lines:

ofScale(6, 6);
ofTriangle(0, 0, -50, 100, 50, 100);

Chapter 2

[35]

The first line scales the coordinate system six fold, so the succeeding drawings will
be enlarged six times. The second line draws a triangle. Because of the coordinate
system changes, it will be translated, rotated, and scaled on each cycle's iteration.

Also, disable the filling mode by inserting the ofNoFill() line before the for loop.

The stripePattern() function's body should look like the
following:

ofSetColor(ofColor::black);
ofSetLineWidth(3.0);
ofNoFill();
for (int i=-50; i<50; i++) {
 ofPushMatrix();
 ofTranslate(i*20, 0);
 ofRotate(i*5);
 ofScale(6, 6);
 ofTriangle(0, 0, -50, 100, 50, 100);
 ofPopMatrix();
}

This results in the pattern in the following figure:

This is a stripe pattern made from triangles

Though formally, it's still a stripe pattern, visually it is not a stripe, but rather a
wireframe surface in 3D!

Creating Your First openFrameworks Project

[36]

At this point, we are stopping experimenting with the stripe pattern generator.
Congratulations, our first openFrameworks 2D drawing project and sketch of the
video synthesizer is ready!

Feel free to tweak the parameters of the code to explore a variety
of patterns you can generate with it.

For example, you could alter parameters of ofScale… or change
i*20 and i*5 (in ofTranslate... and ofRotate...) to
some other formulas. Also, you could draw all primitives in
different colors by inserting ofSetColor(…) into the cycle, with
color values, depending on i.

Summary
In this chapter, we created a new project and set up its screen size and frame rate.
Also, you learned the basics of 2D graphics with openFrameworks by drawing
geometric primitives and stripe patterns.

The project we built is a sketch of the video synthesizer. In the next chapter, we will
enhance it by adding GUI, which lets us change drawing parameters interactively.

[37]

Adding a GUI and Handling
Keyboard Events

Most of the real-time projects, including video synthesizers, need to be interactive. The
simple way to do it is to equip the project with a GUI and handle keyboard events. In
this chapter, we will consider how to do this by covering the following topics:

• Creating a GUI with sliders and checkboxes
• Handling keyboard events
• Saving screenshots
• Working with presets
• Using system dialogs to save and load files

Finally, we will implement an advanced method for generating geometric patterns,
called matrix pattern generator.

Creating a GUI using the ofxGui addon
A GUI is a set of visual elements for controlling an application with mice and
keyboards on desktops, and with fingers on mobiles. It includes panels and controls,
such as sliders, checkboxes, and buttons.

www.allitebooks.com

http://www.allitebooks.org

Adding a GUI and Handling Keyboard Events

[38]

The simplest way to create a GUI with openFrameworks is using its core
addon—ofxGui. A typical GUI made with this addon is shown in the
following screenshot:

This is a typical GUI created with the ofxGui addon

It is a panel, consisting of a header, a number of sliders, and several groups of visual
controls, which can be collapsed to save screen space. Although such a GUI looks
minimalistic, it should be quite enough for many experimental and creative projects.

If you want to have a more comprehensive GUI, you can install some
other GUI-dedicated addon from ofxaddons.com (for example, the
ofxUI addon), or even use your native OS GUI controls (considering
how to do it depends on your OS and is beyond the scope of the book).

Implementing a simple GUI panel
with sliders
Let's create a simple GUI consisting of a panel and three sliders. The first thing
required is to add the ofxGui addon to the project. Fortunately, we already did it
when creating the project in the previous chapter (see step 4 (Selecting the addons)
of the Creating a project section of Chapter 2, Creating Your First openFrameworks Project).
Perform the following steps:

1. Include the addon's header to the ofApp.h file by inserting the following line
(after the #include "ofMain.h" line):
#include "ofxGui.h"

2. Next, declare the visual panel and four sliders by adding the following lines
to the ofApp class' declaration:
ofxPanel gui;
ofxIntSlider countX;
ofxFloatSlider stepX;
ofxFloatSlider twistX;

Chapter 3

[39]

The first line declares the GUI panel, which will be a container for all our GUI
elements. The second line declares the countX slider, which holds integer
values. The last two lines declare the stepX and twistX sliders with float values.

The gui, countX, stepX, and twistX parameters are
just object names. They are not associated with some GUI-
related structures nor maintained by an IDE (as it happens
in some GUI-programming libraries), so you are free to
rename them as you want without any problem.

3. Now, add the following code to ofApp::setup() to set up declared objects:
gui.setup("Parameters", "settings.xml");
gui.add(countX.setup("countX", 50, 0, 200));
gui.add(stepX.setup("stepX", 20, 0, 200));
gui.add(twistX.setup("twistX", 5, -45, 45));

The first line sets the title of gui to "Parameters" and also specifies the name
of the XML file for storing the interface elements' values (we will discuss
storing a little bit later). In our case, the file name is "settings.xml".
The next three lines set up sliders and add them to gui. For each slider, the
arguments of the setup method specify the slider's title (for example, for
countX, it is "countX"), its starting value (for countX, it is 50), and its range
(for countX, it is a range from 0 to 200).

4. Finally, add the following line to the last line of ofApp::draw():
gui.draw();

This function draws the gui panel on the screen.

This simple GUI is ready! On running the project, you will see the GUI panel, as
shown in the following screenshot:

This is a GUI panel with three sliders

The panel is active—you can adjust the sliders' values by clicking on them or
dragging them. Also, you can move the panel across the screen by dragging its
header. By clicking on the two small buttons on the right-hand side of the header,
you can save and load the current state of the sliders to the settings.xml file, which
will be stored in the bin/data folder of the project.

Adding a GUI and Handling Keyboard Events

[40]

Using the sliders' values
For obtaining the current value of each slider, we can use the slider object itself, as
shown in the following code:

float f = stepX;

This code sets the value of the stepX slider to f.

Let's use our three sliders' values for parameterizing the stripePattern()
function, which we implemented in the previous chapter. So, in the body of the
stripePattern() function, replace the constant values with the sliders' values in the
following way:

for (int i=-countX; i<=countX; i++) {
 ofPushMatrix();
 ofTranslate(i * stepX, 0);
 ofRotate(i * twistX);
 ofScale(6, 6);
 ofTriangle(0, 0, -50, 100, 50, 100);
 ofPopMatrix();
}

Now, countX controls the number of drawn primitives, stepX controls the distance
between primitives along the X axis, and twistX controls the rotation of the
primitive depending on its index.

When stepX is zero, you will get a circular pattern, that is, a pattern obtained by a
primitive rotating around some point. When stepX is greater than zero, you will
get a pseudorandom ornament or a kind of 3D surface, made from big triangles, as
shown in the following image:

This is an image made by adjusting GUI sliders

Chapter 3

[41]

To generate this particular image, set the sliders' values to 151, 6,
and 0.899998.

Playing with the project, very soon you will notice that it would be desirable to have
an autosave feature, which automatically restores the last state of GUI controls when
the project restarts. Let's do it now!

Implementing the autosave feature
Autosaving can be implemented by saving the GUI state to a file when the project
ends, and loading the GUI state from this file on project startup. To accomplish this,
perform the following steps:

1. Declare the new exit() function in the ofApp class:
void exit();

2. Then, add its definition to the ofApp.cpp file, as follows:
void ofApp::exit() {
 gui.saveToFile("settings.xml");
}

openFrameworks calls the exit() function right before finishing the project.
So, this function saves the state of the gui elements to the settings.xml file,
which is located in the bin/data folder of the project.

3. To load the gui state at startup, add the following line to the end of the
setup() function:
gui.loadFromFile("settings.xml");

Autosave is ready; let's check it! Run the project, move the sliders, and note their
values. Now, close the project and run it again. You will see that sliders' values were
restored properly.

Now let's extend our GUI capabilities a little bit further by learning how to organize
GUI controls in groups.

Creating groups of controls
When the number of visual controls increases, it's a good idea to organize them into
groups. Grouping simplifies navigating through parameters and helps to save screen
space from cluttering, by collapsing currently unused groups.

Adding a GUI and Handling Keyboard Events

[42]

The ofxGuiGroup class is used to create a group of controls. Let's create such a group
consisting of three sliders, which will control the scale, rotation, and background of
the image:

1. Add the following lines to the ofApp class's declaration:
 ofxGuiGroup globalGroup;
 ofxFloatSlider Scale;
 ofxFloatSlider Rotate;
 ofxFloatSlider Background;

The first line declares a group, and the next lines declare sliders for it.

2. Now set up the group and its controls by adding the following code to
the setup() function (insert it right before the gui.loadFromFile...
command):
globalGroup.setup("Global");
globalGroup.add(Scale.setup("Scale", 1, 0.0, 1));
globalGroup.add(Rotate.setup("Rotate", 0, -180, 180));
globalGroup.add(Background.setup("Background",255,0, 255));
gui.add(&globalGroup);

The first line sets the group's title to "Global", the next three lines add
sliders to the group, and the last line adds the group to the GUI panel.

Running the project, you will see the panel with the added Global group, as shown
in the following screenshot:

This is a panel with the added Global group of controls

Click on the – button located at the right of the group's header to collapse the group.
To expand it back, click on the + button, which will appear there instead of –.

Chapter 3

[43]

Using the sliders' values
To implement the new sliders' actions, follow these steps:

1. Insert the following line at the beginning of the draw() function:
ofBackground(Background);

This line sets up the background color to a gray color, with brightness
specified by the Background slider's value.

2. Insert the following lines in the draw() function after the ofTranslate...
line :
float Scl = pow(Scale, 4.0f);
ofScale(Scl, Scl);
ofRotate(Rotate);

The first line raises the Scale slider's value to the fourth power to control small
values of the Scl scale more precisely. Indeed, the slider's values from 0.0 to 0.5 will
get Scl from 0.0 to 0.5*0.5*0.5*0.5 = 0.0625, whereas the slider's values from 0.5 to 1.0
will get Scl from 0.0625 to 1. So, you can see that the left half of the slider's values
range controls a very small range of Scl.

The second and the third lines set up the scale and rotation of the coordinate system.

By running the project, you will see that Scale controls the size of the generated
image, Rotate rotates it, and Background sets the brightness of the background.

Implementing a checkbox, a color
selector, and a 2D slider
Until now, we have dealt only with float and integer sliders. Let's explore new types
of controls: checkbox, color selector, and 2D slider, implemented by the ofxToggle,
ofColorSlider, and ofVec2Slider classes, respectively.

There exist classes of controls that are out of the scope of this book.
These are the ofxButton button class, the ofxLabel text label class,
and the ofxVec3Slider 3D slider class and the ofxVec4Slider
4D slider class. See openFrameworks' gui/guiExample example for
details on using buttons and labels. The 3D sliders work similarly to 2D
sliders, which we will consider now.

Adding a GUI and Handling Keyboard Events

[44]

We investigate them by creating a group of controls to adjust the geometric
primitive's drawing parameters:

1. Declare the group and its components in the ofApp class's declaration:
ofxGuiGroup primGroup;
ofxFloatSlider shiftY, rotate;
ofxVec2Slider size;
ofxColorSlider color;
ofxToggle filled, type;

The first line declares a new group of controls, primGroup, and the second
line declares two float sliders, shiftY and rotate (we considered this
class previously). The third line declares the 2D slider's size parameter.
The fourth line declares the color selector, color. The last line declares two
checkboxes, type and filled.

2. Now, set them up in setup() with the following code (insert it right before
the gui.loadFromFile... command):
primGroup.setup("Primitive");
primGroup.add(shiftY.setup("shiftY",0.0,-1000.0,1000.0));
primGroup.add(rotate.setup("rotate",0.0,-180.0,180.0));
primGroup.add(size.setup("size",
 ofVec2f(6,6),
 ofVec2f(0,0),
 ofVec2f(20,20)));
primGroup.add(color.setup("color",
 ofColor::black,
 ofColor(0,0,0,0),
 ofColor::white));
primGroup.add(filled.setup("filled", false));
primGroup.add(type.setup("type", false));
gui.add(&primGroup);

The first three commands set up a group, primGroup, and the float sliders,
shiftY and rotate (we considered similar commands earlier). The fourth
command sets up the 2D slider's size parameter by specifying its title,
starting value, and range. Note that value and range are specified using the
constructor of the ofVec2f class.

Chapter 3

[45]

The ofVec2f class represents a two-dimensional float
vector. Objects of this class have the float fields x and y,
which are the vector's components. The class has many
useful methods, such as getting vector length and rotating
the vector by an angle. See details on the ofVec2f class's
definition in the ofVec2f.h openFrameworks file.

The next command sets up the color color selector with its title, starting
color (black), and range from an empty color (with red, green, blue, and
alpha components equal to 0) to white. The next two commands set up
checkboxes, type and filled, by specifying their names and starting values
as false (that means unchecked). The last line adds the created group,
primGroup, to the GUI panel.

3. On running the project, you will see the new group, Primitive, as shown in
this screenshot:

This shows a new group of controls, Primitive, with a 2D slider,
a color selector, and two checkboxes

Note that the 2D slider size consists of two float sliders x and y, and the color selector
color consists of four float sliders, corresponding to all color channels: r, g, b, and a.

Adding a GUI and Handling Keyboard Events

[46]

Using the controls' values
Now let's change the code of the stripePattern() function to use the new controls'
values. We need to replace the setting color, filling mode, and drawing triangle
commands with its parameterized versions. Additionally, let's set the line's width to
1.0 pixel (as we don't need thick contours anymore). So, the function's body will look
as follows:

ofSetColor(color);
ofSetLineWidth(1);
if (filled) ofFill(); else ofNoFill();
for (int i=-countX; i<=countX; i++) {
 ofPushMatrix();
 ofTranslate(i * stepX, 0);
 ofRotate(i * twistX);

 ofTranslate(0, shiftY);
 ofRotate(rotate);
 ofScale(size->x, size->y);
 if (type) ofRect(-50, -50, 100, 100);
 else ofTriangle(0, 0, -50, 100, 50, 100);

 ofPopMatrix();
}
ofScale(6, 6);
ofTriangle(0, 0, -50, 100, 50, 100);

The first command sets the drawing color to the color value, the second command
sets the drawing line width to 1 pixel (its default value), and the third line sets the
filling mode depending on the fill value; fill is a checkbox, and its value is true
when checked and false when unchecked.

The command for drawing a triangle was changed more radically; it was replaced
with five lines of code. Here, the first three lines adjust the local coordinate system
for the primitive's drawing in the following way:

• The first line shifts the primitive along the local Y axis by the number of
shiftY pixels. In general, the direction of shifting does not coincide with the
Y axis of the screen because it depends on the twisting parameter twistX and
the primitive's index i.

• The second line rotates the local coordinate system of the primitive on the
rotate angles.

• The third line scales the local coordinate system by the x and y components
of the group of sliders' size. This results in changing the width and height of
the drawn primitive.

Chapter 3

[47]

The specifics of the 2D slider

Its x and y values are accessed by ->, in contrast with the usual
. (such as size.x and size.y). Normally, in C++, using ->
means using the structure dereference operator, and it is used
to access the fields of pointers. But, in our case, -> is just an
overloaded operator implemented in the ofxVec2Slider class
to access its x and y values. Don't care about it and just use it.

Finally, the last two lines draw the square or triangle, depending on the type value.

Experimenting with the project
Now, run the project. Let's explore it:

1. At first, set countX to 1. Then, only one primitive will be drawn in the center
of the screen. Now, adjust all controls in the Primitive group and explore
how they affect the primitive's shape and color clarity.

2. Now, increase the value of countX to 30 or more, and set non-zero values
for stepX and twistX. Then, a stripe pattern will be generated (we discussed
such patterns in the previous chapter). Now change shiftY and rotate and
explore how it affects the geometry of the resulting pattern. If the image
seems too black, try to reduce the size of the primitives (by adjusting size) or
disable filling (by unchecking fill).

3. Finally, decrease the a component of the color field (that is, opaqueness),
and explore how primitives are drawn semitransparent. You will obtain the
image, as shown in the following screenshot:

This is an image generated using semitransparent triangles

www.allitebooks.com

http://www.allitebooks.org

Adding a GUI and Handling Keyboard Events

[48]

If you want to reproduce exactly this image, use the parameters shown in
this screenshot:

The parameters used to generate
the previous image

In this screenshot, the a slider is set to 30, but its slider is invisible
on the screen! This is caused by the fact that the r, g, b, and a
sliders are drawn using the color they constitute; in our case,
these are 0, 0, 0, and 30. This means a semitransparent black color
and it is invisible on a black panel's background.

At this point, our video synthesizer is able to generate quite interesting images. But
how do we save them? We resolve this question right now by saving screenshots and
parameter presets using keyboard events.

Chapter 3

[49]

Handling keyboard events
The keyboard events are handled by the keyPressed(int key) and
keyReleased(int key) functions, which are called by openFrameworks when a key
is pressed and released respectively. The key input argument holds the numerical code
of the key. Let's implement handling key pressings in our project and use it to add
some desirable features: hiding GUI, saving screenshots, and saving/loading presets.

We consider here only key pressing events. Handling key
releasing is implemented in a similar way.

Hiding the GUI
In order to capture the image generated with our project, we need to be able to hide
the GUI from the screen. To achieve this, let's define the Boolean variable showGui,
implement its toggling by pressing Z, and use its value to decide whether we should
draw gui on the screen:

1. Add the variable definition to the ofApp class:
bool showGui;

2. Next, set up its starting value in setup():
showGui = true;

3. Now, implement its toggling by inserting the following command in the
ofApp::keyPressed function:
if (key == 'z') showGui = !showGui;

This line checks whether Z is pressed and then inverts the showGui value
using the negotiation operator ! (true to false and false to true).

4. Finally, add the showGui value checking to make a decision on drawing gui by
replacing the gui.draw(); command in the draw() function with this one:
if (showGui) gui.draw();

Run the project. Now, by pressing Z (lowercase z key), the GUI will disappear from
and appear back on screen.

Adding a GUI and Handling Keyboard Events

[50]

Saving a screenshot
Let's save a screenshot to an image file by pressing Return (Enter). Add the following
line to the keyPressed function:

if (key == OF_KEY_RETURN) ofSaveScreen("screenshot.png");

Note that the Return (Enter) control key in openFrameworks is
denoted as OF_KEY_RETURN. All other control keys begin with
OF_KEY_ too. For example, OF_KEY_LEFT means the left cursor key.

The ofSaveScreen function saves the screen content to a file. In our case, it is
screenshot.png, located in the bin/data folder of the project.

If you want to save screenshots to files with different names, the
simplest way to achieve it is to use a random number generator to
choose filenames. Replace "screenshot.png" with the following code:

"screenshot" + ofToString(ofRandom(0, 1000), 0) +
 ".png"

Then, screenshots will be saved to files with a name of the type
screenshotX.png, where X is a number from 0 to 999, for example,
screenshot359.png. This code is based on using the ofRandom(0,
1000) function, which generates floats from 0 to 1000 (and the result
is strictly less than 1000). This float value is converted to a string using
the ofToString function. Its second argument 0 means that we need
no digits after the period. So, we get a string representing an integer
number from 0 to 999. Next, it is concatenated with the screenshot
and .png strings to obtain the desired random filename.

Saving a preset using the system save dialog
The set of values of all the project's parameters is called a preset. Saving and loading
presets are crucial features of any creative software project. In our case, all important
project parameters are values of GUI controls and can be saved to and loaded from a
file using the gui.saveToFile and gui.loadFromFile functions.

Let's implement saving a preset to a file by pressing S. The filename will be chosen
using the system save dialog. Add the following code to the keyPressed function:

if (key == 's') {
 ofFileDialogResult res;
 res = ofSystemSaveDialog("preset.xml", "Saving Preset");
 if (res.bSuccess) gui.saveToFile(res.filePath);
}

Chapter 3

[51]

The first line of code checks whether S is pressed. If it's true, then the second line
declares the res variable, which will hold the system save dialog result. The third
line executes the saving dialog with the starting filename as preset.xml and title as
Saving Preset. In the fourth line, we check whether the dialog was successful, and
save the current state of the gui parameters to the selected file.

In the current version of openFrameworks for Windows, arguments
of ofSystemSaveDialog do not affect the appearance of the system
dialog; it appears with an empty starting filename and with a generic
title.

Now, run the project and press S to save your preset to a file. You will see a dialog
for choosing a file to save the preset. When it succeeds, your preset, that is, the
current GUI controls' values will be saved to that file.

Loading a preset using the system
load dialog
Let's implement loading a preset by pressing L with the following code:

if (key == 'l') {
 ofFileDialogResult res;
 res = ofSystemLoadDialog("Loading Preset");
 if (res.bSuccess) gui.loadFromFile(res.filePath);
}

It is like a code for saving a preset, but instead of saving, it loads the GUI controls'
values.

Run the project, press L, and in the appeared dialog, choose a file where you saved
your preset before. The preset will be loaded.

Implementing the matrix pattern
generator
Perfect! We've explored creating a GUI with the ofxGui addon and covered some of
its quirks.

Adding a GUI and Handling Keyboard Events

[52]

In this final section, we don't want to investigate any new GUI topics but wish to
implement an advanced algorithm for drawing geometric patterns.

If you feel that you have achieved your goal in programming
GUI and don't want to improve the pattern generation
algorithm right now, we'd suggest that you skip this section
and proceed to the next chapter.

We will do this by adding four new sliders and creating a new function to draw a
matrix pattern (we will explain it in the following paragraphs). When this succeeds,
our video synthesizer will be able to generate a very wide range of pictures, ranging
from VJ-style patterns to vivid organic shapes, as shown in these screenshots:

These are examples of images generated with the matrix pattern generator

You will be able to generate these two images in your project using the
values given in the end of the section.

A matrix pattern is a geometric pattern that is obtained by drawing many copies
of some stripe pattern, with shifting, scaling, and rotating (see the theory of
stripe patterns in the The stripe pattern section of Chapter 2, Creating Your First
openFrameworks Project). It is named "matrix pattern" because it consists of a number
of geometric primitives with their centers lying on a (geometrically twisted) matrix:

1. To implement it, add the four sliders and a matrixPattern function
definition to the ofApp class:
ofxIntSlider countY;
ofxFloatSlider stepY, twistY, pinchY;
void matrixPattern();

Chapter 3

[53]

2. Now set up the sliders by inserting this code right before the globalGroup.
setup... command:
gui.add(countY.setup("countY", 0, 0, 50));
gui.add(stepY.setup("stepY", 20, 0, 200));
gui.add(twistY.setup("twistY", 0, -30, 30));
gui.add(pinchY.setup("pinchY", 0, 0, 1));

3. On running the project, you will see the GUI with new sliders, as shown in
this screenshot:

This shows a panel with added matrix pattern generator's controls

Using the sliders' values
Now, let's code the matrixPattern function. This function will draw 1+2*countY
stripe patterns, by shifting them at stepY pixels along the Y axis and rotating by
twistY degrees. Also, the pinchY slider will adjust the scale of each stripe in the
pattern depending on its index. Insert the function's code to the ofApp.cpp file:

void ofApp::matrixPattern() {
 for (int y=-countY; y<=countY; y++) {
 ofPushMatrix();
 //---------------------
 if (countY > 0) {
 float scl = ofMap(y, -countY, countY, 1-pinchY, 1);
 ofScale(scl, scl);
 }
 ofTranslate(0, y * stepY);
 ofRotate(y * twistY);
 stripePattern();
 //---------------------
 ofPopMatrix();
 }
}

Adding a GUI and Handling Keyboard Events

[54]

The function consists of the for cycle, which executes 1+2*countY times. The body
of the cycle stores the current coordinate system by calling the ofPushMatrix
function, and then scales, translates, and rotates it, depending on the sliders' values.
Next, it calls the stripePattern function to draw the stripe pattern and finally
restores the original coordinate system.

To understand the code, at first consider the case where countY is equal to zero.
Then, the cycle executes once with y = 0. The countY > 0 condition will fail,
so ofScale will not call, and the ofTranslate and ofRotate functions will do
nothing, because y is equal to zero. Calling stripePattern draws the original stripe
pattern without any coordinate system change. Hence, in the case of countY = 0,
matrixPattern just draws a stripe pattern.

Now, consider the case countY > 0. In this case, the ofScale, ofTranslate, and
ofRotate functions will change the coordinate system depending on the index y,
and a stripe pattern will be drawn 1+2*countY times.

The ofMap function is new in code. This function performs linear interpolating of
y from range [-countY, countY] to range [1-pinchY, 1]. That is, when y is
equal to -countY, it returns 1-pinchY; when y is equal to countY, it returns 1.
For intermediate y values, it returns linearly increased floats between 1-pinchY
and 1. The result of this function is stored to the scl variable and used to scale
the coordinate system in the next line of code. So, we obtain a linearly increased
sequence of scl scales, depending on y. Here, the pinch value controls the range of
stripe scales. In particular, when pinch is equal to 0, all the scl values are equal to 1;
when pinch is equal to 1, the scl values linearly run from 0 to 1.

The last thing remaining is to call the matrixPattern function. Locate the
following line in the draw() function::

stripePattern();

Replace this line with:

matrixPattern();

The matrix pattern generator is ready! Let's learn to use these new drawing
capabilities.

Chapter 3

[55]

Experimenting with the matrix pattern
generator
Start checking the matrix pattern generator by creating a simple matrix pattern,
consisting of 25 squares, as shown in the following screenshot:

This is a simple matrix pattern

To get it, set the GUI controls to the following values:

These are the values for generating a simple matrix pattern

Adding a GUI and Handling Keyboard Events

[56]

Then, change the added countY, stepY, twistY, and pinchY sliders to see how they
affect the pattern's geometry.

When you have generated an interesting image, don't forget to save
its preset to the file by pressing S. Then you will be able to use and
probably improve it in the future!

If you want to reproduce the two example images shown at the beginning of this
section, use the following values:

These are the values for generating example images

Chapter 3

[57]

Summary
In the chapter, we built the GUI for controlling all parameters of the project and
added handling the keyboard events to save screenshots and working with presets.
Also, we significantly improved a drawing algorithm by implementing the matrix
pattern generator.

At this point, we have quite a functional project for generating elaborate 2D visuals
made from geometric primitives.

This project we created could be called a light version of the video
synthesizer. We will deploy it on mobile devices in Chapter 8, Deploying
the Project on iOS, Android, and Raspberry Pi. So, we recommend that
you back up the current state of the project (for example, by archiving
project's folder to a ZIP file) before you go on to the next chapter.

In the next chapter, we will extend our graphics capabilities using images and videos
and process them with shaders.

www.allitebooks.com

http://www.allitebooks.org

[59]

Working with Raster
Graphics – Images,

Videos, and Shaders
In the previous chapters, we dealt with 2D graphics made exclusively from
geometric primitives. This kind of graphics is called vector graphics and is great
for generating algorithm-based pictures. Drawing and manipulating pictures of
real-world objects requires other 2D graphics called raster graphics, which is based
on raster images.

In this chapter, we will consider the basics of raster graphics by covering the
following topics:

• Loading and drawing raster images and videos
• Grabbing and drawing live video from a camera
• Mixing images using additive blending
• Drawing to the offscreen buffer
• Processing images using fragment shaders demonstrated by implementing

the kaleidoscope effect.

At the end of the chapter, we will have our video synthesizer extended with raster
graphics capabilities, including mixing images, video files, and live video from a
camera, and processing the resulting picture with the kaleidoscope effect.

Working with Raster Graphics – Images, Videos, and Shaders

[60]

Raster images in openFrameworks
A raster image is a rectangular array of pixels. To keep things short, we will call
a raster image an image.

Each pixel holds color information represented by one or several numerical values.
This number of values is called a number of channels of the image. openFrameworks
supports the images with one, three, and four numbers of channels:

• A one-channel image is called a grayscale image. Its pixels hold
brightness values.

• A three-channel image is called a color image. Its pixels hold red, green, and
blue components of the color.

• A four-channel image is called a color image with alpha channel. Its pixels
have an additional component, alpha, controlling the transparency of the pixels.

openFrameworks supports loading from and saving images to all popular image file
formats, including PNG, JPG, BMP, and TIFF.

There are three classes for working with images:

• ofImage: This is intended for manipulating the pixel values and drawing
an image

• ofPixels: This is intended for manipulating the pixels values only
• ofTexture: This is intended for drawing images only

The ofImage class is the most universal image class. The ofPixels and ofTexture
classes are specialized for particular usage (pixel manipulation or drawing) and
consumes less memory comparing with ofImage.

In fact, the ofImage object contains one ofPixels
object and one ofTexture object that are
automatically synchronized.

Drawing an image file
Let's load an image file and draw it on the screen. We will not want to change the pixel
values, so we will use the ofTexture class for this task. Perform the following steps:

1. Add the image object definition to the ofApp class:
ofTexture image;

Chapter 4

[61]

2. Add the command for loading the image from the collage.png file
to setup():
ofLoadImage(image, "collage.png");

3. At the beginning of the draw() function, right after the ofBackground...
command, add the code for drawing the image:
ofSetColor(255);
image.draw(0, 0, ofGetWidth(), ofGetHeight());

The first line sets up the white drawing color, which serves here as an image
drawing color (see the details about the ofSetColor function in Chapter 2,
Creating Your First openFrameworks Project). By setting the color to white, we
are guaranteed that the image will be drawn without color change.

Setting another color will lead to changing the appearance of the
image on the screen. For example, if we use the ofSetColor(
0, 255, 0) command (which sets the drawing color green),
only the green channel of the image will be drawn.

The second line draws the image on the screen, with the top-left corner
position (0, 0), width ofGetWidth(), and height ofGetHeight(). As a result,
the image will be drawn stretched on the whole screen.

If we specify only the first two arguments in the image.
draw... command, such as image.draw(0, 0), the
image will be drawn in its own size.

4. Finally, copy the collage.png image file to the bin/data folder of the
project. You can get the file from the archive provided with the book.

Credits
We made this image file, collage.png, by collating several
nature photos by:

• ©iStockphoto.com/wojciech_gajda
• ©iStockphoto.com/thawats
• ©iStockphoto.com/magnetcreative
• ©iStockphoto.com/yuliang11
• ©iStockphoto.com/chantalrutledge

Working with Raster Graphics – Images, Videos, and Shaders

[62]

On running the project, you will see the collage.png image stretched to the screen
and some geometric pattern over it (which we implemented in previous chapters).
To hide the geometric pattern for a moment, set its color a slider to zero. You will
see the following picture:

This is an image, collage.png, drawn by our project

Playing a video file
openFrameworks supports video files of various formats, including MP4, MOV, and
AVI. The class for playing videos is ofVideoPlayer.

For playing videos with openFrameworks on
Windows, you need to have Apple's QuickTime
installed. It's free to download from apple.com.
(Please, restart Windows after installing.)

Let's load a video file and play it on the screen in the following way:

1. Add the video object definition to the ofApp class:
ofVideoPlayer video;

2. Add the commands to load the video from the flowing.mp4 file and starting
it to play by inserting the following lines to setup():
video.loadMovie("flowing.mp4");
video.play();

3. Add the command to update video objects regularly by inserting the
following line to update():
video.update();

Chapter 4

[63]

This command manages the loading of new video frames when
it is needed, so we should call it regularly to have proper and
smooth video playback.

4. Add the commands to draw the current video frame by inserting the
following lines to draw(), right after the image.draw... command:
ofSetColor(255);
video.draw(0, 0, ofGetWidth(), ofGetHeight());

This code sets the drawing color to white and draws a video frame stretched
on the screen.

5. Finally, copy the flowing.mp4 video file to the bin/data folder of the
project. You can get the file from the archive provided with the book.

We made this video by animating colored geometric figures
and applying to it motion blur effect several times.

On running the project, you will see the video played on the screen, as shown in the
following screenshot:

This is a video flowing.mp4 played by our project

Having video playback is good, but currently, it completely occludes the image
drawn in the previous section! Don't worry. A little later, we will implement the
video mixer to control the appearance of the image and video.

But, before doing that, let's implement grabbing video from a camera.

Working with Raster Graphics – Images, Videos, and Shaders

[64]

Grabbing a live video from a camera
openFrameworks can grab live video from a built-in or external camera connected to
your computer. It is accomplished using the ofVideoGrabber class.

Let's implement starting the camera to grab and draw the grabbed video frames on
the screen.

Starting a camera can take several seconds. Thus, if we start it in
setup(), the project will take a bit longer to start. It could be
quite annoying to keep the camera "on" even when we don't use
it. For this reason, we will start the camera only when we need
it, by pressing C.

The following are the implementation steps:

1. Add the grabber object definition to the ofApp class:
ofVideoGrabber camera;

2. Add the commands to start the camera by adding the following lines to
keyPressed():
if (key == 'c') {
 camera.setDeviceID(0);
 camera.setDesiredFrameRate(30);
 camera.initGrabber(1280, 720);
}

The first line is a condition checking whether C is pressed. The second line
selects the camera device by its identifier, which is a number starting with
zero. If you have only one built-in or external connected camera, it has a zero
identifier. The next (following) connected cameras will have the identifiers 1,
2, and so on.
The third line sets the frame rate of the camera grabbing to 30 FPS. Finally,
we start the camera by calling the initGrabber method specifying the
required video frame size; in our example, it is a width of 1280 pixels and a
height of 720 pixels.

3. Add the command to update the camera grabber regularly by inserting the
following line to update():
if (camera.isInitialized()) camera.update();

This code checks whether the camera has actually started, and if so,
updates it.

Chapter 4

[65]

The camera.update() command manages the grabbing
of new video frames, so we should call it regularly to have
proper grabbing.

4. Add the commands to draw the last grabbed video frame by inserting the
following lines to draw() after the video.draw... command:

if (camera.isInitialized()) {
 ofSetColor(255);
 camera.draw(0, 0, ofGetWidth(), ofGetHeight());
}

This code checks whether the camera is actually started, and if so, sets the
drawing color to white and draws a video frame stretched on the screen.

On running the project and pressing C, the camera will start grabbing, and after a
couple of seconds, you will see the grabbed video on the screen, as shown in the
following screenshot:

A video grabbed by our project

Mixing layers using additive blending
At this point, we draw four graphical layers:

• Image file
• Video file
• Video from camera
• Geometric pattern generator (developed in two previous chapters)

The first three layers are simply drawn occluding each other. Only the fourth layer
has control of its transparency (color a slider), so we can hide and show it back
smoothly.

Working with Raster Graphics – Images, Videos, and Shaders

[66]

To control the visibility of the first three layers, let's create a video mixer. It will be a
new GUI group, Mixer, consisting of three sliders, adjusting layers' transparencies.
Additionally, we will draw the layers using a special mixing mode called additive
blending. It's a mixing mode where drawing colors at each pixel are summed up to
obtain the resultant picture.

Additive blending models the behavior of physical light.
Imagine that we output each layer to separate the physical
projector. If we point all the projectors to one area on the wall,
the resulting picture will be just the sum of all the projectors'
lightings. This is exactly how additive blending works.

The remarkable property of such mixing is independent of the drawing order
of layers.

By default, openFrameworks uses the alpha blending mode,
which mixes up colors depending on the order of drawing
and the colors' transparencies. Alpha blending models how
light is reflected from a stack of pictures drawn on the glass.
This mode is especially appropriate for creating collages
with several layers.

Creating the mixer's GUI
Let's implement the mixer's GUI elements:

1. Declare a new GUI group and three sliders in the ofApp class :
ofxGuiGroup mixerGroup;
ofxFloatSlider imageAlpha, videoAlpha, cameraAlpha;

2. Add the commands to set up the GUI group to setup() after the gui.add(
&primGroup) line:
mixerGroup.setup("Mixer");
mixerGroup.setHeaderBackgroundColor(ofColor::darkRed);
mixerGroup.setBorderColor(ofColor::darkRed);

The first line sets up the group name Mixer. The next two lines set up the
header color and background color of the group to dark red, so this group
will be better distinguished from the other controls in the GUI.

Chapter 4

[67]

3. Add sliders to our group (continue to insert lines to setup()):
mixerGroup.add(imageAlpha.setup("image", 100,0,255));
mixerGroup.add(videoAlpha.setup("video", 200,0,255));
mixerGroup.add(cameraAlpha.setup("camera", 100,0,255));

4. Collapse all the previously added groups and add our group to the GUI
panel (continue to insert lines to setup()):
gui.minimizeAll();
gui.add(&mixerGroup);

The gui.minimizeAll() command collapses all the
currently existing groups in the gui panel. By contrast,
as the new mixerGroup group is added to gui after this
command, it will appear expanded.

On running the project, you will see the new Mixer GUI group colored in dark red.
It appears expanded, whereas Global and Primitive groups appear collapsed, as
shown in the following screenshot:

This shows a new Mixer group of controls

Working with Raster Graphics – Images, Videos, and Shaders

[68]

Implementing the mixer's functionality
Now, we will use the slider's values to control the transparency of drawing layers and
enable the additive blending mode. Perform the following steps to accomplish this:

1. Go to the draw() function text, and find the following block of code that
draws the image, video, and camera:
ofSetColor(255);
image.draw(0, 0, ofGetWidth(), ofGetHeight());
ofSetColor(255);
video.draw(0, 0, ofGetWidth(), ofGetHeight());
if (camera.isInitialized()) {
 ofSetColor(255);
 camera.draw(0, 0, ofGetWidth(), ofGetHeight());
}

2. Replace each ofSetColor... command with the following commands
that set the drawing color to white with transparency depending on the
sliders' values:
ofSetColor(255, imageAlpha);
...
ofSetColor(255, videoAlpha);
...
ofSetColor(255, cameraAlpha);
...

The ofSetColor(v, a) command sets the red, green,
and blue components of the drawing color to v, and its alpha
component to a. See the details on the ofSetColor function
in Chapter 2, Creating Your First openFrameworks Project.

3. Next, add a command to enable additive blending before this block, and
add a command to enable the alpha blending mode back after this block, as
follows:
ofEnableBlendMode(OF_BLENDMODE_ADD);
...
ofEnableAlphaBlending();

4. Finally, the whole drawing block will look like the following code:

ofEnableBlendMode(OF_BLENDMODE_ADD);
ofSetColor(255, imageAlpha);
image.draw(0, 0, ofGetWidth(), ofGetHeight());

Chapter 4

[69]

ofSetColor(255, videoAlpha);
video.draw(0, 0, ofGetWidth(), ofGetHeight());
if (camera.isInitialized()) {
 ofSetColor(255, cameraAlpha);
 camera.draw(0, 0, ofGetWidth(), ofGetHeight());
}
ofEnableAlphaBlending();

The mixer is ready! Run the project. You will see the image and video blended with
each other, as shown in the following screenshot:

This shows the image and video mixed with additive blending

Don't be afraid if you see a blank white screen! That means
that your project is currently drawing a white background.
Drawing anything over the white background with additive
blending mode gives white screen, and that's what you see.
To resolve the issue, just set the Background slider to 0.

Press C to activate the camera too. Now, adjust sliders in the Mixer group to mix the
image, video, and camera, and adjust the color a slider in the Primitive group to mix
the pattern generator over it.

While the first three layers are drawn with additive
blending, the fourth layer—pattern generator—is drawn
using alpha blending. So, it is overlying on the screen not
by adding, but as an opaque or semitransparent picture
(depending on color a slider's value).

Working with Raster Graphics – Images, Videos, and Shaders

[70]

Creating the video effect with a shader
Now, we will demonstrate processing a video using shaders. We do it by
implementing the well-known kaleidoscope effect. This effect is quite generic, and
its implementation exhibits many things that you would need to create your own
effects with shaders.

Shaders are tiny programs executed on GPU (video card). A
video effect implemented with shaders works faster than its
CPU-based analogue. This is the reason for shaders for being
the most popular technology for creating real-time video effects.

Shaders are written in the GLSL language. It is a specialized version of the C
language, containing a number of built-in functions and variables.

There are several types of shaders, including vertex, fragment, and geometry
shaders. Here, we are interested in a shader that allows us to change the colors of
the drawn pixels. The most appropriate shader type for such a task is fragment
shader. Such a shader is executed by the video card to process each pixel right before
drawing it. While executing, the shader can change the color of the drawn pixels, and
it's just what we need to create video effects.

To process an image with a fragment shader, at first we need to enable the shader,
then send the image to drawing, and finally disable the shader.

In our case, the image we want to process is the picture of the entire screen generated
by our project. Unfortunately, there is no straightforward way to obtain the screen
contents as an image. To achieve this, we will use a special technique called
offscreen buffer. Let's discuss it.

Redirecting drawing to the offscreen buffer
The offscreen buffer is a virtual screen in video memory, where we can draw
anything just as we can on a real screen. The resultant picture can be used as an
image or texture. We can draw it on a real screen, process with shader, or use to
texture 3D objects.

In the OpenGL library, which is used by openFrameworks for drawing, the offscreen
buffer is called Frame Buffer Object (FBO). Naturally, in openFrameworks, this
buffer is maintained by the ofFbo class.

Chapter 4

[71]

Let's use this class to redirect our drawing to the offscreen buffer by performing the
following steps:

1. Declare the offscreen buffer in the ofApp class:
ofFbo fbo;

2. Allocate the buffer in setup():
fbo.allocate(ofGetWidth(), ofGetHeight(), GL_RGB);

The first and the second arguments set up the dimensions of the buffer. The
last argument, GL_RGB, specifies that the buffer should hold the pixels colors
only (red, green and blue components), without alpha channel.

The GL_RGB value should be passed as a third
argument of the fbo.allocate... command
when fbo is used as a substitute for the real screen
(which has no alpha channel). Another possible value
is GL_RGBA, which means a color with the alpha
channel. It is used when the buffer's contents need to
hold alpha values, for example, for layering it over
other graphics using alpha blending.

3. Move all the drawing code from draw() to the new draw2d() function, that
is, declare a new function draw2d() in the ofApp class:
void draw2d();

4. Then, insert its empty definition to ofApp.cpp:
void ofApp::draw2d(){
}

5. Move all the code of the draw() function to this new function, except the
last line:
if (showGui) gui.draw();

6. Redirect all the drawing to fbo by inserting the following lines at the
beginning of the draw() function:
fbo.begin();
draw2d();
fbo.end();

The first line enables redirection of the drawing to fbo, the second line
performs the drawing, and the last line disables redirection of the drawing to
fbo, that is, it redirects the drawing back to the real screen.

Working with Raster Graphics – Images, Videos, and Shaders

[72]

Great! Now all the drawing, except the GUI, is redirected to the offscreen buffer.
Thus, on running the project, you will see just the blank screen with GUI.

We want to mention one important difference between the
screen and the offscreen buffers: the buffer is not cleared
automatically to the background color at each frame. Such
behavior can be useful to create accumulated graphics, such
as particle trails. In our case, the offscreen buffer fbo will be
cleared at each frame by calling ofBackround, which is the
first command in the draw2d function's body.
Note that for the same purpose, you could use the command
ofClear, which clears the offscreen buffer (or screen), such
as ofBackground, but does not affect the background
color used for clearing the screen. The arguments for calling
ofClear are the same as for ofBackground.

Drawing the offscreen buffer contents and
enabling smoothing
Let's draw the offscreen buffer contents on the screen to check whether it works
properly. Add the following lines to draw() after the fbo.end() command:

ofSetColor(255);
fbo.draw(0, 0, ofGetWidth(), ofGetHeight());

The first line sets the drawing color to white, and the second line draws the buffer on
the screen as though it were drawing images.

Now the draw() function should look like the following:

fbo.begin();
draw2d();
fbo.end();
ofSetColor(255);
fbo.draw(0, 0, ofGetWidth(), ofGetHeight());
if (showGui) gui.draw();

By running the project, you will see the same picture you did before implementing
the offscreen buffer.

Chapter 4

[73]

It seems all is good. But, wait for a moment. Increase the color a slider value and
look in detail at the picture made by the pattern generator. Note that the lines look a
bit crude. Actually, they are aliased, as shown in the following screenshot:

This shows aliased lines

The reason for this is the fact that drawing to the real screen uses the antialiasing
capabilities of the video card that aren't implemented by default in FBOs.

We can resolve this problem easily by manually enabling line smoothing.

When line smoothing is enabled, all lines are drawn antialiased.
But, filled shapes keep drawing aliased. To resolve the issue and
draw all graphics antialiased, we need to perform drawing to a
bigger FBO and then draw its contents to the screen smoothly;
the details of this method are out of this book's scope.

Doing this, we need to take into consideration an additional fact. Currently,
smoothing in openFrameworks doesn't work together with additive blending. So,
it is necessary to disable smoothing before enabling additive blending and enable it
back right after additive blending is finished, in the following way:

1. Insert the command to disable smoothing in draw2d(), right before the
ofEnableBlendMode(OF_BLENDMODE_ADD) command:
ofDisableSmoothing();

2. Insert the command to enable smoothing, right after the
ofEnableAlphaBlending() command in draw2d():
ofEnableSmoothing();

Working with Raster Graphics – Images, Videos, and Shaders

[74]

On running the project (and unchecking the filled checkbox for drawing line contours),
you will see that lines become smooth, as shown in the following screenshot:

This shows antialiased lines

Now, we are ready to pass the buffer's contents to shader processing!

Implementing the kaleidoscope effect
Let's implement the kaleidoscope effect. This effect takes a circular sector of an input
image and draws its copies around the screen center. It results in ornamental images,
such as the one shown in the following screenshot:

This shows the kaleidoscope effect

To accomplish this, we will do three things:

1. Create the fragment shader at the file kaleido.frag. This file will contain
the algorithmic core of the effect.

2. Create the vertex shader in the file kaleido.vert. This file will contain a
simple vertex shader needed for fragment shader to work properly.

3. Load and use shaders created in the project.

Chapter 4

[75]

Creating the fragment shader
Create a new text file called kaleido.frag in the bin/data folder of the project
using your IDE or any available text editor.

Fill it with code by performing the following steps:

1. Add generic directives:
#version 120
#extension GL_ARB_texture_rectangle: enable

The first line specifies that we are using GLSL version 1.20.

Though 1.20 is quite an old version of GLSL, it's currently
used in most of the built-in openFrameworks examples.
This version is simple to learn and is enough to implement
many video effects.

The second line enables working with textures of arbitrary size (not only
powers of two, which is assumed by default).

2. Add definitions of the constants π and 2π:
#define PI (3.14159265358979323846)
#define TWO_PI (2*PI)

We will use these constants in the following code.

3. Specify input parameters of the shader using the uniform keyword:
uniform int ksectors = 10;
uniform float kangleRad = 0.0;
uniform vec2 kcenter = vec2(1280.0, 720.0) / 2.0;
uniform vec2 screenCenter = vec2(1280.0, 720.0) / 2.0;
uniform sampler2DRect inputTexture;

The first parameter ksectors is an integer value, denoting a number
of kaleidoscope's sectors. The second parameter kAngleRad is a float
value, denoting the rotation angle of the kaleidoscope's grabbed segment,
measured in radians. The third and the fourth parameters kcenter and
screenCenter are two-dimensional vectors, denoting the center of the
kaleidoscope's grabbed segment and the screen center coordinates in pixels.
The last parameter defines the internal name of the image we are processing:
inputTexture.

Working with Raster Graphics – Images, Videos, and Shaders

[76]

4. Define the main() function:
void main(){
 vec2 texCoord = gl_TexCoord[0].xy;
 vec2 v = texCoord - screenCenter;
 float r = length(v);
 float a = atan(v.y, v.x);

 float A = TWO_PI / float(ksectors);
 a = mod(a, A);
 if (a > A/2.0) a = A - a;
 a -= kangleRad;

 vec2 u = vec2(cos(a), sin(a)) * r;
 u += kcenter;
 gl_FragColor = texture2DRect(inputTexture, u);
}

That's all, our fragment shader is ready! Let's explain the main() function in detail.

How it works
The shader's main() function is called by the graphics card for each pixel right before
drawing it. This function should set a predefined GLSL variable, gl_FragColor, to
some value, which is the color the graphics card will actually draw in the pixel.

Color in GLSL is represented as a four-dimensional vector
vec4 with components r, g, b, a (red, green, blue and
alpha). The color components are float values lying in the
range of 0 to 1. For example, the command:

vec4 color = vec4(1.0, 0.0, 0.0, 1.0);

puts the red opaque color to color.

Our main() function does the following:

• The first line sets the two-dimensional vector texCoord equal to the
current texture coordinates of the processed pixel using the predefined
GLSL variable gl_TexCoord. Index [0] indicates that we are getting
texture coordinates from the default (zero) texture. A swizzling access to
a vector component, .xy, is used in GLSL, which means here that we are
creating two-dimensional vector made from the x and y components of
gl_TexCoord[0].

• The second line sets the vector v to the difference between texCoord and the
screen center vector screenCenter.

Chapter 4

[77]

• The third line sets the variable r to the length of v using the built-in
GLSL length function.

• The fourth line sets variable a to the angle between the X axis and v,
measured in radians, using the built-in GLSL function atan.
Now the values r and a represent v in polar coordinates with the center of
coordinates at screenCenter, as shown in the following diagram:

This is a representation of the vector v in the polar coordinates r and a

• The next block of four lines transforms angle a. The line float A = ...
computes the angular size A of one kaleidoscope's sector, measured in
radians. It is the angle of the whole circle 2π divided by the number of sectors
ksectors. The integer value ksectors is converted into a float value to
avoid GLSL compilation errors, which can appear on some video cards.

• The next line a = mod(a, A) sets a equal to a modulo A. This means
wrapping the original value of a to a range from 0 to A. This is the most
important command for creating the kaleidoscope's effect.

• The next line if (a>A/2.0)... mirrors the value a over value A/2 in
cases where a exceeds A/2. As a result, our kaleidoscope will have sectors
filled with symmetrical pictures.

• The line a += kangleRad shifts a by kangleRad radians. Thus kangleRad is
the rotation of the sector grabbed from the input image.

• Finally, the last block of three lines computes the output color of the shader.
The first line constructs the vector u having the length r and rotated from the
X axis by the angle a.

• The next line shifts v by kcenter. Thus, kcenter is the center of the sector
grabbed from the input image.

• The last line sets the gl_FragColor GLSL variable to the color of the input
image inputTexture at the point u.

Working with Raster Graphics – Images, Videos, and Shaders

[78]

The fragment shader is created. It was the most important thing for the
implementation of the effect. The two smaller things that remain to be done are
creating the vertex shader and incorporating shaders in the project.

Creating the vertex shader
To execute any fragment shader, it is required to have a companion , that is, a vertex
shader. A vertex shader transforms the attributes of processed vertices, such as the
position and texture coordinates. It works before the fragment shader.

In the context of shaders, vertices mean the vertices of all
drawn figures. For example, when we are drawing an image,
it is implemented in openFrameworks as drawing a textured
rectangle, so in this case, four vertices will be processed (the
image's corners).

In our example, it's enough to have a simple vertex shader, which passes vertices
without any transformation.

Create a new text file called kaleido.vert in the bin/data folder of the project, and
fill it with the following code:

#version 120
void main() {
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_FrontColor = gl_Color;
}

The first line specifies that we are using GLSL version 1.20. The next line defines
the main() function, which is called by the video card to process each vertex. The
body of the function consists of three lines, which set up vertex position, texture
coordinates, and a drawing color in a generic way.

Using created shaders in the project
Let's load and use the fragment and vertex shaders in the openFrameworks project.
We do it by employing the ofShader class. Additionally, we will create several GUI
controls to be able to adjust the shader's parameters. So, perform the following steps:

1. Add the shader's object and GUI controls declarations to the ofApp class:
ofShader shader;
ofxToggle kenabled;
ofxIntSlider ksectors;
ofxFloatSlider kangle, kx, ky;

Chapter 4

[79]

The first line declares the shader object for dealing with shaders. The
next lines declare the GUI controls: the kenabled checkbox to enable and
disable the shader, the ksectors integer slider to control the number of
kaleidoscope's sectors, and the kangle, kx, and ky float sliders that control
the grabbed sector's rotation angle and center position.

2. After the mixerGroup.add(cameraAlpha... command, add the commands
for loading the shader and setting up the GUI controls to setup():
shader.load("kaleido");
mixerGroup.add(kenabled.setup("kenabled", true));
mixerGroup.add(ksectors.setup("ksectors", 10, 1, 100));
mixerGroup.add(kangle.setup("kangle", 0, -180, 180));
mixerGroup.add(kx.setup("kx", 0.5, 0, 1));
mixerGroup.add(ky.setup("ky", 0.5, 0, 1));

The first line loads the vertex and fragment shaders from the kaleido.vert
and kaleido.frag files (which are expected to be in the bin/data folder of
the project). Also, the shaders are compiled.

Shaders are compiled by a video card driver. If a compiling
error occurs, they are printed to console without stopping
the project's execution.

The next lines set up the GUI checkbox and four sliders and add them to the
mixerGroup group.

3. Right before the fbo.draw... command, add commands for enabling the
shader and passing parameters to it in draw():
if (kenabled) {
 shader.begin();
 shader.setUniform1i("ksectors", ksectors);
 shader.setUniform1f("kangleRad", ofDegToRad(kangle));
 shader.setUniform2f("kcenter", kx*ofGetWidth(),
 ky*ofGetHeight());
 shader.setUniform2f("screenCenter", 0.5*ofGetWidth(),
 0.5*ofGetHeight());
}

When the kenabled checkbox is checked, this code enables the shader
by the shader.begin() command and then sets the shader's parameters
ksectors, kangleRad, kcenter, and screenCenter with values from the
corresponding sliders. Note that the kcenter and screenCenter parameters
are two-dimensional vectors, so we pass two values, the first for the x vector
component and the second for the y vector component.

Working with Raster Graphics – Images, Videos, and Shaders

[80]

The last two symbols in the setUniformXX command means the
type and number of components of the parameter we set to the
shader. In the considered code, we set the integer scalar (1i), float
scalar (1f) and two-dimensional float vector (2f) parameters
using the setUniform1i, setUniform1f, and setUniform2f
commands respectively. To see all available variants of this
command, see the definition of the ofShader class.

The next command after this block of code in draw() is the fbo.draw...
command. It draws the fbo buffer contents on the screen. If the shader
was enabled, then main() function of kaleido.frag will be executed for
each pixel of the drawn picture. The gl_FragColor color generated by this
function will be actually drawn on the screen. So, the contents of fbo will
be drawn with the applied kaleidoscope effect.

4. Now we need to disable the shader. Add the following line after the
fbo.draw... command:
if (kenabled) shader.end();

This command disables the shader if it was enabled earlier.

Great, we just completed implementing the kaleidoscope effect!

Run the project and check the kenable checkbox to enable the kaleidoscope. You
will see that part of the screen's picture will be repeated around the screen center, as
shown in the following screenshot:

Here the kaleidoscope effect is applied to the image collage.png

Chapter 4

[81]

Now, adjust the kaleidoscope's sliders to see how they affect the resultant picture.
Then, adjust all other GUI controls. After a while, you will find that the kaleidoscope
effect, together with the video mixer and the pattern generator, is able to produce a
myriad beautiful ornaments!

If you want to reproduce a kaleidoscopic picture, which is shown at the
beginning of the Implementing the kaleidoscope effect section, set the GUI controls
to the following values:

Slider Value

Background (in the Global group) 0

color a (in the Primitive group) 0

image 255

video 80.6633

camera 0

kenabled checked

ksectors 40

kangle -7.34694

kx 0.19898

ky 0.346939

Summary
In this chapter, we considered the basics of raster graphics. We began with
loading and drawing raster images and video files and also captured video from
a camera. Then, we implemented the video mixer, which mixes all these pictures
using additive blending. Next, we directed all drawing to the offscreen buffer and
processed its contents with the shader-based kaleidoscope effect.

With this chapter, we are done with considering the basics of 2D graphics in
openFrameworks. Now, we have a video synthesizer, which generates 2D vector
graphics, mixes it with raster graphics, and processes the resultant picture with the
shader effect.

In the next chapter, we will explore a different kind of graphics—3D graphics. We
will draw the sphere surface in 3D and will use our 2D graphics to texture it and
deform its shape.

[83]

Creating 3D Graphics
3D graphics is a technique for representing 3D objects and drawing them on a 2D
screen. It extends 2D graphics, which we considered in previous chapters, using a
number of new notions, including the 3D coordinate system, Z-buffering, camera object,
lighting, and texturing. In this chapter, we will consider the basics of 3D graphics in
openFrameworks by discussing these new notions and covering the following topics:

• Drawing a wireframe, solid, and textured sphere
• Deforming and extruding a sphere
• Mixing 2D and 3D graphics

As a result, we will obtain a colorful and fancy 3D sphere on the screen.

Introduction to 3D graphics with
openFrameworks
3D graphics is based on using the three-axes coordinate system (X, Y, Z). The X and
Y coordinates are directed in exactly the same way as in 2D's case, and the additional
Z axis is perpendicular to the screen plane and directed at us.

Actually, openFrameworks draws everything as 3D graphics.
When we draw anything using 2D drawing commands, just
as we did in the previous chapters, openFrameworks uses Z
as being equal to zero.

Most of openFrameworks' 2D drawing functions that we already know have their
similar 3D counterparts. For example, consider the commands:

ofLine(10, 20, 30, 40, 50, 60);
ofTriangle(100, 200, 300, 400, 500, 600, 700, 800, 900);

Creating 3D Graphics

[84]

These will draw a line segment between the points with coordinates (10, 20, 30)
and (40, 50, 60) and a triangle with vertices (100, 200, 300), (400, 500, 600), and
(700, 800, 900).

To simplify the code, you can use the ofPoint class, which
represents a 3D point or vector. It has the fields x, y, z, and
a number of handy geometric methods, such as length()
(getting the length of a vector). Using this class, we can rewrite
the command for drawing a triangle as the following:

ofPoint a(100, 200, 300);
ofPoint b(400, 500, 600);
ofPoint c(700, 800, 900);
ofTriangle(a, b, c);

Apparently, such code is much more elegant. Note that in some
openFrameworks functions, the second name of this class is
used: ofVec3f (which means vector with three float components).
Both names are equivalent for use.

Other useful examples are translating and scaling the coordinate system. Let's take a
look at the following commands:

ofTranslate(0, 0, 100);
ofScale(1, 1, 2);

This will shift the coordinate system towards us by Z at 100 units and zooms the
coordinate system in the Z direction by factor 2.

openFrameworks classes for surface
representation
3D graphics is more demanding to memory and computing power than 2D graphics.
The reason for that is the necessity to represent the whole object's surface to be able to
observe it from all the possible views. For example, to draw a cube with 2D graphics,
we need to draw no more than three quadrangles, as shown in the following image:

To draw a cube in 2D graphics, no more than three quadrangles are needed

Chapter 5

[85]

But to represent a cube as a 3D surface, we need six squares, one for each cube's side.

To handle this demand, the optimization techniques for the representation and fast
drawing of 3D objects should be used. In openFrameworks, this demand is solved by
several classes:

• ofMesh: This is a universal class to represent and draw a polygonal surface
made from triangles. Such a surface is called a triangular mesh. Also, ofMesh
can represent a collection of lines or a set of points.

• ofVboMesh: This is an analogue of the ofMesh class, which is accelerated
using the Vertex Buffer Object (VBO) technology.

• ofPlanePrimitive, ofSpherePrimitive, ofIcoSpherePrimitive,
ofCylinderPrimitive, and ofConePrimitive: These are classes that
represent particular surfaces made from triangles: rectangular surfaces,
spheres, regular spheres made by equal triangles, cylinders and cones,
respectively. They are made from one (rectangle, spheres), two (cone
(side and cap)) or three meshes (cylinder (side and two caps)).

In this chapter, we will consider working with the
ofSpherePrimitive class. In the Deforming by formulas
section, we will show how to get access to its ofMesh object
and change the vertices of the surface. To see more examples
of using all the mentioned classes, see openFrameworks' the
3d/3DPrimitivesExample and 3d/meshFromCamera examples.

Drawing a wireframe sphere
Let's start working with 3D by creating a sphere surface and drawing it as a
wireframe model.

A wireframe model is a type of graphical representation of a 3D
object on the screen where only its edges are drawn. It appeared
in the early era of 3D graphics as a simple way to draw objects
in 3D. Now, it is used in 3D modeling software to control the
structure of the created objects and as a special effect in films,
games, and experimental graphics.

We will achieve this using the ofSpherePrimitive class in the following way:

1. Add the sphere object definition to the ofApp class, as follows:
ofSpherePrimitive sphere;

Creating 3D Graphics

[86]

2. Initialize the sphere in setup():
sphere.set(250, 20);

Here, the first argument, 250, is the radius of the sphere. The second
argument, 20, is the resolution of the sphere. The resulting spherical surface
will have 20 meridians and 20 - 1 = 19 parallels.

To obtain a smoother sphere, increase 20 to a larger value,
for example, to 40.

3. Draw the sphere using the sphere.drawWireframe() command. It is good
to add this line not to draw() but in a new function. The reason for this is
that during the rest of the chapter, we will add new commands related to
drawing the sphere, and it will be convenient to write all of them in a separate
function. Let's name it draw3d(). Declare it in the ofApp class, as follows:
void draw3d();

Add it's definition to ofApp.cpp in the following way:
void ofApp::draw3d() {
 ofSetColor(ofColor::white);
 sphere.drawWireframe();
}

The first command in the function body sets up the white color, and the
second line draws the sphere in the wireframe mode.

4. Call our new function by inserting the following command before if (
showGui) gui.draw();, which is the last line of draw():
draw3d();

On running the project, you will see the sphere in the top-left corner of the screen.
The reason for this issue is that the sphere's center is by default X=Y=Z=0, and this is
exactly the top-left corner of the screen.

Set the Background, color a, image, video, and camera sliders
to zero to obtain a black screen under the sphere.

Let's place the sphere at the center of the screen. For such a purpose, we could use
the setGlobalPosition method, which moves the center of the sphere to a specified
location in the following way:

sphere.setGlobalPosition(ofGetWidth()/2, ofGetHeight()/2, 0);

Chapter 5

[87]

But a better approach for us is to add a 3D camera object. It automatically moves the
center of the coordinates to the screen center and also gives additional capabilities for
rotating, rescaling, and moving the 3D scene by mouse. Let's do it.

Creating a camera
One of the advantages of 3D graphics over 2D graphics is the possibility of walking
through the virtual scene and rotating objects in a way we do in real life. So the
user feels as though he or she were inside that scene, observing real objects. The
navigating in space is achieved using a camera. It is a special object that controls the
way of projecting 3D points to 2D points on the screen.

There are two types of projections from 3D to 2D:
• Perspective projection: Far-off objects look smaller than

nearby objects. This is the type of projection used in
openFrameworks by default.

• Orthogonal projection: The visible size of an object does
not depend on the distance to the viewer.

In openFrameworks, a camera can be represented by the ofCamera class or the
ofEasyCam class. The first class is a quite general camera class, and the second one
extends it by implementing a number of additional capabilities, including handling
mouse events for controlling the camera.

To enable orthogonal projection for a camera object of the ofCamera
class or the ofEasyCam class, use its enableOrtho() method.

Let's implement the ofEasyCam object by performing the following steps:

1. Declare the camera object in the ofApp class in the following way:
ofEasyCam cam;

2. Activate the camera by inserting the following command at the beginning of
draw3d() function:
cam.begin();

3. Finally, deactivate the camera by inserting the following command at the end
of the draw3d() function:
cam.end();

Creating 3D Graphics

[88]

The camera is ready! Upon running the project, you will see the sphere in the screen
center, as shown in the following screenshot:

This is a wireframe sphere

The camera reverses the orientation of the Y axis, so it is
directed up. Be aware about this as it can flip your images
vertically. To resolve this issue, you can use the following
command, which flips the Y axis:

ofScale(1, -1, 1);

Controlling the camera with a mouse
You can control the camera with a mouse in the following ways:

• Rotate the scene by dragging with the left mouse button in any direction
• Scale the scene by dragging with the right mouse button up and down
• Move the scene by dragging with the middle mouse button in any direction
• Restore the original camera state by double-clicking

Playing a little with the project, you would notice one issue. When you adjust sliders
in the GUI, the camera responds to this by undesirably rotating the scene. Resolving
this issue is easy, and we will do it in the next section.

We note this issue in openFrameworks 0.8.4. Most probably,
it will be fixed in the later openFrameworks versions. Hence,
if the issue doesn't appear in your project, then no fixing is
needed, so skip the next section.

Chapter 5

[89]

Disabling mouse control for the camera when the
GUI is visible
The simple way to eliminate undesirable responses of the camera when adjusting
GUI controls with a mouse is disabling mouse control for the camera when the GUI
is active and the user has pressed the mouse inside the GUI area, and enabling when
the GUI is hidden.

To achieve this, insert the following lines to the ofApp::mouseMoved(int x,
int y) function:

if (showGui && x < 250) cam.disableMouseInput();
else cam.enableMouseInput();

This function is called by openFrameworks when the user moves the mouse over the
screen. The input parameters x and y are coordinates of the current mouse position.
In our case, if GUI is enabled and x is less than 250 (this is slightly bigger than the
X coordinate of the right border of the GUI panel on the screen), then we disable
mouse control for the camera; otherwise, we enable it.

The issue is resolved. Run the project and verify that the camera responds to the
mouse only when the mouse position is to the right of the GUI. Note that the
considered method works only while the GUI panel is placed in the left-hand side of
the screen. (If you drag the GUI panel to the right, the disabling of the camera will not
work properly.) Nevertheless, the used method is simple and quite enough for us.

Now, we will discuss camera automation. This section is
supplementary, so you can skip it if you currently aren't
interested in camera automation.

Camera automation
Sometimes, it is desirable to have a camera that moves automatically. For a such a
purpose, you can use the camera's orbit() method. The method sets the camera's
position relative to some point of interest by specifying longitude angle, latitude
angle and radius value, as if the camera is a satellite observing Earth. The method is
very useful when a camera should fly around and observe some point.

To check how it works, add the following code to the beginning of draw3d():
float time = ofGetElapsedTimef();
float longitude = 10*time;
float latitude = 10*sin(time*0.8);
float radius = 600 + 50*sin(time*0.4);
cam.orbit(longitude, latitude, radius, ofPoint(0,0,0));

Creating 3D Graphics

[90]

The first line gets time in seconds from the project starting. The second line sets the
longitude angle increasing with time. The third line sets the latitude angle and radius
value to values, periodically depending on time. The last line calls the orbit method,
which sets desired parameters to the camera with the point of interest (0, 0, 0), which
is the center of the coordinate system and the center of our sphere.

Upon running the project, you will see the rotating sphere, which periodically
swings and moves nearer and further away.

Drawing a solid sphere
Drawing a surface in the wireframe is a good way to check the structure of the
triangle mesh forming the surface. In the context of video synthesis, it can be seen as
a kind of special effect. But normally we are interested in drawing a 3D object as solid
surfaces, which means that all its triangles are drawn as solid polygons.

To draw a solid sphere, just replace the sphere.drawWireframe() command in
draw3d() with the following command:

sphere.draw();

On running the project, you will see the sphere as a white circle, as shown in the
following screenshot:

This is a solid sphere without shading.

The reason for the sphere to look like a flat figure is that each triangle in the
sphere is drawn as a solid white polygon without using information of its orientation
for shading.

To obtain a sphere that looks more natural, let's implement the shading of its surface.

Chapter 5

[91]

The things needed for shading the surface
To draw a shaded surface, the following things are required:

• Light source: The light source models the emission of light from some point.
In openFrameworks, the light source is implemented by the ofLight class.

• Material: The material specifies the properties of light reflection from the
surface. In openFrameworks, it is implemented by the ofMaterial class.

• Normals: The normal in a given surface's point is a vector of unit length
directed perpendicular to the surface. It controls the geometry of light
reflection. To specify a surface's lighting properties completely, the
normals need to be set in all the vertices of the surface. Fortunately,
ofSpherePrimitive (and other of...Primitive classes) set normals
automatically during the surface's initialization, so here we don't need to
take care of it.

• Z-buffering: This is a technique used to decide which parts of the scene are
visible and which are hidden on the screen. A special buffer called Z-buffer
(also known as depth buffer) holds the Z value for each drawn screen's pixel.
Some point P from a polygon projected to a screen pixel (X, Y), will be drawn
on the screen only if the Z coordinate of P is greater than the current value of
Z-buffer at (X, Y). (In this case, the Z-buffer value at (X, Y) will be updated
with the new Z value.)
By default, Z-buffering is disabled in openFrameworks. It is enabled
by calling ofEnableDepthTest() and disabled back by calling
ofDisableDepthTest().

Drawing a solid sphere with shading
Following the items listed in the previous section, let's implement the light source
and material, and enable Z-buffering for our sphere drawing:

1. Declare a light source and a material object in ofApp, as follows:
ofLight light;
ofMaterial material;

Of course, you can declare several lights and materials and
name them in any way you wish.

Creating 3D Graphics

[92]

2. Set the light source's position, then activate it and material, and enable
Z-buffering by adding the following commands at the beginning of the
draw3d() function:
light.setPosition(ofGetWidth()/2, ofGetHeight()/2, 600);
light.enable();
material.begin();
ofEnableDepthTest();

The first command places the light source at 600 pixels in the Z direction
from the screen center. The second command activates the light source
and also automatically enables lighting mode (that is, the mode for drawing
shaded surfaces with lights, materials, and normals). The third command
activates the material. Finally, the last command enables Z-buffering.

Just as in real life, you can enable several different light sources.
Then, the total lighting of the scene will be a sum of all the
enabled lights. But you can use only one material enabled at
a moment. Until you disable it, it will be applied to all the
drawn objects. To use another material for drawing, you should
deactivate the current material and activate another one.

3. Deactivate the Z-buffering, material, and lighting components by adding the
following commands at the end of the draw3d() function:
ofDisableDepthTest();
material.end();
light.disable();
ofDisableLighting();

The first command disables Z-buffering. The second and the third commands
deactivate the material and the light source respectively. The last line disables
lighting mode. Note that though lighting mode was enabled automatically
when we called light.enable(), to disable it, calling only light.
disable() is not enough (this command disables only a particular light
source). So we need to call a special function for it, ofDisableLighting().
After this, the project is ready to draw 2D graphics again.

Normally, you should disable Z-buffering when you draw 2D
graphics (as well as when drawing 3D transparent objects or
using the additive blending mode). In the opposite case, some of
the drawn objects will be erroneously discarded by Z-buffering.

Chapter 5

[93]

On running the project, you will see the shaded sphere, as shown in the following
screenshot:

This shows a solid sphere with shading

Now it looks like a real 3D object!

If you rotate the camera using mouse, you will note that the light
source is not moving. The reason for this is that it is positioned
outside of the block where the camera is active (the camera is
active between the cam.begin() and cam.end() commands).
If you want to make the light source position synchronized
with a camera, place the following lines after the cam.begin()
command:

light.setPosition(0, 0, 600);

light.enable();

These lines set the light position and enable it in a way we did
before, but the coordinates of the camera now are (0, 0) because
the camera centers the coordinate system.
For debugging purposes, you can visualize the light source as a
small sphere using the command light.draw().

In this section, we touched upon the very basics of shading with openFrameworks.
For more information on adjusting light sources and materials, see the
openFrameworks examples, gl/singleLightExample and gl/multiLightExample.

Now let's texture the sphere.

Creating 3D Graphics

[94]

Texturing the sphere
Texturing is the technique to wrap a 2D image on a surface. In this case, the surface
is called textured surface, and the image using for texturing is called texture.

Texturing involves the following three steps:

1. The first step is preparing the texture image as an ofTexture object. We
explored this class in the previous chapter. All the considered image and video
classes—ofImage, ofVideoPlayer, ofVideoGrabber, and ofFbo—contain an
ofTexture object instance that can be accessed by the getTextureReference()
method. For example, video.getTextureReference() gets the ofTexture
object for a current frame of video.

2. Setting texture coordinates at each vertex of the surface is the second step.
Texture coordinates at the given vertex indicate the point in the texture that
should be wrapped at this vertex. Fortunately, ofSpherePrimitive and
other of...Primitive classes have the mapTexCoords method, which sets
texture coordinates; we will use it.

3. The third step is activating texturing for a surface before drawing it and
deactivating after the surface is drawn.

Let's go through these steps by texturing the sphere with a picture of the screen,
generated by our project during the previous chapters.

Preparing a texture
At first, let's capture a picture of the screen to the offscreen buffer (see the details on
this kind of buffer in the previous chapter):

1. Declare a new offscreen buffer object in the ofApp class:
ofFbo fbo2;

2. Allocate the buffer in setup() by inserting the following line after the
sphere.set... command:
fbo2.allocate(ofGetWidth(), ofGetHeight(), GL_RGB);

3. Add the fbo2.begin() and fbo2.end()commands around the commands
that enable the kaleidoscope effect, and draw graphics through it:
fbo2.begin();
if (kenabled) {
 shader.begin();
…
if (kenabled) shader.end();
fbo2.end();

These commands redirect drawing from the screen to the fbo2 buffer and back.

Chapter 5

[95]

Now, we can access the texture containing the screen's picture using the
fbo2.getTextureReference() method.

Setting texture coordinates
By default, ofSpherePrimitive sets texture coordinates so that a texture is wrapped
onto a sphere using cylindrical projection, as shown in the following image:

This shows the wrapping of texture on the sphere using cylindrical projection

This kind of projection is used in globes.

To set up the texture coordinates, we will use the mapTexCoords(x0,y0,x1,y1)
method. The arguments x0, y0, x1, and y1 denote the corners of the rectangular area
inside the texture image, which should be used for wrapping.

As we want to use the whole picture of fbo2 for texturing, we need to pass its
dimensions to mapTexCoords. To achieve this, let's add the following code to
setup(), after the fbo2.allocate... command:

float w = fbo2.getWidth();
float h = fbo2.getHeight();
sphere.mapTexCoords(0, h, w, 0);
sphere.rotate(180, 0, 1, 0);

The first and the second lines get dimensions of fbo2 and put them into the variables
w and h. The third line sets up corners of the area for texturing as 0, h and w, and 0.
This is a rectangle covering the whole of fbo2 but flipped vertically. Such flipping
is required to negotiate flipping the Y axis that is imposed by the camera (see the
Creating a camera section).

The last line isn't directly related to the texturing process, but it is needed to better
orient the textured sphere. This line rotates the sphere at 180 degrees around the
vector (0, 1, 0), that is, around the Y axis. As a result of rotation, the joint line of the
wrapping will be put to the visible back of the sphere, and the center of the texture
image will be put to the sphere's front.

Creating 3D Graphics

[96]

Activating texturing
To texture a surface, we need to activate a texture using the texture's bind method
before drawing and deactivate it after drawing using the texture's unbind method.
Let's do it in the following way:

1. Activate the texture at the beginning of the draw3d() function:
fbo2.getTextureReference().bind();

All the drawing commands executed after this command will use the
specified texture. In our example, such a drawing is only one command,
sphere.draw(), so the sphere will be drawn textured with the fbo2 image.

2. Deactivate the texture at the end of the draw3d() function:
fbo2.getTextureReference().unbind();

Run the project and adjust the image, video, and other sliders. (If all the sliders are
set to zero, the sphere will be drawn in black, and you will see nothing.) You will see
a pretty nice textured sphere, as shown in the following screenshot:

This shows a textured sphere

You can try other sources of textures available in our
project—image, video, or live image from video camera—by
replacing fbo2.getTextureReference() in the previous
code with the following variants, respectively:

image
video.getTextureReference()
camera.getTextureReference()

Chapter 5

[97]

At this point, for the sake of video synthesis, it would be great to have an
opportunity to mix up on the screen the old 2D image (stored now in fbo2)
and the new 3D sphere. Let's implement such mixing by adding two GUI sliders.

Mixing 2D and 3D with the GUI
Let's create two sliders and use them to mix 2D and 3D graphics using the
following steps:

1. Declare a new slider and a new offscreen buffer for storing the sphere image
in the ofApp class:
ofxFloatSlider show2d, show3d;
ofFbo fbo3d;

2. Add commands to set up sliders and the offscreen buffer to setup(), after
the mixerGroup.add(ky.setup... command:
mixerGroup.add(show2d.setup("show2d", 255, 0, 255));
mixerGroup.add(show3d.setup("show3d", 255, 0, 255));
fbo3d.allocate(ofGetWidth(), ofGetHeight(), GL_RGBA);

The first and second lines set sliders to have a range from 0 to 255 and add them
to the GUI group mixerGroup (this group was created in the previous chapter).
The third line allocates the offscreen buffer with size equal to the screen size.
We set the GL_RGBA pixel format for this buffer, so it will hold the pixels colors
together with the alpha channel. Such a format is required here to properly mix
fbo3d contents with fbo2 contents using the alpha blending mode.

3. Implement the mixing of 2D and 3D pictures by replacing the draw3d()
command in the draw() function with the following code:
fbo3d.begin();
ofBackground(0, 0);
draw3d();
fbo3d.end();

ofBackground(0);
ofSetColor(255, show2d);
fbo2.draw(0, 0);
ofSetColor(255, show3d);
fbo3d.draw(0, 0);

Creating 3D Graphics

[98]

The code consists of two blocks. The first block draws the sphere to the fbo3d
buffer. That is, the first line redirects drawing to the fbo3d buffer. The second
line sets a black transparent background. The third line draws the sphere,
and the last line redirects drawing back to the screen. As a result, the content
of the buffer is a sphere drawn on a transparent background, so it is suited
for layering using the alpha blending mode.
The second block sets a black background and then draws the contents
of fbo2 (layer with 2D) and fbo3d (layer with 3D) on the screen with
transparency values depending on the sliders' show2d and show3d values.

On running the project, you will see a 2D image mixed with 3D sphere, as shown in
this screenshot:

This is a 2D image mixed with 3D sphere image

Also, note the new sliders show2d and show3d. Adjust them to obtain different
mixes of 2D and 3D layers.

Note that to have an opportunity to draw a sphere
semitransparent, we use an additional offscreen buffer,
fbo3d. The reason for such a trick is in fact that Z-buffering
and blending do not work together properly in a simple
way. (If we try drawing a sphere right on the screen using a
semitransparent color, we will get notable drawing artifacts.)

The last topic we will consider is deforming the sphere's surface.

Chapter 5

[99]

Deforming a sphere
Deformation, that is, changing the geometry of a surface, gives an opportunity to
create new and unusual 3D shapes. We will explore two methods of deformation:
shifting the sphere's vertices using analytical formulas and extruding the sphere's
surface using a texture's pixels values.

To implement this, let's start with adding several sliders to control deformation in
the following way:

1. Declare new sliders in the ofApp class:
ofxFloatSlider rad, deform, deformFreq, extrude;

This line declares four sliders: sphere radius, amount and frequency of
analytical deformation, and amount of extrusion.

2. Add commands to set up sliders to setup() after the mixerGroup.add(
show3d.setup... command:
mixerGroup.add(rad.setup("rad", 250, 0, 500));
mixerGroup.add(deform.setup("deform", 0.3, 0, 1.5));
mixerGroup.add(deformFreq.setup("deformFreq", 3, 0, 10));
mixerGroup.add(extrude.setup("extrude", 1, 0, 1));

Deforming by formulas
We will implement the sphere deformation by changing positions of its vertices in
the update() function. To achieve this, perform the following steps:

1. Declare an array of 3D points in the ofApp class to store the original vertices'
positions:
vector<ofPoint> vertices0;

2. Copy the original sphere's vertices to the vertices0 array by adding
the following command after sphere.set... in setup():
vertices0 = sphere.getMesh().getVertices();

Here, sphere.getMesh() returns the reference to the ofMesh object of the
sphere, and that getVertices() returns the reference to the array (represented
as vector) of the mesh's vertices. Finally, this array is copied to vertices0.

See the details on the ofPoint class in the Introduction to 3D graphics
with openFrameworks section and a short description of the ofMesh
class in the openFrameworks classes for surface representation section.

Creating 3D Graphics

[100]

3. Change the positions of the sphere's vertices by adding the following code at
the end of update():
vector<ofPoint> &vertices = sphere.getMesh().getVertices();
for (int i=0; i<vertices.size(); i++) {
 ofPoint v = vertices0[i];
 v.normalize();
 float sx = sin(v.x * deformFreq);
 float sy = sin(v.y * deformFreq);
 float sz = sin(v.z * deformFreq);
 v.x += sy * sz * deform;
 v.y += sx * sz * deform;
 v.z += sx * sy * deform;
 v *= rad;
 vertices[i] = v;
}

The first line declares vertices as a reference to an array (because it is
declared with &) and sets it to the current vertices' positions of the sphere to
the vertices array. As this is a reference, no copying of data is performed,
and also changing these array elements will change the vertices' positions of
the sphere's mesh.
The next line performs a for-loop that runs i over all indices in the vertices
array. The first line in the loop's block sets v as equal to the original position
of the vertex with index i. The second line normalizes v, that is, sets it to
the unit length. The next three lines' compute values sx, sy, and sz, which
periodically (due to the use of the sin function) depend on the x, y, and z
components of v and the deformFreq slider's value. The next three lines shift
the components of v on values, depending on sx, sy, and sz and the deform
slider's value.
Finally, the v *= rad command enlarges the length of v by rad times,
and the vertices[i] = v command sets the sphere's vertex with index i
equal to v.

The idea behind this transformation of v was to create periodical
shifting, with formulas symmetrical for all components x, y, and
z. Feel free to experiment and change it on your own.

Chapter 5

[101]

Run the project and change the rad, deform, and deformFreq sliders. You will
find that rad sets the radius of the sphere, and deform and deformFreq control the
amount and space frequency of deformation. The sphere will be deformed, as shown
in the following screenshot:

This shows a deformed sphere

Note that we don't update normals, so normals keep their values as they are set for
an undeformed sphere. Thus, for a deformed sphere, these values of normals are not
exactly perpendicular to the surface, and so lighting is not perfect. Nevertheless, the
result we obtained is pretty nice for our purposes.

Currently, openFrameworks does not have a unified way
to update the normals of deformed surfaces (but see the
getFaceNormals method of the ofMesh class to get a cue
on how to do it). For such a purpose, we could recommend
that you use the setNormals function, which is defined in
example codes for our book Mastering openFrameworks: Creative
Coding Demystified, published by Packt Publishing. These codes
can be downloaded freely from www.packtpub.com.

The considered deformation method shifts vertices using formulas. Now, we will
consider another type of deformation, called extruding, which shifts vertices based
not on formulas, but on a picture's pixel values.

Creating 3D Graphics

[102]

Extruding the sphere
Let's implement the extruding of the sphere using the brightness of the pixels of
a texture stored in the fbo2 buffer. That is, we will shift the vertices of the sphere
radially; the value of the shifting will depend on the corresponding pixel's brightness
in the texture.

The effect we are developing here is similar to openFrameworks'
example, 3d/meshFromCamera, which we considered in the first
chapter (in the Running your first example section). That example
implemented the extruding of a plane by shifting the vertices
perpendicular to the plane. Here, we will implement it for a sphere.

To accomplish this, perform the following steps:

1. Increase the resolution of the sphere by replacing the sphere.set(250, 20)
in setup()command with:
sphere.set(250, 80);

Now the sphere will have 80 meridians and 80-1 = 79 parallels (and radius
will remain at its old value, 250 pixels).

2. Insert the following code at the end of update():
ofPixels pixels;
fbo2.readToPixels(pixels);

for (int i=0; i<vertices.size(); i++) {
 ofVec2f t = sphere.getMesh().getTexCoords()[i];
 t.x = ofClamp(t.x, 0, pixels.getWidth()-1);
 t.y = ofClamp(t.y, 0, pixels.getHeight()-1);
 float br = pixels.getColor(t.x, t.y).getBrightness();
 vertices[i] *= 1 + br / 255.0 * extrude;
}

The first line declares the pixel array pixels (see the Raster images in openFrameworks
section in the previous chapter for details on the ofPixels class), and the second line
reads the contents of the offscreen buffer fbo2 to pixels.

The next line performs a for-loop, which runs i over all indices in the vertices
array (vertices were declared in the previous section). The first line in the loop's
block gets the texture coordinates t for a vertex with the index i. The type of t is
ofVec2f; it's a two-dimensional vector (point) with float fields x and y. And t points
out the place in the texture that is wrapped on the vertex with the index i.

Chapter 5

[103]

In the second and third lines of the block, we clamp texture coordinates t.x and t.y
to the dimensions of the pixel array pixels. (The necessity of this is in fact that the
original t.x and t.y run a range of values, including maximal dimensions of the
picture, and this maximal values goes out of the pixels array's dimensions).

In the fourth line, we get the brightness br of the color of the pixel (t.x, t.y) in
pixels. In the last line, we enlarge the length of vertices[i] proportionally to br
and the extrude slider's value (we defined this slider in the previous section).

Run the project and set the deform slider to zero to temporarily disable analytical
deformations. You will see a beautiful 3D object, as shown in the following screenshot:

This is an example of an extruded sphere

The screenshot was obtained using extrude equal to 1, with the
enabled kaleidoscope effect with ksectors equal to 5.
If you want to reproduce screenshots in this chapter in your
project, load presets included in the archive with example codes
for this book. (To load a preset, press L in the project).

This beautiful effect culminates our trip to 3D graphics and our development of the
visual part of the video synthesizer project.

Creating 3D Graphics

[104]

Summary
In this chapter, we considered the basics of 3D graphics. We looked at an example
of drawing a sphere in 3D. We explored how to draw wireframe, solid, and textured
sphere. Also, we considered deforming its shape by formulas and extruding. Besides
that, you learned to use the camera object and implement the capability to mix a 3D
picture layer with a 2D picture that we generated in previous chapters.

In the next chapter, we will explore a variety of ways to automate the project's
parameters using timer, Perlin noise, sound, and neural data recordings, stored
in a text file.

[105]

Animating Parameters
Most of the control parameters of our project are represented as GUI sliders. Until
now, we adjusted them only manually using the mouse. In this chapter, we will
discover several ways to automate sliders by covering the following topics:

• Using time values for a parameter's automation
• Using Perlin noise
• Playing an audio file, capturing the sound from a sound card, and measuring

the sound level
• Reading and parsing data from a text file

At the end of the chapter, we will obtain a project that generates animated visuals,
reacts on a prerecorded or captured level of sound, and reads a parameter's values
from a text file containing neural data recording.

In our examples, we will consider the automation of GUI
sliders only, because you can explicitly see how their values
change by looking at the screen. Of course, the considered
approach can be used to automate any parameters of the
project, even if it is not represented as a slider.

Using time values for a parameter's
automation
Using time values is apparently the most commonly used method to automate a
parameter. In this approach, a parameter's value is set to be a function depending
on the time, and more precisely, the number of seconds measured from some initial
point in time.

Animating Parameters

[106]

Dependency of time can be implemented in many ways—as a
mathematical expression, in tabular form, or even by drawing
it using a graphics tablet. We will consider the simplest way,
which is using mathematical expressions.

To implement dependency of time, we need a function to measure it. In
openFrameworks, such a function is ofGetElapsedTime(). It returns the number of
seconds elapsed from the project's start. This is a float value and is measured with
millisecond precision.

To check this function, add the following command to the end of update():

kangle = ofGetElapsedTimef();

This command sets the value of the kangle slider to the number of seconds elapsed
from the project's start. On running the project, you will see how the kangle slider
starts from zero and increases its value by one unit per second.

In the considered example, kangle depends on time in a linear fashion, and hence
increases infinitely. But in many cases, we want parameter values to be bound by
some fixed range. For such a purpose, a periodical function is often used. Let's
consider this case now.

Implementing a simple LFO
Devices that create periodic changes in the parameters are widely used in sound and
video synthesizers and are known as Low Frequency Oscillators (LFOs). We will
implement a simple LFO that will control the kx slider using a sine wave.

The kx slider will fluctuate periodically in a range, say, from 0.45 to 0.55, with a
frequency of 0.1 Hz.

A frequency of 0.1 Hz means that we will get one period
of fluctuation per 1 / 0.1 = 10 seconds.

To achieve this, add the following code to the end of update():

float phase = 0.1 * ofGetElapsedTimef() * M_TWO_PI;
float value = sin(phase);
kx = ofMap(value, -1, 1, 0.45, 0.55);

Chapter 6

[107]

The first line computes the instantaneous phase; we multiply the frequency, 0.1, by
the time elapsed, ofGetElapsedTimef(), to obtain the number of cycles at a given
point in time. Then, we multiply it by M_TWO_PI, which is a predefined constant
equal to 2π. In this way, we obtain the number of cycles measured in radians (one
cycle has a measure 2π or, equally, 360 degrees). As a result, we get the phase value,
which is an angle in radians, describing our fluctuation at a given point in time.

The second line computes value by computing a value of the sin() function using
phase as an argument. From the properties of the sin() function, it follows that it
generates a sine wave, and value fluctuates with a frequency of 0.1 Hz in the range
from -1 to 1.

The last line linearly maps value from the range [-1, 1] to the range [0.45, 0.55], so
the resulting kx slider fluctuates from 0.45 to 0.55, just as we need.

On running the project, you will see that the kx slider periodically fluctuates between
0.45 and 0.55, and the full cycle of fluctuation takes 10 seconds.

The described approach works well only if the frequency is
constant during program execution. The reason is that the formula
for computing phase is proper only for a constant frequency. So if
you change the frequency dynamically, abrupt changes of value
will occur. The simple way to resolve the issue is to declare phase
and frequency as members of the ofApp class, setting their
initial values to 0 and 0.1 in setup(), and replacing the float
phase... line with the following code:

float dt = 1.0 / 60.0;

phase += dt * frequency * M_TWO_PI;

The first line defines the time step in seconds between two
update() calls, and the second line updates the phase value.
In this approach, you can change frequency in any way, for
example, using a slider, and the phase value will change properly.

Now, we consider the implementation of the pseudorandom LFO using Perlin noise.

Animating Parameters

[108]

Implementing a pseudorandom LFO with
Perlin noise
Perlin noise is a class of functions invented by Karl Perlin in 1983 to generate
pseudorandom textures. The function of Perlin noise depends on one or several
input values and returns a value, which continuously fluctuates in the range from
0 to 1. The function is nonperiodical and looks like the realization of some random
process. That is why it is called noise, but really, it's just a deterministic function with
quite complex behavior.

Perlin noise is implemented in openFrameworks by the ofNoise function with
overloaded variants that allows using one, two, three, or four input arguments,
as follows:

ofNoise(x)
ofNoise(x,y)
ofNoise(x,y,z)
ofNoise(x,y,z,w)

Here, x, y, z, and w are input float values. Each function returns a float value from
0 to 1, which continuously depends on input arguments and is quasiperiodic with
the period 1 for each argument (that is, ofNoise(x+1, y, z, w) is similar, but
in general, not equal to ofNoise(x, y, z, w), and ofNoise(x, y+1, z, w) is
similar, but in general, not equal to ofNoise(x, y+1, z, w), and so on).

Strictly speaking, ofNoise() implements a modification of
the original Perlin noise. It was developed by Karl Perlin in
2001 and is called simplex noise.

Perlin noise allows us to implement a pseudorandom LFO, that is, an LFO with
pseudorandom behavior. To achieve this, add the following lines to the end of
update() to automate the deform slider:

float phase1 = 0.2 * ofGetElapsedTimef();
deform = ofNoise(phase1);

The first line computes phase1, which is a phase for Perlin noise with a frequency of
0.2 Hz. The second line computes Perlin noise using this phase and puts the result to
the deform slider.

On running the project, you will see that deform fluctuates smoothly in quite an
unpredictable way between 0 and 1. Also, note that it possesses quasiperiodical
behavior with a period length of 1 / 0.2 = 5 seconds.

Chapter 6

[109]

To create the second pseudorandom LFO fluctuating with the same
frequency, we cannot use ofNoise(phase1) again, because it
returns the same value as deform in the previous code. To resolve
the problem, call the ofNoise() function with two arguments,
such as the following:

ofNoise(phase1, 29.81)

Here, the first argument is the phase again, and the second
argument is some random number. In this case, the returned
values will not correlate with the ofNoise(phase1) values
but will have a similar behavior. Using this approach, you can
create as many LFOs as you need using ofNoise with different
second arguments.

We considered how to create periodic and pseudorandom automation of parameters
using time information. Now let's explore how to analyze sounds.

Using the level of sound for a parameter's
automation
Real-time analysis of sound lets us create audio-reactive visuals. It is an important
part of any video synthesizer. Here, we consider the simplest case of analysis—
getting the level of sound and using it to control a parameter of our project.

We consider two ways of getting a sound: by playing an audio file and by capturing
a sound from the sound card's input.

Playing and analyzing an audio file
openFrameworks has a powerful class for audio file playback, called ofSoundPlayer.
It loads an audio file of various formats, including MP3, WAV, and AIFF, plays it, and
controls its basic parameters, such as volume, pan, and speed.

Let's use this class to play an audio file by performing the following steps:

1. Add the audio player object definition to the ofApp class:
ofSoundPlayer sound;

2. Load an audio file and set up its parameters by adding the following code
to setup():
sound.loadSound("skvo.wav");
sound.setVolume(0.8);
sound.setLoop(true);

Animating Parameters

[110]

The first command loads the skvo.wav audio file from the bin/data folder
of the project (we will copy this file there a little later). The second command
sets the volume of the sound to 0.8. It means that the sound will play at 80
percent of its original volume. The last command specifies that sound will
play looped.

Other commands to control sound are:
• sound.setMultiPlay(true): This command enables the

mode for playing several instances of a sound. It is useful
when programming the sound in games.

• sound.setSpeed(0.5): This command sets the speed of the
sound playing at 50 percent of its original speed, so the sound
plays twice as long, and its pitch becomes lower by octave.
Such a command is useful for programming a sound sampler.

• sound.setPan(1): This command sets the stereo pan of the
sound to the right channel. If the argument is equal to -1, the
pan is set to the left channel. By default, the pan is set to zero,
that is, the stereo panorama of the sound is not changed.

3. Start the sound to play and stop it by pressing P by adding the following
code to keyPressed():
if (key == 'p') {
 if (!sound.getIsPlaying()) sound.play();
 else sound.stop();
}

The first line checks whether the key pressed is P. The second line checks
whether the sound is not playing and starts it to play. The third line executes
only if the sound is playing and stops it.

4. Add a command to update openFrameworks' sound engine to the beginning
of update() (we place this command in the beginning for separating it from
the other code added in this chapter; it will be needed in the upcoming
Controlling automation section):
ofSoundUpdate();

We should call this command regularly so that the
ofSoundPlayer objects work properly. The simplest
way to do it is calling this command in update().

5. Finally, copy the skvo.wav audio file to the bin/data folder of the project.
You can get the file from the archive provided with the book.

Chapter 6

[111]

The skvo.wav music track is written by Leksha,
soundcloud.com/leksha. With the consent of the
author, this track can be used in creative projects without
any restrictions.

Run the project and press P. The music track begins to play. Press P again to stop it.

Now let's measure the momentary level of this music track and use it to control the
rad slider.

Getting the level of a sound signal
To get the level of a sound signal generated by ofSoundPlayer objects, we can use
the ofSoundGetSpectrum() function. It returns a pointer on the spectrum values of a
short part of the currently playing sound signal.

A spectrum is an array of amplitudes of Fast Fourier Transform
coefficients for a given piece of a sound signal. It describes the
amount of various frequencies presented in the sound (see
Frequency spectrum, a Wikipedia article at en.wikipedia.org/
wiki/Frequency_spectrum).
Strictly speaking, ofSoundGetSpectrum() returns only the
first half of the spectrum values. The second half is symmetrical
to the first half and doesn't give any new information about the
sound signal.

Using spectrum, it is easy to estimate the level of sound using the Root Mean
Square (RMS) measure. Let's implement it by adding the following code to the
end of update():

float *spectrum = ofSoundGetSpectrum(128);
double level = 0;
for (int i=0; i<128; i++) {
 level += spectrum[i] * spectrum[i];
}
level = sqrt(level / 128);

The first line gets the spectrum array with a size of 128. It is just a pointer to an array
that is managed by openFrameworks' sound engine, so we don't need to free the
memory after using it.

Animating Parameters

[112]

The second line declares the level variable, and the next three lines compute the
sum of squares of all the spectrum values. The last line gets the square root of level
divided by 128, that is, by the number of spectrum elements. By definition, it is an
RMS value of the spectrum, and it is an estimation of the sound level.

To get a measure of the sound level in decibels, we need to get
the logarithm from the level value. However, for simplicity,
here we will use the linear value we already have.

Now, let's apply the level value to automate the rad slider by adding the following
lines to update(), right after the previous code:

float newRad = ofMap(level, 0, 1, 100, 200, true);
rad = rad + 0.1 * (newRad-rad);

The first line linearly maps the level value from the range [0, 1] to the range [100,
200] and puts the result to the newRad variable. The last argument true specifies that
the output result will be truncated to the range [100, 200], even if level gets out of
the range [0, 1].

The second moves the rad slider value to the newRad value smoothly. The constant
0.1 is a moving speed: in one step, rad moves by 0.1 of the distance between rad
and newRad. This smoothing method is called exponential smoothing, and 0.1 is
called the smoothing factor.

For details on exponential smoothing, see Wikipedia's article
at en.wikipedia.org/wiki/Exponential_smoothing.
Note that there is another formula used for smoothing, which is
equivalent to our formula. To show equivalence, let's expand the
brackets in our formula and group the terms, as follows:
rad + 0.1 * (newRad – rad) = rad + 0.1 * newRad – 0.1 * rad
= 0.1 * newRad + (1 – 0.1 * rad)
We get the formula used in the article.

Run the project and press P. The music begins to play, and you will see that the rad
slider value follows the level of the sound.

Try to change the smoothing factor from 0.1 to other values (in the range from 0 to
1). Using a lower value (for example, 0.05) results in more smoothing, and using a
larger value (for example, 0.2) results in less smoothing but better responsiveness.

Chapter 6

[113]

We just implemented processing a prerecorded audio track. This technique can be
used to create visuals for shows and performances when the audio track is fixed.
But for situations where music is played by live musicians, we need to capture the
analyzed sound from the sound card's input. Let's consider it.

Capturing sound from a sound card's
input and measuring its level
openFrameworks has an opportunity to capture live sound from a sound card's
input, such as a microphone or a line input.

The code in this section will work properly only if your
computer has a sound input. Most probably, your laptop
already has a built-in microphone. If your computer has no
sound input, you can use an external sound card connected
via USB or any other type of connection.

To enable sound capture and measure its level, perform the following steps:

1. Add the declarations of a new function and a variable to the ofApp class:
void audioIn(float *input, int bufferSize, int nChannels);
float soundLevel;

The first line declares the audioIn() function, which will be called by
openFrameworks when a new part of an input sound has arrived from a sound
card. We will consider its arguments in the next step. The second line defines a
variable, soundLevel, which will store the current sound level value.

2. Initialize the soundLevel variable and start to capture the sound by adding
the following lines to setup():
soundLevel = 0;
ofSoundStreamSetup(0, 1, 44100, 128, 4);

The first line just sets soundLevel to zero. The second line starts capturing
the input sound to our program. The first and second arguments of the
ofSoundStreamSetup() function specify the number of output and input
channels. We need no output channels and only one input channel (mono
input), so they are 0 and 1 respectively.

Animating Parameters

[114]

The third argument is a sample rate of the sound stream, that is, the number
of measures of the sound (called sound samples) per second. We use the
value 44100 for it. It is quite a generic value that corresponds to the quality of
compact disc recording. The fourth argument is the size of the sound buffer,
that is, the number of sound samples on which the input sound stream is
separated and sent to our program.
The last argument is a number of sound buffers used by the sound card to
protect the sound buffer from overloading. We use the generic value 4.

With our settings, the sound buffer stores 128 / 44100 ≈ 0.0029
seconds of sound, and we need to process 44100 / 128 ≈
345 of such buffers per second.

3. Add the definition of the audioIn() function to the ofApp.cpp file:
void ofApp::audioIn(float *input, int bufferSize,
 int nChannels){
 double v = 0;
 for (int i=0; i<bufferSize; i++) {
 v += input[i] * input[i];
 }
 v = sqrt(v / bufferSize);
 soundLevel = v;
}

This function will be called by openFrameworks when the sound card
accumulates a sound buffer for processing. The input parameter is an input
buffer array, bufferSize is the size of the input buffer, and nChannels is the
number of input sound channels. The first lines of the function compute the
RMS value of the input buffer and write its value to the v variable.
The last line writes the computed value to the soundLevel variable, which
we will use in update().

This code to compute the RMS value is similar to the code
described in the previous Getting the level of a sound signal section
of this chapter. The one important difference here is that input
is an array of sound samples but not a spectrum array as it was
in the previous code. However, following Parseval's theorem,
computing RMS using both approaches, spectrum and samples,
gives equal values. So both approaches (computing RMS from the
spectrum and from the sound samples) give similar results.

Chapter 6

[115]

4. Finally, let's use the computed soundLevel value to adjust the rad slider.
Add the following line to update() before the float newRad = ofMap...
command:
level += soundLevel;

This command increases the level variable by the soundLevel value.
Now, level is the sum of the level of a played audio file and the level of the
captured sound. So, the rad slider reacts on both sound sources.

On running the project and giving some sound to a microphone (or line input), you
will notice that the rad slider jumps accordingly.

We considered getting data from sounds. Now, we will implement reading data
from text files with an example of parsing neural data.

Reading data from a text file
A fruitful source of input data for parameter automation are text files. Such files can
contain various pieces of information, such as statistics of the weather (temperature)
for a century, solar activity forecast, or recordings of human body motion captured
by depth cameras. By parsing data from these files and using it as values for
a project's parameters, we can obtain quite an interesting (and scientifically
meaningful) parameter's automation.

Let's demonstrate it by parsing the eeg.txt text file containing a 128-channel
electroencephalography (EEG) recording. This file is contained in the archive
provided with the book.

The EEG recording file, eeg.txt, was made by the Laboratory
for Brain and Neurocognitive Development, Ural Federal
University, Ekaterinburg, Russia. With the consent of the
laboratory, this recording can be used as a source of input data in
creative projects without any restrictions. For recording, HydroCel
Geodesic Sensor Net from Electrical Geodesics, Inc. was used.

openFrameworks contains the ofFile and ofBuffer classes, which are intended to
work with files and read their contents. To use them to read the text file, perform the
following steps:

1. Add the declarations of a file and a buffer for the file reading to the ofApp
class, as follows:
ofFile file;
ofBuffer buffer;

Animating Parameters

[116]

2. Open a file and prepare a buffer object to read data from the file by adding
the following commands to setup():
file.open("eeg.txt");
buffer.set(file);

The first line opens the bin/data/eeg.txt file for reading, and the second
line sets a buffer object to be ready to read data from this file.

3. Add the following commands to the end of update() to read a line from the
file and use it to control the twistX and twistY sliders:
if (buffer.isLastLine()) buffer.resetLineReader();
string line = buffer.getNextLine();
vector<string> values = ofSplitString(line, "\t");
if (values.size() >= 128) {
 float value1 = ofToFloat(values[1]);
 float value2 = ofToFloat(values[5]);
 float value3 = ofToFloat(values[100]);
 twistX = ofMap(value2-value1, -9400, -9100, -10, 10);
 twistY = ofMap(value3-value1, -1700, -1650, -10, 10);
}

The first line checks whether we read the last line in the file, and if so, it
restarts reading from the beginning. The second line reads the line from the
file to the line string.
The third line splits line into an array of values strings using the Tab
symbol ("\t") as a delimiter. The reason for this is that each line in eeg.txt
contains 129 numbers, separated by Tab. The first 128 numbers are values
obtained from the 128 channels, measured in microvolts. The last number is
equal to zero.
So, we can use the first 128 values for our parameter's automation. In the
fourth line, we verify that values array has a size not less than 128 (it is a
good idea to check this to make sure we are reading a proper file). Then, in
the next three lines, we convert values from the channels 2 (1 + 1), 6 (5 + 1),
and 101 (100 + 1) (in an array, indices begin with zero) into float numbers
value1, value2, and value3 respectively. The last two lines use the difference
between these numbers to set values to the twistX and twistY sliders.

4. Finally, copy the eeg.txt file to the bin/data folder of the project. You can
get the file from the archive provided with the book.

On running the project, you will see that the twistX and twistY sliders fluctuate; they
appear according to the values read from the file.

Chapter 6

[117]

The original recording was made with a speed of 1,000 lines per second. Our project
reads one line per update() calling, that is, 60 lines per second. Hence, the speed we
playback the data at is 1000 / 60 ≈ 17 times slower than the speed of recording.

Note that we selected the channels and formulas to animate twistX and twistY
empirically, with an aim to obtain spectacular pulsating visuals, as shown in this
screenshot:

This shows the EEG data visualization

If you want to reproduce this screenshot in your project,
please load a preset for this chapter, included in the archive
with the example code for this book. (To load a preset,
press L in the project).

So, feel free to explore other channels and formulas on your own!

Controlling automation
At this point, we have implemented automation for several sliders. Often, it is
desirable to have an opportunity to disable automation. So let's add a checkbox that
toggles automation on and off:

1. Declare a new checkbox in the ofApp class:
ofxToggle automate;

Animating Parameters

[118]

2. Set up the checkbox in setup() by inserting the following command after the
mixerGroup.add(extrude.setup... command:
mixerGroup.add(automate.setup("automate", true));

3. Insert the following line right before all the code we added in this chapter to
update() (except the ofSoundUpdate() command, which we placed at the
beginning of the function):
if (automate) {

And insert the following line right after that code:
}

You need to re-indent that code by adding Tab before
each line to have proper indentation.

Now, automation will work only if the automate checkbox is checked. In the same
way, you can create separate checkboxes to toggle the automation of each parameter
we created.

Also, you can create sliders for the control parameters of LFOs (such as frequency
and range of output) and for other automation algorithms discussed in this chapter.

Summary
In this chapter, we considered several sources of data to animate parameters of the
project. At first, we implemented time-dependent LFO and Perlin noise. Then, we
explored how to play and capture sounds and measure the level of sound using RMS
measure. Finally, you learned to read lines from a text file, parse them, and use them
for a parameter's automation.

The data sources we explored can be named built-in sources, because they rely
on capabilities that are built into the computer itself. In the next chapter, we will
study using external data sources, such as controlling the project by networking and
connecting new peripheral devices using the Arduino board.

[119]

Distributed and Physical
Computing with Networking

and Arduino
Until now, we have created a single openFrameworks project that works on a single
computer. In this chapter, we will investigate how to create a distributed project
consisting of several programs working together and communicating with each other
via networking. Also, we will consider how to use an Arduino board to get data
from various electronic inputs, such as potentiometers. In this chapter, we will cover
the following topics:

• Networking in openFrameworks
• Receiving and sending OSC data in openFrameworks
• Creating OSC sender for a mobile device using the TouchOSC app
• Creating OSC senders in Python and Max/MSP
• Receiving data from an Arduino board

Along the chapter, we will use networking and Arduino
data to adjust just one GUI slider, pinchY. Of course,
you can use such data to adjust any other GUI sliders and
arbitrary variables of your project.

Distributed and Physical Computing with Networking and Arduino

[120]

Distributed computing with networking
Networking is a way of sending and receiving data between programs, which
work on a single or different computers and mobile devices. Using networking,
it is possible to split a complex project into several programs working together.

There are at least three reasons to create distributed projects:

• The first reason is splitting to obtain better performance. For example, when
creating a big interactive wall with cameras and projectors, it is possible
to use two computers. The first computer (tracker) will process data from
cameras and send the result to the second computer (render), which will
render the picture and output it to projectors.

• The second reason is creating a heterogeneous project using different
development languages. For example, consider a project that generates a
real-time visualization of data captured from the Web. It is easy to capture
and analyze the data from the Web using a programming language like
Python, but it is hard to create a rich, real-time visualization with it.
On the opposite side, openFrameworks is good for real-time visualization
but is not very elegant when dealing with data from the Web. So, it is a good
idea to build a project consisting of two programs. The first Python program
will capture data from the Web, and the second openFrameworks program
will perform rendering.

• The third reason is synchronization with, and external control of, one
program with other programs/devices. For example, a video synthesizer can
be controlled from other computers and mobiles via networking. We will
consider this case in the chapter in detail.

Networking in openFrameworks
openFrameworks' networking capabilities are implemented in two core addons:
ofxNetwork and ofxOsc.

To use an addon in your project, you need to include it in the new project
when creating a project using Project Generator (see Chapter 2, Creating
Your First openFrameworks Project), or by including the addon's headers
and libraries into the existing project manually. If you need to use only
one particular addon, you can use an existing addon's example as a sketch
for your project.
We have already included the ofxOsc addon in our VideoSynth project
while creating it in Chapter 2, Creating Your First openFrameworks Project.

Chapter 7

[121]

The ofxNetwork addon
The ofxNetwork addon contains classes for sending and receiving data using the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).
The difference between these protocols is that TCP guarantees receiving data
without losses and errors but requires the establishment of a preliminary connection
(known as handshake) between a sender and a receiver. UDP doesn't require the
establishment of any preliminary connection but also doesn't guarantee delivery and
correctness of the received data.

Typically, TCP is used in tasks where data needs to be received without errors, such
as downloading a JPEG file from a web server. UDP is used in tasks where data
should be received in real time at a fast rate, such as receiving a game state 60 times
per second in a networking game.

The ofxNetwork addon's classes are quite generic and allow the implementation of a
wide range of low-level networking tasks. In the book, we don't explore it in detail. For
more information, see the networkTcpClientExample, networkTcpServerExample,
networkUdpReceiverExample, and networkUdpSenderExample examples, which are
placed in openFrameworks' examples/addons folder.

The ofxOsc addon
The ofxOsc addon is intended for sending and receiving messages using the Open
Sound Control (OSC) protocol. Messages of this protocol (OSC messages) are
intended to store control commands and parameter values.

This protocol is very popular today and is implemented in many VJ and multimedia
programs and software for live electronic sound performance. All the popular
programming tools support OSC too.

An OSC protocol can use the UDP or TCP protocols for
data transmission. Most often, as in openFrameworks
implementation, a UDP protocol is used. See details of the
OSC protocol at opensoundcontrol.org/spec-1_0.

The main classes of ofxOsc are the following:

• ofxOscSender: This sends OSC messages
• ofxOscReceiver: This receives OSC messages
• ofxOscMessage: This class is for storing a single OSC message
• ofxOscBundle: This class is for storing several OSC messages, which can be

sent and received as a bundle

Distributed and Physical Computing with Networking and Arduino

[122]

Let's add the OSC receiver to our VideoSynth project and then create a simple OSC
sender, which will send messages to the VideoSynth project.

Implementing the OSC messages
receiver
To implement the receiving of OSC messages in the VideoSynth project, perform the
following steps:

1. Include the ofxOsc addon's header to the ofApp.h file by inserting the
following line after the #include "ofxGui.h" line:
#include "ofxOsc.h"

2. Add a declaration of the OSC receiver object to the ofApp class:
ofxOscReceiver oscReceiver;

3. Set up the OSC receiver in setup():
oscReceiver.setup(12345);

The argument of the setup() method is the networking port number.
After executing this command, oscReceiver begins listening on this port
for incoming OSC messages. Each received message is added to a special
message queue for further processing.

A networking port is a number from 0 to 65535. Ports from 10000
to 65535 normally are not used by existing operating systems, so
you can use them as port numbers for OSC messages. Note that
two programs receiving networking data and working on the
same computer must have different port numbers.

4. Add the processing of incoming OSC messages to update():
while (oscReceiver.hasWaitingMessages()) {
 ofxOscMessage m;
 oscReceiver.getNextMessage(&m);
 if (m.getAddress() == "/pinchY") {
 pinchY = m.getArgAsFloat(0);
 }
}

The first line is a while loop, which checks whether there are unprocessed messages
in the message queue of oscReceiver. The second line declares an empty OSC
message m. The third line pops the latest message from the message queue and copies
it to m. Now, we can process this message.

Chapter 7

[123]

Any OSC message consists of two parts: an address and
(optionally) one or several arguments. An address is a string
beginning with the / character. An address denotes the name
of a control command or the name of a parameter that should
be adjusted. Arguments can be float, integer, or string values,
which specify some parameters of the command.

In our example, we want to adjust the pinchY slider with OSC commands, so we
expect to have an OSC message with the address /pinchY and the first argument with
its float value. Hence, in the fourth line, we check whether the address of the m message
is equal to /pinchY. If this is true, in the fifth line, we get the first message's argument
(an argument with the index value 0) and set the pinchY slider to this value.

Of course, we could use any other address instead of /pinchY (for example, /val),
but normally, it is convenient to have the address similar to the parameter's name.

It is easy to control other sliders with OSC. For example, to
add control of the extrude slider, just add the following code:

if (m.getAddress() == "/extrude") {
 extrude = m.getArgAsFloat(0);
}

After running the project, nothing new happens; it works as always. But now, the
project is listening for incoming OSC messages on port 12345. To check this, let's
create a tiny openFrameworks project that sends OSC messages.

Creating an OSC sender with
openFrameworks
Let's create a new project OscOF, one that contains a GUI panel with one slider, and
send the slider's value via OSC to the VideoSynth project.

Here, we assume that the OSC sender and receiver run on
the same computer. See the details on running the sender
on a separate computer in the upcoming Sending OSC
messages between two separate computers section.

Distributed and Physical Computing with Networking and Arduino

[124]

Now perform the following steps:

1. Create a new project using Project Generator. Namely, start Project Generator,
set the project's name to OscOF (that means OSC with openFrameworks),
and include the ofxGui and ofxOsc addons to the newly created project
(see the details on using Project Generator in Chapter 2, Creating Your First
openFrameworks Project). The ofxGui addon is needed to create the GUI slider,
and the ofxOsc addon is needed to send OSC messages.

2. Open this project in your IDE.
3. Include both addons' headers to the ofApp.h file by inserting the following

lines (after the #include "ofMain.h" line):
#include "ofxGui.h"
#include "ofxOsc.h"

4. Add the declarations of the OSC sender object, the GUI panel, and the GUI
slider to the ofApp class declaration:
 ofxOscSender oscSender;
 ofxPanel gui;
 ofxFloatSlider slider;
 void sliderChanged(float &value);

The last line declares a new function, which will be called by openFrameworks
when the slider's value is changed. This function will send the corresponding
OSC message. The symbol & before value means that the value argument is
passed to the function as a reference.

Using reference here is not important for us, but is required
by ofxGui; please see the information on the notion of a
reference in the C++ documentation.

5. Set up the OSC sender, the GUI panel with the slider, and the project's
window title and size by adding the following code to setup():
oscSender.setup("localhost", 12345);
slider.addListener(this, &ofApp::sliderChanged);
gui.setup("Parameters");
gui.add(slider.setup("pinchY", 0, 0, 1));
ofSetWindowTitle("OscOF");
ofSetWindowShape(300, 150);

Chapter 7

[125]

The first line starts the OSC sender. Here, the first argument specifies the
IP address to which the OSC sender will send its messages. In our case, it is
"localhost". This means the sender will send data to the same computer on
which the sender runs. The second argument specifies the networking port,
12345. The difference between setting up the OSC sender and receiver is
that we need to specify the address and port for the sender, and not only the
port. Also, after starting, the sender does nothing until we give it the explicit
command to send an OSC message.
The second line starts listening to the slider's value changes. The first and
second arguments of the addListener() command specify the object (this)
and its member function (sliderChanged), which should be called when the
slider is changed.
The remaining lines set up the GUI panel, the GUI slider, and the project's
window title and shape; these were discussed in detail in Chapter 2, Creating
Your First openFrameworks Project and Chapter 3, Adding a GUI and Handling
Keyboard Events.

6. Now, add the sliderChanged() function definition to ofApp.cpp:
void ofApp::sliderChanged(float &value) {
 ofxOscMessage m;
 m.setAddress("/pinchY");
 m.addFloatArg(value);
 oscSender.sendMessage(m);
}

This function is called when the slider value is changed, and the value
parameter is its new value. The first three lines of the function create an OSC
message m, set its address to /pinchY, and add a float argument equal to
value. The last line sends this OSC message.

As you may see, the m message's address (/pinchY)
coincides with the address implemented in the previous
section, which is expected by the receiver. Also, the receiver
expects that this message has a float argument—and it is true
too! So, the receiver will properly interpret our messages and
set its pinchY slider to the desired value.

7. Finally, add the command to draw GUI to draw():
gui.draw();

Distributed and Physical Computing with Networking and Arduino

[126]

On running the project, you will see its window, consisting of a GUI panel with a
slider, as shown in the following screenshot:

This is the OSC sender made with openFrameworks

Don't stop this project for a while. Run the VideoSynth project and change the
pinchY slider's value in the OscOF window using the mouse. The pinchY slider
in VideoSynth should change accordingly. This means that the OSC transmission
between the two openFrameworks programs works.

If you are not interested in sending data between two separate computers, feel free to
skip the following section.

Sending OSC messages between two
separate computers
We have checked passing OSC messages between two programs that run on the
same computer. Now let's consider a situation when an OSC sender and an OSC
receiver run on two separate computers connected to the same Local Area Network
(LAN) using Ethernet or Wi-Fi.

If you have two laptops, most probably they are already
connected to the same networking router and hence are in
the same LAN.

To make an OSC connection work in this case, we need to change the "localhost"
value in the sender's setup command by the local IP address of the receiver's computer.

Typically, this address has a form like "192.168.0.2", or
it could be a name, for example, "LAPTOP3".

You can get the receiver's computer IP address by opening the properties of your
network adapter or by executing the ifconfig command in the terminal window
(for OS X or Linux) or ipconfig in the command prompt window (for Windows).

Chapter 7

[127]

Connection troubleshooting
If you set the IP address in the sender's setup, but OSC messages from the OSC
sender don't come to the OSC receiver, then it could be caused by the network
firewall or antivirus software, which blocks transmitting data over our 12345 port.
So please check the firewall and antivirus settings.

To make sure that the connection between the two computers exists, use the ping
command in the terminal (or the command prompt) window.

Creating OSC senders with TouchOSC,
Python,
and Max/MSP
At this point, we create the OSC sender using openFrameworks and send its
data out to the VideoSynth project. But, it's easy to create the OSC sender using
other programming tools. Such an opportunity can be useful for you in creating
complex projects.

So, let's show how to create an OSC sender on a mobile device using the TouchOSC
app and also create simple senders using the Python and Max/MSP languages.

If you are not interested in sending OSC from mobile
devices or in Python or Max/MSP, feel free to skip the
corresponding sections.

Creating an OSC sender for a mobile device
using the TouchOSC app
It is very handy to control your openFrameworks project by a mobile device
(or devices) using the OSC protocol.

You can create a custom OSC sender by yourself (see the next chapter, where we
explain creating openFrameworks projects for mobiles), or you can use special apps
made for this purpose.

One such application is TouchOSC. It's a paid application available for iOS
(see hexler.net/software/touchosc) and Android (see hexler.net/software/
touchosc-android).

Distributed and Physical Computing with Networking and Arduino

[128]

Working with TouchOSC consists of four steps: creating the GUI panel (called
layout) on the laptop, uploading it to a mobile device, setting up the OSC receiver's
address and port, and working with the layout. Let's consider them in detail:

1. To create the layout, download, unzip, and run a special program, TouchOSC
Editor, on a laptop (it's available for OS X, Windows, and Linux). Add the
desired GUI elements on the layout by right-clicking on the layout.

2. When the layout is ready, upload it to a mobile device by running
the TouchOSC app on the mobile and pressing the Sync button in
TouchOSC Editor.

3. In the TouchOSC app, go to the settings and set up the OSC receiver's IP
address and port number. Next, open the created layout by choosing it from
the list of all the existing layouts.

4. Now, you can use the layout's GUI elements to send the OSC messages to
your openFrameworks project (and, of course, to any other OSC-supporting
software).

Creating an OSC sender with Python
In this section, we will create a project that sends OSC messages using the
Python language.

Here, we assume that the OSC sender and receiver run on
the same computer. See the details on running the sender
on a separate computer in the previous Sending OSC
messages between two separate computers section.

Python is a free, interpreted language available for all operating systems. It is
extremely popular nowadays in various fields, including teaching programming,
developing web projects, and performing computations in natural sciences.

Using Python, you can easily capture information from the Web and social networks
(using their API) and send it to openFrameworks for further processing, such as
visualization or sonification, that is, converting data to a picture or sound.

Using Python, it is quite easy to create GUI applications,
but here we consider creating a project without a GUI.

Chapter 7

[129]

Perform the following steps to install Python, create an OSC sender, and run it:

1. Install Python from www.python.org/downloads (the current version is 3.4).
2. Download the python-osc library from pypi.python.org/pypi/python-osc

and unzip it. This library implements the OSC protocol support in Python.
3. Install this library, open the terminal (or command prompt) window, go to

the folder where you unzipped python-osc and type the following:
python setup.py install

If this doesn't work, type the following:
python3 setup.py install

Python is ready to send OSC messages. Now let's create the sender program.

4. Using your preferred code or text editor, create the OscPython.py file and fill
it with the following code:
from pythonosc import udp_client
from pythonosc import osc_message_builder
import time

if __name__ == "__main__":
 oscSender = udp_client.UDPClient("localhost", 12345)
 for i in range(10):
 m = osc_message_builder.OscMessageBuilder(address =
 "/pinchY")
 m.add_arg(i*0.1)
 oscSender.send(m.build())
 print(i)
 time.sleep(1)

The first three lines import the udp_client, osc_message_builder, and
time modules for sending the UDP data (we will send OSC messages using
UDP), creating OSC messages, and working with time respectively.
The if __name__ == "__main__": line is generic for Python programs and
denotes the part of the code that will be executed when the program runs
from the command line.
The first line of the executed code creates the oscSender object, which will
send the UDP data to the localhost IP address and the 12345 port. The
second line starts a for cycle, where i runs the values 0, 1, 2, …, 9.
The body of the cycle consists of commands for creating an OSC message m with
address /pinchY and argument i*0.1, and sending it by OSC. The last two
lines print the value i to the console and delay the execution for one second.

Distributed and Physical Computing with Networking and Arduino

[130]

5. Open the terminal (or command prompt) window, go to the folder with the
OscPython.py file, and execute it by the python OscPython.py command.
If this doesn't work, use the python3 OscPython.py command.

The program starts and will send 10 OSC messages with the /pinchY address and
the 0.0, 0.1, 0.2, …, 0.9 argument values, with 1 second of pause between the
sent messages. Additionally, the program prints values from 0 to 9, as shown in the
following screenshot:

This is the output of an OSC sender made with Python

Run the VideoSynth project and start our Python sender again. You will see how its
pinchY slider gradually changes from 0.0 to 0.9. This means that OSC transmission
from a Python program to an openFrameworks program works.

Creating an OSC sender with Max/MSP
In this section, we will create a project that sends OSC messages using the
Max/MSP language.

In this section, we assume that the OSC sender and receiver
runs on the same computer. See the details on running the
sender on a separate computer in the previous Sending OSC
messages between two separate computers section.

Max/MSP (whose full name is Max/MSP/Jitter/Gen) is a popular visual programming
language and IDE used for interactive sound and multimedia programming.

Max/MSP is paid and available for OS X and Windows only.
If you are working on Linux, or want to use a free software,
please check Max/MSP's free analogue Pure Data, which is
available for Linux, OS X, and Windows.

Chapter 7

[131]

Though Max/MSP is paid, it has a fully functional free trial for 30 days. Also, it
has free runtime, so you can deploy the developed programs on any number of
computers freely.

Using Max/MSP, it is possible to create a GUI with dozens of parameters rapidly,
create complex dependencies between parameters, and store a parameter's values
into presets. Also, most sound and VJ USB controllers can be easily connected
to Max/MSP as MIDI devices. So, you can use Max/MSP as a powerful super-
controller, which collects and transforms data from all your MIDI-controllers and
sends it to your openFrameworks project.

To install Max/MSP and create a simple OSC sender, perform the following steps:

1. Download Max/MSP from cycling74.com/downloads (the current
version is 7.01).

2. Install and run it.
3. Go to the File menu and click on the New Patcher... item. A new window

with an empty patch (that is, a Max/MSP program) will be created.
4. Now, let's create a slider object. Move the mouse inside the patch's window

and press N. An empty text field will appear in the mouse position, as shown
in the following screenshot:

This is an empty text field

5. Type slider in the empty text field, as shown here:

This is the text field filled with slider text

Distributed and Physical Computing with Networking and Arduino

[132]

6. Press Return (Enter). The text field turns into a slider, as shown in
this screenshot:

This is the created slider

7. Using the same approach, create four new objects by pressing N and typing
the following commands:
/ 127.
flonum
/pinchY $1
udpsend localhost 12345

As a result, you will have five objects, as shown in the following screenshot:

These are all objects of our Max/MSP patch

We will discuss the meaning of each object a little later. Now let's finish
creating the patch.

Chapter 7

[133]

Each Max/MSP object can have one or several inputs (inlets)
located at its top, and one or several outputs (outlets) located
at its bottom. Outlets can be connected with inlets by dragging
the mouse. Such a connection is called patch cord, and it passes
Max/MSP messages, sounds, or images between objects. In our
case, all the patch cords pass messages.

8. Connect the left outlet of each from the first four objects with the left inlet of
the succeeding object, as shown in this screenshot:

This is a ready Max/MSP patch sending OSC messages

The patch is ready!

The patch starts to execute immediately during its creation, so
it is already executing. But, currently we can't adjust the slider's
value by mouse because the slider is in editing mode and will
move itself inside the patch. To be able to adjust the slider's
value, we need to lock the patch, that is, disable its editing mode
and enable adjusting the object's values.

9. Lock the patch by pressing Command + E (for OS X) or Ctrl + E (for
Windows). Now you can adjust the slider's value using the mouse, and the
corresponding values from 0 to 1 will be sent to the OSC receiver by OSC.

Distributed and Physical Computing with Networking and Arduino

[134]

Run the VideoSynth project and check that its pinchY slider changes accordingly
with the patch's slider value. This means that OSC transmission from a Max/MSP
patch to an openFrameworks program works.

Now let's see what happens in the patch in detail:

• When we change the slider's value using the mouse, it sends an integer value
from 0 to 127 to its outlet.

• The / 127. object divides this value by 127 (the dot after number 127 means
that division is performed using float arithmetic) and sends the resulting
float value (which is from 0 to 1) to the flonum object.

• The flonum object displays the received float value and also passes it to its
left outlet.

• The /pinchY $1 object constructs a string such as /pinch 0.33 by replacing
$1 with the input value, and outputs the string to its outlet.

• The last object, udpsend localhost 12345, sends this string to the
localhost IP address by UDP using port 12345. The string will be
interpreted by the OSC receiver as a proper OSC message with a /pinchY
address and one float argument.

If you want to continue editing the patch, unlock it by pressing
Command + E or Ctrl + E again.

In a similar way, you can create other sliders and connect all of them to the existing
udpsend object.

In our patch, for simplicity, we used the slider's default
range from 0 to 127. But it is possible to change the slider's
range to any values you want, including float-valued
ranges. To do this, move the mouse pointer to a slider,
right-click on the mouse, and in the context menu that
appears, click on Inspector. You will see the properties
page of the slider. The Value tab controls the slider's range,
so you can change it as you need.

We have investigated enough to be able to create a distributed project containing
several programs communicating with each other via the OSC protocol. Now let's
consider physical computing with the Arduino board.

Chapter 7

[135]

Physical computing with Arduino
Physical computing is a field related to modern Do It Yourself (DIY) and art
projects. It is based on using sensors and various electromechanical devices together
with computers and microcontrollers to create interactive physical systems, such as
interactive installations and experimental toys.

Arduino is a popular open source physical computing platform consisting of
a microcontroller board, an IDE, and a language for the board's programming.
The Arduino IDE is available for OS X, Windows, and Linux.

In this section, we will consider how to read data from an analog input of the
Arduino board and send it to our VideoSynth openFrameworks project.

To run the example in this section, you need an Arduino board.
We will use here the Arduino Uno (Revision 3) board, but you
can use any other one.

We begin with programming Arduino board and then change the VideoSynth
project so it will read the Arduino data.

Programming an Arduino board
Let's start with the following steps:

1. Download the Arduino IDE from www.arduino.cc (the current version
is 1.0.6).

2. Unzip and run it.
3. Go to the File menu and click on New. A new window with an empty sketch

(that is, an Arduino program) will be created.
4. Fill it with the following code:

void setup() {
 Serial.begin(9600);
}

void loop() {
 int analogIn = analogRead(A0);
 float value = analogIn / 1023.0;
 Serial.println(value);
}

Distributed and Physical Computing with Networking and Arduino

[136]

This code is written in the Arduino language. This language
resembles the C, C++, and Java languages. It includes special
constants, functions, and objects related to specific hardware
capabilities of the Arduino board, such as analog inputs and
serial ports.

This code consists of two functions, setup() and loop(). Both functions are
required to be defined in any Arduino sketch. The setup() function is called
once when the board is started (or restarted). After that, the loop() function is
called repeatedly until the board is powered off, restarted, or reprogrammed.
The setup() function's body consists of one line that starts the connection
via a built-in serial port of the board at a speed of 9600 bauds (that is, bits
per second).
The loop() function's body consists of three lines. The first line reads the
value from the board's analog input A0.

Each Arduino board has at least four analog input pins, which
are referenced in the language as A0, A1, A2, and A3 (see
arduino.cc/en/Products.Compare). The analogRead()
function reads a pin's voltage value and returns it as a 10-bit
integer value (from 0 to 1023).

The second line divides this value by the maximal possible value 1023.0 to
obtain a float value for value from 0 to 1. The last line prints value with a
new line character to the serial port.
A serial port is a way of transmitting data between the Arduino board and
the computer. A little later, we will see how to read these printed values in
the openFrameworks project.
The sketch is ready. Let's upload it to the board.

5. Connect the board to the computer using a USB cable.
6. Select your board type from the Tools | Board menu.
7. From the Tools | Serial Port menu, select the serial port of the computer to

which Arduino is connected. (If there are several available ports in the menu,
including USB and Bluetooth, choose USB.)

Chapter 7

[137]

8. Compile and upload the sketch by clicking on the Upload button in the
Arduino IDE (this button is denoted by a right arrow). When uploading
is finished, you will see the Done uploading message at the bottom of the
IDE window.
Now our sketch is executing on the board. Let's check the values it outputs to
the serial port.

9. Click on the Serial Monitor button located in the top-right corner of the IDE
window. The Serial Monitor window will appear. This window shows data
received via the serial port from the board. In our case, it will be numbers
from 0 to 1, as shown in the following screenshot:

This is the Serial Monitor window of the Arduino IDE

By default, the Serial.println output floats with two decimal
places. If you need a better precision, you can specify exact
number of decimal places as the second argument, for example:

Serial.println(value, 4);

The preceding line will output floats with four decimal places.

10. Now touch the A0 pin of the board with your finger; the numbers will
change because some voltage fluctuations will appear on this pin.

Distributed and Physical Computing with Networking and Arduino

[138]

11. If you have a potentiometer, you can connect it to the Arduino board
(normally, a potentiometer with an impedance of 10 kilo Ohm is used). First,
unplug the board from the computer. Then, connect the potentiometer to
GND, A0, and 5V (or 3.3V; it depends on your board's model) pins of the
board, as shown in this image:

This shows the connecting of a potentiometer to an Arduino board

This scheme was made with free open source software
Fritzing, available at fritzing.org.

Now, by moving the potentiometer's wiper, you can precisely control
Arduino's output numbers from 0 to 1.

Our board is ready to be connected to the openFrameworks project. Let's do it.

Receiving data from Arduino in the
openFrameworks project
To receive data from Arduino in openFrameworks, we can use the ofSerial
class, which reads and writes data to a serial port. To implement it, perform the
following steps:

1. Open the VideoSynth project if it is currently not open.
2. Add the following declarations to the ofApp class:

ofSerial serial;
string str;

Chapter 7

[139]

The first line declares the serial object of the ofSerial class, and the second
line declares the str string, which will be used as a buffer to collect the
received text data.

3. Set up the serial port by adding the following code to setup():
serial.setup(0, 9600);

It opens the first (index 0) serial port in the list of available ports at a speed of
9600 bauds.

4. Add the code to receive and analyze data from Arduino to update():
while (true) {
 int c = serial.readByte();
 if (c == OF_SERIAL_NO_DATA || c == OF_SERIAL_ERROR || c == 0)
 break;
 if (c == '\n') {
 pinchY = ofToFloat(str);
 str = "";
 }
 else str.push_back(c);
}

The first line runs the infinite while loop. We will exit from this loop by
calling break when we process all the data stored in the serial port's buffer
at the moment.
The second line reads the next character from the serial port to the variable c.

Note that this variable has the type int (not unsigned char)
to properly handle cases when serial.readByte() does not
return a character but a negative value equal to the OF_SERIAL_
NO_DATA or OF_SERIAL_ERROR constants.

The third line checks whether c is equal to OF_SERIAL_NO_DATA, OF_SERIAL_
ERROR, or 0. This means all data received by the serial port was already
processed, some connection error occurred, or symbol with code 0 is received
(the latter case occurs in Windows when Arduino is not connected). In this
case, we exit from the loop by calling the break command.
The if (c == '\n') { line checks whether a new line symbol (\n) was
received. If so, we set a value to the pinchY slider stored in the str buffer.
Also, we clear the buffer to be ready to receive the next value. In the opposite
case, we append the received character to the buffer.

Distributed and Physical Computing with Networking and Arduino

[140]

The openFrameworks project is ready to work with Arduino. Before running it, close
the Serial Monitor window in the Arduino IDE, because the serial port cannot be
used by two programs simultaneously.

Run the project and use your finger or potentiometer to adjust the pinchY
slider. Congratulations—the simple physical computing with Arduino and
openFrameworks works!

Connection troubleshooting
If the pinchY slider does not change by the Arduino values, it's because you probably
chose the incorrect serial port index in the serial.setup(0, 9600) command.

To resolve the issue, let's print out the list of all the available serial ports by adding
the following command to setup():

serial.listDevices();

On running the project, you will see a list of devices in the project's console output,
such as the following:

[notice] ofSerial: [0] = tty.usbmodem1421
[notice] ofSerial: [1] = cu.usbmodem1421
[notice] ofSerial: [2] = cu.Bluetooth-Modem
[notice] ofSerial: [3] = tty.Bluetooth-Modem

In Windows and Linux, the console window runs
together with the project; in OS X, it is shown inside
the Xcode interface.

Here, the numbers in brackets ([0] and others) denote port indices. Choose the
proper index of your Arduino device (it should correspond to the port that was
chosen in the Tools | Serial Port Arduino IDE's menu) and set it as a first argument
to the serial.setup(..., 9600) command.

Connecting more devices
In the considered example, we receive just one value from Arduino. In real projects,
we often need to use several input devices. So, let's consider how to send two values
from Arduino to our openFrameworks project.

Chapter 7

[141]

On Arduino's side, let's print both values on one line and separate them by the space
character, as shown in the following code for Arduino's loop() function:

float value0 = analogRead(A0) / 1023.0;
float value1 = analogRead(A1) / 1023.0;
Serial.print(value0);
Serial.print(" ");
Serial.println(value1);

On openFrameworks' side, let's split the received string str using the
ofSplitString() function and use the resulting array of strings list to set values to
the two sliders, as shown here (this code should be inserted instead of the pinchY =
ofToFloat(str) command):

vector<string> list = ofSplitString(str, " ");
if (list.size() >= 2) {
 pinchY = ofToFloat(list[0]);
 extrude = ofToFloat(list[1]);
}

The first line splits the string str to its parts using space as a delimiter, the second
line checks that we have at least two strings in the resulted array list, and the third
and fourth lines convert strings of list to float values and set them to the pinchY and
extrude sliders.

Summary
In this chapter, we learned how to create distributed projects using the OSC
networking protocol. At first, we implemented receiving OSC in our openFrameworks
project. Next, we created a simple OSC sender project with openFrameworks. Then,
we considered how to create an OSC sender on mobile devices using TouchOSC and
also how to build senders using the Python and Max/MSP languages. Now, we can
control the video synthesizer from other computers or mobile devices via networking.

Finally, we considered a simple example of physical computing that uses Arduino
with a connected potentiometer to control a slider in the openFrameworks project.

In this chapter, we finished our video synthesizer project. In the next chapter, we will
consider how to run its lighter version on the iOS, Android, and Raspberry Pi devices.

[143]

Deploying the Project on iOS,
Android, and Raspberry Pi

In the previous chapters, we developed an openFrameworks project for a desktop
computer (OS X, Windows, or Linux). But, as you may know, openFrameworks
is implemented on most popular mobile platforms, including iOS, Android, and
Raspberry Pi devices. So in this chapter, we will dig into mobile development with
openFrameworks; running our video synthesizer project on all these devices.

Mobile platforms have some specifics, so things such as shaders must be elaborated
when porting from a desktop project to a mobile project. To have more fun, we will
consider not the final, but a simpler version of our video synthesizer project. We
will use the video synthesizer developed in Chapter 3, Adding a GUI and Handling
Keyboard Events; it consists of Pattern Generator (matrix) and a GUI panel. This
synthesizer is simple, yet still powerful enough to demonstrate basic capabilities of
openFrameworks for mobiles.

We will have a look at the following topics:

• Installing software for developing with openFrameworks on iOS, Android,
and Raspberry Pi devices

• Creating and running project on iOS, Android, and Raspberry Pi devices
• Using accelerometer on iOS and Android devices

Working with iOS, Android, and Raspberry Pi devices is
described in separate sections independently, so you can jump
to reading about the most interesting device immediately.

Deploying the Project on iOS, Android, and Raspberry Pi

[144]

Running the project on an iOS device
In this section, we will create a video synthesizer project and run it on iOS Simulator
and an iOS device. The project will be based on code we developed in Chapter 3,
Adding a GUI and Handling Keyboard Events.

If you have no source code for the project we made in Chapter 3,
Adding a GUI and Handling Keyboard Events, please get it from the
example code files for this book.

To develop iOS projects, you must have a computer running OS X (such as MacBook,
Mac Pro or Mac mini). This is mandatory before you go ahead with this section.

To deploy the project on a real iOS device and publish it on the Apple App Store,
you need two things:

• An iOS device (iPhone, iPad, or iPod touch)
• An iOS Developer License from Apple (this costs $99 per year; you can buy it

at developer.apple.com/programs)

You can still develop a project and run it in iOS Simulator
without this license but can't upload it on your iOS device
and publish on the App Store.

Let's prepare the required software:

1. Install Xcode (if you haven't installed it yet) from the Mac App Store. It's a
free IDE for developing OS X and iOS applications using the C++, C, and
Objective C programming languages.

2. Download openFrameworks for iOS from openframeworks.cc/download
and unzip it.

3. Check whether Xcode and openFrameworks for iOS work together. Open
any example project in Xcode contained in openFrameworks' unzipped
examples folder, then build and run it; the example runs in iOS Simulator.

Now let's begin developing our own project for iOS by creating an empty project
using Project Generator:

1. Run the Project Generator wizard (you should run it from the unzipped
openFrameworks for iOS folder, but not from openFrameworks for OS X that
we considered in previous chapters).

2. Set the project name as VideoSynth.

Chapter 8

[145]

3. Add the ofxGUI addon to the project.
4. Click on the GENERATE PROJECT button.

See details on working with Project Generator in the Creating
and running a new project section of Chapter 2, Creating Your
First openFrameworks Project.

The project is created. Open it in Xcode and discover its structure. The project
contains three source files: main.mm, ofApp.h, and ofApp.mm. They play the same
role as main.cpp, ofApp.h, and ofApp.cpp considered in detail in the Discovering the
project's code structure section in Chapter 2, Creating Your First openFrameworks Project.
The only difference is in using the extension mm instead of cpp, which means it's an
Objective-C/C++ module. So you can mix C++ and Objective-C (native for iOS)
constructions in your code whenever it is needed.

The other difference is in the ofApp class. To see it, open the ofApp.h file. The
class has the same structure as in a desktop openFrameworks project but has a
different set of events. For example, mouse... functions are replaced with touch...
functions. They respond to touching the device screen with a finger or fingers and
provide you with plenty of information about touching, such as position, number of
touches, size of the touching zone, and pressure.

Implementing video synthesizer for iOS
Let's fill our empty project with the code of the video synthesizer from Chapter 3,
Adding a GUI and Handling Keyboard Events, (more precisely, we mean all the code we
created in Chapter 2, Creating Your First openFrameworks Project, and Chapter 3, Adding
a GUI and Handling Keyboard Events):

1. Include the ofxGui addon's header to the ofApp.h file by inserting the
following line (after all other #include ... commands):
#include "ofxGui.h"

2. Copy the declarations of the functions stripePattern() and
matrixPattern(), and all the objects from the ofApp class we had
in Chapter 3, Adding a GUI and Handling Keyboard Events, to the current
ofApp class, as follows:
void stripePattern();
ofxPanel gui;
...
void matrixPattern();

Deploying the Project on iOS, Android, and Raspberry Pi

[146]

Do not copy the declaration of the exit() function because
it is declared in the class already. In the opposite case, you
will get a compiling error.

3. Copy the setup() function's body from the ofApp.cpp file we have in
Chapter 3, Adding a GUI and Handling Keyboard Events, to the current
ofApp.mm file, as follows:
ofSetWindowTitle("Video synth");
ofSetWindowShape(1280, 720);
...
showGui = true;

Comment out the ofSetWindowTitle... and ofSetWindowShape...
commands because they are not needed here.

4. Replace "settings.xml" in the gui.loadFromFile("settings.xml")
command in setup() with the ofxiPhoneGetDocumentsDirectory() +
"settings.xml" expression.
The ofxiPhoneGetDocumentsDirectory()function returns a path to
the Documents directory of our application. This directory is managed
by iOS, and it is the place where we can write and read our own files
during the application's execution. So, after such modification, the
gui.loadFromFile... command will read the settings.xml file from
this directory.

See details on the Documents directory in the File System
Programming Guide document available at developer.
apple.com/library.

5. Copy the whole of the stripePattern() and matrixPattern() functions
and the bodies of the draw() and exit() functions.

6. Again, replace "settings.xml" in exit() by
ofxiPhoneGetDocumentsDirectory() + "settings.xml".
The project is almost ready. The only thing we don't implement is the
reaction on the keyboard events implemented in the keyPressed() function
of the original desktop project. Compared with desktops, using a keyboard
on a mobile is a complex process: we need to show the keyboard, work with
it, and finally hide it.

Chapter 8

[147]

So, here we will not implement keyboard responding, but implement one
action from our desktop project: toggling the visibility of the GUI panel.
We will do it when the user double-taps the device's screen. Here's how we
accomplish this:

7. Add the following code to the touchDoubleTap() function:
showGui = !showGui;

This line toggles the visibility of the GUI by double-tapping.

Now, the project is ready. Click on the Run button in Xcode and the project will be
built and run in iOS Simulator.

iOS Simulator is a separate application that is installed
together with Xcode automatically. It lets you test the basic
functionality of iOS applications on the desktop without
uploading on a real device.

You will see the iOS Simulator window, which looks like an iPhone, with our project
running in it, as shown in the following screenshot:

Here's the video synthesizer running in iOS Simulator

Deploying the Project on iOS, Android, and Raspberry Pi

[148]

Use the mouse to adjust the sliders. Also, double-click on the project's screen to hide
and show the GUI panel. Click on the Home button in iOS Simulator to close the
project. This causes the exit() function to be called and saves the GUI state, so on
the next project's run, this GUI state will be restored.

The exit() function is called when you click on the Home
button in iOS Simulator, but it is not being called when you
interrupt the execution by clicking on the Stop button in Xcode.

Building a project for iPad
By default, Xcode builds and runs project for iPhone. To build it and run in
Simulator for iPad, do the following:

1. Click on VideoSynth in the left-hand side of the Xcode window to show the
project settings in the central part of Xcode.

2. Select TARGETS as VideoSynth to see the settings for this target.

Target is an actual executable file of our project made
by the compiler.

3. Switch from iPhone to iPad in the listbox in the Deployment Info tab there.
Now our project is configured to build for iPad.
These three steps are illustrated in the following screenshot:

This shows how the project is configured to be compiled for iPad

Chapter 8

[149]

4. Finally, choose an iPad device in iOS Simulator by clicking the listbox of
the available devices, located in the top-left corner of the Xcode window, as
shown in this screenshot:

This shows the selecting of an iPad device in iOS Simulator

5. Now, click on the Run button in Xcode. The project will be built for iPad and
run in Simulator with the iPad device.

You can change the size of iPad in the iOS Simulator window
by navigating to its Window | Scale menu.

Deploying the project on an iOS device
If you have an iOS device, you can deploy our project on it. Before you can do that,
you need to buy iOS Developer License from Apple (it costs $99 per year; see details
at developer.apple.com/programs). Next, you should create a provisioning profile
for the mobile device and a development certificate for your computer.

See the detailed instructions on this at openframeworks.cc/setup/iphone.

Using accelerometer
A typical iOS device has an accelerometer and a gyroscope to detect the motion
and the orientation of the device respectively. openFrameworks has a built-in
ofxAccelerometer class, which handles the accelerometer. Let's implement using it
to control two sliders of the project using the following steps:

1. Add the initialization of the accelerometer to setup():
ofxAccelerometer.setup();

2. Add the following commands to update() for getting the accelerometer's
values and using them:
ofPoint ori = ofxAccelerometer.getOrientation();
twistX = ori.x;
twistY = ori.y;

Deploying the Project on iOS, Android, and Raspberry Pi

[150]

The first line gets the current orientation angles of accelerometer. So, ori.x,
ori.y, and ori.z are rotation angles around the X, Y, and Z axes of the
device respectively. Angles are measured in degrees.
The second and third lines set orientation angles around the X and Y axes to
the sliders twistX and twistY respectively.

If you want to get a vector of the device's acceleration, use
the ofxAccelerometer.getForce() method.

Run the project on a device and tilt the device. You will see that the twistX slider
values depend on the tilt across the device (because it is equal to tilt around the X
axis), and the twistY slider values depend on the tilt along the device (because it is
equal to the rotation around the Y axis).

Using an accelerometer gives interesting results only on a
real iOS device. iOS Simulator's accelerometer returns the
fixed values and is not useful for this purpose.

Congratulations, the simple video synthesizer working on iOS and using the
accelerometer is ready!

Running the project on an Android device
In this section, we will create a video synthesizer project and run it on an Android
device. The project will be based on the code we developed in Chapter 3, Adding a
GUI and Handling Keyboard Events.

If you have no source codes for the project we made in
Chapter 3, Adding a GUI and Handling Keyboard Events,
please get it from the example code files for this book.

To develop Android projects, you need a computer (OS X, Linux, or Windows) and
the Android device itself.
Apps for Android OS are primarily written using Java-oriented Android SDK
(Android Software Development Kit). For developing using the C++ language
(and hence for developing with openFrameworks), we need to use Android NDK
(Android Native Development Kit). Currently NDK is not as mature as SDK is.
So, for developing openFrameworks projects for Android, you need to set up a
special IDE supporting both SDK and NDK. Currently, openFrameworks works
with the Eclipse IDE.

Chapter 8

[151]

The official IDE for Android development is the Android
Studio IDE, and it is expected that new releases of
openFrameworks will work with it.

Installing software for Android development
To install the required software for developing (SDK, NDK, IDE, and
openFrameworks), follow the instructions at openframeworks.cc/setup/android-
eclipse.

Currently (April 2015), these instructions are a little out of a date, so please consider
the following clarifications about the installation process:

• The instructions at openframeworks.cc/setup/android-eclipse describe
how to install and configure the Android Development Tools (ADT)
bundle, which is the Eclipse IDE together with ADT and SDK. Currently
the ADT bundle is out of development, so you need to download and
install Eclipse, the ADT plugin, and SDK separately. If you have difficulties
with such installing, you can still download and use the ADT bundle at
stackoverflow.com/questions/27449206/what-is-the-final-version-
of-the-adt-bundle.

• Install the NDK version r9b or later.
• When setting up the NDK_ROOT and SDK_ROOT paths in the paths.make file,

avoid using the ~ (home directory) symbol; for example, use a path such as
/Users/perevalovds/Android/android-ndk-r9b instead of ~/Android/
android-ndk-r9b (this recommendation is for OS X and Linux only).

• After the first start of Eclipse, disable the automatic building of all projects by
unchecking the Project | Build Automatically menu item.

• When importing openFrameworks examples from openFrameworks/
examples/android to Eclipse, it is a good idea to uncheck all projects in the
list except androidEmptyExample. Later, you can import other examples
when they are needed.

• When enabling the debugging mode on an Android device, note that
Developer options can be hidden by default. See developer.android.com/
tools/device.html about enabling it.

After installing, deploy the androidEmptyExample example on your Android device
to check that all is installed properly.

Deploying the Project on iOS, Android, and Raspberry Pi

[152]

Implementing video synthesizer for Android
Now let's create a video synthesizer project. Currently, there is no Project Generator
for the Android version of openFrameworks. So, we will create the project by
copying the existing example, namely androidGuiExample (because we need the
ofxGui addon).

Creating an empty project
Perform the following steps to create a new, clean project:

1. Copy the androidGuiExample folder to a new folder named VideoSynth
(place it in the same folder, examples/android).

2. Open Eclipse and open the project by clicking on the File | Import...
menu, selecting the General | Existing Projects into Workspace type,
choosing the examples/android folder, and checking only our VideoSynth
folder there. (The steps are the same as when we import the example
androidEmptyExample mentioned earlier).

3. Clear the ofApp class in ofApp.h from all the members, except the setup(),
update(), and draw() functions.

4. Delete all the function definitions in ofApp except the setup(), update(),
and draw() functions. Then, clear their bodies' code.

Now we have an empty project with the ofxGui addon linked to it.

Implementing the video synthesizer
Let's fill our empty project with the code of the video synthesizer from Chapter 3,
Adding a GUI and Handling Keyboard Events, (more precisely, we mean all the code we
create in Chapter 2, Creating Your First openFrameworks Project, and Chapter 3, Adding a
GUI and Handling Keyboard Events) by performing the following steps:

1. Copy the declarations of the stripePattern() and matrixPattern()
functions and all the objects from the ofApp class we have in Chapter 3,
Adding a GUI and Handling Keyboard Events, to the current ofApp class:
void stripePattern();
ofxPanel gui;
...
void matrixPattern();

Do not copy the declaration of the exit() function
because it is not needed here.

Chapter 8

[153]

2. Copy the setup() function's body from the ofApp.cpp file we had in Chapter 3,
Adding a GUI and Handling Keyboard Events, to the current ofApp.cpp file:
ofSetWindowTitle("Video synth");
ofSetWindowShape(1280, 720);
...
showGui = true;

Comment out the ofSetWindowTitle... and ofSetWindowShape...
commands because they are not needed here.

3. Copy the whole of the stripePattern() and matrixPattern()functions
and the body of the draw() function.

The project is almost ready. The things we haven't implemented yet are saving the
GUI state (this was implemented in exit()) and the reaction on keyboard events
(this was implemented in keyPressed()). We will discuss these and also implement
the accelerometer's usage a little bit later. Now it's time to run the project!

Build the project and run it on your device. You will see the working video
synthesizer with a GUI panel, as shown in the following screenshot:

This shows the video synthesizer running on an Android device

Deploying the Project on iOS, Android, and Raspberry Pi

[154]

Increasing the size of the GUI panel
If you see that the GUI panel on the device's screen looks too small, add the
following code to the beginning of the setup() function:

ofxGuiSetFont("Questrial-Regular.ttf",18,true,true);
ofxGuiSetTextPadding(20);
ofxGuiSetDefaultWidth(300);
ofxGuiSetDefaultHeight(40);

This code is taken from the original androidGuiExample project, which we used as
the starting point for our Android project. The first line loads the font used by the
GUI from the Questrial-Regular.ttf file. The second argument, 18, specifies the
font size. The remaining lines of the code specify new dimensional parameters of a
GUI panel.

Run the project and you will see that the GUI panel is now bigger.

Troubleshooting
If, while developing, your project suddenly stops building and Eclipse reports
compiling errors, use the following hints to resolve the issue and start to build the
project again:

• Wait while Eclipse starts entirely before starting the building process. Eclipse
loads and updates Android SDK, which can take from several seconds to a
minute. See the Progress tab in the bottom-right corner of the IDE window
for details on the loading process.

• Stop the app on the device before compiling.
• Clear the contents of the bin folder of your project (but keep the data

subfolder untouched if it exists).
• Restart Eclipse.
• Clean the project by clicking on the Project | Clean... menu.
• If a compiler error related to the AndroidManifest.xml file occurs, open this

file for editing and change it a little (for example, insert a new line at the end
of the file) and save the file.

Now, let's implement saving the GUI state and implement hiding the GUI by
double-tapping.

Chapter 8

[155]

Implementing reaction on stopping and
double-tapping
In openFrameworks for Android, the exit() function is not called when the
project stops executing. Instead of this function, we need to use the pause() and
stop() functions.

Considering the keyboard events, which we did in the desktop version of our project
but omitted in Android version, let's note that using a keyboard on a mobile is quite
a complex process. We need to show the keyboard, work with it, and finally hide
it. So, here we will not implement keyboard responding, but implement one action
from our desktop project: toggling the visibility of the GUI panel. We will do this
when the user double-taps the device's screen.

To implement the reaction on stopping and double-tapping, we need to change the
base class name of the ofApp class from ofBaseApp to ofxAndroidApp and add the
new functions touchDoubleTap(), pause(), and stop() to the ofApp class.

See the androidTouchExample example for a list of all
available Android-related functions, such as touchDown(),
resume(), and backPressed().

Let's do this by performing the following steps:

1. Add the ofxAndroid header to ofApp.h, as follows:
#include "ofxAndroid.h"

2. Change the base class name of the ofApp class from ofBaseApp to
ofxAndroidApp. To achieve this, replace the class ofApp : public
ofBaseApp{ line with the following line:
class ofApp : public ofxAndroidApp{

3. Add the declaration of new functions to the ofApp class:
void touchDoubleTap(int x, int y, int id);
void pause();
void stop();

4. Add the definition of the touchDoubleTap() function to the ofApp.cpp file:
void ofApp::touchDoubleTap(int x, int y, int id) {
 showGui = !showGui;
}

This function toggles the visibility of the GUI when the user double-taps
the screen.

Deploying the Project on iOS, Android, and Raspberry Pi

[156]

5. Add the definitions of the pause() and stop() functions to the ofApp.cpp file:
void ofApp::pause() {
 gui.saveToFile("settings.xml");
}
void ofApp::stop() {
 gui.saveToFile("settings.xml");
}

These functions save the state of the GUI to the "settings.xml" file right
before the project is paused or stopped.

Run the project and double-tap the screen to toggle the GUI panel's visibility. Also, if
you stop the project and start it again, the GUI state will be restored.

The last thing we will consider in our Android project is using the accelerometer.

Using the accelerometer on an Android device
A typical Android device has an accelerometer and a gyroscope for detecting the
motion and the orientation, respectively, of the device. openFrameworks has a built-
in ofxAccelerometer class, which handles the accelerometer. Let's implement using
it to control two sliders of the project by performing the following steps:

1. Add the ofxAccelerometer header to ofApp.h, as follows:
#include "ofxAccelerometer.h"

2. Add the initialization of the accelerometer to setup():
ofxAccelerometer.setup();

3. Add the following commands to update() for getting the accelerometer's
values and using them:
ofPoint ori = ofxAccelerometer.getOrientation();
twistX = ori.x;
twistY = ori.y;

The first line gets the current orientation angles of the accelerometer. So,
ori.x, ori.y and ori.z are rotation angles around the X, Y, and Z axes of
device respectively. Angles are measured in degrees.
The second and third lines set the orientation angles around the X and Y axes
to the sliders twistX and twistY respectively.

If you want to get a vector of the device's acceleration, use
the ofxAccelerometer.getForce() method.

Chapter 8

[157]

Run the project on your device and tilt the device. You will see that the twistX slider
values depend on the tilt across the device (because it is equal to tilting around the X
axis), and the twistY slider values depends on the tilt along the device (because it is
equal to rotation around the Y axis).

Congratulations, the simple video synthesizer working on Android and using
accelerometer is ready!

Renaming the project
Currently our project is named androidGuiExample. If you want to rename
it, see the instructions in the Creating new applications section available at
openframeworks.cc/setup/android-eclipse.

Running the project on Raspberry Pi
In this section, we will create a video synthesizer project and run it on a Raspberry
Pi device. The project will be based on the code we developed in Chapter 3, Adding a
GUI and Handling Keyboard Events.

If you have no source code for the project we made in Chapter
3, Adding a GUI and Handling Keyboard Events, please get it from
the example code files for this book.

Note that as Raspberry Pi does not work very fast, the complete process of its setup
from installing the OS to building and running the video synthesizer project can take
up to three hours (for the first generation of Raspberry Pi devices).

To speed up the compilation, you might use the cross
compiling technique, which involves compiling on
another (more powerful) computer. See the details on this
at www.openframeworks.cc/setup/raspberrypi/
Raspberry-Pi-Cross-compiling-guide.html.

Required equipment
To proceed with this section, you need the following equipment:

• A Raspberry Pi device (refer to www.raspberrypi.org/products)
• An SD card with a capacity of at least 4 GB with Raspbian OS or New Out of

Box Software (NOOBS) installed

Deploying the Project on iOS, Android, and Raspberry Pi

[158]

Raspbian OS is an operating system on which we will install
openFrameworks. NOOBS is a collection of several operating
systems ready to be installed on the first run of the device
(refer to www.raspberrypi.org/introducing-noobs).

• To prepare such an SD, follow the instructions at www.raspberrypi.org/
downloads or buy a ready-to-use SD card with NOOBS preinstalled

• A computer monitor or TV panel with HDMI or DVI input
• A USB mouse and a keyboard
• A microUSB-USB cable to power Raspberry Pi
• A cable HDMI-HDMI or HDMI-DVI to connect Raspberry Pi to a monitor or

TV panel
• A networking cable to connect Raspberry Pi to your networking router

Setting up the device
Let's start the Raspberry Pi device by performing the following steps:

1. Insert the SD card into the Raspberry Pi.
2. Connect the Raspberry Pi to the monitor, mouse, keyboard, and networking

router.
3. Power on the monitor.
4. Connect the Raspberry Pi to the USB-source of power using microUSB-USB

cable (such a source can be the USB port of a laptop or power adapter for a
mobile phone with USB output).
The device will be started.

5. Follow the instructions that appear to set up Raspbian Pi.

Use the cursor keys and Tab to navigate in the
configurer program.

You should finish setting up the graphical desktop screen, which resembles
Windows / Linux desktops.

If you see the text line input instead of the graphical
desktop, type startx to run it, or the Raspi-config
command to run the configurer again.

Now we are ready to install openFrameworks.

Chapter 8

[159]

Installing openFrameworks
Here, we will basically follow the instructions at openframeworks.cc/setup/
raspberrypi/Raspberry-Pi-Getting-Started.html. Perform the following steps
to accomplish this:

1. Run the LXTerminal application by double-clicking on its icon. The terminal
window appears, as shown in the following screenshot:

This is the terminal window in the graphical desktop of Raspberry Pi

2. Download openFrameworks by typing the following command in
LXTerminal:
curl -O http://www.openframeworks.cc/versions/v0.8.4/of_v0.8.4_
linuxarmv6l_release.tar.gz

Note that this is one long command; you should type it in one line.

3. Create the openFrameworks folder as follows:
mkdir openFrameworks

4. Unpack the downloaded archive as follows:
tar vxfz of_v0.8.4_linuxarmv6l_release.tar.gz -C openFrameworks
--strip-components 1

You need not type long filenames completely. Just begin
typing and press Tab. The terminal will complete the
filename or the folder name.

Deploying the Project on iOS, Android, and Raspberry Pi

[160]

5. Now let's install dependencies, that is, libraries needed for openFrameworks,
by using the following commands:
cd openFrameworks/scripts/linux/debian_armv6l

sudo ./install_dependencies.sh

The last symbol in debian_armv6l is lowercase L.

The first command changes the current directory to .../debian_armv6l,
and the second line starts installing dependencies. This process can take a
while, up to half an hour. During installation, you will be asked to press Y
(yes) or N (no); in all cases, press Y.

6. We are ready to perform the final step—build openFrameworks. Do it by
using the following commands:
cd ~

cd openFrameworks/libs/openFrameworksCompiled/project

make Release -C

The first command sets the returned directory to home directory. The
second command changes the current directory to the place where we
should perform building. The last command starts building
openFrameworks. Note that it can take about an hour to complete
(depending on your Raspberry Pi model).

Running the first example
Let's build and run the guiExample example by performing the following steps:

1. Go to the home directory by using the following command:
cd ~

2. Go to the example's folder by using the following command:
cd openFrameworks/examples/gui/guiExample

3. Build the example by using the following command:
make

The building process can take about 10 minutes.

4. Run the example by using the following command:
./bin/guiExample

Chapter 8

[161]

5. Press Esc to close the application.

You can build and run any other example in a similar way.
To discover which examples exist in openFrameworks, you
can use the ls command in the terminal to list a folder's
contents. Another way is using the File Manager application,
which you can run by clicking in the bottom-left corner of
the desktop to show a list of all programs, and selecting
Assessories | File Manager.

Implementing a video synthesizer for
Raspberry Pi
Now, let's create the video synthesizer project. Currently, there is no Project
Generator for the Raspberry Pi version of openFrameworks. Hence, we will create
our project from the existing example, namely guiExample considered earlier
(because we need the ofxGui addon), using the following steps:

1. Copy the guiExample folder to the openFrameworks/apps/myApps
folder and rename it to VideoSynth. The simplest way to do this is using
File Manager.

2. Copy the ofApp.h and ofApp.cpp files made in Chapter 3, Adding a GUI
and Handling Keyboard Events, to the VideoSynth/src folder (by rewriting
existing files).

3. Go to the project's folder:
cd ~

cd openFrameworks/apps/myApps/VideoSynth

4. As we replace the source files, it is desirable to clean the project before
building using the following command:
make clean

You should do cleaning only after substantial changes of
source code or after replacing the source files.

5. Build the project using this command:
make

6. Run the project using this command:
./bin/VideoSynth

Deploying the Project on iOS, Android, and Raspberry Pi

[162]

Notice that our video synthesizer looks and works exactly like its desktop version.
Congratulations! We successfully ported the simple video synthesizer to Raspberry Pi!

To shut down Raspberry Pi, use the following command:
sudo poweroff

Summary
In this chapter, we considered developing projects on iOS, Android, and Raspberry
Pi. We covered installing the software necessary for developing, running an example,
and implementing a simple video synthesizer. Also, we showed how to use the
accelerometer in iOS and Android devices.

This is the last chapter devoted to learning openFrameworks. In the next and final
chapter, we will discuss the directions to further study openFrameworks and
enhance the video synthesizer.

[163]

Further Resources
Until now, we have investigated the basics of openFrameworks and created the
video synthesizer project.

In this last chapter, we will point out the resources and topics that may be helpful
for your further exploration of openFrameworks and creative coding by covering the
following topics:

• Enhancing the video synthesizer project
• Getting more information on openFrameworks
• Debugging and speeding up your code

During the chapter, we will mention some classes and functions
without detailed explanation. You can find information about them
in the openFrameworks documentation at openframeworks.cc/
documentation and in the openFrameworks' examples (which
are placed in the examples folder).

Enhancing the video synthesizer project
Now, we will consider various ways of enhancing our video synthesizer and
expanding its capabilities. If you don't want to improve it right now, feel free to skip
this section and go to the next section that discusses books and other references to
openFrameworks.

Further Resources

[164]

Speeding up the rendering
In Chapter 2, Creating Your First openFrameworks Project, and Chapter 3, Adding a GUI
and Handling Keyboard Events, we considered drawing patterns made from geometric
primitives. You would note that when the number of drawn primitives is high,
the rendering frame rate becomes low. This is due to the fact that each primitive is
drawn by sending a separate command to a video card.

To speed up the rendering, you need to rewrite the stripePattern and
matrixPattern functions so that they use ofMesh objects or ofVboMesh classes to
render primitives (instead of calling the ofRect() and ofTriangle() functions).
These classes draw primitives in bulk using one command, and as a result, they
work faster.

Another option is using the glDraw() function of the
OpenGL library. This library is used by openFrameworks to
render anything. See the details on the usage of this function
in the OpenGL library reference.

Drawing curves and text
In Chapter 2, Creating Your First openFrameworks Project, we considered drawing
only lines, triangles, rectangles, and circles. To extend expression capabilities
of the project, you can draw arbitrary filled figures and Bezier curves using the
ofPolyline or ofPath classes. Also, you can output strings of text using the
ofDrawBitmapString function or the ofTrueTypeFont class.

For example, to draw the current frame rate of the application on the screen, add the
following command to the ofApp::draw() function:

ofDrawBitmapString(ofToString(ofGetFrameRate()), 250, 20);

The ofGetFrameRate function returns the frame rate as a float number, ofToString
converts it into a string, and ofDrawBitMapString draws it at the position (250, 20)
on the screen.

Using fragment shaders for image generation
In Chapter 4, Working with Raster Graphics – Images, Videos, and Shaders, we considered
using fragment shaders for image transformation. However, you can use fragment
shaders to generate completely new images!

Furthermore, you can develop a shader online using a site such as shadertoy.com,
and then port the shader to your openFrameworks project.

Chapter 9

[165]

As an example, see how we ported the beautiful shader Apollonian Fractures by
Otavio Good at www.shadertoy.com/view/XdjSzD to the openFrameworks
project (with small modifications): github.com/kuflex/examples/tree/master/
ApollFrac. The project generates animated pictures such as this:

This is a screenshot generated by Otavio Good's fragment shader ported
from shadertoy.com to the openFrameworks project

Using vertex shaders for an object deformation
At the end of Chapter 5, Creating 3D Graphics, we deformed the 3D sphere vertex
per vertex in C++ code. This approach works fast enough only when the number of
vertices is small. To deform 3D (or 2D) objects containing millions of vertices, use
a vertex shader; it processes vertices on a video card right before drawing it on the
screen, and it works extremely fast.

See gl/shaderExample for details on using a vertex shader to deform objects.

Using the Firmata protocol for Arduino
connection
In Chapter 7, Distributed and Physical Computing with Networking and Arduino, we
considered the simplest case of reading data from one analog input of an Arduino
device. It was really simple to implement. But for more complex tasks, such as
getting several inputs and sending output signals to devices connected to Arduino
(such as servos), more complex programming is required.

Further Resources

[166]

To simplify the input and output data from Arduino to computer, there is a standard
protocol called Firmata. To discover it, see openFrameworks' communication/
firmataExample example.

Multidisplay setup and sharing images
between separate programs
The picture generated by our video synthesizer can be output directly to
the screen or projector. As we considered in Chapter 2, Creating Your First
openFrameworks Project, you can set an application to the fullscreen mode using the
ofSetFullScreen(true) command or the ofToggleFullScreen() command.

For live performances, one screen could be insufficient. If you need to use
a multidisplay setup, consider using the ofAppGLFWWindow class; see
forum.openframeworks.cc/t/of-0-8-multiple-screens/13059.

Also, it is possible to send images between programs working on the same
or separate computers using TCP networking implemented in the classes
ofxTCPServer and ofxTCPClient. To obtain better results, it is preferable to use 1
GB networking or faster.

In our book Mastering openFrameworks: Creative Coding
Demystified, Packt Publishing, we discuss an example of
such image streaming using TCP networking.

Finally (currently on OS X only), an application's screen picture can be easily
incorporated into a more complex video engine. For example, it can be passed to
the VDMX5 or to the MadMapper programs. Such a transmission of images between
separate programs (running on the same computer) is possible with the Syphon
protocol. It is implemented in the ofxSyphon addon. You can download it from
www.ofxaddons.com.

We have discussed some straightforward improvements that you can implement
in a video synthesizer for its serious use. Now, we will consider books and other
references to openFrameworks that help to discover capabilities of openFrameworks
not covered in this book.

Chapter 9

[167]

Getting more information on
openFrameworks
Our book was dedicated to the basics of openFrameworks with the main effort to
create 2D and 3D generative graphics. So, we did not consider several topics such as
computer vision and low-level sound synthesis. To get acquainted with the whole
range of openFrameworks capabilities, check out the examples in the examples
folder and explore the online documentation and forum at openframeworks.cc.

For a deeper understanding of openFrameworks, we recommend that you read other
books on this subject.

openFrameworks books
Currently there are three books that cover openFrameworks:

• ofBook: This is a free online book on openFrameworks written
collaboratively. It contains detailed information on many topics related to
openFrameworks, C++ programming, and creative coding. To read it, go
to the book's page at github.com/openframeworks/ofBook, click on the
chapters folder, and you will see the list of chapters. Now click on the folder
of the desired chapter, and click on the chapter.md file to read it.

• Mastering openFrameworks: Creative Coding Demystified, Denis
Perevalov, Packt Publishing, 2013: This is our big book on openFrameworks,
dedicated to low-level graphics, sound, and computer vision programming
with openFrameworks.

• Programming Interactivity: A Designer's Guide to Processing, Arduino,
and openFrameworks, 2nd Edition, Joshua Noble, O'Reilly Media, 2012:
This is an extensive book about Processing, Arduino, and openFrameworks,
covering many topics of interactive art, design, and the basics of
programming for beginners.

Additionally, there are plenty of online lections and
presentations covering various parts of openFrameworks,
C++, and OpenGL.

Debugging and speeding up your code
We hope you went through the book easily. Now, when the video synthesizer is
finished, we encourage you to imagine and implement your own project!

Further Resources

[168]

If you wish to make a project but have no idea what to do,
explore projects at www.creativeapplications.net as
a source of inspiration.

Now we'll give you some advice on debugging and optimizing your project's
performance.

Debugging
The main rule for writing programs with fewer bugs is compiling and testing your
project as often as possible.

If you detect incorrect behavior of the program, this probably means that some bug
exists in the code. The main way to fix the bug is to locate it in the code. To achieve
this, you can use the IDE's debugging tools, such as breakpoints and watch list.

You need to compile you project in the debug mode to be able
to use the IDE's debugging tools.

Unfortunately, some errors in openFrameworks projects can be difficult to find if
your project runs in the debug mode, because the project works too slowly and errors
just don't occur. In this case, instead of the IDE's debugging, use printing diagnostic
messages using the cout command (that means console output). For example, before
starting the camera to grab, you can insert the following command:

cout << "Camera is starting" << endl;

Here << is an insertion operator that sends symbols to the
console; endl means end of line and generates a line break.

When this code executes, the message Camera is starting appears in the console
window of your application.

openFrameworks has a special class ofLog for diagnostic messages. It allows the use
of several levels of diagnostic messages and often is more handy than cout.

The other issue in the project is performance. Although openFrameworks is C++
based and provides fast implementation of your code on the CPU, the code must be
written and compiled properly to be able to work fast; let's talk about it.

Chapter 9

[169]

Speeding up the code
If you note that your project executes too slowly, check these optimization tips to
improve the performance of the C++ code:

• Printing a diagnostic message takes time. So don't print them very often
(especially in for and while cycles) because they, by themselves, can have a
negative impact on performance. Also, remove (or comment out) messages
that are not needed anymore.

• If the compiler is currently set to the debug scheme of compilation, switch it
to the release mode. (In the debug mode, C++ code executes up to five times
slower than in the release mode.)

• Before performing any optimization of bottlenecks in the code, make sure
you detect them properly. To find bottlenecks, you can compute the time
elapsed by a portion of the code by inserting the following lines before and
after it:
float time0 = ofGetElapsedTime();
//... some code here
cout << "time: " << ofGetElapsedTime() - time0 << endl;

The first line stores the current time. The last line outputs a diagnostic
message about the difference between the current and stored time in seconds.

Also, to detect bottlenecks in the code, you can use a special
tool called profiler. It measures the execution time of each
function in your project. Some IDEs contain a built-in profiler,
but for some other IDEs, you should install it manually.

• When declaring functions, declare their parameters as references whenever it
is possible. This is a powerful optimization technique that is often used in C++
codes. For example, consider a function getting a string as an input parameter:
void myFunction(string s) {
 //some code here…
}

If the myFunction function doesn't change s, you can declare this parameter
as a constant reference:
void myFunction(const string &s) {
 //some code here...
}

Further Resources

[170]

In the first case, each calling of myFunction leads to copying of the passed
input string to a stack. Such a copy can take significant time in the case of
large strings. In the second case, only the address of the string is passed. This
operation takes almost no time, and the time taken does not depend on the
string size.

• If, after some simple optimizations, your project still works slowly, you
should consider using special tools, such as multithreading or GPU
computing, which we will consider now:

 ° If your computer has several cores, you can parallel your code's
execution by multithread computations. Use the ofThread class to
accomplish this.

 ° If your computer has a powerful video card, you can put some
computations to it, that is, use GPU technologies such as fragment
shaders, OpenCL, or compute shaders. In openFrameworks,
there is a great addon ofxMSAOpenCL, that allows you to utilize
OpenCL technology for computing. You can download it from
www.ofxaddons.com.

Summary
In this last chapter, we considered ways of improving the video synthesizer project
and gave you some references to further study openFrameworks. Finally, we
discussed tips on debugging and speeding up the code with openFrameworks.

To summarize what you have learned during the book, we prepared two
appendices—Appendix A, Video Synthesizer Reference, is detailed video synthesizer
documentation, and Appendix B, openFrameworks Quick Reference, contains a short
reference to openFrameworks.

We wish you luck in developing your own outstanding projects and we hope
openFrameworks will help you with it!

[171]

Video Synthesizer Reference
We developed quite an elaborated video synthesizer project through the entire
book. To help you keep control over it, we've placed detailed references about all
synthesizer parts in this appendix, including source files, data files, control keys, and
GUI controls.

For convenience, the desktop and mobile versions are described separately.

The desktop version
The video synthesizer for desktop is the most elaborate in the book. It is discussed in
the chapters from Chapter 2, Creating Your First openFrameworks Project, to Chapter 7,
Distributed and Physical Computing with Networking and Arduino. It has a matrix pattern
generator, shader-effect kaleidoscope, 3D rendering, GUI panel, and parameter
automation, and can be controlled by the networking and Arduino devices.

The openFrameworks project and source files
The following is the project's code structure:

• The project uses the ofxGui (used in Chapter 3, Adding a GUI and Handling
Keyboard Events) and ofxOsc (used in Chapter 7, Distributed and Physical
Computing with Networking and Arduino) addons. They are linked to the
project in the first stage of its creation using the Pattern Generator wizard in
Chapter 2, Creating Your First openFrameworks Project.

• The project's source files are ofApp.h and ofApp.cpp. They are created and
modified in Chapter 2, Creating Your First openFrameworks Project, and further
extended in all chapters from Chapter 3, Adding a GUI and Handling Keyboard
Events, to Chapter 7, Distributed and Physical Computing with Networking and
Arduino. These source files are placed in the src folder of the project.

Video Synthesizer Reference

[172]

• The shader's code files, kaleido.frag and kaleido.vert, are created in
Chapter 4, Working with Raster Graphics – Images, Videos, and Shaders. They
are placed in the bin/data folder of the project.

Data files
The project works with the following data files stored in the bin/data folder:

• settings.xml: This file stores the GUI state. It saves and loads
automatically. It is implemented in Chapter 3, Adding a GUI and Handling
Keyboard Events.

• collage.png: This is an image file, loaded and drawn in Chapter 4, Working
with Raster Graphics – Images, Videos, and Shaders.

• flowing.mp4: This is a video file, loaded and drawn in Chapter 4, Working
with Raster Graphics – Images, Videos, and Shaders.

• skvo.wav: This is a music track, loaded and played in Chapter 6, Animating
Parameters.

• eeg.txt: This is a text file with neural data, loaded and parsed in Chapter 6,
Animating Parameters.

Also, the project saves screenshots to the screen.png file by pressing Return (Enter)
and saves/loads the GUI presets by pressing S and L. It is implemented in Chapter 3,
Adding a GUI and Handling Keyboard Events.

Control keys
The keys for controlling the project are the following:

Key Action Reference
Esc This closes the application. It's a built-in feature

of any openFrameworks application.
-

Z This toggles the visibility of the GUI panel. This
also toggles the mouse input for 3D camera
navigating.

Chapter 3, Adding a GUI and
Handling Keyboard Events, and
Chapter 5, Creating 3D Graphics

Return
(Enter)

This saves a screenshot to the screenshot.
png file placed in the bin/data folder.

Chapter 3, Adding a GUI and
Handling Keyboard Events

S This saves the GUI state to an XML file. The file
is chosen by dialog.

Chapter 3, Adding a GUI and
Handling Keyboard Events

L This loads the GUI state from an XML file. The
file is chosen by dialog.

Chapter 3, Adding a GUI and
Handling Keyboard Events

Appendix A

[173]

Key Action Reference
C This starts the camera to grab video frames. Chapter 4, Working with Raster

Graphics – Images, Videos, and
Shaders

P This plays/stops the music track skvo.wav
placed in the bin/data folder.

Chapter 6, Animating Parameters

The GUI controls
A GUI consists of one GUI panel, which includes a number of sliders and
checkboxes. For convenience, some controls are combined in GUI groups
(Global, Primitive, and Mixer). They are described in separate subsections.
Note the following conventions:

• Notation 0..100 means that a slider takes integer values from 0 to 100
• Notation [0, 100] means that a slider takes float values in from 0 to 100
• All distances are measured in pixels. All angles are measured in degrees.

Basic sliders
These sliders control the geometry of the matrix pattern:

Name Range Description Reference
countX 0..200 This controls the number of geometric

primitives in the stripe pattern.
Chapter 3, Adding a GUI and
Handling Keyboard Events

stepX [0, 200] This controls the distance between
geometric primitives along the X axis
in the stripe pattern.

Chapter 3, Adding a GUI and
Handling Keyboard Events

twistX [-45, 45] This controls the rotation of each
geometric primitive depending on its
index in the stripe pattern. In Chapter
6, Animating Parameters, the slider's
value is automated using data from
the eeg.txt text file containing
neural data recording.

Chapter 3, Adding a GUI and
Handling Keyboard Events,
and Chapter 6, Animating
Parameters

countY 0..50 This controls the number of stripe
patterns in the matrix pattern.

Chapter 3, Adding a GUI and
Handling Keyboard Events

stepY [0, 200] This controls the distance between
stripe patterns along the Y axis in the
matrix pattern.

Chapter 3, Adding a GUI and
Handling Keyboard Events

Video Synthesizer Reference

[174]

Name Range Description Reference
twistY [-30, 30] This controls the rotation of each

stripe pattern depending on its index
in the matrix pattern. In Chapter 6,
Animating Parameters, the slider's
value is automated using data from
the eeg.txt text file containing
neural data recording.

Chapter 3, Adding a GUI and
Handling Keyboard Events,
and Chapter 6, Animating
Parameters

pinchY [0, 1] This controls the scale of each stripe
pattern depending on its index in the
matrix pattern.
In Chapter 7, Distributed and Physical
Computing with Networking and
Arduino, the slider's value is controlled
by the /pinchY OSC command
received from port 12345 and also
by the Arduino device (using a
potentiometer connected to Arduino's
analog input A0).

Chapter 3, Adding a GUI and
Handling Keyboard Events,
and Chapter 7, Distributed
and Physical Computing with
Networking and Arduino

Global group
This group of sliders controls the position of the matrix pattern of the screen and also
sets the background brightness:

Name Range Description Reference
Scale [0, 1] Size of the matrix pattern on the

screen
Chapter 3, Adding a GUI and
Handling Keyboard Events

Rotate [-180,
180]

Rotation of the matrix pattern on
the screen in degrees

Chapter 3, Adding a GUI and
Handling Keyboard Events

Background [0, 255] Brightness of the screen
background

Chapter 3, Adding a GUI and
Handling Keyboard Events

Primitive group
This group of sliders and checkboxes controls the drawing of the geometric
primitives in the matrix pattern:

Name Range Description Reference
shiftY [-1000, 1000] This controls the shift of each geometric

primitive along its local Y axis.
Chapter 3, Adding a
GUI and Handling
Keyboard Events

Appendix A

[175]

Name Range Description Reference
rotate [-180, 180] This controls the rotation of the local

coordinate system of each geometric
primitive.

Chapter 3, Adding a
GUI and Handling
Keyboard Events

size
x, y

Two sliders,
each in [0, 20]

This controls the width and height
of each geometric primitive. This is
not measured in pixels but as relative
scaling. A value of 1 means no scaling.

Chapter 3, Adding a
GUI and Handling
Keyboard Events

color r,
g, b, a

Four sliders,
each in [0,
255]

This controls the color of each geometric
primitive.

Chapter 3, Adding a
GUI and Handling
Keyboard Events

filled Checkbox If this checkbox is checked, then each
geometric primitive is drawn as a filled
figure. If not, only the contour of the
primitive is drawn.

Chapter 3, Adding a
GUI and Handling
Keyboard Events

type Checkbox This switches between the rectangle
(checked) and triangle (unchecked)
shapes of each geometric primitive.

Chapter 3, Adding a
GUI and Handling
Keyboard Events

Mixer group
This group of sliders and checkboxes controls video mixing of images, video files,
and live camera frame and also controls the kaleidoscope effect, mixing of layers
with 2D and 3D graphics, and deformation of a sphere in 3D.

Name Range Description Reference
image [0, 255] This controls the blending value for the

collage.png image file.
Chapter 4, Working
with Raster Graphics
– Images, Videos,
and Shaders

video [0, 255] This controls the blending value for the
flowing.mp4 video file.

Chapter 4, Working
with Raster Graphics
– Images, Videos,
and Shaders

camera [0, 255] This controls the blending value for a live
camera frame. The camera is disabled by
default. To start it, press C.

Chapter 4, Working
with Raster Graphics
– Images, Videos,
and Shaders

kenabled Checkbox This enables the kaleidoscope shader
effect.

Chapter 4, Working
with Raster Graphics
– Images, Videos,
and Shaders

Video Synthesizer Reference

[176]

Name Range Description Reference
ksectors 1..100 This controls the number of kaleidoscope

sectors.
Chapter 4, Working
with Raster Graphics
– Images, Videos,
and Shaders

kangle [-180, 180] This controls the orientation of the
circular sector, which is grabbed from
the picture and repeated to obtain
the kaleidoscope effect. In Chapter 6,
Animating Parameters, the slider's value is
automated; it linearly increases with time.

Chapter 4, Working
with Raster
Graphics – Images,
Videos, and Shaders,
and Chapter
6, Animating
Parameters

kx [0, 1] This controls the relative X coordinate
of the grabbed sector's vertex in the
kaleidoscope effect. The value 0 means
the left position, while the value 1 means
the right position. In Chapter 6, Animating
Parameters, the slider's value is automated
using LFO based on the sine wave.

Chapter 4, Working
with Raster
Graphics – Images,
Videos, and Shaders,
and Chapter
6, Animating
Parameters

ky [0, 1] This controls the relative Y coordinate
of the grabbed sector's vertex in the
kaleidoscope effect. The value 0 means
the top position, while the value 1 means
the bottom position.

Chapter 4, Working
with Raster Graphics
– Images, Videos,
and Shaders

show2d [0, 255] This controls the blending value for the 2D
picture obtained from the image, video,
camera, and matrix pattern (processed
with the kaleidoscope effect
if enabled).

Chapter 5, Creating
3D Graphics

show3d [0, 255] This controls the blending value for the
3D image of the sphere.

Chapter 5, Creating
3D Graphics

rad [0, 500] This controls the radius of the sphere.
In Chapter 6, Animating Parameters, the
slider's value is automated using the
sound level. The sound level is measured
from the skvo.wav music track
started by pressing P and also from the
microphone (the results are summed up).

Chapter 5, Creating
3D Graphics,
and Chapter
6, Animating
Parameters

deform [0, 1.5] This controls the relative amplitude of
the sphere's deformation by formulas.
The value 0 gives no deformation, while
the value 1 gives the deformation's
amplitude equal to the sphere's radius.

Chapter 5, Creating
3D Graphics

Appendix A

[177]

Name Range Description Reference
deformFreq [0, 10] This controls the space frequency of

the sphere's deformation by analytical
formulas. In Chapter 6, Animating
Parameters, the slider's value is automated
using LFO based on
Perlin noise.

Chapter 5, Creating
3D Graphics,
and Chapter
6, Animating
Parameters

extrude [0, 1] This controls the relative amplitude
of the sphere's extrusion based on the
texture's brightness. The value 0 gives
no extrusion, while the value 1 gives the
maximal extrusion's amplitude equal to
the sphere's radius.

Chapter 5, Creating
3D Graphics

automate Checkbox This enables the automation of the
following sliders: twistX, twistY,
kangle, kx, rad, and deform.

Chapter 6,
Animating
Parameters

iOS and Android versions
The video synthesizers for iOS and Android are light versions of the desktop project.
They are considered in Chapter 8, Deploying the Project on iOS, Android, and Raspberry
Pi, and include only the matrix pattern generator and the GUI panel. Instead of using
the control keys, it uses the double-tap to toggle the GUI. Additionally, these projects
use an accelerometer to control two sliders.

The openFrameworks project and source files
The project's code structure is the following:

• The project uses the ofxGui addon. It is linked to the project using the
Pattern Generator wizard for the iOS version. For the Android version,
the project is started by copying the example, which has already linked
the ofxGui addon.

• The project's source files are ofApp.h and ofApp.mm for iOS and ofApp.h
and ofApp.cpp for Android. They are placed in the src folder of the project.

Data files
The project writes and reads its GUI state to the settings.xml file.

Video Synthesizer Reference

[178]

The GUI
A GUI panel includes basic sliders and Global and Primitive groups described in the
previous The GUI controls section under the The desktop version section.

Touches
A double-tap toggles the GUI visibility.

Accelerometer
The accelerometer values control the twistX and twistY sliders.

Raspberry Pi version
The video synthesizer for Raspberry Pi is a light version of the desktop project. It is
considered in Chapter 8, Deploying the Project on iOS, Android, and Raspberry Pi.

This version is the same as the iOS and Android versions described earlier, with a
small difference. It doesn't support the double-tap and the accelerometer but reacts
to the Esc, Z, Return (Enter), S, and L keys, described in the Control keys section under
the The desktop version section.

Summary
In this appendix, we considered an exhaustive reference on the desktop and mobile
versions of our video synthesizer. It will be useful to you in the future to refresh your
memory about using and modifying your video synthesizer.

[179]

openFrameworks
Quick Reference

In this appendix, we have collected basic openFrameworks classes and functions,
which were discussed in the book. The sections of the appendix are placed in the
order in which the corresponding classes and functions appeared in the book. This
appendix can act as a quick reminder on openFrameworks to write your own project.

Application
The ofApp class is the main class for the openFrameworks project. It is declared
in the ofApp.h file, and its functions are defined in the ofApp.cpp file. It contains
functions that are called by the openFrameworks engine on starting up, rendering,
and various events from the user, such as mouse events and keyboard events.
(See Chapter 2, Creating Your First openFrameworks Project, for details).

The most important functions that should be filled to have a working project are the
following:

• setup(): This is called by openFrameworks once on starting the application.
For example, it can include the following commands:
ofSetWindowTitle("My project");
ofSetWindowShape(1280, 720);
ofSetFrameRate(60);
ofSetFullScreen(true);

The first line sets the application's window title to My project. The second
line sets the window size to a width of 1280 pixels and a height of 720 pixels.
The third line sets the rendering frame rate to 60 frames per second. The last
line enables the fullscreen mode.

openFrameworks Quick Reference

[180]

• update(): This is called for computations, such as processing the
camera data.

• draw(): This is called to perform drawing onscreen.

The update() and draw() functions are called repeatedly until the application
is stopped.

2D drawing
The basic drawing functions are the following (see Chapter 2, Creating Your First
openFrameworks Project, for details):

Example of function usage Description
ofBackground(
ofColor::white);

This sets the background to the white color.

float w =
ofGetWidth();

The ofGetWidth() function returns the current width of
the application's screen in pixels. In this code, this value is
set to the variable w.

float h =
ofGetHeight();

The ofGetHeight() function returns the current height
of the application's screen in pixels. In this code, this value
is set to the variable h.

ofLine(100, 200,
300, 400);

This draws a line segment connecting the points (100, 200)
and (300, 400).

ofRect(100, 200,
300, 400);

This draws a rectangle with the top-left corner (100, 200), a
width of 300 pixels, and a height of 400 pixels.
The ofSetRectMode(OF_RECTMODE_CENTER)
command enables the mode for specifying the center
of the rectangle instead of the top-left corner. The
ofSetRectMode(OF_RECTMODE_CORNER) command
enables the top-left corner mode back.

ofTriangle(10, 20,
30, 40, 50, 60);

This draws a triangle with the vertices (10, 20), (30, 40), and
(50, 60).

ofCircle(100, 200,
30);

This draws a circle with the center (100, 200) and a radius
of 30.
The ofSetCircleResolution(10) command sets
the circle resolution to 10, that is, the circle will be drawn
consisting of 10 line segments.

ofFill(); This enables the mode for drawing filled figures.
ofNoFill(); This enables the mode for drawing unfilled figures.
ofSetColor(100, 150,
200);

This sets the drawing color with a red value of 100, a green
value of 150, and a blue value of 200.

Appendix B

[181]

Example of function usage Description
ofSetColor(255,200); This sets the drawing color with the red, green, and blue

values equal to 255 and the alpha value equal to 200.
To enable additive blending, use the
ofEnableBlendMode(OF_BLENDMODE_ADD)
command.
To enable alpha blending back, use the
ofEnableAlphaBlending() command. (See Chapter 4,
Working with Raster Graphics – Images, Videos, and Shaders,
for details.)

ofSetColor(
ofColor::yellow);

This sets the yellow drawing color.

ofPushMatrix(); This stores the current coordinate system to a special stack.
ofPopMatrix(); This restores the coordinate system from the stack.
ofTranslate(100, 200
);

This translates the coordinate system by (200, 100) pixels.

ofRotate(90); This rotates the coordinate system by 90 degrees clockwise.
ofScale(2, 2); This scales the coordinate system; all objects will grow

bigger by two times.

The GUI
The GUI is created using the ofxGui addon. Its basic classes are the following
(see Chapter 3, Adding a GUI and Handling Keyboard Events, for details):

Class name with an example
of an object definition

Description

ofxPanel gui; This is a GUI panel, which can contain GUI controls,
such as sliders, checkboxes, buttons, and also groups of
GUI controls.

ofxGuiGroup
globalGroup;

This is a group of GUI controls.

ofxIntSlider countX; This is a slider with integer values.
ofxFloatSlider stepX; This is a slider with float values.
ofxVec2Slider size; This is a slider with two float values.
ofxToggle filled; This is a checkbox.
ofxColorSlider color; This is a color selector.

openFrameworks Quick Reference

[182]

Multimedia and other classes
The following table lists the most important classes used in most openFrameworks
projects. They are discussed in Chapter 4, Working with Raster Graphics – Images,
Videos, and Shaders, Chapter 5, Creating 3D Graphics, Chapter 6, Animating Parameters,
and Chapter 7, Distributed and Physical Computing with Networking and Arduino.

Class name with example of an
object definition

Description

ofImage image; This is an image class, which holds equal data in the
RAM and video memory.

ofPixels pixels; This is an image class, which holds data in RAM only.
ofTexture texture; This is an image class, which holds data in video

memory only.
ofVideoPlayer video; This is a video player class.
ofVideoGrabber camera; This a class for grabbing frames from a camera.
ofFbo fbo; This is a buffer for offscreen drawing.
ofShader shader; This is a shader class, which contains a vertex,

fragment and, optionally, geometry shader programs.
ofMesh mesh; This is a class for representing and drawing a set of

primitives, such as triangles, lines, or points.
The ofEnableDepthTest() command enables
Z-buffering for proper drawing of 3D objects, and the
ofDisableDepthTest() command disables it back.

ofSpherePrimitive
sphere;

This is a class for representing and drawing a sphere
in 3D. Also, there are the ofPlanePrimitive,
ofSpherePrimitive, ofIcoSpherePrimitive,
ofCylinderPrimitive, and ofConePrimitive
classes for representing other simple geometrical objects.

ofEasyCam cam; This is a camera for 3D drawing.
ofLight light; This is the light source for 3D drawing.
ofMaterial material; These are the material properties for 3D drawing.
ofSoundPlayer sound; This is the sound player class.
ofxOscReceiver
oscReceiver;

This is the receiver of OSC networking messages (it
requires the ofxOsc addon).

ofxOscSender oscSender; This is the sender of OSC networking messages (it
requires the ofxOsc addon).

ofSerial serial; This is the class for serial port communication with
devices such as Arduino.

Appendix B

[183]

Mathematical, timer, and conversion
functions
The mathematical, timer, and conversion functions were described in Chapter
6, Animating Parameters, and Chapter 7, Distributed and Physical Computing with
Networking and Arduino, and are collected in this table:

Function Description
ofMap(x, 0, 1, 2, 3) This linearly maps the float x from segment [0,1] to

segment [2,3].
ofMap(x, 0, 1, 2, 3,
true)

This linearly maps the float x from the segment [0,1] to
the segment [2,3], clamping the output value to the [2,3]
range (it occurs when x is not in segment [0,1]).

ofClamp(x, 0, 1) This clamps the float x to the range [0,1].
ofInRange(x, 0, 1) This returns true if the float x lies in the segment [0,1]

and returns false in the opposite case.
ofToString(0.5) This converts a numeric value (integer or float) to a

string.
ofGetElapsedTime() This is the number of seconds elapsed from the

application start; the returned value is float.
ofNoise(x) This is the Perlin noise value for float x.
ofToFloat("0.5") This converts a string to a float number.
ofToInt("5") This converts a string to an integer.
vector<string> list
= ofSplitString(
"aa;bb;cc;dd", ";");

This splits a string into an array of strings. The first
argument is the string, and the second argument is the
delimeter. In our example, the resulting array list will
consist of the four elements:
list[0] = "aa"

list[1] = "bb"

list[2] = "cc"

list[3] = "dd"

openFrameworks Quick Reference

[184]

Summary
We listed a short description of the main application class, 2D drawing functions,
GUI, and multimedia classes and even of the mathematical functions discussed in
the book. For detailed information, see the corresponding chapters.

Note that openFrameworks contains much more useful functions, classes, and
addons than are mentioned in our book. So, if you require some feature you
are unable to find in the appendix and in the whole book, search for it in the
openFrameworks examples, documentation, addons list, forum, or books (see
Chapter 9, Further Resources, for details).

[185]

Index
Symbols
2D slider

controls' values, using 46, 47
implementing 43-45
project, experimenting with 47, 48
specifics 47

3D graphics
about 83, 84
classes 84

A
additive blending

about 66
used, for mixing layers 65, 66

alpha blending 66
analogRead() function 136
Android Development Tools (ADT)

bundle 151
Android device

accelerometer 156
gyroscope 156

Android NDK (Android Native
Development Kit) 150

Android SDK (Android Software
Development Kit) 150

Arduino 135
Arduino board

connection troubleshooting 140
data, receiving 138-140
devices, connecting 140
programming 135-138

Arduino connection, video
synthesizer project

Firmata protocol, used 165

Arduino IDE
URL 135

autosave feature
implementing 41

C
camera

automation 89, 90
controlling, with mouse 88
creating 87, 88
live video, grabbing from 64, 65
mouse control, disabling 89

checkbox
implementing 43-45

classes, 3D graphics
ofConePrimitive 85
ofCylinderPrimitive 85
ofIcoSpherePrimitive 85
ofMesh 85
ofPlanePrimitive 85
ofSpherePrimitive 85
ofVboMesh 85

code
debugging 168
speeding up 169, 170

color image 60
color image with alpha channel 60
color selector

implementing 43-45
companion vertex shader 78
coordinate system

centering 27, 28
core addons 23
curves, video synthesizer project

drawing 164

[186]

D
data

reading, from text file 115-117
decibels 112
deformation

about 99
by formulas 99-101
sphere deformation 99

depth buffer. See Z-buffering
desktop version, video synthesizer project

about 171
control keys 172
data files 172
GUI controls 173
openFrameworks project 171
source files 171

drawing
about 28
color, setting 28, 29
primitives 30, 31

drawing functions, 2D drawing 180, 181

E
EEG data visualization 117
eeg.txt text file

parsing 115, 116
exponential smoothing

about 112
URL 112

extruding of sphere
implementing 102, 103

F
Firmata 166
fragment shader

about 70
creating 75
main() function 76, 77

Frame Buffer Object (FBO) 70
Fritzing

URL 138

G
geometric pattern 32

geometry shader 70
grayscale image 60
groups of controls

creating 41, 42
sliders' values used 43

GUI
2D and 3D graphics, mixing with 97, 98
autosave feature, implementing 41
creating, ofxGui addon used 37, 38

GUI controls, video synthesizer for desktop
about 173
global group 174
mixer group 175, 176
primitive group 174
sliders 173, 174

GUI panel
implementing, sliders used 38, 39
sliders' values used 40, 41

I
image file

drawing 60, 61
image generation, video synthesizer project

fragment shaders, used 164
instantaneous phase 107
iOS device

accelerometer 149
gyroscope 149

K
kaleidoscope effect

about 70
created shaders, using 78-80
fragment shader, creating 75, 76
implementing 74
vertex shader, creating 78

kangle slider 106
keyboard events

GUI, hiding 49
handling 49
preset loading, system load dialog used 51
preset saving, system save dialog

used 50, 51
screenshot, saving 50

[187]

L
layers

mixer's functionality, implementing 68, 69
mixer's GUI, creating 66, 67
mixing, additive blending used 65, 66

level of sound
signal, obtaining 111-113
using, for parameter's automation 109

live video
grabbing, from camera 64, 65

Local Area Network (LAN) 126
Low Frequency Oscillators (LFOs) 106

M
matrix pattern generator

about 37
experimenting with 55, 56
implementing 51-53
sliders' values, using 53, 54

Max/MSP
about 130
installing 131
OSC sender, creating with 130-134
URL 131

mixer
functionality, implementing 68, 69
GUI, creating 66, 67

mouse
camera, controlling 88

multimedia classes 182

N
networking

about 120
distributed projects, creating 120

networking, in openFrameworks
about 120
ofxNetwork addon 121
ofxOsc addon 121

networking port 122
New Out of Box Software (NOOBS)

about 157
URL 158

noise 108

non-core addons 23
number of channels, raster images 60

O
object deformation, video

synthesizer project
vertex shaders, used 165

ofApp class
about 179
draw() function 180
setup() function 179
update() function 180

offscreen buffer
about 70
contents, drawing 72-74
drawing, redirecting 70-72
smoothing, enabling 72-74

ofGetElapsedTime() function 106
ofImage class 60
ofPixels class 60
ofSoundPlayer 109
ofTexture class 60
ofxGui addon

used, for creating GUI 38
ofxNetwork addon 121
ofxOsc addon

about 121
ofxOscBundle class 121
ofxOscMessage class 121
ofxOscReceiver class 121
ofxOscSender class 121

ofxSyphon addon
URL 166

openFrameworks
about 13, 14
code, debugging 167, 168
code, speeding up 169, 170
download link 14
example 16-18
features 13, 14
folder structure 15, 16
installing 14, 15
networking 120
project 21
resources 167

[188]

simple drawing 28
URL, for documentation 163
video synthesizer application 18

Open Sound Control (OSC) protocol
about 121
URL 121

orthogonal projection 87
OSC messages receiver

implementing 122, 123
OSC sender

connection troubleshooting 127
creating for mobile device, TouchOSC app

used 127, 128
creating, Max/MSP used 130-133
creating, Python used 128-130
creating, with openFrameworks 123-126
messages, sending between two separate

computers 126

P
parallel lines

used, for creating stripe pattern 32
parameter's automation

disabling 117
parameter's automation, using level

of sound
about 109
audio file, analyzing 109-111
audio file, playing 109-111
level of sound signal, obtaining 111, 112

parameter's automation, using time values
about 105, 106
pseudorandom LFO, implementing with

Perlin noise 108, 109
simple LFO, implementing 106, 107

patch cord 133
Perlin noise

about 108
pseudorandom LFO, implementing

with 108, 109
perspective projection 87
physical computing 135
pinchY slider 140
preset

loading, system load dialog used 51
saving, system save dialog used 50, 51

profiler 169
project, openFrameworks

addons, selecting 23, 24
code structure 25
creating 21-24
running 24

projections
orthogonal projection 87
perspective projection 87

pseudorandom LFO
implementing, with Perlin noise 108

Python
installing 129
OSC sender, creating with 128
URL 129

python-osc library
URL 129

R
rad slider 111
Raspberry Pi version, video synthesizer

project 178
Raspbian OS 158
raster graphics 59
raster images

about 60
color image 60
color image with alpha channel 60
grayscale image 60
number of channels 60
ofImage class 60
ofPixels class 60
ofTexture class 60

rendering, video synthesizer project
speeding up 164

Root Mean Square (RMS) measure 111
rotating lines

used, for creating stripe pattern 34
rotating triangles

used, for creating stripe pattern 34-36

S
screen

setting up 26, 27
shaded surface

light source 91

Proudly sourced and uploaded by [StormRG]

[189]

material 91
normals 91
Z-buffering 91

shaders
about 70
fragment shader 70
geometry shader 70
used, for creating video effect 70
vertex shader 70

simple LFO
implementing 106, 107

simplex noise 108
sliders

used, for implementing GUI panel 38, 39
smoothing factor 112
solid sphere

drawing 90
drawing, with shading 91-93

sonification 128
sound capture

enabling 113-115
level, measuring 113-115

sound.setMultiPlay(true) command 110
sound.setPan(1) command 110
sound.setSpeed(0.5) command 110
spectrum 111
sphere

deforming 99
extruding 102, 103
texturing 94

stripe pattern
about 32
creating, from parallel lines 32
creating, from rotating lines 34
creating, from rotating triangles 34-36
function calling, inserting 34
function declaration, inserting 33
function definition, inserting 33

system load dialog
used, for loading preset 51

system save dialog
used, for saving preset 50, 51

T
textured surface 94

texturing
about 94
activating 96
texture coordinates, setting 95
texture image, preparing 94, 95

text, video synthesizer project
drawing 164

time values
using, for parameter's automation 105, 106

TouchOSC app
OSC sender, creating with 127

Transmission Control Protocol (TCP) 121
triangular mesh 85

U
User Datagram Protocol (UDP) 121

V
vector graphics 59
Vertex Buffer Object (VBO) 85
vertex shader

about 70
creating 78

vertices 78
video effect

creating, with shaders 70
drawing, redirecting to offscreen

buffer 70-72
kaleidoscope effect, implementing 74

video file
playing 62, 63

video synthesizer project
about 18, 19
deploying, on iOS device 149
desktop version 171
features 20

video synthesizer project, enhancing
about 163
curves, drawing 164
Firmata protocol, using for Arduino

connection 165
fragment shaders, using for image

generation 164
images, sharing between separate

programs 166
multidisplay setup 166

[190]

rendering, speeding up 164
text, drawing 164
vertex shaders, using for object

deformation 165
video synthesizer project, running on

Android device
about 150
accelerometer, using 156
empty project, creating 152
GUI panel size, increasing 154
reaction on stopping and double-tapping,

implementing 155, 156
renaming 157
software, installing for Android

development 151
troubleshooting 154
video synthesizer, implementing 152, 153

video synthesizer project, running on
iOS device

about 144, 145
accelerometer, using 149, 150
project, building for iPad 148, 149
video synthesizer, implementing

for iOS 145-148
video synthesizer project, running on

Raspberry Pi
about 157
device, setting up 158
first example, running 160
openFrameworks, installing 159, 160
required equipment 157
video synthesizer, implementing 161

video synthesizers, for iOS and Android
about 177
accelerometer 178
data files 177
double-tap 178
GUI panel 178
openFrameworks project 177
source file 177

video synthesizers, for Raspberry Pi 178
visualization 128

W
wireframe model 85
wireframe sphere

drawing 85-87

Z
Z-buffering 91

Thank you for buying
openFrameworks Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering openFrameworks:
Creative Coding Demystified
ISBN: 978-1-84951-804-8 Paperback: 364 pages

A practical guide to creating audiovisual interactive
projects with low-level data processing using
openFrameworks

1. Create cutting edge audio-visual interactive
projects, interactive installations, and sound art
projects with ease.

2. Unleash the power of low-level data processing
methods using C++ and shaders.

3. Make use of the next generation technologies
and techniques in your projects involving
OpenCV, Microsoft Kinect, and so on.

Kinect for Windows SDK
Programming Guide
ISBN: 978-1-84969-238-0 Paperback: 392 pages

Build motion-sensing applications with Microsoft's
Kinect for Windows SDK quickly and easily

1. Building application using Kinect for Windows
SDK.

2. Covers the Kinect for Windows SDK v1.6.

3. A practical step-by-step tutorial to make
learning easy for a beginner.

4. A detailed discussion of all the APIs involved
and the explanations of their usage in detail.

Please check www.PacktPub.com for information on our titles

Cinder – Begin Creative Coding
ISBN: 978-1-84951-956-4 Paperback: 146 pages

A quick introduction into the world of creative
coding with Cinder through basic tutorials and a
couple of advanced examples

1. More power – Cinder is one of the most
powerful creative coding engines out there
and it will be hard to find a better one for your
professional grade project.

2. Do it fast – each section should not take longer
than one hour to complete.

3. We give you the tools and it is up to you
what you do with them – we won't go into
complicated algorithms, but rather give you the
brushes and paints so you can paint the way
you already know.

Processing 2: Creative Coding
HOTSHOT
ISBN: 978-1-78216-672-6 Paperback: 266 pages

Learn Processing with exciting and engaging projects
to make your computer talk, see, hear, express
emotions, and even design physical objects

1. Teach your computer to create physical objects,
visualize data, and program a custom hardware
controller.

2. Create projects that can be run on a variety of
platforms, ranging from desktop computers to
Android smartphones.

3. Each chapter presents a complete project and
guides you through the implementation using
easy-to-follow, step-by-step instructions.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with openFrameworks
	What is openFrameworks?
	Installing openFrameworks
	The openFrameworks folder structure

	Running your first example
	The video synthesizer application
	Three reasons to create your own video synthesizer with openFrameworks

	Summary

	Chapter 2: Creating Your First openFrameworks Project
	Creating and running a new project
	Creating a project
	Running a project

	Discovering the project's code structure
	Setting up the screen
	Centering the coordinate system
	A simple drawing
	Setting drawing color
	Drawing primitives

	Geometric patterns
	The stripe pattern
	A stripe pattern made from parallel lines
	A stripe pattern made from rotating lines
	A stripe pattern made from rotating triangles

	Summary

	Chapter 3: Adding GUI and Handling Keyboard Events
	Creating a GUI using the ofxGui addon
	Implementing a simple GUI panel with sliders
	Using the sliders' values

	Implementing the autosave feature
	Creating groups of controls
	Using the sliders' values

	Implementing a checkbox, a color selector, and a 2D slider
	Using the controls' values
	Experimenting with the project

	Handling keyboard events
	Hiding the GUI
	Saving a screenshot
	Saving a preset using the system
save dialog
	Loading a preset using the system load dialog

	Implementing the matrix pattern generator
	Using the sliders' values
	Experimenting with the matrix
pattern generator
	Summary

	Chapter 4: Working with Raster
Graphics – Images,
Videos, and Shaders
	Raster images in openFrameworks
	Drawing an image file
	Playing a video file
	Grabbing a live video from a camera
	Mixing layers using additive blending
	Creating the mixer's GUI
	Implementing the mixer's functionality

	Creating the video effect with a shader
	Redirecting drawing to the offscreen buffer
	Drawing the offscreen buffer contents and enabling smoothing
	Implementing the kaleidoscope effect
	Creating the fragment shader
	Creating the vertex shader
	Using created shaders in the project

	Summary

	Chapter 5: Creating 3D Graphics
	Introduction to 3D graphics with openFrameworks
	openFrameworks classes for surface representation

	Drawing a wireframe sphere
	Creating a camera
	Controlling the camera with a mouse
	Disabling mouse control for the camera when the GUI is visible

	Camera automation

	Drawing a solid sphere
	The things needed for shading the surface
	Drawing a solid sphere with shading

	Texturing the sphere
	Preparing a texture
	Setting texture coordinates
	Activating texturing

	Mixing 2D and 3D with the GUI
	Deforming a sphere
	Deforming by formulas
	Extruding the sphere

	Summary

	Chapter 6: Animating Parameters
	Using time values for a parameter's automation
	Implementing a simple LFO
	Implementing a pseudorandom LFO with Perlin noise

	Using the level of sound for a parameter's automation
	Playing and analyzing an audio file
	Getting the level of a sound signal

	Capturing sound from a sound card's input and measuring its level
	Reading data from a text file
	Controlling automation
	Summary

	Chapter 7: Distributed and Physical Computing with Networking and Arduino
	Distributed computing with networking
	Networking in openFrameworks
	The ofxNetwork addon
	The ofxOsc addon

	Implementing the OSC messages receiver
	Creating an OSC sender with openFrameworks
	Sending OSC messages between two separate computers
	Connection troubleshooting

	Creating OSC senders with TouchOSC, Python,
and Max/MSP
	Creating an OSC sender for a mobile device using the TouchOSC app
	Creating an OSC sender with Python
	Creating an OSC sender with Max/MSP

	Physical computing with Arduino
	Programming an Arduino board
	Receiving data from Arduino in the openFrameworks project
	Connection troubleshooting
	Connecting more devices

	Summary

	Chapter 8: Deploying the Project on iOS, Android, and Raspberry Pi
	Running the project on an iOS device
	Implementing video synthesizer for iOS
	Building a project for iPad

	Deploying project on an iOS device
	Using accelerometer

	Running the project on an Android device
	Installing software for Android development
	Implementing video synthesizer for Android
	Creating an empty project
	Implementing the video synthesizer

	Increasing the size of the GUI panel
	Troubleshooting

	Implementing reaction on stopping and double-tapping
	Using the accelerometer on an Android device
	Renaming the project

	Running the project on Raspberry Pi
	Required equipment
	Setting up the device
	Installing openFrameworks
	Running the first example
	Implementing a video synthesizer for Raspberry Pi

	Summary

	Chapter 9: Further Resources
	Enhancing the video synthesizer project
	Speeding up the rendering
	Drawing curves and text
	Using fragment shaders for image generation
	Using vertex shaders for an object deformation
	Using the Firmata protocol for Arduino connection
	Multidisplay setup and sharing images between separate programs

	Getting more information on openFrameworks
	OpenFrameworks books

	Debugging and speeding up your code
	Debugging
	Speeding up the code

	Summary

	Appendix A: Video Synthesizer Reference
	The desktop version
	The openFrameworks project and source files
	Data files

	Control keys
	The GUI controls
	Basic sliders
	Global group
	Primitive group
	Mixer group

	iOS and Android versions
	The openFrameworks project and source files
	Data files
	The GUI
	Touches
	Accelerometer

	Raspberry Pi version
	Summary

	Appendix B: openFrameworks
Quick Reference
	Application
	2D drawing
	The GUI
	Multimedia and other classes
	Mathematical, timer, and conversion functions
	Summary

	Index

